151
|
Hill JA, Ammar R, Torti D, Nislow C, Cowen LE. Genetic and genomic architecture of the evolution of resistance to antifungal drug combinations. PLoS Genet 2013; 9:e1003390. [PMID: 23593013 PMCID: PMC3617151 DOI: 10.1371/journal.pgen.1003390] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 01/30/2013] [Indexed: 12/19/2022] Open
Abstract
The evolution of drug resistance in fungal pathogens compromises the efficacy of the limited number of antifungal drugs. Drug combinations have emerged as a powerful strategy to enhance antifungal efficacy and abrogate drug resistance, but the impact on the evolution of drug resistance remains largely unexplored. Targeting the molecular chaperone Hsp90 or its downstream effector, the protein phosphatase calcineurin, abrogates resistance to the most widely deployed antifungals, the azoles, which inhibit ergosterol biosynthesis. Here, we evolved experimental populations of the model yeast Saccharomyces cerevisiae and the leading human fungal pathogen Candida albicans with azole and an inhibitor of Hsp90, geldanamycin, or calcineurin, FK506. To recapitulate a clinical context where Hsp90 or calcineurin inhibitors could be utilized in combination with azoles to render resistant pathogens responsive to treatment, the evolution experiment was initiated with strains that are resistant to azoles in a manner that depends on Hsp90 and calcineurin. Of the 290 lineages initiated, most went extinct, yet 14 evolved resistance to the drug combination. Drug target mutations that conferred resistance to geldanamycin or FK506 were identified and validated in five evolved lineages. Whole-genome sequencing identified mutations in a gene encoding a transcriptional activator of drug efflux pumps, PDR1, and a gene encoding a transcriptional repressor of ergosterol biosynthesis genes, MOT3, that transformed azole resistance of two lineages from dependent on calcineurin to independent of this regulator. Resistance also arose by mutation that truncated the catalytic subunit of calcineurin, and by mutation in LCB1, encoding a sphingolipid biosynthetic enzyme. Genome analysis revealed extensive aneuploidy in four of the C. albicans lineages. Thus, we identify molecular determinants of the transition of azole resistance from calcineurin dependence to independence and establish multiple mechanisms by which resistance to drug combinations evolves, providing a foundation for predicting and preventing the evolution of drug resistance. Fungal infections are a leading cause of mortality worldwide and are difficult to treat due to the limited number of antifungal drugs, whose effectiveness is compromised by the emergence of drug resistance. A powerful strategy to combat drug resistance is combination therapy. Inhibiting the molecular chaperone Hsp90 or its downstream effector calcineurin cripples fungal stress responses and abrogates drug resistance. Here we provide the first analysis of the genetic and genomic changes that underpin the evolution of resistance to antifungal drug combinations in the leading human fungal pathogen, Candida albicans, and model yeast, Saccharomyces cerevisiae. We evolved experimental populations with combinations of inhibitors of Hsp90 or calcineurin and the most widely used antifungal in the clinic, the azoles, which inhibit ergosterol biosynthesis. We harnessed whole-genome sequencing to identify diverse resistance mutations among the 14 lineages that evolved resistance to the drug combination. These included mutations in genes encoding the drug targets, a transcriptional regulator of multidrug transporters, a transcriptional repressor of ergosterol biosynthesis enzymes, and a regulator of sphingolipid biosynthesis. We also identified extensive aneuploidies in several C. albicans lineages. Our study reveals multiple mechanisms by which resistance to drug combination can evolve, suggesting new strategies to combat drug resistance.
Collapse
Affiliation(s)
- Jessica A. Hill
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Ron Ammar
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Dax Torti
- Donnelly Sequencing Centre, University of Toronto, Toronto, Ontario, Canada
| | - Corey Nislow
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Leah E. Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
152
|
Calcineurin governs thermotolerance and virulence of Cryptococcus gattii. G3-GENES GENOMES GENETICS 2013; 3:527-39. [PMID: 23450261 PMCID: PMC3583459 DOI: 10.1534/g3.112.004242] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 01/12/2013] [Indexed: 12/26/2022]
Abstract
The pathogenic yeast Cryptococcus gattii, which is causing an outbreak in the Pacific Northwest region of North America, causes life-threatening pulmonary infections and meningoencephalitis in healthy individuals, unlike Cryptococcus neoformans, which commonly infects immunocompromised patients. In addition to a greater predilection for C. gattii to infect healthy hosts, the C. gattii genome sequence project revealed extensive chromosomal rearrangements compared with C. neoformans, showing genomic differences between the two Cryptococcus species. We investigated the roles of C. gattii calcineurin in three molecular types: VGIIa (R265), VGIIb (R272), and VGI (WM276). We found that calcineurin exhibits a differential requirement for growth on solid medium at 37°, as calcineurin mutants generated from R265 were more thermotolerant than mutants from R272 and WM276. We demonstrated that tolerance to calcineurin inhibitors (FK506, CsA) at 37° is linked with the VGIIa molecular type. The calcineurin mutants from the R272 background showed the most extensive growth and morphological defects (multivesicle and larger ring-like cells), as well as increased fluconazole susceptibility. Our cellular architecture examination showed that C. gattii and C. neoformans calcineurin mutants exhibit plasma membrane disruptions. Calcineurin in the C. gattii VGII molecular type plays a greater role in controlling cation homeostasis compared with that in C. gattii VGI and C. neoformans H99. Importantly, we demonstrate that C. gattii calcineurin is essential for virulence in a murine inhalation model, supporting C. gattii calcineurin as an attractive antifungal drug target.
Collapse
|
153
|
Singh-Babak SD, Shekhar T, Smith AM, Giaever G, Nislow C, Cowen LE. A novel calcineurin-independent activity of cyclosporin A in Saccharomyces cerevisiae. MOLECULAR BIOSYSTEMS 2013; 8:2575-84. [PMID: 22751784 DOI: 10.1039/c2mb25107h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Fungi rely on regulatory networks to coordinate sensing of environmental stress with initiation of responses crucial for survival. Antifungal drugs are a specific type of environmental stress with broad clinical relevance. Small molecules with antifungal activity are ubiquitous in the environment, and are produced by a myriad of microbes in competitive natural communities. The echinocandins are fungal fermentation products and the most recently developed class of antifungals, with those in clinical use being semisynthetic derivatives that target the fungal cell wall by inhibiting 1,3-β-D-glucan synthase. Recent studies implicate the protein phosphatase calcineurin as a key regulator of cellular stress responses required for fungal survival of echinocandin-induced cell wall stress. Pharmacological inhibition of calcineurin can be achieved using the natural product and immunosuppressive drug cyclosporin A, which inhibits calcineurin by binding to the immunophilin Cpr1. This drug-protein complex inhibits the interaction between the regulatory and catalytic subunits of calcineurin, an interaction necessary for calcineurin function. Here, we report on potent activity of cyclosporin A when combined with the echinocandin micafungin against the model yeast Saccharomyces cerevisiae that is independent of its known mechanism of action of calcineurin inhibition. This calcineurin-independent synergy does not involve any of the 12 immunophilins known in yeast, individually or in combination, and is not mediated by any of the multidrug transporters encoded or controlled by YOR1, SNQ2, PDR5, PDR10, PDR11, YCF1, PDR15, ADP1, VMR1, NFT1, BPT1, YBT1, YNR070w, YOL075c, AUS1, PDR12, PDR1 and/or PDR3. Genome-wide haploinsufficiency profiling (HIP) and homozygous deletion profiling (HOP) strongly implicate the cell wall biosynthesis and integrity pathways as being central to the calcineurin-independent activity of cyclosporin A. Thus, systems level chemical genomic approaches implicate key cellular pathways in a novel mechanism of antifungal drug synergy.
Collapse
Affiliation(s)
- Sheena D Singh-Babak
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Medical Sciences Building, Room 4368, Toronto, Ontario M5S 1A8, Canada
| | | | | | | | | | | |
Collapse
|
154
|
Leach MD, Klipp E, Cowen LE, Brown AJP. Fungal Hsp90: a biological transistor that tunes cellular outputs to thermal inputs. Nat Rev Microbiol 2012; 10:693-704. [PMID: 22976491 DOI: 10.1038/nrmicro2875] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Heat shock protein 90 (HSP90) is an essential, abundant and ubiquitous eukaryotic chaperone that has crucial roles in protein folding and modulates the activities of key regulators. The fungal Hsp90 interactome, which includes numerous client proteins such as receptors, protein kinases and transcription factors, displays a surprisingly high degree of plasticity that depends on environmental conditions. Furthermore, although fungal Hsp90 levels increase following environmental challenges, Hsp90 activity is tightly controlled via post-translational regulation and an autoregulatory loop involving heat shock transcription factor 1 (Hsf1). In this Review, we discuss the roles and regulation of fungal Hsp90. We propose that Hsp90 acts as a biological transistor that modulates the activity of fungal signalling networks in response to environmental cues via this Hsf1-Hsp90 autoregulatory loop.
Collapse
Affiliation(s)
- Michelle D Leach
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
155
|
Abstract
Existing antifungal agents are still confronted to activities limited to specific fungal species and to the development of resistance. Several improvements are possible either by tackling and overcoming resistance or exacerbating the activity of existing antifungal agents. In Candida glabrata, azole resistance is almost exclusively mediated by ABC transporters (including C. glabrata CDR1 [CgCDR1] and CgCDR2) via gain-of-function mutations in the transcriptional activator CgPDR1 or by mitochondrial dysfunctions. We also observed that azole resistance was correlating with increasing virulence and fitness of C. glabrata in animal models of infection. This observation motivated the re-exploitation of ABC transporter inhibitors as a possible therapeutic intervention to decrease not only the development of azole resistance but also to interfere with the virulence of C. glabrata. Milbemycins are known ABC transporter inhibitors, and here we used commercially available milbemycin A3/A4 oxim derivatives to verify this effect. As expected, the derivatives were inhibiting C. glabrata efflux with the highest activity for A3 oxim below 1 μg/ml. More surprising was that oxim derivatives had intrinsic fungicidal activity above 3.2 μg/ml, thus highlighting effects additional to the efflux inhibition. Similar values were obtained with C. albicans. Our data show that the fungicidal activity could be related to reactive oxygen species formation in these species. Transcriptional analysis performed both in C. glabrata and C. albicans exposed to A3 oxim highlighted a core of commonly regulated genes involved in stress responses, including genes involved in oxidoreductive processes, protein ubiquitination, and vesicle trafficking, as well as mitogen-activated protein kinases. However, the transcript profiles contained also species-specific signatures. Following these observations, experimental treatments of invasive infections were performed in mice treated with the commercial A3/A4 oxim preparation alone or in combination with fluconazole. Tissue burden analysis revealed that oxims on their own were able to decrease fungal burdens in both Candida species. In azole-resistant isolates, oxims acted synergistically in vivo with fluconazole to reduce fungal burden to levels of azole-susceptible isolates. In conclusion, we show here the potential of milbemycins not only as drug efflux inhibitors but also as effective fungal growth inhibitors in C. glabrata and C. albicans.
Collapse
|
156
|
Kubitschek-Barreira PH, Curty N, Neves GWP, Gil C, Lopes-Bezerra LM. Differential proteomic analysis of Aspergillus fumigatus morphotypes reveals putative drug targets. J Proteomics 2012; 78:522-34. [PMID: 23128298 DOI: 10.1016/j.jprot.2012.10.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 10/01/2012] [Accepted: 10/25/2012] [Indexed: 10/27/2022]
Abstract
Aspergillus fumigatus is the main etiological agent of invasive aspergillosis, an important opportunistic infection for neutropenic patients. The main risk groups are patients with acute leukemia and bone marrow transplantation recipients. The lack of an early diagnostic test together with the limited spectrum of antifungal drugs remains a setback to the successful treatment of this disease. During invasive infection the inhaled fungal conidia enter the morphogenic cycle leading to angioinvasive hyphae. This work aimed to study differentially expressed proteins of A. fumigatus during morphogenesis. To achieve this goal, a 2D-DIGE approach was applied to study surface proteins extractable by reducing agents of two A. fumigatus morphotypes: germlings and hyphae. Sixty-three differentially expressed proteins were identified by MALDI-ToF/MS. We observed that proteins associated with biosynthetic pathways and proteins with multiple functions (miscellaneous) were over-expressed in the early stages of germination, while in hyphae, the most abundant proteins detected were related to metabolic processes or have unknown functions. Among the most interesting proteins regulated during morphogenesis, two putative drug targets were identified, the translational factor, eEF3 and the CipC-like protein. Neither of these proteins are present in mammalian cells.
