151
|
Abstract
Two areas of research have recently converged to highlight important roles for Mn(2+) in pathogenesis: the recognition that both bacterial Nramp homologs and members of LraI family of proteins are Mn(2+) transporters. Their mutation is associated with decreased virulence of various bacterial species. Thus, Mn(2+) appears to be essential for bacterial virulence. This review describes what is currently known about Mn(2+) transport in prokaryotes and how prokaryotic Mn(2+) transport is regulated. Some of the phenotypes that arise when microorganisms lack Mn(2+) are then discussed, with an emphasis on those phenotypes involving pathogenesis. The concluding section describes possible enzymatic roles for Mn(2+) that might help explain why Mn(2+) is necessary for virulence.
Collapse
|
152
|
Friedman DB, Stauff DL, Pishchany G, Whitwell CW, Torres VJ, Skaar EP. Staphylococcus aureus redirects central metabolism to increase iron availability. PLoS Pathog 2006; 2:e87. [PMID: 16933993 PMCID: PMC1557832 DOI: 10.1371/journal.ppat.0020087] [Citation(s) in RCA: 157] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2006] [Accepted: 07/14/2006] [Indexed: 12/01/2022] Open
Abstract
Staphylococcus aureus pathogenesis is significantly influenced by the iron status of the host. However, the regulatory impact of host iron sources on S. aureus gene expression remains unknown. In this study, we combine multivariable difference gel electrophoresis and mass spectrometry with multivariate statistical analyses to systematically cluster cellular protein response across distinct iron-exposure conditions. Quadruplicate samples were simultaneously analyzed for alterations in protein abundance and/or post-translational modification state in response to environmental (iron chelation, hemin treatment) or genetic (Δfur) alterations in bacterial iron exposure. We identified 120 proteins representing several coordinated biochemical pathways that are affected by changes in iron-exposure status. Highlighted in these experiments is the identification of the heme-regulated transport system (HrtAB), a novel transport system which plays a critical role in staphylococcal heme metabolism. Further, we show that regulated overproduction of acidic end-products brought on by iron starvation decreases local pH resulting in the release of iron from the host iron-sequestering protein transferrin. These findings reveal novel strategies used by S. aureus to acquire scarce nutrients in the hostile host environment and begin to define the iron and heme-dependent regulons of S. aureus. Virtually all bacterial pathogens require iron to successfully infect their human hosts. This presents a problem to invading bacteria because the majority of iron in humans is tightly bound by iron-binding proteins. To counteract this host defense, bacterial pathogens have developed elaborate mechanisms to acquire nutrient iron during infection. To gain insight into how the amount of available iron impacts the human pathogen Staphylococcus aureus, the authors identified proteins that increase or decrease abundance upon alterations in iron status. The authors found that under conditions of iron starvation, the Fur regulatory protein of S. aureus coordinates a redirection of the central metabolic pathways causing the bacteria to produce large amounts of acidic end-products. The accumulation of these acidic end-products facilitates the release of iron from host iron-binding proteins, in effect increasing the availability of this precious nutrient source. These findings provide a mechanistic explanation for how S. aureus alters its local microenvironment during infection to increase the availability of nutrient iron. Based on the well-established role for bacterial iron acquisition during pathogenesis, systems involved in iron acquisition represent excellent potential therapeutic targets against bacterial infection.
Collapse
Affiliation(s)
- David B Friedman
- Mass Spectrometry Research Center, Department of Biochemistry, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Devin L Stauff
- Department of Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Gleb Pishchany
- Department of Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Corbin W Whitwell
- Mass Spectrometry Research Center, Department of Biochemistry, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Victor J Torres
- Department of Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Eric P Skaar
- Department of Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
153
|
Cosgrove K, Coutts G, Jonsson IM, Tarkowski A, Kokai-Kun JF, Mond JJ, Foster SJ. Catalase (KatA) and alkyl hydroperoxide reductase (AhpC) have compensatory roles in peroxide stress resistance and are required for survival, persistence, and nasal colonization in Staphylococcus aureus. J Bacteriol 2006; 189:1025-35. [PMID: 17114262 PMCID: PMC1797328 DOI: 10.1128/jb.01524-06] [Citation(s) in RCA: 228] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Oxidative-stress resistance in Staphylococcus aureus is linked to metal ion homeostasis via several interacting regulators. In particular, PerR controls the expression of a regulon of genes, many of which encode antioxidants. Two PerR regulon members, ahpC (alkylhydroperoxide reductase) and katA (catalase), show compensatory regulation, with independent and linked functions. An ahpC mutation leads to increased H2O2 resistance due to greater katA expression via relief of PerR repression. Moreover, AhpC provides residual catalase activity present in a katA mutant. Mutation of both katA and ahpC leads to a severe growth defect under aerobic conditions in defined media (attributable to lack of catalase activity). This results in the inability to scavenge exogenous or endogenously produced H2O2, resulting in accumulation of H2O2 in the medium. This leads to DNA damage, the likely cause of the growth defect. Surprisingly, the katA ahpC mutant is not attenuated in two independent models of infection, which implies reduced oxygen availability during infection. In contrast, both AhpC and KatA are required for environmental persistence (desiccation) and nasal colonization. Thus, oxidative-stress resistance is an important factor in the ability of S. aureus to persist in the hospital environment and so contribute to the spread of human disease.
Collapse
Affiliation(s)
- Kate Cosgrove
- Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield, S10 2TN, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
154
|
Yang J, Sangwan I, O'brian MR. The Bradyrhizobium japonicum Fur protein is an iron-responsive regulator in vivo. Mol Genet Genomics 2006; 276:555-64. [PMID: 17039378 DOI: 10.1007/s00438-006-0162-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2006] [Accepted: 08/29/2006] [Indexed: 11/27/2022]
Abstract
The Fur protein is a global regulator of iron metabolism in many bacterial species. However, Fur homologs from some rhizobia appear not to mediate iron-dependent gene expression in vivo. Here, transcriptional profiling analysis showed that more than one-fourth of the genes within the iron stimulon of Bradyrhizobium japonicum were aberrantly controlled by iron in a fur mutant. However, Fur has only a modest role in regulating iron transport genes. Quantitative real time reverse transcriptase PCR measurements confirmed abnormal gene expression in iron-limited cells of the fur strain, thereby demonstrating that Fur must function under those conditions. The findings show that B. japonicum Fur is involved in iron-dependent gene expression, and support the conclusion that rhizobial Fur proteins have novel functions compared with well studied model systems.
Collapse
Affiliation(s)
- Jianhua Yang
- Department of Biochemistry, State University of New York at Buffalo, 140 Farber Hall, Buffalo, NY 14214, USA
| | | | | |
Collapse
|
155
|
Michel A, Agerer F, Hauck CR, Herrmann M, Ullrich J, Hacker J, Ohlsen K. Global regulatory impact of ClpP protease of Staphylococcus aureus on regulons involved in virulence, oxidative stress response, autolysis, and DNA repair. J Bacteriol 2006; 188:5783-96. [PMID: 16885446 PMCID: PMC1540084 DOI: 10.1128/jb.00074-06] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Staphylococcus aureus is an important pathogen, causing a wide range of infections including sepsis, wound infections, pneumonia, and catheter-related infections. In several pathogens ClpP proteases were identified by in vivo expression technologies to be important for virulence. Clp proteolytic complexes are responsible for adaptation to multiple stresses by degrading accumulated and misfolded proteins. In this report clpP, encoding the proteolytic subunit of the ATP-dependent Clp protease, was deleted, and gene expression of DeltaclpP was determined by global transcriptional analysis using DNA-microarray technology. The transcriptional profile reveals a strong regulatory impact of ClpP on the expression of genes encoding proteins that are involved in the pathogenicity of S. aureus and adaptation of the pathogen to several stresses. Expression of the agr system and agr-dependent extracellular virulence factors was diminished. Moreover, the loss of clpP leads to a complete transcriptional derepression of genes of the CtsR- and HrcA-controlled heat shock regulon and a partial derepression of genes involved in oxidative stress response, metal homeostasis, and SOS DNA repair controlled by PerR, Fur, MntR, and LexA. The levels of transcription of genes encoding proteins involved in adaptation to anaerobic conditions potentially regulated by an Fnr-like regulator were decreased. Furthermore, the expression of genes whose products are involved in autolysis was deregulated, leading to enhanced autolysis in the mutant. Our results indicate a strong impact of ClpP proteolytic activity on virulence, stress response, and physiology in S. aureus.
