151
|
Hsu WC, Ramesh S, Shibu MA, Chen MC, Wang TF, Day CH, Chen RJ, Padma VV, Li CC, Tseng YC, Huang CY. Platycodin D reverses histone deacetylase inhibitor resistance in hepatocellular carcinoma cells by repressing ERK1/2-mediated cofilin-1 phosphorylation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 82:153442. [PMID: 33412494 DOI: 10.1016/j.phymed.2020.153442] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/22/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Chemoresistance remains the main obstacle in hepatocellular carcinoma (HCC) therapy. Despite significant advances in HCC therapy, HCC still has a poor prognosis. Thus, there is an urgent need to identify a treatment target to reverse HCC chemotherapy resistance. Platycodon grandiflorus (PG) is a perennial herb that has been used as food and traditional Chinese medicine for thousands of years in Northeast Asia. Platycodin D (PD), a main active triterpenoid saponin found in the root of PG, has been reported to possess anticancer properties in several cancer cell lines, including HCC; however, the reversal effect of this molecule on HCC chemoresistance remains largely unknown. PURPOSE This study aimed to investigate the role and the mechanism of PD-mediated reversal of the histone deacetylase inhibitor (HDACi) resistance in HCC cells. METHODS Human HCC cells (HA22T) and HDACi-resistant (HDACi-R) cells were used. Cell viability was measured using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Combination index was used to calculate the synergism potential. Expression of ERK1/2 (total/phospho), cofilin-1 (total/phospho) and apoptosis-related protein was determined using western blotting. Mitochondrial membrane potential was assessed using the JC-1 (5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolocarbocyanine iodide) probe. Apoptosis was detected using the terminal deoxynucleotidyl transferase dUTP nick end labeling assay. Mitochondrial reactive oxygen species generation was measured using the MitoSOX Red fluorescent probe. RESULTS We found that PD treatment inhibited cell viability both in HA22T HCC and HDACi-R cells. Inhibition of ERK1/2 by PD98059 could reverse drug resistance in HDACi-R cells treated with PD98059 and PD. Nevertheless, pre-treatment with U46619, an ERK1/2 activator, rescued PD-induced apoptosis by decreasing levels of apoptosis-related proteins in HCC cells. The combined treatment of PD with apicidin a powerful HDACi, dramatically enhanced the apoptotic effect in HDACi-R cells. CONCLUSION For the first time, we showed that PD reversed HDACi resistance in HCC by repressing ERK1/2-mediated cofilin-1 phosphorylation. Thus, PD can potentially be a treatment target to reverse HCC chemotherapy resistance in future therapeutic trials.
Collapse
Affiliation(s)
- Wei-Chung Hsu
- Department of Radiation Oncology, Chung-Kang Branch, Cheng-Ching General Hospital, Taichung 40764, Taiwan; Department of Occupational Therapy, Asia University, Taichung 41354, Taiwan
| | - Samiraj Ramesh
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan; Department of Microbiology, PRIST Deemed to be University, Thanjavur 614 904, Tamil Nadu, India
| | - Marthandam Asokan Shibu
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Ming-Cheng Chen
- Department of Surgery, Division of Colorectal Surgery, Taichung Veterans General Hospital, Taichung, Taiwan; Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Tso-Fu Wang
- Department of Hematology and Oncology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan; School of Medicine, Tzu Chi University, 701, Section 3, Chung-Yang Road, Hualien 97004, Taiwan
| | | | - Ray-Jade Chen
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - V Vijaya Padma
- Department of Biotechnology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Chi-Cheng Li
- School of Medicine, Tzu Chi University, 701, Section 3, Chung-Yang Road, Hualien 97004, Taiwan; Center of Stem Cell & Precision Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Yu-Chen Tseng
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Taichung Armed Forces General Hospital, Taichung, Taiwan; Division of Gastroenterology and Hepatology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan; Center of Stem Cell & Precision Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan; Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan; Department of Biological Science and Technology, Asia University, Taichung, Taiwan; Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien 970, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan.
| |
Collapse
|
152
|
Yu X, Pan X, Zhang S, Zhang YH, Chen L, Wan S, Huang T, Cai YD. Identification of Gene Signatures and Expression Patterns During Epithelial-to-Mesenchymal Transition From Single-Cell Expression Atlas. Front Genet 2021; 11:605012. [PMID: 33584803 PMCID: PMC7876317 DOI: 10.3389/fgene.2020.605012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 12/21/2020] [Indexed: 11/13/2022] Open
Abstract
Cancer, which refers to abnormal cell proliferative diseases with systematic pathogenic potential, is one of the leading threats to human health. The final causes for patients’ deaths are usually cancer recurrence, metastasis, and drug resistance against continuing therapy. Epithelial-to-mesenchymal transition (EMT), which is the transformation of tumor cells (TCs), is a prerequisite for pathogenic cancer recurrence, metastasis, and drug resistance. Conventional biomarkers can only define and recognize large tissues with obvious EMT markers but cannot accurately monitor detailed EMT processes. In this study, a systematic workflow was established integrating effective feature selection, multiple machine learning models [Random forest (RF), Support vector machine (SVM)], rule learning, and functional enrichment analyses to find new biomarkers and their functional implications for distinguishing single-cell isolated TCs with unique epithelial or mesenchymal markers using public single-cell expression profiling. Our discovered signatures may provide an effective and precise transcriptomic reference to monitor EMT progression at the single-cell level and contribute to the exploration of detailed tumorigenesis mechanisms during EMT.
Collapse
Affiliation(s)
- Xiangtian Yu
- Clinical Research Center, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - XiaoYong Pan
- Key Laboratory of System Control and Information Processing, Ministry of Education of China, Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, Shanghai, China
| | - ShiQi Zhang
- Department of Biostatistics, University of Copenhagen, Copenhagen, Denmark
| | - Yu-Hang Zhang
- CAS Key Laboratory of Computational Biology, Bio-Med Big Data Center, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Lei Chen
- College of Information Engineering, Shanghai Maritime University, Shanghai, China.,Shanghai Key Laboratory of PMMP, East China Normal University, Shanghai, China
| | - Sibao Wan
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Tao Huang
- CAS Key Laboratory of Computational Biology, Bio-Med Big Data Center, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
153
|
Li H, Yao Q, Pu Z, Chung J, Ge H, Shi C, Xu N, Xu F, Sun W, Du J, Fan J, Wang J, Yoon J, Peng X. Hypoxia-activatable nano-prodrug for fluorescently tracking drug release in mice. Sci China Chem 2021. [DOI: 10.1007/s11426-020-9880-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
154
|
Verma N, Tiku AB. Polydatin-Induced Direct and Bystander Effects in A549 Lung Cancer Cell Line. Nutr Cancer 2021; 74:237-249. [PMID: 33445975 DOI: 10.1080/01635581.2020.1870705] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Polydatin, a natural analogue of resveratrol, has many biological activities. The better bioavailability of polydatin than resveratrol makes it an ideal candidate for therapy. Polydatin has protective effects against various diseases (cardiovascular, neurological, inflammatory, etc.) including cancer. However, its mechanism of action has not been fully established. Therefore, the present study was initiated to explore the mechanism/s associated with chemotherapeutic effects of polydatin in in vitro using lung cancer A549 cells. The effects of polydatin on cell proliferation and metastasis were assessed using various parameters like MTT, colony formation, DNA damage, apoptosis, and wound healing. Polydatin treatment reduced the proliferation of A549 cells by inducing DNA damage and cell cycle arrest in a concentration-dependent manner. The inhibition of cell proliferation was induced by dual mechanism of senescence and apoptosis. Proteins involved in various pathways were studied using western blotting and immunocytochemistry. Interestingly, senescent and apoptotic cells induced a differential bystander response (proliferative/toxic) in naïve A549 cells. Our results show that polydatin can induce both senescence and apoptosis in A549 cells in a concentration-dependent manner and the differential bystander effects induced by polydatin are regulated by mTOR pathway.
Collapse
Affiliation(s)
- Neha Verma
- Radiation and Cancer Therapeutics Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Ashu Bhan Tiku
- Radiation and Cancer Therapeutics Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
155
|
Boyacıoğlu Ö, Bilgiç E, Varan C, Bilensoy E, Nemutlu E, Sevim D, Kocaefe Ç, Korkusuz P. ACPA decreases non-small cell lung cancer line growth through Akt/PI3K and JNK pathways in vitro. Cell Death Dis 2021; 12:56. [PMID: 33431819 PMCID: PMC7801394 DOI: 10.1038/s41419-020-03274-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 01/29/2023]
Abstract
Therapeutic agents used for non-small cell lung cancer (NSCLC) have limited curative efficacy and may trigger serious adverse effects. Cannabinoid ligands exert antiproliferative effect and induce apoptosis on numerous epithelial cancers. We confirmed that CB1 receptor (CB1R) is expressed in NSCLC cells in this study. Arachidonoylcyclopropylamide (ACPA) as a synthetic, CB1R-specific ligand decreased proliferation rate in NSCLC cells by WST-1 analysis and real-time proliferation assay (RTCA). The half-maximal inhibitory concentration (IC50) dose of ACPA was calculated as 1.39 × 10-12 M. CB1 antagonist AM281 inhibited the antiproliferative effect of ACPA. Flow cytometry and ultrastructural analyzes revealed significant early and late apoptosis with diminished cell viability. Nano-immunoassay and metabolomics data on activation status of CB1R-mediated pro-apoptotic pathways found that ACPA inhibited Akt/PI3K pathway, glycolysis, TCA cycle, amino acid biosynthesis, and urea cycle and activated JNK pathway. ACPA lost its chemical stability after 24 hours tested by liquid chromatography-mass spectrometry (LC-MS/MS) assay. A novel ACPA-PCL nanoparticle system was developed by nanoprecipitation method and characterized. Sustained release of ACPA-PCL nanoparticles also reduced proliferation of NSCLC cells. Our results demonstrated that low dose ACPA and ACPA-PCL nanoparticle system harbor opportunities to be developed as a novel therapy in NSCLC patients that require further in vivo studies beforehand to validate its anticancer effect.
Collapse
Affiliation(s)
- Özge Boyacıoğlu
- Hacettepe University, Graduate School of Science and Engineering, Department of Bioengineering, 06800, Beytepe, Ankara, Turkey
- Atılım University, Faculty of Medicine, Department of Medical Biochemistry, 06830, Gölbaşı, Ankara, Turkey
| | - Elif Bilgiç
- Hacettepe University, Faculty of Medicine, Department of Histology and Embryology, 06100, Sıhhiye, Ankara, Turkey
| | - Cem Varan
- Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Technology, 06100, Sıhhiye, Ankara, Turkey
| | - Erem Bilensoy
- Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Technology, 06100, Sıhhiye, Ankara, Turkey
| | - Emirhan Nemutlu
- Hacettepe University, Faculty of Pharmacy, Department of Analytical Chemistry, 06100, Sıhhiye, Ankara, Turkey
| | - Duygu Sevim
- Hacettepe University, Faculty of Medicine, Department of Medical Biology, 06100, Sıhhiye, Ankara, Turkey
| | - Çetin Kocaefe
- Hacettepe University, Faculty of Medicine, Department of Medical Biology, 06100, Sıhhiye, Ankara, Turkey
| | - Petek Korkusuz
- Hacettepe University, Faculty of Medicine, Department of Histology and Embryology, 06100, Sıhhiye, Ankara, Turkey.
| |
Collapse
|
156
|
Veloso SRS, Jervis PJ, Silva JFG, Hilliou L, Moura C, Pereira DM, Coutinho PJG, Martins JA, Castanheira EMS, Ferreira PMT. Supramolecular ultra-short carboxybenzyl-protected dehydropeptide-based hydrogels for drug delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 122:111869. [PMID: 33641890 DOI: 10.1016/j.msec.2021.111869] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/15/2020] [Accepted: 01/05/2021] [Indexed: 01/29/2023]
Abstract
Self-assembled peptide-based hydrogels are promising materials for biomedical research owing to biocompatibility and similarity to the extracellular matrix, amenable synthesis and functionalization and structural tailoring of the rheological properties. Wider developments of self-assembled peptide-based hydrogels in biomedical research and clinical translation are hampered by limited commercial availability allied to prohibitive costs. In this work a focused library of Cbz-protected dehydrodipeptides Cbz-L-Xaa-Z-ΔPhe-OH (Xaa= Met, Phe, Tyr, Ala, Gly) was synthesised and evaluated as minimalist hydrogels. The Cbz-L-Met-Z-ΔPhe-OH and Cbz-L-Phe-Z-ΔPhe-OH hydrogelators were comprehensively evaluated regarding molecular aggregation and self-assembly, gelation, biocompatibility and as drug carriers for delivery of the natural compound curcumin and the clinically important antitumor drug doxorubicin. Drug release profiles and FRET studies of drug transport into small unilamellar vesicles (as biomembrane models) demonstrated that the Cbz-protected dehydropeptide hydrogels are effective nanocarriers for drug delivery. The expedite and scalable synthesis (in 3 steps), using commercially available reagents and amenable reaction conditions, makes Cbz-protected dehydrodipeptide hydrogels, widely available at affordable cost to the research community.
