151
|
Ungureanu L, Vasilovici AF, Halmágyi SR, Trufin II, Apostu AP, Şenilă SC. The many faces of autoimmune-mediated melanocyte destruction in melanoma. Front Immunol 2024; 15:1417273. [PMID: 39421737 PMCID: PMC11484273 DOI: 10.3389/fimmu.2024.1417273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
Melanoma is the most severe form of skin cancer with an incidence that is increasing all over the world. Melanoma cells derive from normal melanocytes and share different melanocyte-specific antigens, the same antigens against which an immune reaction develops in vitiligo, a skin disease characterized by autoimmune-mediated melanocyte destruction. The purpose of this review is to present the autoimmune-mediated melanocyte destruction associated with melanoma development, progression and treatment. Patients with vitiligo seem to have a lower chance of developing melanoma. On the other hand, patients with melanoma can develop depigmented lesions even at distant sites from the primary tumor, defined as melanoma-associated leukoderma (MAL). Drug-associated leukoderma (DAL) was also described in melanoma patients treated with immunotherapy or targeted therapy and it seems to be a favorable prognostic factor. Clinically, MAL and DAL can be diagnosed as vitiligo and there are few differences between these three entities. In this review, the incidence of DAL in melanoma patients treated with different therapies was researched in the literature and patient outcome was recorded, with studies showing a prolonged disease-free survival in melanoma patients with DAL, treated with immune checkpoint inhibitors. Further studies are however needed to understand the dynamics of autoimmune-mediated melanocyte destruction.
Collapse
Affiliation(s)
- Loredana Ungureanu
- Department of Dermatology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Dermatology, Emergency County Hospital, Cluj-Napoca, Romania
| | - Alina Florentina Vasilovici
- Department of Dermatology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Dermatology, Emergency County Hospital, Cluj-Napoca, Romania
| | - Salomea-Ruth Halmágyi
- Department of Dermatology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Dermatology, Clinical Hospital of Infectious Diseases, Cluj-Napoca, Romania
| | - Ioana Irina Trufin
- Department of Dermatology, Clinical Hospital of Infectious Diseases, Cluj-Napoca, Romania
| | - Adina Patricia Apostu
- Department of Dermatology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Dermatology, Clinical Hospital of Infectious Diseases, Cluj-Napoca, Romania
| | - Simona Corina Şenilă
- Department of Dermatology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Dermatology, Emergency County Hospital, Cluj-Napoca, Romania
| |
Collapse
|
152
|
Ochenduszko S, Puskulluoglu M, Pacholczak-Madej R, Ruiz-Millo O. Adjuvant anti-PD1 immunotherapy of resected skin melanoma: an example of non-personalized medicine with no overall survival benefit. Crit Rev Oncol Hematol 2024; 202:104443. [PMID: 39025250 DOI: 10.1016/j.critrevonc.2024.104443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/02/2024] [Accepted: 07/06/2024] [Indexed: 07/20/2024] Open
Abstract
Randomized clinical trials demonstrated a recurrence-free survival benefit with adjuvant anti-programmed death-1 (anti-PD1) inhibitors of resected stage IIB-IV melanoma. However, no improvement in overall survival has been observed thus far. Furthermore, there are no predictive markers for immunotherapy response in melanoma, therefore adjuvant treatment is offered to all comers based exclusively on the pathological and clinical stages. Additionally, one year of treatment duration and the risk of chronic immune-related adverse effects may negatively impact patients´ quality of life. In this review, we will try to answer whether the currently available data on adjuvant anti-PD1 therapy of stage IIB-IV resected melanoma is sufficient to make this strategy available to all patients. We will also discuss the economic impact of this therapy on healthcare system budgets. Recent studies suggest that the high cost of cancer drugs may affect access to these agents globally by raising questions of sustainability for patients and society.
Collapse
Affiliation(s)
| | - Miroslawa Puskulluoglu
- Department of Clinical Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Krakow Branch, Krakow, Poland
| | - Renata Pacholczak-Madej
- Department of Gynaecological Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Krakow Branch, Krakow, Poland; Department of Anatomy, Jagiellonian University, Medical College, Krakow, Poland
| | - Oreto Ruiz-Millo
- Department of Pharmacy, Dr. Peset University Hospital, Valencia, Spain
| |
Collapse
|
153
|
Hamid MA, Pammer LM, Lentner TK, Doleschal B, Gruber R, Kocher F, Gasser E, Jöbstl A, Seeber A, Amann A. Immunotherapy for Microsatellite-Stable Metastatic Colorectal Cancer: Can we close the Gap between Potential and Practice? Curr Oncol Rep 2024; 26:1258-1270. [PMID: 39080202 PMCID: PMC11480176 DOI: 10.1007/s11912-024-01583-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2024] [Indexed: 10/17/2024]
Abstract
PURPOSE OF REVIEW This review will explore various strategies to rendering MSS mCRCs susceptible to ICI. Moreover, we will provide an overview of potential biomarkers that may aid to better patient selection, and discuss ongoing efforts in this area of research. RECENT FINDINGS Colorectal cancer (CRC) ranks among the top three most common cancers worldwide. While significant advances in treatment strategies have improved the prognosis for patients in the early stages of the disease, treatment options for metastatic CRC (mCRC) remain limited. Although immune checkpoint inhibitors (ICI) have revolutionized the treatment of several malignancies, its efficacy in mCRC is largely confined to patients exhibiting a high microsatellite instability status (MSI-H). However, the vast majority of mCRC patients do not exhibit a MSI-H, but are microsatellite stable (MSS). In these patients ICIs are largely ineffective. So far, ICIs do not play a crucial role in patients with MSS mCRC, despite the promising data for inducing long-term remissions in other tumour entities. For this reason, novel treatment strategies are needed to overcome the primary resistance upon ICI in patients with MSS.
Collapse
Affiliation(s)
- Marwa Abdel Hamid
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Lorenz M Pammer
- Department of Gastroenterology and Hepatology, Medical University of Innsbruck, Innsbruck, Austria
| | - Theresa K Lentner
- Clinical Department for Internal Medicine, University Hospital St. Poelten, Karl Landsteiner University of Health Sciences, St. Poelten, Austria
| | - Bernhard Doleschal
- Department of Internal Medicine I for Hematology With Stem Cell Transplantation, Hemostaseology and Medical Oncology, Ordensklinikum Linz, Linz, Austria
- Medical Faculty, Johannes Kepler University Linz, Linz, Austria
| | - Rebecca Gruber
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Florian Kocher
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Elisabeth Gasser
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Anna Jöbstl
- Department of Radiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Andreas Seeber
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Arno Amann
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria.
| |
Collapse
|
154
|
Boutros C, Herrscher H, Robert C. Progress in Immune Checkpoint Inhibitor for Melanoma Therapy. Hematol Oncol Clin North Am 2024; 38:997-1010. [PMID: 39048408 DOI: 10.1016/j.hoc.2024.05.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Melanoma has seen the most remarkable therapeutic improvements among all cancers in the past decade, primarily due to the development of immune checkpoint inhibitors (ICI). Initially developed in the patients with advanced disease, ICI are now used in adjuvant and neoadjuvant settings. More recently, the development of LAG-3 blocking antibody and the combination of ICI with a personalized RNA-based vaccine have continued to lead the immunotherapeutic field. Despite these advances, primary and secondary resistances remain problematic and there is a high need for predictive biomarkers to optimize benefit/risk ratio of ICI use.
Collapse
Affiliation(s)
- Celine Boutros
- Department of Medicine, Gustave Roussy Cancer Campus, 114 Rue Edouard Vaillant, 94805 Villejuif, France
| | - Hugo Herrscher
- Oncology Unit, Clinique Sainte-Anne, Groupe Hospitalier Saint Vincent, rue Philippe Thys, 67000 Strasbourg, France
| | - Caroline Robert
- Department of Medicine, Gustave Roussy Cancer Campus, 114 Rue Edouard Vaillant, 94805 Villejuif, France; Faculty of Medicine, University Paris-Saclay, 63 Rue Gabriel Péri, 94270 Kremlin-Bicêtre, France; INSERM Unit U981, 114 Rue Edouard Vaillant, 94805 Villejuif, France.
| |
Collapse
|
155
|
Geng Z, Tang C, Chen J, Luo R, Yu Q, Yuan H. Metastatic melanoma of the gallbladder: A case report and systematic review. JOURNAL OF CLINICAL ULTRASOUND : JCU 2024; 52:1113-1120. [PMID: 39011759 DOI: 10.1002/jcu.23755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 07/17/2024]
Abstract
We report a case of metastatic melanoma of the gallbladder diagnosed by contrast-enhanced ultrasound and systematically review the characteristics of transabdominal ultrasound, clinical manifestations, and treatment methods of gallbladder metastatic melanoma in order to provide reference ideas for the diagnosis and treatment of metastatic melanoma of gallbladder.
Collapse
Affiliation(s)
- Zhidan Geng
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Congyu Tang
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jianfei Chen
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Rongkui Luo
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qing Yu
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Haixia Yuan
- Department of Ultrasound, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
156
|
Horai Y, Suda N, Uchihashi S, Katakuse M, Shigeno T, Hirano T, Takahara J, Fujita T, Mukoyama Y, Haga Y. A novel 7-phenoxy-benzimidazole derivative as a potent and orally available BRD4 inhibitor for the treatment of melanoma. Bioorg Med Chem 2024; 112:117882. [PMID: 39167978 DOI: 10.1016/j.bmc.2024.117882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024]
Abstract
The bromodomain-containing protein 4 (BRD4), which is a key epigenetic regulator in cancer, has emerged as an attractive target for the treatment of melanoma. In this study, we investigate 7-phenoxy-benzimidazole derivative 12, which is a novel BRD4 inhibitor for the treatment of melanoma, by performing scaffold hopping on the previously reported benzimidazole derivative 1. Despite their good oral and intravenous exposure, the compounds obtained by modifying derivate 1 exhibit mutagenicity, which was confirmed by the positive Ames test results. Based on our hypothesis that the cause of the Ames test positivity is the metabolic intermediates generated from those chemical series, we implemented a scaffold hopping strategy to avoid the N-benzyl moiety by relocating the substituent groups to preserve the essential interaction. Based on this strategy, we successfully obtained compound 12; the Ames test results of this compound were negative. Notably, compound 12 not only exhibited a favorable pharmacokinetic (PK) profile but also significant tumor growth inhibition in a mouse melanoma xenograft model, indicating its potential as a therapeutic agent for the treatment of melanoma.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yuji Haga
- Maruho Co., Ltd., Kyoto 600-8815, Japan
| |
Collapse
|
157
|
Cui C, Ott PA, Wu CJ. Advances in Vaccines for Melanoma. Hematol Oncol Clin North Am 2024; 38:1045-1060. [PMID: 39079791 PMCID: PMC11524149 DOI: 10.1016/j.hoc.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/03/2024]
Abstract
Personalized neoantigen vaccines have achieved major advancements in recent years, with studies in melanoma leading progress in the field. Early clinical trials have demonstrated their feasibility, safety, immunogenicity, and potential efficacy. Advances in sequencing technologies and neoantigen prediction algorithms have substantively improved the identification and prioritization of neoantigens. Innovative delivery platforms now support the rapid and flexible production of vaccines. Several ongoing efforts in the field are aimed at improving the integration of large datasets, refining the training of prediction models, and ensuring the functional validation of vaccine immunogenicity.
Collapse
Affiliation(s)
- Can Cui
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Patrick A Ott
- Harvard Medical School, Boston, MA, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Catherine J Wu
- Harvard Medical School, Boston, MA, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
158
|
Aydin ÖF. Pembrolizumab-Induced Addison's Disease Leading to Severe Hyponatremia in a Breast Cancer Survivor: A Case Report With Implications for Emergency Department Practice. Cureus 2024; 16:e71759. [PMID: 39552964 PMCID: PMC11569407 DOI: 10.7759/cureus.71759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2024] [Indexed: 11/19/2024] Open
Abstract
Pembrolizumab, a PD-1 inhibitor, has become a cornerstone in the treatment of various cancers, including breast cancer. However, its use is associated with immune-related adverse effects (irAEs), particularly those involving the endocrine system. This case report presents a rare instance of pembrolizumab-induced Addison's disease leading to severe hyponatremia. The case is supported by detailed laboratory findings and evaluated using the Naranjo adverse drug reaction probability scale. A 53-year-old female with a history of breast cancer presented with dizziness and fatigue while on a cruise. Initial laboratory tests revealed severe hyponatremia (serum sodium 117 mEq/L). Further evaluation revealed low cortisol (1.7 µg/dL) and elevated adrenocorticotropic hormone (ACTH) (452 pg/mL), indicative of adrenal insufficiency. Although thyroid function was normal, low IGF-1 levels suggested secondary adrenal insufficiency. The administration of hydrocortisone resulted in rapid symptom improvement, and the patient was discharged with a prescription for ongoing corticosteroid therapy. The Naranjo scale score of 4 indicated a possible relationship between pembrolizumab and the development of Addison's disease. This case underscores the critical need for awareness of irAEs in patients undergoing treatment with immune checkpoint inhibitors. The application of the Naranjo scale provided a quantitative assessment of the likelihood that pembrolizumab induced adrenal insufficiency. Emergency department protocols should incorporate endocrine evaluations for patients presenting with non-specific symptoms while undergoing immunotherapy. Pembrolizumab can lead to severe endocrine disorders, such as Addison's disease, which can result in life-threatening conditions like severe hyponatremia. Emergency clinicians must remain vigilant in recognizing and treating these adverse effects to optimize patient outcomes.
Collapse
Affiliation(s)
- Ömerul F Aydin
- Medicine, Istanbul Yeni Yuzyil University, Istanbul, TUR
| |
Collapse
|
159
|
Bai L, Sun P, Huang S, Shi D, Cheng K, Cai Z, Dong Y, Tang G. Comparative study of [ 18F]AlF-PAI-PDL1p and [ 68Ga]Ga-PAI-PDL1p as novel PD-L1 targeting PET probes for tumor imaging. Bioorg Chem 2024; 151:107660. [PMID: 39079391 DOI: 10.1016/j.bioorg.2024.107660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/06/2024] [Accepted: 07/15/2024] [Indexed: 08/30/2024]
Abstract
PD-L1 is expressed in many tumors but rarely in normal tissues, therefore, it can be a target of PET imaging. In this work, we developed new peptide-based PET probes [18F]AlF-PAI-PDL1p and [68Ga]Ga-PAI-PDL1p with yields of 20-25 % and 40-55 %, respectively. [18F]AlF-PAI-PDL1p and [68Ga]Ga-PAI-PDL1p were synthesized within 30 min with high molar activities. [18F]AlF-PAI-PDL1p and [68Ga]Ga-PAI-PDL1p showed good stability in vivo and in vitro. In vitro cell studies showed [18F]AlF-PAI-PDL1p and [68Ga]Ga-PAI-PDL1p target PD-L1 specifically, with high uptake of 61.52 ± 4.39 and 19.29 ± 2.17 %ID/1 million cells in B16F10 cells at 60 min, respectively. Biodistribution results showed that both [18F]AlF-PAI-PDL1p and [68Ga]Ga-PAI-PDL1p had lower liver accumulation. In vivo PET imaging results showed that [18F]AlF-PAI-PDL1p had a high tumor uptake of 4.23 ± 0.81 %ID/g at 2 h and increased uptake of 6.60 ± 1.01 %ID/g at 12 h. [68Ga]Ga-PAI-PDL1p also showed high tumor uptake of 2.30 ± 0.20 %ID/g at 2 h and slightly increased uptake of 3.80 ± 0.26 %ID/g at 6 h. In conclusion, [18F]AlF-PAI-PDL1p and [68Ga]Ga-PAI-PDL1 seemed to be potential tracers for PET imaging of PD-L1 expression.