Collapse
Affiliation(s)
- Antje Michel
- Institut für Molekulare Infektionsbiologie, Röntgenring 11, D-97070 Würzburg, Germany
| | | | | | | | | | | | | |
Collapse
|
156
|
Runyen-Janecky L, Dazenski E, Hawkins S, Warner L. Role and regulation of the Shigella flexneri sit and MntH systems. Infect Immun 2006; 74:4666-72. [PMID: 16861654 PMCID: PMC1539580 DOI: 10.1128/iai.00562-06] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shigella flexneri possesses at least two putative high-affinity manganese acquisition systems, SitABCD and MntH. Mutations in the genes encoding the components of both of these systems were constructed in S. flexneri. The sitA mntH mutant showed reduced growth, relative to the wild type, in Luria broth (L broth) containing the divalent metal chelator ethylene diamino-o-dihydroxyphenyl acetic acid, and the addition of either iron or manganese restored growth to the level of the wild-type strain. Although the sitA mntH mutant was not defective in surviving exposure to superoxide generators, it was defective in surviving exposure to hydrogen peroxide. The sitA mntH mutant formed wild-type plaques on Henle cell monolayers but had a reduced ability to survive in activated macrophage lines. Expression of the S. flexneri sit and mntH promoters was higher when Shigella was in Henle cells than when it was in L broth. Expression of both the sit and mntH promoters was repressed by either iron or manganese, and this repression was partially dependent upon Fur and MntR, respectively. The mntH promoter, but not the sit promoter, exhibited OxyR-dependent induction in the presence of hydrogen peroxide.
Collapse
|
157
|
Richardson AR, Dunman PM, Fang FC. The nitrosative stress response of Staphylococcus aureus is required for resistance to innate immunity. Mol Microbiol 2006; 61:927-39. [PMID: 16859493 DOI: 10.1111/j.1365-2958.2006.05290.x] [Citation(s) in RCA: 191] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Staphylococcus aureus is a highly virulent human pathogen with an extensive array of strategies to subvert the innate immune response. An important aspect of innate immunity is the production of the nitrogen monoxide radical (Nitric Oxide, NO.). Here we describe an adaptive response to nitrosative stress that allows S. aureus to replicate at high concentrations of NO.. Microarray analysis revealed 84 staphylococcal genes with significantly altered expression following NO. exposure. Of these, 30 are involved with iron-homeostasis, potentially under the control of the Fur regulator. Another seven induced genes are involved in hypoxic/fermentative metabolism, including the flavohaemoprotein, Hmp. The SrrAB two-component system has been shown to regulate the expression of many of the NO.-induced metabolic genes. Indeed, inactivation of hmp, srrAB and fur resulted in heightened NO. sensitivity. Hmp was responsible for c. 90% of measurable staphylococcal NO. consumption and therefore critical for efficient NO. detoxification. While SrrAB was required for maximal hmp expression, srrAB mutants still exhibited significant NO. scavenging and NO.-dependent induction of hmp. Yet S. aureus lacking SrrAB were more sensitive to nitrosative stress than hmp mutants, indicating that the contribution of SrrAB to NO. resistance extends beyond the regulation of hmp expression. Both Hmp and SrrAB were required for full virulence in a murine sepsis model, however, only the attenuation of the hmp mutant was restored by the abrogation of host NO. production. Thus, the S. aureus Hmp protein has evolved to serve as an iNOS-dependent virulence determinant.
Collapse
Affiliation(s)
- Anthony R Richardson
- Department of Laboratory Medicine, University of Washington, School of Medicine, Seattle, WA 98185, USA
| | | | | |
Collapse
|
158
|
Wu HJ, Seib KL, Srikhanta YN, Kidd SP, Edwards JL, Maguire TL, Grimmond SM, Apicella MA, McEwan AG, Jennings MP. PerR controls Mn-dependent resistance to oxidative stress in Neisseria gonorrhoeae. Mol Microbiol 2006; 60:401-16. [PMID: 16573689 DOI: 10.1111/j.1365-2958.2006.05079.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In previous studies it has been established that resistance to superoxide by Neisseria gonorrhoeae is dependent on the accumulation of Mn(II) ions involving the ABC transporter, MntABC. A mutant strain lacking the periplasmic binding protein component (MntC) of this transport system is hypersensitive to killing by superoxide anion. In this study the mntC mutant was found to be more sensitive to H2O2 killing than the wild-type. Analysis of regulation of MntC expression revealed that it was de-repressed under low Mn(II) conditions. The N. gonorrhoeae mntABC locus lacks the mntR repressor typically found associated with this locus in other organisms. A search for a candidate regulator of mntABC expression revealed a homologue of PerR, a Mn-dependent peroxide-responsive regulator found in Gram-positive organisms. A perR mutant expressed more MntC protein than wild-type, and expression was independent of Mn(II), consistent with a role for PerR as a repressor of mntABC expression. The PerR regulon of N. gonorrhoeae was defined by microarray analysis and includes ribosomal proteins, TonB-dependent receptors and an alcohol dehydrogenase. Both the mntC and perR mutants had reduced intracellular survival in a human cervical epithelial cell model.
Collapse
Affiliation(s)
- Hsing-Ju Wu
- School of Molecular and Microbial Sciences and Centre for Metals in Biology, The University of Queensland, Brisbane, Australia 4072
| | | | | | | | | | | | | | | | | | | |
Collapse
|
159
|
Seib KL, Wu HJ, Kidd SP, Apicella MA, Jennings MP, McEwan AG. Defenses against oxidative stress in Neisseria gonorrhoeae: a system tailored for a challenging environment. Microbiol Mol Biol Rev 2006; 70:344-61. [PMID: 16760307 PMCID: PMC1489540 DOI: 10.1128/mmbr.00044-05] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Neisseria gonorrhoeae is a host-adapted pathogen that colonizes primarily the human genitourinary tract. This bacterium encounters reactive oxygen and reactive nitrogen species as a consequence of localized inflammatory responses in the urethra of males and endocervix of females and also of the activity of commensal lactobacilli in the vaginal flora. This review describes recent advances in the understanding of defense systems against oxidative stress in N. gonorrhoeae and shows that while some of its defenses have similarities to the paradigm established with Escherichia coli, there are also some key differences. These differences include the presence of a defense system against superoxide based on manganese ions and a glutathione-dependent system for defense against nitric oxide which is under the control of a novel MerR-like transcriptional regulator. An understanding of the defenses against oxidative stress in N. gonorrhoeae and their regulation may provide new insights into the ways in which this bacterium survives challenges from polymorphonuclear leukocytes and urogenital epithelial cells.
Collapse
Affiliation(s)
- Kate L Seib
- The School of Molecular and Microbial Sciences, The University of Queensland, Brisbane 4072, Australia
| | | | | | | | | | | |
Collapse
|
160
|
Allard M, Moisan H, Brouillette E, Gervais AL, Jacques M, Lacasse P, Diarra MS, Malouin F. Transcriptional modulation of some Staphylococcus aureus iron-regulated genes during growth in vitro and in a tissue cage model in vivo. Microbes Infect 2006; 8:1679-90. [PMID: 16969913 DOI: 10.1016/j.micinf.2006.01.022] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Staphylococcus aureus can proliferate in iron-limited environments such as the mammalian host. The transcriptional profiles of 460 genes (iron-regulated, putative Fur-regulated, membrane transport, pathogenesis) obtained for S. aureus grown in iron-restricted environments in vitro and in vivo were compared in order to identify new iron-regulated genes and to evaluate their potential as possible therapeutic targets in vivo. Iron deprivation was created in vitro by 2,2-dipyridyl, and in vivo, S. aureus was grown in tissue cages implanted in mice. Bacterial RNA was obtained from each growth condition and cDNA probes were co-hybridized on DNA arrays. Thirty-six upregulated and 11 downregulated genes were commonly modulated in animals and in the low-iron medium. Real-time PCR confirmed the iron-dependent modulation of four novel genes (SACOL0161, 2170, 2369, 2431) with a Fur box motif. Some genes expressed in the dipyridyl medium were not expressed in vivo (e.g., copA, frpA, SACOL1045). Downregulated genes included an iron-storage protein gene and genes of the succinate dehydrogenase complex, reminiscent of a small RNA-dependent regulation thus far only demonstrated in Gram-negative bacteria. The expression of iron-regulated genes in distinct low-iron environments provided insight into their relative importance in vitro and in vivo and their usefulness for vaccine and drug development.
