151
|
Balestrieri E, Minutolo A, Petrone V, Fanelli M, Iannetta M, Malagnino V, Zordan M, Vitale P, Charvet B, Horvat B, Bernardini S, Garaci E, di Francesco P, Sinibaldi Vallebona P, Sarmati L, Grelli S, Andreoni M, Perron H, Matteucci C. Evidence of the pathogenic HERV-W envelope expression in T lymphocytes in association with the respiratory outcome of COVID-19 patients. EBioMedicine 2021; 66:103341. [PMID: 33867312 PMCID: PMC8082064 DOI: 10.1016/j.ebiom.2021.103341] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/26/2021] [Accepted: 03/30/2021] [Indexed: 12/14/2022] Open
Abstract
Background Despite an impressive effort in clinical research, no standard therapeutic approach for coronavirus disease 2019 (COVID-19) patients has been established, highlighting the need to identify early biomarkers for predicting disease progression and new therapeutic interventions for patient management. The present study aimed to evaluate the involvement of the human endogenous retrovirus -W envelope (HERV-W ENV) in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection considering recent findings that HERVs are activated in response to infectious agents and lead to various immunopathological effects. We analysed HERV-W ENV expression in blood cells of COVID-19 patients in correlation with clinical characteristics and have discussed its potential role in the outcome of the disease. Methods We analysed HERV-W ENV expression in blood samples of COVID-19 patients and healthy donors by flow cytometry and quantitative reverse transcriptase PCR analysis, and evaluated its correlation with clinical signs, inflammatory markers, cytokine expression, and disease progression. Findings HERV-W ENV was highly expressed in the leukocytes of COVID-19 patients but not in those of healthy donors. Its expression correlated with the markers of T-cell differentiation and exhaustion and blood cytokine levels. The percentage of HERV-W ENV-positive lymphocytes correlated with inflammatory markers and pneumonia severity in COVID-19 patients. Notably, HERV-W ENV expression reflects the respiratory outcome of patients during hospitalization. Interpretation Given the known immuno- and neuro-pathogenicity of HERV-W ENV protein, it could promote certain pathogenic features of COVID-19 and therefore serve as a biomarker to predict clinical progression of disease and open to further studies for therapeutic intervention. Funding Information available at the end of the manuscript.
Collapse
Affiliation(s)
- Emanuela Balestrieri
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome 00133, Italy
| | - Antonella Minutolo
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome 00133, Italy
| | - Vita Petrone
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome 00133, Italy
| | - Marialaura Fanelli
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome 00133, Italy
| | - Marco Iannetta
- Department of Systems Medicine, University of Rome Tor Vergata, Rome 00133, Italy; Infectious Diseases Clinic, Policlinic of Tor Vergata, Rome 00133, Italy
| | - Vincenzo Malagnino
- Department of Systems Medicine, University of Rome Tor Vergata, Rome 00133, Italy; Infectious Diseases Clinic, Policlinic of Tor Vergata, Rome 00133, Italy
| | - Marta Zordan
- Department of Systems Medicine, University of Rome Tor Vergata, Rome 00133, Italy; Infectious Diseases Clinic, Policlinic of Tor Vergata, Rome 00133, Italy
| | - Pietro Vitale
- Infectious Diseases Clinic, Policlinic of Tor Vergata, Rome 00133, Italy
| | - Benjamin Charvet
- International Center for Infectiology Research (CIRI), INSERM U1111, CNRS UMR5308, Ecole Normale Supérieure de Lyon, University of Lyon, Lyon, France; Geneuro - Innovation, Lyon 69008, France
| | - Branka Horvat
- International Center for Infectiology Research (CIRI), INSERM U1111, CNRS UMR5308, Ecole Normale Supérieure de Lyon, University of Lyon, Lyon, France
| | - Sergio Bernardini
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome 00133, Italy
| | | | - Paolo di Francesco
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome 00133, Italy
| | - Paola Sinibaldi Vallebona
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome 00133, Italy; Institute of Translational Pharmacology, National Research Council, Rome 00133, Italy
| | - Loredana Sarmati
- Department of Systems Medicine, University of Rome Tor Vergata, Rome 00133, Italy; Infectious Diseases Clinic, Policlinic of Tor Vergata, Rome 00133, Italy
| | - Sandro Grelli
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome 00133, Italy; Virology Unit, Policlinic of Tor Vergata, Rome 00133, Italy
| | - Massimo Andreoni
- Department of Systems Medicine, University of Rome Tor Vergata, Rome 00133, Italy; Infectious Diseases Clinic, Policlinic of Tor Vergata, Rome 00133, Italy
| | - Hervé Perron
- Geneuro - Innovation, Lyon 69008, France; University of Lyon, Lyon 69007, France
| | - Claudia Matteucci
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome 00133, Italy.