Collapse
Affiliation(s)
- Paula H Kubitschek-Barreira
- Laboratório de Micologia Celular e Proteômica, Instituto de Biologia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | |
Collapse
|
157
|
Jia Y, Tang RJ, Wang L, Zhang X, Wang Y, Jia XM, Jiang YY. Calcium-activated-calcineurin reduces the In vitro and In vivo sensitivity of fluconazole to Candida albicans via Rta2p. PLoS One 2012; 7:e48369. [PMID: 23118995 PMCID: PMC3484117 DOI: 10.1371/journal.pone.0048369] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 09/24/2012] [Indexed: 12/23/2022] Open
Abstract
Due to the emergence of drug-resistance, first-line therapy with fluconazole (FLC) increasingly resulted in clinical failure for the treatment of candidemia. Our previous studies found that in vitro RTA2 was involved in the calcineurin-mediated resistance to FLC in C. albicans. In this study, we found that calcium-activated-calcineurin significantly reduced the in vitro sensitivity of C. albicans to FLC by blocking the impairment of FLC to the plasma membrane via Rta2p. Furthermore, we found that RTA2 itself was not involved in C. albicans virulence, but the disruption of RTA2 dramatically increased the therapeutic efficacy of FLC in a murine model of systemic candidiasis. Conversely, both re-introduction of one RTA2 allele and ectopic expression of RTA2 significantly reduced FLC efficacy in a mammalian host. Finally, we found that calcium-activated-calcineurin, through its target Rta2p, dramatically reduced the efficacy of FLC against candidemia. Given the critical roles of Rta2p in controlling the efficacy of FLC, Rta2p can be a potential drug target for antifungal therapies.
Collapse
Affiliation(s)
- Yu Jia
- School of Pharmacy, Second Military Medical University, Shanghai, China
- Department of Immunology, Tongji University School of Medicine, Shanghai, China
| | - Ren-Jie Tang
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Lin Wang
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Xiang Zhang
- Department of Neurosurgery, Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ying Wang
- Department of Dermatology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Xin-Ming Jia
- Department of Immunology, Tongji University School of Medicine, Shanghai, China
| | - Yuan-Ying Jiang
- School of Pharmacy, Second Military Medical University, Shanghai, China
| |
Collapse
|
158
|
Zhang J, Heitman J, Chen YL. Comparative analysis of calcineurin signaling between Candida dubliniensis and Candida albicans. Commun Integr Biol 2012; 5:122-6. [PMID: 22808313 PMCID: PMC3376044 DOI: 10.4161/cib.18833] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Candida dubliniensis, an emerging fungal pathogen, is the closest known species to the established pathogenic species Candida albicans. Despite the fact that these two species share > 80% genome sequence identity, they exhibit distinct properties such as less hyphal growth, reduced pathogenicity and increased sensitivity to sodium stress and elevated temperatures in C. dubliniensis compared with C. albicans. It is, however, largely unknown whether signaling pathways are conserved in the two Candida species. Calcineurin signaling is known to be required for hyphal growth in Cryptococcus neoformans and Aspergillus fumigatus but remains elusive in C. albicans. Our recent study showed that calcineurin plays a clearly demonstrable role in controlling hyphal growth, drug tolerance and virulence in C. dubliniensis. Here, we extend our studies and show that calcineurin is conserved in controlling endoplasmic reticulum stress but distinct in governing pH homeostasis. Furthermore, we demonstrate that azole or echinocandin drugs in combination with the calcineurin inhibitor FK506 exhibit a synergistic effect against C. dubliniensis wild-type and echinocandin-resistant strains. The involvement of calcineurin in a variety of fungal virulence attributes and as a target for fungicidal synergism with azoles and echinocandins highlights the potential of combination therapy with calcineurin inhibitors for treating Candida infections.
Collapse
|
159
|
The calcineurin dependent transcription factor TacA is involved in development and the stress response of Dictyostelium discoideum. Eur J Cell Biol 2012; 91:789-99. [DOI: 10.1016/j.ejcb.2012.07.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 07/20/2012] [Accepted: 07/24/2012] [Indexed: 11/20/2022] Open
|
160
|
Dai B, Wang Y, Li D, Xu Y, Liang R, Zhao L, Cao Y, Jia J, Jiang Y. Hsp90 is involved in apoptosis of Candida albicans by regulating the calcineurin-caspase apoptotic pathway. PLoS One 2012; 7:e45109. [PMID: 23028789 PMCID: PMC3445616 DOI: 10.1371/journal.pone.0045109] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 08/14/2012] [Indexed: 11/27/2022] Open
Abstract
Candida albicans is the most common human fungal pathogen. Recent evidence has revealed the occurrence of apoptosis in C. albicans that is inducible by environmental stresses such as hydrogen peroxide, acetic acid, and amphotericin B. Apoptosis is regulated by the calcineurin-caspase pathway in C. albicans, and calcineurin is under the control of Hsp90 in echinocandin resistance. However, the role of Hsp90 in apoptosis of C. albicans remains unclear. In this study, we investigated the role of Hsp90 in apoptosis of C. albicans by using an Hsp90-compromised strain tetO-HSP90/hsp90 and found that upon apoptotic stimuli, including hydrogen peroxide, acetic acid or amphotericin B treatment, less apoptosis occurred, less ROS was produced, and more cells survived in the Hsp90-compromised strain compared with the Hsp90/Hsp90 wild-type strain. In addition, Hsp90-compromised cells were defective in up-regulating caspase-encoding gene CaMCA1 expression and activating caspase activity upon the apoptotic stimuli. Investigations on the relationship between Hsp90 and calcineurin revealed that activation of calcineurin could up-regulate apoptosis but could not further down-regulate apoptosis in Hsp90-compromised cells, indicating that calcineurin was downstream of Hsp90. Hsp90 inhibitor geldanamycin (GdA) could further decrease the apoptosis in calcineurin-pathway-defect strains, indicating that compromising Hsp90 function had a stronger effect than compromising calcineurin function on apoptosis. Collectively, this study demonstrated that compromised Hsp90 reduced apoptosis in C. albicans, partially through downregulating the calcineurin-caspase pathway.
Collapse
Affiliation(s)
- BaoDi Dai
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Yan Wang
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - DeDong Li
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Yi Xu
- Department of Pharmacy, General Hospital of Jinan Military Command Region, Jinan, China
| | - RongMei Liang
- Department of Clinical Pharmacy, General Hospital of Chengdu Military Command Region, Chengdu, China
| | - LanXue Zhao
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - YongBing Cao
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - JianHui Jia
- Department of Pharmacology, School of Life Science and Biopharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - YuanYing Jiang
- School of Pharmacy, Second Military Medical University, Shanghai, China
| |
Collapse
|
161
|
Kim J, Cho YJ, Do E, Choi J, Hu G, Cadieux B, Chun J, Lee Y, Kronstad JW, Jung WH. A defect in iron uptake enhances the susceptibility of Cryptococcus neoformans to azole antifungal drugs. Fungal Genet Biol 2012; 49:955-66. [PMID: 22975303 DOI: 10.1016/j.fgb.2012.08.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Revised: 07/16/2012] [Accepted: 08/13/2012] [Indexed: 11/16/2022]
Abstract
The high-affinity reductive iron uptake system that includes a ferroxidase (Cfo1) and an iron permease (Cft1) is critical for the pathogenesis of Cryptococcus neoformans. In addition, a mutant lacking CFO1 or CFT1 not only has reduced iron uptake but also displays a markedly increased susceptibility to azole antifungal drugs. Altered antifungal susceptibility of the mutants was of particular interest because the iron uptake system has been proposed as an alternative target for antifungal treatment. In this study, we used transcriptome analysis to begin exploring the molecular mechanisms of altered antifungal susceptibility in a cfo1 mutant. The wild-type strain and the cfo1 mutant were cultured with or without the azole antifungal drug fluconazole and their transcriptomes were compared following sequencing with Illumina Genome Analyzer IIx (GAIIx) technology. As expected, treatment of both strains with fluconazole caused elevated expression of genes in the ergosterol biosynthetic pathway that includes the target enzyme Erg11. Additionally, genes differentially expressed in the cfo1 mutant were involved in iron uptake and homeostasis, mitochondrial functions and respiration. The cfo1 mutant also displayed phenotypes consistent with these changes including a reduced ratio of NAD(+)/NADH and down-regulation of Fe-S cluster synthesis. Moreover, combination treatment of the wild-type strain with fluconazole and the respiration inhibitor diphenyleneiodonium dramatically increased susceptibility to fluconazole. This result supports the hypothesis that down-regulation of genes required for respiration contributed to the altered fluconazole susceptibility of the cfo1 mutant. Overall, our data suggest that iron uptake and homeostasis play a key role in antifungal susceptibility and could be used as novel targets for combination treatment of cryptococcosis. Indeed, we found that iron chelation in combination with fluconazole treatment synergistically inhibited the growth of C. neoformans.
Collapse
Affiliation(s)
- Jeongmi Kim
- Department of Biotechnology, Chung-Ang University, Anseong 456-756, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
162
|
Yu Q, Wang H, Xu N, Cheng X, Wang Y, Zhang B, Xing L, Li M. Spf1 strongly influences calcium homeostasis, hyphal development, biofilm formation and virulence in Candida albicans. Microbiology (Reading) 2012; 158:2272-2282. [DOI: 10.1099/mic.0.057232-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Qilin Yu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, Nankai University, Tianjin, PR China
| | - Hui Wang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, Nankai University, Tianjin, PR China
| | - Ning Xu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, Nankai University, Tianjin, PR China
| | - Xinxin Cheng
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, Nankai University, Tianjin, PR China
| | - Yuzhou Wang
- Experimental Animal Center, College of Life Science, Nankai University, Tianjin, PR China
| | - Biao Zhang
- Tianjin Traditional Chinese Medicine University, Tianjin, PR China
| | - Laijun Xing
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, Nankai University, Tianjin, PR China
| | - Mingchun Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, Nankai University, Tianjin, PR China
| |
Collapse
|
163
|
Zhang J, Silao FGS, Bigol UG, Bungay AAC, Nicolas MG, Heitman J, Chen YL. Calcineurin is required for pseudohyphal growth, virulence, and drug resistance in Candida lusitaniae. PLoS One 2012; 7:e44192. [PMID: 22952924 PMCID: PMC3432075 DOI: 10.1371/journal.pone.0044192] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 07/30/2012] [Indexed: 11/19/2022] Open
Abstract
Candida lusitaniae is an emerging fungal pathogen that infects immunocompromised patients including HIV/AIDS, cancer, and neonatal pediatric patients. Though less prevalent than other Candida species, C. lusitaniae is unique in its ability to develop resistance to amphotericin B. We investigated the role of the calcium-activated protein phosphatase calcineurin in several virulence attributes of C. lusitaniae including pseudohyphal growth, serum survival, and growth at 37°C. We found that calcineurin and Crz1, a C. albicans Crz1 homolog acting as a downstream target of calcineurin, are required for C. lusitaniae pseudohyphal growth, a process for which the underlying mechanism remains largely unknown in C. lusitaniae but hyphal growth is fundamental to C. albicans virulence. We demonstrate that calcineurin is required for cell wall integrity, ER stress response, optimal growth in serum, virulence in a murine systemic infection model, and antifungal drug tolerance in C. lusitaniae. To further examine the potential of targeting the calcineurin signaling cascade for antifungal drug development, we examined the activity of a calcineurin inhibitor FK506 in combination with caspofungin against echinocandin resistant C. lusitaniae clinical isolates. Broth microdilution and drug disk diffusion assays demonstrate that FK506 has synergistic fungicidal activity with caspofungin against echinocandin resistant isolates. Our findings reveal that pseudohyphal growth is controlled by the calcineurin signaling cascade, and highlight the potential use of calcineurin inhibitors and caspofungin for emerging drug-resistant C. lusitaniae infections.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, United States of America
- Department of Chemistry, Duke University, Durham, North Carolina, United States of America
| | - Fitz Gerald S. Silao
- Department of Microbiology and Parasitology, University of Perpetual Help – Dr. Jose G. Tamayo Medical University, Biñan, Laguna, Philippines
| | - Ursela G. Bigol
- Environment and Biotechnology Division, Department of Science and Technology, Bicutan, Philippines
| | - Alice Alma C. Bungay
- Department of Microbiology and Parasitology, University of Perpetual Help – Dr. Jose G. Tamayo Medical University, Biñan, Laguna, Philippines
- National Institutes of Health-Philippines, University of the Philippines, Manila, Philippines
| | - Marilou G. Nicolas
- National Institutes of Health-Philippines, University of the Philippines, Manila, Philippines
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, United States of America
- * E-mail: (JH); (Y-LC)
| | - Ying-Lien Chen
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, United States of America
- * E-mail: (JH); (Y-LC)
| |
Collapse
|
164
|
Dhamgaye S, Bernard M, Lelandais G, Sismeiro O, Lemoine S, Coppée JY, Le Crom S, Prasad R, Devaux F. RNA sequencing revealed novel actors of the acquisition of drug resistance in Candida albicans. BMC Genomics 2012; 13:396. [PMID: 22897889 PMCID: PMC3447688 DOI: 10.1186/1471-2164-13-396] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 08/03/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Drug susceptible clinical isolates of Candida albicans frequently become highly tolerant to drugs during chemotherapy, with dreadful consequences to patient health. We used RNA sequencing (RNA-seq) to analyze the transcriptomes of a CDR (Candida Drug Resistance) strain and its isogenic drug sensitive counterpart. RESULTS RNA-seq unveiled differential expression of 228 genes including a) genes previously identified as involved in CDR, b) genes not previously associated to the CDR phenotype, and c) novel transcripts whose function as a gene is uncharacterized. In particular, we show for the first time that CDR acquisition is correlated with an overexpression of the transcription factor encoding gene CZF1. CZF1 null mutants were susceptible to many drugs, independently of known multidrug resistance mechanisms. We show that CZF1 acts as a repressor of β-glucan synthesis, thus negatively regulating cell wall integrity. Finally, our RNA-seq data allowed us to identify a new transcribed region, upstream of the TAC1 gene, which encodes the major CDR transcriptional regulator. CONCLUSION Our results open new perspectives of the role of Czf1 and of our understanding of the transcriptional and post-transcriptional mechanisms that lead to the acquisition of drug resistance in C. albicans, with potential for future improvements of therapeutic strategies.