Collapse
Affiliation(s)
- Marianne Allard
- Centre d'Etude et de Valorisation de la Diversité Microbienne (CEVDM), Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | | | | | | | | | | | | |
Collapse
|
161
|
Kliegman JI, Griner SL, Helmann JD, Brennan RG, Glasfeld A. Structural basis for the metal-selective activation of the manganese transport regulator of Bacillus subtilis. Biochemistry 2006; 45:3493-505. [PMID: 16533030 PMCID: PMC2586665 DOI: 10.1021/bi0524215] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The manganese transport regulator (MntR) of Bacillus subtilis is activated by Mn(2+) to repress transcription of genes encoding transporters involved in the uptake of manganese. MntR is also strongly activated by cadmium, both in vivo and in vitro, but it is poorly activated by other metal cations, including calcium and zinc. The previously published MntR.Mn(2+) structure revealed a binuclear complex of manganese ions with a metal-metal separation of 3.3 A (herein designated the AB conformer). Analysis of four additional crystal forms of MntR.Mn(2+) reveals that the AB conformer is only observed in monoclinic crystals at 100 K, suggesting that this conformation may be stabilized by crystal packing forces. In contrast, monoclinic crystals analyzed at room temperature (at either pH 6.5 or pH 8.5), and a second hexagonal crystal form (analyzed at 100 K), all reveal the shift of one manganese ion by 2.5 A, thereby leading to a newly identified conformation (the AC conformer) with an internuclear distance of 4.4 A. Significantly, the cadmium and calcium complexes of MntR also contain binuclear complexes with a 4.4 A internuclear separation. In contrast, the zinc complex of MntR contains only one metal ion per subunit, in the A site. Isothermal titration calorimetry confirms the stoichiometry of Mn(2+), Cd(2+), and Zn(2+) binding to MntR. We propose that the specificity of MntR activation is tied to productive binding of metal ions at two sites; the A site appears to act as a selectivity filter, determining whether the B or C site will be occupied and thereby fully activate MntR.
Collapse
Affiliation(s)
| | - Sarah L. Griner
- Department of Chemistry, Reed College, Portland, Oregon 97202
| | - John D. Helmann
- Department of Microbiology, Wing Hall, Cornell University, Ithaca, New York 14853
| | - Richard G. Brennan
- Department of Biochemistry and Molecular Biology, U. T. M. D. Anderson Cancer Center, Unit 1000 Houston, TX 77030
| | - Arthur Glasfeld
- Department of Chemistry, Reed College, Portland, Oregon 97202
- Author to whom correspondence should be addressed. Telephone: (503)517-7679. Fax: (503)788-6643. E-mail:
| |
Collapse
|
162
|
Johnston JW, Briles DE, Myers LE, Hollingshead SK. Mn2+-dependent regulation of multiple genes in Streptococcus pneumoniae through PsaR and the resultant impact on virulence. Infect Immun 2006; 74:1171-80. [PMID: 16428766 PMCID: PMC1360317 DOI: 10.1128/iai.74.2.1171-1180.2006] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The concentration of Mn2+ is 1,000-fold higher in secretions than it is at internal sites of the body, making it a potential signal by which bacteria can sense a shift from a mucosal environment to a more invasive site. PsaR, a metal-dependent regulator in Streptococcus pneumoniae, was found to negatively affect the transcription of psaBCA, pcpA, rrgA, rrgB, rrgC, srtBCD, and rlrA in the presence of Mn2+. psaBCA encode an ABC-type transporter for Mn2+. pcpA, rrgA, rrgB, and rrgC encode several outer surface proteins. srtBCD encode a cluster of sortase enzymes, and rlrA encodes a transcriptional regulator. Steady-state RNA levels are high under low Mn2+ concentrations in the wild-type strain and are elevated under both high and low Mn2+ concentrations in a psaR mutant strain. RlrA is an activator of rrgA, rrgB, rrgC, and srtBCD (D. Hava and A. Camilli, Mol. Microbiol. 45:1389-1406, 2002), suggesting that PsaR may indirectly control these genes through rlrA, while PsaR-dependent repression of psaBCA, pcpA, and rlrA transcription is direct. The impact of Mn2+-dependent regulation on virulence was further examined in mouse models of pneumonia and nasopharyngeal carriage. The abilities of DeltapsaR, pcpA, and DeltapsaR DeltapcpA mutant strains to colonize the lung were reduced compared to those of the wild type, confirming that both PcpA-mediated gene regulation and PsaR-mediated gene regulation are required for full virulence in the establishment of pneumonia. Neither PcpA nor PsaR was found to be required for colonization of the nasopharynx in a carriage model. This is the first demonstration of Mn2+ acting as a signal for the expression of virulence factors within different host sites.
Collapse
Affiliation(s)
- Jason W Johnston
- Department of Microbiology, University of Iowa, BSB 3-401, 51 Newton Road, Iowa City, IA 52242, USA.
| | | | | | | |
Collapse
|
163
|
Rea R, Hill C, Gahan CGM. Listeria monocytogenes PerR mutants display a small-colony phenotype, increased sensitivity to hydrogen peroxide, and significantly reduced murine virulence. Appl Environ Microbiol 2006; 71:8314-22. [PMID: 16332818 PMCID: PMC1317367 DOI: 10.1128/aem.71.12.8314-8322.2005] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Deletion of perR in Listeria monocytogenes results in a small-colony phenotype (DeltaperRsm) that is slow growing and exhibits increased sensitivity to H2O2. At a relatively high frequency, large-colony variants (DeltaperRlg) arise, which are more resistant to H2O2 than the wild-type and ultimately dominate the culture. Transcriptional analysis revealed that the kat gene (catalase) is up-regulated in both types of mutants and that the highest level is apparent in DeltaperRsm mutants, demonstrating PerR regulation of this gene. Overexpression of the catalase gene in the wild-type background resulted in a slower-growing strain with a smaller colony size similar to that of DeltaperRsm. By combining a bioinformatic approach with experimental evidence, other PerR-regulated genes were identified, including fur, lmo0641, fri, lmo1604, hemA, and trxB. The transcriptional profile of these genes in both mutant backgrounds was similar to that of catalase in that a higher level of expression was observed in DeltaperRsm than in the wild type or DeltaperRlg. Murine studies revealed that the virulence potential of the DeltaperRsm mutant is substantially reduced compared to that of the wild-type and DeltaperRlg strains. Collectively, the data demonstrate that the DeltaperRsm mutant represents the true phenotype associated with the absence of PerR, which is linked to overexpression of regulated genes that negatively affect bacterial homeostasis both in vitro and in vivo. A subsequent secondary mutation occurred at a high frequency, which resulted in phenotypic reversion to a large-colony phenotype with increased fitness that may have obstructed the analysis of the role of PerR in the physiology of the bacterial cell.