| |
Collapse
|
152
|
Belyeu JR, Brand H, Wang H, Zhao X, Pedersen BS, Feusier J, Gupta M, Nicholas TJ, Brown J, Baird L, Devlin B, Sanders SJ, Jorde LB, Talkowski ME, Quinlan AR. De novo structural mutation rates and gamete-of-origin biases revealed through genome sequencing of 2,396 families. Am J Hum Genet 2021; 108:597-607. [PMID: 33675682 PMCID: PMC8059337 DOI: 10.1016/j.ajhg.2021.02.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/12/2021] [Indexed: 01/05/2023] Open
Abstract
Each human genome includes de novo mutations that arose during gametogenesis. While these germline mutations represent a fundamental source of new genetic diversity, they can also create deleterious alleles that impact fitness. Whereas the rate and patterns of point mutations in the human germline are now well understood, far less is known about the frequency and features that impact de novo structural variants (dnSVs). We report a family-based study of germline mutations among 9,599 human genomes from 33 multigenerational CEPH-Utah families and 2,384 families from the Simons Foundation Autism Research Initiative. We find that de novo structural mutations detected by alignment-based, short-read WGS occur at an overall rate of at least 0.160 events per genome in unaffected individuals, and we observe a significantly higher rate (0.206 per genome) in ASD-affected individuals. In both probands and unaffected samples, nearly 73% of de novo structural mutations arose in paternal gametes, and we predict most de novo structural mutations to be caused by mutational mechanisms that do not require sequence homology. After multiple testing correction, we did not observe a statistically significant correlation between parental age and the rate of de novo structural variation in offspring. These results highlight that a spectrum of mutational mechanisms contribute to germline structural mutations and that these mechanisms most likely have markedly different rates and selective pressures than those leading to point mutations.
Collapse
Affiliation(s)
- Jonathan R Belyeu
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Harrison Brand
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02114, USA
| | - Harold Wang
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02114, USA
| | - Xuefang Zhao
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02114, USA
| | - Brent S Pedersen
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Julie Feusier
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Meenal Gupta
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Thomas J Nicholas
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Joseph Brown
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Lisa Baird
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Bernie Devlin
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Stephan J Sanders
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Lynn B Jorde
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA; Utah Center for Genetic Discovery, University of Utah, Salt Lake City, UT 84112, USA
| | - Michael E Talkowski
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02114, USA.