Collapse
Affiliation(s)
- Sanjiveeni Dhamgaye
- Membrane Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | | | | | | | | | | | | | | | | |
Collapse
|
165
|
Yu Q, Wang H, Cheng X, Xu N, Ding X, Xing L, Li M. Roles of Cch1 and Mid1 in morphogenesis, oxidative stress response and virulence in Candida albicans. Mycopathologia 2012; 174:359-69. [PMID: 22886468 DOI: 10.1007/s11046-012-9569-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 07/18/2012] [Indexed: 12/21/2022]
Abstract
Ca(2+) channel Cch1, and its subunit Mid1, has been suggested as the protein complex responsible for mediating Ca(2+) influx, which is often employed by fungal cells to maintain cell survival. The abilities of morphological switch and response to stress conditions are closely related to pathogenicity in Candida albicans. Cch1 and Mid1 activity are required for virulence of Cryptococcus neoformans and Claviceps purpurea, respectively. To investigate whether Cch1 and Mid1 also play a role in the virulence of C. albicans, we constructed cch1Δ/Δ and mid1Δ/Δ mutant strains for functional analysis of CCH1 and MID1. Although both of the mutants displayed the ability of yeast-to-hypha transition, they were defective in hyphae maintenance and invasive growth. Interestingly, deletion of CCH1 or MID1 in C. albicans led to an obvious defect phenotype in oxidative stress response. Moreover, the virulence of the mutants was reduced in a mouse model. Our results demonstrated that Cch1 and Mid1 activity are related to the virulence of C. albicans and may provide a new antifungal target.
Collapse
Affiliation(s)
- Qilin Yu
- College of Life Science, Nankai Universitdy, Tianjin 300071, China
| | | | | | | | | | | | | |
Collapse
|
166
|
Nagao JI, Cho T, Uno J, Ueno K, Imayoshi R, Nakayama H, Chibana H, Kaminishi H. Candida albicans Msi3p, a homolog of the Saccharomyces cerevisiae Sse1p of the Hsp70 family, is involved in cell growth and fluconazole tolerance. FEMS Yeast Res 2012; 12:728-37. [PMID: 22713118 DOI: 10.1111/j.1567-1364.2012.00822.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 04/25/2012] [Accepted: 06/14/2012] [Indexed: 11/28/2022] Open
Abstract
We investigated the cellular function of Msi3p, belonging to the heat shock protein 70 family, in Candida albicans. The mutant strain tetMSI3 was generated, in which MSI3 was controlled by a tetracycline-repressive promoter, because there is evidence to suggest that MSI3 is an essential gene. We controlled the MSI3 expression level by doxycycline (DOX) and compared its phenotype with that of a control strain with the tetracycline-repressive promoter and a wild-type copy MSI3. The results indicated that MSI3 was essential for cell growth. In addition, all the tetMSI3-infected mice survived after DOX administration. Drug susceptibility tests indicated that repression of MSI3 expression resulted in hypersensitivity to fluconazole and conferred fungicidal activity to fluconazole. The expression levels of MSI3 and calcineurin-dependent genes were upregulated in response to fluconazole in the control strain. In tetMSI3, the upregulation of MSI3 was lost, and the expression level of the calcineurin-dependent genes was no longer elevated in response to fluconazole and was not affected by DOX, indicating that the upregulation of MSI3 expression was required for the induction of the calcineurin-dependent gene expression. These data suggest that Msi3p confers fluconazole tolerance by partially influencing the calcineurin signaling pathway and also other tolerance mechanisms.
Collapse
Affiliation(s)
- Jun-ichi Nagao
- Division of Biomedical Sciences, Department of Functional Bioscience, Section of Infection Biology, Fukuoka Dental College, Fukuoka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
167
|
Convergent Evolution of Calcineurin Pathway Roles in Thermotolerance and Virulence in Candida glabrata. G3-GENES GENOMES GENETICS 2012; 2:675-91. [PMID: 22690377 PMCID: PMC3362297 DOI: 10.1534/g3.112.002279] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 04/02/2012] [Indexed: 12/31/2022]
Abstract
Candida glabrata is an emerging human fungal pathogen that is frequently drug tolerant, resulting in difficulties in treatment and a higher mortality in immunocompromised patients. The calcium-activated protein phosphatase calcineurin plays critical roles in controlling drug tolerance, hyphal growth, and virulence in diverse fungal pathogens via distinct mechanisms involving survival in serum or growth at host temperature (37° and higher). Here, we comprehensively studied the calcineurin signaling cascade in C. glabrata and found novel and uncharacterized functions of calcineurin and its downstream target Crz1 in governing thermotolerance, intracellular architecture, and pathogenesis in murine ocular, urinary tract, and systemic infections. This represents a second independent origin of a role for calcineurin in thermotolerant growth of a major human fungal pathogen, distinct from that which arose independently in Cryptococcus neoformans. Calcineurin also promotes survival of C. glabrata in serum via mechanisms distinct from C. albicans and thereby enables establishment of tissue colonization in a murine systemic infection model. To understand calcineurin signaling in detail, we performed global transcript profiling analysis and identified calcineurin- and Crz1-dependent genes in C. glabrata involved in cell wall biosynthesis, heat shock responses, and calcineurin function. Regulators of calcineurin (RCN) are a novel family of calcineurin modifiers, and two members of this family were identified in C. glabrata: Rcn1 and Rcn2. Our studies demonstrate that Rcn2 expression is controlled by calcineurin and Crz1 to function as a feedback inhibitor of calcineurin in a circuit required for calcium tolerance in C. glabrata. In contrast, the calcineurin regulator Rcn1 activates calcineurin signaling. Interestingly, neither Rcn1 nor Rcn2 is required for virulence in a murine systemic infection model. Taken together, our findings show that calcineurin signaling plays critical roles in thermotolerance and virulence, and that Rcn1 and Rcn2 have opposing functions in controlling calcineurin signaling in C. glabrata.
Collapse
|
168
|
The Candida albicans plasma membrane protein Rch1p, a member of the vertebrate SLC10 carrier family, is a novel regulator of cytosolic Ca2+ homoeostasis. Biochem J 2012; 444:497-502. [DOI: 10.1042/bj20112166] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Candida albicans RCH1 (regulator of Ca2+ homoeostasis 1) encodes a protein of ten TM (transmembrane) domains, homologous with human SLC10A7 (solute carrier family 10 member 7), and Rch1p localizes in the plasma membrane. Deletion of RCH1 confers hypersensitivity to high concentrations of extracellular Ca2+ and tolerance to azoles and Li+, which phenocopies the deletion of CaPMC1 (C. albicans PMC1) encoding the vacuolar Ca2+ pump. Additive to CaPMC1 mutation, lack of RCH1 alone shows an increase in Ca2+ sensitivity, Ca2+ uptake and cytosolic Ca2+ level. The Ca2+ hypersensitivity is abolished by cyclosporin A and magnesium. In addition, deletion of RCH1 elevates the expression of CaUTR2 (C. albicans UTR2), a downstream target of the Ca2+/calcineurin signalling. Mutational and functional analysis indicates that the Rch1p TM8 domain, but not the TM9 and TM10 domains, are required for its protein stability, cellular functions and subcellular localization. Therefore Rch1p is a novel regulator of cytosolic Ca2+ homoeostasis, which expands the functional spectrum of the vertebrate SLC10 family.
Collapse
|
169
|
Potent synergistic effect of doxycycline with fluconazole against Candida albicans is mediated by interference with iron homeostasis. Antimicrob Agents Chemother 2012; 56:3785-96. [PMID: 22564841 DOI: 10.1128/aac.06017-11] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Doxycycline was found to act synergistically with the antifungal fluconazole against Candida albicans. Combination with doxycycline converts fluconazole from fungistatic to fungicidal, prevents the onset of drug resistance, and is also effective against a clinical isolate characterized by elevated resistance to fluconazole. Investigation of the interactions between the two drugs by way of checkerboard assays indicated that doxycycline had an influence on the MIC for fluconazole, as defined by CLSI standards, only at high concentrations (200 μg/ml). However, lower concentrations were effective at eliminating residual cell growth at supra-MICs of fluconazole. Using MIC-0, defined as a drug combination resulting in optically clear wells, as an endpoint, doxycycline was found to be synergistic with fluconazole at a concentration as low as 25 μg/ml, with a fractional inhibitory concentration index of <0.5. Doxycycline-mediated growth inhibition can be reversed by externally added iron, indicating that iron depletion may account for the synergism. Consistently, we confirmed old literature data about iron-chelating activity of doxycycline. Synergism of fluconazole with doxycycline does not appear to be mediated by calcineurin, since doxycycline further aggravates the susceptibility to fluconazole of mutants lacking the catalytic or the regulatory subunits of calcineurin. Growth in the presence of fluconazole and doxycycline is restored by an elevated dosage of ERG11 in Saccharomyces cerevisiae but not in C. albicans, despite the full competence of the pathogen's protein to act as a suppressor in baker's yeast.
Collapse
|
170
|
Abstract
Fungal biofilm infections have become increasingly recognised as a significant clinical problem. One of the major reasons behind this is the impact that these have upon treatment, as antifungal therapy often fails and surgical intervention is required. This places a large financial burden on health care providers. This paper aims to illustrate the importance of fungal biofilms, particularly Candida albicans, and discusses some of the key fungal biofilm resistance mechanisms that include, extracellular matrix (ECM), efflux pump activity, persisters, cell density, overexpression of drug targets, stress responses, and the general physiology of the cell. The paper demonstrates the multifaceted nature of fungal biofilm resistance, which encompasses some of the newest data and ideas in the field.
Collapse
|
171
|
Antifungal resistance and new strategies to control fungal infections. Int J Microbiol 2011; 2012:713687. [PMID: 22187560 PMCID: PMC3236459 DOI: 10.1155/2012/713687] [Citation(s) in RCA: 269] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 09/06/2011] [Indexed: 11/28/2022] Open
Abstract
Despite improvement of antifungal therapies over the last 30 years, the phenomenon of antifungal resistance is still of major concern in clinical practice. In the last 10 years the molecular mechanisms underlying this phenomenon were extensively unraveled. In this paper, after a brief overview of currently available antifungals, molecular mechanisms of antifungal resistance will be detailed. It appears that major mechanisms of resistance are essential due to the deregulation of antifungal resistance effector genes. This deregulation is a consequence of point mutations occurring in transcriptional regulators of these effector genes. Resistance can also follow the emergence of point mutations directly in the genes coding antifungal targets. In addition we further describe new strategies currently undertaken to discover alternative therapy targets and antifungals. Identification of new antifungals is essentially achieved by the screening of natural or synthetic chemical compound collections. Discovery of new putative antifungal targets is performed through genome-wide approaches for a better understanding of the human pathogenic fungi biology.
