151
|
Yamshon S, Gribbin C, Chen Z, Demetres M, Pasciolla M, Alhomoud M, Martin P, Shore T. Efficacy and Toxicity of CD19 Chimeric Antigen Receptor T Cell Therapy for Lymphoma in Solid Organ Transplant Recipients: A Systematic Review and Meta-Analysis. Transplant Cell Ther 2024; 30:73.e1-73.e12. [PMID: 37279856 DOI: 10.1016/j.jtct.2023.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/01/2023] [Accepted: 05/30/2023] [Indexed: 06/08/2023]
Abstract
The safety and efficacy of chimeric antigen receptor (CAR) T cell therapy in solid organ transplant recipients is poorly understood, given the paucity of available data in this patient population. There is a theoretical risk of compromising transplanted organ function with CAR T cell therapy; conversely, organ transplantation-related immunosuppression can alter the function of CAR T cells. Given the prevalence of post-transplantation lymphoproliferative disease, which often can be difficult to treat with conventional chemoimmunotherapy, understanding the risks and benefits of delivering lymphoma-directed CAR T cell therapy in solid organ transplant recipients is of utmost importance. We sought to determine the efficacy of CAR T cell therapy in solid organ transplant recipients as well as the associated adverse effects, including cytokine release syndrome (CRS), immune effector cell-associated neurotoxicity syndrome (ICANS), and compromised solid organ transplant function. We conducted a systematic review and meta-analysis of adult recipients of solid organ transplant who received CAR T cell therapy for non-Hodgkin lymphoma. Primary outcomes included efficacy, defined as overall response (OR), complete response (CR), progression-free survival, and overall survival, as well as rates of CRS and ICANS. Secondary outcomes included rates of transplanted organ loss, compromised organ function, and alterations to immunosuppressant regimens. After a systematic literature review and 2-reviewer screening process, we identified 10 studies suitable for descriptive analysis and 4 studies suitable for meta-analysis. Among all patients, 69% (24 of 35) achieved a response to CAR T cell therapy, and 52% (18 of 35) achieved a CR. CRS of any grade occurred in 83% (29 of 35), and CRS grade ≥3 occurred in 9% (3 of 35). Sixty percent of the patients (21 of 35) developed ICANS, and 34% (12 of 35) developed ICANS grade ≥3. The incidence of any grade 5 toxicity among all patients was 11% (4 of 35). Fourteen percent of the patients (5 of 35) experienced loss of the transplanted organ. Immunosuppressant therapy was held in 22 patients but eventually restarted in 68% of them (15 of 22). Among the studies included in the meta-analysis, the pooled OR rate was 70% (95% confidence interval [CI], 29.2% to 100%; I2 = 71%) and the pooled CR rate was 46% (95% CI, 25.4% to 67.8%; I2 = 29%). The rates of any grade CRS and grade ≥3 CRS were 88% (95% CI, 69% to 99%; I2 = 0%) and 5% (95% CI, 0% to 21%; I2 = 0%), respectively. The rates of any grade ICANS and ICANS grade ≥3 were 54% (95% CI, 9% to 96%; I2 = 68%) and 40% (95% CI, 3% to 85%; I2 = 63%), respectively. The efficacy of CAR T cell therapy in solid organ transplant recipients is comparable to that in the general population as reported in prior investigational studies, with an acceptable toxicity profile in terms of CRS, ICANS, and transplanted organ compromise. Further studies are needed to determine long-term effects on organ function, sustained response rates, and best practices peri-CAR T infusion period in this patient population.
Collapse
Affiliation(s)
- Samuel Yamshon
- Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, New York.
| | - Caitlin Gribbin
- Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, New York
| | - Zhengming Chen
- Division of Biostatistics and Epidemiology, Weill Cornell Medicine and New York Presbyterian Hospital, New York, New York
| | - Michelle Demetres
- Samuel J. Wood Library & CV Starr Biomedical Information Center, Weill Cornell Medicine, New York, New York
| | - Michelle Pasciolla
- Department of Pharmacy, New York-Presbyterian Hospital/Weill Cornell Medical Center, New York, New York
| | - Mohammad Alhomoud
- Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, New York
| | - Peter Martin
- Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, New York
| | - Tsiporah Shore
- Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, New York
| |
Collapse
|
152
|
Yagi Y, Kanemasa Y, Sasaki Y, Goto S, Yamamura Y, Masuda Y, Fujita K, Ishimine K, Hayashi Y, Mino M, Ohigashi A, Morita Y, Tamura T, Nakamura S, Okuya T, Matsuda S, Shimizuguchi T, Shingai N, Toya T, Shimizu H, Najima Y, Kobayashi T, Haraguchi K, Doki N, Okuyama Y, Shimoyama T. Early failure is still a poor prognostic factor in patients with relapsed or refractory large B-cell lymphoma in the era of CAR T-cell therapy. J Clin Exp Hematop 2024; 64:107-118. [PMID: 38925972 PMCID: PMC11303961 DOI: 10.3960/jslrt.24009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 06/28/2024] Open
Abstract
Patients with refractory or relapsed (R/R) large B-cell lymphoma (LBCL) refractory to first-line chemotherapy or with early relapse have poor outcomes. While chimeric antigen receptor (CAR) T-cell therapy has impressive efficacy after two or more lines of chemotherapy, it's still uncertain if these outcomes remain consistent in the context of third-line CAR T-cell therapy. We conducted a retrospective study of 107 R/R LBCL patients. Patients with relapse 12 months or more after their first-line chemoimmunotherapy (late failure: n = 25) had significantly longer overall survival (OS) than patients with refractory disease or relapse within 12 months (early failure: n = 82) (median OS: not achieved vs. 18.4 months; P < 0.001). Among patients who proceeded to autologous hematopoietic stem-cell transplantation (auto-HSCT), those with late failure had significantly longer event-free survival (EFS) than those with early failure (median EFS: 26.9 vs. 3.1 months; P = 0.012). However, no significant difference in EFS was detected among patients who underwent CAR T-cell therapy (median EFS: not reached vs. 11.8; P = 0.091). Cox regression with restricted cubic spline demonstrated that timing of relapse had significant impact on EFS in patients with auto-HSCT but not in patients with CAR T-cell therapy. Of patients who were scheduled for CAR T-cell therapy, those with late failure were significantly more likely to receive CAR T-cell therapy than those with early failure (90% vs. 57%; P = 0.008). In conclusion, patients with early failure still experienced poor outcomes after the approval of third-line CAR T-cell therapy.
Collapse
|
153
|
de Ramon Ortiz C, Wang S, Stathis A, Bertoni F, Zenz T, Novak U, Simonetta F. How to integrate CD19 specific chimeric antigen receptor T cells with other CD19 targeting agents in diffuse large B-cell lymphoma? Hematol Oncol 2024; 42:e3237. [PMID: 37937474 DOI: 10.1002/hon.3237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 11/09/2023]
Abstract
About one third of patients with diffuse large B-cell lymphoma (DLBCL) have a relapsing/refractory (R/R) disease after first line chemo-immunotherapy, with particularly poor outcomes observed in patients with primary refractory disease and early relapse. CD19 specific chimeric antigen receptor (CAR) T cell therapy is a game changer that results in durable and complete response rates in almost half of the patients with R/R DLBCL. Other emerging CD19-targeting therapies include monoclonal antibodies, bispecific antibodies and targeting antibody-drug conjugates, which also show encouraging results. However, the timing and sequencing of different anti-CD19-targeting agents and how they might interfere with subsequent CAR T cell treatment is still unclear. In this review, we summarize the results of the pivotal clinical trials as well as evidence from real-world series of the use of different CD19-targeting approved agents. We discuss the effect of various therapies on CD19 expression and its implications for treatment sequencing.
Collapse
Affiliation(s)
- Carmen de Ramon Ortiz
- Division of Hematology, Department of Oncology, Geneva University Hospitals, Geneva, Switzerland
| | - Sisi Wang
- Translational Research Center for Oncohematology, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Anastasios Stathis
- Oncology Institute of Southern Switzerland, EOC, Bellinzona, Switzerland
| | - Francesco Bertoni
- Oncology Institute of Southern Switzerland, EOC, Bellinzona, Switzerland
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
| | - Thorsten Zenz
- Department of Medical Oncology and Hematology, University Hospital Zürich and University of Zürich, Zürich, Switzerland
| | - Urban Novak
- Department of Medical Oncology, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Federico Simonetta
- Division of Hematology, Department of Oncology, Geneva University Hospitals, Geneva, Switzerland
- Translational Research Center for Oncohematology, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
154
|
Awasthi R, Maier HJ, Zhang J, Lim S. Kymriah® (tisagenlecleucel) - An overview of the clinical development journey of the first approved CAR-T therapy. Hum Vaccin Immunother 2023; 19:2210046. [PMID: 37185251 PMCID: PMC10294746 DOI: 10.1080/21645515.2023.2210046] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/29/2023] [Indexed: 05/17/2023] Open
Abstract
The emergence of cell and gene therapies has dramatically changed the treatment paradigm in oncology and other therapeutic areas. Kymriah® (tisagenlecleucel), a CD19-directed genetically modified autologous T-cell immunotherapy, is currently approved in major markets for the treatment of relapsed/refractory (r/r) pediatric and young adult acute lymphoblastic leukemia, r/r diffuse large B-cell lymphoma, and r/r follicular lymphoma. This article presents a high-level overview of the clinical development journey of tisagenlecleucel, including its efficacy outcomes and safety considerations.
Collapse
Affiliation(s)
- Rakesh Awasthi
- Oncology & Hematology, Novartis Institutes for BioMedical Research, East Hanover, NJ, USA
| | - Harald J. Maier
- Oncology and Hematology, Global Drug Development, Novartis Pharma AG, Basel, Switzerland
| | - Jie Zhang
- Cell & Gene Unit, Novartis Services Inc, East Hanover, NJ, USA
| | - Stephen Lim
- US Medical Affairs, Oncology, Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA
| |
Collapse
|
155
|
García-Sancho AM, Cabero A, Gutiérrez NC. Treatment of Relapsed or Refractory Diffuse Large B-Cell Lymphoma: New Approved Options. J Clin Med 2023; 13:70. [PMID: 38202077 PMCID: PMC10779497 DOI: 10.3390/jcm13010070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/03/2023] [Accepted: 12/08/2023] [Indexed: 01/12/2024] Open
Abstract
Overall, around 40% of patients with diffuse large B-cell lymphoma (DLBCL) have refractory disease or relapse after the first line of treatment. Until relatively recently, the prognosis of patients with relapsed or refractory DLBCL was very poor and treatment options were very limited. In recent years, several novel therapies have been approved that provide more effective options than conventional chemotherapy and that have manageable toxicity profiles. CAR-T cell therapy has become the new standard treatment for patients with refractory or early relapsed DLBCL, based on the positive results of the phase 3 ZUMA-7 and TRANSFORM clinical trials. This review addresses the role of CAR-T therapy and autologous stem cell transplantation in the treatment of these patients and other approved options for patients who are not candidates for transplant, such as the combinations of polatuzumab vedotin with bendamustine and rituximab, and tafasitamab with lenalidomide.
Collapse
Affiliation(s)
- Alejandro Martín García-Sancho
- Hematology Department, University Hospital of Salamanca, IBSAL (Instituto de Investigación Biomédica de Salamanca), CIBERONC (Centro de Investigación Biomédica en Red en Cáncer ), University of Salamanca, 37007 Salamanca, Spain; (A.C.); (N.C.G.)
| | | | | |
Collapse
|
156
|
Benevolo Savelli C, Clerico M, Botto B, Secreto C, Cavallo F, Dellacasa C, Busca A, Bruno B, Freilone R, Cerrano M, Novo M. Chimeric Antigen Receptor-T Cell Therapy for Lymphoma: New Settings and Future Directions. Cancers (Basel) 2023; 16:46. [PMID: 38201473 PMCID: PMC10778255 DOI: 10.3390/cancers16010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
In the last decade, anti-CD19 CAR-T cell therapy has led to a treatment paradigm shift for B-cell non-Hodgkin lymphomas, first with the approval for relapsed/refractory (R/R) large B-cell lymphomas and subsequently for R/R mantle cell and follicular lymphoma. Many efforts are continuously being made to extend the therapeutic setting in the lymphoma field. Several reports are supporting the safety and efficacy of CAR-T cells in patients with central nervous system disease involvement. Anti-CD30 CAR-T cells for the treatment of Hodgkin lymphoma are in development and early studies looking for the optimal target for T-cell malignancies are ongoing. Anti-CD19/CD20 and CD19/CD22 dual targeting CAR-T cells are under investigation in order to increase anti-lymphoma activity and overcome tumor immune escape. Allogeneic CAR product engineering is on the way, representing a rapidly accessible 'off-the-shelf' and potentially more fit product. In the present manuscript, we will focus on recent advances in CAR-T cell therapy for lymphomas, including new settings and future perspectives in the field, reviewing data reported in literature in the last decade up to October 2023.
Collapse
Affiliation(s)
- Corrado Benevolo Savelli
- Hematology Division, A.O.U. Città della Salute e della Scienza di Torino, C.so Bramante 88, 10126 Turin, Italy; (B.B.); (R.F.); (M.C.)
| | - Michele Clerico
- Division of Hematology, Department of Molecular Biotechnology and Health Sciences, University of Torino, A.O.U. Città della Salute e della Scienza di Torino, C.so Bramante 88, 10126 Turin, Italy; (M.C.); (F.C.); (B.B.)
| | - Barbara Botto
- Hematology Division, A.O.U. Città della Salute e della Scienza di Torino, C.so Bramante 88, 10126 Turin, Italy; (B.B.); (R.F.); (M.C.)
| | - Carolina Secreto
- Stem Cell Transplant Center, AOU Città della Salute e della Scienza di Torino, C.so Bramente 88, 10126 Turin, Italy; (C.S.); (C.D.); (A.B.)
| | - Federica Cavallo
- Division of Hematology, Department of Molecular Biotechnology and Health Sciences, University of Torino, A.O.U. Città della Salute e della Scienza di Torino, C.so Bramante 88, 10126 Turin, Italy; (M.C.); (F.C.); (B.B.)
| | - Chiara Dellacasa
- Stem Cell Transplant Center, AOU Città della Salute e della Scienza di Torino, C.so Bramente 88, 10126 Turin, Italy; (C.S.); (C.D.); (A.B.)
| | - Alessandro Busca
- Stem Cell Transplant Center, AOU Città della Salute e della Scienza di Torino, C.so Bramente 88, 10126 Turin, Italy; (C.S.); (C.D.); (A.B.)
| | - Benedetto Bruno
- Division of Hematology, Department of Molecular Biotechnology and Health Sciences, University of Torino, A.O.U. Città della Salute e della Scienza di Torino, C.so Bramante 88, 10126 Turin, Italy; (M.C.); (F.C.); (B.B.)
| | - Roberto Freilone
- Hematology Division, A.O.U. Città della Salute e della Scienza di Torino, C.so Bramante 88, 10126 Turin, Italy; (B.B.); (R.F.); (M.C.)
| | - Marco Cerrano
- Hematology Division, A.O.U. Città della Salute e della Scienza di Torino, C.so Bramante 88, 10126 Turin, Italy; (B.B.); (R.F.); (M.C.)
| | - Mattia Novo
- Hematology Division, A.O.U. Città della Salute e della Scienza di Torino, C.so Bramante 88, 10126 Turin, Italy; (B.B.); (R.F.); (M.C.)
| |
Collapse
|
157
|
Patel-Donnelly D. Acute leukemias and complicated lymphomas: pearls to optimize management when patients stay local. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2023; 2023:311-317. [PMID: 38066909 PMCID: PMC10727043 DOI: 10.1182/hematology.2023000430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Hematologic malignancies often present acutely with a constellation of infectious complications, pancytopenia, tumor lysis, and renal dysfunction. Acute leukemias and aggressive lymphomas often require hospitalization for rapid diagnostic evaluation, urgent management of complicating presentations, and timely management of intensive systemic therapies. There is an emerging paradigm whereby complex cancer care can be safely and effectively provided in the community, where the majority of cancer is treated. A substantive and effective network between local oncologists and their academic counterparts will enhance care for the patient, advance research, and help bring complicated therapies to local centers, thereby improving access. Here we present several cases that highlight a collaborative approach to complicated hematologic malignancies in the community.
Collapse
|
158
|
Nastoupil LJ. Management of aggressive lymphoma after CAR T-cell therapy failure. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2023; 2023:364-369. [PMID: 38066908 PMCID: PMC10727106 DOI: 10.1182/hematology.2023000437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Several recent advances have affected the treatment landscape of diffuse large B-cell lymphoma. Chimeric antigen receptor (CAR) T-cell therapy has transformed the management of chemorefractory disease. Two randomized studies in early relapse disease have expanded the label to provide access to CAR T-cell therapy as early as second line for some patients. Despite the durable remissions that have been achieved, many patients will experience relapse. There is a growing population of patients previously treated with CAR T-cell therapy facing dismal outcomes. We review the prospective studies that inform treatment options in later lines and highlight the limited data examining outcomes with novel therapies after CAR T-cell failure. The treatment landscape is anticipated to continue to evolve with the emergence of bispecific antibodies that appear to be a promising approach, particularly after CAR T-cell therapy, although little is known about overlapping mechanisms of resistance. Enrichment for patients who have received prior CAR T-cell therapy on prospective trials is a critical unmet need to inform the preferred management for these high-risk patients.
Collapse
|
159
|
Hamilton MP, Miklos DB. Chimeric Antigen Receptor T-Cell Therapy in Aggressive B-Cell Lymphoma. Hematol Oncol Clin North Am 2023; 37:1053-1075. [PMID: 37349153 DOI: 10.1016/j.hoc.2023.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2023]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy is a revolutionary therapy increasingly used in the treatment of non-Hodgkin B-cell lymphoma. This review focuses on the use of CAR T-cell therapy in aggressive B-cell lymphoma including clinical indications, known short- and long-term toxicity, mechanisms of CAR T-cell efficacy and tumor resistance, and future directions in the treatment of aggressive lymphoma with CAR T-cell therapy.
Collapse
Affiliation(s)
- Mark P Hamilton
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - David B Miklos
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
160
|
Reynolds GK, Sim B, Spelman T, Thomas A, Longhitano A, Anderson MA, Thursky K, Slavin M, Teh BW. Infections in haematology patients treated with CAR-T therapies: A systematic review and meta-analysis. Crit Rev Oncol Hematol 2023; 192:104134. [PMID: 37739146 DOI: 10.1016/j.critrevonc.2023.104134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 08/21/2023] [Accepted: 09/12/2023] [Indexed: 09/24/2023] Open
Abstract
A registered (PROSPERO - CRD42022346462) systematic review and meta-analysis was conducted of all-grade infections amongst adult patients receiving CAR-T therapy for haematological malignancy. Meta-analysis of pooled incidence, using random effects model, was conducted. Cochran's Q test examined heterogeneity. 2678 patients across 33 studies were included in the primary outcome. Forty-percent of patients (95% CI: 0.33 - 0.48) experienced an infection of any grade. Twenty-five percent of infection events (95% CI: 0.16 - 0.34) were severe. Late infections were as common as early infections (IRR = 0.86, 95% CI: 0.38 - 1.98). All-grade infections, bacterial and viral infections were highest in myeloma patients at 57%, 37% and 28% respectively. Patients with NHL more commonly experienced late infections. Pooled rate of invasive candidiasis/yeast infections was 2% in studies utilizing anti-yeast prophylaxis. This review identified a high rate of all-grade infections, moderate rate of severe infections, and myeloma as a high-risk haematological group.
Collapse
Affiliation(s)
- Gemma K Reynolds
- Dpartment of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia; National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Department of Infectious Diseases, Austin Health, Melbourne, Victoria, Australia.
| | - Beatrice Sim
- Dpartment of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Tim Spelman
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Ashmitha Thomas
- Department of Infectious Diseases, Austin Health, Melbourne, Victoria, Australia
| | - Anthony Longhitano
- Department of Infectious Diseases, Barwon Health, Melbourne, Victoria, Australia
| | - Mary Ann Anderson
- Department of Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Karin Thursky
- Dpartment of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia; National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Monica Slavin
- Dpartment of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia; National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Benjamin W Teh
- Dpartment of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia; National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| |
Collapse
|
161
|
Dreger P, Corradini P, Gribben JG, Glass B, Jerkeman M, Kersten MJ, Morschhauser F, Mussetti A, Viardot A, Zinzani PL, Sureda A. CD19-directed CAR T cells as first salvage therapy for large B-cell lymphoma: towards a rational approach. Lancet Haematol 2023; 10:e1006-e1015. [PMID: 38030311 DOI: 10.1016/s2352-3026(23)00307-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 09/09/2023] [Accepted: 10/06/2023] [Indexed: 12/01/2023]
Abstract
The approval of CD19-directed chimeric antigen receptor (CAR) T-cell therapies for the second-line treatment of high-risk large B-cell lymphoma (LBCL) has greatly affected salvage algorithms for this condition, and such therapies could have the potential to improve the course of relapsed or refractory LBCL. In this Review, we provide guidance for a rational management approach to the use of commercial CD19-directed CAR T cells in the second-line treatment of LBCL, addressing crucial questions regarding eligible histologies; age, comorbidity, and tumour biology restrictions; the handling of very aggressive tumour behaviour; and holding and bridging therapies. The guidance was developed in a structured manner and, for each question, consists of a description of the clinical issue, a summary of the evidence, the rationale for a practical management approach, and recommendations. These recommendations could help to decide on the optimal management of patients with relapsed or refractory LBCL who are considered for second-line CAR T-cell treatment.