Collapse
Affiliation(s)
- Lu Bai
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Penghui Sun
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Shun Huang
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Dazhi Shi
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Kui Cheng
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhikai Cai
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Ye Dong
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Ganghua Tang
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China.
| |
Collapse
|
160
|
Mousa AM, Enk AH, Hassel JC, Reschke R. Immune Checkpoints and Cellular Landscape of the Tumor Microenvironment in Non-Melanoma Skin Cancer (NMSC). Cells 2024; 13:1615. [PMID: 39404378 PMCID: PMC11475876 DOI: 10.3390/cells13191615] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/12/2024] [Accepted: 09/19/2024] [Indexed: 10/19/2024] Open
Abstract
Non-melanoma skin cancer (NMSC) is primarily categorized into basal cell carcinoma (BCC), the most prevalent form of skin cancer, and cutaneous squamous cell carcinoma (cSCC), the second most common type. Both BCC and cSCC represent a significant health burden, particularly in immunocompromised individuals and the elderly. The immune system plays a pivotal role in the development and progression of NMSC, making it a critical focus for therapeutic interventions. This review highlights key immunological targets in BCC and cSCC, with a focus on immune checkpoint molecules such as PD-1/PD-L1 and CTLA-4, which regulate T cell activity and contribute to immune evasion. This review also highlights anti-tumor immune cell subsets within the tumor microenvironment (TME), such as tumor-infiltrating lymphocytes (TILs) and dendritic cells. Additionally, it examines the immunosuppressive elements of the TME, including regulatory T cells (Tregs), myeloid-derived suppressor cells (MDSCs), tumor-associated macrophages (TAMs), and cancer-associated fibroblasts (CAFs), as well as their roles in NMSC progression and resistance to therapy. Emerging strategies targeting these immune elements, such as monoclonal antibodies, are also discussed for their potential to enhance anti-tumor immune responses and improve clinical outcomes. By elucidating the immunological landscape of BCC and cSCC and drawing comparisons to melanoma, this review highlights the transformative potential of immunotherapy in treating these malignancies.
Collapse
Affiliation(s)
- Ahmed M. Mousa
- Department of Dermatology and National Center for Tumor Diseases (NCT), Medical Faculty Heidelberg, Heidelberg University NCT Heidelberg, a Partnership between DKFZ and University Hospital Heidelberg, 69117 Heidelberg, Germany
| | - Alexander H. Enk
- Department of Dermatology and National Center for Tumor Diseases (NCT), Medical Faculty Heidelberg, Heidelberg University NCT Heidelberg, a Partnership between DKFZ and University Hospital Heidelberg, 69117 Heidelberg, Germany
| | - Jessica C. Hassel
- Department of Dermatology and National Center for Tumor Diseases (NCT), Medical Faculty Heidelberg, Heidelberg University NCT Heidelberg, a Partnership between DKFZ and University Hospital Heidelberg, 69117 Heidelberg, Germany
- German Cancer Consortium (DKTK), DKFZ, Core Center Heidelberg, 69120 Heidelberg, Germany
| | - Robin Reschke
- Department of Dermatology and National Center for Tumor Diseases (NCT), Medical Faculty Heidelberg, Heidelberg University NCT Heidelberg, a Partnership between DKFZ and University Hospital Heidelberg, 69117 Heidelberg, Germany
- German Cancer Consortium (DKTK), DKFZ, Core Center Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
161
|
Aleksandrova K, Leise J, Priesner C, Aktas M, Apel M, Assenmacher M, Bürger I, Richter A, Altefrohne P, Schubert C, Holzinger A, Barden M, Bezler V, von Bergwelt-Baildon M, Borchmann P, Goudeva L, Glienke W, Arseniev L, Esser R, Abken H, Koehl U. Automated manufacturing and characterization of clinical grade autologous CD20 CAR T cells for the treatment of patients with stage III/IV melanoma. Front Immunol 2024; 15:1328368. [PMID: 39386211 PMCID: PMC11461191 DOI: 10.3389/fimmu.2024.1328368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 07/02/2024] [Indexed: 10/12/2024] Open
Abstract
Introduction Point-of-care (POC) manufacturing of chimeric antigen receptor (CAR) modified T cell has expanded rapidly over the last decade. In addition to the use of CD19 CAR T cells for hematological diseases, there is a growing interest in targeting a variety of tumor-associated epitopes. Methods Here, we report the manufacturing and characterization of autologous anti-CD20 CAR T cells from melanoma patients within phase I clinical trial (NCT03893019). Using a second-generation lentiviral vector for the production of the CD20 CAR T cells on the CliniMACS Prodigy®. Results We demonstrated consistency in cell composition and functionality of the products manufactured at two different production sites. The T cell purity was >98.5%, a CD4/CD8 ratio between 2.5 and 5.5 and transduction rate between 34% and 61% on day 12 (harvest). Median expansion rate was 53-fold (range, 42-65-fold) with 1.7-3.8×109 CAR T cells at harvest, a sufficient number for the planned dose escalation steps (1×105/kg, 1×106/kg, 1×107/kg BW). Complementary research of some of the products pointed out that the CAR+ cells expressed mainly central memory T-cell phenotype. All tested CAR T cell products were capable to translate into T cell activation upon engagement of CAR target cells, indicated by the increase in pro-inflammatory cytokine release and by the increase in CAR T cell amplification. Notably, there were some interindividual, cell-intrinsic differences at the level of cytokine release and amplification. CAR-mediated T cell activation depended on the level of CAR cognate antigen. Discussion In conclusion, the CliniMACS Prodigy® platform is well suited for decentralized POC manufacturing of anti-CD20 CAR T cells and may be likewise applicable for the rapid and automated manufacturing of CAR T cells directed against other targets. Clinical trial registration https://clinicaltrials.gov/study/NCT03893019?cond=Melanoma&term=NCT03893019&rank=1, identifier NCT03893019.
Collapse
Affiliation(s)
- Krasimira Aleksandrova
- Institute of Cellular Therapeutics (ICT), Hannover Medical School (MHH), Hanover, Germany
| | - Jana Leise
- Institute of Cellular Therapeutics (ICT), Hannover Medical School (MHH), Hanover, Germany
| | - Christoph Priesner
- Institute of Cellular Therapeutics (ICT), Hannover Medical School (MHH), Hanover, Germany
| | - Murat Aktas
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Michael Apel
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | | | - Iris Bürger
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Anne Richter
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | | | | | - Astrid Holzinger
- Division of Genetic Immunotherapy, Leibniz Institute for Immunotherapy (LIT) and University of Regensburg, Regensburg, Germany
| | - Markus Barden
- Division of Genetic Immunotherapy, Leibniz Institute for Immunotherapy (LIT) and University of Regensburg, Regensburg, Germany
| | - Valerie Bezler
- Division of Genetic Immunotherapy, Leibniz Institute for Immunotherapy (LIT) and University of Regensburg, Regensburg, Germany
| | | | - Peter Borchmann
- Internal Medicine, University Hospital Cologne, Cologne, Germany
| | - Lilia Goudeva
- Institute of Transfusion Medicine and Transplant Engineering (ITMTE), Hannover Medical School, Hannover, Germany
| | - Wolfgang Glienke
- Institute of Cellular Therapeutics (ICT), Hannover Medical School (MHH), Hanover, Germany
| | - Lubomir Arseniev
- Institute of Cellular Therapeutics (ICT), Hannover Medical School (MHH), Hanover, Germany
| | - Ruth Esser
- Institute of Cellular Therapeutics (ICT), Hannover Medical School (MHH), Hanover, Germany
| | - Hinrich Abken
- Division of Genetic Immunotherapy, Leibniz Institute for Immunotherapy (LIT) and University of Regensburg, Regensburg, Germany
| | - Ulrike Koehl
- Institute of Cellular Therapeutics (ICT), Hannover Medical School (MHH), Hanover, Germany
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
- Institute of Clinical Immunology, University of Leipzig, Leipzig, Germany
| |
Collapse
|
162
|
Luo Z, Mei J, Wang X, Wang R, He Z, Geffen Y, Sun X, Zhang X, Xu J, Wan R, Feng X, Jiao C, Su X, Sun J, Chen S, Chen J, Mao W, Yang Y, Sun Y. Voluntary exercise sensitizes cancer immunotherapy via the collagen inhibition-orchestrated inflammatory tumor immune microenvironment. Cell Rep 2024; 43:114697. [PMID: 39217611 DOI: 10.1016/j.celrep.2024.114697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 07/15/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
Physical activity reduces cancer-associated mortality through multiple mechanisms, including tumor immune microenvironment (TIME) reprogramming. However, whether and how physiological interventions promote anti-tumor immunity remain elusive. Here, we report that clinically relevant voluntary exercise promotes muscle-derived extracellular vesicle (EV)-associated miR-29a-3p for tumor extracellular matrix (ECM) inhibition in patients and mouse models, thereby permitting immune cell infiltration and immunotherapy. Mechanistically, an unbiased screening identifies EV-associated miR-29a-3p in response to leisure-time physical activity or voluntary exercise. MiR-29a-3p-containing EVs accumulate in tumors and downregulate collagen composition by targeting COL1A1. Gain- and loss-of-function experiments and cytometry by time of flight (CyTOF) demonstrate that myocyte-secreted miR-29a-3p promotes anti-tumor immunity. Combining immunotherapy with voluntary exercise or miR-29a-3p further enhances anti-tumor efficacy. Clinically, miR-29a-3p correlates with reduced ECM, increased T cell infiltration, and response to immunotherapy. Our work reveals the predictive value of miR-29a-3p for immunotherapy, provides mechanistic insights into exercise-induced anti-cancer immunity, and highlights the potential of voluntary exercise in sensitizing immunotherapy.
Collapse
Affiliation(s)
- Zhiwen Luo
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jie Mei
- The First Clinical Medicine College, Nanjing Medical University, Nanjing 211166, China; Department of Oncology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Nanjing 211166, China.
| | - Xianwen Wang
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, Anhui, China
| | - Ruixin Wang
- Department of Cardiothoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Nanjing 211166, China
| | - Zhao He
- Department of Cardiothoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Nanjing 211166, China
| | - Yifat Geffen
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Xiaomeng Sun
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Xingyu Zhang
- Department of Sports Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Junying Xu
- Department of Oncology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Nanjing 211166, China
| | - Renwen Wan
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xinting Feng
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Chunmeng Jiao
- Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xiaoping Su
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Junming Sun
- Laboratory Animal Center, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Shiyi Chen
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jiwu Chen
- Department of Sports Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Wenjun Mao
- Department of Cardiothoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Nanjing 211166, China.
| | - Yunlong Yang
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| | - Yaying Sun
- Department of Sports Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| |
Collapse
|
163
|
Feng X, Yang C, Huang Y, Su D, Wang C, Wilson LL, Yin L, Tang M, Li S, Chen Z, Zhu D, Wang S, Zhang S, Zhang J, Zhang H, Nie L, Huang M, Park JI, Hart T, Jiang D, Jiang K, Chen J. In vivo CRISPR screens identify Mga as an immunotherapy target in triple-negative breast cancer. Proc Natl Acad Sci U S A 2024; 121:e2406325121. [PMID: 39298484 PMCID: PMC11441491 DOI: 10.1073/pnas.2406325121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 08/23/2024] [Indexed: 09/21/2024] Open
Abstract
Immune evasion is not only critical for tumor initiation and progression, but also determines the efficacy of immunotherapies. Through iterative in vivo CRISPR screens with seven syngeneic tumor models, we identified core and context-dependent immune evasion pathways across cancer types. This valuable high-confidence dataset is available for the further understanding of tumor intrinsic immunomodulators, which may lead to the discovery of effective anticancer therapeutic targets. With a focus on triple-negative breast cancer (TNBC), we found that Mga knock-out significantly enhances antitumor immunity and inhibits tumor growth. Transcriptomics and single-cell RNA sequencing analyses revealed that Mga influences various immune-related pathways in the tumor microenvironment. Our findings suggest that Mga may play a role in modulating the tumor immune landscape, though the precise mechanisms require further investigation. Interestingly, we observed that low MGA expression in breast cancer patients correlates with a favorable prognosis, particularly in those with active interferon-γ signaling. These observations provide insights into tumor immune escape mechanisms and suggest that further exploration of MGA's function could potentially lead to effective therapeutic strategies in TNBC.
Collapse
Affiliation(s)
- Xu Feng
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing210000, China
- Pancreas Institute, Nanjing Medical University, Nanjing210000, China
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing210000, China
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Chang Yang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin150086, China
| | - Yuanjian Huang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing210000, China
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Dan Su
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Chao Wang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Lori Lyn Wilson
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Ling Yin
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Mengfan Tang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Siting Li
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Zhen Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Dandan Zhu
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Shimin Wang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Shengzhe Zhang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Jie Zhang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Huimin Zhang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Litong Nie
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Min Huang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Jae-Il Park
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Traver Hart
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Dadi Jiang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Kuirong Jiang
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing210000, China
- Pancreas Institute, Nanjing Medical University, Nanjing210000, China
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing210000, China
| | - Junjie Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| |
Collapse
|
164
|
Hossain SM, Ly K, Sung YJ, Braithwaite A, Li K. Immune Checkpoint Inhibitor Therapy for Metastatic Melanoma: What Should We Focus on to Improve the Clinical Outcomes? Int J Mol Sci 2024; 25:10120. [PMID: 39337605 PMCID: PMC11432671 DOI: 10.3390/ijms251810120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) have transformed cancer treatment by enhancing anti-tumour immune responses, demonstrating significant efficacy in various malignancies, including melanoma. However, over 50% of patients experience limited or no response to ICI therapy. Resistance to ICIs is influenced by a complex interplay of tumour intrinsic and extrinsic factors. This review summarizes current ICIs for melanoma and the factors involved in resistance to the treatment. We also discuss emerging evidence that the microbiota can impact ICI treatment outcomes by modulating tumour biology and anti-tumour immune function. Furthermore, microbiota profiles may offer a non-invasive method for predicting ICI response. Therefore, future research into microbiota manipulation could provide cost-effective strategies to enhance ICI efficacy and improve outcomes for melanoma patients.
Collapse
Affiliation(s)
- Sultana Mehbuba Hossain
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand
| | - Kevin Ly
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand
| | - Yih Jian Sung
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand
| | - Antony Braithwaite
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand
| | - Kunyu Li
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand
| |
Collapse
|
165
|
Malhotra J, De S, Nguyen K, Lee P, Villaflor V. Genomic and molecular alterations associated with primary resistance to immune checkpoint inhibitors. Cancer Immunol Immunother 2024; 73:234. [PMID: 39271499 PMCID: PMC11399531 DOI: 10.1007/s00262-024-03825-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024]
Abstract
The clinical response to immune checkpoint inhibitors may vary by tumor type and many tumors present with either primary or acquired resistance to immunotherapy. Improved understanding of the molecular and immunologic mechanisms underlying immunotherapy resistance is essential for developing biomarkers and for guiding the optimum approach to selecting treatment regimens and sequencing. This is increasingly important for tumors with primary resistance as effective biomarkers in this setting can guide clinicians about appropriate treatment regimen selection in the first-line setting. Multiple potential biological mechanisms of primary resistance have been proposed but most are yet to be validated in prospective clinical cohorts. Individual biomarkers have poor specificity and sensitivity, and the development of validated and integrated predictive models may guide which patient will benefit from monotherapy versus combination therapy. In this review, we discuss the emerging data identifying the molecular mechanisms of primary resistance to immunotherapy and explore potential therapeutic strategies to target these.
Collapse
Affiliation(s)
- Jyoti Malhotra
- City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA, 91010, USA.
| | - Subhajyoti De
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Kim Nguyen
- City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA, 91010, USA
| | - Percy Lee
- City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA, 91010, USA
| | - Victoria Villaflor
- City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA, 91010, USA
| |
Collapse
|
166
|
Heller LC, Shi G, Sales Conniff A, Singh J, Mannarino S, Synowiec J, Heller R. IL-12 and PD-1 peptide combination gene therapy for the treatment of melanoma. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102267. [PMID: 39176175 PMCID: PMC11339250 DOI: 10.1016/j.omtn.2024.102267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/12/2024] [Indexed: 08/24/2024]
Abstract
Interleukin-12 (IL-12) gene electrotransfer (GET) delivery is highly effective in inducing long-term, complete regression in mouse and human melanoma and other solid tumors. Therapeutic efficacy is enhanced by immune checkpoint inhibitors, and the combination of IL-12 plasmid GET (pIL-12 GET) and anti-programmed cell death protein 1 (PD-1) monoclonal antibodies has reached clinical trials. In this study, we designed peptides and plasmids encoding the mouse homologs of the pembrolizumab and nivolumab programmed cell death 1 ligand 1 (PD-L1) binding regions. We hypothesized that intratumor autocrine/paracrine peptide expression would block PD-1/PD-L1 binding and provide cancer patients with an effective and cost-efficient treatment alternative. We demonstrated that the mouse homolog to pembrolizumab was effective at blocking PD-1/PD-L1 in vitro. After intratumor plasmid delivery, both peptides bound PD-L1 on tumor cells. We established that plasmid DNA delivery to tumors in vivo or to tumor cells in vitro upregulated several immune modulators and PD-L1 mRNA and protein, potentiating this therapy. Finally, we tested the combination of pIL-12 GET therapy and peptide plasmids. We determined that pIL-12 GET therapeutic efficacy could be enhanced by combination with the plasmid encoding the pembrolizumab mouse homolog.