Collapse
Affiliation(s)
- Rosemarie Rea
- Department of Microbiology, University College Cork, Cork, Ireland
| | | | | |
Collapse
|
164
|
Abstract
Staphylococcus aureus can cause superficial skin infections and, occasionally, deep-seated infections that entail spread through the blood stream. The organism expresses several factors that compromise the effectiveness of neutrophils and macrophages, the first line of defence against infection. S. aureus secretes proteins that inhibit complement activation and neutrophil chemotaxis or that lyse neutrophils, neutralizes antimicrobial defensin peptides, and its cell surface is modified to reduce their effectiveness. The organism can survive in phagosomes, express polysaccharides and proteins that inhibit opsonization by antibody and complement, and its cell wall is resistant to lysozyme. Furthermore, S. aureus expresses several types of superantigen that corrupt the normal humoral immune response, resulting in anergy and immunosuppression. In contrast, Staphylococcus epidermidis must rely primarily on cell-surface polymers and the ability to form a biolfilm to survive in the host.
Collapse
Affiliation(s)
- Timothy J Foster
- Microbiology Department, Moyne Institute of Preventive Medicine, Trinity College, Dublin 2, Ireland.
| |
Collapse
|
165
|
Bates CS, Toukoki C, Neely MN, Eichenbaum Z. Characterization of MtsR, a new metal regulator in group A streptococcus, involved in iron acquisition and virulence. Infect Immun 2005; 73:5743-53. [PMID: 16113291 PMCID: PMC1231137 DOI: 10.1128/iai.73.9.5743-5753.2005] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Group A streptococcus (GAS) is a common pathogen of the human skin and mucosal surfaces capable of producing a variety of diseases. In this study, we investigated regulation of iron uptake in GAS and the role of a putative transcriptional regulator named MtsR (for Mts repressor) with homology to the DtxR family of metal-dependent regulatory proteins. An mtsR mutant was constructed in NZ131 (M49 serotype) and analyzed. Western blot and RNA analysis showed that mtsR inactivation results in constitutive transcription of the sia (streptococcal iron acquisition) operon, which was negatively regulated by iron in the parent strain. A recombinant MtsR with C-terminal His(6) tag fusion (rMtsR) was cloned and purified. Electrophoretic mobility gel shift assays demonstrated that rMtsR specifically binds to the sia promoter region in an iron- and manganese-dependent manner. Together, these observations indicate that MtsR directly represses the sia operon during cell growth under conditions of high metal levels. Consistent with deregulation of iron uptake, the mtsR mutant is hypersensitive to streptonigrin and hydrogen peroxide, and (55)Fe uptake assays demonstrate that it accumulates 80% +/- 22.5% more iron than the wild-type strain during growth in complete medium. Studies with a zebrafish infection model revealed that the mtsR mutant is attenuated for virulence in both the intramuscular and the intraperitoneal routes. In conclusion, MtsR, a new regulatory protein in GAS, controls iron homeostasis and has a role in disease production.
Collapse
Affiliation(s)
- Christopher S Bates
- Department of Biology, Georgia State University, P.O. Box 4010, Atlanta, GA 30302-4010, USA
| | | | | | | |
Collapse
|
166
|
Pittman JK. Managing the manganese: molecular mechanisms of manganese transport and homeostasis. THE NEW PHYTOLOGIST 2005; 167:733-42. [PMID: 16101910 DOI: 10.1111/j.1469-8137.2005.01453.x] [Citation(s) in RCA: 174] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Manganese (Mn) is an essential metal nutrient for plants. Recently, some of the genes responsible for transition metal transport in plants have been identified; however, only relatively recently have Mn2+ transport pathways begun to be identified at the molecular level. These include transporters responsible for Mn accumulation into the cell and release from various organelles, and for active sequestration into endomembrane compartments, particularly the vacuole and the endoplasmic reticulum. Several transporter gene families have been implicated in Mn2+ transport, including cation/H+ antiporters, natural resistance-associated macrophage protein (Nramp) transporters, zinc-regulated transporter/iron-regulated transporter (ZRT/IRT1)-related protein (ZIP) transporters, the cation diffusion facilitator (CDF) transporter family, and P-type ATPases. The identification of mutants with altered Mn phenotypes can allow the identification of novel components in Mn homeostasis. In addition, the characterization of Mn hyperaccumulator plants can increase our understanding of how plants can adapt to excess Mn, and ultimately allow the identification of genes that confer this stress tolerance. The identification of genes responsible for Mn2+ transport has substantially improved our understanding of plant Mn homeostasis.
Collapse
Affiliation(s)
- Jon K Pittman
- Faculty of Life Sciences, University of Manchester, 3.614 Stopford Building, Oxford Road, Manchester M13 9PT, UK.
| |
Collapse
|
167
|
Streker K, Freiberg C, Labischinski H, Hacker J, Ohlsen K. Staphylococcus aureus NfrA (SA0367) is a flavin mononucleotide-dependent NADPH oxidase involved in oxidative stress response. J Bacteriol 2005; 187:2249-56. [PMID: 15774866 PMCID: PMC1065224 DOI: 10.1128/jb.187.7.2249-2256.2005] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The NfrA protein, a putative essential oxidoreductase in the soil bacterium Bacillus subtilis, is induced under heat shock and oxidative stress conditions. In order to characterize the function of an homologous NfrA protein in Staphylococcus aureus, an nfrA deletion strain was constructed, the protein was purified, the enzymatic activity was determined, and the transcriptional regulation was investigated. The experiments revealed that NfrA is not essential in S. aureus. The purified protein oxidized NADPH but not NADH, producing NADP in the presence of flavin mononucleotide, suggesting that NfrA is an NADPH oxidase in S. aureus. In addition, the NfrA enzyme showed nitroreductase activity and weak disulfide reductase activity. Transcription was strongly induced by ethanol, diamide, and nitrofurantoin. Hydrogen peroxide induced nfrA transcription only at high concentrations. The expression of nfrA was independent of the alternative sigma factor sigma(B). Furthermore, the transcriptional start site was determined, which allowed identification of a PerR box homologous sequence upstream of the nfrA promoter. The observations presented here suggest that NfrA is a nonessential NADPH oxidoreductase which may play a role in the oxidative stress response of S. aureus, especially in keeping thiol-disulfide stress in balance.
Collapse
Affiliation(s)
- Karin Streker
- Institut für Molekulare Infektionsbiologie, Röntgenring 11, D-97070 Würzburg, Germany
| | | | | | | | | |
Collapse
|
168
|
Abstract
Heavy metals like Mn and Cu, though essential for normal plant growth and development, can be toxic when present in excess in the environment. For normal plant growth maintenance of metal homeostasis is important. Excess uptake of redox active elements causes oxidative destruction. Thus, uptake, transport and distribution within the plant must be strongly controlled. Regulation includes precisely targeted transport from the macro-level of the tissue to the micro-level of the cell and organelles. Membrane transport systems play very important roles in metal trafficking. This review provides a broad overview of the long distance and cellular transport as well as detoxification and homeostasis mechanisms of Mn and Cu, which are essential micronutrients but extremely toxic at elevated concentrations.
Collapse
|
169
|
Chou CJ, Wisedchaisri G, Monfeli RR, Oram DM, Holmes RK, Hol WGJ, Beeson C. Functional studies of the Mycobacterium tuberculosis iron-dependent regulator. J Biol Chem 2004; 279:53554-61. [PMID: 15456786 DOI: 10.1074/jbc.m407385200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The iron-dependent regulator (IdeR) protein in Mycobacterium tuberculosis, and its better characterized homologue, the diphtheria toxin repressor (DtxR) from Corynebacterium diphtheriae, are iron-dependent regulatory proteins that control gene expression in response to iron availability in bacteria. IdeR regulates several genes required for iron uptake and storage including those involved in the synthesis of transition metal chelators called siderophores that are linked to the M. tuberculosis virulence. In this study, the metal ion and binding affinities for IdeR binding to an fxbA operator duplex DNA were estimated using fluorescence assays. The Fe(2+), Co(2+), and Ni(2+) affinities of the two metal ion binding sites in IdeR that are involved in the activation of the regulator DNA binding process in vitro were independently estimated. Binding to the two metal ion binding sites is apparently cooperative and the two affinities differ significantly. Occupation of the first metal ion binding site causes dimerization of IdeR, and the metal ion affinity is about 4 microM for Ni(2+) and much less for Fe(2+) and Co(2+). Binding of the second metal ion fully activates IdeR for binding to the fxbA operator. The equilibrium metal ion dissociation constants for IdeR-fxbA operator binding are approximately 9 microM for Fe(2+), 13 microM for Ni(2+), and 23 microM for Co(2+). Interestingly, the natural IdeR cofactor, Fe(2+), shows high affinities toward both binding sites. These results provide insight into the possible roles for each metal binding site in IdeR activation.