Collapse
Affiliation(s)
- Peter Dreger
- Department of Medicine V, University of Heidelberg, Heidelberg, Germany.
| | - Paolo Corradini
- Division of Hematology, IRCCS Istituto Nazionale dei Tumori Milano, University of Milano, Milan, Italy
| | - John G Gribben
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Bertram Glass
- Department of Hematology and Cell Therapy, Helios Klinikum Berlin-Buch, Berlin, Germany
| | - Mats Jerkeman
- Department of Oncology, Skane University Hospital, Lund, Sweden
| | - Marie Jose Kersten
- Department of Hematology, Amsterdam UMC, location AMC, Cancer Center Amsterdam and LYMMCARE, Amsterdam, Netherlands
| | - Franck Morschhauser
- Hematology Department, CHU Lille, Université de Lille, ULR 7365, Groupe de Recherche sur les formes Injectables et les Technologies Associées, Lille, France
| | - Alberto Mussetti
- Hematology Department, Institut Català d'Oncologia - Hospitalet, Institut d'Investigació Biomèdique de Bellvitge, Universitat de Barcelona, Barcelona, Spain
| | - Andreas Viardot
- Department of Internal Medicine III, Ulm University Hospital, Ulm, Germany
| | - Pier Luigi Zinzani
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", Bologna, Italy; Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | - Anna Sureda
- Hematology Department, Institut Català d'Oncologia - Hospitalet, Institut d'Investigació Biomèdique de Bellvitge, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
162
|
Kelkar AH, Cliff ERS, Jacobson CA, Abel GA, Dijk SW, Krijkamp EM, Redd R, Zurko JC, Hamadani M, Hunink MGM, Cutler C. Second-Line Chimeric Antigen Receptor T-Cell Therapy in Diffuse Large B-Cell Lymphoma : A Cost-Effectiveness Analysis. Ann Intern Med 2023; 176:1625-1637. [PMID: 38048587 DOI: 10.7326/m22-2276] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND First-line treatment of diffuse large B-cell lymphoma (DLBCL) achieves durable remission in approximately 60% of patients. In relapsed or refractory disease, only about 20% achieve durable remission with salvage chemoimmunotherapy and consolidative autologous stem cell transplantation (ASCT). The ZUMA-7 (axicabtagene ciloleucel [axi-cel]) and TRANSFORM (lisocabtagene maraleucel [liso-cel]) trials demonstrated superior event-free survival (and, in ZUMA-7, overall survival) in primary-refractory or early-relapsed (high-risk) DLBCL with chimeric antigen receptor T-cell therapy (CAR-T) compared with salvage chemoimmunotherapy and consolidative ASCT; however, list prices for CAR-T exceed $400 000 per infusion. OBJECTIVE To determine the cost-effectiveness of second-line CAR-T versus salvage chemoimmunotherapy and consolidative ASCT. DESIGN State-transition microsimulation model. DATA SOURCES ZUMA-7, TRANSFORM, other trials, and observational data. TARGET POPULATION "High-risk" patients with DLBCL. TIME HORIZON Lifetime. PERSPECTIVE Health care sector. INTERVENTION Axi-cel or liso-cel versus ASCT. OUTCOME MEASURES Incremental cost-effectiveness ratio (ICER) and incremental net monetary benefit (iNMB) in 2022 U.S. dollars per quality-adjusted life-year (QALY) for a willingness-to-pay (WTP) threshold of $200 000 per QALY. RESULTS OF BASE-CASE ANALYSIS The increase in median overall survival was 4 months for axi-cel and 1 month for liso-cel. For axi-cel, the ICER was $684 225 per QALY and the iNMB was -$107 642. For liso-cel, the ICER was $1 171 909 per QALY and the iNMB was -$102 477. RESULTS OF SENSITIVITY ANALYSIS To be cost-effective with a WTP of $200 000, the cost of CAR-T would have to be reduced to $321 123 for axi-cel and $313 730 for liso-cel. Implementation in high-risk patients would increase U.S. health care spending by approximately $6.8 billion over a 5-year period. LIMITATION Differences in preinfusion bridging therapies precluded cross-trial comparisons. CONCLUSION Neither second-line axi-cel nor liso-cel was cost-effective at a WTP of $200 000 per QALY. Clinical outcomes improved incrementally, but costs of CAR-T must be lowered substantially to enable cost-effectiveness. PRIMARY FUNDING SOURCE No research-specific funding.
Collapse
Affiliation(s)
- Amar H Kelkar
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston; Harvard Medical School, Boston; and Harvard T.H. Chan School of Public Health, Boston, Massachusetts (A.H.K.)
| | - Edward R Scheffer Cliff
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston; Harvard Medical School, Boston; Harvard T.H. Chan School of Public Health, Boston; and Program on Regulation, Therapeutics and Law, Brigham and Women's Hospital, Boston, Massachusetts (E.R.S.C.)
| | - Caron A Jacobson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, and Harvard Medical School, Boston, Massachusetts (C.A.J., G.A.A., C.C.)
| | - Gregory A Abel
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, and Harvard Medical School, Boston, Massachusetts (C.A.J., G.A.A., C.C.)
| | - Stijntje W Dijk
- Department of Radiology and Nuclear Medicine and Department of Epidemiology and Biostatistics, Erasmus University Medical Center, Rotterdam, the Netherlands (S.W.D.)
| | - Eline M Krijkamp
- Department of Epidemiology and Biostatistics, Erasmus University Medical Center, Rotterdam, and Erasmus School of Health Policy and Management, Erasmus University Rotterdam, Rotterdam, the Netherlands (E.M.K.)
| | - Robert Redd
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts (R.R.)
| | - Joanna C Zurko
- Division of Hematology & Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin (J.C.Z.)
| | - Mehdi Hamadani
- BMT & Cellular Therapy Program, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin (M.H.)
| | - M G Myriam Hunink
- Harvard T.H. Chan School of Public Health, Boston, and Program on Regulation, Therapeutics and Law, Brigham and Women's Hospital, Boston, Massachusetts; and Department of Epidemiology and Biostatistics, Erasmus University Medical Center, Rotterdam, the Netherlands (M.G.M.H.)
| | - Corey Cutler
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, and Harvard Medical School, Boston, Massachusetts (C.A.J., G.A.A., C.C.)
| |
Collapse
|
163
|
Izutsu K, Kumode T, Yuda J, Nagai H, Mishima Y, Suehiro Y, Yamamoto K, Fujisaki T, Ishitsuka K, Ishizawa K, Ikezoe T, Nishikori M, Akahane D, Fujita J, Dinh M, Soong D, Noguchi H, Buchbjerg JK, Favaro E, Fukuhara N. Subcutaneous epcoritamab monotherapy in Japanese adults with relapsed/refractory diffuse large B-cell lymphoma. Cancer Sci 2023; 114:4643-4653. [PMID: 37921363 PMCID: PMC10728012 DOI: 10.1111/cas.15996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/08/2023] [Accepted: 10/03/2023] [Indexed: 11/04/2023] Open
Abstract
Epcoritamab is a subcutaneously administered CD3xCD20 bispecific Ab that showed deep, durable responses with a manageable safety profile in patients with relapsed or refractory (R/R) diffuse large B-cell lymphoma (DLBCL) in the global multicenter pivotal phase II trial EPCORE NHL-1. Here, we present results from the similar EPCORE NHL-3 phase I/II trial evaluating epcoritamab monotherapy in Japanese patients with R/R CD20+ B-cell non-Hodgkin's lymphoma previously treated with two or more lines of therapy. Epcoritamab was dosed subcutaneously in 28-day cycles; once weekly during cycles 1-3, every 2 weeks during cycles 4-9, and every 4 weeks from cycle 10 until disease progression or unacceptable toxicity. Step-up dosing and cytokine release syndrome (CRS) prophylaxis were used during treatment cycle 1. As of January 31, 2022, 36 patients received treatment with 48 mg epcoritamab monotherapy. At a median follow-up of 8.4 months, overall response and complete response rates by independent review committee were 55.6% and 44.4%, respectively. The median duration of response, duration of complete response, and overall survival were not reached at the time of data cut-off. The most common treatment-emergent adverse events of any grade were CRS (83.3%), injection-site reactions (69.4%), infections (44.4%), neutropenia (38.9%), hypokalemia (27.8%), and decreased lymphocyte count (25.0%). Cytokine release syndrome occurrence was predictable; events were primarily low grade (grade 1-2), all resolved, and none led to treatment discontinuation. These encouraging results are consistent with previous findings and support the ongoing clinical evaluation of epcoritamab for the treatment of R/R DLBCL, including in earlier treatment lines.
Collapse
Affiliation(s)
- Koji Izutsu
- Department of HematologyNational Cancer Center HospitalTokyoJapan
| | - Takahiro Kumode
- Department of Hematology and RheumatologyKindai UniversityOsakaJapan
| | - Junichiro Yuda
- Departments of Hematology and Experimental Therapeutics, Office for the Promotion of Hematological Treatment DevelopmentNational Cancer Center Hospital EastKashiwaJapan
| | - Hirokazu Nagai
- Department of HematologyNational Hospital Organization Nagoya Medical CenterNagoyaJapan
| | - Yuko Mishima
- Department of Hematology Oncology, Japanese Foundation for Cancer ResearchCancer Institute HospitalTokyoJapan
| | - Youko Suehiro
- Department of Hematology and Cell TherapyNational Hospital Organization Kyushu Cancer CenterFukuokaJapan
| | - Kazuhito Yamamoto
- Department of Hematology and Cell TherapyAichi Cancer CenterNagoyaJapan
| | - Tomoaki Fujisaki
- Department of HematologyJapan Red Cross Society, Matsuyama Red Cross HospitalMatsuyamaJapan
| | - Kenji Ishitsuka
- Department of Hematology and RheumatologyKagoshima UniversityKagoshimaJapan
| | - Kenichi Ishizawa
- Third Department of Internal MedicineYamagata UniversityYamagataJapan
| | - Takayuki Ikezoe
- Department of HematologyFukushima Medical University HospitalFukushimaJapan
| | - Momoko Nishikori
- Department of Hematology and Oncology, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Daigo Akahane
- Department of HematologyTokyo Medical UniversityTokyoJapan
| | - Jiro Fujita
- Department of Hematology and Oncology, Graduate School of MedicineOsaka UniversityOsakaJapan
| | - Minh Dinh
- Oncology Clinical DevelopmentAbbVieNorth ChicagoIllinoisUSA
| | - David Soong
- Translational Data ScienceGenmabPlainsboroNew JerseyUSA
| | | | | | | | | |
Collapse
|
164
|
Nath K, Mailankody S, Usmani SZ. The Role of Chimeric Antigen Receptor T-Cell Therapy in the Era of Bispecific Antibodies. Hematol Oncol Clin North Am 2023; 37:1201-1214. [PMID: 37330347 PMCID: PMC11233175 DOI: 10.1016/j.hoc.2023.05.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy and bispecific antibodies are a class of T-cell engaging immunotherapies that have demonstrated considerable promise for patients with blood cancers. In comparison with traditional cancer therapeutics, T-cell engaging therapies harness the power of the host immune system to attack malignant cells expressing a target antigen of interest. Although these therapies are altering the natural history of blood cancers, the availability of several products has created uncertainty regarding treatment selection. In this review, we discuss the role of CAR T-cell therapy in the emerging era of bispecific antibodies with a particular focus on multiple myeloma.
Collapse
Affiliation(s)
- Karthik Nath
- Cellular Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sham Mailankody
- Cellular Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Saad Z Usmani
- Cellular Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Weill Cornell Medical College, New York, NY, USA; Adult Bone Marrow Transplant Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
165
|
Lee SY, Lee DH, Sun W, Cervantes-Contreras F, Basom RS, Wu F, Liu S, Rai R, Mirzaei HR, O'Steen S, Green DJ, Shadman M, Till BG. CD8 + chimeric antigen receptor T cells manufactured in absence of CD4 + cells exhibit hypofunctional phenotype. J Immunother Cancer 2023; 11:e007803. [PMID: 38251688 PMCID: PMC10660840 DOI: 10.1136/jitc-2023-007803] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2023] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND Cell culture conditions during manufacturing can impact the clinical efficacy of chimeric antigen receptor (CAR) T cell products. Production methods have not been standardized because the optimal approach remains unknown. Separate CD4+ and CD8+ cultures offer a potential advantage but complicate manufacturing and may affect cell expansion and function. In a phase 1/2 clinical trial, we observed poor expansion of separate CD8+ cell cultures and hypothesized that coculture of CD4+ cells and CD8+ cells at a defined ratio at culture initiation would enhance CD8+ cell expansion and simplify manufacturing. METHODS We generated CAR T cells either as separate CD4+ and CD8+ cells, or as combined cultures mixed in defined CD4:CD8 ratios at culture initiation. We assessed CAR T cell expansion, phenotype, function, gene expression, and in vivo activity of CAR T cells and compared these between separately expanded or mixed CAR T cell cultures. RESULTS We found that the coculture of CD8+ CAR T cells with CD4+ cells markedly improves CD8+ cell expansion, and further discovered that CD8+ cells cultured in isolation exhibit a hypofunctional phenotype and transcriptional signature compared with those in mixed cultures with CD4+ cells. Cocultured CAR T cells also confer superior antitumor activity in vivo compared with separately expanded cells. The positive impact of CD4+ cells on CD8+ cells was mediated through both cytokines and direct cell contact, including CD40L-CD40 and CD70-CD27 interactions. CONCLUSIONS Our data indicate that CD4+ cell help during cell culture maintains robust CD8+ CAR T cell function, with implications for clinical cell manufacturing.
Collapse
Affiliation(s)
- Sang Yun Lee
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Dong Hoon Lee
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Wei Sun
- Public Health Science Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | | | - Ryan S Basom
- Genomics and Bioinformatics Shared Resource, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Feinan Wu
- Genomics and Bioinformatics Shared Resource, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Si Liu
- Public Health Science Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Richa Rai
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Hamid R Mirzaei
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Shyril O'Steen
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Damian J Green
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Mazyar Shadman
- Department of Medicine, University of Washington, Seattle, Washington, USA
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Brian G Till
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
166
|
Lionel AC, Westin J. Evolving Role of CAR T Cell Therapy in First- and Second-Line Treatment of Large B Cell Lymphoma. Curr Oncol Rep 2023; 25:1387-1396. [PMID: 37861914 DOI: 10.1007/s11912-023-01466-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2023] [Indexed: 10/21/2023]
Abstract
PURPOSE OF REVIEW We review the recent practice-changing trials of anti-CD19 chimeric antigen receptor (CAR) T cell therapies in large B cell lymphoma (LBCL) including phase 3 comparisons with second-line standard-of-care (SOC) and phase 2 investigations in transplant-ineligible patients or as part of first-line treatment. RECENT FINDINGS ZUMA-7 found significantly improved overall survival and event-free survival (EFS) with axicabtagene ciloleucel (axi-cel) versus SOC of salvage chemotherapy followed by autologous stem-cell transplantation. This represents the first such survival improvement in nearly 30 years for early-relapsed or refractory (r/r) LBCL. TRANSFORM demonstrated prolonged EFS for lisocabtagene maraleucel (liso-cel) versus SOC but BELINDA did not for tisagenlecleucel. Second-line CAR T cell was a viable curative-intent therapy in elderly (ZUMA-7; axi-cel) and/or transplant-ineligible (PILOT; liso-cel) patients. ZUMA-12 demonstrated effectiveness for axi-cel as part of first-line treatment for high-risk LBCL. These results support a role for CAR T cell therapy as new second-line SOC for r/r LBCL and highlight its potential evolution into future first-line treatment for high-risk disease.
Collapse
Affiliation(s)
- Anath C Lionel
- Division of Cancer Medicine, Department of Lymphoma and Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jason Westin
- Division of Cancer Medicine, Department of Lymphoma and Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
167
|
Ryan CE, Jacobson CA. Effective sequencing of chimeric antigen receptor T-cell therapy in the treatment of LBCL in 2023. Semin Hematol 2023; 60:322-328. [PMID: 38199906 DOI: 10.1053/j.seminhematol.2023.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 01/12/2024]
Abstract
Over the last decade, CD19-targeting chimeric antigen receptor (CAR) T-cell therapy has profoundly changed the management of relapsed/refractory large-B-cell lymphoma (LBCL). At present, there are three FDA-approved anti-CD19 CAR T-cell products for LBCL: axicabtagene ciloleucel (axi-cel), lisocabtagene maraleucel (liso-cel), and tisagenlecleucel (tisa-cel). Two of these (axi-cel & liso-cel) are approved for use in the second-line setting under certain conditions. As CAR T-cell therapy continues to define a new role in the treatment armamentarium for LBCL, questions remain regarding which product to use and how to sequence CAR T-cell therapy with other therapeutic options. Here we will briefly review the key features of each FDA-approved anti-CD19 CAR T-cell product and the data that led to regulatory approval for each. Next, we will focus on the recent landmark studies that have established the use of CAR T-cell therapy as second-line treatment. While no direct prospective head-to-head comparisons exist of the 3 constructs, we will review some retrospective studies that suggest some emerging differences between the products. Lastly, we will turn our attention to the horizon as we explore some of the ongoing questions of how to best leverage the curative potential of CAR T-cell therapy for the most effective management of LBCL. These areas include the consideration of CAR T-cell therapy in the frontline setting, the optimal timing for CAR T-cell referral, the optimal bridging approach, and how to continue advancing novel CAR T-cell approaches in the context of the current treatment landscape.
Collapse
Affiliation(s)
- Christine E Ryan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Caron A Jacobson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA.
| |
Collapse
|
168
|
Kampouri E, Little JS, Rejeski K, Manuel O, Hammond SP, Hill JA. Infections after chimeric antigen receptor (CAR)-T-cell therapy for hematologic malignancies. Transpl Infect Dis 2023; 25 Suppl 1:e14157. [PMID: 37787373 DOI: 10.1111/tid.14157] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/30/2023] [Accepted: 09/10/2023] [Indexed: 10/04/2023]
Abstract
BACKGROUND Chimeric antigen receptor (CAR)-T-cell therapies have revolutionized the management of acute lymphoblastic leukemia, non-Hodgkin lymphoma, and multiple myeloma but come at the price of unique toxicities, including cytokine release syndrome, immune effector cell-associated neurotoxicity syndrome, and long-term "on-target off-tumor" effects. METHODS All of these factors increase infection risk in an already highly immunocompromised patient population. Indeed, infectious complications represent the key determinant of non-relapse mortality after CAR-T cells. The temporal distribution of these risk factors shapes different infection patterns early versus late post-CAR-T-cell infusion. Furthermore, due to the expression of their targets on B lineage cells at different stages of differentiation, CD19, and B-cell maturation antigen (BCMA) CAR-T cells induce distinct immune deficits that could require different prevention strategies. Infection incidence is the highest during the first month post-infusion and subsequently decreases thereafter. However, infections remain relatively common even a year after infusion. RESULTS Bacterial infections predominate early after CD19, while a more equal distribution between bacterial and viral causes is seen after BCMA CAR-T-cell therapy, and fungal infections are universally rare. Cytomegalovirus (CMV) and other herpesviruses are increasingly breported, but whether routine monitoring is warranted for all, or a subgroup of patients, remains to be determined. Clinical practices vary substantially between centers, and many areas of uncertainty remain, including CMV monitoring, antibacterial and antifungal prophylaxis and duration, use of immunoglobulin replacement therapy, and timing of vaccination. CONCLUSION Risk stratification tools are available and may help distinguish between infectious and non-infectious causes of fever post-infusion and predict severe infections. These tools need prospective validation, and their integration in clinical practice needs to be systematically studied.
Collapse
Affiliation(s)
- Eleftheria Kampouri
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Infectious Diseases Service, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Jessica S Little
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Division of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Kai Rejeski
- Department of Medicine III-Hematology/Oncology, LMU University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Munich site, and German Cancer Research Center, Heidelberg, Germany
| | - Oriol Manuel
- Infectious Diseases Service, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Sarah P Hammond
- Division of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
- Divisions of Hematology/Oncology and Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Joshua A Hill
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
169
|
Kinoshita H, Bollard CM, Toner K. CD19 CAR-T cell therapy for relapsed or refractory diffuse large B cell lymphoma: Why does it fail? Semin Hematol 2023; 60:329-337. [PMID: 38336529 PMCID: PMC10964476 DOI: 10.1053/j.seminhematol.2023.11.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/20/2023] [Accepted: 11/28/2023] [Indexed: 02/12/2024]
Abstract
Chimeric antigen receptor T (CAR-T) cell therapy is an effective treatment for relapsed or refractory diffuse large B cell lymphoma (DLBCL) with 3 CD19 targeting products now FDA-approved for this indication. However, up to 60% of patients ultimately progress or relapse following CAR-T cell therapy. Mechanisms of resistance to CAR-T cell therapy in patients with DLBCL are likely multifactorial and have yet to be fully elucidated. Determining patient, tumor and therapy-related factors that may predict an individual's response to CAR-T cell therapy requires ongoing analysis of data from clinical trials and real-world experience in this population. In this review we will discuss the factors identified to-date that may contribute to failure of CAR-T cell therapy in achieving durable remissions in patients with DLBCL.