Collapse
Affiliation(s)
- Sérgio R S Veloso
- Centre of Physics (CFUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Peter J Jervis
- Centre of Chemistry (CQUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; REQUIMTE/LAQV, Lab. of Pharmacognosy, Dep. of Chemistry, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Joana F G Silva
- Centre of Physics (CFUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Loic Hilliou
- Institute for Polymers and Composites/I3N, Department of Polymer Engineering, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
| | - C Moura
- Centre of Physics (CFUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - David M Pereira
- REQUIMTE/LAQV, Lab. of Pharmacognosy, Dep. of Chemistry, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Paulo J G Coutinho
- Centre of Physics (CFUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - J A Martins
- Centre of Chemistry (CQUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | | | - Paula M T Ferreira
- Centre of Chemistry (CQUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|
157
|
Abstract
Tumor-homing peptides are widely used for improving tumor selectivity of anticancer drugs and imaging agents. The goal is to increase tumor uptake and reduce accumulation at nontarget sites. Here, we describe current approaches for tumor-homing peptide identification and validation, and provide comprehensive overview of classes of tumor-homing peptides undergoing preclinical and clinical development. We focus on unique mechanistic features and applications of a recently discovered class of tumor-homing peptides, tumor-penetrating C-end Rule (CendR) peptides, that can be used for tissue penetrative targeting of extravascular tumor tissue. Finally, we discuss unanswered questions and future directions in the field of development of peptide-guided smart drugs and imaging agents.
Collapse
|
158
|
Dhas N, Kudarha R, Garkal A, Ghate V, Sharma S, Panzade P, Khot S, Chaudhari P, Singh A, Paryani M, Lewis S, Garg N, Singh N, Bangar P, Mehta T. Molybdenum-based hetero-nanocomposites for cancer therapy, diagnosis and biosensing application: Current advancement and future breakthroughs. J Control Release 2020; 330:257-283. [PMID: 33345832 DOI: 10.1016/j.jconrel.2020.12.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/11/2020] [Indexed: 02/08/2023]
Abstract
In recent years, there have been significant advancements in the nanotechnology for cancer therapy. Even though molybdenum disulphide (MoS2)-based nanocomposites demonstrated extensive applications in biosensing, bioimaging, phototherapy, the review article focusing on MoS2 nanocomposite platform has not been accounted for yet. The review summarizes recent strategies on design and fabrication of MoS2-based nanocomposites and their modulated properties in cancer treatment. The review also discussed several therapeutic strategies (photothermal, photodynamic, immunotherapy, gene therapy and chemotherapy) and their combinations for efficient cancer therapy along with certain case studies. The review also inculcates various diagnostic techniques viz. magnetic resonance imaging, computed tomography, photoacoustic imaging and fluorescence imaging for diagnosis of cancer.
Collapse
Affiliation(s)
- Namdev Dhas
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Ritu Kudarha
- Faculty of Pharmacy, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat 390002, India
| | - Atul Garkal
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Vivek Ghate
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104, India
| | - Shilpa Sharma
- Department of Chemistry, Indian Institute of Technology, Ropar, Rupnagar, Punjab 140001, India
| | - Prabhakar Panzade
- Department of Pharmaceutics, Srinath College of Pharmacy, Dr. Babasaheb Ambedkar Technological University, Aurangabad, Maharashtra 431133, India
| | - Shubham Khot
- Sinhgad Institute of Pharmacy, Narhe, Pune, Maharashtra 411041, India
| | - Pinal Chaudhari
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104, India
| | - Ashutosh Singh
- School of Basic Sciences, Indian Institute of Technology, Mandi, Kamand, Himachal Pradesh 175005, India
| | - Mitali Paryani
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Shaila Lewis
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104, India
| | - Neha Garg
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, BHU, Varanasi, Uttar Pradesh 221005, India
| | - Narinder Singh
- Department of Chemistry, Indian Institute of Technology, Ropar, Rupnagar, Punjab 140001, India
| | - Priyanka Bangar
- Intas Pharmaceuticals Ltd., Ahmedabad, Gujarat 382213, India
| | - Tejal Mehta
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India.
| |
Collapse
|
159
|
G. Keller S, Kamiya M, Urano Y. Recent Progress in Small Spirocyclic, Xanthene-Based Fluorescent Probes. Molecules 2020; 25:E5964. [PMID: 33339370 PMCID: PMC7766215 DOI: 10.3390/molecules25245964] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/14/2020] [Accepted: 12/14/2020] [Indexed: 12/13/2022] Open
Abstract
The use of fluorescent probes in a multitude of applications is still an expanding field. This review covers the recent progress made in small molecular, spirocyclic xanthene-based probes containing different heteroatoms (e.g., oxygen, silicon, carbon) in position 10'. After a short introduction, we will focus on applications like the interaction of probes with enzymes and targeted labeling of organelles and proteins, detection of small molecules, as well as their use in therapeutics or diagnostics and super-resolution microscopy. Furthermore, the last part will summarize recent advances in the synthesis and understanding of their structure-behavior relationship including novel computational approaches.
Collapse
Affiliation(s)
- Sascha G. Keller
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; (S.G.K.); (M.K.)
| | - Mako Kamiya
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; (S.G.K.); (M.K.)
| | - Yasuteru Urano
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; (S.G.K.); (M.K.)
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| |
Collapse
|
160
|
Irrera N, Pallio G, Mannino F, Gugliotta R, Metro D, Altavilla D, Squadrito F. Administration of a Nutraceutical Mixture Composed by Aloe arborescens, Annona muricata, Morinda citrifolia, Beta rubra, Scutellaria baicalensis, and Vaccinium myrtillus Reduces Doxorubicin-Induced Side Effects. Nutr Cancer 2020; 72:343-351. [PMID: 31259639 DOI: 10.1080/01635581.2019.1633364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The antibiotic doxorubicin is often used as an anti-neoplastic drug; however, many patients showed very unpleasant side-effects. Previous studies have demonstrated that dietary substances such as Aloe arborescens, Annona muricata, Morinda citrifolia, Beta rubra, Scutellaria baicalensis, and Vaccinium myrtillus may have anti-oxidant, anti-proliferative, and anti-inflammatory effects. The purpose of this study was to investigate the protective effects of a mixture of these components in an experimental model of doxorubicin toxicity. Rats (n = 30) received doxorubicin (5 mg/kg/day) for 4 weeks and were randomized to receive the dietary mixture 2 hours following the first doxorubicin injection and until the end of the experiment. Animals were killed following 4 weeks, and blood, liver, and heart were collected for further analysis. The dietary supplement improved the depressed body weight and food consumption induced by DOX. In addition, the nutraceutical mixture reduced oxidative stress, ameliorated the morphological score, and preserved liver and heart structure, demonstrating a protective effect. These data show for the first time that the mixture of Aloe arborescens, Annona muricata, Morinda citrifolia, Beta rubra, Scutellaria baicalensis, and Vaccinium myrtillus may be useful to reduce the side effects following treatment with doxorubicin, and might ameliorate the quality of life of patients following chemotherapy.
Collapse
Affiliation(s)
- Natasha Irrera
- Department of Clinical and Experimental Medicine, University of Messina, c/o AOU Policlinico G. Martino, Gazzi, Messina, Italy
| | - Giovanni Pallio
- Department of Clinical and Experimental Medicine, University of Messina, c/o AOU Policlinico G. Martino, Gazzi, Messina, Italy
| | - Federica Mannino
- Department of Clinical and Experimental Medicine, University of Messina, c/o AOU Policlinico G. Martino, Gazzi, Messina, Italy
| | - Rosario Gugliotta
- Department of Clinical and Experimental Medicine, University of Messina, c/o AOU Policlinico G. Martino, Gazzi, Messina, Italy
| | - Daniela Metro
- Department of Biomedical and Dental Sciences and Morphological and Functional Sciences, University of Messina, c/o AOU Policlinico G. Martino, Gazzi, Messina, Italy
| | - Domenica Altavilla
- Department of Biomedical and Dental Sciences and Morphological and Functional Sciences, University of Messina, c/o AOU Policlinico G. Martino, Gazzi, Messina, Italy
| | - Francesco Squadrito
- Department of Clinical and Experimental Medicine, University of Messina, c/o AOU Policlinico G. Martino, Gazzi, Messina, Italy
| |
Collapse
|
161
|
Myricetin: A review of the most recent research. Biomed Pharmacother 2020; 134:111017. [PMID: 33338751 DOI: 10.1016/j.biopha.2020.111017] [Citation(s) in RCA: 148] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 12/13/2022] Open
Abstract
Myricetin(MYR) is a flavonoid compound widely found in many natural plants including bayberry. So far, MYR has been proven to have multiple biological functions and it is a natural compound with promising research and development prospects. This review comprehensively retrieved and collected the latest pharmacological abstracts on MYR, and discussed the potential molecular mechanisms of its effects. The results of our review indicated that MYR has a therapeutic effect on many diseases, including tumors of different types, inflammatory diseases, atherosclerosis, thrombosis, cerebral ischemia, diabetes, Alzheimer's disease and pathogenic microbial infections. Furthermore, it regulates the expression of Hippo, MAPK, GSK-3β, PI3K/AKT/mTOR, STAT3, TLR, IκB/NF-κB, Nrf2/HO-1, ACE, eNOS / NO, AChE and BrdU/NeuN. MYR also enhances the immunomodulatory functions, suppresses cytokine storms, improves cardiac dysfunction, possesses an antiviral potential, can be used as an adjuvant treatment against cancer, cardiovascular injury and nervous system diseases, and it may be a potential drug against COVID-19 and other viral infections. Generally, this article provides a theoretical basis for the clinical application of MYR and a reference for its further use.
Collapse
|
162
|
Li S, So TH, Tang G, Tan HY, Wang N, Ng BFL, Chan CKW, Yu ECL, Feng Y. Chinese Herbal Medicine for Reducing Chemotherapy-Associated Side-Effects in Breast Cancer Patients: A Systematic Review and Meta-Analysis. Front Oncol 2020; 10:599073. [PMID: 33363030 PMCID: PMC7756083 DOI: 10.3389/fonc.2020.599073] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 11/03/2020] [Indexed: 12/14/2022] Open
Abstract
Background Chemotherapy usually induces a variety of side-effects in cancer treatment as it cannot tell normal cells apart from cancer cells and kills both. Chinese herbal medicine (CHM) has been regarded as a potential effective intervention for relieving the side-effects of chemotherapy in breast cancer patients. Objective This study aims to conduct a comprehensive systematic review and meta-analysis to evaluate the efficacy of CHM as adjuvant therapy for reducing the chemotherapy-induced side-effects in the treatment of breast cancer. Methods Main electronic databases were searched up to May 2020 for Randomized Controlled Trials (RCTs) evaluating the effect of CHM on breast cancer patients with chemotherapy. The PRISMA statement was adopted in this study and meta-analyses were performed. Results The included studies showed unsatisfied quality. Results based on available literature indicated that the adjunctive use of CHM with chemotherapy may reduce the chemotherapeutic agents-associated adverse events, including nausea and vomiting, diarrhea, alopecia, myelosuppression, and impaired immune function. Conclusion A confident conclusion could not be have due to the lack of large scale and high quality trials.
Collapse
Affiliation(s)
- Sha Li
- Li Ka Shing Faculty of Medicine, School of Chinese Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Tsz-Him So
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Guoyi Tang
- Li Ka Shing Faculty of Medicine, School of Chinese Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Hor-Yue Tan
- Li Ka Shing Faculty of Medicine, School of Chinese Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Ning Wang
- Li Ka Shing Faculty of Medicine, School of Chinese Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | | | - Chris Kam Wa Chan
- Division of Nephrology, Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Edwin Chau-Leung Yu
- Hong Kong Association for Integration of Chinese-Western Medicine, Hong Kong, Hong Kong
| | - Yibin Feng
- Li Ka Shing Faculty of Medicine, School of Chinese Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
163
|
Liu JS, Yeh CA, Huang IC, Huang GY, Chiu CH, Mahalakshmi B, Wen SY, Huang CY, Kuo WW. Signal transducer and activator of transcription 3 mediates apoptosis inhibition through reducing mitochondrial ROS and activating Bcl-2 in gemcitabine-resistant lung cancer A549 cells. J Cell Physiol 2020; 236:3896-3905. [PMID: 33283880 DOI: 10.1002/jcp.30133] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 09/02/2020] [Accepted: 10/19/2020] [Indexed: 12/12/2022]
Abstract
Lung cancer is a leading cause of cancer-related death worldwide. In this study, we used lung adenocarcinoma cells as a model, as lung adenocarcinoma has the highest mortality rate among all lung cancers. For the past few years, medical treatments or lung cancer have been limited because of chemotherapy resistance. Therefore, understanding the pathogenesis of the development of drug resistance in lung cancer is urgent. Gemcitabine is widely prescribed in the chemotherapeutic treatment of lung cancers. In this study, we developed gemcitabine-resistant lung adenocarcinoma cells (A549-GR) from the A549 cell line. The results showed that apoptotic protein expression and reactive oxygen species (ROS) generation were reduced in A549-GR cells compared to A549 cells. Interestingly, we found that signal transducer and activator of transcription 3 (STAT3) translocated to the nucleus and mitochondria to affect the apoptotic pathway and ROS generation, respectively. Furthermore, treatment with STAT3 small interfering RNA diminished the increase in ROS production, proliferation and antiapoptotic proteins in A549-GR cells. Taken together, the study demonstrated that STAT3 acts as an essential regulator and moderates apoptosis through two major mechanisms to induce gemcitabine resistance in cells; and these findings provide a potential target for the treatment of gemcitabine-resistant lung cancer.