Collapse
|
172
|
Vandeputte P, Ischer F, Sanglard D, Coste AT. In vivo systematic analysis of Candida albicans Zn2-Cys6 transcription factors mutants for mice organ colonization. PLoS One 2011; 6:e26962. [PMID: 22073120 PMCID: PMC3205040 DOI: 10.1371/journal.pone.0026962] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 10/07/2011] [Indexed: 12/23/2022] Open
Abstract
The incidence of fungal infections in immuno-compromised patients increased considerably over the last 30 years. New treatments are therefore needed against pathogenic fungi. With Candida albicans as a model, study of host-fungal pathogen interactions might reveal new sources of therapies. Transcription factors (TF) are of interest since they integrate signals from the host environment and participate in an adapted microbial response. TFs of the Zn2-Cys6 class are specific to fungi and are important regulators of fungal metabolism. This work analyzed the importance of the C. albicans Zn2-Cys6 TF for mice kidney colonization. For this purpose, 77 Zn2-Cys6 TF mutants were screened in a systemic mice model of infection by pools of 10 mutants. We developed a simple barcoding strategy to specifically detect each mutant DNA from mice kidney by quantitative PCR. Among the 77 TF mutant strains tested, eight showed a decreased colonization including mutants for orf19.3405, orf19.255, orf19.5133, RGT1, UGA3, orf19.6182, SEF1 and orf19.2646, and four an increased colonization including mutants for orf19.4166, ZFU2, orf19.1685 and UPC2 as compared to the isogenic wild type strain. Our approach was validated by comparable results obtained with the same animal model using a single mutant and the revertant for an ORF (orf19.2646) with still unknown functions. In an attempt to identify putative involvement of such TFs in already known C. albicans virulence mechanisms, we determined their in vitro susceptibility to pH, heat and oxidative stresses, as well as ability to produce hyphae and invade agar. A poor correlation was found between in vitro and in vivo assays, thus suggesting that TFs needed for mice kidney colonization may involve still unknown mechanisms. This large-scale analysis of mice organ colonization by C. albicans can now be extended to other mutant libraries since our in vivo screening strategy can be adapted to any preexisting mutants.
Collapse
Affiliation(s)
- Patrick Vandeputte
- Institute of Microbiology, University of Lausanne and University Hospital Center, Lausanne, Switzerland
| | - Françoise Ischer
- Institute of Microbiology, University of Lausanne and University Hospital Center, Lausanne, Switzerland
| | - Dominique Sanglard
- Institute of Microbiology, University of Lausanne and University Hospital Center, Lausanne, Switzerland
| | - Alix T. Coste
- Institute of Microbiology, University of Lausanne and University Hospital Center, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
173
|
Camacho ET, Wirkus S, Marshall PA. Mathematical modeling of fungal infection in immune compromised individuals: implications for drug treatment. J Theor Biol 2011; 281:9-17. [PMID: 21540041 DOI: 10.1016/j.jtbi.2011.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Accepted: 04/08/2011] [Indexed: 10/18/2022]
Abstract
We present a mathematical model that describes treatment of a fungal infection in an immune compromised patient in which both susceptible and resistant strains are present. The resulting nonlinear differential equations model the biological outcome, in terms of strain growth and cell number, when an individual, who has both a susceptible and a resistant population of fungus, is treated with a fungicidal or fungistatic drug. The model demonstrates that when the drug is only successful at treating the susceptible strain, low levels of the drug cause both strains to be in stable co-existence and high levels eradicate the susceptible strain while allowing the resistant strain to persist or to multiply unchecked. A modified model is then described in which the drug is changed to one in which both strains are susceptible, and subsequently, at the appropriate level of treatment, complete eradication of both fungal strains ensues. We discuss the model and implications for treatment options within the context of an immune compromised patient.
Collapse
Affiliation(s)
- Erika T Camacho
- Division of Mathematical & Natural Sciences, Arizona State University, Glendale, AZ 85306, USA.
| | | | | |
Collapse
|
174
|
Shapiro RS, Robbins N, Cowen LE. Regulatory circuitry governing fungal development, drug resistance, and disease. Microbiol Mol Biol Rev 2011; 75:213-67. [PMID: 21646428 PMCID: PMC3122626 DOI: 10.1128/mmbr.00045-10] [Citation(s) in RCA: 400] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Pathogenic fungi have become a leading cause of human mortality due to the increasing frequency of fungal infections in immunocompromised populations and the limited armamentarium of clinically useful antifungal drugs. Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus are the leading causes of opportunistic fungal infections. In these diverse pathogenic fungi, complex signal transduction cascades are critical for sensing environmental changes and mediating appropriate cellular responses. For C. albicans, several environmental cues regulate a morphogenetic switch from yeast to filamentous growth, a reversible transition important for virulence. Many of the signaling cascades regulating morphogenesis are also required for cells to adapt and survive the cellular stresses imposed by antifungal drugs. Many of these signaling networks are conserved in C. neoformans and A. fumigatus, which undergo distinct morphogenetic programs during specific phases of their life cycles. Furthermore, the key mechanisms of fungal drug resistance, including alterations of the drug target, overexpression of drug efflux transporters, and alteration of cellular stress responses, are conserved between these species. This review focuses on the circuitry regulating fungal morphogenesis and drug resistance and the impact of these pathways on virulence. Although the three human-pathogenic fungi highlighted in this review are those most frequently encountered in the clinic, they represent a minute fraction of fungal diversity. Exploration of the conservation and divergence of core signal transduction pathways across C. albicans, C. neoformans, and A. fumigatus provides a foundation for the study of a broader diversity of pathogenic fungi and a platform for the development of new therapeutic strategies for fungal disease.
Collapse
Affiliation(s)
| | | | - Leah E. Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
175
|
Chen YL, Brand A, Morrison EL, Silao FGS, Bigol UG, Malbas FF, Nett JE, Andes DR, Solis NV, Filler SG, Averette A, Heitman J. Calcineurin controls drug tolerance, hyphal growth, and virulence in Candida dubliniensis. EUKARYOTIC CELL 2011; 10:803-19. [PMID: 21531874 PMCID: PMC3127677 DOI: 10.1128/ec.00310-10] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 04/11/2011] [Indexed: 01/09/2023]
Abstract
Candida dubliniensis is an emerging pathogenic yeast species closely related to Candida albicans and frequently found colonizing or infecting the oral cavities of HIV/AIDS patients. Drug resistance during C. dubliniensis infection is common and constitutes a significant therapeutic challenge. The calcineurin inhibitor FK506 exhibits synergistic fungicidal activity with azoles or echinocandins in the fungal pathogens C. albicans, Cryptococcus neoformans, and Aspergillus fumigatus. In this study, we show that calcineurin is required for cell wall integrity and wild-type tolerance of C. dubliniensis to azoles and echinocandins; hence, these drugs are candidates for combination therapy with calcineurin inhibitors. In contrast to C. albicans, in which the roles of calcineurin and Crz1 in hyphal growth are unclear, here we show that calcineurin and Crz1 play a clearly demonstrable role in hyphal growth in response to nutrient limitation in C. dubliniensis. We further demonstrate that thigmotropism is controlled by Crz1, but not calcineurin, in C. dubliniensis. Similar to C. albicans, C. dubliniensis calcineurin enhances survival in serum. C. dubliniensis calcineurin and crz1/crz1 mutants exhibit attenuated virulence in a murine systemic infection model, likely attributable to defects in cell wall integrity, hyphal growth, and serum survival. Furthermore, we show that C. dubliniensis calcineurin mutants are unable to establish murine ocular infection or form biofilms in a rat denture model. That calcineurin is required for drug tolerance and virulence makes fungus-specific calcineurin inhibitors attractive candidates for combination therapy with azoles or echinocandins against emerging C. dubliniensis infections.
Collapse
Affiliation(s)
- Ying-Lien Chen
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina
| | - Alexandra Brand
- Aberdeen Fungal Group, School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Emma L. Morrison
- Aberdeen Fungal Group, School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Fitz Gerald S. Silao
- Department of Microbiology and Parasitology, University of Perpetual Help-Dr. Jose G. Tamayo Medical University, Biñan, Laguna, Philippines
| | - Ursela G. Bigol
- Environment and Biotechnology Division, Department of Science and Technology, Bicutan, Philippines
| | | | - Jeniel E. Nett
- Departments of Medicine
- Medical Microbiology and Immunology, University of Wisconsin
- William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin
| | - David R. Andes
- Departments of Medicine
- Medical Microbiology and Immunology, University of Wisconsin
- William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin
| | - Norma V. Solis
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California
| | - Scott G. Filler
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California
- David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Anna Averette
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
176
|
Garg A, Singh S. Enhancement in antifungal activity of eugenol in immunosuppressed rats through lipid nanocarriers. Colloids Surf B Biointerfaces 2011; 87:280-8. [PMID: 21689909 DOI: 10.1016/j.colsurfb.2011.05.030] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 05/18/2011] [Accepted: 05/18/2011] [Indexed: 12/25/2022]
Abstract
In the present study eugenol loaded solid lipid nanoparticles (SLN) was prepared and characterized for particle size, polydispersity index, zeta potential, encapsulation efficiency, in vitro release and in vivo antifungal activity. Effect of addition of liquid lipid (caprylic triglyceride) to solid lipid (stearic acid) on crystallinity of lipid matrix of SLN was determined by using Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC) and X-ray diffraction (XRD) techniques. Transmission electron microscopy (TEM) was carried out to determine the morphology of SLN. In vivo antifungal activity of eugenol loaded lipid nanoparticles was evaluated by using a model of oral candidiasis in immunosuppressed rats. Particle size results showed that d(90) of SLN(1) (single lipid matrix) and SLN(2) (binary lipid matrix) was 332±14.2 nm and 87.8±3.8 nm, respectively. Polydispersity index was found to be in the range of 0.27-0.4 which indicate moderate size distribution. Encapsulation efficiency of SLN(2) (98.52%) was found to be more than that of SLN(1) (91.80%) at same lipid concentration (2%, w/v). Increasing of the solid lipid concentration from 2% (w/v) to 4% (w/v) resulted in increase in encapsulation efficiency and the particle size. SLN(2) shows faster release of eugenol than that of SLN(1) due to smaller size and presence of liquid lipid which provide less barriers to the diffusion of drug from matrix. TEM study reveals the spherical shape of SLN. FT-IR, DSC and XRD results indicate less crystallinity of SLN(2) than that of SLN(1). In vivo studies show no significant difference in log cfu value of all the groups at 0 day. At 8th day, log cfu value of group treated with saline (control), standard antifungal agent, eugenol solution, SLN(1) and SLN(2) was found to be 3.89±.032, 2.69, 3.39±.088, 3.19±.028 and 3.08±0.124, respectively. The in vivo study results indicate improvement in the antifungal activity of eugenol when administrated in the form of SLN.