Collapse
MESH Headings
- Humans
- Receptors, Chimeric Antigen
- Receptors, Antigen, T-Cell/therapeutic use
- Neoplasm Recurrence, Local/etiology
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/pathology
- Immunotherapy, Adoptive
- Antigens, CD19/therapeutic use
- Cell- and Tissue-Based Therapy
Collapse
Affiliation(s)
- Hannah Kinoshita
- Cell Enhancement and Technologies for Immunotherapy, Children's National Hospital, Washington, DC; Department of Pediatrics, George Washington University, Washington, DC
| | - Catherine M Bollard
- Cell Enhancement and Technologies for Immunotherapy, Children's National Hospital, Washington, DC; Department of Pediatrics, George Washington University, Washington, DC
| | - Keri Toner
- Cell Enhancement and Technologies for Immunotherapy, Children's National Hospital, Washington, DC; Department of Pediatrics, George Washington University, Washington, DC
| |
Collapse
|
170
|
El‐Mallawany NK, Giulino‐Roth L, Burke JM, Hermiston M, Allen CE. Mature B-cell lymphomas in adolescents and young adults. EJHAEM 2023; 4:912-920. [PMID: 38024628 PMCID: PMC10660408 DOI: 10.1002/jha2.783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 12/01/2023]
Abstract
Pediatric non-Hodgkin lymphoma includes over 30 histologies (many with subtypes), with approximately 800 cases per year in the US, compared to >60,000 cases of adult NHL annually. Improvements in survival in pediatric and adolescent mature B cell NHL over the past 5 decades align with the overall success of the cooperative trial model with dramatic improvements in outcomes through dose escalation of chemotherapy and, more recently, targeted therapy with rituximab. Pediatric dose-intense strategies carry risks of long-term consequences, but treatment failure is nearly universally fatal. By comparison, adult mature B cell lymphoma is typically less aggressive and treated with less intense chemotherapy. Optimizing therapy for adolescents and young adults remains a major challenge that requires creative solutions, including engineering study groups to combine biologically comparable adult and pediatric populations and developing effective salvage strategies that will ultimately be required for investigations of front-line dose reduction. In this review, we discuss challenges and opportunities for improving outcomes for adolescents and young adults with high-grade mature B cell lymphomas, diffuse large B cell lymphoma, and primary mediastinal B cell lymphoma.
Collapse
Affiliation(s)
- Nader Kim El‐Mallawany
- Department of Pediatrics, Baylor College of Medicine, Texas Children's HospitalTexas Children's Cancer CenterHoustonTexasUSA
| | - Lisa Giulino‐Roth
- Department of PediatricsWeill Cornell Medical CollegeNew YorkNew YorkUSA
| | - John M. Burke
- Department of HematologyRocky Mountain Cancer CentersAuroraColoradoUSA
| | - Michelle Hermiston
- Department of PediatricsUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Carl E. Allen
- Department of Pediatrics, Baylor College of Medicine, Texas Children's HospitalTexas Children's Cancer CenterHoustonTexasUSA
| |
Collapse
|
171
|
Makos OL, D'Angelo CR. The shifting roles and toxicities of cellular therapies in B-cell malignancies. Transpl Infect Dis 2023; 25 Suppl 1:e14145. [PMID: 37676749 DOI: 10.1111/tid.14145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/09/2023]
Abstract
Cellular therapies provide a curative-intent option for patients with relapsedand refractory lymphomas. Current options including high dose chemotherapyfollowed by autologous or allogeneic hematopoietic stem cell transplantation or CD19 chimericantigen receptor T-cell (CART) therapy. The indication varies according to lymphoma sub-type and line oftherapy. The sequencing of these therapies and their use in second-line orlater settings to manage these diseases is undergoing significant changes, withCD19 CAR T becoming a preferred option for relapsed aggressive B-cell lymphoma.The mechanism of both therapies causes significant yet distinctlymphodepletion, infectious, and inflammatory toxicities. The resulting patternand timing of immune reconstitution helps guide risk-mitigating strategies,revaccination, and infectious prophylaxis. In this review, we discuss theindication, efficacy, toxicity and immune reconstitution of autologoushematopoietic stem cell transplantation and CAR T therapy for use in thetreatment of lymphoma.
Collapse
Affiliation(s)
- Olivia L Makos
- Department of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Christopher R D'Angelo
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
172
|
Tang OY, Binder ZA, O'Rourke DM, Bagley SJ. Optimizing CAR-T Therapy for Glioblastoma. Mol Diagn Ther 2023; 27:643-660. [PMID: 37700186 DOI: 10.1007/s40291-023-00671-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2023] [Indexed: 09/14/2023]
Abstract
Chimeric antigen receptor T-cell therapies have transformed the management of hematologic malignancies but have not yet demonstrated consistent efficacy in solid tumors. Glioblastoma is the most common primary malignant brain tumor in adults and remains a major unmet medical need. Attempts at harnessing the potential of chimeric antigen receptor T-cell therapy for glioblastoma have resulted in glimpses of promise but have been met with substantial challenges. In this focused review, we discuss current and future strategies being developed to optimize chimeric antigen receptor T cells for efficacy in patients with glioblastoma, including the identification and characterization of new target antigens, reversal of T-cell dysfunction with novel chimeric antigen receptor constructs, regulatable platforms, and gene knockout strategies, and the use of combination therapies to overcome the immune-hostile microenvironment.
Collapse
Affiliation(s)
- Oliver Y Tang
- Warren Alpert Medical School, Brown University, Providence, RI, 02903, USA
| | - Zev A Binder
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Donald M O'Rourke
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Stephen J Bagley
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA.
| |
Collapse
|
173
|
Kampouri E, Hill JA, Dioverti V. COVID-19 after hematopoietic cell transplantation and chimeric antigen receptor (CAR)-T-cell therapy. Transpl Infect Dis 2023; 25 Suppl 1:e14144. [PMID: 37767643 DOI: 10.1111/tid.14144] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/17/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023]
Abstract
More than 3 years have passed since Coronavirus disease 2019 (COVID-19) was declared a global pandemic, yet COVID-19 still severely impacts immunocompromised individuals including those treated with hematopoietic cell transplantation (HCT) and chimeric antigen receptor-T-cell therapies who remain at high risk for severe COVID-19 and mortality. Despite vaccination efforts, these patients have inadequate responses due to immunosuppression, which underscores the need for additional preventive approaches. The optimal timing, schedule of vaccination, and immunological correlates for protective immunity remain unknown. Antiviral therapies used early during disease can reduce mortality and severity due to COVID-19. The combination or sequential use of antivirals could be beneficial to control replication and prevent the development of treatment-related mutations in protracted COVID-19. Despite conflicting data, COVID-19 convalescent plasma remains an option in immunocompromised patients with mild-to-moderate disease to prevent progression. Protracted COVID-19 has been increasingly recognized among these patients and has been implicated in intra-host emergence of SARS-CoV-2 variants. Finally, novel SARS-CoV2-specific T-cells and natural killer cell-boosting (or -containing) products may be active against multiple variants and are promising therapies in immunocompromised patients.
Collapse
Affiliation(s)
- Eleftheria Kampouri
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Infectious Diseases Service, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Joshua A Hill
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Veronica Dioverti
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
174
|
Testa U, Leone G, Pelosi E, Castelli G, Hohaus S. CAR-T Cell Therapy in Large B Cell Lymphoma. Mediterr J Hematol Infect Dis 2023; 15:e2023066. [PMID: 38028399 PMCID: PMC10631715 DOI: 10.4084/mjhid.2023.066] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Large B-cell lymphomas (LBCLs) are among the most frequent (about 30%) non-Hodgkin's lymphoma. Despite the aggressive behavior of these lymphomas, more than 60% of patients can be cured with first-line chemoimmunotherapy using the R-CHOP regimen. Patients with refractory or relapsing disease show a poor outcome even when treated with second-line therapies. CD19-targeted chimeric antigen receptor (CAR) T-cells are emerging as an efficacious second-line treatment strategy for patients with LBCL. Three CD19-CAR-T-cell products received FDA and EMA approval. CAR-T cell therapy has also been explored for treating high-risk LBCL patients in the first-line setting and for patients with central nervous system involvement. Although CD19-CAR-T therapy has transformed the care of refractory/relapsed LBCL, about 60% of these patients will ultimately progress or relapse following CD19-CAR-T; therefore, it is fundamental to identify predictive criteria of response to CAR-T therapy and to develop salvage therapies for patients relapsing after CD19-CAR-T therapies. Moreover, ongoing clinical trials evaluate bispecific CAR-T cells targeting both CD19 and CD20 or CD19 and CD22 as a tool to improve the therapeutic efficacy and reduce the number of refractory/relapsing patients.
Collapse
Affiliation(s)
| | - Giuseppe Leone
- Dipartimento Di Scienze Radiologiche Ed Ematologiche, Università Cattolica Del Sacro Cuore, Roma, Italy
| | | | | | - Stefan Hohaus
- Dipartimento Di Diagnostica per Immagini, Radioterapia Oncologica Ed Ematologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy. Sezione Di Ematologia
- Dipartimento Di Scienze Radiologiche Ed Ematologiche, Università Cattolica Del Sacro Cuore, Roma, Italy
| |
Collapse
|
175
|
Nagai K, Nagai S, Okubo Y, Teshigawara K. Diffuse large B-cell lymphoma successfully treated with amplified natural killer therapy alone: A case report. World J Clin Cases 2023; 11:7432-7439. [PMID: 37969464 PMCID: PMC10643074 DOI: 10.12998/wjcc.v11.i30.7432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/26/2023] [Accepted: 10/08/2023] [Indexed: 10/25/2023] Open
Abstract
BACKGROUND The prognosis of patients with advanced diffuse large B-cell lymphoma (DLBCL) is poor, with a 5-year survival rate of approximately 50%. The mainstay of treatment is multidrug combination chemotherapy, which has been associated with serious side effects. Amplified natural killer (ANK) cell therapy amplifies and activates natural killer (NK) cells to attack only malignant tumors. As ANK cells attack programmed death ligand 1 (PD-L1)-positive tumor cells, ANK therapy is considered effective against adult T-cell lymphoma and malignant lymphoma. CASE SUMMARY Herein, we report a case of an older patient with advanced DLBCL who was successfully treated with ANK immunotherapy. A 91-year-old female visited our hospital with sudden swelling of the right axillary lymph node in April 2022. The patient was diagnosed with stage II disease, given the absence of splenic involvement or contralateral lymphadenopathy. ANK therapy was administered. Six rounds of lymphocyte sampling were performed on July 28, 2022. To reduce the occurrence of side effects, the six samples were diluted by half to obtain 12 samples. Cultured NK cells were administered twice weekly. The treatment efficacy was evaluated by performing computed tomography and serological tests every 1 or 2 mo. The treatment suppressed lesion growth, and the antitumor effect persisted for several months. The patient experienced mild side effects. PD-L1 immunostaining was positive, indicating that the treatment was highly effective. CONCLUSION ANK therapy can be used as a first-line treatment for malignant lymphoma; the PD-L1 positivity rate can predict treatment efficacy.
Collapse
Affiliation(s)
- Kenjiro Nagai
- Department of Internal Medicine, Medical Corporation Ebino Centro Clinic, Ebino 889-4304, Japan
| | - Syo Nagai
- Department of Internal Medicine, Medical Corporation Ebino Centro Clinic, Ebino 889-4304, Japan
| | - Yuji Okubo
- Department of Internal Medicine, Higashinotoin Clinic, Kyoto 604-8175, Japan
| | - Keisuke Teshigawara
- Department of Internal Medicine, Higashinotoin Clinic, Kyoto 604-8175, Japan
| |
Collapse
|
176
|
Balendran S, Tam C, Ku M. T-Cell Engaging Antibodies in Diffuse Large B Cell Lymphoma-An Update. J Clin Med 2023; 12:6737. [PMID: 37959202 PMCID: PMC10647650 DOI: 10.3390/jcm12216737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/12/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Novel cellular immunotherapies such as T-cell engaging antibodies (TCEAbs) are changing the landscape of treatment for diffuse large B cell lymphoma (DLBCL), especially in the relapsed/refractory (R/R) setting. TCEAbs harness the power of the host immune system to induce killing of tumor cells by binding to both the tumor antigen and the T-cell receptor. Since the approval of blinatumomab for R/R acute lymphoblastic leukemia, there has been significant development in novel TCEAbs. Many of these novel TCEAbs have shown promising effectiveness in R/R DLBCL, with favorable response rates including complete remissions, even in heavily pretreated patients. There are unique therapy-related toxicities with TCEAbs, namely cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity (ICANS), and it is important to both recognize and manage these side effects appropriately. This review examines the development and mechanism of action of these TCEAbs, and the available published data from clinical trials. Their role in the treatment of DLBCL, the management of therapy-related adverse events, and the mechanisms of resistance will also be discussed.
Collapse
Affiliation(s)
| | | | - Matthew Ku
- St. Vincent’s Hospital, Melbourne, Fitzroy, VIC 3065, Australia
| |
Collapse
|
177
|
Gurumurthi A, Westin J, Subklewe M. The race is on: bispecifics vs CAR T cells in B-cell lymphoma. Blood Adv 2023; 7:5713-5716. [PMID: 37037004 PMCID: PMC10539863 DOI: 10.1182/bloodadvances.2022009066] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/30/2023] [Accepted: 04/02/2023] [Indexed: 04/12/2023] Open
Affiliation(s)
- Ashwath Gurumurthi
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jason Westin
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Marion Subklewe
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
- Department of Medicine II, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
178
|
Pickard K, Stephenson E, Mitchell A, Jardine L, Bacon CM. Location, location, location: mapping the lymphoma tumor microenvironment using spatial transcriptomics. Front Oncol 2023; 13:1258245. [PMID: 37869076 PMCID: PMC10586500 DOI: 10.3389/fonc.2023.1258245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/19/2023] [Indexed: 10/24/2023] Open
Abstract
Lymphomas are a heterogenous group of lymphoid neoplasms with a wide variety of clinical presentations. Response to treatment and prognosis differs both between and within lymphoma subtypes. Improved molecular and genetic profiling has increased our understanding of the factors which drive these clinical dynamics. Immune and non-immune cells within the lymphoma tumor microenvironment (TME) can both play a key role in antitumor immune responses and conversely also support lymphoma growth and survival. A deeper understanding of the lymphoma TME would identify key lymphoma and immune cell interactions which could be disrupted for therapeutic benefit. Single cell RNA sequencing studies have provided a more comprehensive description of the TME, however these studies are limited in that they lack spatial context. Spatial transcriptomics provides a comprehensive analysis of gene expression within tissue and is an attractive technique in lymphoma to both disentangle the complex interactions between lymphoma and TME cells and improve understanding of how lymphoma cells evade the host immune response. This article summarizes current spatial transcriptomic technologies and their use in lymphoma research to date. The resulting data has already enriched our knowledge of the mechanisms and clinical impact of an immunosuppressive TME in lymphoma and the accrual of further studies will provide a fundamental step in the march towards personalized medicine.
Collapse
Affiliation(s)
- Keir Pickard
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Haematology Department, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Emily Stephenson
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Alex Mitchell
- Haematology Department, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Laura Jardine
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Haematology Department, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Chris M. Bacon
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Department of Cellular Pathology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
179
|
Reynolds G, Sim B, Anderson MA, Spelman T, Teh BW, Slavin MA, Thursky KA. Predicting infections in patients with haematological malignancies treated with chimeric antigen receptor T-cell therapies: A systematic scoping review and narrative synthesis. Clin Microbiol Infect 2023; 29:1280-1288. [PMID: 37201866 DOI: 10.1016/j.cmi.2023.05.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/14/2023] [Accepted: 05/06/2023] [Indexed: 05/20/2023]
Abstract
BACKGROUND Chimeric antigen receptor T cells (CAR-T cells) are increasingly used to treat haematological malignancies. Strategies for preventing infections in CAR-T-treated patients rely on expert opinions and consensus guidelines. OBJECTIVES This scoping review aimed to identify risk factors for infections in CAR-T-treated patients with haematological malignancies. DATA SOURCES A literature search utilized MEDLINE, EMBASE and Cochrane to identify relevant studies from conception until 30 September 2022. STUDY ELIGIBILITY CRITERIA Trials and observational studies were eligible. PARTICIPANTS Studies required ≥10 patients treated for haematological malignancy to report infection events (as defined by the study), and either (a) a descriptive, univariate or multivariate analysis of the relationship between infections event and a risk factors for infections, or (b) diagnostic performance of a biochemical/immunological marker in CAR-T-treated patients with infection. METHODS A scoping review was conducted in accordance with PRISMA guidelines. DATA SOURCES A literature search utilised MEDLINE, EMBASE and Cochrane to identify relevant studies from conception until September 30, 2022. Eligibility/Participants/Intervention: Trials and observational studies were eligible. Studies required ≥ 10 patients treated for haematological malignancy, to report infection events (as defined by the study), and either A) a descriptive, univariate or multivariate analysis of the relationship between infections event and a risk-factors for infections, or B) diagnostic performance of a biochemical/immunological marker in CAR-T treated patients with infection. ASSESSMENT OF RISK OF BIAS Bias assessment was undertaken according to Joanna Brigg's Institute criteria for observational studies. METHODS OF DATA SYNTHESIS Data were synthesized descriptively because of the heterogeneity of reporting. RESULTS A total of 1522 patients across 15 studies were identified. All-cause infections across haematological malignancies were associated with lines of prior therapy, steroid administration, immune-effector cell-associated neurotoxicity and treatment-emergent neutropenia. Procalcitonin, C-reactive protein and cytokine profiles did not reliably predict infections. Predictors of viral, bacterial and fungal infections were poorly canvassed. DISCUSSION Meta-analysis of the current literature is not possible because of significant heterogeneity in definitions of infections and risk factors, and small, underpowered cohort studies. Radical revision of how we approach reporting infections for novel therapies is required to promptly identify infection signals and associated risks in patients receiving novel therapies. Prior therapies, neutropenia, steroid administration and immune-effector cell-associated neurotoxicity remain the most associated with infections in CAR-T-treated patients.
Collapse
Affiliation(s)
- Gemma Reynolds
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia; National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Department of Infectious Diseases, Austin Health, Melbourne, Victoria, Australia.
| | - Beatrice Sim
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Mary Ann Anderson
- Department of Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Tim Spelman
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Benjamin W Teh
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia; National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Monica A Slavin
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia; National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Karin A Thursky
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia; National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| |
Collapse
|
180
|
Chanut M, Herbaux C. [Lisocabtagene maraleucel CAR-T cells - second line treatment in patients with relapsed or refractory large B cell lymphoma]. Bull Cancer 2023; 110:986-988. [PMID: 37661551 DOI: 10.1016/j.bulcan.2023.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 06/11/2023] [Accepted: 06/14/2023] [Indexed: 09/05/2023]
Affiliation(s)
- Mathilde Chanut
- Hôpital Saint-Louis, service d'hématologie-oncologie, 1, avenue Claude-Vellefaux, 75010 Paris, France.
| | - Charles Herbaux
- Hôpital Saint-Eloi, service d'hématologie clinique, 80, avenue Augustin-Fliche, 34090 Montpellier, France
| |
Collapse
|
181
|
Gong IY, Aminilari M, Landego I, Hueniken K, Zhou Q, Kuruvilla J, Hodgson DC. Comparative effectiveness of salvage chemotherapy regimens and chimeric antigen T-cell receptor therapies in relapsed and refractory diffuse large B cell lymphoma: a network meta-analysis of clinical trials. Leuk Lymphoma 2023; 64:1643-1654. [PMID: 37548344 DOI: 10.1080/10428194.2023.2234528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/05/2023] [Accepted: 06/30/2023] [Indexed: 08/08/2023]
Abstract
The optimal salvage chemotherapy regimen (SC) for relapsed/refractory (R/R) diffuse large B-cell lymphoma (DLBCL) prior to autologous stem cell transplant remains unclear. Moreover, although chimeric antigen receptor T cell (CAR-T) therapies were recently approved for primary refractory DLBCL, head-to-head comparisons are lacking. We searched MEDLINE, EMBASE and CENTRAL to July 2022, for randomized trials that enrolled adult patients with R/R DLBCL and performed network meta-analyses (NMA) to assess the efficacy of SC and CAR-T therapies. NMA of SC (6 trials, 7 regimens, n = 1831) indicated that rituximab with gemcitabine, dexamethasone, cisplatin (R-GDP) improved OS and PFS over compared regimens. NMA of 3 CAR-T trials (n = 865) indicated that both axi-cel and liso-cel improved PFS over standard of care, with no difference in OS. Our results indicate that R-GDP may be preferred for R/R DLBCL over other SC compared. Longer follow-up is required for ongoing comparative survival analysis as data from CAR-T trials matures.
Collapse
Affiliation(s)
- Inna Y Gong
- Department of Radiation Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Mahmood Aminilari
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Ivan Landego
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Katrina Hueniken
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Qianghua Zhou
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - John Kuruvilla
- Department of Radiation Medicine, University of Toronto, Toronto, Ontario, Canada
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - David C Hodgson
- Department of Radiation Medicine, University of Toronto, Toronto, Ontario, Canada
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| |
Collapse
|
182
|
Huang R, Geng H, Zhu L, Yan J, Li C, Li Y. CT radiomics can predict disease progression within 6 months after chimeric antigen receptor-modified T-cell therapy in relapsed/refractory B-cell non-Hodgkin's lymphoma patients. Clin Radiol 2023; 78:e707-e717. [PMID: 37407367 DOI: 10.1016/j.crad.2023.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/05/2023] [Accepted: 05/30/2023] [Indexed: 07/07/2023]
Abstract
AIM To predict progression within 6 months after chimeric antigen receptor-modified (CAR) T-cell therapy for relapsed/refractory (R/R) B-cell non-Hodgkin's lymphoma (B-NHL) patients by radiomic indexes derived from contrast-enhanced computed tomography (CECT) examinations. MATERIALS AND METHODS Seventy R/R B-NHL patients who underwent CECT before treatment with CAR T-cells were examined retrospectively. In total, 297 volumes of interest for lesions were segmented from CECT images. Patients without and with disease progression were assigned to groups 1 and 2, respectively. Radiomic and combined predictive models were constructed by three machine-learning algorithms using features from the training set, respectively. Furthermore, predictive models were constructed based on multi-lesion-based and largest-lesion-based radiomic features, respectively. RESULTS In the test set, no marked differences were observed between the areas under the curves (AUCs) of the combined and radiomic models for all three machine-learning algorithms (all p>0.05). Differences in machine-learning algorithms did not significantly affect the predictive performances of the models. Radiomics and combined models constructed with multi-lesion-based radiomic features showed better predictive performances than those applying largest-lesion-based radiomic features (all p<0.05 for comparisons between combined models). CONCLUSION CECT-based radiomic features may be applied to predict disease progression in R/R B-NHL patients within 6 months after CAR T-cell treatment, and radiomic features from multiple lesions may have better predictive efficacy. Different machine-learning algorithms may not show significant differences in prediction performance.