| | - Aaron R Quinlan
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA; Department of Biomedical Informatics, University of Utah, Salt Lake City, UT 84112, USA; Utah Center for Genetic Discovery, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
153
|
Keegan RM, Talbot LR, Chang YH, Metzger MJ, Dubnau J. Intercellular viral spread and intracellular transposition of Drosophila gypsy. PLoS Genet 2021; 17:e1009535. [PMID: 33886543 PMCID: PMC8096092 DOI: 10.1371/journal.pgen.1009535] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 05/04/2021] [Accepted: 04/06/2021] [Indexed: 01/12/2023] Open
Abstract
It has become increasingly clear that retrotransposons (RTEs) are more widely expressed in somatic tissues than previously appreciated. RTE expression has been implicated in a myriad of biological processes ranging from normal development and aging, to age related diseases such as cancer and neurodegeneration. Long Terminal Repeat (LTR)-RTEs are evolutionary ancestors to, and share many features with, exogenous retroviruses. In fact, many organisms contain endogenous retroviruses (ERVs) derived from exogenous retroviruses that integrated into the germ line. These ERVs are inherited in Mendelian fashion like RTEs, and some retain the ability to transmit between cells like viruses, while others develop the ability to act as RTEs. The process of evolutionary transition between LTR-RTE and retroviruses is thought to involve multiple steps by which the element loses or gains the ability to transmit copies between cells versus the ability to replicate intracellularly. But, typically, these two modes of transmission are incompatible because they require assembly in different sub-cellular compartments. Like murine IAP/IAP-E elements, the gypsy family of retroelements in arthropods appear to sit along this evolutionary transition. Indeed, there is some evidence that gypsy may exhibit retroviral properties. Given that gypsy elements have been found to actively mobilize in neurons and glial cells during normal aging and in models of neurodegeneration, this raises the question of whether gypsy replication in somatic cells occurs via intracellular retrotransposition, intercellular viral spread, or some combination of the two. These modes of replication in somatic tissues would have quite different biological implications. Here, we demonstrate that Drosophila gypsy is capable of both cell-associated and cell-free viral transmission between cultured S2 cells of somatic origin. Further, we demonstrate that the ability of gypsy to move between cells is dependent upon a functional copy of its viral envelope protein. This argues that the gypsy element has transitioned from an RTE into a functional endogenous retrovirus with the acquisition of its envelope gene. On the other hand, we also find that intracellular retrotransposition of the same genomic copy of gypsy can occur in the absence of the Env protein. Thus, gypsy exhibits both intracellular retrotransposition and intercellular viral transmission as modes of replicating its genome.
Collapse
Affiliation(s)
- Richard M. Keegan
- Program in Neuroscience, Department of Neurobiology and Behavior, Stony Brook University, New York City, New York, United States of America
| | - Lillian R. Talbot
- Medical Scientist Training Program, Department of Neurobiology and Behavior, Stony Brook University, New York City, New York, United States of America
| | - Yung-Heng Chang
- Department of Anesthesiology, Stony Brook School of Medicine, New York City, New York, United States of America
| | - Michael J. Metzger
- Pacific Northwest Research Institute, Seattle, Washington, United States of America
| | - Josh Dubnau
- Program in Neuroscience, Department of Neurobiology and Behavior, Stony Brook University, New York City, New York, United States of America
- Department of Anesthesiology, Stony Brook School of Medicine, New York City, New York, United States of America
- Pacific Northwest Research Institute, Seattle, Washington, United States of America
| |
Collapse
|
154
|
Charvet B, Pierquin J, Brunel J, Gorter R, Quétard C, Horvat B, Amor S, Portoukalian J, Perron H. Human Endogenous Retrovirus Type W Envelope from Multiple Sclerosis Demyelinating Lesions Shows Unique Solubility and Antigenic Characteristics. Virol Sin 2021; 36:1006-1026. [PMID: 33770381 PMCID: PMC8558138 DOI: 10.1007/s12250-021-00372-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 02/08/2021] [Indexed: 12/15/2022] Open
Abstract
In multiple sclerosis (MS), human endogenous retrovirus W family (HERV-W) envelope protein, pHERV-W ENV, limits remyelination and induces microglia-mediated neurodegeneration. To better understand its role, we examined the soluble pHERV-W antigen from MS brain lesions detected by specific antibodies. Physico-chemical and antigenic characteristics confirmed differences between pHERV-W ENV and syncytin-1. pHERV-W ENV monomers and trimers remained associated with membranes, while hexamers self-assembled from monomers into a soluble macrostructure involving sulfatides in MS brain. Extracellular hexamers are stabilized by internal hydrophobic bonds and external hydrophilic moieties. HERV-W studies in MS also suggest that this diffusible antigen may correspond to a previously described high-molecular-weight neurotoxic factor secreted by MS B-cells and thus represents a major agonist in MS pathogenesis. Adapted methods are now needed to identify encoding HERV provirus(es) in affected cells DNA. The properties and origin of MS brain pHERV-W ENV soluble antigen will allow a better understanding of the role of HERVs in MS pathogenesis. The present results anyhow pave the way to an accurate detection of the different forms of pHERV-W ENV antigen with appropriate conditions that remained unseen until now.