Collapse
Affiliation(s)
- Loree C. Heller
- Department of Medical Engineering, University of South Florida, Morsani College of Medicine and College of Engineering, 12901 Bruce B. Downs Blvd., MDC111, Tampa, FL 33612, USA
| | - Guilan Shi
- Department of Medical Engineering, University of South Florida, Morsani College of Medicine and College of Engineering, 12901 Bruce B. Downs Blvd., MDC111, Tampa, FL 33612, USA
| | - Amanda Sales Conniff
- Department of Medical Engineering, University of South Florida, Morsani College of Medicine and College of Engineering, 12901 Bruce B. Downs Blvd., MDC111, Tampa, FL 33612, USA
| | - Julie Singh
- Department of Medical Engineering, University of South Florida, Morsani College of Medicine and College of Engineering, 12901 Bruce B. Downs Blvd., MDC111, Tampa, FL 33612, USA
| | - Samantha Mannarino
- Department of Medical Engineering, University of South Florida, Morsani College of Medicine and College of Engineering, 12901 Bruce B. Downs Blvd., MDC111, Tampa, FL 33612, USA
| | - Jody Synowiec
- Department of Medical Engineering, University of South Florida, Morsani College of Medicine and College of Engineering, 12901 Bruce B. Downs Blvd., MDC111, Tampa, FL 33612, USA
| | - Richard Heller
- Department of Medical Engineering, University of South Florida, Morsani College of Medicine and College of Engineering, 12901 Bruce B. Downs Blvd., MDC111, Tampa, FL 33612, USA
| |
Collapse
|
167
|
Chen YC, Zheng WZ, Liu CP, Zhao YQ, Li JW, Du ZS, Zhai TT, Lin HY, Shi WQ, Cai SQ, Pan F, Qiu SQ. Pan-cancer analysis reveals CCL5/CSF2 as potential predictive biomarkers for immune checkpoint inhibitors. Cancer Cell Int 2024; 24:311. [PMID: 39256838 PMCID: PMC11389493 DOI: 10.1186/s12935-024-03496-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 08/31/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Currently, there are no optimal biomarkers available for distinguishing patients who will respond to immune checkpoint inhibitors (ICIs) therapies. Consequently, the exploration of novel biomarkers that can predict responsiveness to ICIs is crucial in the field of immunotherapy. METHODS We estimated the proportions of 22 immune cell components in 10 cancer types (6,128 tumors) using the CIBERSORT algorithm, and further classified patients based on their tumor immune cell proportions in a pan-cancer setting using k-means clustering. Differentially expressed immune genes between the patient subgroups were identified, and potential predictive biomarkers for ICIs were explored. Finally, the predictive value of the identified biomarkers was verified in patients with urothelial carcinoma (UC) and esophageal squamous cell carcinoma (ESCC) who received ICIs. RESULTS Our study identified two subgroups of patients with distinct immune infiltrating phenotypes and differing clinical outcomes. The patient subgroup with improved outcomes displayed tumors enriched with genes related to immune response regulation and pathway activation. Furthermore, CCL5 and CSF2 were identified as immune-related hub-genes and were found to be prognostic in a pan-cancer setting. Importantly, UC and ESCC patients with high expression of CCL5 and low expression of CSF2 responded better to ICIs. CONCLUSION We demonstrated CCL5 and CSF2 as potential novel biomarkers for predicting the response to ICIs in patients with UC and ESCC. The predictive value of these biomarkers in other cancer types warrants further evaluation in future studies.
Collapse
Affiliation(s)
- Yi-Chao Chen
- Clinical Research Center, Shantou Central Hospital, Shantou, 515041, China
| | - Wei-Zhong Zheng
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, 999077, China
| | - Chun-Peng Liu
- Department of Pathology, Shantou Central Hospital, Shantou, 515041, China
| | - Yong-Qiang Zhao
- Department of Pathology, Shantou Central Hospital, Shantou, 515041, China
| | - Jun-Wei Li
- Clinical Research Center, Shantou Central Hospital, Shantou, 515041, China
| | - Ze-Sen Du
- Surgical Oncology Department, Shantou Central Hospital, Shantou, 515041, China
| | - Tian-Tian Zhai
- Radiation Oncology Department, The Cancer Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Hao-Yu Lin
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Wen-Qi Shi
- Clinical Research Center, Shantou Central Hospital, Shantou, 515041, China
| | - Shan-Qing Cai
- Department of Pathology, Shantou Central Hospital, Shantou, 515041, China
| | - Feng Pan
- Clinical Research Center, Shantou Central Hospital, Shantou, 515041, China.
| | - Si-Qi Qiu
- Clinical Research Center, Shantou Central Hospital, Shantou, 515041, China.
- Diagnosis and Treatment Center of Breast Diseases, Shantou Central Hospital, Shantou, 515041, China.
| |
Collapse
|
168
|
Liu R, Zhao H, Lu Z, Zeng L, Shi H, Wu L, Wang J, Zhong F, Liu C, Zhang Y, Qiu Z. Toxicity profiles of immune checkpoint inhibitors in nervous system cancer: a comprehensive disproportionality analysis using FDA adverse event reporting system. Clin Exp Med 2024; 24:216. [PMID: 39249163 PMCID: PMC11383843 DOI: 10.1007/s10238-024-01403-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 06/12/2024] [Indexed: 09/10/2024]
Abstract
BACKGROUND Immune-related adverse events (irAEs) always occur during treatment with immune checkpoint inhibitors (ICIs). Patients with nervous system cancer (NSC) may gain clinical benefit from ICIs, but irAEs in NSC patients are rarely examined. Therefore, our study systematically summarized reports of irAEs in NSC. METHODS We obtained information from the FDA adverse event reporting system from the first quarter (Q1) of 2013 to the fourth quarter (Q4) of 2022. We examined use of a combination of ICIs and chemotherapy (ICI_Chemo) or chemotherapy only (ICI_Chemo) for patients with NSC. Multiple disproportionality analyses were applied to assess irAEs. Multiomics data from the gene expression omnibus (GEO) database were analyzed to explore potential molecular mechanisms associated with irAEs in NSC patients. RESULTS Fourteen irAEs were identified in 8,357 NSC patients after removing duplicates; the top five events were seizure, confused state, encephalopathy, muscular weakness and gait disturbance. Older patients were more likely to develop irAEs than were younger patients. From the start of ICIs_Chemo to irAE occurrence, there was a significant difference in the time to onset of irAEs between age groups. irAEs may occur via mechanisms involving the inflammatory response, secretion of inflammatory mediators, and aberrant activation of pathologic pathways. CONCLUSIONS This study helps to characterize irAEs in NSC patients treated with ICIs. We combined GEO database analysis to explore the potential molecular mechanisms of irAEs. The results of this study provide a basis for improving the toxic effects of ICIs in NSC patients.
Collapse
Affiliation(s)
- Rongrong Liu
- Department of Neurology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Hui Zhao
- Department of Sleep Medicine, Ganzhou People's Hospital, Ganzhou, Jiangxi, China
| | - Zenghong Lu
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Lingshuai Zeng
- Major of Rehabilitation, Faculty of Medicine, Jinggangshan University, Ji'an, Jiangxi, China
| | - Huaqiu Shi
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Longqiu Wu
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Jing Wang
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Fangjun Zhong
- Department of Neurology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Chuanjian Liu
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Yu Zhang
- Department of Neurology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China.
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China.
| | - Zhengang Qiu
- Department of Neurology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China.
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China.
| |
Collapse
|
169
|
Zimmerman SM, Suh E, Smith SR, Souroullas GP. Stat3-mediated Atg7 expression regulates anti-tumor immunity in mouse melanoma. Cancer Immunol Immunother 2024; 73:218. [PMID: 39235510 PMCID: PMC11377374 DOI: 10.1007/s00262-024-03804-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/08/2024] [Indexed: 09/06/2024]
Abstract
Epigenetic modifications to DNA and chromatin control oncogenic and tumor-suppressive mechanisms in melanoma. Ezh2, the catalytic component of the Polycomb Repressive Complex 2 (PRC2), which mediates methylation of lysine 27 on histone 3 (H3K27me3), can regulate both melanoma initiation and progression. We previously found that mutant Ezh2Y641F interacts with the immune regulator Stat3 and together they affect anti-tumor immunity. However, given the numerous downstream targets and pathways affected by Ezh2, many mechanisms that determine its oncogenic activity remain largely unexplored. Using genetically engineered mouse models, we further investigated the role of pathways downstream of Ezh2 in melanoma carcinogenesis and identified significant enrichment in several autophagy signatures, along with increased expression of autophagy regulators, such as Atg7. In this study, we investigated the effect of Atg7 on melanoma growth and tumor immunity within the context of a wild-type or Ezh2Y641F epigenetic state. We found that the Atg7 locus is controlled by multiple Ezh2 and Stat3 binding sites, Atg7 expression is dependent on Stat3 expression, and that deletion of Atg7 slows down melanoma cell growth in vivo, but not in vitro. Atg7 deletion also results in increased CD8 + T cells in Ezh2Y641F melanomas and reduced myelosuppressive cell infiltration in the tumor microenvironment, particularly in Ezh2WT melanomas, suggesting a strong immune system contribution in the role of Atg7 in melanoma progression. These findings highlight the complex interplay between genetic mutations, epigenetic regulators, and autophagy in shaping tumor immunity in melanoma.
Collapse
Affiliation(s)
- Sarah M Zimmerman
- Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
- Division of Oncology, Molecular Oncology Section, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
- Siteman Comprehensive Cancer Center, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Erin Suh
- University of Georgia, Athens, GA, USA
| | - Sofia R Smith
- Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
- Division of Oncology, Molecular Oncology Section, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
- Siteman Comprehensive Cancer Center, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - George P Souroullas
- Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA.
- Division of Oncology, Molecular Oncology Section, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA.
- Siteman Comprehensive Cancer Center, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA.
| |
Collapse
|
170
|
Demidov L, Kharkevich G, Petenko N, Moiseenko V, Protsenko S, Semiglazova T, Zimina A, Kovalenko N, Fadeeva N, Kirtbaya D, Belogortsev I, Tantsyrev D, Odintsova S, Nesterova A, Vorontsova K, Makarycheva Y, Linkova Y, Zinkina-Orikhan A, Siliutina A, Sorokina I, Liaptseva D, Chistyakov V, Lutsky A. A phase III study to access the safety and efficacy of prolgolimab 250 mg fixed dose administered every 3 weeks versus prolgolimab 1 mg/kg every 2 weeks in patients with metastatic melanoma (FLAT). Front Oncol 2024; 14:1385685. [PMID: 39296979 PMCID: PMC11408354 DOI: 10.3389/fonc.2024.1385685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 08/05/2024] [Indexed: 09/21/2024] Open
Abstract
Background Prolgolimab is the first Russian PD-1 inhibitor approved for the first-line treatment of unresectable or metastatic melanoma and advanced non-small cell lung cancer. It was approved in two weight-based regimens of 1 mg/kg Q2W and 3 mg/kg Q3W, but because of re-evaluation of weight-based dosing paradigm, studying of a fixed-dose regimen was considered perspective. Methods We conducted a multicenter, single-arm, open-label efficacy, pharmacokinetics, and safety study to obtain data that would allow the approval of the new flat dosing regimen of prolgolimab in patients with previously untreated unresectable or metastatic melanoma (BCD-100-8/FLAT, NCT05783882). The primary objective was to prove the non-inferiority of prolgolimab 250 mg Q3W versus prolgolimab 1 mg/kg Q2W for the treatment of patients with unresectable or metastatic melanoma in terms of ORR according to RECIST 1.1. Patients from the MIRACULUM study (BCD-100-2/MIRACULUM, NCT03269565) comprised a historical control group. Results One hundred fourteen patients received prolgolimab 250 mg Q3W, and 61 patients received prolgolimab (Prolgo) 1 mg/kg Q2W (historical control). Objective response was achieved by 33.3% [95% confidence interval (CI): 24.8, 42.8] of patients in the Prolgo 250 mg group compared with 32.8% (95% CI: 21.3, 46.0) of patients in the Prolgo 1 mg/kg group. Risk difference was 0.00, 95% CI (-0.12; NA), p = 0.0082. Both regimens were well tolerated, and safety profiles were comparable. The pharmacokinetic analysis (PK) showed that the regimen with the fixed dose of 250 mg Q3W was characterized by higher PK parameters. The immunogenicity study did not detect binding antibodies to prolgolimab in any of the subjects. Conclusion The obtained results showed that the selected fixed dosing regimen of prolgolimab 250 mg Q3W is characterized by efficacy and safety parameters comparable to that observed for the 1 mg/kg Q2W regimen.
Collapse
Affiliation(s)
- Lev Demidov
- FSBI "N.N. Blokhin National Medical Research Center of Oncology", Ministry of Health (MoH) of the Russian Federation, Moscow, Russia
| | - Galina Kharkevich
- FSBI "N.N. Blokhin National Medical Research Center of Oncology", Ministry of Health (MoH) of the Russian Federation, Moscow, Russia
| | - Natalia Petenko
- FSBI "N.N. Blokhin National Medical Research Center of Oncology", Ministry of Health (MoH) of the Russian Federation, Moscow, Russia
| | - Vladimir Moiseenko
- State Budgetary Healthcare Institution (SBHI) "St. Petersburg Clinical Scientific and Practical Center for Specialized Types of Medical Care (Oncology)", Saint Petersburg, Russia
| | - Svetlana Protsenko
- FSBI "N.N. Petrov National Medical Research Center of Oncology", Ministry of Health (MoH) of the Russian Federation, Saint Petersburg, Russia
| | - Tatiana Semiglazova
- FSBI "N.N. Petrov National Medical Research Center of Oncology", Ministry of Health (MoH) of the Russian Federation, Saint Petersburg, Russia
| | - Anastasia Zimina
- Budgetary Healthcare Institution (BHI) of the Omsk Region "Clinical Oncology Dispensary", Omsk, Russia
| | - Nadezhda Kovalenko
- State Budgetary Healthcare Institution (SBHI) "Volgograd Regional Clinical Oncology Dispensary", Volgograd, Russia
| | - Natalia Fadeeva
- State Autonomous Institution of Healthcare (SAHI) "Chelyabinsk Regional Clinical Center of Oncology and Nuclear Medicine", Chelyabinsk, Russia
| | - Dmitry Kirtbaya
- State Budgetary Healthcare Institution (SBHI) "Oncological Dispensary No. 2", Ministry of Health (MoH) of the Krasnodar Region, Krasnodar, Russia
| | - Igor Belogortsev
- Oncology Department, State Budgetary Healthcare Institution (SBHI) Leningrad Regional Clinical Hospital, Saint Petersburg, Russia
| | - Denis Tantsyrev
- Regional State Budgetary Healthcare Institution (SBHI) "Altai Regional Oncology Center", Barnaul, Russia
| | - Svetlana Odintsova
- Oncology Department, Joint-Stock Company "Modern Medical Technologies", Saint Petersburg, Russia
| | - Alfia Nesterova
- State Autonomous Institution of Healthcare (SAHI) "Professor M.Z. Sigal Republican Clinical Oncology Dispensary of the Ministry of Health of the Republic of Tatarstan", Kazan, Russia
| | - Karina Vorontsova
- Moscow State Budgetary Healthcare Institution "A.S. Loginov MCSC of the Moscow City Healthcare Department", Moscow, Russia
| | - Yulia Makarycheva
- State Budgetary Healthcare Institution (SBHI) "Samara Regional Clinical Oncology Dispensary", Samara, Russia
| | - Yulia Linkova
- Clinical Research Department, Joint-Stock Company (JSC) Biocad, Saint Petersburg, Russia
| | - Arina Zinkina-Orikhan
- Clinical Research Department, Joint-Stock Company (JSC) Biocad, Saint Petersburg, Russia
| | - Anna Siliutina
- Clinical Research Department, Joint-Stock Company (JSC) Biocad, Saint Petersburg, Russia
| | - Irina Sorokina
- Moscow State Budgetary Healthcare Institution "A.S. Loginov MCSC of the Moscow City Healthcare Department", Moscow, Russia
- Oncology Department, Joint-Stock Company (JSC) Biocad, Saint Petersburg, Russia
| | - Daria Liaptseva
- Clinical Research Department, Joint-Stock Company (JSC) Biocad, Saint Petersburg, Russia
| | - Vladimir Chistyakov
- Clinical Research Department, Joint-Stock Company (JSC) Biocad, Saint Petersburg, Russia
| | - Anton Lutsky
- Clinical Research Department, Joint-Stock Company (JSC) Biocad, Saint Petersburg, Russia
| |
Collapse
|
171
|
Porte S, Audemard-Verger A, Wu C, Durand A, Level T, Giraud L, Lombès A, Germain M, Pierre R, Saintpierre B, Lambert M, Auffray C, Peyssonnaux C, Goldwasser F, Vaulont S, Alves-Guerra MC, Dentin R, Lucas B, Martin B. Iron Boosts Antitumor Type 1 T-cell Responses and Anti-PD1 Immunotherapy. Cancer Immunol Res 2024; 12:1252-1267. [PMID: 38912762 DOI: 10.1158/2326-6066.cir-23-0739] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 04/02/2024] [Accepted: 06/21/2024] [Indexed: 06/25/2024]
Abstract
Cancers only develop if they escape immunosurveillance, and the success of cancer immunotherapies relies in most cases on their ability to restore effector T-cell functions, particularly IFNγ production. Revolutionizing the treatment of many cancers, immunotherapies targeting immune checkpoints such as PD1 can increase survival and cure patients. Unfortunately, although immunotherapy has greatly improved the prognosis of patients, not all respond to anti-PD1 immunotherapy, making it crucial to identify alternative treatments that could be combined with current immunotherapies to improve their effectiveness. Here, we show that iron supplementation significantly boosts T-cell responses in vivo and in vitro. The boost was associated with a metabolic reprogramming of T cells in favor of lipid oxidation. We also found that the "adjuvant" effect of iron led to a marked slowdown of tumor cell growth after tumor cell line transplantation in mice. Specifically, our results suggest that iron supplementation promotes antitumor responses by increasing IFNγ production by T cells. In addition, iron supplementation improved the efficacy of anti-PD1 cancer immunotherapy in mice. Finally, our study suggests that, in patients with cancer, the quality and efficacy of the antitumor response following anti-PD1 immunotherapy may be modulated by plasma ferritin levels. In summary, our results suggest the benefits of iron supplementation on the reactivation of antitumor responses and support the relevance of a fruitful association between immunotherapy and iron supplementation.