Collapse
Affiliation(s)
- R Huang
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu province 215000, PR China
| | - H Geng
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu province 215000, PR China
| | - L Zhu
- Department of Ultrasound, The First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu province, 215000, PR China
| | - J Yan
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu province 215000, PR China
| | - C Li
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu province 215000, PR China; National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu province 215000, PR China
| | - Y Li
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu province 215000, PR China; National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu province 215000, PR China; Institute of Medical Imaging, Soochow University, Suzhou City, Jiangsu province 215000, PR China.
| |
Collapse
|
183
|
Martín García-Sancho A, Baile M, Rodríguez G, Dlouhy I, Sancho JM, Jarque I, González-Barca E, Salar A, Espeso M, Grande C, Bergua J, Montes-Moreno S, Redondo A, Enjuanes A, Campo E, López-Guillermo A, Caballero D. Lenalidomide in combination with R-ESHAP in patients with relapsed or refractory diffuse large B-cell lymphoma: A phase 2 study from GELTAMO. Br J Haematol 2023; 203:202-211. [PMID: 37485564 DOI: 10.1111/bjh.18989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/18/2023] [Accepted: 07/10/2023] [Indexed: 07/25/2023]
Abstract
Diffuse large B-cell lymphoma (DLBCL) patients with relapsed or refractory (RR) disease have poor outcomes with current salvage regimens. We conducted a phase 2 trial to analyse the safety and efficacy of adding lenalidomide to R-ESHAP (LR-ESHAP) in patients with RR DLBCL. Subjects received 3 cycles of lenalidomide 10 mg/day on days 1-14 of every 21-day cycle, in combination with R-ESHAP at standard doses. Responding patients underwent autologous stem-cell transplantation (ASCT). The primary endpoint was the overall response rate (ORR) after 3 cycles. Centralized cell-of-origin (COO) classification was performed. Forty-six patients were included. The ORR after LR-ESHAP was 67% (35% of patients achieved complete remission). Patients with primary refractory disease (n = 26) had significantly worse ORR than patients with non-refractory disease (54% vs. 85%, p = 0.031). No differences in response rates according to the COO were observed. Twenty-eight patients (61%) underwent ASCT. At a median follow-up of 41 months, the estimated 3-year PFS and OS were 42% and 48%, respectively. The most common grade ≥3 adverse events were thrombocytopenia (70% of patients), neutropenia (67%) and anaemia (35%). There were no treatment-related deaths during LR-ESHAP cycles. In conclusion, LR-ESHAP is a feasible salvage regimen with promising efficacy results for patients with RR DLBCL.
Collapse
Affiliation(s)
- A Martín García-Sancho
- Hematology Department, Hospital Universitario de Salamanca-IBSAL, CIBERONC, Universidad de Salamanca, Salamanca, Spain
| | - M Baile
- Hematology Department, Hospital Universitario de Salamanca-IBSAL, CIBERONC, Universidad de Salamanca, Salamanca, Spain
| | - G Rodríguez
- Hematology Department, Hospital Universitario Virgen del Rocío/Virgen Macarena, Sevilla, Spain
| | - I Dlouhy
- Hematology Department, Hospital Clinic, Barcelona, Spain
| | - J M Sancho
- Hematology Department, Hospital Germans Trias i Pujol/ICO-IJC, Badalona, Spain
| | - I Jarque
- Hematology Department, Hospital Universitari i Plotècnic La Fe, CIBERONC, Valencia, Spain
| | - E González-Barca
- Institut Català d'Oncologia-Hospitalet, IDIBELL, Universitat de-Barcelona, Barcelona, Spain
| | - A Salar
- Hematology Department, Hospital del Mar, Barcelona, Spain
| | - M Espeso
- Hematology Department, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - C Grande
- Hematology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - J Bergua
- Hematology Department, Hospital San Pedro de Alcántara, Cáceres, Spain
| | - S Montes-Moreno
- Pathology Department, Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - A Redondo
- Hematology Department, Hospital Virgen del Puerto, Plasencia, Spain
| | - A Enjuanes
- Unidad de Genómica del IDIBAPS, Barcelona, Spain
| | - E Campo
- Pathology Department, Hospital Clinic, Barcelona, Spain
| | | | - D Caballero
- Hematology Department, Hospital Universitario de Salamanca-IBSAL, CIBERONC, Universidad de Salamanca, Salamanca, Spain
| |
Collapse
|
184
|
Laurence A. CAR-T cells, the first pharmaceutical cell therapy. Transfus Apher Sci 2023; 62:103754. [PMID: 37423868 DOI: 10.1016/j.transci.2023.103754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The success of genetically engineered adoptive cell therapies in haematological malignancy in the second decade of the 21st century has surprised both immunologists and oncologists. It challenges much of our understanding of the role of personalised medicine, the divide between cell products and pharmaceutical drugs and the limitations of the immune system to clear cancer. Furthermore, many challenges remain, the therapy is both expensive, hazardous and largely restricted to lymphoproliferative disease.
Collapse
|
185
|
Gao J, Dahiya S, Patel SA. Challenges and solutions to superior chimeric antigen receptor-T design and deployment for B-cell lymphomas. Br J Haematol 2023; 203:161-168. [PMID: 37488074 PMCID: PMC10913150 DOI: 10.1111/bjh.19001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/12/2023] [Accepted: 07/16/2023] [Indexed: 07/26/2023]
Abstract
Chimeric antigen receptor-T (CAR-T) therapies represent a major breakthrough in cancer medicine, given the ex vivo-based technology that harnesses the power of one's own immune system. These therapeutics have demonstrated remarkable success for relapsed/refractory B-cell lymphomas. Although more than a decade has passed since the initial introduction of CAR-T therapeutics for patients with leukaemia and lymphoma, there is still significant debate as to where CAR-T therapeutics fit into the management paradigm, as consensus guidelines are limited. Competing interventions deployed in subsequent lines of therapy for aggressive lymphoma include novel targeted agents, bispecific antibodies, and time-honoured stem cell transplant. In this focused review, we discuss the major obstacles to advancing the therapeutic reach for CAR-T products in early lines of therapy. Such barriers include antigen escape, "cold" tumour microenvironments, host inflammation and CAR-T cell exhaustion. We highlight solutions including point-of-care CAR-T manufacturing and early T lymphopheresis. We review the evidence basis for early CAR-T deployment for B-cell lymphomas in light of the recent Food and Drug Administration (FDA) approval of three first-in-class anti-CD3/CD20 bispecific antibodies-mosunetuzumab, epcoritamab and glofitamab. We propose practical recommendations for 2024.
Collapse
Affiliation(s)
- Jenny Gao
- RNA Therapeutics Institute, UMass Chan Medical School, Worcester, Massachusetts, USA
| | - Saurabh Dahiya
- Division of Blood and Marrow Transplantation and Cellular Therapy, Stanford University School of Medicine, Stanford, California, USA
| | - Shyam A. Patel
- Division of Hematology/Oncology, Department of Medicine, UMass Memorial Medical Center, Center for Clinical and Translational Science, UMass Chan Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
186
|
Trando A, Ter-Zakarian A, Yeung P, Goodman AM, Hamdan A, Hurley M, Jeong AR, Tzachanis D. Outcomes of Chimeric Antigen Receptor (CAR) T-Cell Therapy in Patients with Large B-Cell Lymphoma (LBCL): A Single-Institution Experience. Cancers (Basel) 2023; 15:4671. [PMID: 37760639 PMCID: PMC10527363 DOI: 10.3390/cancers15184671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/08/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023] Open
Abstract
Chimeric antigen receptor T-cell (CAR T-cell) therapy has revolutionized the treatment of relapsed/refractory (R/R) large B-cell lymphoma (LBCL). We describe the real-world baseline characteristics, efficacy, safety, and post-relapse outcomes of adult patients with R/R LBCL who received CAR T-cell therapy at the University of California San Diego. A total of 66 patients with LBCL were treated with tisagenlecleucel or axicabtagene ciloleucel. The median age was 59.5, and 21% were over 70 years old. Additionally, 20% of the patients had an Eastern Cooperative Oncology Group (ECOG) performance score of ≥2. Cytokine release syndrome incidence was 88%; immune effector cell-associated neurotoxicity syndrome incidence was 56%. All-grade infection occurred in 48% of patients and in 79% of patients > 70 years old. Complete response (CR) was achieved in 53% and partial response in 14%. Median progression-free survival (PFS) was 10.3 months; median overall survival (OS) was 28.4 months. Patients who relapsed post-CAR T-cell therapy had poor outcomes, with a median OS2 of 4.8 months. Upon multivariate analysis, both ECOG (HR 2.65, 95% CI: 1.30-5.41; p = 0.007) and ≥2 sites of extranodal involvement (HR 2.22, 95% CI: 1.15-4.31; p = 0.018) were significant predictors of PFS. Twenty-six patients were R/R to CAR T-cell therapy; six patients were in remission at the time of data cut off, one of whom received allogeneic transplant. Overall, older patients can safely undergo CAR T-cell therapy, despite the increased risk of all-grade infection. In our cohort, ECOG performance score and ≥2 sites of extranodal disease are significant predictors of PFS.
Collapse
Affiliation(s)
- Aaron Trando
- School of Medicine, University of California San Diego, La Jolla, CA 92093, USA;
| | - Anna Ter-Zakarian
- Department of Medicine, Division of Blood and Marrow Transplantation, University of California San Diego, La Jolla, CA 92093, USA
| | - Phillip Yeung
- Master of Advanced Studies (MAS) Program in Clinical Research, University of California San Diego, La Jolla, CA 92093, USA
| | - Aaron M. Goodman
- Department of Medicine, Division of Blood and Marrow Transplantation, University of California San Diego, La Jolla, CA 92093, USA
| | - Ayad Hamdan
- Department of Medicine, Division of Blood and Marrow Transplantation, University of California San Diego, La Jolla, CA 92093, USA
| | - Michael Hurley
- Department of Medicine, Division of Blood and Marrow Transplantation, University of California San Diego, La Jolla, CA 92093, USA
| | - Ah-Reum Jeong
- Department of Medicine, Division of Blood and Marrow Transplantation, University of California San Diego, La Jolla, CA 92093, USA
| | - Dimitrios Tzachanis
- Department of Medicine, Division of Blood and Marrow Transplantation, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
187
|
Gumà J, Palazón-Carrión N, Rueda-Domínguez A, Sequero S, Calvo V, García-Arroyo R, Gómez-Codina J, Llanos M, Martínez-Banaclocha N, Provencio M. SEOM-GOTEL clinical guidelines on diffuse large B cell lymphoma (2022). Clin Transl Oncol 2023; 25:2749-2758. [PMID: 37289353 PMCID: PMC10425474 DOI: 10.1007/s12094-023-03206-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 06/09/2023]
Abstract
Diffuse large B-cell lymphoma is the most frequent histological subtype of NHL and the paradigm for the management of aggressive lymphoma. An excisional or incisional lymph node biopsy evaluated by an experienced hemopathologist is recommended to establish the diagnosis. Twenty years following its introduction, R-CHOP remains the standard first-line treatment. No modification of this scheme (increased chemotherapy dose intensity, new monoclonal antibodies, or the addition of immunomodulators or anti-target agents) has significatively improved the clinical outcomes, whereas therapy for recurrence or progression is evolving rapidly. The irruption of CART cells, polatuzumab vedotin, tafasitamab, and CD20/CD3 bispecific antibodies are changing the natural history of relapsed patients and will challenge R-CHOP as the benchmark for newly diagnosed patients.
Collapse
Affiliation(s)
- Josep Gumà
- Medical Oncology Department, Hospital Universitari Sant Joan de Reus, IISPV, URV, Reus, Tarragona, Spain
| | | | - Antonio Rueda-Domínguez
- UGCI Medical Oncology, Hospitales Universitarios Regional y Virgen de la Victoria, IBIMA, Málaga, Spain
| | - Silvia Sequero
- Medical Oncology Department, Hospital Universitario San Cecilio, Granada, Spain
| | - Virginia Calvo
- Medical Oncology Department, Hospital Universitario Puerta de Hierro, Majadahonda, Madrid, Spain
| | - Ramón García-Arroyo
- Medical Oncology Department, Complejo Hospitalario Universitario, Pontevedra, Spain
| | - José Gómez-Codina
- Medical Oncology Department, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Marta Llanos
- Medical Oncology Department, Hospital Universitario de Canarias, Tenerife, Spain
| | - Natividad Martínez-Banaclocha
- Oncology Department, Hospital General Universitario Dr. Balmis, Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain
| | - Mariano Provencio
- Medical Oncology Department, Hospital Universitario Puerta de Hierro, Majadahonda, Madrid, Spain
| |
Collapse
|
188
|
Thiruvengadam SK, Shouse G, Danilov AV. Thinking "outside the germinal center": Re-educating T cells to combat follicular lymphoma. Blood Rev 2023; 61:101099. [PMID: 37173225 DOI: 10.1016/j.blre.2023.101099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/04/2023] [Accepted: 05/08/2023] [Indexed: 05/15/2023]
Abstract
There have been significant advancements in the management of follicular lymphoma (FL), the most common indolent lymphoma. These include immunomodulatory agents such as lenalidomide, epigenetic modifiers (tazemetostat), and phosphoinotiside-3 kinase inhibitors (copanlisib). The focus of this review is T cell-engager therapies, namely chimeric antigen receptor (CAR) T-cell therapy and bispecific antibodies, have recently transformed the treatment landscape of FL. Two CAR T cell products, axicabtagene ciloleucel (axi-cel) and tisagenlecleucel (tisa-cel), and one bispecific antibody, mosunetuzumab, recently received FDA approvals in FL. Several other new immune effector drugs are being evaluated and will expand the treatment armamentarium. This review focuses on CAR T-cell and bispecific antibody therapies, details their safety and efficacy and considers their evolving role in the current treatment landscape of FL.
Collapse
|
189
|
Terao T, Kitamura W, Fujii N, Asada N, Kamoi C, Fujiwara K, Kondo K, Matsubara C, Hayashino K, Seike K, Fujiwara H, Ennishi D, Nishimori H, Fujii K, Matsuoka KI, Maeda Y. Negative Prognostic Impact of High-Dose or Long-Term Corticosteroid Use in Patients with Relapsed or Refractory B-Cell Lymphoma Who Received Tisagenlecleucel. Transplant Cell Ther 2023; 29:573.e1-573.e8. [PMID: 37394114 DOI: 10.1016/j.jtct.2023.06.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/12/2023] [Accepted: 06/28/2023] [Indexed: 07/04/2023]
Abstract
The prognostic impact of corticosteroid therapy in patients receiving tisagenlecleucel (tisa-cel) treatment who are more likely to develop cytokine release syndrome (CRS) remains unclear. This study aimed to evaluate the clinical impact and lymphocyte kinetics of corticosteroid administration for CRS in 45 patients with relapsed and/or refractory B-cell lymphoma treated with tisa-cel. This was a retrospective evaluation of all consecutive patients diagnosed with relapsed and/or refractory diffuse large B-cell lymphoma, follicular lymphoma with histologic transformation to large B-cell lymphoma, or follicular lymphoma who received commercial-based tisa-cel treatment. The best overall response rate, complete response rate, median progression-free survival (PFS), and median overall survival (OS) were 72.7%, 45.5%, 6.6 months, and 15.3 months, respectively. CRS (predominantly grade 1/2) occurred in 40 patients (88.9%), and immune effector cell-associated neurotoxicity syndrome (ICANS) of all grades occurred in 3 patients (6.7%). No grade ≥3 ICANS occurred. Patients with high-dose (≥524 mg, methylprednisolone equivalent; n = 12) or long-term (≥8 days; n = 9) corticosteroid use had inferior PFS and OS to patients with low-dose or no corticosteroid use (both P < .05). The prognostic impact remained even in 23 patients with stable disease (SD) or progressive disease (PD) before tisa-cel infusion (P = .015). but not in patients with better disease status (P = .71). The timing of corticosteroid initiation did not have a prognostic impact. Multivariate analysis identified high-dose corticosteroid use and long-term corticosteroid use as independent prognostic factors for PFS and OS, respectively, after adjusting for elevated lactate dehydrogenase level before lymphodepletion chemotherapy and disease status (SD or PD). Lymphocyte kinetics analysis demonstrated that after methylprednisolone administration, the proportions of regulatory T cells (Tregs), CD4+ central memory T (TCM) cells, and natural killer (NK) cells were decreased, whereas the proportion of CD4+ effector memory T (TEM) cells was increased. Patients with a higher proportion of Tregs at day 7 had a lower incidence of CRS, but this did not affect prognosis, indicating that early elevation of Tregs may serve as a biomarker for CRS development. Furthermore, patients with higher numbers of CD4+ TCM cells and NK cells at various time points had significantly better PFS and OS, whereas the number of CD4+ TEM cells did not impact prognostic outcomes. This study suggests that high-dose or long-term corticosteroid use attenuates the efficacy of tisa-cel, especially in patients with SD or PD. Additionally, patients with high levels of CD4+ TCM cells and NK cells after tisa-cel infusion had longer PFS and OS.
Collapse
Affiliation(s)
- Toshiki Terao
- Department of Hematology and Oncology, Okayama University Hospital, Okayama, Japan; Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Wataru Kitamura
- Department of Hematology and Oncology, Okayama University Hospital, Okayama, Japan; Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Nobuharu Fujii
- Department of Hematology and Oncology, Okayama University Hospital, Okayama, Japan; Division of Blood Transfusion, Okayama University Hospital, Okayama, Japan.
| | - Noboru Asada
- Department of Hematology and Oncology, Okayama University Hospital, Okayama, Japan
| | - Chihiro Kamoi
- Division of Blood Transfusion, Okayama University Hospital, Okayama, Japan
| | - Kanako Fujiwara
- Department of Hematology and Oncology, Okayama University Hospital, Okayama, Japan
| | - Kaho Kondo
- Department of Hematology and Oncology, Okayama University Hospital, Okayama, Japan
| | - Chisato Matsubara
- Department of Hematology and Oncology, Okayama University Hospital, Okayama, Japan
| | - Kenta Hayashino
- Department of Hematology and Oncology, Okayama University Hospital, Okayama, Japan
| | - Keisuke Seike
- Department of Hematology and Oncology, Okayama University Hospital, Okayama, Japan
| | - Hideaki Fujiwara
- Department of Hematology and Oncology, Okayama University Hospital, Okayama, Japan
| | - Daisuke Ennishi
- Department of Hematology and Oncology, Okayama University Hospital, Okayama, Japan
| | - Hisakazu Nishimori
- Department of Hematology and Oncology, Okayama University Hospital, Okayama, Japan
| | - Keiko Fujii
- Department of Hematology and Oncology, Okayama University Hospital, Okayama, Japan; Division of Clinical Laboratory, Okayama University Hospital, Okayama, Japan
| | - Ken-Ichi Matsuoka
- Department of Hematology and Oncology, Okayama University Hospital, Okayama, Japan
| | - Yoshinobu Maeda
- Department of Hematology and Oncology, Okayama University Hospital, Okayama, Japan; Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
190
|
Epperla N, Kumar A, Abutalib SA, Awan FT, Chen YB, Gopal AK, Holter-Chakrabarty J, Kekre N, Lee CJ, Lekakis L, Lin Y, Mei M, Nathan S, Nastoupil L, Oluwole O, Phillips AA, Reid E, Rezvani AR, Trotman J, Zurko J, Kharfan-Dabaja MA, Sauter CS, Perales MA, Locke FL, Carpenter PA, Hamadani M. ASTCT Clinical Practice Recommendations for Transplantation and Cellular Therapies in Diffuse Large B Cell Lymphoma. Transplant Cell Ther 2023; 29:548-555. [PMID: 37419325 DOI: 10.1016/j.jtct.2023.06.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/09/2023]
Abstract
Autologous hematopoietic cell transplantation (auto-HCT) has long been the standard approach for patients with relapsed/refractory (R/R) chemosensitive diffuse large B cell lymphoma (DLBCL). However, the advent of chimeric antigen receptor (CAR) T cell therapy has caused a paradigm shift in the management of R/R DLBCL patients, especially with the recent approval of CD19-directed CAR-T therapy in the second-line setting in high-risk groups (primary refractory and early relapse [≤12 months]). Consensus on the contemporary role, optimal timing, and sequencing of HCT and cellular therapies in DLBCL is lacking; therefore, the American Society of Transplantation and Cellular Therapy (ASTCT) Committee on Practice Guidelines undertook this project to formulate consensus recommendations to address this unmet need. The RAND-modified Delphi method was used to generate 20 consensus statements with a few key statements as follows: (1) in the first-line setting, there is no role for auto-HCT consolidation for patients achieving complete remission (CR) following R-CHOP (rituximab, cyclophosphamide, adriamycin, vincristine, and prednisone) or similar therapy in non-double-hit/triple-hit cases (DHL/THL) and in DHL/THL cases receiving intensive induction therapies, but auto-HCT may be considered in eligible patients receiving R-CHOP or similar therapies in DHL/THL cases; (2) auto-HCT consolidation with thiotepa-based conditioning is standard of care for eligible patients with primary central nervous system lymphoma achieving CR with first-line therapy; and (3) in the primary refractory and early relapse setting, the preferred option is CAR-T therapy, whereas in late relapse (>12 months), consolidation with auto-HCT is recommended for patients achieving chemosensitivity to salvage therapy (complete or partial response), and CAR-T therapy is recommended for those not achieving remission. These clinical practice recommendations will serve as a tool to guide clinicians managing patients with newly diagnosed and R/R DLBCL.