Collapse
Affiliation(s)
- A Garg
- Department of Pharmaceutics, Institute of Technology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | | |
Collapse
|
177
|
Hameed S, Dhamgaye S, Singh A, Goswami SK, Prasad R. Calcineurin signaling and membrane lipid homeostasis regulates iron mediated multidrug resistance mechanisms in Candida albicans. PLoS One 2011; 6:e18684. [PMID: 21533276 PMCID: PMC3075269 DOI: 10.1371/journal.pone.0018684] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 03/14/2011] [Indexed: 01/01/2023] Open
Abstract
We previously demonstrated that iron deprivation enhances drug susceptibility of Candida albicans by increasing membrane fluidity which correlated with the lower expression of ERG11 transcript and ergosterol levels. The iron restriction dependent membrane perturbations led to an increase in passive diffusion and drug susceptibility. The mechanisms underlying iron homeostasis and multidrug resistance (MDR), however, are not yet resolved. To evaluate the potential mechanisms, we used whole genome transcriptome and electrospray ionization tandem mass spectrometry (ESI-MS/MS) based lipidome analyses of iron deprived Candida cells to examine the new cellular circuitry of the MDR of this pathogen. Our transcriptome data revealed a link between calcineurin signaling and iron homeostasis. Among the several categories of iron deprivation responsive genes, the down regulation of calcineurin signaling genes including HSP90, CMP1 and CRZ1 was noteworthy. Interestingly, iron deprived Candida cells as well as iron acquisition defective mutants phenocopied molecular chaperone HSP90 and calcineurin mutants and thus were sensitive to alkaline pH, salinity and membrane perturbations. In contrast, sensitivity to above stresses did not change in iron deprived DSY2146 strain with a hyperactive allele of calcineurin. Although, iron deprivation phenocopied compromised HSP90 and calcineurin, it was independent of protein kinase C signaling cascade. Notably, the phenotypes associated with iron deprivation in genetically impaired calcineurin and HSP90 could be reversed with iron supplementation. The observed down regulation of ergosterol (ERG1, ERG2, ERG11 and ERG25) and sphingolipid biosynthesis (AUR1 and SCS7) genes followed by lipidome analysis confirmed that iron deprivation not only disrupted ergosterol biosynthesis, but it also affected sphingolipid homeostasis in Candida cells. These lipid compositional changes suggested extensive remodeling of the membranes in iron deprived Candida cells. Taken together, our data provide the first novel insight into the intricate relationship between cellular iron, calcineurin signaling, membrane lipid homeostasis and drug susceptibility of Candida cells.
Collapse
Affiliation(s)
- Saif Hameed
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | - Ashutosh Singh
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | - Rajendra Prasad
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
178
|
Jia XM, Wang Y, Zhang JD, Tan HY, Jiang YY, Gu J. CaIPF14030 negatively modulates intracellular ATP levels during the development of azole resistance in Candida albicans. Acta Pharmacol Sin 2011; 32:512-8. [PMID: 21468085 PMCID: PMC4001976 DOI: 10.1038/aps.2010.232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Accepted: 12/31/2010] [Indexed: 01/06/2023] Open
Abstract
AIM Widespread and repeated use of azoles, particularly fluconazole, has led to the rapid development of azole resistance in Candida albicans. We investigated the role of CaIPF14030 during the development of azole resistance in C albicans. METHODS The expression of CaIPF14030 was measured by quantitative RT-PCR, and CaIPF14030 was disrupted by the hisG-URA3-hisG (URA-blaster) method. The sensitivity of C albicans to azoles was examined using a spot assay, and the intracellular ATP concentrations were measured by a luminometer. RESULTS CaIPF14030 expression in C albicans was up-regulated by Ca(2+) in a calcineurin-dependent manner, and the protein was overexpressed during the stepwise acquisition of azole resistance. However, disruption or ectopic overexpression of CaIPF14030 did not affect the sensitivity of C albicans to azoles. Finally, we demonstrated that disruption of CaIPF14030 significantly increased intracellular ATP levels, and overexpression significantly decreased intracellular ATP levels in C albicans. CONCLUSION CaIPF14030 may negatively modulate intracellular ATP levels during the development of azole resistance in C albicans.
Collapse
Affiliation(s)
- Xin-ming Jia
- Department of Immunology, Tongji University School of Medicine, Shanghai 200092, China
- Department of Dermatology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Ying Wang
- Department of Dermatology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Jun-dong Zhang
- Department of Dermatology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Hong-yue Tan
- Department of Dermatology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Yuan-ying Jiang
- Department of Pharmacology, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Jun Gu
- Department of Dermatology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
179
|
Williams DW, Kuriyama T, Silva S, Malic S, Lewis MAO. Candida biofilms and oral candidosis: treatment and prevention. Periodontol 2000 2011; 55:250-65. [PMID: 21134239 DOI: 10.1111/j.1600-0757.2009.00338.x] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
180
|
Cunningham KW. Acidic calcium stores of Saccharomyces cerevisiae. Cell Calcium 2011; 50:129-38. [PMID: 21377728 DOI: 10.1016/j.ceca.2011.01.010] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Revised: 01/25/2011] [Accepted: 01/31/2011] [Indexed: 02/06/2023]
Abstract
Fungi and animals constitute sister kingdoms in the eukaryotic domain of life. The major classes of transporters, channels, sensors, and effectors that move and respond to calcium ions were already highly networked in the common ancestor of fungi and animals. Since that time, some key components of the network have been moved, altered, relocalized, lost, or duplicated in the fungal and animal lineages and at the same time some of the regulatory circuitry has been dramatically rewired. Today the calcium transport and signaling networks in fungi provide a fresh perspective on the scene that has emerged from studies of the network in animal cells. This review provides an overview of calcium signaling networks in fungi, particularly the model yeast Saccharomyces cerevisiae, with special attention to the dominant roles of acidic calcium stores in fungal cell physiology.
Collapse
Affiliation(s)
- Kyle W Cunningham
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA.
| |
Collapse
|
181
|
Cervantes-Chávez JA, Ali S, Bakkeren G. Response to environmental stresses, cell-wall integrity, and virulence are orchestrated through the calcineurin pathway in Ustilago hordei. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:219-232. [PMID: 20977307 DOI: 10.1094/mpmi-09-10-0202] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
In eukaryotes, several biological processes are regulated through calcium signaling. Calcineurin is a calcium-calmodulin-regulated serine/threonine phosphatase consisting of catalytic subunit A and regulatory subunit B. Phosphatase activity resides in the catalytic subunit, which activates by dephosphorylation downstream components such as transcription factor Crz1. The importance of this pathway to respond to environmental stress has been explored in several fungal pathogens. The basidiomycete Ustilago hordei causes covered smut of barley. We addressed the role of the Ca(2+)-calcineurin activated pathway by deleting UhCna1 and UhCnb1. These genes were not essential in U. hordei but the corresponding mutants displayed a variety of phenotypes when applying environmental stress such as sensitivity to pH, temperature, H₂O₂, mono- and divalent cations; and to genotoxic, acid, or oxidative stresses. Cell-wall integrity was compromised and mutants displayed altered cell morphologies. Mating was delayed but not abolished, and combined sensitivities likely explained a severely reduced virulence toward barley plants. Expression analyses revealed that response to salt stress involved the induction of membrane ATPase genes UhEna1 and UhEna2, which were regulated through the calcineurin pathway. Upregulation of UhFKS1, a 1,3-β-d-glucan synthase gene, correlated with the increased amount of 1,3-β-d-glucan in the calcineurin mutants grown under salt stress.
Collapse
|
182
|
LaFleur MD, Lucumi E, Napper AD, Diamond SL, Lewis K. Novel high-throughput screen against Candida albicans identifies antifungal potentiators and agents effective against biofilms. J Antimicrob Chemother 2011; 66:820-6. [PMID: 21393183 DOI: 10.1093/jac/dkq530] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
OBJECTIVES Microbial adhesion and biofilms have important implications for human health and disease. Candida albicans is an opportunistic pathogen which forms drug-resistant biofilms that contribute to the recalcitrance of disease. We have developed a high-throughput screen for potentiators of clotrimazole, a common therapy for Candida infections, including vaginitis and thrush. The screen was performed against C. albicans biofilms grown in microtitre plates in order to target the most resilient forms of the pathogen. METHODS Biofilm growth, in individual wells of 384-well plates, was measured using the metabolic indicator alamarBlue® and found to be very consistent and reproducible. This assay was used to test the effect of more than 120 000 small molecule compounds from the NIH Molecular Libraries Small Molecule Repository, and compounds that enhanced the activity of clotrimazole or acted on the biofilms alone were identified as hits. RESULTS Nineteen compounds (0.016% hit rate) were identified and found to cause more than 30% metabolic inhibition of biofilms compared with clotrimazole alone, which had a modest effect on biofilm viability at the concentration tested. Hits were confirmed for activity against biofilms with dose-response measurements. Several compounds had increased activity in combination with clotrimazole, including a 1,3-benzothiazole scaffold that exhibited a >100-fold improvement against biofilms of three separate C. albicans isolates. Cytotoxicity experiments using human fibroblasts confirmed the presence of lead molecules with favourable antifungal activity relative to cytotoxicity. CONCLUSIONS We have validated a novel approach to identify antifungal potentiators and completed a high-throughput screen to identify small molecules with activity against C. albicans biofilms. These small molecules may specifically target the biofilm and make currently available antifungals more effective.
Collapse
Affiliation(s)
- Michael D LaFleur
- Antimicrobial Discovery Center and Department of Biology, Northeastern University, 360 Huntington Avenue, Boston, MA 02118, USA.
| | | | | | | | | |
Collapse
|
183
|
Lu H, Zhu Z, Dong L, Jia X, Sun X, Yan L, Chai Y, Jiang Y, Cao Y. Lack of trehalose accelerates H2O2-induced Candida albicans apoptosis through regulating Ca2+ signaling pathway and caspase activity. PLoS One 2011; 6:e15808. [PMID: 21246042 PMCID: PMC3016397 DOI: 10.1371/journal.pone.0015808] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2010] [Accepted: 11/23/2010] [Indexed: 11/19/2022] Open
Abstract
Trehalose is a non-reducing disaccharide and can be accumulated in response to heat or oxidative stresses in Candida albicans. Here we showed that a C. albicans tps1Δ mutant, which is deficient in trehalose synthesis, exhibited increased apoptosis rate upon H(2)O(2) treatment together with an increase of intracellular Ca(2+) level and caspase activity. When the intracellular Ca(2+) level was stimulated by adding CaCl(2) or A23187, both the apoptosis rate and caspase activity were increased. In contrast, the presence of two calcium chelators, EGTA and BAPTA, could attenuate these effects. Moreover, we investigated the role of Ca(2+) pathway in C. albicans apoptosis and found that both calcineurin and the calcineurin-dependent transcription factor, Crz1p, mutants showed decreased apoptosis and caspase activity upon H(2)O(2) treatment compared to the wild-type cells. Expression of CaMCA1, the only gene found encoding a C. albicans metacaspase, in calcineurin-deleted or Crz1p-deleted cells restored the cell sensitivity to H(2)O(2). Our results suggest that Ca(2+) and its downstream calcineurin/Crz1p/CaMCA1 pathway are involved in H(2)O(2)-induced C. albicans apoptosis. Inhibition of this pathway might be the mechanism for the protective role of trehalose in C. albicans.