Collapse
Affiliation(s)
- C James Chou
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | | | |
Collapse
|
170
|
Platero R, Peixoto L, O'Brian MR, Fabiano E. Fur is involved in manganese-dependent regulation of mntA (sitA) expression in Sinorhizobium meliloti. Appl Environ Microbiol 2004; 70:4349-55. [PMID: 15240318 PMCID: PMC444773 DOI: 10.1128/aem.70.7.4349-4355.2004] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Fur is a transcriptional regulator involved in iron-dependent control of gene expression in many bacteria. In this work we analyzed the phenotype of a fur mutant in Sinorhizobium meliloti, an alpha-proteobacterium that fixes N(2) in association with host plants. We demonstrated that some functions involved in high-affinity iron transport, siderophore production, and iron-regulated outer membrane protein expression respond to iron in a Fur-independent manner. However, manganese-dependent expression of the MntABCD manganese transport system was lost in a fur strain as discerned by constitutive expression of a mntA::gfp fusion reporter gene in the mutant. Thus, Fur directly or indirectly regulates a manganese-dependent function. The data indicate a novel function for a bacterial Fur protein in mediating manganese-dependent regulation of gene expression.
Collapse
Affiliation(s)
- Raúl Platero
- Laboratorio de Ecología Microbiana, Instituto de Investigaciones Biológicas Clemente Estable, MEC, Unidad Asociada a la Facultad de Ciencias, Montevideo 11600, Uruguay
| | | | | | | |
Collapse
|
171
|
Díaz-Mireles E, Wexler M, Sawers G, Bellini D, Todd JD, Johnston AWB. The Fur-like protein Mur of Rhizobium leguminosarum is a Mn(2+)-responsive transcriptional regulator. MICROBIOLOGY-SGM 2004; 150:1447-1456. [PMID: 15133106 DOI: 10.1099/mic.0.26961-0] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In wild-type Rhizobium leguminosarum, the sitABCD operon specifies a Mn(2+) transporter whose expression is severely reduced in cells grown in the presence of this metal. Mutations in the R. leguminosarum gene, mur (manganese uptake regulator), whose product resembles the Fur transcriptional regulator, cause high-level expression of sitABCD in the presence of Mn(2+). In gel-shift mobility assays, purified R. leguminosarum Mur protein bound to at least two regions near the sitABCD promoter region, although this DNA has no conventional consensus Fur-binding sequences (fur boxes). Thus, in contrast to gamma-proteobacteria, where Fur binds Fe(2+), the R. leguminosarum Fur homologue, Mur, act as a Mn(2)-responsive transcriptional regulator.
Collapse
Affiliation(s)
- E Díaz-Mireles
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - M Wexler
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - G Sawers
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Colney Lane, Norwich NR4 7UH, UK
| | - D Bellini
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - J D Todd
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - A W B Johnston
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| |
Collapse
|
172
|
Needham AJ, Kibart M, Crossley H, Ingham PW, Foster SJ. Drosophila melanogaster as a model host for Staphylococcus aureus infection. Microbiology (Reading) 2004; 150:2347-2355. [PMID: 15256576 DOI: 10.1099/mic.0.27116-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Staphylococcus aureus is an important pathogen of humans, causing a range of superficial and potentially life-threatening diseases. Infection of the fruit fly Drosophila melanogaster with S. aureus results in systemic infection followed by death. Screening of defined S. aureus mutants for components important in pathogenesis identified perR and pheP, with fly death up to threefold slower after infection with the respective mutants compared to the wild-type. Infection of D. melanogaster with reporter gene fusion strains demonstrated the in vivo expression levels of the accessory gene regulator, agr, α-toxin, hla, and a manganese transporter, mntA. The use of the green fluorescent protein as a reporter under the control of the agr promoter (P3) showed S. aureus microcolony formation in vivo. The disease model also allowed the effect of antibiotic treatment on the flies to be determined. D. melanogaster is a genetically tractable model host for high-throughput analysis of S. aureus virulence determinants.
Collapse
Affiliation(s)
- Andrew J Needham
- Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Monica Kibart
- Centre for Developmental Genetics, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Howard Crossley
- Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Philip W Ingham
- Centre for Developmental Genetics, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Simon J Foster
- Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| |
Collapse
|
173
|
Lithgow JK, Hayhurst EJ, Cohen G, Aharonowitz Y, Foster SJ. Role of a cysteine synthase in Staphylococcus aureus. J Bacteriol 2004; 186:1579-90. [PMID: 14996787 PMCID: PMC355971 DOI: 10.1128/jb.186.6.1579-1590.2004] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The gram-positive human pathogen Staphylococcus aureus is often isolated with media containing potassium tellurite, to which it has a higher level of resistance than Escherichia coli. The S. aureus cysM gene was isolated in a screen for genes that would increase the level of tellurite resistance of E. coli DH5alpha. The protein encoded by S. aureus cysM is sequentially and functionally homologous to the O-acetylserine (thiol)-lyase B family of cysteine synthase proteins. An S. aureus cysM knockout mutant grows poorly in cysteine-limiting conditions, and analysis of the thiol content in cell extracts showed that the cysM mutant produced significantly less cysteine than wild-type S. aureus SH1000. S. aureus SH1000 cannot use sulfate, sulfite, or sulfonates as the source of sulfur in cysteine biosynthesis, which is explained by the absence of genes required for the uptake and reduction of these compounds in the S. aureus genome. S. aureus SH1000, however, can utilize thiosulfate, sulfide, or glutathione as the sole source of sulfur. Mutation of cysM caused increased sensitivity of S. aureus to tellurite, hydrogen peroxide, acid, and diamide and also significantly reduced the ability of S. aureus to recover from starvation in amino acid- or phosphate-limiting conditions, indicating a role for cysteine in the S. aureus stress response and survival mechanisms.
Collapse
Affiliation(s)
- James K Lithgow
- Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom
| | | | | | | | | |
Collapse
|
174
|
Lithgow JK, Ingham E, Foster SJ. Role of the hprT-ftsH locus in Staphylococcus aureus. MICROBIOLOGY-SGM 2004; 150:373-381. [PMID: 14766915 DOI: 10.1099/mic.0.26674-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The roles of two adjacent genes in the Staphylococcus aureus chromosome with functions in starvation survival and the response to stressful conditions have been characterized. One of these, hprT, encoding a hypoxanthine-guanine phosphoribosyltransferase homologue, was initially identified in a transposon mutagenesis screen. Mutation of hprT affects starvation survival in amino-acid-limiting conditions and the ability of S. aureus to grow in high-salt concentrations. Downstream of hprT is ftsH, which encodes a membrane-bound, ATP- and Zn(2+)-dependent 'AAA'-type protease. Mutation of ftsH in S. aureus leads to pleiotropic defects including slower growth, sensitivity to salt, acid, methyl viologen and potassium tellurite stresses, and reduced survival in amino-acid- or phosphate-limiting conditions. Both hprT-lacZ and ftsH-lacZ gene fusions are expressed maximally in the post-exponential phase of growth. Although secretion of exoproteins is not affected, an ftsH mutant is attenuated in a murine skin lesion model of pathogenicity.