Collapse
Affiliation(s)
| | - Ambuj Kumar
- Department of Internal Medicine, Office of Research, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Syed A Abutalib
- Co-Director, Hematology & BMT/Cellular Therapy, Medical Director, NMDP Apheresis Midwest Program Associate Professor, Rosalind Franklin University of Medicine and Science, City of Hope, Zion, Illinois
| | - Farrukh T Awan
- Division of Hematology and Oncology, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Yi-Bin Chen
- Hematopoietic Cell Transplant & Cell Therapy Program, Massachusetts General Hospital, Boston, Massachusetts
| | - Ajay K Gopal
- University of Washington/Fred Hutch Cancer Center, Seattle, Washington
| | | | - Natasha Kekre
- Transplantation & Cellular Therapy Program, University of Ottawa, Ottawa, Ontario, Canada
| | - Catherine J Lee
- Transplant and Cellular Therapy Program at Huntsman Cancer Institute, Salt Lake City, Utah
| | | | - Yi Lin
- Mayo Clinic, Rochester, Minnesota
| | | | - Sunita Nathan
- Division of Hematology, Oncology and Cell Therapy, Rush University Medical Center, Chicago, Illinois
| | | | - Olalekan Oluwole
- Division of Hematology/Oncology, Vanderbilt-Ingram Cancer Center, Nashville, Tennessee
| | - Adrienne A Phillips
- Division of Hematology and Oncology, Weill Cornell Medicine, New York, New York
| | - Erin Reid
- Moores Cancer Center at UC San Diego Health, La Jolla, California
| | - Andrew R Rezvani
- Division of Blood & Marrow Transplantation and Cellular Therapy, Stanford University, Stanford, California
| | - Judith Trotman
- Concord Repatriation General Hospital, University of Sydney, Sydney, Australia
| | | | - Mohamed A Kharfan-Dabaja
- Division of Hematology-Oncology and Blood and Marrow Transplantation and Cellular Therapy, Mayo Clinic, Jacksonville, Florida
| | - Craig S Sauter
- Division of Hematology and Oncology, Cleveland Clinic, Cleveland, Ohio
| | - Miguel-Angel Perales
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Frederick L Locke
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, Florida
| | - Paul A Carpenter
- University of Washington/Fred Hutch Cancer Center, Seattle, Washington
| | - Mehdi Hamadani
- BMT & Cellular Therapy Program, Medical College of Wisconsin, Milwaukee, Wisconsin.
| |
Collapse
|
191
|
Yagi Y, Kanemasa Y, Sasaki Y, Sei M, Matsuo T, Ishimine K, Hayashi Y, Mino M, Ohigashi A, Morita Y, Tamura T, Nakamura S, Okuya T, Shimizuguchi T, Shingai N, Toya T, Shimizu H, Najima Y, Kobayashi T, Haraguchi K, Doki N, Okuyama Y, Shimoyama T. Clinical outcomes in transplant-eligible patients with relapsed or refractory diffuse large B-cell lymphoma after second-line salvage chemotherapy: A retrospective study. Cancer Med 2023; 12:17808-17821. [PMID: 37635630 PMCID: PMC10523963 DOI: 10.1002/cam4.6412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 07/07/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023] Open
Abstract
OBJECTIVE The prognosis of patients with relapsed or refractory (R/R) diffuse large B-cell lymphoma (DLBCL) is poor. Although patients who fail first-line salvage chemotherapy are candidates for second-line salvage chemotherapy, the optimal treatment strategy for these patients has not yet been established. METHODS The present, single-center, retrospective study included transplant-eligible patients with R/R DLBCL who received second-line salvage chemotherapy with curative intent. RESULTS Seventy-six patients with R/R DLBCL received second-line salvage chemotherapy. Eighteen (23.7%) patients were responders to the first-line salvage chemotherapy. The overall response rate was 39.5%, and overall survival (OS) was significantly longer in patients who responded to second-line salvage chemotherapy than those who did not. Forty-one patients who proceeded to potentially curative treatment (autologous hematopoietic stem cell transplantation [ASCT], chimeric antigen receptor [CAR] T-cell therapy, or allogeneic hematopoietic stem cell transplantation) had a better prognosis than those who did not. Among the 46 patients who failed to respond to the second-line salvage regimen, only 18 (39.1%) could proceed to the curative treatments. However, among the 30 patients who responded to the second-line salvage regimen, 23 (76.7%) received one of the potentially curative treatments. Among 34 patients who received CAR T-cell therapy, OS was significantly longer in those who responded to salvage chemotherapy immediately prior to CAR T-cell therapy than in those who did not respond. In contrast, the number of prior lines of chemotherapy was not identified as a statistically significant prognostic factor of survival. No significant difference was detected in OS between patients receiving ASCT and those receiving CAR T-cell therapy after the response to second-line salvage chemotherapy. DISCUSSION In this study, we demonstrated that chemosensitivity remained a crucial factor in predicting survival outcomes following CAR T-cell therapy irrespective of the administration timing, and that both ASCT and CAR T-cell therapy were acceptable after the response to second-line salvage chemotherapy.
Collapse
Affiliation(s)
- Yu Yagi
- Department of Medical Oncology, Tokyo Metropolitan Cancer and Infectious Diseases CenterKomagome HospitalTokyoJapan
| | - Yusuke Kanemasa
- Department of Medical Oncology, Tokyo Metropolitan Cancer and Infectious Diseases CenterKomagome HospitalTokyoJapan
| | - Yuki Sasaki
- Department of Medical Oncology, Tokyo Metropolitan Cancer and Infectious Diseases CenterKomagome HospitalTokyoJapan
| | - Mina Sei
- Department of Pharmacy, Tokyo Metropolitan Cancer and Infectious Diseases CenterKomagome HospitalTokyoJapan
| | - Takuma Matsuo
- Department of Pharmacy, Tokyo Metropolitan Cancer and Infectious Diseases CenterKomagome HospitalTokyoJapan
| | - Kento Ishimine
- Department of Medical Oncology, Tokyo Metropolitan Cancer and Infectious Diseases CenterKomagome HospitalTokyoJapan
| | - Yudai Hayashi
- Department of Medical Oncology, Tokyo Metropolitan Cancer and Infectious Diseases CenterKomagome HospitalTokyoJapan
| | - Mano Mino
- Department of Medical Oncology, Tokyo Metropolitan Cancer and Infectious Diseases CenterKomagome HospitalTokyoJapan
| | - An Ohigashi
- Department of Medical Oncology, Tokyo Metropolitan Cancer and Infectious Diseases CenterKomagome HospitalTokyoJapan
| | - Yuka Morita
- Department of Medical Oncology, Tokyo Metropolitan Cancer and Infectious Diseases CenterKomagome HospitalTokyoJapan
| | - Taichi Tamura
- Department of Medical Oncology, Tokyo Metropolitan Cancer and Infectious Diseases CenterKomagome HospitalTokyoJapan
| | - Shohei Nakamura
- Department of Medical Oncology, Tokyo Metropolitan Cancer and Infectious Diseases CenterKomagome HospitalTokyoJapan
| | - Toshihiro Okuya
- Department of Medical Oncology, Tokyo Metropolitan Cancer and Infectious Diseases CenterKomagome HospitalTokyoJapan
| | - Takuya Shimizuguchi
- Department of Radiation Oncology, Tokyo Metropolitan Cancer and Infectious Diseases CenterKomagome HospitalTokyoJapan
| | - Naoki Shingai
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases CenterKomagome HospitalTokyoJapan
| | - Takashi Toya
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases CenterKomagome HospitalTokyoJapan
| | - Hiroaki Shimizu
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases CenterKomagome HospitalTokyoJapan
| | - Yuho Najima
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases CenterKomagome HospitalTokyoJapan
| | - Takeshi Kobayashi
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases CenterKomagome HospitalTokyoJapan
| | - Kyoko Haraguchi
- Division of Transfusion and Cell Therapy, Tokyo Metropolitan Cancer and Infectious Diseases CenterKomagome HospitalTokyoJapan
| | - Noriko Doki
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases CenterKomagome HospitalTokyoJapan
| | - Yoshiki Okuyama
- Division of Transfusion and Cell Therapy, Tokyo Metropolitan Cancer and Infectious Diseases CenterKomagome HospitalTokyoJapan
| | - Tatsu Shimoyama
- Department of Medical Oncology, Tokyo Metropolitan Cancer and Infectious Diseases CenterKomagome HospitalTokyoJapan
| |
Collapse
|
192
|
Spanjaart AM, Pennings ERA, Mutsaers PGNJ, van Dorp S, Jak M, van Doesum JA, de Boer JW, Niezink AGH, Kos M, Vermaat JSP, Sijs-Szabo A, van der Poel MWM, Nijhof IS, Kuipers MT, Chamuleau MED, Lugtenburg PJ, Doorduijn JK, Serroukh YIM, Minnema MC, van Meerten T, Kersten MJ. The Dutch CAR-T Tumorboard Experience: Population-Based Real-World Data on Patients with Relapsed or Refractory Large B-Cell Lymphoma Referred for CD19-Directed CAR T-Cell Therapy in The Netherlands. Cancers (Basel) 2023; 15:4334. [PMID: 37686611 PMCID: PMC10486925 DOI: 10.3390/cancers15174334] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/01/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
The real-world results of chimeric antigen receptor T-cell (CAR-T) therapy for patients with relapsed/refractory (R/R) large B-cell lymphoma (LBCL) substantially differ across countries. In the Netherlands, the CAR-T tumorboard facilitates a unique nationwide infrastructure for referral, eligibility assessment and data collection. The aim of this study was to evaluate real-world outcomes of axicabtagene ciloleucel (axi-cel) in the Dutch population, including the thus-far underreported effects on health-related quality of life (HR-QoL). All patients with R/R LBCL after ≥2 lines of systemic therapy referred for axi-cel treatment between May 2020-May 2022 were included (N = 250). Of the 160 apheresed patients, 145 patients received an axi-cel infusion. The main reason for ineligibility was rapidly progressive disease. The outcomes are better or at least comparable to other studies (best overall response rate: 84% (complete response: 66%); 12-month progression-free-survival rate and overall survival rate: 48% and 62%, respectively). The 12-month NRM was 5%, mainly caused by infections. Clinically meaningful improvement in several HR-QoL domains was observed from Month 9 onwards. Expert-directed patient selection can support effective and sustainable application of CAR-T treatment. Matched comparisons between cohorts will help to understand the differences in outcomes across countries and select best practices. Despite the favorable results, for a considerable proportion of patients with R/R LBCL there still is an unmet medical need.
Collapse
Affiliation(s)
- Anne M. Spanjaart
- Department of Hematology, Amsterdam UMC Location University of Amsterdam, 1007 MB Amsterdam, The Netherlands
- Cancer Center Amsterdam, 1105 AZ Amsterdam, The Netherlands
- LYMMCARE (Lymphoma and Myeloma Center Amsterdam), 1105 AZ Amsterdam, The Netherlands
| | - Elise R. A. Pennings
- Department of Hematology, Amsterdam UMC Location University of Amsterdam, 1007 MB Amsterdam, The Netherlands
- Cancer Center Amsterdam, 1105 AZ Amsterdam, The Netherlands
- LYMMCARE (Lymphoma and Myeloma Center Amsterdam), 1105 AZ Amsterdam, The Netherlands
- Erasmus School of Health Policy and Management, Erasmus University Rotterdam, 3062 PA Rotterdam, The Netherlands
| | - Pim G. N. J. Mutsaers
- Department of Hematology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
| | - Suzanne van Dorp
- Department of Hematology, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Margot Jak
- Department of Hematology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Jaap A. van Doesum
- Department of Hematology, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Janneke W. de Boer
- Department of Hematology, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Anne G. H. Niezink
- Department of Radiation Oncology, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Milan Kos
- Cancer Center Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Department of Medical Oncology, Amsterdam UMC Location University of Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Joost S. P. Vermaat
- Department of Hematology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Aniko Sijs-Szabo
- Department of Hematology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Marjolein W. M. van der Poel
- Department of Internal Medicine, Division of Hematology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
| | - Inger S. Nijhof
- Cancer Center Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Department of Hematology, Amsterdam UMC Location Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
- Department of Internal Medicine-Hematology, St Antonius Hospital, 3435 CM Nieuwegein, The Netherlands
| | - Maria T. Kuipers
- Cancer Center Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Department of Hematology, Amsterdam UMC Location Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Martine E. D. Chamuleau
- Cancer Center Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Department of Hematology, Amsterdam UMC Location Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Pieternella J. Lugtenburg
- Department of Hematology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
| | - Jeanette K. Doorduijn
- Department of Hematology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
| | - Yasmina I. M. Serroukh
- Department of Hematology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
| | - Monique C. Minnema
- Department of Hematology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Tom van Meerten
- Department of Hematology, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Marie José Kersten
- Department of Hematology, Amsterdam UMC Location University of Amsterdam, 1007 MB Amsterdam, The Netherlands
- Cancer Center Amsterdam, 1105 AZ Amsterdam, The Netherlands
- LYMMCARE (Lymphoma and Myeloma Center Amsterdam), 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
193
|
Tang L, Huang Z, Mei H, Hu Y. Immunotherapy in hematologic malignancies: achievements, challenges and future prospects. Signal Transduct Target Ther 2023; 8:306. [PMID: 37591844 PMCID: PMC10435569 DOI: 10.1038/s41392-023-01521-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 05/31/2023] [Accepted: 06/04/2023] [Indexed: 08/19/2023] Open
Abstract
The immune-cell origin of hematologic malignancies provides a unique avenue for the understanding of both the mechanisms of immune responsiveness and immune escape, which has accelerated the progress of immunotherapy. Several categories of immunotherapies have been developed and are being further evaluated in clinical trials for the treatment of blood cancers, including stem cell transplantation, immune checkpoint inhibitors, antigen-targeted antibodies, antibody-drug conjugates, tumor vaccines, and adoptive cell therapies. These immunotherapies have shown the potential to induce long-term remission in refractory or relapsed patients and have led to a paradigm shift in cancer treatment with great clinical success. Different immunotherapeutic approaches have their advantages but also shortcomings that need to be addressed. To provide clinicians with timely information on these revolutionary therapeutic approaches, the comprehensive review provides historical perspectives on the applications and clinical considerations of the immunotherapy. Here, we first outline the recent advances that have been made in the understanding of the various categories of immunotherapies in the treatment of hematologic malignancies. We further discuss the specific mechanisms of action, summarize the clinical trials and outcomes of immunotherapies in hematologic malignancies, as well as the adverse effects and toxicity management and then provide novel insights into challenges and future directions.
Collapse
Affiliation(s)
- Lu Tang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, 430022, Wuhan, China
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, 430022, Wuhan, China
| | - Zhongpei Huang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, 430022, Wuhan, China
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, 430022, Wuhan, China
| | - Heng Mei
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, 430022, Wuhan, China.
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, 430022, Wuhan, China.
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, 430022, Wuhan, China.
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, 430022, Wuhan, China.
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.
| |
Collapse
|
194
|
Strati P, Li X, Deng Q, Marques-Piubelli ML, Henderson J, Watson G, Deaton L, Cain T, Yang H, Ravanmehr V, Fayad LE, Iyer SP, Nastoupil LJ, Hagemeister FB, Parra ER, Saini N, Takahashi K, Fowler NH, Westin JR, Steiner RE, Nair R, Flowers CR, Wang L, Ahmed S, Al-Atrash G, Vega F, Neelapu SS, Green MR. Prolonged cytopenia following CD19 CAR T cell therapy is linked with bone marrow infiltration of clonally expanded IFNγ-expressing CD8 T cells. Cell Rep Med 2023; 4:101158. [PMID: 37586321 PMCID: PMC10439270 DOI: 10.1016/j.xcrm.2023.101158] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 06/13/2023] [Accepted: 07/18/2023] [Indexed: 08/18/2023]
Abstract
Autologous anti-CD19 chimeric antigen receptor T cell (CAR T) therapy is highly effective in relapsed/refractory large B cell lymphoma (rrLBCL) but is associated with toxicities that delay recovery. While the biological mechanisms of cytokine release syndrome and neurotoxicity have been investigated, the pathophysiology is poorly understood for prolonged cytopenia, defined as grade ≥3 cytopenia lasting beyond 30 days after CAR T infusion. We performed single-cell RNA sequencing of bone marrow samples from healthy donors and rrLBCL patients with or without prolonged cytopenia and identified significantly increased frequencies of clonally expanded CX3CR1hi cytotoxic T cells, expressing high interferon (IFN)-γ and cytokine signaling gene sets, associated with prolonged cytopenia. In line with this, we found that hematopoietic stem cells from these patients expressed IFN-γ response signatures. IFN-γ deregulates hematopoietic stem cell self-renewal and differentiation and can be targeted with thrombopoietin agonists or IFN-γ-neutralizing antibodies, highlighting a potential mechanism-based approach for the treatment of CAR T-associated prolonged cytopenia.
Collapse
Affiliation(s)
- Paolo Strati
- Department of Lymphoma & Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xubin Li
- Department of Lymphoma & Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Qing Deng
- Department of Lymphoma & Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mario L Marques-Piubelli
- Department Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jared Henderson
- Department of Lymphoma & Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Grace Watson
- Department of Lymphoma & Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Laurel Deaton
- Department of Lymphoma & Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Taylor Cain
- Department of Lymphoma & Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Haopeng Yang
- Department of Lymphoma & Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vida Ravanmehr
- Department of Lymphoma & Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Luis E Fayad
- Department of Lymphoma & Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Swaminathan P Iyer
- Department of Lymphoma & Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Loretta J Nastoupil
- Department of Lymphoma & Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Frederick B Hagemeister
- Department of Lymphoma & Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Edwin R Parra
- Department of Lymphoma & Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Neeraj Saini
- Department of Lymphoma & Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Koichi Takahashi
- Department Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nathan H Fowler
- Department of Lymphoma & Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jason R Westin
- Department of Lymphoma & Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Raphael E Steiner
- Department of Lymphoma & Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ranjit Nair
- Department of Lymphoma & Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christopher R Flowers
- Department of Lymphoma & Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Linghua Wang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sairah Ahmed
- Department of Lymphoma & Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gheath Al-Atrash
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Hematopoietic Biology and Malignancy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Francisco Vega
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sattva S Neelapu
- Department of Lymphoma & Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Michael R Green
- Department of Lymphoma & Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
195
|
Lu T, Zhang J, Xu-Monette ZY, Young KH. The progress of novel strategies on immune-based therapy in relapsed or refractory diffuse large B-cell lymphoma. Exp Hematol Oncol 2023; 12:72. [PMID: 37580826 PMCID: PMC10424456 DOI: 10.1186/s40164-023-00432-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/30/2023] [Indexed: 08/16/2023] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) can be cured with standard front-line immunochemotherapy, whereas nearly 30-40% of patients experience refractory or relapse. For several decades, the standard treatment strategy for fit relapsed/refractory (R/R) DLBCL patients has been high-dose chemotherapy followed by autologous hematopoietic stem cell transplant (auto-SCT). However, the patients who failed in salvage treatment or those ineligible for subsequent auto-SCT have dismal outcomes. Several immune-based therapies have been developed, including monoclonal antibodies, antibody-drug conjugates, bispecific T-cell engaging antibodies, chimeric antigen receptor T-cells, immune checkpoint inhibitors, and novel small molecules. Meanwhile, allogeneic SCT and radiotherapy are still necessary for disease control for fit patients with certain conditions. In this review, to expand clinical treatment options, we summarize the recent progress of immune-related therapies and prospect the future indirections in patients with R/R DLBCL.
Collapse
Affiliation(s)
- Tingxun Lu
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu Province, 214122, China
- Division of Hematopathology, Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Jie Zhang
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu Province, 214122, China
| | - Zijun Y Xu-Monette
- Division of Hematopathology, Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA
- Duke Cancer Institute, Durham, NC, 27710, USA
| | - Ken H Young
- Division of Hematopathology, Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA.
- Duke Cancer Institute, Durham, NC, 27710, USA.
| |
Collapse
|
196
|
Talaulikar D, Tomowiak C, Toussaint E, Morel P, Kapoor P, Castillo JJ, Delmer A, Durot E. Evaluation and Management of Disease Transformation in Waldenström Macroglobulinemia. Hematol Oncol Clin North Am 2023; 37:787-799. [PMID: 37246087 DOI: 10.1016/j.hoc.2023.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Histologic transformation (HT) to diffuse large B-cell lymphoma occurs rarely in Waldenström macroglobulinemia, with higher incidence in MYD88 wild-type patients. HT is suspected clinically when rapidly enlarging lymph nodes, elevated lactate dehydrogenase levels, or extranodal disease occur. Histologic assessment is required for diagnosis. HT carries a worse prognosis compared with nontransformed Waldenström macroglobulinemia. A validated prognostic score based on three adverse risk factors stratifies three risk groups. The most common frontline treatment is chemoimmunotherapy, such as R-CHOP. Central nervous system prophylaxis should be considered if feasible and consolidation with autologous transplant should be discussed in fit patients responding to chemoimmunotherapy.