Collapse
Affiliation(s)
- Hui Lu
- School of Pharmacy, Second Military Medical University, Shanghai, People's Republic of China
| | - ZhenYu Zhu
- School of Pharmacy, Second Military Medical University, Shanghai, People's Republic of China
| | - LingLing Dong
- School of Pharmacy, Second Military Medical University, Shanghai, People's Republic of China
| | - XinMing Jia
- School of Pharmacy, Second Military Medical University, Shanghai, People's Republic of China
| | - XuanRong Sun
- School of Pharmacy, Second Military Medical University, Shanghai, People's Republic of China
| | - Lan Yan
- School of Pharmacy, Second Military Medical University, Shanghai, People's Republic of China
| | - YiFeng Chai
- School of Pharmacy, Second Military Medical University, Shanghai, People's Republic of China
| | - YuanYing Jiang
- School of Pharmacy, Second Military Medical University, Shanghai, People's Republic of China
| | - YingYing Cao
- School of Pharmacy, Second Military Medical University, Shanghai, People's Republic of China
| |
Collapse
|
184
|
What makes Aspergillus fumigatus a successful pathogen? Genes and molecules involved in invasive aspergillosis. Rev Iberoam Micol 2010; 27:155-82. [PMID: 20974273 DOI: 10.1016/j.riam.2010.10.003] [Citation(s) in RCA: 276] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Revised: 10/06/2010] [Accepted: 10/07/2010] [Indexed: 11/21/2022] Open
Abstract
Aspergillus fumigatus is an opportunistic pathogen that causes 90% of invasive aspergillosis (IA) due to Aspergillus genus, with a 50-95% mortality rate. It has been postulated that certain virulence factors are characteristic of A. fumigatus, but the "non-classical" virulence factors seem to be highly variable. Overall, published studies have demonstrated that the virulence of this fungus is multifactorial, associated with its structure, its capacity for growth and adaptation to stress conditions, its mechanisms for evading the immune system and its ability to cause damage to the host. In this review we intend to give a general overview of the genes and molecules involved in the development of IA. The thermotolerance section focuses on five genes related with the capacity of the fungus to grow at temperatures above 30°C (thtA, cgrA, afpmt1, kre2/afmnt1, and hsp1/asp f 12). The following sections discuss molecules and genes related to interaction with the host and with the immune responses. These sections include β-glucan, α-glucan, chitin, galactomannan, galactomannoproteins (afmp1/asp f 17 and afmp2), hydrophobins (rodA/hyp1 and rodB), DHN-melanin, their respective synthases (fks1, rho1-4, ags1-3, chsA-G, och1-4, mnn9, van1, anp1, glfA, pksP/alb1, arp1, arp2, abr1, abr2, and ayg1), and modifying enzymes (gel1-7, bgt1, eng1, ecm33, afpigA, afpmt1-2, afpmt4, kre2/afmnt1, afmnt2-3, afcwh41 and pmi); several enzymes related to oxidative stress protection such as catalases (catA, cat1/catB, cat2/katG, catC, and catE), superoxide dismutases (sod1, sod2, sod3/asp f 6, and sod4), fatty acid oxygenases (ppoA-C), glutathione tranferases (gstA-E), and others (afyap1, skn7, and pes1); and efflux transporters (mdr1-4, atrF, abcA-E, and msfA-E). In addition, this review considers toxins and related genes, such as a diffusible toxic substance from conidia, gliotoxin (gliP and gliZ), mitogillin (res/mitF/asp f 1), hemolysin (aspHS), festuclavine and fumigaclavine A-C, fumitremorgin A-C, verruculogen, fumagillin, helvolic acid, aflatoxin B1 and G1, and laeA. Two sections cover genes and molecules related with nutrient uptake, signaling and metabolic regulations involved in virulence, including enzymes, such as serine proteases (alp/asp f 13, alp2, and asp f 18), metalloproteases (mep/asp f 5, mepB, and mep20), aspartic proteases (pep/asp f 10, pep2, and ctsD), dipeptidylpeptidases (dppIV and dppV), and phospholipases (plb1-3 and phospholipase C); siderophores and iron acquisition (sidA-G, sreA, ftrA, fetC, mirB-C, and amcA); zinc acquisition (zrfA-H, zafA, and pacC); amino acid biosynthesis, nitrogen uptake, and cross-pathways control (areA, rhbA, mcsA, lysF, cpcA/gcn4p, and cpcC/gcn2p); general biosynthetic pathway (pyrG, hcsA, and pabaA), trehalose biosynthesis (tpsA and tpsB), and other regulation pathways such as those of the MAP kinases (sakA/hogA, mpkA-C, ste7, pbs2, mkk2, steC/ste11, bck1, ssk2, and sho1), G-proteins (gpaA, sfaD, and cpgA), cAMP-PKA signaling (acyA, gpaB, pkaC1, and pkaR), His kinases (fos1 and tcsB), Ca(2+) signaling (calA/cnaA, crzA, gprC and gprD), and Ras family (rasA, rasB, and rhbA), and others (ace2, medA, and srbA). Finally, we also comment on the effect of A. fumigatus allergens (Asp f 1-Asp f 34) on IA. The data gathered generate a complex puzzle, the pieces representing virulence factors or the different activities of the fungus, and these need to be arranged to obtain a comprehensive vision of the virulence of A. fumigatus. The most recent gene expression studies using DNA-microarrays may be help us to understand this complex virulence, and to detect targets to develop rapid diagnostic methods and new antifungal agents.
Collapse
|
185
|
Ultra-performance liquid chromatography mass spectrometry and sensitive bioassay methods for quantification of posaconazole plasma concentrations after oral dosing. Antimicrob Agents Chemother 2010; 54:5074-81. [PMID: 20921320 DOI: 10.1128/aac.00022-10] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Posaconazole (POS) is a new antifungal agent for prevention and therapy of mycoses in immunocompromised patients. Variable POS pharmacokinetics after oral dosing may influence efficacy: a trough threshold of 0.5 μg/ml has been recently proposed. Measurement of POS plasma concentrations by complex chromatographic techniques may thus contribute to optimize prevention and management of life-threatening infections. No microbiological analytical method is available. The objective of this study was to develop and validate a new simplified ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method and a sensitive bioassay for quantification of POS over the clinical plasma concentration range. The UPLC-MS/MS equipment consisted of a triple quadrupole mass spectrometer, an electrospray ionization (ESI) source, and a C(18) analytical column. The Candida albicans POS-hypersusceptible mutant (MIC of 0.002 μg/ml) Δcdr1 Δcdr2 Δflu Δmdr1 Δcan constructed by targeted deletion of multidrug efflux transporters and calcineurin genes was used for the bioassay. POS was extracted from plasma by protein precipitation with acetonitrile-methanol (75%/25%, vol/vol). Reproducible standard curves were obtained over the range 0.014 to 12 (UPLC-MS/MS) and 0.028 to 12 μg/ml (bioassay). Intra- and interrun accuracy levels were 106% ± 2% and 103% ± 4% for UPLC-MS/MS and 102% ± 8% and 104% ± 1% for bioassay, respectively. The intra- and interrun coefficients of variation were 7% ± 4% and 7% ± 3% for UPLC-MS/MS and 5% ± 3% and 4% ± 2% for bioassay, respectively. An excellent correlation between POS plasma concentrations measured by UPLC-MS/MS and bioassay was found (concordance, 0.96). In 26 hemato-oncological patients receiving oral POS, 27/69 (39%) trough plasma concentrations were lower than 0.5 μg/ml. The UPLC-MS/MS method and sensitive bioassay offer alternative tools for accurate and precise quantification of the plasma concentrations in patients receiving oral posaconazole.
Collapse
|
186
|
|
187
|
LaFayette SL, Collins C, Zaas AK, Schell WA, Betancourt-Quiroz M, Gunatilaka AAL, Perfect JR, Cowen LE. PKC signaling regulates drug resistance of the fungal pathogen Candida albicans via circuitry comprised of Mkc1, calcineurin, and Hsp90. PLoS Pathog 2010; 6:e1001069. [PMID: 20865172 PMCID: PMC2928802 DOI: 10.1371/journal.ppat.1001069] [Citation(s) in RCA: 242] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Accepted: 07/26/2010] [Indexed: 11/25/2022] Open
Abstract
Fungal pathogens exploit diverse mechanisms to survive exposure to antifungal drugs. This poses concern given the limited number of clinically useful antifungals and the growing population of immunocompromised individuals vulnerable to life-threatening fungal infection. To identify molecules that abrogate resistance to the most widely deployed class of antifungals, the azoles, we conducted a screen of 1,280 pharmacologically active compounds. Three out of seven hits that abolished azole resistance of a resistant mutant of the model yeast Saccharomyces cerevisiae and a clinical isolate of the leading human fungal pathogen Candida albicans were inhibitors of protein kinase C (PKC), which regulates cell wall integrity during growth, morphogenesis, and response to cell wall stress. Pharmacological or genetic impairment of Pkc1 conferred hypersensitivity to multiple drugs that target synthesis of the key cell membrane sterol ergosterol, including azoles, allylamines, and morpholines. Pkc1 enabled survival of cell membrane stress at least in part via the mitogen activated protein kinase (MAPK) cascade in both species, though through distinct downstream effectors. Strikingly, inhibition of Pkc1 phenocopied inhibition of the molecular chaperone Hsp90 or its client protein calcineurin. PKC signaling was required for calcineurin activation in response to drug exposure in S. cerevisiae. In contrast, Pkc1 and calcineurin independently regulate drug resistance via a common target in C. albicans. We identified an additional level of regulatory control in the C. albicans circuitry linking PKC signaling, Hsp90, and calcineurin as genetic reduction of Hsp90 led to depletion of the terminal MAPK, Mkc1. Deletion of C. albicans PKC1 rendered fungistatic ergosterol biosynthesis inhibitors fungicidal and attenuated virulence in a murine model of systemic candidiasis. This work establishes a new role for PKC signaling in drug resistance, novel circuitry through which Hsp90 regulates drug resistance, and that targeting stress response signaling provides a promising strategy for treating life-threatening fungal infections. Treating fungal infections is challenging due to the emergence of drug resistance and the limited number of clinically useful antifungal drugs. We screened a library of 1,280 pharmacologically active compounds to identify those that reverse resistance of the leading human fungal pathogen, Candida albicans, to the most widely used antifungals, the azoles. This revealed a new role for protein kinase C (PKC) signaling in resistance to drugs targeting the cell membrane, including azoles, allylamines, and morpholines. We dissected mechanisms through which PKC regulates resistance in C. albicans and the model yeast Saccharomyces cerevisiae. PKC enabled survival of cell membrane stress at least in part through the mitogen-activated protein kinase (MAPK) cascade in both species. In S. cerevisiae, inhibition of PKC signaling blocked activation of a key regulator of membrane stress responses, calcineurin. In C. albicans, Pkc1 and calcineurin independently regulate resistance via a common target. Deletion of C. albicans PKC1 rendered fungistatic drugs fungicidal and reduced virulence in a mouse model. The molecular chaperone Hsp90, which stabilizes client proteins including calcineurin, also stabilized the terminal C. albicans MAPK, Mkc1. We establish new circuitry connecting PKC with Hsp90 and calcineurin and suggest a promising strategy for treating life-threatening fungal infections.
Collapse
Affiliation(s)
| | - Cathy Collins
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Aimee K. Zaas
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Wiley A. Schell
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Marisol Betancourt-Quiroz
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - A. A. Leslie Gunatilaka
- SW Center for Natural Products Research & Commercialization, Office of Arid Lands Studies, The University of Arizona, Tucson, Arizona, United States of America
| | - John R. Perfect
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Leah E. Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
188
|
T-2307 shows efficacy in a murine model of Candida glabrata infection despite in vitro trailing growth phenomena. Antimicrob Agents Chemother 2010; 54:3630-4. [PMID: 20547803 DOI: 10.1128/aac.00355-10] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
T-2307, a novel arylamidine, has been shown to exhibit broad-spectrum in vitro and in vivo antifungal activities against clinically significant pathogens. In our preliminary studies, Candida glabrata exhibited significant trailing growth (partial inhibition of growth over an extended range of antifungal concentrations) in the presence of T-2307 when it was tested using the Clinical and Laboratory Standards Institute (CLSI) guidelines with 0.2% glucose and 48 h of incubation, making reading of the MIC difficult. In the present study, we attempted to attenuate trailing growth to avoid misreading of the MIC. On the basis of the hypothesis that T-2307 may inhibit the mitochondrial functions of cells, the carbon source or the glucose concentration in the medium was changed. The trailing growth of C. glabrata ATCC 90030 in the presence of T-2307 was attenuated as the concentration of glucose in the medium decreased to 0.1% or lower, and trailing growth was completely inhibited when glycerol was used. A susceptibility test using Alamar blue was performed to facilitate reading of the MIC without changing the composition of the medium and provided a clear MIC endpoint at 24 h. To investigate if T-2307 shows efficacy against trailing isolates in vivo, we evaluated the efficacy of T-2307 in a murine model of disseminated candidiasis caused by C. glabrata. T-2307 at 0.05 mg/kg of body weight/day significantly decreased the viable count in the kidneys compared to that for the control group (P < 0.05). It would be better to test the susceptibility of C. glabrata to T-2307 using modified media or Alamar blue to avoid misreading of the MIC due to the significant trailing growth.
Collapse
|
189
|
Lis M, Liu TT, Barker KS, Rogers PD, Bobek LA. Antimicrobial peptide MUC7 12-mer activates the calcium/calcineurin pathway in Candida albicans. FEMS Yeast Res 2010; 10:579-86. [PMID: 20491945 DOI: 10.1111/j.1567-1364.2010.00638.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
MUC7 12-mer is a cationic antimicrobial peptide derived from the N-terminal region of human low-molecular-weight salivary mucin. In order to gain new insights into the modes of action of the 12-mer against opportunistic fungal pathogen Candida albicans, we examined changes in the gene expression profile of C. albicans upon exposure to this peptide. Cells at an early logarithmic phase were exposed to 6 muM peptide and grown until an OD(600 nm) of approximately 0.4 was reached. Changes in gene expression were determined by microarray analysis and showed that 19 out of the total of 531 genes, whose expression was elevated in response to the peptide, are regulated by the calcium/calcineurin signalling pathway. Inactivation of this pathway by deletions, or by FK506, caused hypersensitivity to the peptide, demonstrating the importance of this pathway to the defense of C. albicans against the MUC7 peptide. Other differentially expressed genes that were detected include those encoding subunits of proteasome, and genes involved in cell stress, iron metabolism, cell wall maintenance and small-molecule transport. The presented results suggest that the calcium/calcineurin signalling pathway plays a role in the adaptation of C. albicans to the MUC7 antimicrobial peptide.