Collapse
Affiliation(s)
- Jian-Sheng Liu
- China Medical University Beigang Hospital Thoracic Department, Yunlin, Taiwan.,Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Chun-An Yeh
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - I-Chieh Huang
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Guan-Yu Huang
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Chih-Hao Chiu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - B Mahalakshmi
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
| | - Su-Ying Wen
- Taipei City Hospital, Renai Branch, Dermatology, Taipei, Taiwan
| | - Chih-Yang Huang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.,Department of Biotechnology, Asia University, Taichung, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| |
Collapse
|
164
|
Kim DY, Moon SH, Han JH, Kim MJ, Oh SJ, Bharti D, Lee SH, Park JK, Rho GJ, Jeon BG. Terminal differentiation into adipocyte and growth inhibition by PPARγ activation in human A549 lung adenocarcinoma cells. Anim Cells Syst (Seoul) 2020; 24:329-340. [PMID: 33456717 PMCID: PMC7781920 DOI: 10.1080/19768354.2020.1847731] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The present study investigated the terminal differentiation capacity into adipocytes and subsequent growth inhibition in A549 cancer cells treated with pioglitazone (PGZ), a PPARγ activator. The rate of cell growth in A549 cells was significantly (P < .05) inhibited in concentrations above 10 μM PGZ while maintaining less cytotoxic effects in MRC-5 fibroblasts. Following 50 μM PGZ treatment, population doubling time (PDT) was significantly (P < .05) increased by inhibition of cell growth, as per increasing PGZ exposure time by up to 4 weeks. The adiposome-like vesicles were commonly observed in the PGZ-treated A549 cells, and the vesicles were highly stained with Oil-Red O solution. In addition, the cell size and expression of GLUT4 and PPARγ were significantly (P < .05) increased, as per increasing PGZ exposure time by up to 4 weeks. The significant (P < .05) down-regulation of telomerase activity and up-regulation of senescence-associated β-galactosidase (SA β-GAL) activity was displayed in the PGZ-treated A549 cells, as per increasing PGZ exposure time by up to 4 weeks. The G1 phase of the cell cycle was also significantly (P < .05) increased in the PGZ-treated A549 cells compared with untreated A549 cells. The present results have demonstrated that activation of PPARγ using PGZ induces cellular differentiation into adipocytes and inhibits cell growth in the A549 cancer cells. The terminal differentiation into adipocytes could offer potent chemotherapy in the cancer cells showing high glucose metabolism.
Collapse
Affiliation(s)
- Dae-Young Kim
- Department of Biology Education, Gyeongsang National University, Jinju, Republic of Korea
| | - Sun-Ha Moon
- Department of Biology Education, Gyeongsang National University, Jinju, Republic of Korea
| | - Jang-Ho Han
- OBS/Theriogenology and Biotechnology, Gyeongsang National University, Jinju, Republic of Korea
| | - Mi-Jeong Kim
- Department of Biology Education, Gyeongsang National University, Jinju, Republic of Korea
| | - Seong-Ju Oh
- OBS/Theriogenology and Biotechnology, Gyeongsang National University, Jinju, Republic of Korea
| | - Dinesh Bharti
- OBS/Theriogenology and Biotechnology, Gyeongsang National University, Jinju, Republic of Korea
| | - Sung-Ho Lee
- Division of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Jong-Kuen Park
- Department of Chemistry Education, Gyeongsang National University, Jinju, Republic of Korea
| | - Gyu-Jin Rho
- OBS/Theriogenology and Biotechnology, Gyeongsang National University, Jinju, Republic of Korea
| | - Byeong-Gyun Jeon
- Department of Biology Education, Gyeongsang National University, Jinju, Republic of Korea.,Institute of Education, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
165
|
Lan H, Zhang W, Jin K, Liu Y, Wang Z. Modulating barriers of tumor microenvironment through nanocarrier systems for improved cancer immunotherapy: a review of current status and future perspective. Drug Deliv 2020; 27:1248-1262. [PMID: 32865029 PMCID: PMC7470050 DOI: 10.1080/10717544.2020.1809559] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/10/2020] [Accepted: 08/10/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer immunotherapy suppresses and destroys tumors by re-activating and sustaining the tumor-immune process, and thus improving the immune response of the body to the tumor. Immunotherapeutic strategies are showing promising results in pre-clinical and clinical trials, however, tumor microenvironment (TME) is extremely immunosuppressive. Thus, their translation from labs to clinics still faces issues. Recently, nanomaterial-based strategies have been developed to modulate the TME for robust immunotherapeutic responses. The combination of nanotechnology with immunotherapy potentiates the effectiveness of immunotherapy by increasing delivery and retention, and by reducing immunomodulation toxicity. This review aims to highlight the barriers offered by TME for hindering the efficiency of immunotherapy for cancer treatment. Next, we highlight various nano-carriers based strategies for modulating those barriers for achieving better therapeutic efficacy of cancer immunotherapy with higher safety. This review will add to the body of scientific knowledge and will be a good reference material for academia and industries.
Collapse
Affiliation(s)
- Huanrong Lan
- Department of Breast and Thyroid Surgery, Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province, China
| | - Wei Zhang
- Rehabilitation and Sports Medicine Research Institute of Zhejiang Province, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Ketao Jin
- Department of Colorectal Surgery, Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province, China
| | - Yuyao Liu
- Department of Colorectal Surgery, Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province, China
| | - Zhen Wang
- Rehabilitation and Sports Medicine Research Institute of Zhejiang Province, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
166
|
El-Wakil MH, Khattab SN, El-Yazbi AF, El-Nikhely N, Soffar A, Khalil HH. New chalcone-tethered 1,3,5-triazines potentiate the anticancer effect of cisplatin against human lung adenocarcinoma A549 cells by enhancing DNA damage and cell apoptosis. Bioorg Chem 2020; 105:104393. [DOI: 10.1016/j.bioorg.2020.104393] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 10/06/2020] [Accepted: 10/15/2020] [Indexed: 12/24/2022]
|
167
|
Ghavami G, Muhammadnejad S, Amanpour S, Sardari S. Bioactivity Screening of Mulberry Leaf Extracts and two Related Flavonoids in Combination with Cisplatin on Human Gastric Adenocarcinoma Cells. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2020; 19:371-382. [PMID: 33224244 PMCID: PMC7667550 DOI: 10.22037/ijpr.2020.1101087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The successful therapy strategy of gastric cancer is defined as devastating the cancerous cells without exposing systematic toxicity and undesirable side effects. One strategy to overcome cancer treatment related difficulties could be combination therapy with natural products with anticancer drugs to introduce effective antitumor effects in addition to reduce undesirable side effects. In this regard, different extracts of mulberry leaf, isoquercetin and rutin as the extracted flavonoids from Morus alba, mulberry, in single dose as well as in combination with cisplatin against gastric cancer cell line were applied. This innovative treatment led to cytotoxic effect on gastric cancer cells in a synergistic manner. The findings anticipated that these herbal products have exceptional potential for future gastric cancer investigations and therapy.
Collapse
Affiliation(s)
- Ghazaleh Ghavami
- Drug Design and Bioinformatics Unit, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Samad Muhammadnejad
- Cell-Based Therapies Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeid Amanpour
- Cancer Biology Research center, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Soroush Sardari
- Drug Design and Bioinformatics Unit, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
168
|
Adiga D, Eswaran S, Pandey D, Sharan K, Kabekkodu SP. Molecular landscape of recurrent cervical cancer. Crit Rev Oncol Hematol 2020; 157:103178. [PMID: 33279812 DOI: 10.1016/j.critrevonc.2020.103178] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/06/2020] [Accepted: 11/11/2020] [Indexed: 02/07/2023] Open
Abstract
Cervical cancer (CC) is a major gynecological problem in developing and underdeveloped countries. Despite the significant advancement in early detection and treatment modalities, several patients recur. Moreover, the molecular mechanisms responsible for CC recurrence remains obscure. The patients with CC recurrence often show poor prognosis and significantly high mortality rates. The clinical management of recurrent CC depends on treatment history, site, and extent of the recurrence. Owing to poor prognosis and limited treatment options, recurrent CC often presents a challenge to the clinicians. Several in vitro, in vivo, and patient studies have led to the identification of the critical molecular changes responsible for CC recurrence. Both aberrant genetic and epigenetic modifications leading to altered cell signaling pathways have been reported to impact CC recurrence. Researchers are currently trying to dissect the molecular pathways in CC and translate these findings for better management of disease. This article attempts to review the existing knowledge of disease relapse, accompanying challenges, and associated molecular players in CC.
Collapse
Affiliation(s)
- Divya Adiga
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Sangavi Eswaran
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Deeksha Pandey
- Department of OBGYN, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Krishna Sharan
- Department of Radiotherapy and Oncology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
169
|
Apoptosis-Inducing Active Protein from Marine Clam Donax variabilis on NSCLC Cells. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-020-10139-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
170
|
Kukkar D, Kukkar P, Kumar V, Hong J, Kim KH, Deep A. Recent advances in nanoscale materials for antibody-based cancer theranostics. Biosens Bioelectron 2020; 173:112787. [PMID: 33190049 DOI: 10.1016/j.bios.2020.112787] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/08/2020] [Accepted: 10/30/2020] [Indexed: 02/07/2023]
Abstract
The quest for advanced management tools or options of various cancers has been on the rise to efficiently reduce their risks of mortality without the demerits of conventional treatments (e.g., undesirable side effects of the medications on non-target tissues, non-targeted distribution, slow clearance of the administered drugs, and the development of drug resistance over the duration of therapy). In this context, nanomaterials-antibody conjugates can offer numerous advantages in the development of cancer theranostics over conventional delivery systems (e.g., highly specific and enhanced biodistribution of the drug in targeted tissues, prolonged systemic circulation, low toxicity, and minimally invasive molecular imaging). This review comprehensively discusses and evaluates recent advances in the application of nanomaterial-antibody bioconjugates for cancer theranostics for the further advancement in the control of diverse cancerous diseases. Further, discussion is expanded to cover the various challenges and limitations associated with the design and development of nanomaterial-antibody conjugates applicable towards better management of cancer.
Collapse
Affiliation(s)
- Deepak Kukkar
- Department of Nanotechnology, Sri Guru Granth Sahib World University, Fatehgarh Sahib, Punjab, 140406, India
| | - Preeti Kukkar
- Department of Chemistry, Mata Gujri College, Fatehgarh Sahib, Punjab, 140406, India
| | - Vanish Kumar
- National Agri-Food Biotechnology Institute (NABI), S.A.S. Nagar, Punjab, 140306, India
| | - Jongki Hong
- College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul, 02447, Republic of Korea
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seoul, 04763 Republic of Korea.
| | - Akash Deep
- Central Scientific Instruments Organization (CSIR-CSIO), Sector 30 C, Chandigarh, 160030, India.
| |
Collapse
|
171
|
Sarfraz A, Rasul A, Sarfraz I, Shah MA, Hussain G, Shafiq N, Masood M, Adem Ş, Sarker SD, Li X. Hispolon: A natural polyphenol and emerging cancer killer by multiple cellular signaling pathways. ENVIRONMENTAL RESEARCH 2020; 190:110017. [PMID: 32768475 PMCID: PMC7406431 DOI: 10.1016/j.envres.2020.110017] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 05/15/2023]
Abstract
Nature as an infinite treasure of chemotypes and pharmacophores will continue to play an imperative role in the drug discovery. Natural products (NPs) such as plant and fungal metabolites have emerged as leads in drug discovery during recent years due to their efficacy, safety and selectivity. The current review summarizes natural sources as well as pharmacological potential of hispolon which is a major constituent of traditional medicinal mushroom Phellinus linteus. The study aims to update the scientific community about recent developments of hispolon in the arena of natural drugs by providing insights into its present status in therapeutic pursuits. Hispolon, a polyphenol has been reported to possess anticancer, antidiabetic, antioxidant, antiviral and anti-inflammatory activities. It fights against cancer via induction of apoptosis, halting cell cycle and inhibition of metastasis by targeting various cellular signaling pathways including PI3K/Akt, MAPK and NF-κB. The current review proposes that hispolon provides a novel opportunity for pharmacological applications and its styrylpyrone carbon skeleton might serve as an attractive scaffold for drug development. However, future researches are recommended to assess bioavailability, toxicological limits, pharmacokinetic and pharmacodynamic profiles of hispolon, in order to establish its potential as a potent multi-targeted drug in the near future.