Collapse
Affiliation(s)
- Dipti Talaulikar
- Department of Hematology, Canberra Health Services, Canberra, Australian Capital Territory, Australia; College of Health and Medicine, Australian National University, Canberra, Australian Capital Territory, Australia.
| | - Cécile Tomowiak
- Hematology Department and Centre d'Investigations Cliniques (CIC) 1082 INSERM, University Hospital, Poitiers, France
| | - Elise Toussaint
- Department of Hematology, Institut de Cancérologie Strasbourg Europe (ICANS), Strasbourg, France
| | - Pierre Morel
- Department of Hematology, University Hospital of Amiens, Amiens, France
| | - Prashant Kapoor
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Jorge J Castillo
- Bing Center for Waldenström Macroglobulinemia, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Alain Delmer
- Department of Hematology, University Hospital of Reims and UFR Médecine, Reims, France
| | - Eric Durot
- Department of Hematology, University Hospital of Reims and UFR Médecine, Reims, France
| |
Collapse
|
197
|
Moyo TK. Revisiting the role of autologous stem cell transplant in relapsed/ refractory aggressive B cell lymphoma. Transplant Cell Ther 2023; 29:480-481. [PMID: 37517845 DOI: 10.1016/j.jtct.2023.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Affiliation(s)
- Tamara K Moyo
- Atrium Health Levine Cancer Institute, 1021 Morehead Medical Drive, Bldg II, Suite 60100, Charlotte, NC 28204
| |
Collapse
|
198
|
Visweshwar N, Rico JF, Killeen R, Manoharan A. Harnessing the Immune System: An Effective Way to Manage Diffuse Large B-Cell Lymphoma. J Hematol 2023; 12:145-160. [PMID: 37692863 PMCID: PMC10482611 DOI: 10.14740/jh1112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/01/2023] [Indexed: 09/12/2023] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a heterogenous hematological disorder with malignant potential controlled by immunological characteristics of the tumor microenvironment. Rapid breakthrough in the molecular pathways has made immunological approaches the main anchor in the management of DLBCL, with or without chemotherapeutic agents. Rituximab was the first monoclonal antibody approved for the treatment of DLBCL. Following rituximab that transformed the therapeutic landscape, other novel immunological agents including chimeric antigen T-cell therapy have reshaped the management of relapsed/refractory DLBCL. However, resistance and refractory state remain a challenge in the management of DLBCL. For this literature review, we screened articles from Medline, Embase, Cochrane databases and the European/North American guidelines from March 2010 through October 2022 for DLBCL. Here we discuss immunological agents that will significantly affect future treatment of this aggressive type of lymphoma.
Collapse
Affiliation(s)
- Nathan Visweshwar
- Department of Hematology, University of South Florida, Tampa, FL, USA
| | - Juan Felipe Rico
- Department of Pediatrics, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
| | - Robert Killeen
- Department of Hematology, Moffitt Cancer Center, Tampa, FL, USA
| | - Arumugam Manoharan
- Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
199
|
Abdulhaq H, Hwang A, Mahmood O. Targeted Treatment of Adults with Relapsed or Refractory Diffuse Large B-Cell Lymphoma (DLBCL): Tafasitamab in Context. Onco Targets Ther 2023; 16:617-629. [PMID: 37492075 PMCID: PMC10364833 DOI: 10.2147/ott.s372783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/06/2023] [Indexed: 07/27/2023] Open
Abstract
The outcomes of Relapsed/Refractory (R/R) Diffuse Large B-cell lymphoma have been historically poor. The recent development of several novel therapies including CD19 directed agents has improved the prognosis of this disease significantly. Chimeric antigen receptor (CAR) T-cell therapy has drastically changed the treatment of R/R DLBCL, but it is still associated with significant barriers and limited access. Tafasitamab (an anti-CD19 engineered monoclonal antibody), in addition to lenalidomide, has shown significant efficacy with exceptionally durable responses in patients with R/R DLBCL who are ineligible for autologous stem cell transplantation (ASCT). Tafasitamab-lenalidomide and certain other therapies (ie, antibody-drug conjugates and bispecific antibodies) are important treatment options for patients who are ineligible for CAR-T due to co-morbidities or lack of access, and patients with rapid progression of disease who are unable to wait for manufacturing of CAR-T. This review will thus discuss currently approved and recently studied targeted treatment options for patients with R/R DLBCL with an emphasis on CAR-T alternative options, particularly Tafasitamab-lenalidomide.
Collapse
Affiliation(s)
- Haifaa Abdulhaq
- Division of Hematology/Oncology, University of California San Francisco, Fresno, CA, USA
| | - Andrew Hwang
- Division of Hematology/Oncology, University of California San Francisco, Fresno, CA, USA
| | - Omar Mahmood
- Division of Hematology/Oncology, University of California San Francisco, Fresno, CA, USA
| |
Collapse
|
200
|
Westin JR, Oluwole OO, Kersten MJ, Miklos DB, Perales MA, Ghobadi A, Rapoport AP, Sureda A, Jacobson CA, Farooq U, van Meerten T, Ulrickson M, Elsawy M, Leslie LA, Chaganti S, Dickinson M, Dorritie K, Reagan PM, McGuirk J, Song KW, Riedell PA, Minnema MC, Yang Y, Vardhanabhuti S, Filosto S, Cheng P, Shahani SA, Schupp M, To C, Locke FL. Survival with Axicabtagene Ciloleucel in Large B-Cell Lymphoma. N Engl J Med 2023; 389:148-157. [PMID: 37272527 DOI: 10.1056/nejmoa2301665] [Citation(s) in RCA: 204] [Impact Index Per Article: 102.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
BACKGROUND In an analysis of the primary outcome of this phase 3 trial, patients with early relapsed or refractory large B-cell lymphoma who received axicabtagene ciloleucel (axi-cel), an autologous anti-CD19 chimeric antigen receptor T-cell therapy, as second-line treatment had significantly longer event-free survival than those who received standard care. Data were needed on longer-term outcomes. METHODS In this trial, we randomly assigned patients with early relapsed or refractory large B-cell lymphoma in a 1:1 ratio to receive either axi-cel or standard care (two to three cycles of chemoimmunotherapy followed by high-dose chemotherapy with autologous stem-cell transplantation in patients who had a response). The primary outcome was event-free survival, and key secondary outcomes were response and overall survival. Here, we report the results of the prespecified overall survival analysis at 5 years after the first patient underwent randomization. RESULTS A total of 359 patients underwent randomization to receive axi-cel (180 patients) or standard care (179 patients). At a median follow-up of 47.2 months, death had been reported in 82 patients in the axi-cel group and in 95 patients in the standard-care group. The median overall survival was not reached in the axi-cel group and was 31.1 months in the standard-care group; the estimated 4-year overall survival was 54.6% and 46.0%, respectively (hazard ratio for death, 0.73; 95% confidence interval [CI], 0.54 to 0.98; P = 0.03 by stratified two-sided log-rank test). This increased survival with axi-cel was observed in the intention-to-treat population, which included 74% of patients with primary refractory disease and other high-risk features. The median investigator-assessed progression-free survival was 14.7 months in the axi-cel group and 3.7 months in the standard-care group, with estimated 4-year percentages of 41.8% and 24.4%, respectively (hazard ratio, 0.51; 95% CI, 0.38 to 0.67). No new treatment-related deaths had occurred since the primary analysis of event-free survival. CONCLUSIONS At a median follow-up of 47.2 months, axi-cel as second-line treatment for patients with early relapsed or refractory large B-cell lymphoma resulted in significantly longer overall survival than standard care. (Funded by Kite; ZUMA-7 ClinicalTrials.gov number, NCT03391466.).
Collapse
Affiliation(s)
- Jason R Westin
- From University of Texas M.D. Anderson Cancer Center, Houston (J.R.W.); Vanderbilt-Ingram Cancer Center, Nashville (O.O.O.); Amsterdam University Medical Center (UMC), University of Amsterdam, Cancer Center Amsterdam, Amsterdam (M.J.K.), UMC Groningen, Groningen (T.M.), and UMC Utrecht, Utrecht (M.C.M.) - all in the Netherlands; Stanford University School of Medicine, Stanford (D.B.M.), and Kite, Santa Monica (Y.Y., S.V., S.F., P.C., S.A.S., M.S., C.T.) - both in California; Memorial Sloan Kettering Cancer Center, New York (M.-A.P.), and University of Rochester School of Medicine, Rochester (P.M.R.) - both in New York; Washington University School of Medicine, St. Louis (A.G.); Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore (A.P.R.); Servei d'Hematologia Clínica, Institut Català d'Oncologia-Hospitalet, Institut de Recerca Biomèdica de Bellvitge, Universitat de Barcelona, Barcelona (A.S.B.); Dana-Farber Cancer Institute, Boston (C.A.J.); University of Iowa, Iowa City (U.F.); Banner M.D. Anderson Cancer Center, Gilbert, AZ (M.U.); the Division of Hematology and Hematologic Oncology, Department of Medicine, Dalhousie University and Queen Elizabeth II Health Sciences Centre, Halifax, NS (M.E.), and Vancouver General Hospital, BC Cancer, University of British Columbia, Vancouver (K.W.S.) - both in Canada; John Theurer Cancer Center, Hackensack, NJ (L.A.L.); the Centre for Clinical Haematology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom (S.C.); Peter MacCallum Cancer Centre, Royal Melbourne Hospital, and the University of Melbourne, Melbourne (M.D.); UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh (K.D.); University of Kansas Cancer Center, Kansas City (J.M.); David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago (P.A.R.); and Moffitt Cancer Center, Tampa, FL (F.L.L.)
| | - Olalekan O Oluwole
- From University of Texas M.D. Anderson Cancer Center, Houston (J.R.W.); Vanderbilt-Ingram Cancer Center, Nashville (O.O.O.); Amsterdam University Medical Center (UMC), University of Amsterdam, Cancer Center Amsterdam, Amsterdam (M.J.K.), UMC Groningen, Groningen (T.M.), and UMC Utrecht, Utrecht (M.C.M.) - all in the Netherlands; Stanford University School of Medicine, Stanford (D.B.M.), and Kite, Santa Monica (Y.Y., S.V., S.F., P.C., S.A.S., M.S., C.T.) - both in California; Memorial Sloan Kettering Cancer Center, New York (M.-A.P.), and University of Rochester School of Medicine, Rochester (P.M.R.) - both in New York; Washington University School of Medicine, St. Louis (A.G.); Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore (A.P.R.); Servei d'Hematologia Clínica, Institut Català d'Oncologia-Hospitalet, Institut de Recerca Biomèdica de Bellvitge, Universitat de Barcelona, Barcelona (A.S.B.); Dana-Farber Cancer Institute, Boston (C.A.J.); University of Iowa, Iowa City (U.F.); Banner M.D. Anderson Cancer Center, Gilbert, AZ (M.U.); the Division of Hematology and Hematologic Oncology, Department of Medicine, Dalhousie University and Queen Elizabeth II Health Sciences Centre, Halifax, NS (M.E.), and Vancouver General Hospital, BC Cancer, University of British Columbia, Vancouver (K.W.S.) - both in Canada; John Theurer Cancer Center, Hackensack, NJ (L.A.L.); the Centre for Clinical Haematology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom (S.C.); Peter MacCallum Cancer Centre, Royal Melbourne Hospital, and the University of Melbourne, Melbourne (M.D.); UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh (K.D.); University of Kansas Cancer Center, Kansas City (J.M.); David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago (P.A.R.); and Moffitt Cancer Center, Tampa, FL (F.L.L.)
| | - Marie José Kersten
- From University of Texas M.D. Anderson Cancer Center, Houston (J.R.W.); Vanderbilt-Ingram Cancer Center, Nashville (O.O.O.); Amsterdam University Medical Center (UMC), University of Amsterdam, Cancer Center Amsterdam, Amsterdam (M.J.K.), UMC Groningen, Groningen (T.M.), and UMC Utrecht, Utrecht (M.C.M.) - all in the Netherlands; Stanford University School of Medicine, Stanford (D.B.M.), and Kite, Santa Monica (Y.Y., S.V., S.F., P.C., S.A.S., M.S., C.T.) - both in California; Memorial Sloan Kettering Cancer Center, New York (M.-A.P.), and University of Rochester School of Medicine, Rochester (P.M.R.) - both in New York; Washington University School of Medicine, St. Louis (A.G.); Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore (A.P.R.); Servei d'Hematologia Clínica, Institut Català d'Oncologia-Hospitalet, Institut de Recerca Biomèdica de Bellvitge, Universitat de Barcelona, Barcelona (A.S.B.); Dana-Farber Cancer Institute, Boston (C.A.J.); University of Iowa, Iowa City (U.F.); Banner M.D. Anderson Cancer Center, Gilbert, AZ (M.U.); the Division of Hematology and Hematologic Oncology, Department of Medicine, Dalhousie University and Queen Elizabeth II Health Sciences Centre, Halifax, NS (M.E.), and Vancouver General Hospital, BC Cancer, University of British Columbia, Vancouver (K.W.S.) - both in Canada; John Theurer Cancer Center, Hackensack, NJ (L.A.L.); the Centre for Clinical Haematology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom (S.C.); Peter MacCallum Cancer Centre, Royal Melbourne Hospital, and the University of Melbourne, Melbourne (M.D.); UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh (K.D.); University of Kansas Cancer Center, Kansas City (J.M.); David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago (P.A.R.); and Moffitt Cancer Center, Tampa, FL (F.L.L.)
| | - David B Miklos
- From University of Texas M.D. Anderson Cancer Center, Houston (J.R.W.); Vanderbilt-Ingram Cancer Center, Nashville (O.O.O.); Amsterdam University Medical Center (UMC), University of Amsterdam, Cancer Center Amsterdam, Amsterdam (M.J.K.), UMC Groningen, Groningen (T.M.), and UMC Utrecht, Utrecht (M.C.M.) - all in the Netherlands; Stanford University School of Medicine, Stanford (D.B.M.), and Kite, Santa Monica (Y.Y., S.V., S.F., P.C., S.A.S., M.S., C.T.) - both in California; Memorial Sloan Kettering Cancer Center, New York (M.-A.P.), and University of Rochester School of Medicine, Rochester (P.M.R.) - both in New York; Washington University School of Medicine, St. Louis (A.G.); Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore (A.P.R.); Servei d'Hematologia Clínica, Institut Català d'Oncologia-Hospitalet, Institut de Recerca Biomèdica de Bellvitge, Universitat de Barcelona, Barcelona (A.S.B.); Dana-Farber Cancer Institute, Boston (C.A.J.); University of Iowa, Iowa City (U.F.); Banner M.D. Anderson Cancer Center, Gilbert, AZ (M.U.); the Division of Hematology and Hematologic Oncology, Department of Medicine, Dalhousie University and Queen Elizabeth II Health Sciences Centre, Halifax, NS (M.E.), and Vancouver General Hospital, BC Cancer, University of British Columbia, Vancouver (K.W.S.) - both in Canada; John Theurer Cancer Center, Hackensack, NJ (L.A.L.); the Centre for Clinical Haematology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom (S.C.); Peter MacCallum Cancer Centre, Royal Melbourne Hospital, and the University of Melbourne, Melbourne (M.D.); UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh (K.D.); University of Kansas Cancer Center, Kansas City (J.M.); David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago (P.A.R.); and Moffitt Cancer Center, Tampa, FL (F.L.L.)
| | - Miguel-Angel Perales
- From University of Texas M.D. Anderson Cancer Center, Houston (J.R.W.); Vanderbilt-Ingram Cancer Center, Nashville (O.O.O.); Amsterdam University Medical Center (UMC), University of Amsterdam, Cancer Center Amsterdam, Amsterdam (M.J.K.), UMC Groningen, Groningen (T.M.), and UMC Utrecht, Utrecht (M.C.M.) - all in the Netherlands; Stanford University School of Medicine, Stanford (D.B.M.), and Kite, Santa Monica (Y.Y., S.V., S.F., P.C., S.A.S., M.S., C.T.) - both in California; Memorial Sloan Kettering Cancer Center, New York (M.-A.P.), and University of Rochester School of Medicine, Rochester (P.M.R.) - both in New York; Washington University School of Medicine, St. Louis (A.G.); Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore (A.P.R.); Servei d'Hematologia Clínica, Institut Català d'Oncologia-Hospitalet, Institut de Recerca Biomèdica de Bellvitge, Universitat de Barcelona, Barcelona (A.S.B.); Dana-Farber Cancer Institute, Boston (C.A.J.); University of Iowa, Iowa City (U.F.); Banner M.D. Anderson Cancer Center, Gilbert, AZ (M.U.); the Division of Hematology and Hematologic Oncology, Department of Medicine, Dalhousie University and Queen Elizabeth II Health Sciences Centre, Halifax, NS (M.E.), and Vancouver General Hospital, BC Cancer, University of British Columbia, Vancouver (K.W.S.) - both in Canada; John Theurer Cancer Center, Hackensack, NJ (L.A.L.); the Centre for Clinical Haematology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom (S.C.); Peter MacCallum Cancer Centre, Royal Melbourne Hospital, and the University of Melbourne, Melbourne (M.D.); UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh (K.D.); University of Kansas Cancer Center, Kansas City (J.M.); David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago (P.A.R.); and Moffitt Cancer Center, Tampa, FL (F.L.L.)
| | - Armin Ghobadi
- From University of Texas M.D. Anderson Cancer Center, Houston (J.R.W.); Vanderbilt-Ingram Cancer Center, Nashville (O.O.O.); Amsterdam University Medical Center (UMC), University of Amsterdam, Cancer Center Amsterdam, Amsterdam (M.J.K.), UMC Groningen, Groningen (T.M.), and UMC Utrecht, Utrecht (M.C.M.) - all in the Netherlands; Stanford University School of Medicine, Stanford (D.B.M.), and Kite, Santa Monica (Y.Y., S.V., S.F., P.C., S.A.S., M.S., C.T.) - both in California; Memorial Sloan Kettering Cancer Center, New York (M.-A.P.), and University of Rochester School of Medicine, Rochester (P.M.R.) - both in New York; Washington University School of Medicine, St. Louis (A.G.); Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore (A.P.R.); Servei d'Hematologia Clínica, Institut Català d'Oncologia-Hospitalet, Institut de Recerca Biomèdica de Bellvitge, Universitat de Barcelona, Barcelona (A.S.B.); Dana-Farber Cancer Institute, Boston (C.A.J.); University of Iowa, Iowa City (U.F.); Banner M.D. Anderson Cancer Center, Gilbert, AZ (M.U.); the Division of Hematology and Hematologic Oncology, Department of Medicine, Dalhousie University and Queen Elizabeth II Health Sciences Centre, Halifax, NS (M.E.), and Vancouver General Hospital, BC Cancer, University of British Columbia, Vancouver (K.W.S.) - both in Canada; John Theurer Cancer Center, Hackensack, NJ (L.A.L.); the Centre for Clinical Haematology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom (S.C.); Peter MacCallum Cancer Centre, Royal Melbourne Hospital, and the University of Melbourne, Melbourne (M.D.); UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh (K.D.); University of Kansas Cancer Center, Kansas City (J.M.); David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago (P.A.R.); and Moffitt Cancer Center, Tampa, FL (F.L.L.)
| | - Aaron P Rapoport
- From University of Texas M.D. Anderson Cancer Center, Houston (J.R.W.); Vanderbilt-Ingram Cancer Center, Nashville (O.O.O.); Amsterdam University Medical Center (UMC), University of Amsterdam, Cancer Center Amsterdam, Amsterdam (M.J.K.), UMC Groningen, Groningen (T.M.), and UMC Utrecht, Utrecht (M.C.M.) - all in the Netherlands; Stanford University School of Medicine, Stanford (D.B.M.), and Kite, Santa Monica (Y.Y., S.V., S.F., P.C., S.A.S., M.S., C.T.) - both in California; Memorial Sloan Kettering Cancer Center, New York (M.-A.P.), and University of Rochester School of Medicine, Rochester (P.M.R.) - both in New York; Washington University School of Medicine, St. Louis (A.G.); Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore (A.P.R.); Servei d'Hematologia Clínica, Institut Català d'Oncologia-Hospitalet, Institut de Recerca Biomèdica de Bellvitge, Universitat de Barcelona, Barcelona (A.S.B.); Dana-Farber Cancer Institute, Boston (C.A.J.); University of Iowa, Iowa City (U.F.); Banner M.D. Anderson Cancer Center, Gilbert, AZ (M.U.); the Division of Hematology and Hematologic Oncology, Department of Medicine, Dalhousie University and Queen Elizabeth II Health Sciences Centre, Halifax, NS (M.E.), and Vancouver General Hospital, BC Cancer, University of British Columbia, Vancouver (K.W.S.) - both in Canada; John Theurer Cancer Center, Hackensack, NJ (L.A.L.); the Centre for Clinical Haematology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom (S.C.); Peter MacCallum Cancer Centre, Royal Melbourne Hospital, and the University of Melbourne, Melbourne (M.D.); UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh (K.D.); University of Kansas Cancer Center, Kansas City (J.M.); David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago (P.A.R.); and Moffitt Cancer Center, Tampa, FL (F.L.L.)
| | - Anna Sureda
- From University of Texas M.D. Anderson Cancer Center, Houston (J.R.W.); Vanderbilt-Ingram Cancer Center, Nashville (O.O.O.); Amsterdam University Medical Center (UMC), University of Amsterdam, Cancer Center Amsterdam, Amsterdam (M.J.K.), UMC Groningen, Groningen (T.M.), and UMC Utrecht, Utrecht (M.C.M.) - all in the Netherlands; Stanford University School of Medicine, Stanford (D.B.M.), and Kite, Santa Monica (Y.Y., S.V., S.F., P.C., S.A.S., M.S., C.T.) - both in California; Memorial Sloan Kettering Cancer Center, New York (M.-A.P.), and University of Rochester School of Medicine, Rochester (P.M.R.) - both in New York; Washington University School of Medicine, St. Louis (A.G.); Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore (A.P.R.); Servei d'Hematologia Clínica, Institut Català d'Oncologia-Hospitalet, Institut de Recerca Biomèdica de Bellvitge, Universitat de Barcelona, Barcelona (A.S.B.); Dana-Farber Cancer Institute, Boston (C.A.J.); University of Iowa, Iowa City (U.F.); Banner M.D. Anderson Cancer Center, Gilbert, AZ (M.U.); the Division of Hematology and Hematologic Oncology, Department of Medicine, Dalhousie University and Queen Elizabeth II Health Sciences Centre, Halifax, NS (M.E.), and Vancouver General Hospital, BC Cancer, University of British Columbia, Vancouver (K.W.S.) - both in Canada; John Theurer Cancer Center, Hackensack, NJ (L.A.L.); the Centre for Clinical Haematology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom (S.C.); Peter MacCallum Cancer Centre, Royal Melbourne Hospital, and the University of Melbourne, Melbourne (M.D.); UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh (K.D.); University of Kansas Cancer Center, Kansas City (J.M.); David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago (P.A.R.); and Moffitt Cancer Center, Tampa, FL (F.L.L.)