Collapse
Affiliation(s)
- Sarah Porte
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, Paris, France
| | | | - Christian Wu
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, Paris, France
| | - Aurélie Durand
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, Paris, France
| | - Théo Level
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, Paris, France
| | - Léa Giraud
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, Paris, France
| | - Amélie Lombès
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, Paris, France
| | - Mathieu Germain
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, Paris, France
| | - Rémi Pierre
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, Paris, France
| | - Benjamin Saintpierre
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, Paris, France
| | - Mireille Lambert
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, Paris, France
| | - Cédric Auffray
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, Paris, France
| | - Carole Peyssonnaux
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, Paris, France
| | - François Goldwasser
- Department of Medical Oncology, Cochin Hospital, Paris Cancer Institute CARPEM, Université Paris Cité, APHP.Centre, Paris, France
| | - Sophie Vaulont
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, Paris, France
| | - Marie-Clotilde Alves-Guerra
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, Paris, France
| | - Renaud Dentin
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, Paris, France
| | - Bruno Lucas
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, Paris, France
| | - Bruno Martin
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, Paris, France
| |
Collapse
|
172
|
Russano F, Rastrelli M, Dall'Olmo L, Del Fiore P, Gianesini C, Vecchiato A, Mazza M, Tropea S, Mocellin S. Therapeutic Treatment Options for In-Transit Metastases from Melanoma. Cancers (Basel) 2024; 16:3065. [PMID: 39272923 PMCID: PMC11394241 DOI: 10.3390/cancers16173065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
In-transit metastases (ITM) in melanoma present a significant therapeutic challenge due to their advanced stage and complex clinical nature. From traditional management with surgical resection, ITM treatment has evolved with the advent of systemic therapies such as immune checkpoint inhibitors and targeted therapies, which have markedly improved survival outcomes. This study aims to review and highlight the efficacy of both systemic and locoregional treatment approaches for ITM. Methods include a comprehensive review of clinical studies examining the impact of treatments like immune checkpoint inhibitors, targeted therapies, Isolated Limb Perfusion, and electrochemotherapy. The results indicate that combining systemic therapies with locoregional treatments enhances both local disease control and overall survival rates. The introduction of modern immunotherapies has not diminished the effectiveness of locoregional therapies but rather improved patient outcomes when used in conjunction. The conclusions emphasize that a multidisciplinary approach integrating systemic and locoregional therapies offers a promising strategy for optimizing the management of ITM in melanoma patients. This integrated treatment model not only improves survival rates but also enhances the quality of life for patients, suggesting a shift in standard care practices toward more comprehensive therapeutic regimens.
Collapse
Affiliation(s)
- Francesco Russano
- Soft-Tissue, Peritoneum and Melanoma Surgical Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padova, Italy
| | - Marco Rastrelli
- Soft-Tissue, Peritoneum and Melanoma Surgical Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padova, Italy
- Department of Surgical, Oncological and Gastroenterological Sciences (DISCOG), University of Padua, 35128 Padova, Italy
| | - Luigi Dall'Olmo
- Soft-Tissue, Peritoneum and Melanoma Surgical Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padova, Italy
- Department of Surgical, Oncological and Gastroenterological Sciences (DISCOG), University of Padua, 35128 Padova, Italy
| | - Paolo Del Fiore
- Soft-Tissue, Peritoneum and Melanoma Surgical Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padova, Italy
| | - Carlomaria Gianesini
- Department of Surgical, Oncological and Gastroenterological Sciences (DISCOG), University of Padua, 35128 Padova, Italy
| | - Antonella Vecchiato
- Soft-Tissue, Peritoneum and Melanoma Surgical Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padova, Italy
| | - Marcodomenico Mazza
- Soft-Tissue, Peritoneum and Melanoma Surgical Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padova, Italy
| | - Saveria Tropea
- Soft-Tissue, Peritoneum and Melanoma Surgical Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padova, Italy
| | - Simone Mocellin
- Soft-Tissue, Peritoneum and Melanoma Surgical Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padova, Italy
- Department of Surgical, Oncological and Gastroenterological Sciences (DISCOG), University of Padua, 35128 Padova, Italy
| |
Collapse
|
173
|
Zhao H, Zhang W, Lu Y, Dong Y, He Z, Zhen H, Li Q. Inosine enhances the efficacy of immune-checkpoint inhibitors in advanced solid tumors: A randomized, controlled, Phase 2 study. Cancer Med 2024; 13:e70143. [PMID: 39267574 PMCID: PMC11393481 DOI: 10.1002/cam4.70143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 08/05/2024] [Accepted: 08/12/2024] [Indexed: 09/17/2024] Open
Abstract
BACKGROUND This study aimed to evaluate whether inosine enhances the efficacy of immune-checkpoint inhibitors in human malignant solid tumors. METHODS This single-center, prospective, randomized, open-label study was conducted, from January 2021 to December 2022, in Beijing Friendship Hospital, Capital Medical University, and participants were randomly assigned (1:1) to either the inosine (trial) or non-inosine (control) group that received inosine (dosage: 0.2 g, three times/day) + PD-1/PD-L1 inhibitor or only PD-1/PD-L1 inhibitor ± targeted ± chemotherapy, respectively. Efficacy was assessed every 6 weeks (i.e., after every two-three treatment cycles). The primary endpoint was the objective response rate (ORR); the secondary endpoints were disease control rate, overall survival (OS), and progression-free survival (PFS). The trial was registered at ClinicalTrials.gov (NCT05809336). RESULTS Among the 172 participants with advanced malignant solid tumors, 86 each were assigned to the inosine and non-inosine groups, wherein the median PFS (95% CI) was 7.00 (5.31-8.69) and 4.40 (3.10-5.70) months, respectively (hazard ratio [HR] 0.63; 95% CI 0.44-0.90, p = 0.011), and the ORR was 26.7% and 15.1%, respectively (p = 0.061). In the inosine and non-inosine groups, the median OS was not reached and was 29.67 (95% CI 17.40-41.94) months, respectively (HR 1.05 [95% CI 0.59-1.84], p = 0.874). Compared with the non-inosine group, the median PFS and ORR of the inosine group were significantly prolonged and improved in the multiple exploratory subgroup analyses. The safety analysis showed that Grades 3 and 4 adverse reactions occurred in 25 (29%) and 31 (36%) patients in the inosine and non-inosine groups, respectively, and tended to decrease in the inosine group compared with the non-inosine group. CONCLUSION Inosine had a tendency to enhance the efficacy of immune-checkpoint inhibitors and reduced immunotherapy-related adverse reactions.
Collapse
Affiliation(s)
- Haiqing Zhao
- Department of Oncology, Beijing Friendship HospitalCapital Medical UniversityBeijingPeople's Republic of China
- Internal Medicine DepartmentPeople's Hospital of Shen chi CountyShanxiPeople's Republic of China
| | - Wei Zhang
- Department of Oncology, Beijing Friendship HospitalCapital Medical UniversityBeijingPeople's Republic of China
| | - Yuting Lu
- Department of Oncology, Beijing Friendship HospitalCapital Medical UniversityBeijingPeople's Republic of China
| | - Yin Dong
- Department of Oncology, Beijing Friendship HospitalCapital Medical UniversityBeijingPeople's Republic of China
| | - Zhihao He
- Department of Oncology, Beijing Friendship HospitalCapital Medical UniversityBeijingPeople's Republic of China
| | - Hongchao Zhen
- Department of Oncology, Beijing Friendship HospitalCapital Medical UniversityBeijingPeople's Republic of China
| | - Qin Li
- Department of Oncology, Beijing Friendship HospitalCapital Medical UniversityBeijingPeople's Republic of China
| |
Collapse
|
174
|
Nakamura K, Yaguchi T, Murata M, Ota Y, Mikoshiba A, Kiniwa Y, Okuyama R, Kawakami Y. Tumor eradication by triplet therapy with BRAF inhibitor, TLR 7 agonist, and PD-1 antibody for BRAF-mutated melanoma. Cancer Sci 2024; 115:2879-2892. [PMID: 38894534 PMCID: PMC11462939 DOI: 10.1111/cas.16251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/14/2024] [Accepted: 06/02/2024] [Indexed: 06/21/2024] Open
Abstract
Programmed death 1 (PD-1)/programmed death-ligand 1 inhibitors are commonly used to treat various cancers, including melanoma. However, their efficacy as monotherapy is limited, and combination immunotherapies are being explored to improve outcomes. In this study, we investigated a combination immunotherapy involving an anti-PD-1 antibody that blocks the major adaptive immune-resistant mechanisms, a BRAF inhibitor that inhibits melanoma cell proliferation, and multiple primary immune-resistant mechanisms, such as cancer cell-derived immunosuppressive cytokines, and a Toll-like receptor 7 agonist that enhances innate immune responses that promote antitumor T-cell induction and functions. Using a xenogeneic nude mouse model implanted with human BRAF-mutated melanoma, a BRAF inhibitor vemurafenib was found to restore T-cell-stimulatory activity in conventional dendritic cells by reducing immunosuppressive cytokines, including interleukin 6, produced by human melanoma. Additionally, intravenous administration of the Toll-like receptor 7 agonist DSR6434 enhanced tumor growth inhibition by vemurafenib through stimulating the plasmacytoid dendritic cells/interferon-α/natural killer cell pathways and augmenting the T-cell-stimulatory activity of conventional dendritic cells. In a syngeneic mouse model implanted with murine BRAF-mutated melanoma, the vemurafenib and DSR6434 combination synergistically augmented the induction of melanoma antigen gp100-specific T cells and inhibited tumor growth. Notably, only triplet therapy with vemurafenib, DSR6434, and the anti-PD-1 antibody resulted in complete regression of SIY antigen-transduced BRAF-mutated melanoma in a CD8 T-cell-dependent manner. These findings indicate that a triple-combination strategy targeting adaptive and primary resistant mechanisms while enhancing innate immune responses that promote tumor-specific T cells may be crucial for effective tumor eradication.
Collapse
Affiliation(s)
- Kenta Nakamura
- Division of Cellular Signaling, Institute for Advanced Medical Research, School of MedicineKeio UniversityTokyoJapan
- Department of DermatologyShinshu University School of MedicineNaganoJapan
| | - Tomonori Yaguchi
- Division of Cellular Signaling, Institute for Advanced Medical Research, School of MedicineKeio UniversityTokyoJapan
- Department of Immunology and Genomic MedicineKyoto University Graduate School of MedicineKyotoJapan
| | | | - Yosuke Ota
- Cancer Research UnitSumitomo Pharma Co. Ltd.OsakaJapan
| | - Asuka Mikoshiba
- Department of DermatologyShinshu University School of MedicineNaganoJapan
| | - Yukiko Kiniwa
- Department of DermatologyShinshu University School of MedicineNaganoJapan
| | - Ryuhei Okuyama
- Department of DermatologyShinshu University School of MedicineNaganoJapan
| | - Yutaka Kawakami
- Division of Cellular Signaling, Institute for Advanced Medical Research, School of MedicineKeio UniversityTokyoJapan
- Department of Immunology, School of MedicineInternational University of Health and WelfareChibaJapan
| |
Collapse
|
175
|
Truong J, Yeung SST, Kletas V, de Lemos M, Schaff K, Nakashima L. Utilization and toxicity patterns of 2-weekly (Q2W) versus 4-weekly (Q4W) nivolumab for treatment of adjuvant and metastatic melanoma at BC cancer. J Oncol Pharm Pract 2024; 30:1016-1022. [PMID: 37654194 DOI: 10.1177/10781552231199048] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
BACKGROUND Nivolumab, an immune checkpoint inhibitor used to treat several malignancies, is associated with immune-related adverse events (IrAEs). Original dosing for melanoma was 3 mg/kg (maximum 240 mg) every 2 weeks (Q2W). Based on simulation studies depicting similar efficacy and toxicity to original dosing, extended interval dosing of 6 mg/kg (maximum 480 mg) every 4 weeks (Q4W) was introduced. OBJECTIVE This study will compare safety between Q2W and Q4W dosing at BC Cancer in melanoma patients. METHODS Retrospective chart review for reported incidence, onset, and severity of IrAEs in melanoma patients treated with nivolumab Q2W and Q4W dosing was completed. Fisher's test was conducted for first incidence IrAEs using Microsoft Excel. RESULTS Seventy-one patients were identified (Q2W n = 35, Q4W n = 36). Baseline characteristics were similar in both groups. No statistically significant difference was found in incidence of IrAEs between Q2W and Q4W dosing (Q2W 40% vs Q4W 50%, p = 0.477). Rash was most common (Q2W 79% vs Q4W 50%) followed by hypothyroidism (Q2W 33% vs Q4W 20%). Median onset of IrAEs seemed later with Q4W dosing (Q2W cycle 1 vs Q4W cycle 4). Regardless of dosing, most IrAEs were grade 1-2 in severity (Q2W 100% vs Q4W 89%). CONCLUSION Q4W dosing is associated with comparable incidence and potentially later onset of IrAEs compared to Q2W dosing. Most IrAEs in both dosing groups were similar and mild. Therefore, Q4W dosing offers a safe alternative to Q2W dosing while providing benefits including decreased workload for staff, decreased clinic visits, and viral exposure by patients.
Collapse
|
176
|
DeNiro G, Que K, Fujimoto T, Koo SM, Schneider B, Mukhopadhyay A, Kim J, Sawant A, Nguyen TA. OMIP-105: A 30-color full-spectrum flow cytometry panel to characterize the immune cell landscape in spleen and tumor within a syngeneic MC-38 murine colon carcinoma model. Cytometry A 2024; 105:659-665. [PMID: 39107997 DOI: 10.1002/cyto.a.24886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/12/2024] [Accepted: 06/20/2024] [Indexed: 10/25/2024]
Abstract
This panel was designed to characterize the immune cell landscape in the mouse tumor microenvironment as well as mouse lymphoid tissues (e.g., spleen). As an example, using the MC-38 mouse syngeneic tumor model, we demonstrated that we could measure the frequency and characterize the functional status of CD4 T cells, CD8 T cells, regulatory T cells, NK cells, B cells, macrophages, granulocytes, monocytes, and dendritic cells. This panel is especially useful for understanding the immune landscape in "cold" preclinical tumor models with very low immune cell infiltration and for investigating how therapeutic treatments may modulate the immune landscape.