Collapse
Affiliation(s)
- Ayesha Sarfraz
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad, 38000, Pakistan
| | - Azhar Rasul
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad, 38000, Pakistan.
| | - Iqra Sarfraz
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad, 38000, Pakistan
| | - Muhammad Ajmal Shah
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, 38000, Pakistan.
| | - Ghulam Hussain
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, 38000, Pakistan
| | - Nusrat Shafiq
- Department of Chemistry, Government College Woman University, Faisalabad, 38000, Pakistan
| | - Muqaddas Masood
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130024, China
| | - Şevki Adem
- Department of Chemistry, Faculty of Sciences, Çankırı Karatekin University, Uluyazı Campus Çankırı, Turkey
| | - Satyajit D Sarker
- School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, England, UK
| | - Xiaomeng Li
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
172
|
Li R, Zhang Y, Wang Y, Huang K, Yang Q, Zhang T, Xie K, Li J, Zhao Q. Aqueous extract of Fritillariae cirrhosae induces cellular apoptosis through activation of STATs-mediated immunomodulation. JOURNAL OF ETHNOPHARMACOLOGY 2020; 261:112338. [PMID: 31669666 DOI: 10.1016/j.jep.2019.112338] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 10/08/2019] [Accepted: 10/21/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fritillariae cirrhosae (FC), referred to'Chuan beimu'in China. As an important edible and medicinal plant, the bulbs of F.cirrhosae is used traditionally in the treatment of pulmonary diseases associated with lung heat, inflammation and tumors. In the study, we investigated the effect of aqueous extract of FC (FC-AE) and elucidated its mechanism in non-small cell lung cancer A549 cells and a xenograft model of nude mice. MATERIALS AND METHODS CCK-8 and plate colony formation assay were used to evaluate the effect of FC-AE in A549 cells in vitro, and the gene expression profile of FC-AE on A549 cells was assessed by RNA sequencing system. Then, the effects of FC-AE on cell cycle and apoptosis of A549 cells were analyzed by flow cytometry. In combination with RNA-seq data, RT-PCR and western blot were used to evaluate the expression of proteins related to apoptosis and immune regulation. A xenograft model of nude mice was used to assess the effect of FC-AE in vivo. RESULTS CCK-8 and plate cloning assays showed that FC-AE inhibited the proliferation and colony formation of A549 cells. A549 cells treated with FC-AE can triggered apoptosis. GO and KEGG pathway enrichment analysis of RNA-seq data showed that most of the differentially expressed genes (DEGs) were related to immune response, apoptosis and cell cycle process. Several immune and apoptotic DEGs were identified by qRT-PCR which were consistented with RNA-seq data. In nude mice, FC-AE reduced the tumor size and promoted the secretion of cytokines IL12 and IFNγ. FC-AE up-regulated the two members (STAT1 and STAT4) of STATs and their target genes (IFNγ and IL-12, respectively) protein expressions, and actively regulates Bcl-2/Bax family proteins which resulted in cellular apoptosis in A549 cells. CONCLUSION Our finding suggests that FC-AE mediates apoptosis through a STAT1 and STAT4-mediated co-regulatory network, which may be the key novel mechanism for its antitumor activity. The F. cirrhosa may be a promising antitumor drug for modulating immune responses to improve cancer therapy.
Collapse
Affiliation(s)
- Rui Li
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China
| | - Yang Zhang
- Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Yucheng Wang
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China
| | - Kejia Huang
- Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Qianye Yang
- Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Tiantian Zhang
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China
| | - Kun Xie
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China
| | - Jian Li
- Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China; School of Medicine, Chengdu University, Chengdu, China.
| | - Qi Zhao
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China; Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China.
| |
Collapse
|
173
|
Bhagwat DA, Swami PA, Nadaf SJ, Choudhari PB, Kumbar VM, More HN, Killedar SG, Kawtikwar PS. Capsaicin Loaded Solid SNEDDS for Enhanced Bioavailability and Anticancer Activity: In-Vitro, In-Silico, and In-Vivo Characterization. J Pharm Sci 2020; 110:280-291. [PMID: 33069713 DOI: 10.1016/j.xphs.2020.10.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/10/2020] [Accepted: 10/12/2020] [Indexed: 12/25/2022]
Abstract
In this investigation, the fabrication of capsaicin loaded self nano emulsifying drug delivery system (SNEDDS) was attempted to improve the effectiveness of capsaicin through the oral route. A pseudo-ternary phase diagram was constructed at different km values (1:1, 2:1, & 3:1). Nine liquid formulations (L-CAP-1 to L-CAP-9) were prepared at km = 3, evaluated & converted to solid free-flowing granules using neusilin® US2. L-CAP-3 comprising of 15% isopropyl myristate, 33.75% Labrafil, & 11.25% ethanol exhibited higher % transmittance (98.90 ± 1.24%) & lower self-emulsification time (18.19 ± 0.46 s). FT-IR spectra showed no incompatibility whereas virtual analysis confirmed hydrogen bond interaction between amino hydrogen in the capsaicin & oxygen of the neusilin. DSC & XRD study revealed the amorphization & molecular dispersion of capsaicin in S-SNEDDS. TEM analysis confirmed the nano-sized spherical globules. Within 15 min, L-SNEDDS, S-SNEDDS, & pure capsaicin showed 87.36 ± 3.25%, 85.19 ± 4.87%, & 16.61 ± 3.64% drug release respectively. S-CAP-3 significantly (P < 0.001) inhibited the proliferation of HT-29 colorectal cancer cells than capsaicin. Apoptosis assay involving Annexin V/PI staining for S-CAP-3 treated cells demonstrated a significant (P < 0.001) apoptotic rate. Remarkably, 3.6 fold increase in bioavailability was observed after oral administration of capsaicin-SNEDDS than plain capsaicin.
Collapse
Affiliation(s)
| | - Pratik A Swami
- Bharati Vidyapeeth College of Pharmacy, Kolhapur 416013, Maharashtra, India
| | - Sameer J Nadaf
- Sant Gajanan Maharaj College of Pharmacy, Mahagoan, Site: Chinchewadi 416503, Maharashtra, India
| | | | - Vijay M Kumbar
- Central Research Laboratory, Maratha Mandal's Nathajirao G. Halgekar Institute of Dental Sciences & Research Centre, Belgavi, 590 010, Karnataka, India
| | - Harinath N More
- Bharati Vidyapeeth College of Pharmacy, Kolhapur 416013, Maharashtra, India
| | - Suresh G Killedar
- Sant Gajanan Maharaj College of Pharmacy, Mahagoan, Site: Chinchewadi 416503, Maharashtra, India
| | - Pravin S Kawtikwar
- Sudhakarrao Naik Institute of Pharmacy, Pusad 445 204, Maharashtra, India
| |
Collapse
|
174
|
Ramezani M, Hasani M, Ramezani F, Karimi Abdolmaleki M. Cucurbitacins: A Focus on Cucurbitacin E As A Natural Product and Their Biological Activities. PHARMACEUTICAL SCIENCES 2020. [DOI: 10.34172/ps.2020.66] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
For the last years, different types of cucurbitacins have been extracted from various species of Cucurbitaceae family. For this review, all related papers were accumulated by searching electronic databases in the English language, including PubMed, Scopus, and Google Scholar. The keywords of cucurbitacin, cucumber anticancer therapy, cytotoxic effects, chemotherapy, and inhibitor effect were searched until February 2020. According to the result of this review, cucurbitacin E as a tetracyclic triterpenes compound, has been exhibited cell cycle arrest, anti-inflammatory and anticancer activities. It showed tumor proliferation prevention, induction of apoptosis or synergistically acts with other established antitumor compounds and cytokines throughout many molecular mechanisms. In a function-structure association manner, cucurbitacin E can inhibit Janus kinas2 (JAK2) phosphorylation, the signal transducer activator of transcription 3 (STAT3) and subsequently block these pathways, which seems to be the main mechanism of its activity. Future studies could target its detection in uninvestigated sources, subsequently its derivatives to improve their anticancer activity.
Collapse
Affiliation(s)
| | | | - Fatemeh Ramezani
- Physiology Research Center, Iran University of Medical Science, Tehran, Iran
| | | |
Collapse
|
175
|
Omairi I, Kobeissy F, Nasreddine S. Anti-Oxidant, Anti-Hemolytic Effects of Crataegus aronia Leaves and Its Anti- Proliferative Effect Enhance Cisplatin Cytotoxicity in A549 Human Lung Cancer Cell Line. Asian Pac J Cancer Prev 2020; 21:2993-3003. [PMID: 33112559 PMCID: PMC7798177 DOI: 10.31557/apjcp.2020.21.10.2993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Indexed: 12/24/2022] Open
Abstract
Objective: For Arabian traditional medicine, Crataegus aronia syn. Azarolus (L) Bosc. ex DC (Rosaceae) is widely used to treat diabetes, sexual weakness, cardiovascular diseases and cancer. The anti-cancerous and anti-hemolysis effects of the hydroalcoholic extract of this plant have never been investigated before. The present study aims to evaluate the biological activities of the hydroalcoholic extract of Crataegus aronia leaves in combination with cisplatin, one of the most widely employed chemotherapeutics, on A549 human lung cancer cell line. Methods: The anti-oxidant and anti-proliferative activities of leaves, fruits, seeds of C. aronia were investigated by DPPH method and MTT assay; respectively. Cell migration activity was investigated by wound healing and by cell aggregation assays. The effect of C. aronia in inducing cell cycle arrest along with activating cell apoptosis was evaluated by flow cytometry and Western blot assays, respectively. Results: Our results showed that C. aronia leaves (C. aronia L.) had the highest anti-oxidant and anti-proliferative activities. The leaves extract was potent against hemolysis of the human erythrocytes and showed elevated decrease in migration by reducing wound healing migration and by increasing cell aggregation. Finally, C. aronia L. treatment exhibited apoptotic activity on A549 cells by the down-regulation of PARP-1, caspase-3 and Bcl-2 proteins and by increasing the percentage of A549 cells in sub G0 cell cycle. Moreover, the co-treatment of C. aronia L. and cisplatin remarkably sensitised A549 cells to cisplatin. Conclusion: The results suggested that C. aronia L. could be used as a potential treatment against human lung cancer exhibiting minimal side effects on human health.
Collapse
Affiliation(s)
- Islam Omairi
- Doctoral School of Science and Technology, Research Platform for Environmental Science (PRASE), Faculty of Sciences, Lebanese University, Lebanon
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon, Lebanon.,Department of Psychiatry, Center for Neuroproteomics and Biomarkers Research, University of Florida, Gainesville, FL, USA
| | - Salam Nasreddine
- Doctoral School of Science and Technology, Research Platform for Environmental Science (PRASE), Faculty of Sciences, Lebanese University, Lebanon.,Department of Biology, Faculty of Sciences-Section I, Lebanese University, Groupe Anti-Cancer Therapeutic Approaches (ATAC), Laboratory Rammal Rammal, Lebanon
| |
Collapse
|
176
|
A review on kinases phosphorylating the carboxyl-terminal domain of RNA polymerase II-Biological functions and inhibitors. Bioorg Chem 2020; 104:104318. [PMID: 33142427 DOI: 10.1016/j.bioorg.2020.104318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/18/2020] [Accepted: 09/23/2020] [Indexed: 12/14/2022]
Abstract
RNA polymerase II (RNA Pol II) plays a major role in gene transcription for eukaryote. One of the major modes of regulation in eukaryotes is the phosphorylation of the carboxyl-terminal domain (CTD) of RNA Pol II. The current study found that the phosphorylation of Ser2, Ser5, Ser7, Thr4 and Tyr1 among the heptapeptide repeats of CTD plays a key role in the transcription process. We therefore review the biological functions and inhibitors of kinases that phosphorylate these amino acid residues including transcriptional cyclin-dependent protein kinases (CDKs), bromodomain-containing protein 4 (BRD4), Polo-like kinases 3 (Plk3) and Abelson murine leukemia viral oncogene 1 and 2 (c-Abl1/2).