| | - Caron A Jacobson
- From University of Texas M.D. Anderson Cancer Center, Houston (J.R.W.); Vanderbilt-Ingram Cancer Center, Nashville (O.O.O.); Amsterdam University Medical Center (UMC), University of Amsterdam, Cancer Center Amsterdam, Amsterdam (M.J.K.), UMC Groningen, Groningen (T.M.), and UMC Utrecht, Utrecht (M.C.M.) - all in the Netherlands; Stanford University School of Medicine, Stanford (D.B.M.), and Kite, Santa Monica (Y.Y., S.V., S.F., P.C., S.A.S., M.S., C.T.) - both in California; Memorial Sloan Kettering Cancer Center, New York (M.-A.P.), and University of Rochester School of Medicine, Rochester (P.M.R.) - both in New York; Washington University School of Medicine, St. Louis (A.G.); Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore (A.P.R.); Servei d'Hematologia Clínica, Institut Català d'Oncologia-Hospitalet, Institut de Recerca Biomèdica de Bellvitge, Universitat de Barcelona, Barcelona (A.S.B.); Dana-Farber Cancer Institute, Boston (C.A.J.); University of Iowa, Iowa City (U.F.); Banner M.D. Anderson Cancer Center, Gilbert, AZ (M.U.); the Division of Hematology and Hematologic Oncology, Department of Medicine, Dalhousie University and Queen Elizabeth II Health Sciences Centre, Halifax, NS (M.E.), and Vancouver General Hospital, BC Cancer, University of British Columbia, Vancouver (K.W.S.) - both in Canada; John Theurer Cancer Center, Hackensack, NJ (L.A.L.); the Centre for Clinical Haematology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom (S.C.); Peter MacCallum Cancer Centre, Royal Melbourne Hospital, and the University of Melbourne, Melbourne (M.D.); UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh (K.D.); University of Kansas Cancer Center, Kansas City (J.M.); David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago (P.A.R.); and Moffitt Cancer Center, Tampa, FL (F.L.L.)
| | - Umar Farooq
- From University of Texas M.D. Anderson Cancer Center, Houston (J.R.W.); Vanderbilt-Ingram Cancer Center, Nashville (O.O.O.); Amsterdam University Medical Center (UMC), University of Amsterdam, Cancer Center Amsterdam, Amsterdam (M.J.K.), UMC Groningen, Groningen (T.M.), and UMC Utrecht, Utrecht (M.C.M.) - all in the Netherlands; Stanford University School of Medicine, Stanford (D.B.M.), and Kite, Santa Monica (Y.Y., S.V., S.F., P.C., S.A.S., M.S., C.T.) - both in California; Memorial Sloan Kettering Cancer Center, New York (M.-A.P.), and University of Rochester School of Medicine, Rochester (P.M.R.) - both in New York; Washington University School of Medicine, St. Louis (A.G.); Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore (A.P.R.); Servei d'Hematologia Clínica, Institut Català d'Oncologia-Hospitalet, Institut de Recerca Biomèdica de Bellvitge, Universitat de Barcelona, Barcelona (A.S.B.); Dana-Farber Cancer Institute, Boston (C.A.J.); University of Iowa, Iowa City (U.F.); Banner M.D. Anderson Cancer Center, Gilbert, AZ (M.U.); the Division of Hematology and Hematologic Oncology, Department of Medicine, Dalhousie University and Queen Elizabeth II Health Sciences Centre, Halifax, NS (M.E.), and Vancouver General Hospital, BC Cancer, University of British Columbia, Vancouver (K.W.S.) - both in Canada; John Theurer Cancer Center, Hackensack, NJ (L.A.L.); the Centre for Clinical Haematology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom (S.C.); Peter MacCallum Cancer Centre, Royal Melbourne Hospital, and the University of Melbourne, Melbourne (M.D.); UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh (K.D.); University of Kansas Cancer Center, Kansas City (J.M.); David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago (P.A.R.); and Moffitt Cancer Center, Tampa, FL (F.L.L.)
| | - Tom van Meerten
- From University of Texas M.D. Anderson Cancer Center, Houston (J.R.W.); Vanderbilt-Ingram Cancer Center, Nashville (O.O.O.); Amsterdam University Medical Center (UMC), University of Amsterdam, Cancer Center Amsterdam, Amsterdam (M.J.K.), UMC Groningen, Groningen (T.M.), and UMC Utrecht, Utrecht (M.C.M.) - all in the Netherlands; Stanford University School of Medicine, Stanford (D.B.M.), and Kite, Santa Monica (Y.Y., S.V., S.F., P.C., S.A.S., M.S., C.T.) - both in California; Memorial Sloan Kettering Cancer Center, New York (M.-A.P.), and University of Rochester School of Medicine, Rochester (P.M.R.) - both in New York; Washington University School of Medicine, St. Louis (A.G.); Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore (A.P.R.); Servei d'Hematologia Clínica, Institut Català d'Oncologia-Hospitalet, Institut de Recerca Biomèdica de Bellvitge, Universitat de Barcelona, Barcelona (A.S.B.); Dana-Farber Cancer Institute, Boston (C.A.J.); University of Iowa, Iowa City (U.F.); Banner M.D. Anderson Cancer Center, Gilbert, AZ (M.U.); the Division of Hematology and Hematologic Oncology, Department of Medicine, Dalhousie University and Queen Elizabeth II Health Sciences Centre, Halifax, NS (M.E.), and Vancouver General Hospital, BC Cancer, University of British Columbia, Vancouver (K.W.S.) - both in Canada; John Theurer Cancer Center, Hackensack, NJ (L.A.L.); the Centre for Clinical Haematology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom (S.C.); Peter MacCallum Cancer Centre, Royal Melbourne Hospital, and the University of Melbourne, Melbourne (M.D.); UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh (K.D.); University of Kansas Cancer Center, Kansas City (J.M.); David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago (P.A.R.); and Moffitt Cancer Center, Tampa, FL (F.L.L.)
| | - Matthew Ulrickson
- From University of Texas M.D. Anderson Cancer Center, Houston (J.R.W.); Vanderbilt-Ingram Cancer Center, Nashville (O.O.O.); Amsterdam University Medical Center (UMC), University of Amsterdam, Cancer Center Amsterdam, Amsterdam (M.J.K.), UMC Groningen, Groningen (T.M.), and UMC Utrecht, Utrecht (M.C.M.) - all in the Netherlands; Stanford University School of Medicine, Stanford (D.B.M.), and Kite, Santa Monica (Y.Y., S.V., S.F., P.C., S.A.S., M.S., C.T.) - both in California; Memorial Sloan Kettering Cancer Center, New York (M.-A.P.), and University of Rochester School of Medicine, Rochester (P.M.R.) - both in New York; Washington University School of Medicine, St. Louis (A.G.); Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore (A.P.R.); Servei d'Hematologia Clínica, Institut Català d'Oncologia-Hospitalet, Institut de Recerca Biomèdica de Bellvitge, Universitat de Barcelona, Barcelona (A.S.B.); Dana-Farber Cancer Institute, Boston (C.A.J.); University of Iowa, Iowa City (U.F.); Banner M.D. Anderson Cancer Center, Gilbert, AZ (M.U.); the Division of Hematology and Hematologic Oncology, Department of Medicine, Dalhousie University and Queen Elizabeth II Health Sciences Centre, Halifax, NS (M.E.), and Vancouver General Hospital, BC Cancer, University of British Columbia, Vancouver (K.W.S.) - both in Canada; John Theurer Cancer Center, Hackensack, NJ (L.A.L.); the Centre for Clinical Haematology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom (S.C.); Peter MacCallum Cancer Centre, Royal Melbourne Hospital, and the University of Melbourne, Melbourne (M.D.); UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh (K.D.); University of Kansas Cancer Center, Kansas City (J.M.); David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago (P.A.R.); and Moffitt Cancer Center, Tampa, FL (F.L.L.)
| | - Mahmoud Elsawy
- From University of Texas M.D. Anderson Cancer Center, Houston (J.R.W.); Vanderbilt-Ingram Cancer Center, Nashville (O.O.O.); Amsterdam University Medical Center (UMC), University of Amsterdam, Cancer Center Amsterdam, Amsterdam (M.J.K.), UMC Groningen, Groningen (T.M.), and UMC Utrecht, Utrecht (M.C.M.) - all in the Netherlands; Stanford University School of Medicine, Stanford (D.B.M.), and Kite, Santa Monica (Y.Y., S.V., S.F., P.C., S.A.S., M.S., C.T.) - both in California; Memorial Sloan Kettering Cancer Center, New York (M.-A.P.), and University of Rochester School of Medicine, Rochester (P.M.R.) - both in New York; Washington University School of Medicine, St. Louis (A.G.); Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore (A.P.R.); Servei d'Hematologia Clínica, Institut Català d'Oncologia-Hospitalet, Institut de Recerca Biomèdica de Bellvitge, Universitat de Barcelona, Barcelona (A.S.B.); Dana-Farber Cancer Institute, Boston (C.A.J.); University of Iowa, Iowa City (U.F.); Banner M.D. Anderson Cancer Center, Gilbert, AZ (M.U.); the Division of Hematology and Hematologic Oncology, Department of Medicine, Dalhousie University and Queen Elizabeth II Health Sciences Centre, Halifax, NS (M.E.), and Vancouver General Hospital, BC Cancer, University of British Columbia, Vancouver (K.W.S.) - both in Canada; John Theurer Cancer Center, Hackensack, NJ (L.A.L.); the Centre for Clinical Haematology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom (S.C.); Peter MacCallum Cancer Centre, Royal Melbourne Hospital, and the University of Melbourne, Melbourne (M.D.); UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh (K.D.); University of Kansas Cancer Center, Kansas City (J.M.); David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago (P.A.R.); and Moffitt Cancer Center, Tampa, FL (F.L.L.)
| | - Lori A Leslie
- From University of Texas M.D. Anderson Cancer Center, Houston (J.R.W.); Vanderbilt-Ingram Cancer Center, Nashville (O.O.O.); Amsterdam University Medical Center (UMC), University of Amsterdam, Cancer Center Amsterdam, Amsterdam (M.J.K.), UMC Groningen, Groningen (T.M.), and UMC Utrecht, Utrecht (M.C.M.) - all in the Netherlands; Stanford University School of Medicine, Stanford (D.B.M.), and Kite, Santa Monica (Y.Y., S.V., S.F., P.C., S.A.S., M.S., C.T.) - both in California; Memorial Sloan Kettering Cancer Center, New York (M.-A.P.), and University of Rochester School of Medicine, Rochester (P.M.R.) - both in New York; Washington University School of Medicine, St. Louis (A.G.); Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore (A.P.R.); Servei d'Hematologia Clínica, Institut Català d'Oncologia-Hospitalet, Institut de Recerca Biomèdica de Bellvitge, Universitat de Barcelona, Barcelona (A.S.B.); Dana-Farber Cancer Institute, Boston (C.A.J.); University of Iowa, Iowa City (U.F.); Banner M.D. Anderson Cancer Center, Gilbert, AZ (M.U.); the Division of Hematology and Hematologic Oncology, Department of Medicine, Dalhousie University and Queen Elizabeth II Health Sciences Centre, Halifax, NS (M.E.), and Vancouver General Hospital, BC Cancer, University of British Columbia, Vancouver (K.W.S.) - both in Canada; John Theurer Cancer Center, Hackensack, NJ (L.A.L.); the Centre for Clinical Haematology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom (S.C.); Peter MacCallum Cancer Centre, Royal Melbourne Hospital, and the University of Melbourne, Melbourne (M.D.); UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh (K.D.); University of Kansas Cancer Center, Kansas City (J.M.); David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago (P.A.R.); and Moffitt Cancer Center, Tampa, FL (F.L.L.)
| | - Sridhar Chaganti
- From University of Texas M.D. Anderson Cancer Center, Houston (J.R.W.); Vanderbilt-Ingram Cancer Center, Nashville (O.O.O.); Amsterdam University Medical Center (UMC), University of Amsterdam, Cancer Center Amsterdam, Amsterdam (M.J.K.), UMC Groningen, Groningen (T.M.), and UMC Utrecht, Utrecht (M.C.M.) - all in the Netherlands; Stanford University School of Medicine, Stanford (D.B.M.), and Kite, Santa Monica (Y.Y., S.V., S.F., P.C., S.A.S., M.S., C.T.) - both in California; Memorial Sloan Kettering Cancer Center, New York (M.-A.P.), and University of Rochester School of Medicine, Rochester (P.M.R.) - both in New York; Washington University School of Medicine, St. Louis (A.G.); Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore (A.P.R.); Servei d'Hematologia Clínica, Institut Català d'Oncologia-Hospitalet, Institut de Recerca Biomèdica de Bellvitge, Universitat de Barcelona, Barcelona (A.S.B.); Dana-Farber Cancer Institute, Boston (C.A.J.); University of Iowa, Iowa City (U.F.); Banner M.D. Anderson Cancer Center, Gilbert, AZ (M.U.); the Division of Hematology and Hematologic Oncology, Department of Medicine, Dalhousie University and Queen Elizabeth II Health Sciences Centre, Halifax, NS (M.E.), and Vancouver General Hospital, BC Cancer, University of British Columbia, Vancouver (K.W.S.) - both in Canada; John Theurer Cancer Center, Hackensack, NJ (L.A.L.); the Centre for Clinical Haematology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom (S.C.); Peter MacCallum Cancer Centre, Royal Melbourne Hospital, and the University of Melbourne, Melbourne (M.D.); UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh (K.D.); University of Kansas Cancer Center, Kansas City (J.M.); David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago (P.A.R.); and Moffitt Cancer Center, Tampa, FL (F.L.L.)
| | - Michael Dickinson
- From University of Texas M.D. Anderson Cancer Center, Houston (J.R.W.); Vanderbilt-Ingram Cancer Center, Nashville (O.O.O.); Amsterdam University Medical Center (UMC), University of Amsterdam, Cancer Center Amsterdam, Amsterdam (M.J.K.), UMC Groningen, Groningen (T.M.), and UMC Utrecht, Utrecht (M.C.M.) - all in the Netherlands; Stanford University School of Medicine, Stanford (D.B.M.), and Kite, Santa Monica (Y.Y., S.V., S.F., P.C., S.A.S., M.S., C.T.) - both in California; Memorial Sloan Kettering Cancer Center, New York (M.-A.P.), and University of Rochester School of Medicine, Rochester (P.M.R.) - both in New York; Washington University School of Medicine, St. Louis (A.G.); Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore (A.P.R.); Servei d'Hematologia Clínica, Institut Català d'Oncologia-Hospitalet, Institut de Recerca Biomèdica de Bellvitge, Universitat de Barcelona, Barcelona (A.S.B.); Dana-Farber Cancer Institute, Boston (C.A.J.); University of Iowa, Iowa City (U.F.); Banner M.D. Anderson Cancer Center, Gilbert, AZ (M.U.); the Division of Hematology and Hematologic Oncology, Department of Medicine, Dalhousie University and Queen Elizabeth II Health Sciences Centre, Halifax, NS (M.E.), and Vancouver General Hospital, BC Cancer, University of British Columbia, Vancouver (K.W.S.) - both in Canada; John Theurer Cancer Center, Hackensack, NJ (L.A.L.); the Centre for Clinical Haematology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom (S.C.); Peter MacCallum Cancer Centre, Royal Melbourne Hospital, and the University of Melbourne, Melbourne (M.D.); UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh (K.D.); University of Kansas Cancer Center, Kansas City (J.M.); David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago (P.A.R.); and Moffitt Cancer Center, Tampa, FL (F.L.L.)
| | - Kathleen Dorritie
- From University of Texas M.D. Anderson Cancer Center, Houston (J.R.W.); Vanderbilt-Ingram Cancer Center, Nashville (O.O.O.); Amsterdam University Medical Center (UMC), University of Amsterdam, Cancer Center Amsterdam, Amsterdam (M.J.K.), UMC Groningen, Groningen (T.M.), and UMC Utrecht, Utrecht (M.C.M.) - all in the Netherlands; Stanford University School of Medicine, Stanford (D.B.M.), and Kite, Santa Monica (Y.Y., S.V., S.F., P.C., S.A.S., M.S., C.T.) - both in California; Memorial Sloan Kettering Cancer Center, New York (M.-A.P.), and University of Rochester School of Medicine, Rochester (P.M.R.) - both in New York; Washington University School of Medicine, St. Louis (A.G.); Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore (A.P.R.); Servei d'Hematologia Clínica, Institut Català d'Oncologia-Hospitalet, Institut de Recerca Biomèdica de Bellvitge, Universitat de Barcelona, Barcelona (A.S.B.); Dana-Farber Cancer Institute, Boston (C.A.J.); University of Iowa, Iowa City (U.F.); Banner M.D. Anderson Cancer Center, Gilbert, AZ (M.U.); the Division of Hematology and Hematologic Oncology, Department of Medicine, Dalhousie University and Queen Elizabeth II Health Sciences Centre, Halifax, NS (M.E.), and Vancouver General Hospital, BC Cancer, University of British Columbia, Vancouver (K.W.S.) - both in Canada; John Theurer Cancer Center, Hackensack, NJ (L.A.L.); the Centre for Clinical Haematology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom (S.C.); Peter MacCallum Cancer Centre, Royal Melbourne Hospital, and the University of Melbourne, Melbourne (M.D.); UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh (K.D.); University of Kansas Cancer Center, Kansas City (J.M.); David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago (P.A.R.); and Moffitt Cancer Center, Tampa, FL (F.L.L.)
| | - Patrick M Reagan
- From University of Texas M.D. Anderson Cancer Center, Houston (J.R.W.); Vanderbilt-Ingram Cancer Center, Nashville (O.O.O.); Amsterdam University Medical Center (UMC), University of Amsterdam, Cancer Center Amsterdam, Amsterdam (M.J.K.), UMC Groningen, Groningen (T.M.), and UMC Utrecht, Utrecht (M.C.M.) - all in the Netherlands; Stanford University School of Medicine, Stanford (D.B.M.), and Kite, Santa Monica (Y.Y., S.V., S.F., P.C., S.A.S., M.S., C.T.) - both in California; Memorial Sloan Kettering Cancer Center, New York (M.-A.P.), and University of Rochester School of Medicine, Rochester (P.M.R.) - both in New York; Washington University School of Medicine, St. Louis (A.G.); Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore (A.P.R.); Servei d'Hematologia Clínica, Institut Català d'Oncologia-Hospitalet, Institut de Recerca Biomèdica de Bellvitge, Universitat de Barcelona, Barcelona (A.S.B.); Dana-Farber Cancer Institute, Boston (C.A.J.); University of Iowa, Iowa City (U.F.); Banner M.D. Anderson Cancer Center, Gilbert, AZ (M.U.); the Division of Hematology and Hematologic Oncology, Department of Medicine, Dalhousie University and Queen Elizabeth II Health Sciences Centre, Halifax, NS (M.E.), and Vancouver General Hospital, BC Cancer, University of British Columbia, Vancouver (K.W.S.) - both in Canada; John Theurer Cancer Center, Hackensack, NJ (L.A.L.); the Centre for Clinical Haematology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom (S.C.); Peter MacCallum Cancer Centre, Royal Melbourne Hospital, and the University of Melbourne, Melbourne (M.D.); UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh (K.D.); University of Kansas Cancer Center, Kansas City (J.M.); David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago (P.A.R.); and Moffitt Cancer Center, Tampa, FL (F.L.L.)
| | - Joseph McGuirk
- From University of Texas M.D. Anderson Cancer Center, Houston (J.R.W.); Vanderbilt-Ingram Cancer Center, Nashville (O.O.O.); Amsterdam University Medical Center (UMC), University of Amsterdam, Cancer Center Amsterdam, Amsterdam (M.J.K.), UMC Groningen, Groningen (T.M.), and UMC Utrecht, Utrecht (M.C.M.) - all in the Netherlands; Stanford University School of Medicine, Stanford (D.B.M.), and Kite, Santa Monica (Y.Y., S.V., S.F., P.C., S.A.S., M.S., C.T.) - both in California; Memorial Sloan Kettering Cancer Center, New York (M.-A.P.), and University of Rochester School of Medicine, Rochester (P.M.R.) - both in New York; Washington University School of Medicine, St. Louis (A.G.); Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore (A.P.R.); Servei d'Hematologia Clínica, Institut Català d'Oncologia-Hospitalet, Institut de Recerca Biomèdica de Bellvitge, Universitat de Barcelona, Barcelona (A.S.B.); Dana-Farber Cancer Institute, Boston (C.A.J.); University of Iowa, Iowa City (U.F.); Banner M.D. Anderson Cancer Center, Gilbert, AZ (M.U.); the Division of Hematology and Hematologic Oncology, Department of Medicine, Dalhousie University and Queen Elizabeth II Health Sciences Centre, Halifax, NS (M.E.), and Vancouver General Hospital, BC Cancer, University of British Columbia, Vancouver (K.W.S.) - both in Canada; John Theurer Cancer Center, Hackensack, NJ (L.A.L.); the Centre for Clinical Haematology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom (S.C.); Peter MacCallum Cancer Centre, Royal Melbourne Hospital, and the University of Melbourne, Melbourne (M.D.); UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh (K.D.); University of Kansas Cancer Center, Kansas City (J.M.); David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago (P.A.R.); and Moffitt Cancer Center, Tampa, FL (F.L.L.)