Collapse
Affiliation(s)
| | - Kathryn Que
- Bristol-Myers Squibb, Redwood City, California, USA
| | | | - Soo Min Koo
- Bristol-Myers Squibb, Redwood City, California, USA
| | | | | | - Jeong Kim
- Bristol-Myers Squibb, Redwood City, California, USA
| | | | | |
Collapse
|
177
|
Rizzo A, Monteiro FSM, Ürün Y, Massari F, Park SH, Bourlon MT, Poprach A, Rizzo M, Takeshita H, Giannatempo P, Soares A, Roviello G, Molina-Cerrillo J, Carrozza F, Abahssain H, Messina C, Kopp RM, Pichler R, Formisano L, Tural D, Atzori F, Calabrò F, Kanesvaran R, Buti S, Santoni M. Pembrolizumab in Patients with Advanced Urothelial Carcinoma with ECOG Performance Status 2: A Real-World Study from the ARON-2 Project. Target Oncol 2024; 19:747-755. [PMID: 39107651 DOI: 10.1007/s11523-024-01089-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND The benefit of immune checkpoint inhibitors (ICIs) for poor performance status patients with advanced urothelial carcinoma (UC) remains unknown. OBJECTIVE In the present sub-analysis of the ARON-2 study, we investigated the role of pembrolizumab for advanced UC patients with ECOG (Eastern Cooperative Oncology Group) performance status (ECOG-PS) 2. PATIENTS AND METHODS Patients aged ≥ 18 years with a cytologically and/or histologically confirmed diagnosis of advanced UC progressing or recurring after platinum-based therapy and treated with pembrolizumab between 1 January 2016 to 1 April 2024 were included. In this sub-analysis we focused on patients with ECOG-PS 2. RESULTS We included 1,040 patients from the ARON-2 dataset; of these, 167 patients (16%) presented an ECOG-PS 2. The median overall survival (OS) was 14.8 months (95% confidence interval (CI) 12.5-16.1) in the overall study population, 18.2 months (95% CI 15.8-22.2) in patients with ECOG-PS 0-1, and 3.7 months (95% CI 3.2-5.2) in subjects with ECOG-PS 2 (p < 0.001). The median progression-free survival (PFS) in the overall study population was 5.3 months (95% CI 4.3-97.1), 6.2 months (95% CI 5.5-97.1) in patients with ECOG-PS 0-1, and 2.8 months (95% CI 2.1-3.4) in patients with ECOG-PS 2. Among the latter, liver metastases and progressive disease during first-line therapy were significant predictors of OS at both univariate and multivariate analyses. For PFS, univariate and multivariate analyses showed a prognostic role for lung metastases, liver metastases, and progressive disease during first-line therapy. CONCLUSIONS This large real-world evidence study suggests the effectiveness of second-line pembrolizumab for mUC patients with poor performance status. The presence of liver metastases and progressive disease during first-line therapy is associated with worse clinical outcomes and, thus, should be taken into account when making treatment decisions in clinical practice.
Collapse
Affiliation(s)
- Alessandro Rizzo
- S.S.D. C.O.r.O. Bed Management Presa in Carico, TDM, IRCCS Istituto Tumori "Giovanni Paolo II", Viale Orazio Flacco 65, 70124, Bari, Italy.
| | | | - Yüksel Ürün
- Department of Medical Oncology, Faculty of Medicine, Ankara University, 06620, Ankara, Turkey
| | - Francesco Massari
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Se Hoon Park
- Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Maria T Bourlon
- Department of Hemato-Oncology, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Mexico City, Mexico
- Escuela de Medicina, Universidad Panamericana, Mexico City, Mexico
| | - Alexandr Poprach
- Masaryk Memorial Cancer Institute, Brno, Czech Republic
- Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Mimma Rizzo
- Medical Oncology Unit, Azienda Ospedaliera Universitaria Consorziale Policlinico di Bari, Bari, Italy
| | - Hideki Takeshita
- Department of Urology, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Patrizia Giannatempo
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Giacomo Venezian 1, Milan, Italy
| | - Andrey Soares
- Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
- Latin American Cooperative Oncology Group - LACOG, Porto Alegre, Brazil
| | - Giandomenico Roviello
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini, 6, 50139, Florence, Italy
| | | | - Francesco Carrozza
- Department of Oncology and Hematology, Oncology Unit, Santa Maria delle Croci Hospital, AUSL Romagna, Ravenna, Italy
| | - Halima Abahssain
- Medicine and Pharmacy Faculty, Medical Oncology Unit, National Institute of Oncology, Mohamed V University, Rabat, Morocco
| | | | - Ray Manneh Kopp
- Clinical Oncology, Sociedad de Oncología y Hematología del Cesar, Valledupar, Colombia
| | - Renate Pichler
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Luigi Formisano
- Department of Medicine and Surgery, Federico II University, Naples, Italy
| | - Deniz Tural
- Department of Medical Oncology, Bakirköy Dr. SadiKonuk Training and Research Hospital, Istanbul, Türkiye
| | - Francesco Atzori
- Unità di Oncologia Medica, Azienda Ospedaliero Universitaria di Cagliari, Cagliari, Italy
| | - Fabio Calabrò
- Medical Oncology 1-IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Ravindran Kanesvaran
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Sebastiano Buti
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - Matteo Santoni
- Medical Oncology Unit, Macerata Hospital, Macerata, Italy
| |
Collapse
|
178
|
Vasiliadou I, Grose D, Wilson C, Thapa A, Donnelly O, Lee E, Leslie I, Karim M, Hartley A, Partridge S, Medlow K, De Boisanger J, Metcalf R, Williamson A, Haridass A, Noble D, Mactier K, Walter H, Ma N, De Winton E, Cohen J, Rayner L, Geropantas K, Jankowska P, Mason J, Moleron R, Laws K, Ulahannan D, Nallathambi C, Michaelidou A, Nallamilli S, Raouf S, Palmer K, Bienz M, Karet T, Khalique S, Paterson C, Harrington K, Bhide S, Kong A. The use of pembrolizumab monotherapy for the management of head and neck squamous cell carcinoma (HNSCC) in the UK. Int J Cancer 2024; 155:883-893. [PMID: 38685816 DOI: 10.1002/ijc.34963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/01/2024] [Accepted: 01/11/2024] [Indexed: 05/02/2024]
Abstract
Pembrolizumab has received approval in the UK as first-line monotherapy for recurrent and/or metastatic HNSCC (R/M HNSCC) following the results of the KEYNOTE-048 trial, which demonstrated a longer overall survival (OS) in comparison to the EXTREME chemotherapy regimen in patients with a combined positive score (CPS) ≥1. In this article, we provide retrospective real-world data on the role of pembrolizumab monotherapy as first-line systemic therapy for HNSCC across 18 centers in the UK from March 20, 2020 to May 31, 2021. 211 patients were included, and in the efficacy analysis, the objective response rate (ORR) was 24.7%, the median progression-free survival (PFS) was 4.8 months (95% confidence interval [CI]: 3.6-6.1), and the median OS was 10.8 months (95% CI 9.0-12.5). Pembrolizumab monotherapy was well tolerated, with 18 patients having to stop treatment owing to immune-related adverse events (irAEs). 53 patients proceeded to second-line treatment with a median PFS2 of 10.2 months (95% CI: 8.8-11.5). Moreover, patients with documented irAEs had a statistically significant longer median PFS (11.3 vs. 3.3 months; log-rank p value = <.001) and median OS (18.8 vs. 8.9 months; log-rank p value <.001). The efficacy and safety of pembrolizumab first-line monotherapy for HNSCC has been validated using real-world data.
Collapse
Affiliation(s)
- Ifigenia Vasiliadou
- Guy's and St. Thomas NHS Foundation Trust, London, UK
- King's College London, London, UK
| | - Derek Grose
- Beatson West of Scotland Cancer Centre, Glasgow, UK
| | | | - Alekh Thapa
- Beatson West of Scotland Cancer Centre, Glasgow, UK
| | - Olly Donnelly
- Portsmouth Hospitals NHS Trust, Portsmouth, Hampshire, UK
| | - Elsa Lee
- Guy's and St. Thomas NHS Foundation Trust, London, UK
- King's College London, London, UK
| | - Isla Leslie
- Royal Marsden NHS Foundation Trust, London, UK
| | | | | | - Sarah Partridge
- Imperial College Healthcare NHS Trust-Charing Cross Hospital, London, UK
| | - Katharine Medlow
- Imperial College Healthcare NHS Trust-Charing Cross Hospital, London, UK
| | - James De Boisanger
- Imperial College Healthcare NHS Trust-Charing Cross Hospital, London, UK
| | | | | | | | | | | | | | - Ning Ma
- University Hospitals of Leicester, Leicester, UK
| | - Emma De Winton
- Royal United Hospitals Bath-NHS Foundation trust, Bath, UK
| | - Jennifer Cohen
- Royal United Hospitals Bath-NHS Foundation trust, Bath, UK
| | - Lindsay Rayner
- Royal United Hospitals Bath-NHS Foundation trust, Bath, UK
| | | | - Petra Jankowska
- Musgrove Park Hospital-Taunton and Somerset NHS Foundation Trust, Taunton, UK
| | - Jessica Mason
- Musgrove Park Hospital-Taunton and Somerset NHS Foundation Trust, Taunton, UK
| | | | - Kirsten Laws
- Aberdeen Royal Infirmary-NHS Grampian, Aberdeen, UK
| | | | | | | | - Susanna Nallamilli
- Maidstone Hospital-Tunbridge Wells Hospital-NHS Trust, Tunbridge Wells, UK
| | - Sherif Raouf
- St Bartholomew's Hospital, Barts Health NHS Trust, London, UK
| | - Kieran Palmer
- King's College London, London, UK
- St Bartholomew's Hospital, Barts Health NHS Trust, London, UK
| | | | | | | | | | - Kevin Harrington
- Royal Marsden NHS Foundation Trust, London, UK
- The Institute of Cancer Research, London, UK
| | - Shreerang Bhide
- Royal Marsden NHS Foundation Trust, London, UK
- The Institute of Cancer Research, London, UK
| | - Anthony Kong
- Guy's and St. Thomas NHS Foundation Trust, London, UK
- King's College London, London, UK
| |
Collapse
|
179
|
Gomes DEB, Yang B, Vanella R, Nash MA, Bernardi RC. Integrating Dynamic Network Analysis with AI for Enhanced Epitope Prediction in PD-L1:Affibody Interactions. J Am Chem Soc 2024; 146:23842-23853. [PMID: 39146039 DOI: 10.1021/jacs.4c05869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Understanding binding epitopes involved in protein-protein interactions and accurately determining their structure are long-standing goals with broad applicability in industry and biomedicine. Although various experimental methods for binding epitope determination exist, these approaches are typically low throughput and cost-intensive. Computational methods have potential to accelerate epitope predictions; however, recently developed artificial intelligence (AI)-based methods frequently fail to predict epitopes of synthetic binding domains with few natural homologues. Here we have developed an integrated method employing generalized-correlation-based dynamic network analysis on multiple molecular dynamics (MD) trajectories, initiated from AlphaFold2Multimer structures, to unravel the structure and binding epitope of the therapeutic PD-L1:Affibody complex. Both AlphaFold2 and conventional molecular dynamics trajectory analysis were ineffective in distinguishing between two proposed binding models, parallel and perpendicular. However, our integrated approach, utilizing dynamic network analysis, demonstrated that the perpendicular mode was significantly more stable. These predictions were validated using a suite of experimental epitope mapping protocols, including cross-linking mass spectrometry and next-generation sequencing-based deep mutational scanning. Conversely, AlphaFold3 failed to predict a structure bound in the perpendicular pose, highlighting the necessity for exploratory research in the search for binding epitopes and challenging the notion that AI-generated protein structures can be accepted without scrutiny. Our research underscores the potential of employing dynamic network analysis to enhance AI-based structure predictions for more accurate identification of protein-protein interaction interfaces.
Collapse
Affiliation(s)
- Diego E B Gomes
- Department of Physics, Auburn University, Auburn, Alabama 36849, United States
| | - Byeongseon Yang
- Institute of Physical Chemistry, Department of Chemistry, University of Basel, Basel 4058, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, Basel 4058, Switzerland
| | - Rosario Vanella
- Institute of Physical Chemistry, Department of Chemistry, University of Basel, Basel 4058, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, Basel 4058, Switzerland
| | - Michael A Nash
- Institute of Physical Chemistry, Department of Chemistry, University of Basel, Basel 4058, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, Basel 4058, Switzerland
| | - Rafael C Bernardi
- Department of Physics, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
180
|
Li V, Frasier K, Vinagolu-Baur J, Chapman O, Loperfito A, Daly K, Taranto V. Beyond the Scalpel: Advancing Strategic Approaches and Targeted Therapies in Nonexcisable Melanomas. J Skin Cancer 2024; 2024:2167176. [PMID: 39229331 PMCID: PMC11371453 DOI: 10.1155/2024/2167176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 08/07/2024] [Indexed: 09/05/2024] Open
Abstract
Melanoma in challenging anatomical locations such as the face, acral surfaces, and mucosal areas presents unique hurdles for surgical excision. This review examines alternative nonsurgical treatment modalities in the context of these complexities, addressing the gaps in current guidelines and the varied efficacy of existing therapies. A comprehensive literature search was conducted using PubMed, Embase, and Web of Science databases. The review focuses on peer-reviewed articles discussing nonsurgical treatment options for melanoma in complex anatomical locations. Articles were screened by three independent researchers, ensuring a broad analysis of topical agents, immunotherapies, radiotherapies, and targeted therapies. The review highlights significant advancements in localized treatments such as imiquimod and intralesional therapy with talimogene laherparepvec (T-VEC), which show promise in managing nonexcisable melanomas. BRAF and MEK inhibitors, as well as checkpoint inhibitors targeting CTLA-4 and PD-1/PD-L1 pathways, demonstrate improved survival rates but pose challenges with resistance and systemic side effects. Radiotherapy serves as an adjunctive strategy due to melanoma's inherent radioresistant properties. Despite advancements, there is a notable absence of comprehensive, evidence-based protocols to guide the treatment of melanoma in these critical areas. This paper underscores the need for standardized treatment guidelines that account for the efficacy, side effects, and psychosocial impacts of therapies. Future research should focus on refining existing treatments and exploring innovative modalities to enhance patient outcomes in the management of nonexcisable melanomas. Comprehensive guidelines and long-term efficacy studies are essential to optimize care and improve the quality of life for patients afflicted with melanoma in challenging anatomical locations.
Collapse
Affiliation(s)
- Vivian Li
- Nuvance Health, Vassar Brothers Medical Center, Poughkeepsie, NY 12601, USA
| | - Kelly Frasier
- Nuvance Health, Vassar Brothers Medical Center, Poughkeepsie, NY 12601, USA
| | - Julia Vinagolu-Baur
- State University of New York, Upstate Medical University, Syracuse, NY 13210, USA
| | - Olivia Chapman
- Mercy Health St. Elizabeth Boardman Hospital, Youngstown, OH 44512, USA
| | | | - Kathleen Daly
- The Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Viktoria Taranto
- New York Institute of Technology College of Osteopathic Medicine, Glean Head, NY 11545, USA
| |
Collapse
|
181
|
Mooradian MJ, Fintelmann FJ, LaSalle TJ, Simon J, Graur A, Muzikansky A, Mino-Kenudson M, Shalhout S, Kaufman HL, Jenkins RW, Lawrence D, Lawless A, Sharova T, Uppot RN, Fang J, Blaum EM, Gonye ALK, Gushterova I, Boland GM, Azzoli C, Hacohen N, Sade-Feldman M, Sullivan RJ. Cryoablation and post-progression immune checkpoint inhibition in metastatic melanoma: a phase II trial. Nat Commun 2024; 15:7357. [PMID: 39191779 PMCID: PMC11349953 DOI: 10.1038/s41467-024-51722-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 08/16/2024] [Indexed: 08/29/2024] Open
Abstract
Image-guided percutaneous cryoablation is an established minimally invasive oncologic treatment. We hypothesized that cryoablation may modify the immune microenvironment through direct modulation of the tumor, thereby generating an anti-tumor response in tumors refractory to immune checkpoint inhibition (ICI). In this non-randomized phase II single-center study (NCT03290677), subjects with unresectable melanoma progressing on ICI underwent cryoablation of an enlarging metastasis, and ICI was continued for a minimum of two additional cycles. The primary endpoints were safety, feasibility and tumor response in non-ablated lesions. From May 2018 through July 2020, 17 patients were treated on study. The study met its primary endpoints with the combination strategy found to be safe and feasible with an objective response rate of 23.5% and disease control rate of 41% (4 partial response, 3 stable disease). Our data support further study of this synergistic therapeutic approach.