Collapse
Affiliation(s)
- James K Lithgow
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - Eileen Ingham
- Department of Microbiology, University of Leeds, Leeds LS2 9JT, UK
| | - Simon J Foster
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
175
|
Deutsch SM, Guezenec S, Piot M, Foster S, Lortal S. Mur-LH, the broad-spectrum endolysin of Lactobacillus helveticus temperate bacteriophage phi-0303. Appl Environ Microbiol 2004; 70:96-103. [PMID: 14711630 PMCID: PMC321252 DOI: 10.1128/aem.70.1.96-103.2004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2003] [Accepted: 09/28/2003] [Indexed: 11/20/2022] Open
Abstract
phi-0303 is a temperate bacteriophage isolated from Lactobacillus helveticus CNRZ 303 strain after mitomycin C induction. In this work, the gene coding for a lytic protein of this bacteriophage was cloned using a library of phi-0303 in Escherichia coli DH5alpha. The lytic activity was detected by its expression, using whole cells of the sensitive strain L. helveticus CNRZ 892 as the substrate. The lysin gene was within a 4.1-kb DNA fragment of phi-0303 containing six open reading frames (ORFs) and two truncated ORFs. No sequence homology with holin genes was found within the cloned fragment. An integrase-encoding gene was also present in the fragment, but it was transcribed in a direction opposite that of the lysin gene. The lysin-encoding lys gene was verified by PCR amplification from the total phage DNA and subcloned. The lys gene is a 1,122-bp sequence encoding a protein of 373 amino acids (Mur-LH), whose product had a deduced molecular mass of 40,207 Da. Comparisons with sequences in sequence databases showed homology with numerous endolysins of other bacteriophages. Mur-LH was expressed in E. coli BL21, and by renaturing sodium dodecyl sulfate-polyacrylamide gel electrophoresis with L. helveticus CNRZ 892 as the substrate, the recombinant protein showed an apparent molecular mass of 40 kDa. The N-terminal sequence of the protein confirmed the start codon. Hydrolysis of cell walls of L. helveticus CNRZ 303 by the endolysin and biochemical analysis of the residues produced demonstrated that Mur-LH has N-acetylmuramidase activity. Last, the endolysin exhibited a broad spectrum of lytic activity, as it was active on different species, mainly thermophilic lactobacilli but also lactococci, pediococci, Bacillus subtilis, Brevibacterium linens, and Enterococcus faecium.
Collapse
Affiliation(s)
- Stéphanie-Marie Deutsch
- Laboratoire de Recherches de Technologie Laitière, Institut National de la Recherche Agronomique, 35042 Rennes Cédex, France.
| | | | | | | | | |
Collapse
|
176
|
Karavolos MH, Horsburgh MJ, Ingham E, Foster SJ. Role and regulation of the superoxide dismutases of Staphylococcus aureus. MICROBIOLOGY-SGM 2003; 149:2749-2758. [PMID: 14523108 DOI: 10.1099/mic.0.26353-0] [Citation(s) in RCA: 156] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Staphylococcus aureus has two superoxide dismutases (SODs), encoded by the sodA and sodM genes, which inactivate harmful superoxide radicals () encountered during host infection or generated from aerobic metabolism. The transcriptional start sites have been mapped and expression analysis on reporter fusions in both genes has been carried out. Under standard growth conditions, manganese (Mn), a mineral superoxide scavenger, elevated total SOD activity but had no effect on the transcription of either gene. Transcription of sodA and sodM was most strongly induced by either internally or externally generated, respectively. Sensitivity to internally generated was linked with SodA deficiency. Mn supplementation completely rescued a sodA mutant when challenged by internally generated, and this was growth-phase-dependent. Sensitivity to externally generated stress was only observed in a sodA sodM mutant and was Mn-independent. In a mouse abscess model of infection, isogenic sodA, sodM and sodA sodM mutants had reduced virulence compared to the parental strain, showing the importance of the enzymic scavenging system for the survival of the pathogen.
Collapse
Affiliation(s)
- Michail H Karavolos
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Malcolm J Horsburgh
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Eileen Ingham
- Department of Microbiology, University of Leeds, Old Medical School, Leeds, LS2 9NL, UK
| | - Simon J Foster
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| |
Collapse
|
177
|
Courville P, Chaloupka R, Veyrier F, Cellier MFM. Determination of transmembrane topology of the Escherichia coli natural resistance-associated macrophage protein (Nramp) ortholog. J Biol Chem 2003; 279:3318-26. [PMID: 14607838 DOI: 10.1074/jbc.m309913200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The natural resistance-associated macrophage protein (Nramp) defines a conserved family of secondary metal transporters. Molecular evolutionary analysis of the Nramp family revealed the early duplication of an ancestral eukaryotic Nramp gene, which was likely derived from a bacterial ortholog and characterized as a proton-dependent manganese transporter MntH (Makui, H., Roig, E., Cole, S. T., Helmann, J. D., Gros, P., and Cellier, M. F. (2000) Mol. Microbiol. 35, 1065-1078). Escherichia coli MntH represents a model of choice to study structure function relationship in the Nramp protein family. Here, we report E. coli MntH transmembrane topology using a combination of in silico predictions, genetic fusion with cytoplasmic and periplasmic reporters, and MntH functional assays. Constructs of the secreted form of beta-lactamase (Blam) revealed extra loops between transmembrane domains 1/2, 5/6, 7/8, and 9/10, and placed the C terminus periplasmically; chloramphenicol acetyltransferase constructs indicated cytoplasmic loops 2/3, 6/7, 8/9, and 10/11. Two intra loops for which no data were produced (N terminus, intra loop 4/5) both display composition bias supporting their deduced localization. The extra loops 5/6 and 6/7 and periplasmic exposure of the C terminus were confirmed by targeted reporter insertion. Three of them preserved MntH function as measured by a disk assay of divalent metal uptake and a fluorescence assay of divalent metal-dependent proton transport, whereas a truncated form lacking transmembrane domain 11 was inactive. These results demonstrate that EcoliA is a type III integral membrane protein with 11 transmembrane domains transporting both divalent metal ions and protons.
Collapse
Affiliation(s)
- Pascal Courville
- Institut National de la Recherche Scientifique-Institut Armand-Frappier, Laval, Québec, Canada H7V 1B7
| | | | | | | |
Collapse
|
178
|
Paik S, Brown A, Munro CL, Cornelissen CN, Kitten T. The sloABCR operon of Streptococcus mutans encodes an Mn and Fe transport system required for endocarditis virulence and its Mn-dependent repressor. J Bacteriol 2003; 185:5967-75. [PMID: 14526007 PMCID: PMC225050 DOI: 10.1128/jb.185.20.5967-5975.2003] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2003] [Accepted: 07/29/2003] [Indexed: 11/20/2022] Open
Abstract
Streptococcus mutans belongs to the viridans group of oral streptococci, which is the leading cause of endocarditis in humans. The LraI family of lipoproteins in viridans group streptococci and other bacteria have been shown to function as virulence factors, adhesins, or ABC-type metal transporters. We previously reported the identification of the S. mutans LraI operon, sloABCR, which encodes components of a putative metal uptake system composed of SloA, an ATP-binding protein, SloB, an integral membrane protein, and SloC, a solute-binding lipoprotein, as well as a metal-dependent regulator, SloR. We report here the functional analysis of this operon. By Western blotting, addition of Mn to the growth medium repressed SloC expression in a wild-type strain but not in a sloR mutant. Other metals tested had little effect. Cells were also tested for aerobic growth in media stripped of metals then reconstituted with Mg and either Mn or Fe. Fe at 10 micro M supported growth of the wild-type strain but not of a sloA or sloC mutant. Mn at 0.1 micro M supported growth of the wild-type strain and sloR mutant but not of sloA or sloC mutants. The combined results suggest that the SloABC proteins transport both metals, although the SloR protein represses this system only in response to Mn. These conclusions are supported by (55)Fe uptake studies with Mn as a competitor. Finally, a sloA mutant demonstrated loss of virulence in a rat model of endocarditis, suggesting that metal transport is required for endocarditis pathogenesis.