Collapse
|
177
|
Rofeal MG, Elzoghby AO, Helmy MW, Khalil R, Khairy H, Omar S. Dual Therapeutic Targeting of Lung Infection and Carcinoma Using Lactoferrin-Based Green Nanomedicine. ACS Biomater Sci Eng 2020; 6:5685-5699. [DOI: 10.1021/acsbiomaterials.0c01095] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Marian G. Rofeal
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria 21521, Egypt
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Ahmed O. Elzoghby
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Maged W. Helmy
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Damanhur University, Damanhur 22511, Egypt
| | - Rowaida Khalil
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria 21521, Egypt
| | - Heba Khairy
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria 21521, Egypt
| | - Sanaa Omar
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria 21521, Egypt
| |
Collapse
|
178
|
Haas ICDS, Marmitt DJ, Fedrigo IMT, Goettert MI, Bordignon-Luiz MT. Evaluation of antiproliferative and anti-inflammatory effects of non-pomace sediment of red grape juices (Vitis labrusca L.) in healthy and cancer cells after in vitro gastrointestinal simulation. PHARMANUTRITION 2020. [DOI: 10.1016/j.phanu.2020.100204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
179
|
Goruganthu MUL, Shanker A, Dikov MM, Carbone DP. Specific Targeting of Notch Ligand-Receptor Interactions to Modulate Immune Responses: A Review of Clinical and Preclinical Findings. Front Immunol 2020; 11:1958. [PMID: 32922403 PMCID: PMC7456812 DOI: 10.3389/fimmu.2020.01958] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/20/2020] [Indexed: 12/11/2022] Open
Abstract
Understanding and targeting Notch signaling effectively has long been valued in the field of cancer and other immune disorders. Here, we discuss key discoveries at the intersection of Notch signaling, cancer and immunology. While there is a plethora of Notch targeting agents tested in vitro, in vivo and in clinic, undesirable off-target effects and therapy-related toxicities have been significant obstacles. We make a case for the clinical application of ligand-derived and affinity modifying compounds as novel therapeutic agents and discuss major research findings with an emphasis on Notch ligand-specific modulation of immune responses.
Collapse
Affiliation(s)
- Mounika U. L. Goruganthu
- Department of Internal Medicine, James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Anil Shanker
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College School of Medicine, Nashville, TN, United States
- Vanderbilt-Ingram Cancer Center, Nashville, TN, United States
| | - Mikhail M. Dikov
- Department of Internal Medicine, James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - David P. Carbone
- Department of Internal Medicine, James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
180
|
Qu QH, Jiang SZ, Li XY. LncRNA TBX5-AS1 Regulates the Tumor Progression Through the PI3K/AKT Pathway in Non-Small Cell Lung Cancer. Onco Targets Ther 2020; 13:7949-7961. [PMID: 32884287 PMCID: PMC7431607 DOI: 10.2147/ott.s255195] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/10/2020] [Indexed: 12/12/2022] Open
Abstract
Purpose Long non-coding RNAs (lncRNAs) have been reported to play important roles in tumor biology. In this study, we aimed to investigate the effects of T-box transcription factor 5 antisense RNA 1 (TBX5-AS1) on aggressive phenotypes of non-small cell lung cancer (NSCLC) cells and explore its regulatory pathway. Methods The expression of TBX5-AS1 in tissues, plasma, and cells was determined by qRT-PCR. Cell viability, proliferation, migration, invasion, and apoptosis were assessed using MTT, colony formation, wound-healing, Transwell, and flow cytometry assay, respectively. Western blot analysis was performed to measure the expression of apoptosis-related proteins. Besides, transfected cells were exposed to PI3K activator (740Y-P) to verify the regulatory pathway. Results TBX5-AS1 expression was down-regulated in NSCLC tissues, plasma, and cells, and associated with lymph node metastasis and histological grade. Overexpression of TBX5-AS1 inhibited cell viability, colony formation, migration, and invasion, while it promoted apoptosis. Conversely, knockdown of TBX5-AS1 showed the completely opposite results. Additionally, western blot showed that the phosphorylation of PI3K and AKT was stimulated by TBX5-AS1 knockdown and suppressed by TBX5-AS1 overexpression. The addition of 740Y-P in transfected cells reversed the TBX5-AS1-induced inhibition of PI3K and AKT phosphorylation and effects on aggressive phenotypes of NSCLC cells. Conclusion The study confirmed the down-regulation of TBX5-AS1 in patients with NSCLC and its association with the progression. We innovatively proposed a possible model of TBX5-AS1-mediated gene regulation in NSCLC progression that TBX5-AS1 inhibited the aggressive phenotypes of NSCLC cells through inactivating the PI3K/AKT pathway. This finding provided a novel insight into NSCLC pathogenesis.
Collapse
Affiliation(s)
- Qing-Hai Qu
- Department of Blood Transfusion, Weifang Yidu Center Hospital, Weifang Medical University, Qingzhou, Shandong 262500, People's Republic of China
| | - Shui-Zheng Jiang
- Calling Ethos Construction Transfusion, Weifang Yidu Center Hospital, Weifang Medical University, Qingzhou, Shandong 262500, People's Republic of China
| | - Xin-Ying Li
- Department of Conservative Dentistry and Endodontics, Weifang Dental Hospital, Qingzhou, Shandong 262500, People's Republic of China
| |
Collapse
|
181
|
Khalaf K, Janowicz K, Dyszkiewicz-Konwińska M, Hutchings G, Dompe C, Moncrieff L, Jankowski M, Machnik M, Oleksiewicz U, Kocherova I, Petitte J, Mozdziak P, Shibli JA, Iżycki D, Józkowiak M, Piotrowska-Kempisty H, Skowroński MT, Antosik P, Kempisty B. CRISPR/Cas9 in Cancer Immunotherapy: Animal Models and Human Clinical Trials. Genes (Basel) 2020; 11:E921. [PMID: 32796761 PMCID: PMC7463827 DOI: 10.3390/genes11080921] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/29/2020] [Accepted: 08/10/2020] [Indexed: 12/18/2022] Open
Abstract
Even though chemotherapy and immunotherapy emerged to limit continual and unregulated proliferation of cancer cells, currently available therapeutic agents are associated with high toxicity levels and low success rates. Additionally, ongoing multi-targeted therapies are limited only for few carcinogenesis pathways, due to continually emerging and evolving mutations of proto-oncogenes and tumor-suppressive genes. CRISPR/Cas9, as a specific gene-editing tool, is used to correct causative mutations with minimal toxicity, but is also employed as an adjuvant to immunotherapy to achieve a more robust immunological response. Some of the most critical limitations of the CRISPR/Cas9 technology include off-target mutations, resulting in nonspecific restrictions of DNA upstream of the Protospacer Adjacent Motifs (PAM), ethical agreements, and the lack of a scientific consensus aiming at risk evaluation. Currently, CRISPR/Cas9 is tested on animal models to enhance genome editing specificity and induce a stronger anti-tumor response. Moreover, ongoing clinical trials use the CRISPR/Cas9 system in immune cells to modify genomes in a target-specific manner. Recently, error-free in vitro systems have been engineered to overcome limitations of this gene-editing system. The aim of the article is to present the knowledge concerning the use of CRISPR Cas9 technique in targeting treatment-resistant cancers. Additionally, the use of CRISPR/Cas9 is aided as an emerging supplementation of immunotherapy, currently used in experimental oncology. Demonstrating further, applications and advances of the CRISPR/Cas9 technique are presented in animal models and human clinical trials. Concluding, an overview of the limitations of the gene-editing tool is proffered.
Collapse
Affiliation(s)
- Khalil Khalaf
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznań, Poland; (K.K.); (K.J.); (M.D.-K.); (G.H.); (M.J.); (I.K.)
| | - Krzysztof Janowicz
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznań, Poland; (K.K.); (K.J.); (M.D.-K.); (G.H.); (M.J.); (I.K.)
- The School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK; (C.D.); (L.M.)
| | - Marta Dyszkiewicz-Konwińska
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznań, Poland; (K.K.); (K.J.); (M.D.-K.); (G.H.); (M.J.); (I.K.)
- Department of Biomaterials and Experimental Dentistry, Poznan University of Medical Sciences, 60-812 Poznań, Poland
| | - Greg Hutchings
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznań, Poland; (K.K.); (K.J.); (M.D.-K.); (G.H.); (M.J.); (I.K.)
- The School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK; (C.D.); (L.M.)
| | - Claudia Dompe
- The School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK; (C.D.); (L.M.)
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznań, Poland
| | - Lisa Moncrieff
- The School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK; (C.D.); (L.M.)
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznań, Poland
| | - Maurycy Jankowski
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznań, Poland; (K.K.); (K.J.); (M.D.-K.); (G.H.); (M.J.); (I.K.)
| | - Marta Machnik
- Department of Cancer Immunology, Poznan University of Medical Sciences, 60-408 Poznan, Poland; (M.M.); (U.O.); (D.I.)
- Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| | - Urszula Oleksiewicz
- Department of Cancer Immunology, Poznan University of Medical Sciences, 60-408 Poznan, Poland; (M.M.); (U.O.); (D.I.)
- Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| | - Ievgeniia Kocherova
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznań, Poland; (K.K.); (K.J.); (M.D.-K.); (G.H.); (M.J.); (I.K.)
| | - Jim Petitte
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA;
| | - Paul Mozdziak
- Physiology Graduate Program, North Carolina State University, Raleigh, NC 27695, USA;
| | - Jamil A. Shibli
- Department of Periodontology and Oral Implantology, Dental Research Division, University of Guarulhos, Guarulhos 07023-070, Brazil;
| | - Dariusz Iżycki
- Department of Cancer Immunology, Poznan University of Medical Sciences, 60-408 Poznan, Poland; (M.M.); (U.O.); (D.I.)
| | - Małgorzata Józkowiak
- Department of Toxicology, Poznan University of Medical Sciences, 61-631 Poznań, Poland; (M.J.); (H.P.-K.)
| | - Hanna Piotrowska-Kempisty
- Department of Toxicology, Poznan University of Medical Sciences, 61-631 Poznań, Poland; (M.J.); (H.P.-K.)
| | - Mariusz T. Skowroński
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland;
| | - Paweł Antosik
- Department of Veterinary Surgery, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland;
| | - Bartosz Kempisty
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznań, Poland; (K.K.); (K.J.); (M.D.-K.); (G.H.); (M.J.); (I.K.)
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznań, Poland
- Department of Veterinary Surgery, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland;
- Department of Obstetrics and Gynecology, University Hospital and Masaryk University, 601 77 Brno, Czech Republic
| |
Collapse
|
182
|
Nguyen K, Nuß B, Mühlberger M, Unterweger H, Friedrich RP, Alexiou C, Janko C. Superparamagnetic Iron Oxide Nanoparticles Carrying Chemotherapeutics Improve Drug Efficacy in Monolayer and Spheroid Cell Culture by Enabling Active Accumulation. NANOMATERIALS 2020; 10:nano10081577. [PMID: 32796757 PMCID: PMC7466387 DOI: 10.3390/nano10081577] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/17/2022]
Abstract
Cytotoxic and cytostatic chemotherapeutics act by attacking rapidly dividing tumor cells, predominantly affecting malignant tissue and to a certain degree preserving healthy cells. Nonetheless, severe side effects are caused as quickly proliferating healthy cells such as hematopoietic precursors and mucous membranes are impaired as well. This limits the administered dose and eventually allows tumor cells to escape treatment. In order to increase intratumoral drug concentration and simultaneously reduce systemic side effects, nanoparticles have come into focus as drug carriers. The functionalization of superparamagnetic iron oxide nanoparticles (SPIONs) with chemotherapeutics such as mitoxantrone (MTO) enables targeted drug transport by using magnetic forces. Here, we investigate SPIONs consisting of individual iron oxide cores of 10 nm in diameter and a total hydrodynamic diameter of 53 ± 0.8 nm as a transporting system for MTO. Comparing the killing efficacy in monolayer cell culture and multicellular tumor spheroids of HT-29 cells, we show that spheroids tolerate considerably higher doses of nanoparticle-loaded MTO. Therefore, dose predictions from conventional monolayer cell cultures are often misleading for in vivo applications. This was true for both soluble and nanoparticle-bound MTO. Using flow chambers mimicking in vivo blood flow, we furthermore demonstrate that SPIONs can magnetically accumulate MTO. We conclude that SPIONs can function as an effective delivery platform to increase local drug concentrations, thereby potentially overcoming chemotherapy resistance of cells.
Collapse
Affiliation(s)
- Khanh Nguyen
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (K.N.); (B.N.); (H.U.); (R.P.F.); (C.A.)
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Bianca Nuß
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (K.N.); (B.N.); (H.U.); (R.P.F.); (C.A.)
| | - Marina Mühlberger
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (K.N.); (B.N.); (H.U.); (R.P.F.); (C.A.)
| | - Harald Unterweger
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (K.N.); (B.N.); (H.U.); (R.P.F.); (C.A.)
| | - Ralf P. Friedrich
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (K.N.); (B.N.); (H.U.); (R.P.F.); (C.A.)
| | - Christoph Alexiou
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (K.N.); (B.N.); (H.U.); (R.P.F.); (C.A.)
| | - Christina Janko
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (K.N.); (B.N.); (H.U.); (R.P.F.); (C.A.)