Collapse
Affiliation(s)
- Meghan J Mooradian
- Division of Medical Oncology, Massachusetts General Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| | - Florian J Fintelmann
- Harvard Medical School, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Thomas J LaSalle
- Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, MA, USA
- Broad Institute of the Massachusetts Institute of Technology, Boston, MA, USA
- Program in Health Sciences and Technology, Harvard Medical School & Massachusetts Institute of Technology, Boston, MA, USA
| | - Judit Simon
- Harvard Medical School, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Alexander Graur
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Alona Muzikansky
- Biostatics Department, Massachusetts General Hospital, Boston, MA, USA
| | - Mari Mino-Kenudson
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Sophia Shalhout
- Division of Surgical Oncology, Department of Otolaryngology-Head and Neck Surgery, Mass Eye and Ear, Boston, MA, USA
| | - Howard L Kaufman
- Division of Medical Oncology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Russell W Jenkins
- Division of Medical Oncology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Donald Lawrence
- Division of Medical Oncology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Aleigha Lawless
- Division of Medical Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Tatyana Sharova
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Raul N Uppot
- Harvard Medical School, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Jacy Fang
- Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, MA, USA
- Broad Institute of the Massachusetts Institute of Technology, Boston, MA, USA
| | - Emily M Blaum
- Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, MA, USA
- Broad Institute of the Massachusetts Institute of Technology, Boston, MA, USA
| | - Anna L K Gonye
- Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, MA, USA
- Broad Institute of the Massachusetts Institute of Technology, Boston, MA, USA
| | - Irena Gushterova
- Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, MA, USA
- Broad Institute of the Massachusetts Institute of Technology, Boston, MA, USA
| | - Genevieve M Boland
- Harvard Medical School, Boston, MA, USA
- Broad Institute of the Massachusetts Institute of Technology, Boston, MA, USA
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Christopher Azzoli
- Division of Medical Oncology, Massachusetts General Hospital, Boston, MA, USA
- Division of Hematology/Oncology, Lifespan Cancer Institute, Brown University, Providence, RI, USA
| | - Nir Hacohen
- Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, MA, USA
- Broad Institute of the Massachusetts Institute of Technology, Boston, MA, USA
| | - Moshe Sade-Feldman
- Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, MA, USA
- Broad Institute of the Massachusetts Institute of Technology, Boston, MA, USA
| | - Ryan J Sullivan
- Division of Medical Oncology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
182
|
Juan-Carpena G, Martínez-Banaclocha N, Palazón-Cabanes JC, Niveiro-de Jaime M, Betlloch-Mas I, Blanes-Martínez M. Cutaneous immune-related adverse events: incidence rates, risk factors and association with extracutaneous toxicity - a prospective study of 189 patients treated with checkpoint inhibitors at a Spanish tertiary care hospital. Clin Exp Dermatol 2024; 49:991-1001. [PMID: 38372424 DOI: 10.1093/ced/llae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/11/2024] [Accepted: 02/12/2024] [Indexed: 02/20/2024]
Abstract
BACKGROUND Clinicians are increasingly prescribing immune checkpoint inhibitors (ICIs) to treat cancer, but the real-world incidence, characteristics and risk factors of cutaneous immune-related adverse events (cirAEs) are unclear. OBJECTIVES To determine the incidence, features and risk factors of cirAEs and to measure their possible association with extracutaneous toxicity. METHODS We conducted a prospective observational study in a Spanish tertiary care hospital, including people who started an ICI between March 2020 and May 2022. We used a survival analysis and a log-rank test to obtain and compare incidence rates, and a multivariate Cox model to detect risk factors for cirAEs. RESULTS We included 189 patients, 82 (43.4%) of whom presented cutaneous toxicity. The incidence of cirAEs was 75.0 per 100 person-years, with a 50.0% probability of the appearance of a cirAE at 10 months of follow-up. The most frequent cirAE category was inflammatory dermatoses, and the most frequent types were pruritus, eczema and maculopapular eruptions. ICI combination therapy, a family history of psoriasis and rheumatological and pulmonary immune-related adverse events increased the risk of cirAEs. CONCLUSIONS We found a high incidence of cirAEs, and they occurred early in the follow-up period. Dermatologists should be involved in the management of cirAEs, especially in people with risk factors.
Collapse
Affiliation(s)
- Gloria Juan-Carpena
- Department of Dermatology, Morales Meseguer University Hospital, Murcia, Spain
- Toxirel Investigation Group, Alicante, Spain
| | - Natividad Martínez-Banaclocha
- Toxirel Investigation Group, Alicante, Spain
- Department of Oncology, Dr. Balmis University General Hospital, Alicante, Spain
- Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain
| | | | - María Niveiro-de Jaime
- Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain
- Department of Pathology, Dr. Balmis University General Hospital, Alicante, Spain
| | - Isabel Betlloch-Mas
- Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain
- Dermatology, Dr. Balmis University General Hospital, Alicante, Spain
- Miguel Hernández University of Elche, Alicante, Spain
| | - Mar Blanes-Martínez
- Toxirel Investigation Group, Alicante, Spain
- Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain
- Dermatology, Dr. Balmis University General Hospital, Alicante, Spain
| |
Collapse
|
183
|
Marxgut L, Desagneaux A, Bellier A, Mouret S, Charles J, Laramas M, Verry C. Outcomes of adjuvant lymph node field radiotherapy and immunotherapy for stage III melanoma. Cancer Radiother 2024:S1278-3218(24)00099-4. [PMID: 39174360 DOI: 10.1016/j.canrad.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/20/2024] [Accepted: 03/27/2024] [Indexed: 08/24/2024]
Abstract
PURPOSE With the promising results of immunotherapy in patients with stage III melanoma, the role of adjuvant radiotherapy after resection and complete lymph-node dissection must be reassessed. We evaluate the outcomes and safety of adjuvant radiotherapy and immunotherapy compared to immunotherapy only in patients with resected stage III melanoma. PATIENTS AND METHODS This retrospective and single institution study included patients treated for a stage III melanoma with complete lymph-node dissection and adjuvant immunotherapy from January 2019 to December 2022. The radiotherapy associated with immunotherapy group was defined by completion of immunotherapy and adjuvant radiotherapy in the lymph-node dissection area. The primary endpoint was disease-free survival. The secondary endpoints were locoregional progression, incidence of adverse events grade 3 or above and disease-free survival rate in patients with high risk of locoregional recurrence. RESULTS Thirty-three patients were included. Among them, twelve received adjuvant lymph-node field radiotherapy. The median duration of follow-up was 17months (range: 8-45months). Patients receiving radiotherapy and immunotherapy had a significantly higher disease stage and more frequent extracapsular extension. At 12months, the disease-free survival rate was 66.7% for the patients receiving immunotherapy alone (95% CI: 42.5-82.5%) and 83.3% for those receiving radiotherapy and immunotherapy (95% CI: 48.2-95.6%; P=0.131). The locoregional progression rate was 24% in patients receiving immunotherapy and 8% in patients receiving immunotherapy and radiotherapy (P=0.379). After adjuvant treatment, 6% of patients developed grade 3 or above immunotherapy-related events and none developed grade 3 or above radiation-related adverse events. CONCLUSION In patients with stage III melanoma, adjuvant lymph-node field radiotherapy combined with immunotherapy seems to be associated with longer disease-free survival, with acceptable tolerance. However, these results need to be confirmed by long-term and prospective studies.
Collapse
Affiliation(s)
- L Marxgut
- Department of Radiation Oncology, CHU Grenoble Alpes, avenue Maquis-du-Grésivaudan, 38700 La Tronche, France.
| | - A Desagneaux
- Department of Radiation Oncology, CHU Grenoble Alpes, avenue Maquis-du-Grésivaudan, 38700 La Tronche, France
| | - A Bellier
- Department of Dermatology, CHU Grenoble Alpes, avenue Maquis-du-Grésivaudan, 38700 La Tronche, France
| | - S Mouret
- Department of Clinical Investigation Research, CHU Grenoble Alpes, avenue Maquis-du-Grésivaudan, 38700 La Tronche, France
| | - J Charles
- Department of Clinical Investigation Research, CHU Grenoble Alpes, avenue Maquis-du-Grésivaudan, 38700 La Tronche, France
| | - M Laramas
- Department of Oncology, CHU Grenoble Alpes, avenue Maquis-du-Grésivaudan, 38700 La Tronche, France
| | - C Verry
- Department of Radiation Oncology, CHU Grenoble Alpes, avenue Maquis-du-Grésivaudan, 38700 La Tronche, France
| |
Collapse
|
184
|
Hamid O, Lewis KD, Weise A, McKean M, Papadopoulos KP, Crown J, Kim TM, Lee DH, Thomas SS, Mehnert J, Kaczmar J, Lakhani NJ, Kim KB, Middleton MR, Rabinowits G, Spira AI, Yushak M, Mehmi I, Fang F, Chen S, Mani J, Jankovic V, Wang F, Fiaschi N, Brennan L, Paccaly A, Masinde S, Salvati M, Fury MG, Kroog G, Lowy I, Gullo G. Phase I Study of Fianlimab, a Human Lymphocyte Activation Gene-3 (LAG-3) Monoclonal Antibody, in Combination With Cemiplimab in Advanced Melanoma. J Clin Oncol 2024; 42:2928-2938. [PMID: 38900987 PMCID: PMC11328921 DOI: 10.1200/jco.23.02172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/26/2024] [Accepted: 03/20/2024] [Indexed: 06/22/2024] Open
Abstract
PURPOSE Coblockade of lymphocyte activation gene-3 (LAG-3) and PD-1 receptors could provide significant clinical benefit for patients with advanced melanoma. Fianlimab and cemiplimab are high-affinity, human, hinge-stabilized IgG4 monoclonal antibodies, targeting LAG-3 and PD-1, respectively. We report results from a first-in-human phase-I study of fianlimab and cemiplimab safety and efficacy in various malignancies including advanced melanoma. METHODS Patients with advanced melanoma were eligible for enrollment into four cohorts: three for patients without and one for patients with previous anti-PD-1 therapy in the advanced disease setting. Patients were treated with fianlimab 1,600 mg and cemiplimab 350 mg intravenously once every 3 weeks for up to 51 weeks, with an optional additional 51 weeks if clinically indicated. The primary end point was objective response rate (ORR) per RECIST 1.1 criteria. RESULTS ORRs were 63% for patients with anti-PD-1-naïve melanoma (cohort-6; n = 40; median follow-up 20.8 months), 63% for patients with systemic treatment-naïve melanoma (cohort-15; n = 40; 11.5 months), and 56% for patients with previous neo/adjuvant treatment melanoma (cohort-16; n = 18, 9.7 months). At a median follow-up of 12.6 months for the combined cohorts (6 + 15 + 16), the ORR was 61.2% and the median progression-free survival (mPFS) 13.3 months (95% CI, 7.5 to not estimated [NE]). In patients (n = 13) with previous anti-PD-1 adjuvant therapy, ORR was 61.5% and mPFS 12 months (95% CI, 1.4 to NE). ORR in patients with previous anti-PD-1 therapy for advanced disease (n = 15) was 13.3% and mPFS 1.5 months (95% CI, 1.3 to 7.7). Treatment-emergent and treatment-related adverse events ≥grade 3 (G3) were observed in 44% and 22% of patients, respectively. Except for increased incidence of adrenal insufficiency (12%-G1-4, 4%-G3-4), no new safety signals were recorded. CONCLUSION The current results show a promising benefit-risk profile of fianlimab/cemiplimab combination for patients with advanced melanoma, including those with previous anti-PD-1 therapy in the adjuvant, but not advanced, setting.
Collapse
Affiliation(s)
- Omid Hamid
- The Angeles Clinical and Research Institute, a Cedars-Sinai Affiliate, Los Angeles, CA
| | - Karl D. Lewis
- University of Colorado Denver Cancer Center, Aurora, CO
| | | | - Meredith McKean
- Sarah Cannon Research Institute/Tennessee Oncology PLLC, Nashville, TN
| | | | - John Crown
- St Vincent's University Hospital, Dublin, Ireland
| | - Tae Min Kim
- Seoul National University Hospital, Seoul, South Korea
| | | | - Sajeve S. Thomas
- University of Florida Health Cancer Center at Orlando Health, Orlando, FL
| | - Janice Mehnert
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ
| | | | | | - Kevin B. Kim
- Center for Melanoma Research and Treatment, California Pacific Medical Center Research Institute, San Francisco, CA
| | - Mark R. Middleton
- Department of Oncology, NIHR Biomedical Research Centre, Oxford, United Kingdom
| | | | | | - Melinda Yushak
- Department of Hematology and Medical Oncology at Emory University School of Medicine, Atlanta, GA
| | - Inderjit Mehmi
- The Angeles Clinical and Research Institute, a Cedars-Sinai Affiliate, Los Angeles, CA
| | - Fang Fang
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY
| | | | | | | | - Fang Wang
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY
| | | | | | | | | | | | | | - Glenn Kroog
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY
| | - Israel Lowy
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY
| | | |
Collapse
|
185
|
Yang J, Yu H, Zhang Y, Zhu M, Zhang M, Wang Q. Efficacy of PD-1 or PD-L1 inhibitors for the therapy of cervical cancer with varying PD-L1 expression levels: a single-arm meta-analysis. Front Oncol 2024; 14:1454372. [PMID: 39228980 PMCID: PMC11368785 DOI: 10.3389/fonc.2024.1454372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 07/26/2024] [Indexed: 09/05/2024] Open
Abstract
Objective To assess the effectiveness and tolerability of both PD-1 and PD-L1 inhibitors in advanced cervical cancer (CC), focusing on varying PD-L1 levels. Methods A comprehensive exploration was carried out on EMBASE, PubMed, Cochrane Library databases as well as Web of Science up to May 25, 2024, for studies involving advanced CC patients receiving PD-1/PD-L1 inhibitors. Inclusion criteria were studies reporting objective response rate (ORR), disease control rate (DCR), median progression-free survival (PFS), as well as median overall survival (OS). Data extraction and quality assessment were performed by two reviewers using the JBI Case Series Critical Appraisal Checklist, followed by a meta-analysis via STATA/MP 16.0. Results Five eligible studies comprising 223 patients were chosen. ORR and DCR were 42% (95% CI: 17%-66%, P = 0.00) and 70% (95% CI: 22%-117%, P = 0.00), respectively, in the PD-L1 positive patients and were 36% (95% CI: 17%-54%, P = 0.00) and 47% (95% CI: 30%-63%, P = 0.00), respectively, in patients with PD-L1 negativity. For patients exhibiting PD-L1 positivity, median PFS and median OS were 3.98 months (95% CI: 0.80-7.16, P = 0.01) and 11.26 months (95% CI: 3.01-12.58, P = 0.00), respectively. Conclusion With PD-1/PD-L1 inhibitors, PD-L1 positive CC patients demonstrate superior ORR, DCR, median PFS, and median OS, underscoring PD-L1 as one biomarker for immunotherapy response.
Collapse
Affiliation(s)
| | | | | | | | | | - Qiming Wang
- Department of Gynaecology, III, Women’s and Children’s Hospital of Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
186
|
Nguyen YTM, Sibley L, Przanowski P, Zhao XY, Kovacs M, Wang S, Jones MK, Cowan M, Liu W, Merchak AR, Gaultier A, Janes K, Zang C, Harris T, Ewald SE, Zong H. Toxoplasma gondii infection supports the infiltration of T cells into brain tumors. J Neuroimmunol 2024; 393:578402. [PMID: 38996717 PMCID: PMC11318612 DOI: 10.1016/j.jneuroim.2024.578402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/03/2024] [Accepted: 07/07/2024] [Indexed: 07/14/2024]
Abstract
Few T cells infiltrate into primary brain tumors, fundamentally hampering the effectiveness of immunotherapy. We hypothesized that Toxoplasma gondii, a microorganism that naturally elicits a Th1 response in the brain, can promote T cell infiltration into brain tumors despite their immune suppressive microenvironment. Using a mouse genetic model for medulloblastoma, we found that T. gondii infection induced the infiltration of activatable T cells into the tumor mass and led to myeloid cell reprogramming toward a T cell-supportive state, without causing severe health issues in mice. The study provides a concrete foundation for future studies to take advantage of the immune modulatory capacity of T. gondii to facilitate brain tumor immunotherapy.