Collapse
Affiliation(s)
- Benjamin Charvet
- GeNeuro Innovation, Lyon, 69008, France. .,CIRI, International Center for Infectiology Research, INSERM U1111, CNRS UMR5308, University of Lyon, ENS Lyon, France. .,Université Claude Bernard Lyon 1, Lyon, 69000, France.
| | | | - Joanna Brunel
- GeNeuro Innovation, Lyon, 69008, France.,CIRI, International Center for Infectiology Research, INSERM U1111, CNRS UMR5308, University of Lyon, ENS Lyon, France.,Université Claude Bernard Lyon 1, Lyon, 69000, France
| | - Rianne Gorter
- Department of Pathology, Amsterdam UMC, Location VUMC, 1007 MB, Amsterdam, The Netherlands
| | | | - Branka Horvat
- CIRI, International Center for Infectiology Research, INSERM U1111, CNRS UMR5308, University of Lyon, ENS Lyon, France.,Université Claude Bernard Lyon 1, Lyon, 69000, France
| | - Sandra Amor
- Department of Pathology, Amsterdam UMC, Location VUMC, 1007 MB, Amsterdam, The Netherlands.,Centre for Neuroscience and Trauma, Blizard Institute, Barts and London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK
| | | | - Hervé Perron
- GeNeuro Innovation, Lyon, 69008, France. .,Université Claude Bernard Lyon 1, Lyon, 69000, France.
| |
Collapse
|
155
|
The "missing heritability"-Problem in psychiatry: Is the interaction of genetics, epigenetics and transposable elements a potential solution? Neurosci Biobehav Rev 2021; 126:23-42. [PMID: 33757815 DOI: 10.1016/j.neubiorev.2021.03.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 02/07/2023]
Abstract
Psychiatric disorders exhibit an enormous burden on the health care systems worldwide accounting for around one-third of years lost due to disability among adults. Their etiology is largely unknown and diagnostic classification is based on symptomatology and course of illness and not on objective biomarkers. Most psychiatric disorders are moderately to highly heritable. However, it is still unknown what mechanisms may explain the discrepancy between heritability estimates and the present data from genetic analysis. In addition to genetic differences also epigenetic modifications are considered as potentially relevant in the transfer of susceptibility to psychiatric diseases. Though, whether or not epigenetic alterations can be inherited for many generations is highly controversial. In the present article, we will critically summarize both the genetic findings and the results from epigenetic analyses, including also those of noncoding RNAs. We will argue that one possible solution to the "missing heritability" problem in psychiatry is a potential role of retrotransposons, the exploration of which is presently only in its beginnings.
Collapse
|
156
|
Alkailani M, Palidwor G, Poulin A, Mohan R, Pepin D, Vanderhyden B, Gibbings D. A genome-wide strategy to identify causes and consequences of retrotransposon expression finds activation by BRCA1 in ovarian cancer. NAR Cancer 2021; 3:zcaa040. [PMID: 33447827 PMCID: PMC7787265 DOI: 10.1093/narcan/zcaa040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 11/20/2020] [Accepted: 11/30/2020] [Indexed: 12/03/2022] Open
Abstract
It is challenging to identify the causes and consequences of retrotransposon expression in human disease due to the hundreds of active genomic copies and their poor conservation across species. We profiled genomic insertions of retrotransposons in ovarian cancer. In addition, in ovarian and breast cancer we analyzed RNAs exhibiting Bayesian correlation with retrotransposon RNA to identify causes and consequences of retrotransposon expression. This strategy finds divergent inflammatory responses associated with retrotransposon expression in ovarian and breast cancer and identifies new factors inducing expression of endogenous retrotransposons including anti-viral responses and the common tumor suppressor BRCA1. In cell lines, mouse ovarian epithelial cells and patient-derived tumor spheroids, BRCA1 promotes accumulation of retrotransposon RNA. BRCA1 promotes transcription of active families of retrotransposons and their insertion into the genome. Intriguingly, elevated retrotransposon expression predicts survival in ovarian cancer patients. Retrotransposons are part of a complex regulatory network in ovarian cancer including BRCA1 that contributes to patient survival. The described strategy can be used to identify the regulators and impacts of retrotransposons in various contexts of biology and disease in humans.