Collapse
Affiliation(s)
- Sehmi Paik
- The Philips Institute of Oral and Craniofacial Molecular Biology, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | | | | | | | | |
Collapse
|
179
|
Guedon E, Moore CM, Que Q, Wang T, Ye RW, Helmann JD. The global transcriptional response of Bacillus subtilis to manganese involves the MntR, Fur, TnrA and sigmaB regulons. Mol Microbiol 2003; 49:1477-91. [PMID: 12950915 DOI: 10.1046/j.1365-2958.2003.03648.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have used DNA microarrays to monitor the global transcriptional response of Bacillus subtilis to changes in manganese availability. Mn(II) leads to the MntR-dependent repression of both the mntH and mntABCD operons encoding Mn(II) uptake systems. Mn(II) also represses the Fur regulon. This repression is unlikely to be a direct effect of Mn(II) on Fur as repression is sensitive to 2,2'-dipyridyl, an iron-selective chelator. We suggest that elevated Mn(II) displaces iron from cellular-binding sites and the resulting rise in free iron levels leads to repression of the Fur regulon. Many of the genes induced by Mn(II) are activated by sigmaB or TnrA. Both of these regulators are controlled by Mn(II)-dependent enzymes. Induction of the sigmaB-dependent general stress response by Mn(II) is largely dependent on RsbU, a Mn(II)-dependent phosphatase that dephosphorylates RsbV, ultimately leading to release of active sigmaB from its antisigma, RsbW. The activity of TnrA is inhibited when it forms an inactive complex with feedback-inhibited glutamine synthetase. Elevated Mn(II) reduces the sensitivity of glutamine synthetase to feedback inhibitors, and we suggest that this leads to the observed increase in TnrA activity. In sum, three distinct mechanisms can account for most of the transcriptional effects elicited by manganese: (i) direct binding of Mn(II) to metalloregulators such as MntR, (ii) perturbation of cellular iron pools leading to increased Fur activity and (iii) altered activity of Mn(II)-dependent enzymes that regulate the activity of sigmaB and TnrA.
Collapse
Affiliation(s)
- Emmanuel Guedon
- Department of Microbiology, Cornell University, Ithaca, NY 14853-8101, USA
| | | | | | | | | | | |
Collapse
|
180
|
Hazlett KRO, Rusnak F, Kehres DG, Bearden SW, La Vake CJ, La Vake ME, Maguire ME, Perry RD, Radolf JD. The Treponema pallidum tro operon encodes a multiple metal transporter, a zinc-dependent transcriptional repressor, and a semi-autonomously expressed phosphoglycerate mutase. J Biol Chem 2003; 278:20687-94. [PMID: 12668673 DOI: 10.1074/jbc.m300781200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Treponema pallidum tro operon encodes an ABC transporter (TroABCD), a transcriptional repressor (TroR), and the essential glycolytic enzyme phosphoglycerate mutase (Gpm). The apparently discordant observations that the solute binding protein (TroA) binds Zn2+, whereas DNA binding by TroR in vitro is Mn2+-dependent, have generated uncertainty regarding the identities of the ligand(s) and co-repressor(s) of the permease. Moreover, this operonic structure suggests that Gpm expression, and hence glycolysis, the sole source of ATP for the bacterium, would be suspended during TroR-mediated repression. To resolve these discrepancies, we devised an experimental strategy permitting a more direct assessment of Tro operon function and regulation. We report that (i) apo-TroA has identical affinities for Zn2+ and Mn2+; (ii) the Tro transporter expressed in Escherichia coli imports Zn2+, Mn2+, and possibly iron; (iii) TroR represses transporter expression in E. coli at significantly lower concentrations of Zn2+ than of Mn2+; and (iv) TroR-mediated repression causes a disproportionately greater down-regulation of the transporter genes than of gpm. The much higher concentrations of Zn2+ than of Mn2+ in human body fluids suggests that Zn2+ is both the primary substrate and co-repressor of the permease in vivo. Our data also indicate that Gpm expression and, therefore, glycolysis would not be abrogated when T. pallidum encounters high Zn2+ levels.
Collapse
Affiliation(s)
- Karsten R O Hazlett
- Center for Microbial Pathogenesis, University of Connecticut Health Center, Farmington, Connecticut 06030-3710, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
181
|
Kehres DG, Maguire ME. Emerging themes in manganese transport, biochemistry and pathogenesis in bacteria. FEMS Microbiol Rev 2003; 27:263-90. [PMID: 12829271 DOI: 10.1016/s0168-6445(03)00052-4] [Citation(s) in RCA: 209] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Though an essential trace element, manganese is generally accorded little importance in biology other than as a cofactor for some free radical detoxifying enzymes and in the photosynthetic photosystem II. Only a handful of other Mn2+-dependent enzymes are known. Recent data, primarily in bacteria, suggest that Mn2+-dependent processes may have significantly greater physiological importance. Two major classes of prokaryotic Mn2+ uptake systems have now been described, one homologous to eukaryotic Nramp transporters and one a member of the ABC-type ATPase superfamily. Each is highly selective for Mn2+ over Fe2+ or other transition metal divalent cations, and each can accumulate millimolar amounts of intracellular Mn2+ even when environmental Mn2+ is scarce. In Salmonella enterica serovar Typhimurium, simultaneous mutation of both types of transporter results in avirulence, implying that one or more Mn2+-dependent enzymes is essential for pathogenesis. This review summarizes current literature on Mn2+ transport, primarily in the Bacteria but with relevant comparisons to the Archaea and Eukaryota. Mn2+-dependent enzymes are then discussed along with some speculations as to their role(s) in cellular physiology, again primarily in Bacteria. It is of particular interest that most of the enzymes which interconvert phosphoglycerate, pyruvate, and oxaloacetate intermediates are either strictly Mn2+-dependent or highly stimulated by Mn2+. This suggests that Mn2+ may play an important role in central carbon metabolism. Further studies will be required, however, to determine whether these or other actions of Mn2+ within the cell are the relevant factors in pathogenesis.
Collapse
Affiliation(s)
- David G Kehres
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106-4965, USA.
| | | |
Collapse
|
182
|
Ando M, Manabe YC, Converse PJ, Miyazaki E, Harrison R, Murphy JR, Bishai WR. Characterization of the role of the divalent metal ion-dependent transcriptional repressor MntR in the virulence of Staphylococcus aureus. Infect Immun 2003; 71:2584-90. [PMID: 12704132 PMCID: PMC153293 DOI: 10.1128/iai.71.5.2584-2590.2003] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
DtxR-type metal ion-dependent repressors, present in many bacterial pathogens, may regulate expression of virulence genes such as that encoding diphtheria toxin. SirR, a DtxR homologue initially identified in Staphylococcus epidermidis, governs the expression of the adjacent sitABC operon encoding a putative metal ion ABC transporter system. We identified a sirR homologue, mntR, in Staphylococcus aureus and demonstrated by gel shift assay that the corynebacterial repressor DtxR binds to the S. aureus mntABC operator in the presence of Fe(2+) or Mn(2+). Since a mutant DtxR, DtxR(E175K), functions as an iron-independent hyperrepressor in certain settings, we constructed a heterodiploid S. aureus strain expressing dtxR(E175K) from the native mntR promoter. Transcription of the S. aureus mntABC operon was repressed in the presence of Fe(2+) or Mn(2+) in wild-type and heterodiploid S. aureus strains. Under metal ion-limiting conditions, mntABC transcription was reduced but not abolished in S. aureus isolates expressing dtxR(E175K) compared with an isogenic control, suggesting that DtxR(E175K) binds the S. aureus MntR box in vivo. Under all conditions tested, mntABC transcription in the dtxR(E175K)-expressing strain was reduced relative to the isogenic control, indicating that DtxR(E175K) function was constitutively active. In the mouse skin abscess model, dtxR(E175K)-expressing S. aureus recombinants showed significantly reduced CFU levels compared with the isogenic wild-type control. We conclude that the S. aureus MntR box is recognized by corynebacterial DtxR proteins and thus belongs to the DtxR family of metal-dependent operator sites. Moreover, constitutive repression by DtxR(E175K) reduces the virulence of S. aureus in the mouse skin abscess model.