- Correspondence: ; Tel.: +49-9131-85-43944
| |
Collapse
|
183
|
Alven S, Aderibigbe BA. Nanoparticles Formulations of Artemisinin and Derivatives as Potential Therapeutics for the Treatment of Cancer, Leishmaniasis and Malaria. Pharmaceutics 2020; 12:E748. [PMID: 32784933 PMCID: PMC7466127 DOI: 10.3390/pharmaceutics12080748] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/23/2020] [Accepted: 04/28/2020] [Indexed: 12/15/2022] Open
Abstract
Cancer, malaria, and leishmaniasis remain the deadly diseases around the world although several strategies of treatment have been developed. However, most of the drugs used to treat the aforementioned diseases suffer from several pharmacological limitations such as poor pharmacokinetics, toxicity, drug resistance, poor bioavailability and water solubility. Artemisinin and its derivatives are antimalarial drugs. However, they also exhibit anticancer and antileishmanial activity. They have been evaluated as potential anticancer and antileishmanial drugs but their use is also limited by their poor water solubility and poor bioavailability. To overcome the aforementioned limitations associated with artemisinin and its derivatives used for the treatment of these diseases, they have been incorporated into nanoparticles. Several researchers incorporated this class of drugs into nanoparticles resulting in enhanced therapeutic outcomes. Their potential efficacy for the treatment of parasitic infections such as malaria and leishmaniasis and chronic diseases such as cancer has been reported. This review article will be focused on the nanoparticles formulations of artemisinin and derivatives for the treatment of cancer, malaria, and leishmaniasis and the biological outcomes (in vitro and in vivo).
Collapse
|
184
|
Farino CJ, Pradhan S, Slater JH. The Influence of Matrix-Induced Dormancy on Metastatic Breast Cancer Chemoresistance. ACS APPLIED BIO MATERIALS 2020; 3:5832-5844. [DOI: 10.1021/acsabm.0c00549] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Cindy J. Farino
- Department of Biomedical Engineering, University of Delaware, 150 Academy Street, 161 Colburn Lab, Newark, Delaware 19716, United States
| | - Shantanu Pradhan
- Department of Biomedical Engineering, University of Delaware, 150 Academy Street, 161 Colburn Lab, Newark, Delaware 19716, United States
| | - John H. Slater
- Department of Biomedical Engineering, University of Delaware, 150 Academy Street, 161 Colburn Lab, Newark, Delaware 19716, United States
- Department of Material Science and Engineering, University of Delaware, 201 DuPont Hall, Newark, Delaware 19716, United States
- Delaware Biotechnology Institute, 15 Innovation Way, Newark, Delaware 19711, United States
| |
Collapse
|
185
|
Abstract
Activating KRAS mutations are present in 25% of human cancer. Although oncogenic Ras was deemed “undruggable” in the past, recent efforts led to the development of pharmacological inhibitors targeting the KRASG12C mutant, which have shown promise in early clinical trials. The development of allele-specific K-RasG12C inhibitors marked a new chapter in targeting oncogenic KRAS mutant in cancer. However, drug resistance against these new drugs will likely limit their efficacy in the clinic. Genome-wide approaches have been used to interrogate the mechanisms of resistance to K-RasG12C inhibitors, which would facilitate the development of therapeutics overcoming drug resistance. This article reviews the latest progress in resistance to K-RasG12C-targeted therapies and aims to provide insight in future research targeting drug resistance in cancer. Clinical grade K-RasG12C inhibitor marks a new chapter in targeted drug discovery Resistance to K-RasG12C inhibitors is driven by intrinsic or acquired mechanisms Co-targeting vertical Ras signaling overcomes resistance to K-RasG12C inhibition Standard-of-care chemo- and immunotherapies synergize with K-RasG12C inhibition
Collapse
Affiliation(s)
- Delong Jiao
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Shengyu Yang
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
186
|
Yaman Ü, Aslan M, Ozturk S, Ulubayram K, Eroğlu İ. Surface modified nanoliposome formulations provide sustained release for 5-FU and increase cytotoxicity on A431 cell line. Pharm Dev Technol 2020; 25:1192-1203. [PMID: 32729757 DOI: 10.1080/10837450.2020.1803910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Malignant melanoma is a type of skin cancer with high risk of metastasis. 5-Fluorouracil is commonly used for treatment of skin cancer, however its penetration through the skin is found to be insufficient in some cases. Therefore, we optimized its pharmacokinetics by fabricating 5- Fluorouracil-loaded nanoliposome formulations modified with Poly-L-lysine coating. 5-Fluorouracil-loaded nanoliposome formulations were prepared using dipalmitoylphosphatidylcholine, dicethylphosphate and cholesterol having encapsulation efficiency of 45 ± 9.61%. The particle size, zeta potential, polydispersity index and encapsulation rate of the prepared formulation was found to be 237.9 ± 0.986 nm, 41.4 ± 1.060 mV, 0.233 ± 0.019 and 88.2 ± 7.85%, respectively. Surface characterization, molecular structure and thermal property illumination of the formulations were performed alongside stability studies. The In-vitro release of 5-FU from Lipo-FU6 and PLL-1 formulations was investigated by dialysis membrane method. Within the first 12 hours, the percentage release of 5-FU from Lipo-FU6 and PLL-1 formulations was observed to be 47.17% and 20.84%, respectively. Moreover, the cytotoxicity study on A431 epidermal carcinoma cell lines has revealed that 5-FU-loaded formulations were toxic to cells unlike the 5-FU free formulations. In conclusion, PLL coated nanoliposome formulations showed a potential to be an effective option for further combined drug/gene therapy applications.
Collapse
Affiliation(s)
- Ümran Yaman
- Department of Nanotechnology and Nanomedicine, Institute for Graduate Studies in Science Engineering, Hacettepe University, Ankara, Turkey
| | - Minela Aslan
- Bioengineering Division, Institute for Graduate Studies in Science & Engineering, Hacettepe University, Ankara, Turkey
| | - Sukru Ozturk
- Bioengineering Division, Institute for Graduate Studies in Science & Engineering, Hacettepe University, Ankara, Turkey.,Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Kezban Ulubayram
- Department of Nanotechnology and Nanomedicine, Institute for Graduate Studies in Science Engineering, Hacettepe University, Ankara, Turkey.,Bioengineering Division, Institute for Graduate Studies in Science & Engineering, Hacettepe University, Ankara, Turkey.,Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - İpek Eroğlu
- Department of Nanotechnology and Nanomedicine, Institute for Graduate Studies in Science Engineering, Hacettepe University, Ankara, Turkey.,Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| |
Collapse
|
187
|
Hu X, Yang F, Liao Y, Li L, Zhao G, Zhang L. Docetaxel-Loaded Cholesterol-PEG Co-Modified Poly (n-Butyl) Cyanoacrylate Nanoparticles for Antitumor Drug Pulmonary Delivery: Preparation, Characterization, and in vivo Evaluation. Int J Nanomedicine 2020; 15:5361-5376. [PMID: 32801694 PMCID: PMC7395705 DOI: 10.2147/ijn.s249511] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 07/09/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND AND AIM Polymeric nanoparticles (NPs) have received much attention as promising carrier systems in lung cancer and brain metastases. METHODS Here, for the first time, we investigated the feasibility of using inhaled cholesterol-PEG co-modified poly (n-butyl) cyanoacrylate NPs (CLS-PEG NPs) of docetaxel (DTX) for sustained pulmonary drug delivery in cancer metastasis. RESULTS Spray-dried or freeze-dried NPs yielded sustained drug release in vitro. In vitro inhalation evaluation data indicated that the inhalation formulation had better inhalability. Compared with intravenous (IV) administration, pharmacokinetic data suggested that the inhalation formulation prolonged plasma concentration of DTX for greater than 24 h and is more quickly and completely absorbed into the rat lung after intratracheal (IT) administration. Furthermore, freeze-dried powders were found to increase the t1/2 and area under curve (AUC) by 2.3 and 6.5 fold compared to the free drug after IT administration, and spray-dried powders were found to increase the t1/2 and AUC by 3.4 and 8.8 fold, respectively. After pulmonary administration of the inhalation formulation, DTX appeared to prolong the pulmonary absorption time. In addition, the inhalation formulation was distributed to the brain in a sustained release manner. CONCLUSION These experimental results demonstrated that freeze- and spray-dried powders have the potential for pulmonary sustained release, and they also have the potential to be used as a novel treatment for the delivery of drugs that pass through the air-blood barrier and enter the brain and are efficient carriers for the treatment of brain metastasis.
Collapse
Affiliation(s)
- Xiao Hu
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing100053, People’s Republic of China
| | - Feifei Yang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing100193, People’s Republic of China
| | - Yonghong Liao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing100193, People’s Republic of China
| | - Lin Li
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing100053, People’s Republic of China
| | - Guoguang Zhao
- Department of Neurosurgery, Xuanwu Hospital of Capital Medical University, Beijing100053, People’s Republic of China
| | - Lan Zhang
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing100053, People’s Republic of China
| |
Collapse
|
188
|
Allgöwer C, Kretz AL, von Karstedt S, Wittau M, Henne-Bruns D, Lemke J. Friend or Foe: S100 Proteins in Cancer. Cancers (Basel) 2020; 12:cancers12082037. [PMID: 32722137 PMCID: PMC7465620 DOI: 10.3390/cancers12082037] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 12/24/2022] Open
Abstract
S100 proteins are widely expressed small molecular EF-hand calcium-binding proteins of vertebrates, which are involved in numerous cellular processes, such as Ca2+ homeostasis, proliferation, apoptosis, differentiation, and inflammation. Although the complex network of S100 signalling is by far not fully deciphered, several S100 family members could be linked to a variety of diseases, such as inflammatory disorders, neurological diseases, and also cancer. The research of the past decades revealed that S100 proteins play a crucial role in the development and progression of many cancer types, such as breast cancer, lung cancer, and melanoma. Hence, S100 family members have also been shown to be promising diagnostic markers and possible novel targets for therapy. However, the current knowledge of S100 proteins is limited and more attention to this unique group of proteins is needed. Therefore, this review article summarises S100 proteins and their relation in different cancer types, while also providing an overview of novel therapeutic strategies for targeting S100 proteins for cancer treatment.
Collapse
Affiliation(s)
- Chantal Allgöwer
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (C.A.); (A.-L.K.); (M.W.); (D.H.-B.)
| | - Anna-Laura Kretz
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (C.A.); (A.-L.K.); (M.W.); (D.H.-B.)
| | - Silvia von Karstedt
- Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University Hospital Cologne, Weyertal 115b, 50931 Cologne, Germany;
- CECAD Cluster of Excellence, University of Cologne, Joseph-Stelzmann-Straße 26, 50931 Cologne, Germany
- Center of Molecular Medicine Cologne, Medical Faculty, University Hospital of Cologne, Weyertal 115b, 50931 Cologne, Germany
| | - Mathias Wittau
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (C.A.); (A.-L.K.); (M.W.); (D.H.-B.)
| | - Doris Henne-Bruns
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (C.A.); (A.-L.K.); (M.W.); (D.H.-B.)
| | - Johannes Lemke
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (C.A.); (A.-L.K.); (M.W.); (D.H.-B.)
- Correspondence: ; Tel.: +49-731-500-53691
| |
Collapse
|
189
|
Lichon L, Kotras C, Myrzakhmetov B, Arnoux P, Daurat M, Nguyen C, Durand D, Bouchmella K, Ali LMA, Durand JO, Richeter S, Frochot C, Gary-Bobo M, Surin M, Clément S. Polythiophenes with Cationic Phosphonium Groups as Vectors for Imaging, siRNA Delivery, and Photodynamic Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1432. [PMID: 32708042 PMCID: PMC7466636 DOI: 10.3390/nano10081432] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 12/22/2022]
Abstract
In this work, we exploit the versatile function of cationic phosphonium-conjugated polythiophenes to develop multifunctional platforms for imaging and combined therapy (siRNA delivery and photodynamic therapy). The photophysical properties (absorption, emission and light-induced generation of singlet oxygen) of these cationic polythiophenes were found to be sensitive to molecular weight. Upon light irradiation, low molecular weight cationic polythiophenes were able to light-sensitize surrounding oxygen into reactive oxygen species (ROS) while the highest were not due to its aggregation in aqueous media. These polymers are also fluorescent, allowing one to visualize their intracellular location through confocal microscopy. The most promising polymers were then used as vectors for siRNA delivery. Due to their cationic and amphipathic features, these polymers were found to effectively self-assemble with siRNA targeting the luciferase gene and deliver it in MDA-MB-231 cancer cells expressing luciferase, leading to 30-50% of the gene-silencing effect. In parallel, the photodynamic therapy (PDT) activity of these cationic polymers was restored after siRNA delivery, demonstrating their potential for combined PDT and gene therapy.
Collapse
Affiliation(s)
- Laure Lichon
- IBMM, University of Montpellier, CNRS, ENSCM, 34093 Montpellier, France; (L.L.); (C.N.); (D.D.); (L.M.A.A.)
| | - Clément Kotras
- Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons—UMONS, 20 Place du Parc, 7000 Mons, Belgium; (C.K.); (M.S.)