Collapse
Affiliation(s)
- Maisa Alkailani
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada
| | - Gareth Palidwor
- Ottawa Institute for Systems Biology, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada
- Bioinformatics, Ottawa Hospital Research Institute, Ottawa, Ontario, K1H 8L6, Canada
| | - Ariane Poulin
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada
| | - Raghav Mohan
- Pediatrics Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA 021145, USA
| | - David Pepin
- Pediatrics Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA 021145, USA
- Department of Surgery, Harvard Medical School, Boston, MA 021156, USA
| | - Barbara Vanderhyden
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Ontario, K1H 8L6, Canada
| | - Derrick Gibbings
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada
| |
Collapse
|
157
|
HBV-Integration Studies in the Clinic: Role in the Natural History of Infection. Viruses 2021; 13:v13030368. [PMID: 33652619 PMCID: PMC7996909 DOI: 10.3390/v13030368] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B virus (HBV) infection is a major global health problem causing acute and chronic liver disease that can lead to liver cirrhosis and hepatocellular carcinoma (HCC). HBV covalently closed circular DNA (cccDNA) is essential for viral replication and the establishment of a persistent infection. Integrated HBV DNA represents another stable form of viral DNA regularly observed in the livers of infected patients. HBV DNA integration into the host genome occurs early after HBV infection. It is a common occurrence during the HBV life cycle, and it has been detected in all the phases of chronic infection. HBV DNA integration has long been considered to be the main contributor to liver tumorigenesis. The recent development of highly sensitive detection methods and research models has led to the clarification of some molecular and pathogenic aspects of HBV integration. Though HBV integration does not lead to replication-competent transcripts, it can act as a stable source of viral RNA and proteins, which may contribute in determining HBV-specific T-cell exhaustion and favoring virus persistence. The relationship between HBV DNA integration and the immune response in the liver microenvironment might be closely related to the development and progression of HBV-related diseases. While many new antiviral agents aimed at cccDNA elimination or silencing have been developed, integrated HBV DNA remains a difficult therapeutic challenge.
Collapse
|
158
|
Sense-oriented AluYRa1 elements provide a lineage-specific transcription environment for polyadenylation. Sci Rep 2021; 11:3665. [PMID: 33574427 PMCID: PMC7878741 DOI: 10.1038/s41598-021-83360-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/29/2021] [Indexed: 11/08/2022] Open
Abstract
Transposable elements cause alternative splicing (AS) in different ways, contributing to transcript diversification. Alternative polyadenylation (APA), one of the AS events, is related to the generation of mRNA isoforms in 70% of human genes. In this study, we tried to investigate AluYRa1s located at the terminal region of cynomolgus monkey genes, utilizing both computational analysis and molecular experimentation. We found that ten genes had AluYRa1 at their 3' end, and nine of these AluYRa1s were sense-oriented. Furthermore, in seven genes, AluYRa1s were expected to have a similar consensus sequence for polyadenylation cleavage. Additional computational analysis using the annotation files from the UCSC database showed that AluYRa1 was more involved in polyadenylation than in open reading frame exon splicing. To examine the extent of AluYRa1 involvement in polyadenylation, RNA-seq data from 30 normal cynomolgus monkeys were analyzed using TAPAS, a recently devised software that detects all the promising polyadenylation sites including APA sites. We observed that approximately 74% of possible polyadenylation sites in the analyzed genes were provided by sense-oriented AluYRa1. In conclusion, AluYRa1 is an Old-World monkey-specific TE, and its sense-oriented insertion at the 3'UTR region tends to provide a favorable environment for polyadenylation, diversifying gene transcripts.