Collapse
Affiliation(s)
- Yen T M Nguyen
- Department of Microbiology, Immunology, and Cancer Biology at the Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Lydia Sibley
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Piotr Przanowski
- Department of Biomedical Engineering, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Xiao-Yu Zhao
- Department of Microbiology, Immunology, and Cancer Biology at the Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Michael Kovacs
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Shengyuan Wang
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Marieke K Jones
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Maureen Cowan
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Wenjie Liu
- Department of Microbiology, Immunology, and Cancer Biology at the Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Andrea R Merchak
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Alban Gaultier
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Kevin Janes
- Department of Biomedical Engineering, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Chongzhi Zang
- Department of Biomedical Engineering, University of Virginia School of Medicine, Charlottesville, VA, USA; Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA, USA; Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Tajie Harris
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Sarah E Ewald
- Department of Microbiology, Immunology, and Cancer Biology at the Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, USA.
| | - Hui Zong
- Department of Microbiology, Immunology, and Cancer Biology at the Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, USA.
| |
Collapse
|
187
|
Gavil NV, Cheng K, Masopust D. Resident memory T cells and cancer. Immunity 2024; 57:1734-1751. [PMID: 39142275 PMCID: PMC11529779 DOI: 10.1016/j.immuni.2024.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/04/2024] [Accepted: 06/28/2024] [Indexed: 08/16/2024]
Abstract
Tissue-resident memory T (TRM) cells positively correlate with cancer survival, but the anti-tumor mechanisms underlying this relationship are not understood. This review reconciles these observations, summarizing concepts of T cell immunosurveillance, fundamental TRM cell biology, and clinical observations on the role of TRM cells in cancer and immunotherapy outcomes. We also discuss emerging strategies that utilize TRM-phenotype cells for patient diagnostics, staging, and therapy. Current challenges are highlighted, including a lack of standardized T cell nomenclature and our limited understanding of relationships between T cell markers and underlying tumor biology. Existing findings are integrated into a summary of the field while emphasizing opportunities for future research.
Collapse
Affiliation(s)
- Noah Veis Gavil
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Katarina Cheng
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA; Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - David Masopust
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA.
| |
Collapse
|
188
|
Joshi DC, Sharma A, Prasad S, Singh K, Kumar M, Sherawat K, Tuli HS, Gupta M. Novel therapeutic agents in clinical trials: emerging approaches in cancer therapy. Discov Oncol 2024; 15:342. [PMID: 39127974 PMCID: PMC11317456 DOI: 10.1007/s12672-024-01195-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Novel therapeutic agents in clinical trials offer a paradigm shift in the approach to battling this prevalent and destructive disease, and the area of cancer therapy is on the precipice of a trans formative revolution. Despite the importance of tried-and-true cancer treatments like surgery, radiation, and chemotherapy, the disease continues to evolve and adapt, making new, more potent methods necessary. The field of cancer therapy is currently witnessing the emergence of a wide range of innovative approaches. Immunotherapy, including checkpoint inhibitors, CAR-T cell treatment, and cancer vaccines, utilizes the host's immune system to selectively target and eradicate malignant cells while minimizing harm to normal tissue. The development of targeted medicines like kinase inhibitors and monoclonal antibodies has allowed for more targeted and less harmful approaches to treating cancer. With the help of genomics and molecular profiling, "precision medicine" customizes therapies to each patient's unique genetic makeup to maximize therapeutic efficacy while minimizing unwanted side effects. Epigenetic therapies, metabolic interventions, radio-pharmaceuticals, and an increasing emphasis on combination therapy with synergistic effects further broaden the therapeutic landscape. Multiple-stage clinical trials are essential for determining the safety and efficacy of these novel drugs, allowing patients to gain access to novel treatments while also furthering scientific understanding. The future of cancer therapy is rife with promise, as the integration of artificial intelligence and big data has the potential to revolutionize early detection and prevention. Collaboration among researchers, and healthcare providers, and the active involvement of patients remain the bedrock of the ongoing battle against cancer. In conclusion, the dynamic and evolving landscape of cancer therapy provides hope for improved treatment outcomes, emphasizing a patient-centered, data-driven, and ethically grounded approach as we collectively strive towards a cancer-free world.
Collapse
Affiliation(s)
- Deepak Chandra Joshi
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandar Sindri, Dist., Ajmer, Rajasthan, India.
| | - Anurag Sharma
- Invertis Institute of Pharmacy, Invertis University Bareilly Uttar Pradesh, Bareilly, India
| | - Sonima Prasad
- Chandigarh University, Ludhiana-Chandigarh State Highway, Gharuan, Mohali, Punjab, 140413, India
| | - Karishma Singh
- Institute of Pharmaceutical Sciences, Faculty of Engineering and Technology, University of Lucknow, Lucknow, India
| | - Mayank Kumar
- Himalayan Institute of Pharmacy, Road, Near Suketi Fossil Park, Kala Amb, Hamidpur, Himachal Pradesh, India
| | - Kajal Sherawat
- Meerut Institute of Technology, Meerut, Uttar Pradesh, India
| | - Hardeep Singh Tuli
- Department of Bio-Sciences & Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, India
| | - Madhu Gupta
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, India.
| |
Collapse
|
189
|
Chen H, Lu Z, Ni X, Zhang H, Chen G, Wu X, Ding M. The development of anti-PD-1 antibody-induced spinal cord injury in bone marrow transplant C57BL/6 Rag1-/- mouse model. Immunotherapy 2024; 16:975-985. [PMID: 39115961 PMCID: PMC11486090 DOI: 10.1080/1750743x.2024.2383557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 07/19/2024] [Indexed: 08/10/2024] Open
Abstract
Aims: This paper was to scrutinize the toxicity mechanism of anti-programmed death 1 (anti-PD-1) therapy-caused spinal cord injury (SCI).Methods: Bone marrow transplant Rag1-/- mice were used to establish SCI model.Results: Anti-PD-1 results in SCI via CD8+ T-cells activation, while excessive activation of CD8+ T-cells further aggravated SCI. Both anti-PD-1 and the activation of CD8+ T-cells induced the expression of apoptosis-related perforin, GrB and FasL, but suppressed PI-9 level. The opposite results were observed in the effects of neuroserpin on these factors. CD8+ T-cells activation induced neurotoxicity via upregulation perforin, GrB and FasL and inhibiting PI-9. Additionally, neuroserpin suppressed CD8+ T-cells activation via perforin/GrB/PI-9/FasL pathways.Conclusion: These results may provide theoretical foundation for the clinical treatment of SCI caused by anti-PD-1.
Collapse
Affiliation(s)
- Huachun Chen
- Department of Respiratory & Critical Care Medicine, Jinhua Guangfu Cancer Hospital, Jinhua, 321001, Zhejiang, China
| | - Zhouxiao Lu
- Department of Respiratory & Critical Care Medicine, Jinhua Guangfu Cancer Hospital, Jinhua, 321001, Zhejiang, China
| | - Xiaowei Ni
- Department of Respiratory & Critical Care Medicine, Jinhua Guangfu Cancer Hospital, Jinhua, 321001, Zhejiang, China
| | - Hui Zhang
- Institute of Pharmacology, Jinhua Food & Drug Inspection & Testing Research Institute, Jinhua, 321002, Zhejiang, China
| | - Guiyuan Chen
- School of Medicine, Jinhua Polytechnic, Jinhua, 321007, Zhejiang, China
| | - Xiaoyu Wu
- Department of Respiratory & Critical Care Medicine, Jinhua Guangfu Cancer Hospital, Jinhua, 321001, Zhejiang, China
| | - Mingxing Ding
- School of Medicine, Jinhua Polytechnic, Jinhua, 321007, Zhejiang, China
| |
Collapse
|
190
|
Akdogan O, Ogut B, Sutcuoglu O, Sert A, Gurler F, Akyurek N, Ozdemir N, Ozet A, Yazici O. The impact of the expression level of growth differentiation factor 15 in tumor tissue on the response to immunotherapy in non-small cell lung cancer. BMC Cancer 2024; 24:954. [PMID: 39103762 PMCID: PMC11301833 DOI: 10.1186/s12885-024-12727-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND Growth differentiation factor-15 (GDF-15), a member of the TGF-β superfamily, is overexpressed in various cancers and facilitates immune evasion by inhibiting T-cell activation. GDFATHER-TRIAL's phase 2a results demonstrated promising outcomes when combining the GDF-15 neutralizing antibody visugromab (CTL002) with nivolumab, enhancing the response to immunotherapy. This study evaluated the prognostic significance of GDF-15 expression in non-small cell lung cancer (NSCLC) tumor tissues in terms of immunotherapy response. METHODS This retrospective study included 50 patients with metastatic NSCLC treated with nivolumab at Gazi University Hospital between January 2021 and July 2023. GDF-15 expression was evaluated using immunochemistry staining and categorized based on the intensity of cytoplasmic or membranous staining. Samples were divided into a low expression group (scores 0 and 1) and a high expression group (scores 2 and 3). The primary outcomes were progression-free survival (PFS) and overall survival (OS), which were analyzed using Kaplan‒Meier and Cox proportional hazards models. Objective response rates were assessed in secondary outcomes. RESULTS Of the 50 patients, 43 were men (86%), with a median age of 63.9 years. Half of the patients exhibited low GDF-15 expression. High GDF-15 expression correlated with shorter PFS and OS. The median PFS was 7.8 months for the low-expression group versus 4.4 months for the high-expression group (HR, 0.41; 95% CI, 0.20-0.83; p = 0.013). The median OS was 18.1 months for the low-expression group compared to 11.8 months for the high-expression group (HR, 0.36; 95% CI, 0.16-0.78; p = 0.007). The objective response rate was significantly greater in the low GDF-15 group (52%) than in the high GDF-15 group (24%) (p = 0.040). CONCLUSION Elevated GDF-15 expression in NSCLC tumor tissues is associated with poorer response to nivolumab, suggesting that GDF-15 is a potential prognostic biomarker for immunotherapy efficacy. These findings warrant further validation through prospective studies to optimize treatment strategies for NSCLC patients.
Collapse
Affiliation(s)
- Orhun Akdogan
- Faculty of Medicine, Department of Medical Oncology, Gazi University, Ankara, Turkey.
| | - Betul Ogut
- Faculty of Medicine, Department of Pathology, Gazi University, Ankara, Turkey
| | - Osman Sutcuoglu
- Faculty of Medicine, Department of Medical Oncology, Gazi University, Ankara, Turkey
| | - Aysenur Sert
- Faculty of Medicine, Department of Pathology, Gazi University, Ankara, Turkey
| | - Fatih Gurler
- Faculty of Medicine, Department of Medical Oncology, Gazi University, Ankara, Turkey
| | - Nalan Akyurek
- Faculty of Medicine, Department of Pathology, Gazi University, Ankara, Turkey
| | - Nuriye Ozdemir
- Faculty of Medicine, Department of Medical Oncology, Gazi University, Ankara, Turkey
| | - Ahmet Ozet
- Faculty of Medicine, Department of Medical Oncology, Gazi University, Ankara, Turkey
| | - Ozan Yazici
- Faculty of Medicine, Department of Medical Oncology, Gazi University, Ankara, Turkey
| |
Collapse
|
191
|
Shajari N, Baradaran B, Tohidkia MR, Nasiri H, Sepehri M, Setayesh S, Aghebati-Maleki L. Advancements in Melanoma Therapies: From Surgery to Immunotherapy. Curr Treat Options Oncol 2024; 25:1073-1088. [PMID: 39066854 DOI: 10.1007/s11864-024-01239-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2024] [Indexed: 07/30/2024]
Abstract
OPINION STATEMENT Melanoma is defined as the most aggressive and deadly form of skin cancer. The treatment of melanoma depends on the disease stage, tumor location, and extent of its spread from its point of origin. Melanoma treatment has made significant advances, notably in the context of targeted and immunotherapies. Surgical resection is the main therapeutic option for earlystage melanoma, and it provides favourable outcomes. With disease metastasis, systemic treatments such as immunotherapy and targeted therapy become increasingly important. The identification of mutations that lead to melanoma has influenced treatment strategies. Targeted therapies focusing on these mutations offer improved response rates and fewer toxicities than conventional chemotherapy. Furthermore, developing immunotherapies, including checkpoint inhibitors and tumor-infiltrating lymphocyte (TIL) therapies, has demonstrated encouraging outcomes in effectively combating cancer cells. These therapeutic agents demonstrate superior effectiveness and a more tolerable side-effect profile, improving the quality of life for patients receiving treatment. The future of melanoma treatment may involve a multimodal approach consisting of a combination of surgery, targeted therapy, and immunotherapy adapted to each patient's profile. This approach may improve survival rates and health outcomes.
Collapse
Affiliation(s)
- Neda Shajari
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Tohidkia
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Nasiri
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Sepehri
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepideh Setayesh
- Department of Pathology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
192
|
Meng Y, Sun J, Zhang G. A viable remedy for overcoming resistance to anti-PD-1 immunotherapy: Fecal microbiota transplantation. Crit Rev Oncol Hematol 2024; 200:104403. [PMID: 38838927 DOI: 10.1016/j.critrevonc.2024.104403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/12/2024] [Accepted: 05/24/2024] [Indexed: 06/07/2024] Open
Abstract
Anti-PD-1 immunotherapy is a cancer therapy that focuses explicitly on the PD-1 receptor found on the surface of immune cells. This targeted therapeutic strategy is specifically designed to amplify the immune system's innate capacity to detect and subsequently eliminate cells that have become cancerous. Nevertheless, it should be noted that not all patients exhibit a favourable response to this particular therapeutic modality, necessitating the exploration of novel strategies to augment the effectiveness of immunotherapy. Previous studies have shown that fecal microbiota transplantation (FMT) can enhance the efficacy of anti-PD-1 immunotherapy in advanced melanoma patients. To investigate this intriguing possibility further, we turned to PubMed and conducted a comprehensive search for studies that analyzed the interplay between FMT and anti-PD-1 therapy in the context of tumor treatment. Our search criteria were centred around two key phrases: "fecal microbiota transplantation" and "anti-PD-1 therapy." The studies we uncovered all echo a similar sentiment. They pointed towards the potential of FMT to improve the effectiveness of immunotherapy. FMT may enhance the effectiveness of immunotherapy by altering the gut microbiota and boosting the patient's immunological response. Although promising, additional investigation is needed to improve the efficacy of FMT in the context of cancer therapy and attain a comprehensive understanding of the possible advantages and drawbacks associated with this therapeutic strategy.
Collapse
Affiliation(s)
- Yiming Meng
- Department of Central Laboratory, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No. 44, Xiaoheyan road, Dadong district, Shenyang 110042, China.
| | - Jing Sun
- Department of Biobank, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No. 44, Xiaoheyan road, Dadong district, Shenyang 110042, China
| | - Guirong Zhang
- Department of Central Laboratory, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No. 44, Xiaoheyan road, Dadong district, Shenyang 110042, China
| |
Collapse
|
193
|
Guérin MV, Ruggiu M, Bousso P. [The unexpected role of interleukin 4 within the draining lymph node in response to anti-PD1 therapy]. Med Sci (Paris) 2024; 40:613-615. [PMID: 39303110 DOI: 10.1051/medsci/2024088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024] Open
Affiliation(s)
- Marion V Guérin
- Institut Pasteur, Université Paris Cité, Inserm U1223, Paris, France
| | - Mathilde Ruggiu
- Institut Pasteur, Université Paris Cité, Inserm U1223, Paris, France
| | - Philippe Bousso
- Institut Pasteur, Université Paris Cité, Inserm U1223, Paris, France
| |
Collapse
|
194
|
DePalo DK, Perez MC, Huibers A, Olofsson Bagge R, Zager JS. Oncolytic intralesional therapy for metastatic melanoma. Clin Exp Metastasis 2024; 41:457-460. [PMID: 37556092 DOI: 10.1007/s10585-023-10228-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 07/28/2023] [Indexed: 08/10/2023]
Abstract
In-transit metastasis (ITM) develop in approximately 1 in 10 patients with melanoma and the disease course can vary widely. Surgical resection is the gold-standard treatment; however, ITM are often surgically unresectable due to size, distribution, and/or anatomic involvement. Oncolytic viral therapies are one category of non-surgical treatment options available for ITM. They induce tumor cell lysis and systemic anti-tumor activity through selective infection of tumor cells by naturally occurring or genetically modified factors. While there are numerous oncolytic viral therapies in various stages of development for the treatment of ITM, this discussion focuses on the mechanism and available literature for the two most established herpes virus-based therapies.
Collapse
Affiliation(s)
- Danielle K DePalo
- Department of Cutaneous Oncology, Moffitt Cancer Center, 10920 McKinley Drive Room 4123, Tampa, FL, USA
| | - Matthew C Perez
- Department of Cutaneous Oncology, Moffitt Cancer Center, 10920 McKinley Drive Room 4123, Tampa, FL, USA
| | - Anne Huibers
- Department of Surgery, Institute of Clinical Sciences, University of Gothenburg, Gothenburg, Sweden
- Department of Surgery, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Roger Olofsson Bagge
- Department of Surgery, Institute of Clinical Sciences, University of Gothenburg, Gothenburg, Sweden
- Department of Surgery, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Jonathan S Zager
- Department of Cutaneous Oncology, Moffitt Cancer Center, 10920 McKinley Drive Room 4123, Tampa, FL, USA.