Collapse
Affiliation(s)
- Maciej Lis
- Department of Oral Biology, University at Buffalo, The State University of New York, Buffalo, New York 14214, USA
| | | | | | | | | |
Collapse
|
190
|
Kim S, Hu J, Oh Y, Park J, Choi J, Lee YH, Dean RA, Mitchell TK. Combining ChIP-chip and expression profiling to model the MoCRZ1 mediated circuit for Ca/calcineurin signaling in the rice blast fungus. PLoS Pathog 2010; 6:e1000909. [PMID: 20502632 PMCID: PMC2873923 DOI: 10.1371/journal.ppat.1000909] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Accepted: 04/14/2010] [Indexed: 01/22/2023] Open
Abstract
Significant progress has been made in defining the central signaling networks in many organisms, but collectively we know little about the downstream targets of these networks and the genes they regulate. To reconstruct the regulatory circuit of calcineurin signal transduction via MoCRZ1, a Magnaporthe oryzae C2H2 transcription factor activated by calcineurin dephosphorylation, we used a combined approach of chromatin immunoprecipitation - chip (ChIP-chip), coupled with microarray expression studies. One hundred forty genes were identified as being both a direct target of MoCRZ1 and having expression concurrently differentially regulated in a calcium/calcineurin/MoCRZ1 dependent manner. Highly represented were genes involved in calcium signaling, small molecule transport, ion homeostasis, cell wall synthesis/maintenance, and fungal virulence. Of particular note, genes involved in vesicle mediated secretion necessary for establishing host associations, were also found. MoCRZ1 itself was a target, suggesting a previously unreported autoregulation control point. The data also implicated a previously unreported feedback regulation mechanism of calcineurin activity. We propose that calcium/calcineurin regulated signal transduction circuits controlling development and pathogenicity manifest through multiple layers of regulation. We present results from the ChIP-chip and expression analysis along with a refined model of calcium/calcineurin signaling in this important plant pathogen. All organisms have the innate ability to perceive their environment and respond to it, largely through controlling gene expression. Tailored specificity of a response is primarily achieved through signal cascades involving unique receptors, downstream transcription factors (proteins that bind to DNA to regulate gene expression), and the genes these transcription factors regulate. For fungal plant pathogens, signal transduction cascades are involved in perception of hosts, transgression of physical barriers, suppression or elicitation of host defenses, in vivo nutrient acquisition, and completion of their life cycle. We know that the Ca2+/calcineurin signaling pathway is a central conduit regulating these aspects of the life cycle for fungal pathogens of plants and animals. In this study, we used advanced ChIP-chip and microarray gene expression technologies to identify the genes that the Ca2+/calcineurin responsive transcription factor MoCRZ1 directly binds to and regulates the expression of. Our findings show conservations and divergence in this pathway within the fungal kingdom. It also identifies points of control in the pathway that were previously unidentified. Most importantly, this study implicates this pathway in the establishment of host associations and virulence for the causal agent of rice blast disease, Magnaporthe oryzae, the most important disease of rice worldwide.
Collapse
Affiliation(s)
- Soonok Kim
- Department of Plant Pathology, The Ohio State University, Columbus, Ohio, United States of America
| | - Jinnan Hu
- Department of Plant Pathology, The Ohio State University, Columbus, Ohio, United States of America
| | - Yeonyee Oh
- Center for Integrated Fungal Research, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Jongsun Park
- Department of Agricultural Biotechnology, Center for Agricultural Biomaterials, Center for Fungal Genetic Resources, and Center for Fungal Pathogenesis, Seoul National University, Seoul, Korea
| | - Jinhee Choi
- Department of Agricultural Biotechnology, Center for Agricultural Biomaterials, Center for Fungal Genetic Resources, and Center for Fungal Pathogenesis, Seoul National University, Seoul, Korea
| | - Yong-Hwan Lee
- Department of Agricultural Biotechnology, Center for Agricultural Biomaterials, Center for Fungal Genetic Resources, and Center for Fungal Pathogenesis, Seoul National University, Seoul, Korea
| | - Ralph A. Dean
- Center for Integrated Fungal Research, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Thomas K. Mitchell
- Department of Plant Pathology, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
191
|
Gamarra S, Rocha EMF, Zhang YQ, Park S, Rao R, Perlin DS. Mechanism of the synergistic effect of amiodarone and fluconazole in Candida albicans. Antimicrob Agents Chemother 2010; 54:1753-61. [PMID: 20194694 PMCID: PMC2863688 DOI: 10.1128/aac.01728-09] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 01/29/2010] [Accepted: 02/20/2010] [Indexed: 11/20/2022] Open
Abstract
The antiarrhythmic drug amiodarone has been found to have fungicidal activity. In Saccharomyces cerevisiae, its antifungal activity is mediated by calcium overload stress, which leads to a rapid nuclear accumulation of the calcineurin-regulated transcription factor CRZ1. In addition, low doses of amiodarone have been reported to be synergistic with fluconazole in fluconazole-resistant Candida albicans. To establish its mechanism of toxicity in C. albicans, we used expression profiling of key pathway genes to examine cellular responses to amiodarone alone and in combination with fluconazole. Gene expression profiling of 59 genes was done in five C. albicans strains (three fluconazole-susceptible strains and two fluconazole-resistant strains) after amiodarone and/or fluconazole exposure. Of the 59 genes, 27 analyzed showed a significant change (>2-fold) in expression levels after amiodarone exposure. The up- or downregulated genes included genes involved in Ca(2+) homeostasis, cell wall synthesis, vacuolar/lysosomal transport, diverse pathway regulation, stress response, and pseudohyphal morphogenesis. As expected, fluconazole induces an increase in ergosterol pathway genes expression levels. The combination treatment significantly dampened the transcriptional response to either drug, suggesting that synergism was due to an inhibition of compensatory response pathways. This dampening resulted in a decrease in total ergosterol levels and decreased pseudohyphal formation, a finding consistent with decreased virulence in a murine candidiasis model.
Collapse
Affiliation(s)
- Soledad Gamarra
- Public Health Research Institute, New Jersey Medical School-UMDNJ, Newark, New Jersey 07103-3535, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Elousa Maria F. Rocha
- Public Health Research Institute, New Jersey Medical School-UMDNJ, Newark, New Jersey 07103-3535, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Yong-Qiang Zhang
- Public Health Research Institute, New Jersey Medical School-UMDNJ, Newark, New Jersey 07103-3535, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Steven Park
- Public Health Research Institute, New Jersey Medical School-UMDNJ, Newark, New Jersey 07103-3535, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Rajini Rao
- Public Health Research Institute, New Jersey Medical School-UMDNJ, Newark, New Jersey 07103-3535, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - David S. Perlin
- Public Health Research Institute, New Jersey Medical School-UMDNJ, Newark, New Jersey 07103-3535, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
192
|
Miyazaki T, Yamauchi S, Inamine T, Nagayoshi Y, Saijo T, Izumikawa K, Seki M, Kakeya H, Yamamoto Y, Yanagihara K, Miyazaki Y, Kohno S. Roles of calcineurin and Crz1 in antifungal susceptibility and virulence of Candida glabrata. Antimicrob Agents Chemother 2010; 54:1639-43. [PMID: 20100876 PMCID: PMC2849377 DOI: 10.1128/aac.01364-09] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 11/15/2009] [Accepted: 01/15/2010] [Indexed: 11/20/2022] Open
Abstract
A Candida glabrata calcineurin mutant exhibited increased susceptibility to both azole antifungal and cell wall-damaging agents and was also attenuated in virulence. Although a mutant lacking the downstream transcription factor Crz1 displayed a cell wall-associated phenotype intermediate to that of the calcineurin mutant and was modestly attenuated in virulence, it did not show increased azole susceptibility. These results suggest that calcineurin regulates both Crz1-dependent and -independent pathways depending on the type of stress.
Collapse
Affiliation(s)
- Taiga Miyazaki
- Department of Molecular Microbiology and Immunology, Nagasaki University School of Medicine, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
193
|
Arana DM, Nombela C, Pla J. Fluconazole at subinhibitory concentrations induces the oxidative- and nitrosative-responsive genes TRR1, GRE2 and YHB1, and enhances the resistance of Candida albicans to phagocytes. J Antimicrob Chemother 2010; 65:54-62. [PMID: 19897505 DOI: 10.1093/jac/dkp407] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVES To analyse the oxidative and nitrosative stress response in Candida albicans generated by fluconazole at subinhibitory concentrations, and the functional consequences of such a response for the interaction with phagocytic cells. METHODS The C. albicans CAI-4 strain carrying transcriptional fusions of the TRR1p, YHB1p and GRE2p genes to the Renilla reniformis luciferase LUC gene was pre-treated with subinhibitory concentrations of fluconazole and incubated with oxidants (diamide and hydrogen peroxide) or with the myelomonocytic cell line HL-60. RESULTS Fluconazole induced oxidative and nitrosative stress in a time- and dose-dependent manner as determined using oxidative- and nitrosative-specific gene reporters. At subinhibitory concentrations, fluconazole was able to induce protection in vitro to subsequent challenges with oxidants in both liquid and solid media, and also induced partial protection against the oxidative-mediated killing mechanisms of the myelocytic HL-60 cells. CONCLUSIONS Subinhibitory concentrations of fluconazole protect against oxidants and killing mediated by phagocytes.
Collapse
Affiliation(s)
- David M Arana
- Departamento de Microbiología II, Universidad Complutense de Madrid, Spain
| | | | | |
Collapse
|
194
|
Epp E, Vanier G, Harcus D, Lee AY, Jansen G, Hallett M, Sheppard DC, Thomas DY, Munro CA, Mullick A, Whiteway M. Reverse genetics in Candida albicans predicts ARF cycling is essential for drug resistance and virulence. PLoS Pathog 2010; 6:e1000753. [PMID: 20140196 PMCID: PMC2816695 DOI: 10.1371/journal.ppat.1000753] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Accepted: 01/06/2010] [Indexed: 12/03/2022] Open
Abstract
Candida albicans, the major fungal pathogen of humans, causes life-threatening infections in immunocompromised individuals. Due to limited available therapy options, this can frequently lead to therapy failure and emergence of drug resistance. To improve current treatment strategies, we have combined comprehensive chemical-genomic screening in Saccharomyces cerevisiae and validation in C. albicans with the goal of identifying compounds that can couple with the fungistatic drug fluconazole to make it fungicidal. Among the genes identified in the yeast screen, we found that only AGE3, which codes for an ADP-ribosylation factor GTPase activating effector protein, abrogates fluconazole tolerance in C. albicans. The age3 mutant was more sensitive to other sterols and cell wall inhibitors, including caspofungin. The deletion of AGE3 in drug resistant clinical isolates and in constitutively active calcineurin signaling mutants restored fluconazole sensitivity. We confirmed chemically the AGE3-dependent drug sensitivity by showing a potent fungicidal synergy between fluconazole and brefeldin A (an inhibitor of the guanine nucleotide exchange factor for ADP ribosylation factors) in wild type C. albicans as well as in drug resistant clinical isolates. Addition of calcineurin inhibitors to the fluconazole/brefeldin A combination only initially improved pathogen killing. Brefeldin A synergized with different drugs in non-albicans Candida species as well as Aspergillus fumigatus. Microarray studies showed that core transcriptional responses to two different drug classes are not significantly altered in age3 mutants. The therapeutic potential of inhibiting ARF activities was demonstrated by in vivo studies that showed age3 mutants are avirulent in wild type mice, attenuated in virulence in immunocompromised mice and that fluconazole treatment was significantly more efficacious when ARF signaling was genetically compromised. This work describes a new, widely conserved, broad-spectrum mechanism involved in fungal drug resistance and virulence and offers a potential route for single or improved combination therapies. Candida albicans is a fungus that normally resides as part of the microflora in the human gut. Candida species can cause superficial infections like thrush in the healthy human population and life-threatening invasive infections in immunocompromised patients. Fungal infections are often treated with azole drugs, but due to the fungistatic nature of these agents, C. albicans can develop drug resistance, leading to therapy failure. To improve the action of azoles and convert them into fungicidal drugs, we first systematically analyzed the genetic requirements for tolerance to one such azole drug, fluconazole. We show, both genetically and pharmacologically, that components of the ARF cycling machinery are critical in mediating both azole and echinocandin tolerance in C. albicans as well as several other pathogenic Candida species and in the pathogenic mold Aspergillus fumigatus. We highlight the importance of ARF cycling in drug resistance by showing that genetic compromise of ARF functions overrides common drug resistance mechanisms in clinical samples and other key regulators of azole/echinocandin tolerance. We validated the therapeutic potential of ARF cycling in two mouse models and provide evidence that drug treatment is more efficacious when ARF activities are genetically compromised. Our study demonstrates a new mechanism involved in two important aspects of the biology of human fungal pathogens and provides a potential route for improved antifungal therapies.