Collapse
Affiliation(s)
- Masaru Ando
- Division of Disease Control, Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | | | | | | | | | | | | |
Collapse
|
183
|
Love JF, VanderSpek JC, Murphy JR. The src homology 3-like domain of the diphtheria toxin repressor (DtxR) modulates repressor activation through interaction with the ancillary metal ion-binding site. J Bacteriol 2003; 185:2251-8. [PMID: 12644496 PMCID: PMC151513 DOI: 10.1128/jb.185.7.2251-2258.2003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The diphtheria toxin repressor (DtxR) is a transition metal ion-activated repressor that acts as a global regulatory element in the control of iron-sensitive genes in Corynebacterium diphtheriae. We recently described (L. Sun, J. C. vanderSpek, and J. R. Murphy, Proc. Natl. Acad. Sci. USA 95:14985-14990, 1998) the isolation and in vivo characterization of a hyperactive mutant of DtxR, DtxR(E175K), that appeared to be constitutively active. We demonstrate here that while DtxR(E175K) remains active in vivo in the presence of 300 micro M 2,2'dipyridyl, the purified repressor is, in fact, dependent upon low levels of transition metal ion to transit from the inactive apo form to the active metal ion-bound form of the repressor. Binding studies using 8-anilino-1-naphthalenesulfonic acid suggest that the E175K mutation stabilizes an intermediate of the molten-globule form of the repressor, increasing exposure of hydrophobic residues to solvent. We demonstrate that the hyperactive DtxR(E175K) phenotype is dependent upon an intact ancillary metal ion-binding site (site 1) of the repressor. These observations support the hypothesis that metal ion binding in the ancillary site facilitates the conversion of the inactive apo-repressor to its active, operator-binding conformation. Furthermore, these results support the hypothesis that the C-terminal src homology 3-like domain of DtxR plays an active role in the modulation of repressor activity.
Collapse
Affiliation(s)
- John F Love
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | |
Collapse
|
184
|
Abstract
Corynebacterium diphtheriae DtxR is an iron-specific repressor of diphtheria toxin expression and iron homeostasis functions. A homologue, MntR, serves as a manganese-specific repressor of Mn(II) uptake in Bacillus subtilis. When expressed in B. subtilis, DtxR regulates gene expression in response to either iron or manganese with comparable sensitivity. Replacement of two amino acids in the metal-sensing site with the corresponding residues from MntR results in a DtxR mutant that is highly selective for Mn(II). However, iron responsiveness can be partially restored in a fur mutant in which iron uptake is derepressed and intracellular iron pools elevated. Conversely, if the putative metal-binding residues in MntR are altered to those in DtxR, the resulting protein responds to both iron and manganese. These results suggest that the composition and geometry of the metal-binding site plays a major role in defining the metal-selectivity in this protein family. However, the broadened selectivity of DtxR when expressed in B. subtilis, and the effects of a fur mutation, demonstrate that cellular milieu also influences metal responsiveness.
Collapse
Affiliation(s)
- Emmanuel Guedon
- Department of Microbiology, Cornell University, Ithaca, NY 14853-8101, USA
| | | |
Collapse
|
185
|
Low YL, Jakubovics NS, Flatman JC, Jenkinson HF, Smith AW. Manganese-dependent regulation of the endocarditis-associated virulence factor EfaA of Enterococcus faecalis. J Med Microbiol 2003; 52:113-119. [PMID: 12543916 DOI: 10.1099/jmm.0.05039-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
There is increasing recognition of the emerging role of manganese regulation and acquisition in some pathogenic bacteria. Expression of the Enterococcus faecalis endocarditis-associated virulence factor EfaA is induced by growth in serum. It is demonstrated here that expression of the efaCBA operon encoding a putative ABC-type transporter is regulated by Mn(2+). Transcription of efaCBA and EfaA production were repressed in Mn(2+)-supplemented medium. A Mn(2+)-responsive transcriptional regulator, EfaR, sharing 27 % identity with the Corynebacterium diphtheriae diphtheria toxin repressor (DtxR), was identified. In the presence of Mn(2+), EfaR protein bound in vitro to the efaC promoter region. Analysis of the E. faecalis V583 genome revealed ten additional putative EfaR-binding sites, suggesting that manganese availability could have a broader regulatory role in infection. The results identify a new Mn(2+)-sensing regulator in enterococci that regulates the expression of a virulence factor implicated in enterococcal endocarditis.
Collapse
Affiliation(s)
- Yuen L Low
- Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, UK 2Department of Oral and Dental Science, University of Bristol, Bristol BS1 2LY, UK
| | - Nicholas S Jakubovics
- Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, UK 2Department of Oral and Dental Science, University of Bristol, Bristol BS1 2LY, UK
| | - Jennifer C Flatman
- Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, UK 2Department of Oral and Dental Science, University of Bristol, Bristol BS1 2LY, UK
| | - Howard F Jenkinson
- Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, UK 2Department of Oral and Dental Science, University of Bristol, Bristol BS1 2LY, UK
| | - Anthony W Smith
- Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, UK 2Department of Oral and Dental Science, University of Bristol, Bristol BS1 2LY, UK
| |
Collapse
|
186
|
Schmitt MP. Analysis of a DtxR-like metalloregulatory protein, MntR, from Corynebacterium diphtheriae that controls expression of an ABC metal transporter by an Mn(2+)-dependent mechanism. J Bacteriol 2002; 184:6882-92. [PMID: 12446639 PMCID: PMC135481 DOI: 10.1128/jb.184.24.6882-6892.2002] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The DtxR protein is a global iron-dependent repressor in Corynebacterium diphtheriae that regulates transcription from multiple promoters. A search of the partially completed C. diphtheriae genome identified a gene, mntR, whose predicted product has significant homology with the DtxR repressor protein. The mntR gene is the terminal gene in a five-gene operon that also carries the mntABCD genes, whose predicted products are homologous to ABC metal transporters. Transcription of this genetic system, as measured by expression of an mntA-lacZ reporter fusion, is strongly repressed by Mn(2+). The divalent metals Fe(2+), Cu(2+), and Zn(2+) did not repress expression of the mntA-lacZ construct. A mutation in the mntR gene abolished Mn(2+)-dependent repression of the mntA-lacZ fusion, demonstrating that MntR is essential for the Mn(2+)-dependent regulation of this promoter. Footprinting experiments showed that MntR protects from DNase I digestion an approximately 73-bp AT-rich region that includes the entire mntA promoter. This large region protected from DNase I suggests that as many as three MntR dimer pairs may bind to this region. Binding studies also revealed that DtxR failed to bind to the MntR binding site and that MntR exhibited weak and diffuse binding at the DtxR binding site at the tox promoter. A C. diphtheriae mntA mutant grew as well as the wild type in a low-Mn(2+) medium, which suggests that the mntABCD metal transporter is not required for growth in a low-Mn(2+) medium and that additional Mn(2+) transport systems may be present in C. diphtheriae. This study reports the characterization of MntR, a Mn(2+)-dependent repressor, and the second member of the family of DtxR-like metalloregulatory proteins to be identified in C. diphtheriae.
Collapse
Affiliation(s)
- Michael P Schmitt
- Laboratory of Bacterial Toxins, Division of Bacterial, Allergenic and Parasitic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland 20892, USA.
| |
Collapse
|
187
|
Horsburgh MJ, Wharton SJ, Karavolos M, Foster SJ. Manganese: elemental defence for a life with oxygen. Trends Microbiol 2002; 10:496-501. [PMID: 12419613 DOI: 10.1016/s0966-842x(02)02462-9] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The presence of enzymes such as catalase, peroxidase and superoxide dismutase (SOD) obviates the problems associated with life in an aerobic environment by eliminating the harmful reactive oxygen species (ROS) that arise from respiration. Enzymic detoxification of ROS might not, however, be the only mechanism at work in bacteria. The accumulation of manganese (Mn), an abundant element in many environments, via several, recently identified transporters is thought to form the basis for an alternative, catalytic detoxification of ROS. An increasing body of evidence from work on the genetics and biochemistry of Mn accumulation and its cellular roles reveals that this overlooked defence mechanism is likely to be widespread among bacteria and might also contribute to virulence.
Collapse
Affiliation(s)
- Malcolm J Horsburgh
- Dept of Molecular Biology and Biotechnology, Firth Court, Western Bank, Sheffield, UK S10 2TN
| | | | | | | |
Collapse
|