| | - Kevin W Song
- From University of Texas M.D. Anderson Cancer Center, Houston (J.R.W.); Vanderbilt-Ingram Cancer Center, Nashville (O.O.O.); Amsterdam University Medical Center (UMC), University of Amsterdam, Cancer Center Amsterdam, Amsterdam (M.J.K.), UMC Groningen, Groningen (T.M.), and UMC Utrecht, Utrecht (M.C.M.) - all in the Netherlands; Stanford University School of Medicine, Stanford (D.B.M.), and Kite, Santa Monica (Y.Y., S.V., S.F., P.C., S.A.S., M.S., C.T.) - both in California; Memorial Sloan Kettering Cancer Center, New York (M.-A.P.), and University of Rochester School of Medicine, Rochester (P.M.R.) - both in New York; Washington University School of Medicine, St. Louis (A.G.); Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore (A.P.R.); Servei d'Hematologia Clínica, Institut Català d'Oncologia-Hospitalet, Institut de Recerca Biomèdica de Bellvitge, Universitat de Barcelona, Barcelona (A.S.B.); Dana-Farber Cancer Institute, Boston (C.A.J.); University of Iowa, Iowa City (U.F.); Banner M.D. Anderson Cancer Center, Gilbert, AZ (M.U.); the Division of Hematology and Hematologic Oncology, Department of Medicine, Dalhousie University and Queen Elizabeth II Health Sciences Centre, Halifax, NS (M.E.), and Vancouver General Hospital, BC Cancer, University of British Columbia, Vancouver (K.W.S.) - both in Canada; John Theurer Cancer Center, Hackensack, NJ (L.A.L.); the Centre for Clinical Haematology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom (S.C.); Peter MacCallum Cancer Centre, Royal Melbourne Hospital, and the University of Melbourne, Melbourne (M.D.); UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh (K.D.); University of Kansas Cancer Center, Kansas City (J.M.); David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago (P.A.R.); and Moffitt Cancer Center, Tampa, FL (F.L.L.)
| | - Peter A Riedell
- From University of Texas M.D. Anderson Cancer Center, Houston (J.R.W.); Vanderbilt-Ingram Cancer Center, Nashville (O.O.O.); Amsterdam University Medical Center (UMC), University of Amsterdam, Cancer Center Amsterdam, Amsterdam (M.J.K.), UMC Groningen, Groningen (T.M.), and UMC Utrecht, Utrecht (M.C.M.) - all in the Netherlands; Stanford University School of Medicine, Stanford (D.B.M.), and Kite, Santa Monica (Y.Y., S.V., S.F., P.C., S.A.S., M.S., C.T.) - both in California; Memorial Sloan Kettering Cancer Center, New York (M.-A.P.), and University of Rochester School of Medicine, Rochester (P.M.R.) - both in New York; Washington University School of Medicine, St. Louis (A.G.); Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore (A.P.R.); Servei d'Hematologia Clínica, Institut Català d'Oncologia-Hospitalet, Institut de Recerca Biomèdica de Bellvitge, Universitat de Barcelona, Barcelona (A.S.B.); Dana-Farber Cancer Institute, Boston (C.A.J.); University of Iowa, Iowa City (U.F.); Banner M.D. Anderson Cancer Center, Gilbert, AZ (M.U.); the Division of Hematology and Hematologic Oncology, Department of Medicine, Dalhousie University and Queen Elizabeth II Health Sciences Centre, Halifax, NS (M.E.), and Vancouver General Hospital, BC Cancer, University of British Columbia, Vancouver (K.W.S.) - both in Canada; John Theurer Cancer Center, Hackensack, NJ (L.A.L.); the Centre for Clinical Haematology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom (S.C.); Peter MacCallum Cancer Centre, Royal Melbourne Hospital, and the University of Melbourne, Melbourne (M.D.); UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh (K.D.); University of Kansas Cancer Center, Kansas City (J.M.); David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago (P.A.R.); and Moffitt Cancer Center, Tampa, FL (F.L.L.)
| | - Monique C Minnema
- From University of Texas M.D. Anderson Cancer Center, Houston (J.R.W.); Vanderbilt-Ingram Cancer Center, Nashville (O.O.O.); Amsterdam University Medical Center (UMC), University of Amsterdam, Cancer Center Amsterdam, Amsterdam (M.J.K.), UMC Groningen, Groningen (T.M.), and UMC Utrecht, Utrecht (M.C.M.) - all in the Netherlands; Stanford University School of Medicine, Stanford (D.B.M.), and Kite, Santa Monica (Y.Y., S.V., S.F., P.C., S.A.S., M.S., C.T.) - both in California; Memorial Sloan Kettering Cancer Center, New York (M.-A.P.), and University of Rochester School of Medicine, Rochester (P.M.R.) - both in New York; Washington University School of Medicine, St. Louis (A.G.); Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore (A.P.R.); Servei d'Hematologia Clínica, Institut Català d'Oncologia-Hospitalet, Institut de Recerca Biomèdica de Bellvitge, Universitat de Barcelona, Barcelona (A.S.B.); Dana-Farber Cancer Institute, Boston (C.A.J.); University of Iowa, Iowa City (U.F.); Banner M.D. Anderson Cancer Center, Gilbert, AZ (M.U.); the Division of Hematology and Hematologic Oncology, Department of Medicine, Dalhousie University and Queen Elizabeth II Health Sciences Centre, Halifax, NS (M.E.), and Vancouver General Hospital, BC Cancer, University of British Columbia, Vancouver (K.W.S.) - both in Canada; John Theurer Cancer Center, Hackensack, NJ (L.A.L.); the Centre for Clinical Haematology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom (S.C.); Peter MacCallum Cancer Centre, Royal Melbourne Hospital, and the University of Melbourne, Melbourne (M.D.); UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh (K.D.); University of Kansas Cancer Center, Kansas City (J.M.); David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago (P.A.R.); and Moffitt Cancer Center, Tampa, FL (F.L.L.)
| | - Yin Yang
- From University of Texas M.D. Anderson Cancer Center, Houston (J.R.W.); Vanderbilt-Ingram Cancer Center, Nashville (O.O.O.); Amsterdam University Medical Center (UMC), University of Amsterdam, Cancer Center Amsterdam, Amsterdam (M.J.K.), UMC Groningen, Groningen (T.M.), and UMC Utrecht, Utrecht (M.C.M.) - all in the Netherlands; Stanford University School of Medicine, Stanford (D.B.M.), and Kite, Santa Monica (Y.Y., S.V., S.F., P.C., S.A.S., M.S., C.T.) - both in California; Memorial Sloan Kettering Cancer Center, New York (M.-A.P.), and University of Rochester School of Medicine, Rochester (P.M.R.) - both in New York; Washington University School of Medicine, St. Louis (A.G.); Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore (A.P.R.); Servei d'Hematologia Clínica, Institut Català d'Oncologia-Hospitalet, Institut de Recerca Biomèdica de Bellvitge, Universitat de Barcelona, Barcelona (A.S.B.); Dana-Farber Cancer Institute, Boston (C.A.J.); University of Iowa, Iowa City (U.F.); Banner M.D. Anderson Cancer Center, Gilbert, AZ (M.U.); the Division of Hematology and Hematologic Oncology, Department of Medicine, Dalhousie University and Queen Elizabeth II Health Sciences Centre, Halifax, NS (M.E.), and Vancouver General Hospital, BC Cancer, University of British Columbia, Vancouver (K.W.S.) - both in Canada; John Theurer Cancer Center, Hackensack, NJ (L.A.L.); the Centre for Clinical Haematology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom (S.C.); Peter MacCallum Cancer Centre, Royal Melbourne Hospital, and the University of Melbourne, Melbourne (M.D.); UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh (K.D.); University of Kansas Cancer Center, Kansas City (J.M.); David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago (P.A.R.); and Moffitt Cancer Center, Tampa, FL (F.L.L.)
| | - Saran Vardhanabhuti
- From University of Texas M.D. Anderson Cancer Center, Houston (J.R.W.); Vanderbilt-Ingram Cancer Center, Nashville (O.O.O.); Amsterdam University Medical Center (UMC), University of Amsterdam, Cancer Center Amsterdam, Amsterdam (M.J.K.), UMC Groningen, Groningen (T.M.), and UMC Utrecht, Utrecht (M.C.M.) - all in the Netherlands; Stanford University School of Medicine, Stanford (D.B.M.), and Kite, Santa Monica (Y.Y., S.V., S.F., P.C., S.A.S., M.S., C.T.) - both in California; Memorial Sloan Kettering Cancer Center, New York (M.-A.P.), and University of Rochester School of Medicine, Rochester (P.M.R.) - both in New York; Washington University School of Medicine, St. Louis (A.G.); Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore (A.P.R.); Servei d'Hematologia Clínica, Institut Català d'Oncologia-Hospitalet, Institut de Recerca Biomèdica de Bellvitge, Universitat de Barcelona, Barcelona (A.S.B.); Dana-Farber Cancer Institute, Boston (C.A.J.); University of Iowa, Iowa City (U.F.); Banner M.D. Anderson Cancer Center, Gilbert, AZ (M.U.); the Division of Hematology and Hematologic Oncology, Department of Medicine, Dalhousie University and Queen Elizabeth II Health Sciences Centre, Halifax, NS (M.E.), and Vancouver General Hospital, BC Cancer, University of British Columbia, Vancouver (K.W.S.) - both in Canada; John Theurer Cancer Center, Hackensack, NJ (L.A.L.); the Centre for Clinical Haematology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom (S.C.); Peter MacCallum Cancer Centre, Royal Melbourne Hospital, and the University of Melbourne, Melbourne (M.D.); UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh (K.D.); University of Kansas Cancer Center, Kansas City (J.M.); David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago (P.A.R.); and Moffitt Cancer Center, Tampa, FL (F.L.L.)
| | - Simone Filosto
- From University of Texas M.D. Anderson Cancer Center, Houston (J.R.W.); Vanderbilt-Ingram Cancer Center, Nashville (O.O.O.); Amsterdam University Medical Center (UMC), University of Amsterdam, Cancer Center Amsterdam, Amsterdam (M.J.K.), UMC Groningen, Groningen (T.M.), and UMC Utrecht, Utrecht (M.C.M.) - all in the Netherlands; Stanford University School of Medicine, Stanford (D.B.M.), and Kite, Santa Monica (Y.Y., S.V., S.F., P.C., S.A.S., M.S., C.T.) - both in California; Memorial Sloan Kettering Cancer Center, New York (M.-A.P.), and University of Rochester School of Medicine, Rochester (P.M.R.) - both in New York; Washington University School of Medicine, St. Louis (A.G.); Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore (A.P.R.); Servei d'Hematologia Clínica, Institut Català d'Oncologia-Hospitalet, Institut de Recerca Biomèdica de Bellvitge, Universitat de Barcelona, Barcelona (A.S.B.); Dana-Farber Cancer Institute, Boston (C.A.J.); University of Iowa, Iowa City (U.F.); Banner M.D. Anderson Cancer Center, Gilbert, AZ (M.U.); the Division of Hematology and Hematologic Oncology, Department of Medicine, Dalhousie University and Queen Elizabeth II Health Sciences Centre, Halifax, NS (M.E.), and Vancouver General Hospital, BC Cancer, University of British Columbia, Vancouver (K.W.S.) - both in Canada; John Theurer Cancer Center, Hackensack, NJ (L.A.L.); the Centre for Clinical Haematology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom (S.C.); Peter MacCallum Cancer Centre, Royal Melbourne Hospital, and the University of Melbourne, Melbourne (M.D.); UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh (K.D.); University of Kansas Cancer Center, Kansas City (J.M.); David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago (P.A.R.); and Moffitt Cancer Center, Tampa, FL (F.L.L.)
| | - Paul Cheng
- From University of Texas M.D. Anderson Cancer Center, Houston (J.R.W.); Vanderbilt-Ingram Cancer Center, Nashville (O.O.O.); Amsterdam University Medical Center (UMC), University of Amsterdam, Cancer Center Amsterdam, Amsterdam (M.J.K.), UMC Groningen, Groningen (T.M.), and UMC Utrecht, Utrecht (M.C.M.) - all in the Netherlands; Stanford University School of Medicine, Stanford (D.B.M.), and Kite, Santa Monica (Y.Y., S.V., S.F., P.C., S.A.S., M.S., C.T.) - both in California; Memorial Sloan Kettering Cancer Center, New York (M.-A.P.), and University of Rochester School of Medicine, Rochester (P.M.R.) - both in New York; Washington University School of Medicine, St. Louis (A.G.); Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore (A.P.R.); Servei d'Hematologia Clínica, Institut Català d'Oncologia-Hospitalet, Institut de Recerca Biomèdica de Bellvitge, Universitat de Barcelona, Barcelona (A.S.B.); Dana-Farber Cancer Institute, Boston (C.A.J.); University of Iowa, Iowa City (U.F.); Banner M.D. Anderson Cancer Center, Gilbert, AZ (M.U.); the Division of Hematology and Hematologic Oncology, Department of Medicine, Dalhousie University and Queen Elizabeth II Health Sciences Centre, Halifax, NS (M.E.), and Vancouver General Hospital, BC Cancer, University of British Columbia, Vancouver (K.W.S.) - both in Canada; John Theurer Cancer Center, Hackensack, NJ (L.A.L.); the Centre for Clinical Haematology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom (S.C.); Peter MacCallum Cancer Centre, Royal Melbourne Hospital, and the University of Melbourne, Melbourne (M.D.); UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh (K.D.); University of Kansas Cancer Center, Kansas City (J.M.); David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago (P.A.R.); and Moffitt Cancer Center, Tampa, FL (F.L.L.)
| | - Shilpa A Shahani
- From University of Texas M.D. Anderson Cancer Center, Houston (J.R.W.); Vanderbilt-Ingram Cancer Center, Nashville (O.O.O.); Amsterdam University Medical Center (UMC), University of Amsterdam, Cancer Center Amsterdam, Amsterdam (M.J.K.), UMC Groningen, Groningen (T.M.), and UMC Utrecht, Utrecht (M.C.M.) - all in the Netherlands; Stanford University School of Medicine, Stanford (D.B.M.), and Kite, Santa Monica (Y.Y., S.V., S.F., P.C., S.A.S., M.S., C.T.) - both in California; Memorial Sloan Kettering Cancer Center, New York (M.-A.P.), and University of Rochester School of Medicine, Rochester (P.M.R.) - both in New York; Washington University School of Medicine, St. Louis (A.G.); Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore (A.P.R.); Servei d'Hematologia Clínica, Institut Català d'Oncologia-Hospitalet, Institut de Recerca Biomèdica de Bellvitge, Universitat de Barcelona, Barcelona (A.S.B.); Dana-Farber Cancer Institute, Boston (C.A.J.); University of Iowa, Iowa City (U.F.); Banner M.D. Anderson Cancer Center, Gilbert, AZ (M.U.); the Division of Hematology and Hematologic Oncology, Department of Medicine, Dalhousie University and Queen Elizabeth II Health Sciences Centre, Halifax, NS (M.E.), and Vancouver General Hospital, BC Cancer, University of British Columbia, Vancouver (K.W.S.) - both in Canada; John Theurer Cancer Center, Hackensack, NJ (L.A.L.); the Centre for Clinical Haematology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom (S.C.); Peter MacCallum Cancer Centre, Royal Melbourne Hospital, and the University of Melbourne, Melbourne (M.D.); UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh (K.D.); University of Kansas Cancer Center, Kansas City (J.M.); David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago (P.A.R.); and Moffitt Cancer Center, Tampa, FL (F.L.L.)
| | - Marco Schupp
- From University of Texas M.D. Anderson Cancer Center, Houston (J.R.W.); Vanderbilt-Ingram Cancer Center, Nashville (O.O.O.); Amsterdam University Medical Center (UMC), University of Amsterdam, Cancer Center Amsterdam, Amsterdam (M.J.K.), UMC Groningen, Groningen (T.M.), and UMC Utrecht, Utrecht (M.C.M.) - all in the Netherlands; Stanford University School of Medicine, Stanford (D.B.M.), and Kite, Santa Monica (Y.Y., S.V., S.F., P.C., S.A.S., M.S., C.T.) - both in California; Memorial Sloan Kettering Cancer Center, New York (M.-A.P.), and University of Rochester School of Medicine, Rochester (P.M.R.) - both in New York; Washington University School of Medicine, St. Louis (A.G.); Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore (A.P.R.); Servei d'Hematologia Clínica, Institut Català d'Oncologia-Hospitalet, Institut de Recerca Biomèdica de Bellvitge, Universitat de Barcelona, Barcelona (A.S.B.); Dana-Farber Cancer Institute, Boston (C.A.J.); University of Iowa, Iowa City (U.F.); Banner M.D. Anderson Cancer Center, Gilbert, AZ (M.U.); the Division of Hematology and Hematologic Oncology, Department of Medicine, Dalhousie University and Queen Elizabeth II Health Sciences Centre, Halifax, NS (M.E.), and Vancouver General Hospital, BC Cancer, University of British Columbia, Vancouver (K.W.S.) - both in Canada; John Theurer Cancer Center, Hackensack, NJ (L.A.L.); the Centre for Clinical Haematology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom (S.C.); Peter MacCallum Cancer Centre, Royal Melbourne Hospital, and the University of Melbourne, Melbourne (M.D.); UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh (K.D.); University of Kansas Cancer Center, Kansas City (J.M.); David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago (P.A.R.); and Moffitt Cancer Center, Tampa, FL (F.L.L.)
| | - Christina To
- From University of Texas M.D. Anderson Cancer Center, Houston (J.R.W.); Vanderbilt-Ingram Cancer Center, Nashville (O.O.O.); Amsterdam University Medical Center (UMC), University of Amsterdam, Cancer Center Amsterdam, Amsterdam (M.J.K.), UMC Groningen, Groningen (T.M.), and UMC Utrecht, Utrecht (M.C.M.) - all in the Netherlands; Stanford University School of Medicine, Stanford (D.B.M.), and Kite, Santa Monica (Y.Y., S.V., S.F., P.C., S.A.S., M.S., C.T.) - both in California; Memorial Sloan Kettering Cancer Center, New York (M.-A.P.), and University of Rochester School of Medicine, Rochester (P.M.R.) - both in New York; Washington University School of Medicine, St. Louis (A.G.); Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore (A.P.R.); Servei d'Hematologia Clínica, Institut Català d'Oncologia-Hospitalet, Institut de Recerca Biomèdica de Bellvitge, Universitat de Barcelona, Barcelona (A.S.B.); Dana-Farber Cancer Institute, Boston (C.A.J.); University of Iowa, Iowa City (U.F.); Banner M.D. Anderson Cancer Center, Gilbert, AZ (M.U.); the Division of Hematology and Hematologic Oncology, Department of Medicine, Dalhousie University and Queen Elizabeth II Health Sciences Centre, Halifax, NS (M.E.), and Vancouver General Hospital, BC Cancer, University of British Columbia, Vancouver (K.W.S.) - both in Canada; John Theurer Cancer Center, Hackensack, NJ (L.A.L.); the Centre for Clinical Haematology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom (S.C.); Peter MacCallum Cancer Centre, Royal Melbourne Hospital, and the University of Melbourne, Melbourne (M.D.); UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh (K.D.); University of Kansas Cancer Center, Kansas City (J.M.); David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago (P.A.R.); and Moffitt Cancer Center, Tampa, FL (F.L.L.)
| | - Frederick L Locke
- From University of Texas M.D. Anderson Cancer Center, Houston (J.R.W.); Vanderbilt-Ingram Cancer Center, Nashville (O.O.O.); Amsterdam University Medical Center (UMC), University of Amsterdam, Cancer Center Amsterdam, Amsterdam (M.J.K.), UMC Groningen, Groningen (T.M.), and UMC Utrecht, Utrecht (M.C.M.) - all in the Netherlands; Stanford University School of Medicine, Stanford (D.B.M.), and Kite, Santa Monica (Y.Y., S.V., S.F., P.C., S.A.S., M.S., C.T.) - both in California; Memorial Sloan Kettering Cancer Center, New York (M.-A.P.), and University of Rochester School of Medicine, Rochester (P.M.R.) - both in New York; Washington University School of Medicine, St. Louis (A.G.); Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore (A.P.R.); Servei d'Hematologia Clínica, Institut Català d'Oncologia-Hospitalet, Institut de Recerca Biomèdica de Bellvitge, Universitat de Barcelona, Barcelona (A.S.B.); Dana-Farber Cancer Institute, Boston (C.A.J.); University of Iowa, Iowa City (U.F.); Banner M.D. Anderson Cancer Center, Gilbert, AZ (M.U.); the Division of Hematology and Hematologic Oncology, Department of Medicine, Dalhousie University and Queen Elizabeth II Health Sciences Centre, Halifax, NS (M.E.), and Vancouver General Hospital, BC Cancer, University of British Columbia, Vancouver (K.W.S.) - both in Canada; John Theurer Cancer Center, Hackensack, NJ (L.A.L.); the Centre for Clinical Haematology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom (S.C.); Peter MacCallum Cancer Centre, Royal Melbourne Hospital, and the University of Melbourne, Melbourne (M.D.); UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh (K.D.); University of Kansas Cancer Center, Kansas City (J.M.); David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago (P.A.R.); and Moffitt Cancer Center, Tampa, FL (F.L.L.)
| |
Collapse
|