- Department of Oncologic Sciences, University of South Florida Morsani College of Medicine, Tampa, FL, USA.
| |
Collapse
|
195
|
Lima IG, Silva IBUCD, Pípolo VC, Delfino VDA, Bignardi PR. Acute kidney injury associated with anti-PD-1 and anti-PD-L1 drugs: a meta-analysis of randomized clinical trials. Immunopharmacol Immunotoxicol 2024; 46:470-481. [PMID: 38825890 DOI: 10.1080/08923973.2024.2360071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 05/18/2024] [Indexed: 06/04/2024]
Abstract
BACKGROUND Immune Checkpoint Inhibitors (ICI) have been widely used in treating different types of cancer. They increase survival in many oncologic patients and enable cancer-specific therapy. Acute Kidney Injury (AKI) is one of the adverse effects associated with using ICI, where knowledge of the prevalence and renal histological findings are still reasons for discussion. OBJECTIVE Therefore, this meta-analysis evaluates the association between ICI use and AKI. METHODS The search was performed in PubMed, Lilacs, and Cochrane platforms. Studies published up to December 1, 2022, were included. RESULTS A total of 16 studies met the established PICOT criteria and were included in this review. Comparing the ICI plus chemotherapy against chemotherapy alone, the relative risk (RR) for AKI's development with ICI use was 2.89 (95%CI 1.37-6.10). In the analyses by class and drug type, programmed cell death 1 monoclonal antibody (anti-PD-1) showed an increased risk of 2.11 (95%CI 1.26-3.52), and pembrolizumab demonstrated a risk of AKI (RR= 2.77, 95%CI 1.46-5.26). Likewise, regarding the severity of AKI, AKI grade 3 or higher was more common in the ICI plus chemotherapy compared to the chemotherapy group: 3.66 (95%CI 1.19-11.30), while the subgroup analyses pooled studies comparing ICI alone versus chemotherapy alone in the control group did not demonstrate an association with AKI. CONCLUSIONS These findings suggest that ICI use is associated with an increased risk of AKI and that anti-PD-1 use is associated with a higher incidence of renal adverse events than programmed cell death ligand 1 monoclonal antibody (anti-PD-L1). Studies with adequate power and well-defined criteria for acute interstitial nephritis, nowadays taken as a synonym for AKI related to ICI, are necessary.
Collapse
Affiliation(s)
| | | | | | - Vinicius Daher Alvares Delfino
- School of Medicine, Pontifícia Universidade Católica do Paraná, Londrina, Brazil
- Universidade Estadual de Londrina, Londrina, Brazil
| | | |
Collapse
|
196
|
Li J, Hu X, Zhang S. Efficacy and side effects of pembrolizumab plus chemotherapy vs. chemotherapy alone in patients with advanced gastric or gastroesophageal junction adenocarcinoma: A meta‑analysis. Oncol Lett 2024; 28:371. [PMID: 38910906 PMCID: PMC11190732 DOI: 10.3892/ol.2024.14504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/24/2024] [Indexed: 06/25/2024] Open
Abstract
Recently, the treatment plan of pembrolizumab plus chemotherapy was regarded as a promising treatment for patients with advanced gastric cancer or gastroesophageal junction adenocarcinoma (GC/GEJC). However, the efficacy and side effects of pembrolizumab plus chemotherapy still lack evidence-based medical evidence to support. Therefore, a meta-analysis was conducted to evaluate the hot issue. By searching PubMed, EMBASE, Cochrane Library, Web of Science, any randomized clinical studies of pembrolizumab plus chemotherapy versus chemotherapy in patients with advanced GC/GEJC met the inclusion criteria were included. The quality of the literature was evaluated and the data was extracted. A correlative software was also used to analyze the data and to draw a conclusion. After screening 14,015 studies, four studies were eligible for the meta-analysis. Compared with chemotherapy alone group, the overall survival (OS) rate was significantly longer. In programmed cell death ligand 1 (PD-L1) combined positive score (CPS) ≥1 subgroup and PD-L1 CPS ≥10 subgroup analyses, the results showed that the response rate (RR) and complete response rate (CR) were both higher in pembrolizumab plus chemotherapy group compared with chemotherapy alone group. There were not significant differences in the CR, the treatment-related adverse events, succumbed to drug-related events and succumbed to immune-mediated events between the two groups. However, the effect events such as the treatment-related adverse events led to discontinuation, the 3-5 treatment-related adverse events and the immune-mediated adverse events and infusion reactions were more common in pembrolizumab plus chemotherapy group. In conclusion, the current meta-analysis revealed that, in treating advanced GC/GEJC, pembrolizumab plus chemotherapy had improved therapeutic efficacies than chemotherapy alone, as evidenced by the significantly longer OS. Furthermore, the patients in PD-L1 CPS ≥1 subgroup and PD-L1 CPS ≥10 subgroup appeared to benefit from pembrolizumab plus chemotherapy treatment because of higher RR and CR. However, side effects such as the treatment-related adverse events leading to discontinuation, the 3-5 treatment-related adverse events, and immune-mediated adverse events and infusion reactions deserved more attention.
Collapse
Affiliation(s)
- Jinquan Li
- Department of Gastrointestinal Surgery, The First People's Hospital of Jingdezhen, Jingdezhen, Jiangxi 33300, P.R. China
| | - Xiaosheng Hu
- Department of Gastrointestinal Surgery, The First People's Hospital of Jingdezhen, Jingdezhen, Jiangxi 33300, P.R. China
| | - Shanzhong Zhang
- Department of Gastrointestinal Surgery, The First People's Hospital of Jingdezhen, Jingdezhen, Jiangxi 33300, P.R. China
| |
Collapse
|
197
|
Ortega MA, Boaru DL, De Leon-Oliva D, Fraile-Martinez O, García-Montero C, Rios L, Garrido-Gil MJ, Barrena-Blázquez S, Minaya-Bravo AM, Rios-Parra A, Álvarez-Mon M, Jiménez-Álvarez L, López-González L, Guijarro LG, Diaz R, Saez MA. PD-1/PD-L1 axis: implications in immune regulation, cancer progression, and translational applications. J Mol Med (Berl) 2024; 102:987-1000. [PMID: 38935130 DOI: 10.1007/s00109-024-02463-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024]
Abstract
The PD-1/PD-L1 axis is a complex signaling pathway that has an important role in the immune system cells. Programmed cell death protein 1 (PD-1) acts as an immune checkpoint on the T lymphocytes, B lymphocytes, natural killer (NK), macrophages, dendritic cells (DCs), monocytes, and myeloid cells. Its ligand, the programmed cell death 1 ligand (PD-L1), is expressed in the surface of the antigen-presenting cells (APCs). The binding of both promotes the downregulation of the T cell response to ensure the activation to prevent the onset of chronic immune inflammation. This axis in the tumor microenvironment (TME) performs a crucial role in the tumor progression and the escape of the tumor by neutralizing the immune system, the engagement of PD-L1 with PD-1 in the T cell causes dysfunctions, neutralization, and exhaustion, providing the tumor mass production. This review will provide a comprehensive overview of the functions of the PD-1/PD-L1 system in immune function, cancer, and the potential therapeutic implications of the PD-1/PD-L1 pathway for cancer management.
Collapse
Affiliation(s)
- Miguel A Ortega
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, CIBEREHD, University of Alcalá, 28801, Alcala de Henares, Spain.
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain.
- Cancer Registry and Pathology Department, Principe de, Asturias University Hospital, Alcala de Henares, Spain.
| | - Diego Liviu Boaru
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, CIBEREHD, University of Alcalá, 28801, Alcala de Henares, Spain
| | - Diego De Leon-Oliva
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, CIBEREHD, University of Alcalá, 28801, Alcala de Henares, Spain
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, CIBEREHD, University of Alcalá, 28801, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
| | - Cielo García-Montero
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, CIBEREHD, University of Alcalá, 28801, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
| | - Laura Rios
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, CIBEREHD, University of Alcalá, 28801, Alcala de Henares, Spain
| | - Maria J Garrido-Gil
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, CIBEREHD, University of Alcalá, 28801, Alcala de Henares, Spain
| | - Silvestra Barrena-Blázquez
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
- Department of Nursing and Physiotherapy, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcala de Henares, Spain
| | - Ana M Minaya-Bravo
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, CIBEREHD, University of Alcalá, 28801, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
| | - Antonio Rios-Parra
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, CIBEREHD, University of Alcalá, 28801, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
- Cancer Registry and Pathology Department, Principe de, Asturias University Hospital, Alcala de Henares, Spain
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, CIBEREHD, University of Alcalá, 28801, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
- Immune System Diseases-Rheumatology Service, University Hospital Principe de Asturias, CIBEREHD, 28801, Alcala de Henares, Spain
| | - Laura Jiménez-Álvarez
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, CIBEREHD, University of Alcalá, 28801, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcala de Henares, Spain
| | - Laura López-González
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcala de Henares, Spain
| | - Luis G Guijarro
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, CIBEREHD, University of Alcalá, 28801, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
| | - Raul Diaz
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain.
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcala de Henares, Spain.
- Surgery Service, University Hospital Principe de Asturias, 28801, Alcala de Henares, Spain.
| | - Miguel A Saez
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, CIBEREHD, University of Alcalá, 28801, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
- Pathological Anatomy Service, Central University Hospital of Defence-University of Alcalá (UAH) Madrid, Alcala de Henares, Spain
| |
Collapse
|
198
|
Huang X, Zhang W. Overcoming T Cell Exhaustion in Tumor Microenvironment via Immune Checkpoint Modulation with Nano-Delivery Systems for Enhanced Immunotherapy. SMALL METHODS 2024; 8:e2301326. [PMID: 38040834 DOI: 10.1002/smtd.202301326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/12/2023] [Indexed: 12/03/2023]
Abstract
Immune checkpoint blockade (ICB) therapy for tumors has arisen in growing interest. However, the low response rate of tumors to ICB is mainly attributed to the inhibitory infiltration of immune cells in the tumor microenvironment (TME). Despite the promising benefits of ICB, the therapeutic effects of antibodies are dependent on a high dose and long-term usage in the clinic, thereby leading to immune-related adverse effects. Accordingly, ICB combined with nano-delivery systems could be used to overcome T cell exhaustion, which reduces the side effects and the usage of antibodies with higher response rates in patients. In this review, the authors aim to overcome T cell exhaustion in TME via immune checkpoint modulation with nano-delivery systems for enhanced immunotherapy. Several strategies are summarized to combine ICB and nano-delivery systems to further enhance immunotherapy: a) expressing immune checkpoint on the surface of nano-delivery systems; b) loading immune checkpoint inhibitors into nano-delivery systems; c) loading gene-editing technology into nano-delivery systems; and d) nano-delivery systems mediated immune checkpoint modulation. Taken together, ICB combined with nano-delivery systems might be a promising strategy to overcome T cell exhaustion in TME for enhanced immunotherapy.
Collapse
Affiliation(s)
- Xin Huang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Weiyue Zhang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
199
|
Kim YJ, Lee M, Kim EH, Lee S, Park S, Hong MH, Shin SJ, Jung I, Lee CK, Lee CS. Real-world incidences and risk factors of immune-related adverse events in patients treated with immune checkpoint inhibitors: A nationwide retrospective cohort study. Cancer Lett 2024; 596:216998. [PMID: 38830470 DOI: 10.1016/j.canlet.2024.216998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/16/2024] [Accepted: 05/26/2024] [Indexed: 06/05/2024]
Abstract
Immune-related adverse events (irAEs) caused by immune checkpoint inhibitors (ICIs) are rare but fatal, requiring systemic steroid use. Therefore, to examine the outcomes, incidence, timing, and risk factors of ICI-associated steroid-requiring severe irAEs, we conducted a nationwide, retrospective, cohort study utilizing the Korean Health Insurance and Review Assessment database. We identified 357,010 patients with lung cancer, bladder cancer, or skin melanoma, eligible for ICI reimbursement in Korea between January 2012 to June 2020. Steroid-requiring severe irAEs following ICI treatment or treatment-emergent AEs following cytotoxic chemotherapy were defined as moderate- or high-dose steroid administration for over 2 consecutive days, along with corresponding ICD-10 codes indicating affected organ systems. The ICI-exposed group (N = 10,118) was compared to a matched cohort of 55,436 ICI-unexposed patients treated with cytotoxic chemotherapy. Incidences of acute severe irAEs requiring moderate- and high-dose steroids were higher in the ICI-exposed group (1.95% and 6.42%, respectively). The ICI-exposed group also had a higher risk of developing delayed severe irAEs requiring moderate- and high-dose steroid use (3.89% and 7.39%). Male sex, high comorbidity index, or previously diagnosed autoimmune diseases were associated with an increased risk of severe irAEs. Notably, 27.4-38.8% of the patients experienced recurrent severe irAEs after re-challenge with ICIs following moderate- or high-dose steroid use, with the severity matching the initial episode. Steroid-requiring severe irAEs were significantly more prevalent among patients exposed to ICIs than among those treated with chemotherapy in acute and delayed periods.
Collapse
Affiliation(s)
- Yong Joon Kim
- Department of Ophthalmology, Institute of Vision Research, Yonsei University College of Medicine, Seoul, South Korea
| | - Myeongjee Lee
- Biostatistics Collaboration Unit, Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, South Korea
| | - Eun Hwa Kim
- Biostatistics Collaboration Unit, Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, South Korea
| | - Seulkee Lee
- Division of Rheumatology, Department of Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Sejung Park
- Songdang Institute for Cancer Research, Yonsei University College of Medicine, Seoul, South Korea
| | - Min Hee Hong
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Sang Joon Shin
- Songdang Institute for Cancer Research, Yonsei University College of Medicine, Seoul, South Korea; Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Inkyung Jung
- Division of Biostatistics, Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, South Korea.
| | - Choong-Kun Lee
- Songdang Institute for Cancer Research, Yonsei University College of Medicine, Seoul, South Korea; Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea.
| | - Christopher Seungkyu Lee
- Department of Ophthalmology, Institute of Vision Research, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
200
|
Tang A, Taori S, Dang S, Gardner PA, Zenonos GA, Davar D, Kuan EC, Snyderman CH, Wang EW, Choby G. Immunotherapy in the Management of Sinonasal Mucosal Melanoma: A Systematic Review. Otolaryngol Head Neck Surg 2024; 171:368-380. [PMID: 38686598 DOI: 10.1002/ohn.790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/08/2024] [Accepted: 04/01/2024] [Indexed: 05/02/2024]
Abstract
OBJECTIVE The aim of this work is to comprehensively review and synthesize the literature related to sinonasal mucosal melanoma (SNMM) treatment with immunotherapy, including potentially targetable genetic mutations, survival outcomes, and adverse events. DATA SOURCES Embase, Cochrane, Scopus, and Web of Science. REVIEW METHODS The study protocol was designed according to Preferred Reporting Items for Systematic Reviews and Meta-analysis statement. Databases were searched from inception through May 23, 2023. RESULTS A total of 42 studies met inclusion criteria. Twenty-four of the included studies reported genetic mutations for a combined 787 patients with SNMM. 8.1% (95% confidence interval, CI: 7.6-8.6), 18.9% (95% CI: 18.1-19.8), and 8.5% (95% CI: 8.1-9.0) of reported patients were positive for BRAF, NRAS, and KIT mutations, respectively. The presence of brisk tumor-infiltrating lymphocytes was associated with improved recurrence-free survival and overall survival (OS). Six studies reported a combined 5-year OS after adjuvant immunotherapy treatment of 42.6% (95% CI: 39.4-45.8). Thirteen studies encompassing 117 patients reported adjuvant or salvage immune checkpoint inhibitor (ICI) immunotherapy response rates: 40.2% (95% CI: 36.8-43.6) had a positive response (tumor volume reduction or resolution). Eleven studies reported direct comparisons between SNMM patients treated with or without immunotherapy; the majority (7/11) reported survival benefit for their entire cohort or select subgroups of SNMM patients. With the transition to modern ICIs, there is a stronger trend toward survival improvement with adjuvant ICI. Tumors with Ki67 <40% may respond better to ICI's. CONCLUSION ICI therapy can be an effective in select SNMM patients, especially those with advanced/metastatic disease.
Collapse
Affiliation(s)
- Anthony Tang
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Suchet Taori
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Sophia Dang
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Paul A Gardner
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Georgios A Zenonos
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Diwakar Davar
- Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Edward C Kuan
- Department of Otolaryngology-Head and Neck Surgery and Neurological Surgery, University of California Irvine, Orange, California, USA
| | - Carl H Snyderman
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Eric W Wang
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Garret Choby
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|