- ICGM, University of Montpellier, CNRS, ENSCM, CC1701, Place Eugène Bataillon, 34095 Montpellier, France; (K.B.); (J.-O.D.); (S.R.)
| | - Bauyrzhan Myrzakhmetov
- Laboratoire Réactions et Génie des Procédés (LRGP), UMR 7274, Université de Lorraine, CNRS, 54000 Nancy, France; (B.M.); (P.A.); (C.F.)
| | - Philippe Arnoux
- Laboratoire Réactions et Génie des Procédés (LRGP), UMR 7274, Université de Lorraine, CNRS, 54000 Nancy, France; (B.M.); (P.A.); (C.F.)
| | - Morgane Daurat
- NanoMedSyn, 15 Avenue Charles Flahault, 34093 Montpellier, France;
| | - Christophe Nguyen
- IBMM, University of Montpellier, CNRS, ENSCM, 34093 Montpellier, France; (L.L.); (C.N.); (D.D.); (L.M.A.A.)
| | - Denis Durand
- IBMM, University of Montpellier, CNRS, ENSCM, 34093 Montpellier, France; (L.L.); (C.N.); (D.D.); (L.M.A.A.)
| | - Karim Bouchmella
- ICGM, University of Montpellier, CNRS, ENSCM, CC1701, Place Eugène Bataillon, 34095 Montpellier, France; (K.B.); (J.-O.D.); (S.R.)
| | - Lamiaa Mohamed Ahmed Ali
- IBMM, University of Montpellier, CNRS, ENSCM, 34093 Montpellier, France; (L.L.); (C.N.); (D.D.); (L.M.A.A.)
- Department of Biochemistry, Medical Research Institute, University of Alexandria, Alexandria 21561, Egypt
| | - Jean-Olivier Durand
- ICGM, University of Montpellier, CNRS, ENSCM, CC1701, Place Eugène Bataillon, 34095 Montpellier, France; (K.B.); (J.-O.D.); (S.R.)
| | - Sébastien Richeter
- ICGM, University of Montpellier, CNRS, ENSCM, CC1701, Place Eugène Bataillon, 34095 Montpellier, France; (K.B.); (J.-O.D.); (S.R.)
| | - Céline Frochot
- Laboratoire Réactions et Génie des Procédés (LRGP), UMR 7274, Université de Lorraine, CNRS, 54000 Nancy, France; (B.M.); (P.A.); (C.F.)
| | - Magali Gary-Bobo
- IBMM, University of Montpellier, CNRS, ENSCM, 34093 Montpellier, France; (L.L.); (C.N.); (D.D.); (L.M.A.A.)
| | - Mathieu Surin
- Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons—UMONS, 20 Place du Parc, 7000 Mons, Belgium; (C.K.); (M.S.)
| | - Sébastien Clément
- ICGM, University of Montpellier, CNRS, ENSCM, CC1701, Place Eugène Bataillon, 34095 Montpellier, France; (K.B.); (J.-O.D.); (S.R.)
| |
Collapse
|
190
|
Chowdhury N, Chaudhry S, Hall N, Olverson G, Zhang QJ, Mandal T, Dash S, Kundu A. Targeted Delivery of Doxorubicin Liposomes for Her-2+ Breast Cancer Treatment. AAPS PharmSciTech 2020; 21:202. [PMID: 32696338 PMCID: PMC7995642 DOI: 10.1208/s12249-020-01743-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 06/25/2020] [Indexed: 01/06/2023] Open
Abstract
The adverse side effects and toxicity caused by the non-targeted delivery of doxorubicin has emphasized the demand of emerging a targeted delivery system. The goal of this study is to enhance the delivery of doxorubicin by formulating an aptamer-labeled liposomal nanoparticle delivery system that will carry and deliver doxorubicin specifically into Her-2+ breast cancer cells. Twelve liposomal batches were prepared using different saturated (HSPC and DPPC) and unsaturated (POPC and DOPC) lipids by thin film hydration. The liposomes were characterized for their particle size, zeta potential, and drug encapsulation efficiency. The particles were also assessed for in vitro toxicity and DOX delivery into the breast cancer cells. The formulations, F1 through F12, had a small particle size of less than 200 nm and a high entrapment efficiency of about 88 ± 5%. The best formulation, F5, had a particle size of 101 ± 14nm, zeta potential of + 5.63 ± 0.46 mV, and entrapment efficiency of ≈ 93%. The cytotoxicity studies show that the DOX-loaded liposomal formulations are more effective in killing cancer cells than the free DOX in both MCF-7 and SKBR-3 cells. The uptake studies show a significant increase in the uptake of the aptamer-labeled liposomes (i.e., F5) by more than 60% into Her-2+ MCF-7 and SKBR-3 breast cancer cells compare to non-aptamer-labeled nanoparticles. F5 also shows ≈ 1.79-fold increase in uptake of DOX in the Her-2+ cells compared to the Her-2- cells. This preliminary study indicates that aptamer-labeled F5 nanoparticles among several batches showed the highest uptake as well as the targeted delivery of doxorubicin into Her-2+ breast cancer cells. Thus, aptamer targeted approach results in substantial reduction in the dose of DOX and improves the therapeutic benefits by promoting the target specificity.
Collapse
Affiliation(s)
- Nusrat Chowdhury
- Department of Biology, Xavier University of Louisiana, 1 Drexel Dr, New Orleans, Louisiana, 70125-1098, USA
| | - Shanzay Chaudhry
- Department of Biology, Xavier University of Louisiana, 1 Drexel Dr, New Orleans, Louisiana, 70125-1098, USA
| | - Nicholas Hall
- Department of Biology, Xavier University of Louisiana, 1 Drexel Dr, New Orleans, Louisiana, 70125-1098, USA
| | - George Olverson
- Department of Biology, Xavier University of Louisiana, 1 Drexel Dr, New Orleans, Louisiana, 70125-1098, USA
| | - Qian-Jin Zhang
- Department of Biology, Xavier University of Louisiana, 1 Drexel Dr, New Orleans, Louisiana, 70125-1098, USA
| | - Tarun Mandal
- Center for Nanomedicine and Drug Delivery, Xavier University College of Pharmacy, New Orleans, Louisiana, 70125, USA
| | - Srikanta Dash
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana, 70112, USA
| | - Anup Kundu
- Department of Biology, Xavier University of Louisiana, 1 Drexel Dr, New Orleans, Louisiana, 70125-1098, USA.
| |
Collapse
|
191
|
Jaafar ND, Al-Saffar AZ, Yousif EA. Genotoxic and Cytotoxic Activities of Lantadene A-Loaded Gold Nanoparticles (LA-AuNPS) in MCF-7 Cell Line: An in vitro Assessment. Int J Toxicol 2020; 39:422-432. [DOI: 10.1177/1091581820938329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Gold nanoparticles (AuNPs) have been widely used in many applications. Their usage as drug delivery vehicles has also gained considerable attention due to their chemical and optical properties as well as their good biocompatibility. The present study was conducted to evaluate the efficiency of AuNPs in enhancing the cytotoxic and apoptotic induction activity of lantadene A (LA), separated from Lantana camara leaves, on the breast tumor cell line MCF-7 in vitro. By utilizing plant-mediated synthesis method of nanostructures, LA-loaded AuNPs (LA-AuNPs) were prepared and their formation was confirmed by means of ultraviolet–visible spectroscope, atomic force microscope, scanning electron microscope, and zeta potential. The cytotoxic effect of LA-AuNPs was analyzed using a methylthiazol tetrazolium assay and compared to free AuNPs and LA. The results indicated a significant increase in the reduction of MCF-7 cells viability after incubation with LA-AuNPs. As determined by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, LA-AuNPs induced a greater ratio of DNA-fragmented cells compared to LA-treated and untreated cells. Also, by operating real-time polymerase chain reaction, LA-AuNPs-treated cells displayed an increased upregulation of p53 expression and downregulation of BCL-2 expression in addition to a significant reduction in the level of BCL-2-BAX ratio. No significant effect was shown on the expression of BAX. Collectively, our results indicate that LA-AuNPs showed promising cytotoxicity to MCF-7 cells as a novel nanoscale preparation, likely via induction of apoptotic genes and stimulation of DNA fragmentation.
Collapse
Affiliation(s)
| | - Ali Z. Al-Saffar
- Department of Molecular and Medical Biotechnology, College of Biotechnology, Al-Nahrain University, Baghdad, Iraq
| | - Emad A. Yousif
- Department of Chemistry, College of Science, Al-Nahrain University, Baghdad, Iraq
| |
Collapse
|
192
|
Demir Y, Türkeş C, Beydemir Ş. Molecular Docking Studies and Inhibition Properties of Some Antineoplastic Agents against Paraoxonase-I. Anticancer Agents Med Chem 2020; 20:887-896. [DOI: 10.2174/1871520620666200218110645] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 12/15/2019] [Accepted: 01/27/2020] [Indexed: 01/28/2023]
Abstract
Background:
Currently, most of the drugs used in clinical applications show their pharmacological
influences by inhibiting or activating enzymes. Therefore, enzyme inhibitors have an essential place in the drug
design for many diseases.
Objective:
The current study aimed to contribute to this growing drug design field (i.e., medicine discovery and
development) by analyzing enzyme-drug interactions.
Methods:
For this reason, Paraoxonase-I (PON1) enzyme was purified from fresh human serum by using rapid
chromatographic techniques. Additionally, the inhibition effects of some antineoplastic agents were researched
on the PON1.
Results:
The enzyme was obtained with a specific activity of 2603.57 EU/mg protein. IC50 values for pemetrexed
disodium, irinotecan hydrochloride, dacarbazine, and azacitidine were determined to be 9.63μM,
30.13μM, 53.31μM, and 21.00mM, respectively. These agents found to strongly inhibit PON1, with Ki constants
ranging from 8.29±1.47μM to 23.34±2.71mM. Dacarbazine and azacitidine showed non-competitive inhibition,
while other drugs showed competitive inhibition. Furthermore, molecular docking was performed using maestro
for these agents. Among these, irinotecan hydrochloride and pemetrexed disodium possess the binding energy of
-5.46 and -8.43 kcal/mol, respectively.
Conclusion:
The interaction studies indicated that these agents with the PON1 possess binding affinity.
Collapse
Affiliation(s)
- Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Gole Vocational High School, Ardahan University, 75700, Ardahan, Turkey
| | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yildirim University, 24100, Erzincan, Turkey
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, 26470, Eskisehir, Turkey
| |
Collapse
|
193
|
Aramini B, Masciale V, Haider KH. Defining lung cancer stem cells exosomal payload of miRNAs in clinical perspective. World J Stem Cells 2020; 12:406-421. [PMID: 32742559 PMCID: PMC7360993 DOI: 10.4252/wjsc.v12.i6.406] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/29/2020] [Accepted: 05/27/2020] [Indexed: 02/06/2023] Open
Abstract
Since the first publication regarding the existence of stem cells in cancer [cancer stem cells (CSCs)] in 1994, many studies have been published providing in-depth information about their biology and function. This research has paved the way in terms of appreciating the role of CSCs in tumour aggressiveness, progression, recurrence and resistance to cancer therapy. Targeting CSCs for cancer therapy has still not progressed to a sufficient degree, particularly in terms of exploring the mechanism of dynamic interconversion between CSCs and non-CSCs. Besides the CSC scenario, the problem of cancer dissemination has been analyzed in-depth with the identification and isolation of microRNAs (miRs), which are now considered to be compelling molecular markers in the diagnosis and prognosis of tumours in general and specifically in patients with non-small cell lung cancer. Paracrine release of miRs via “exosomes” (small membrane vesicles (30-100 nm), the derivation of which lies in the luminal membranes of multi-vesicular bodies) released by fusion with the cell membrane is gaining popularity. Whether exosomes play a significant role in maintaining a dynamic equilibrium state between CSCs and non-CSCs and their mechanism of activity is as yet unknown. Future studies on CSC-related exosomes will provide new perspectives for precision-targeted treatment strategies.
Collapse
Affiliation(s)
- Beatrice Aramini
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena 41124, Italy
| | - Valentina Masciale
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena 41124, Italy
| | | |
Collapse
|
194
|
Raja IS, Kang MS, Kim KS, Jung YJ, Han DW. Two-Dimensional Theranostic Nanomaterials in Cancer Treatment: State of the Art and Perspectives. Cancers (Basel) 2020; 12:E1657. [PMID: 32580528 PMCID: PMC7352353 DOI: 10.3390/cancers12061657] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/11/2020] [Accepted: 06/17/2020] [Indexed: 12/12/2022] Open
Abstract
As the combination of therapies enhances the performance of biocompatible materials in cancer treatment, theranostic therapies are attracting increasing attention rather than individual approaches. In this review, we describe a variety of two-dimensional (2D) theranostic nanomaterials and their efficacy in ablating tumors. Though many literature reports are available to demonstrate the potential application of 2D nanomaterials, we have reviewed here cancer-treating therapies based on such multifunctional nanomaterials abstracting the content from literature works which explain both the in vitro and in vivo level of applications. In addition, we have included a discussion about the future direction of 2D nanomaterials in the field of theranostic cancer treatment.