Collapse
Affiliation(s)
- Elias Epp
- Biotechnology Research Institute, National Research Council of Canada, Montréal, Québec, Canada
- Department of Biology, McGill University, Montréal, Québec, Canada
| | - Ghyslaine Vanier
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
| | - Doreen Harcus
- Biotechnology Research Institute, National Research Council of Canada, Montréal, Québec, Canada
| | - Anna Y. Lee
- McGill Centre for Bioinformatics, McGill University, Montréal, Québec, Canada
| | - Gregor Jansen
- Department of Biochemistry, McGill University, Montréal, Québec, Canada
| | - Michael Hallett
- McGill Centre for Bioinformatics, McGill University, Montréal, Québec, Canada
| | - Don C. Sheppard
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
| | - David Y. Thomas
- Department of Biochemistry, McGill University, Montréal, Québec, Canada
| | - Carol A. Munro
- School of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Alaka Mullick
- Biotechnology Research Institute, National Research Council of Canada, Montréal, Québec, Canada
- Département de Microbiologie et Immunologie, l'Université de Montréal, Montréal, Québec, Canada
| | - Malcolm Whiteway
- Biotechnology Research Institute, National Research Council of Canada, Montréal, Québec, Canada
- Department of Biology, McGill University, Montréal, Québec, Canada
- * E-mail:
| |
Collapse
|
195
|
Soriani FM, Malavazi I, Savoldi M, Espeso E, Dinamarco TM, Bernardes LAS, Ferreira MES, Goldman MHS, Goldman GH. Identification of possible targets of the Aspergillus fumigatus CRZ1 homologue, CrzA. BMC Microbiol 2010; 10:12. [PMID: 20078882 PMCID: PMC2818617 DOI: 10.1186/1471-2180-10-12] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Accepted: 01/15/2010] [Indexed: 11/13/2022] Open
Abstract
Background Calcineurin, a serine/threonine-specific protein phosphatase, plays an important role in the control of cell morphology and virulence in fungi. Calcineurin regulates localization and activity of a transcription factor called CRZ1. Recently, we characterize Aspergillus fumigatus CRZ1 homologue, AfCrzA. Here, we investigate which pathways are influenced by A. fumigatus AfCrzA during a short pulse of calcium by comparatively determining the transcriptional profile of A. fumigatus wild type and ΔAfcrzA mutant strains. Results We were able to observe 3,622 genes modulated in at least one timepoint in the mutant when compared to the wild type strain (3,211 and 411 at 10 and 30 minutes, respectively). Decreased mRNA abundance in the ΔcrzA was seen for genes encoding calcium transporters, transcription factors and genes that could be directly or indirectly involved in calcium metabolism. Increased mRNA accumulation was observed for some genes encoding proteins involved in stress response. AfCrzA overexpression in A. fumigatus increases the expression of several of these genes. The deleted strain of one of these genes, AfRcnA, belonging to a class of endogenous calcineurin regulators, calcipressins, had more calcineurin activity after exposure to calcium and was less sensitive to menadione 30 μM, hydrogen peroxide 2.5 mM, EGTA 25 mM, and MnCl2 25 mM. We constructed deletion, overexpression, and GFP fusion protein for the closely related A. nidulans AnRcnA. GFP::RcnA was mostly detected along the germling, did not accumulate in the nuclei and its location is not affected by the cellular response to calcium chloride. Conclusion We have performed a transcriptional profiling analysis of the A. fumigatus ΔAfcrzA mutant strain exposed to calcium stress. This provided an excellent opportunity to identify genes and pathways that are under the influence of AfCrzA. AfRcnA, one of these selected genes, encodes a modulator of calcineurin activity. Concomitantly with A. fumigatus AfrcnA molecular analysis, we decided to exploit the conserved features of A. nidulans calcineurin system and investigated the A. nidulans AnRcnA homologue. A. nidulans AnRcnA mutation is suppressing CnaA mutation and it is responsible for modulating the calcineurin activity and mRNA accumulation of genes encoding calcium transporters.
Collapse
Affiliation(s)
- Frederico M Soriani
- Centro de Ciência e Tecnologia do Bioetanol and Faculdade de Ciências Farmacêuticas de Ribeirão Preto Universidade de São Paulo, São Paulo, Ribeirão Preto 14040-903, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
196
|
Selmecki AM, Dulmage K, Cowen LE, Anderson JB, Berman J. Acquisition of aneuploidy provides increased fitness during the evolution of antifungal drug resistance. PLoS Genet 2009; 5:e1000705. [PMID: 19876375 PMCID: PMC2760147 DOI: 10.1371/journal.pgen.1000705] [Citation(s) in RCA: 242] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Accepted: 09/28/2009] [Indexed: 11/24/2022] Open
Abstract
The evolution of drug resistance is an important process that affects clinical outcomes. Resistance to fluconazole, the most widely used antifungal, is often associated with acquired aneuploidy. Here we provide a longitudinal study of the prevalence and dynamics of gross chromosomal rearrangements, including aneuploidy, in the presence and absence of fluconazole during a well-controlled in vitro evolution experiment using Candida albicans, the most prevalent human fungal pathogen. While no aneuploidy was detected in any of the no-drug control populations, in all fluconazole-treated populations analyzed an isochromosome 5L [i(5L)] appeared soon after drug exposure. This isochromosome was associated with increased fitness in the presence of drug and, over time, became fixed in independent populations. In two separate cases, larger supernumerary chromosomes composed of i(5L) attached to an intact chromosome or chromosome fragment formed during exposure to the drug. Other aneuploidies, particularly trisomies of the smaller chromosomes (Chr3–7), appeared throughout the evolution experiment, and the accumulation of multiple aneuploid chromosomes per cell coincided with the highest resistance to fluconazole. Unlike the case in many other organisms, some isolates carrying i(5L) exhibited improved fitness in the presence, as well as in the absence, of fluconazole. The early appearance of aneuploidy is consistent with a model in which C. albicans becomes more permissive of chromosome rearrangements and segregation defects in the presence of fluconazole. C. albicans, the most prevalent human fungal pathogen, acquires resistance to fluconazole by genetic alterations that often include changes in the number of chromosomes or chromosome arms (aneuploidy). Here we demonstrate that chromosomal rearrangements resulting in increased gene dosage are the predominant means of acquired resistance to the antifungal drug fluconazole in replicated experimental populations of C. albicans. A specific aneuploidy, isochromosome 5L, which is composed of two copies of the left arm of Chr5, occurs with high frequency and is detectable soon after fluconazole exposure. The early appearance of aneuploidy in some populations is consistent with a model in which C. albicans becomes more permissive of chromosome rearrangements and segregation defects in the presence of fluconazole. The results presented here indicate that the C. albicans genome is highly plastic and imply that exposure to an antifungal drug induces genome reorganization events, some of which provide a fitness advantage in the presence of drug.
Collapse
Affiliation(s)
- Anna M. Selmecki
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Keely Dulmage
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Leah E. Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - James B. Anderson
- Department of Ecology and Evolutionary Biology, University of Toronto, Mississauga, Ontario, Canada
| | - Judith Berman
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Microbiology, University of Minnesota, Minneapolis, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
197
|
Okoli I, Coleman JJ, Tempakakis E, An WF, Holson E, Wagner F, Conery AL, Larkins-Ford J, Wu G, Stern A, Ausubel FM, Mylonakis E. Identification of antifungal compounds active against Candida albicans using an improved high-throughput Caenorhabditis elegans assay. PLoS One 2009; 4:e7025. [PMID: 19750012 PMCID: PMC2737148 DOI: 10.1371/journal.pone.0007025] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Accepted: 08/16/2009] [Indexed: 11/18/2022] Open
Abstract
Candida albicans, the most common human pathogenic fungus, can establish a persistent lethal infection in the intestine of the microscopic nematode Caenorhabditis elegans. The C. elegans–C. albicans infection model was previously adapted to screen for antifungal compounds. Modifications to this screen have been made to facilitate a high-throughput assay including co-inoculation of nematodes with C. albicans and instrumentation allowing precise dispensing of worms into assay wells, eliminating two labor-intensive steps. This high-throughput method was utilized to screen a library of 3,228 compounds represented by 1,948 bioactive compounds and 1,280 small molecules derived via diversity-oriented synthesis. Nineteen compounds were identified that conferred an increase in C. elegans survival, including most known antifungal compounds within the chemical library. In addition to seven clinically used antifungal compounds, twelve compounds were identified which are not primarily used as antifungal agents, including three immunosuppressive drugs. This assay also allowed the assessment of the relative minimal inhibitory concentration, the effective concentration in vivo, and the toxicity of the compound in a single assay.
Collapse
Affiliation(s)
- Ikechukwu Okoli
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Jeffrey J. Coleman
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Emmanouil Tempakakis
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - W. Frank An
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, United States of America
| | - Edward Holson
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, United States of America
| | - Florence Wagner
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, United States of America
| | - Annie L. Conery
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Jonah Larkins-Ford
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Gang Wu
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Andy Stern
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, United States of America
| | - Frederick M. Ausubel
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Eleftherios Mylonakis
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
198
|
Elucidating the Candida albicans calcineurin signaling cascade controlling stress response and virulence. Fungal Genet Biol 2009; 47:107-16. [PMID: 19755168 DOI: 10.1016/j.fgb.2009.09.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Revised: 08/31/2009] [Accepted: 09/09/2009] [Indexed: 11/24/2022]
Abstract
The protein phosphatase calcineurin is a key mediator of virulence and antifungal susceptibility of multiple fungal pathogens including Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus, and has clinical potential as a therapeutic target to increase the efficacy of the current antifungal armamentarium. Despite the importance of this signaling pathway, few components of the calcineurin-signaling pathway are known in C. albicans. Here we identified and analyzed additional components of the C. albicans calcineurin cascade, including the RCN1 (regulator of calcineurin1), MID1, and CCH1 genes, which mediate calcineurin functions in other species. When heterologously expressed in Saccharomyces cerevisiae, C. albicans Rcn1 inhibited calcineurin function. Although rcn1/rcn1, mid1/mid1, and cch1/cch1 mutant strains share some phenotypes with calcineurin mutants, they do not completely recapitulate the phenotypes of a calcineurin mutant strain. These studies extend our understanding of the C. albicans calcineurin signaling cascade and its host-niche specific role in virulence.
Collapse
|
199
|
Our paths might cross: the role of the fungal cell wall integrity pathway in stress response and cross talk with other stress response pathways. EUKARYOTIC CELL 2009; 8:1616-25. [PMID: 19717745 DOI: 10.1128/ec.00193-09] [Citation(s) in RCA: 183] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Fungi occupy diverse environments and are subjected to many extreme conditions. Among the stressful conditions faced by fungi are pH changes, osmotic changes, thermal changes, oxide radicals, nutrient deprivation, and exposure to chemicals. These adversities can be found either in the environment or in animal and human hosts. The cell wall integrity (CWI) pathway provides a means to fortify and repair damages to the cell wall in order to withstand stressful environments. The CWI pathway in comprised of cell wall stress sensors that lead to activation of a mitogen-activated protein kinase (MAPK) cascade. Signaling through the MAPK cascade leads to expression of transcription factors that facilitate biosynthesis of cell wall components and actin organization. Given the relatively limited number of components of the CWI pathway and the very diverse stimuli, there must be a means of expanding the pathway. To manage the diverse stress conditions, the CWI pathway cross talks with other pathways or proteins, and these cross talk events enhance the signaling capabilities of the CWI pathway. Lateral influences that facilitate maintaining the cell wall under stress conditions are TOR signaling, calcineurin signaling, the high-osmolarity glycerol pathway, the cyclic AMP-protein kinase A pathway, and additional proteins. In this article, we highlight several of the cross talk events that have been described for Saccharomyces cerevisiae and several other fungi.
Collapse
|
200
|
Affiliation(s)
- Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|