Collapse
Affiliation(s)
| | - Moon Sung Kang
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, Korea;
| | - Ki Su Kim
- Department of Organic Materials Science and Engineering, College of Engineering, Pusan National University, Busan 46241, Korea
| | - Yu Jin Jung
- Research Centre for Advanced Specialty Chemicals, Division of Specialty and Bio-based Chemicals Technology, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44412, Korea
| | - Dong-Wook Han
- BIO-IT Foundry Technology Institute, Pusan National University, Busan 46241, Korea;
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, Korea;
| |
Collapse
|
195
|
In Vitro Cytotoxicity Study of Cyclophosphamide, Etoposide and Paclitaxel on Monocyte Macrophage Cell Line Raw 264.7. Indian J Microbiol 2020; 60:511-517. [PMID: 33088001 DOI: 10.1007/s12088-020-00896-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/11/2020] [Indexed: 12/24/2022] Open
Abstract
The presence of antineoplastic compounds in aquatic ecosystem is an emerging challenge for the society. Antineoplastic compounds released into the aquatic environment exhibit a potential threat to normal aquatic life. Particularly, antineoplastic compounds are responsible for direct or indirect interference with the cellular DNA of an organism and cause toxicity to cells. The present study focused on the assessment of in vitro toxic effect of cyclophosphamide, etoposide and paclitaxel on Raw 264.7 cell line (mouse monocyte macrophage cells). The inhibitory concentration of cyclophosphamide, etoposide, and paclitaxel was determined. The IC50 values of these compounds were 145.44, 5.40, and 69.76 µg ml-1 respectively. This is the first report on toxicity analysis of cyclophosphamide, paclitaxel and etoposide on Raw 264.7 cell line by reducing cell viability and indicating the cell cytotoxicity i.e., 69.58% for cyclophosphamide, 92.01% for etoposide and 88.85% for paclitaxel on concentration 250 µg ml-1. The results of their cytotoxicity assessment highlight the need of improvement in sewage treatment technology for the efficient removal of these compounds from aquatic environment.
Collapse
|
196
|
García-Fernández C, Fornaguera C, Borrós S. Nanomedicine in Non-Small Cell Lung Cancer: From Conventional Treatments to Immunotherapy. Cancers (Basel) 2020; 12:E1609. [PMID: 32570729 PMCID: PMC7352459 DOI: 10.3390/cancers12061609] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/15/2020] [Accepted: 06/15/2020] [Indexed: 02/06/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) remains the most common cause of cancer-related mortality. The heterogeneous nature of this disease hinders its diagnosis and treatment, requiring continuous advances in research aiming to understand its intricate nature. Consequently, the retrospective analysis of conventional therapies has allowed the introduction of novel tools provided by nanotechnology, leading to considerable improvements in clinical outcomes. Furthermore, the development of novel immunotherapies based on the recently understood interaction of the immune system with the tumor highlights the real possibility of definitively treating NSCLC from its early stages. Novel engineering approaches in nanomedicine will enable to overcome the intrinsic limits of conventional and emerging therapies regarding off-site cytotoxicity, specificity, resistance mechanisms, and administration issues. The convergence point of these therapies with nanotechnology lays the foundation for achieving currently unmet needs.
Collapse
Affiliation(s)
- Coral García-Fernández
- Grup d'Enginyeria de Materials (GEMAT), Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL), 08022 Barcelona, Spain
| | - Cristina Fornaguera
- Grup d'Enginyeria de Materials (GEMAT), Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL), 08022 Barcelona, Spain
| | - Salvador Borrós
- Grup d'Enginyeria de Materials (GEMAT), Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL), 08022 Barcelona, Spain
| |
Collapse
|
197
|
Baek JH, Yun HS, Kim JY, Lee J, Lee YJ, Lee CW, Song JY, Ahn J, Park JK, Kim JS, Lee KH, Kim EH, Hwang SG. Kinesin light chain 4 as a new target for lung cancer chemoresistance via targeted inhibition of checkpoint kinases in the DNA repair network. Cell Death Dis 2020; 11:398. [PMID: 32457423 PMCID: PMC7250887 DOI: 10.1038/s41419-020-2592-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 02/07/2023]
Abstract
The poor therapeutic efficacy of non-small cell lung cancer (NSCLC) is partly attributed to the acquisition of chemoresistance. To investigate the mechanism underlying this resistance, we examined the potential link between kinesin light chain 4 (KLC4), which we have previously reported to be associated with radioresistance in NSCLC, and sensitivity to chemotherapy in human lung cancer cell lines. KLC4 protein levels in lung cancer cells correlated with the degree of chemoresistance to cisplatin treatment. Furthermore, KLC4 silencing enhanced the cytotoxic effect of cisplatin by promoting DNA double-strand breaks and apoptosis. These effects were mediated by interaction with the checkpoint kinase CHK2, as KLC4 knockdown increased CHK2 activation, which was further enhanced in combination with cisplatin treatment. In addition, KLC4 and CHEK2 expression levels showed negative correlation in lung tumor samples from patients, and KLC4 overexpression correlated negatively with survival. Our results indicate a novel link between the KLC4 and CHK2 pathways regulating DNA damage response in chemoresistance, and highlight KLC4 as a candidate for developing lung cancer-specific drugs and customized targeted molecular therapy.
Collapse
Affiliation(s)
- Jeong-Hwa Baek
- Radiation Biology Research Team, Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan, 46033, Republic of Korea
| | - Hong Shik Yun
- Radiation Oncology Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Ju-Young Kim
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, 01812, Korea.,Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 440-746, Korea
| | - Janet Lee
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, 01812, Korea
| | - Yeon-Joo Lee
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, 01812, Korea
| | - Chang-Woo Lee
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 440-746, Korea
| | - Jie-Young Song
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, 01812, Korea
| | - Jiyeon Ahn
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, 01812, Korea
| | - Jong Kuk Park
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, 01812, Korea
| | - Jae-Sung Kim
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, 01812, Korea
| | - Kee-Ho Lee
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, 01812, Korea
| | - Eun Ho Kim
- Department of Biochemistry, School of Medicine, Daegu Catholic University, 33, 17-gil, Duryugongwon-ro, Nam-gu, Daegu, Korea.
| | - Sang-Gu Hwang
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, 01812, Korea.
| |
Collapse
|
198
|
Concato VM, Tomiotto-Pellissier F, Silva TF, Gonçalves MD, Bortoleti BTDS, Detoni MB, Siqueira EDS, Rodrigues ACJ, Schirmann JG, Barbosa-Dekker ADM, Costa IN, Conchon-Costa I, Miranda-Sapla MM, Mantovani MS, Pavanelli WR. 3,3',5,5'-tetramethoxybiphenyl-4,4'diol induces cell cycle arrest in G2/M phase and apoptosis in human non-small cell lung cancer A549 cells. Chem Biol Interact 2020; 326:109133. [PMID: 32461103 DOI: 10.1016/j.cbi.2020.109133] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/29/2020] [Accepted: 05/08/2020] [Indexed: 12/28/2022]
Abstract
Lung cancer is one of the leading causes of cancer-related death worldwide. It has aggressive manifestation, high ability to promote metastasis and late diagnosis. In the present study, we investigated the cytotoxic effect of 3,3',5,5'-tetramethoxybiphenyl-4,4'diol (TMBP), against the A549 human non-small cell lung carcinoma lineage. The A549 cell line was treated for 72h with TMBP (12.5-200 μM) with and subsequently defined the 50% inhibitory concentration (148 μM ± 0.05), from which tests were performed to determine the viability, volume, and regulation of the cell cycle. Finally, we investigated the death mechanisms involved in the action of the treatments by flow cytometry and fluorimetry. The TMBP-treatment of primary cells, peritoneal macrophages, and sheep erythrocytes did not reduce the viability of these cells. On the other hand, TMBP was able to reduce the viability of the investigated cell line, by cytotoxic action and to promote the reduction of cell size. Subsequently, we found that TMBP treatment was able to increase the production of reactive oxygen species, cause mitochondrial depolarization, induce cell cycle arrest in G2/M phase and lead to death by direct apoptosis. Thus, this study revealed that TMBP could be a promising candidate for the development of antitumor drugs targeting lung cancer.
Collapse
Affiliation(s)
- Virginia Marcia Concato
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, State University of Londrina, PR, Brazil.
| | - Fernanda Tomiotto-Pellissier
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, State University of Londrina, PR, Brazil; Graduate Program in Biosciences and Biotechnology, Carlos Chagas Institute (ICC), Fiocruz, Curitiba, PR, Brazil
| | - Taylon Felipe Silva
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, State University of Londrina, PR, Brazil
| | | | - Bruna Taciane da Silva Bortoleti
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, State University of Londrina, PR, Brazil; Graduate Program in Biosciences and Biotechnology, Carlos Chagas Institute (ICC), Fiocruz, Curitiba, PR, Brazil
| | - Mariana Barbosa Detoni
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, State University of Londrina, PR, Brazil
| | - Elaine da Silva Siqueira
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, State University of Londrina, PR, Brazil
| | | | | | | | - Idessania Nazareth Costa
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, State University of Londrina, PR, Brazil
| | - Ivete Conchon-Costa
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, State University of Londrina, PR, Brazil
| | | | | | - Wander Rogério Pavanelli
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, State University of Londrina, PR, Brazil
| |
Collapse
|
199
|
Ruvinov I, Nguyen C, Scaria B, Vegh C, Zaitoon O, Baskaran K, Mehaidli A, Nunes M, Pandey S. Lemongrass Extract Possesses Potent Anticancer Activity Against Human Colon Cancers, Inhibits Tumorigenesis, Enhances Efficacy of FOLFOX, and Reduces Its Adverse Effects. Integr Cancer Ther 2020; 18:1534735419889150. [PMID: 31845598 PMCID: PMC6918039 DOI: 10.1177/1534735419889150] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Current chemotherapeutics for metastatic colorectal cancers have limited success
and are extremely toxic due to nonselective targeting. Some natural extracts
have been traditionally taken and have shown anticancer activity. These extracts
have multiple phytochemicals that can target different pathways selectively in
cancer cells. We have shown previously that lemongrass (Cymbopogon
citratus) extract is effective at inducing cell death in human
lymphomas. However, the efficacy of lemongrass extract on human colorectal
cancer has not been investigated. Furthermore, its interactions with current
chemotherapies for colon cancer is unknown. In this article, we report the
anticancer effects of ethanolic lemongrass extract in colorectal cancer models,
and importantly, its interactions with FOLFOX and Taxol. Lemongrass extract
induced apoptosis in colon cancer cells in a time and dose-dependent manner
without harming healthy cells in vitro. Oral administration of lemongrass
extract was well tolerated and effective at inhibiting colon cancer xenograft
growth in mice. It enhanced the anticancer efficacy of FOLFOX and,
interestingly, inhibited FOLFOX-related weight loss in animals given the
combination treatment. Furthermore, feeding lemongrass extract to
APCmin/+ transgenic mice led to the reduction of intestinal
tumors, indicating its preventative potential. Therefore, this natural extract
has potential to be developed as a supplemental treatment for colorectal
cancer.
Collapse
Affiliation(s)
| | | | | | - Caleb Vegh
- University of Windsor, Windsor, Ontario, Canada
| | - Ola Zaitoon
- University of Windsor, Windsor, Ontario, Canada
| | | | | | | | | |
Collapse
|
200
|
Chinnappan M, Srivastava A, Amreddy N, Razaq M, Pareek V, Ahmed R, Mehta M, Peterson JE, Munshi A, Ramesh R. Exosomes as drug delivery vehicle and contributor of resistance to anticancer drugs. Cancer Lett 2020; 486:18-28. [PMID: 32439419 DOI: 10.1016/j.canlet.2020.05.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/21/2020] [Accepted: 05/04/2020] [Indexed: 12/20/2022]
Abstract
Exosomes are small membranous vesicles implicated in intercellular signalling. Through their uncanny ability to carry and deliver donor cellular cargo (biomolecules) to target cells, they exert a profound effect on the regular functioning of healthy cells and play a significant role in pathogenesis and progression of several diseases, including cancer. The composition and number of endogenously circulating exosomes frequently vary, which is often reflective of the pathophysiological status of the cell. Applicability of exosomes derived from normal cells as a drug carrier with or without modifying their intraluminal and surface components are generally tested. Conversely, exosomes also are reported to contribute to resistance towards several anti-cancer therapies. Therefore, it is necessary to carefully evaluate the role of exosomes in cancer progression, resistance and the potential use of exosomes as a delivery vehicle of cancer therapeutics. In this review, we summarize the recent advancements in the exploitation of exosomes as a drug delivery vehicle. We also discuss the role of exosomes in conferring resistance to anti-cancer therapeutics. While this review is focused on cancer, the exosome-based drug delivery and resistance is also applicable to other human diseases.
Collapse
Affiliation(s)
- Mahendran Chinnappan
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Akhil Srivastava
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Narsireddy Amreddy
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Mohammad Razaq
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Vipul Pareek
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Rebaz Ahmed
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Graduate Program in Biomedical Sciences, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Meghna Mehta
- Department of Radiation Oncology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Jo Elle Peterson
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Anupama Munshi
- Department of Radiation Oncology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Rajagopal Ramesh
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Graduate Program in Biomedical Sciences, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| |
Collapse
|