Collapse
|
159
|
Fukuda S, Varshney A, Fowler BJ, Wang SB, Narendran S, Ambati K, Yasuma T, Magagnoli J, Leung H, Hirahara S, Nagasaka Y, Yasuma R, Apicella I, Pereira F, Makin RD, Magner E, Liu X, Sun J, Wang M, Baker K, Marion KM, Huang X, Baghdasaryan E, Ambati M, Ambati VL, Pandey A, Pandya L, Cummings T, Banerjee D, Huang P, Yerramothu P, Tolstonog GV, Held U, Erwin JA, Paquola ACM, Herdy JR, Ogura Y, Terasaki H, Oshika T, Darwish S, Singh RK, Mozaffari S, Bhattarai D, Kim KB, Hardin JW, Bennett CL, Hinton DR, Hanson TE, Röver C, Parang K, Kerur N, Liu J, Werner BC, Sutton SS, Sadda SR, Schumann GG, Gelfand BD, Gage FH, Ambati J. Cytoplasmic synthesis of endogenous Alu complementary DNA via reverse transcription and implications in age-related macular degeneration. Proc Natl Acad Sci U S A 2021; 118:e2022751118. [PMID: 33526699 PMCID: PMC8017980 DOI: 10.1073/pnas.2022751118] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Alu retroelements propagate via retrotransposition by hijacking long interspersed nuclear element-1 (L1) reverse transcriptase (RT) and endonuclease activities. Reverse transcription of Alu RNA into complementary DNA (cDNA) is presumed to occur exclusively in the nucleus at the genomic integration site. Whether Alu cDNA is synthesized independently of genomic integration is unknown. Alu RNA promotes retinal pigmented epithelium (RPE) death in geographic atrophy, an untreatable type of age-related macular degeneration. We report that Alu RNA-induced RPE degeneration is mediated via cytoplasmic L1-reverse-transcribed Alu cDNA independently of retrotransposition. Alu RNA did not induce cDNA production or RPE degeneration in L1-inhibited animals or human cells. Alu reverse transcription can be initiated in the cytoplasm via self-priming of Alu RNA. In four health insurance databases, use of nucleoside RT inhibitors was associated with reduced risk of developing atrophic macular degeneration (pooled adjusted hazard ratio, 0.616; 95% confidence interval, 0.493-0.770), thus identifying inhibitors of this Alu replication cycle shunt as potential therapies for a major cause of blindness.
Collapse
Affiliation(s)
- Shinichi Fukuda
- Center for Advanced Vision Science, School of Medicine, University of Virginia, Charlottesville, VA 22908
- Department of Ophthalmology, School of Medicine, University of Virginia, Charlottesville, VA 22908
- Department of Ophthalmology, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Akhil Varshney
- Center for Advanced Vision Science, School of Medicine, University of Virginia, Charlottesville, VA 22908
- Department of Ophthalmology, School of Medicine, University of Virginia, Charlottesville, VA 22908
| | - Benjamin J Fowler
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, KY 40536
| | - Shao-Bin Wang
- Center for Advanced Vision Science, School of Medicine, University of Virginia, Charlottesville, VA 22908
- Department of Ophthalmology, School of Medicine, University of Virginia, Charlottesville, VA 22908
| | - Siddharth Narendran
- Center for Advanced Vision Science, School of Medicine, University of Virginia, Charlottesville, VA 22908
- Department of Ophthalmology, School of Medicine, University of Virginia, Charlottesville, VA 22908
- Aravind Eye Hospital System, Madurai 625020, India
| | - Kameshwari Ambati
- Center for Advanced Vision Science, School of Medicine, University of Virginia, Charlottesville, VA 22908
- Department of Ophthalmology, School of Medicine, University of Virginia, Charlottesville, VA 22908
| | - Tetsuhiro Yasuma
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, KY 40536
- Department of Ophthalmology, Graduate School of Medicine, Nagoya University, Nagoya 464-8601, Japan
| | - Joseph Magagnoli
- Dorn Research Institute, Columbia Veterans Affairs Health Care System, Columbia, SC 29209
- Department of Clinical Pharmacy and Outcomes Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208
| | - Hannah Leung
- Center for Advanced Vision Science, School of Medicine, University of Virginia, Charlottesville, VA 22908
- Department of Ophthalmology, School of Medicine, University of Virginia, Charlottesville, VA 22908
| | - Shuichiro Hirahara
- Center for Advanced Vision Science, School of Medicine, University of Virginia, Charlottesville, VA 22908
- Department of Ophthalmology, School of Medicine, University of Virginia, Charlottesville, VA 22908
- Department of Ophthalmology, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan
| | - Yosuke Nagasaka
- Center for Advanced Vision Science, School of Medicine, University of Virginia, Charlottesville, VA 22908
- Department of Ophthalmology, School of Medicine, University of Virginia, Charlottesville, VA 22908
| | - Reo Yasuma
- Center for Advanced Vision Science, School of Medicine, University of Virginia, Charlottesville, VA 22908
- Department of Ophthalmology, School of Medicine, University of Virginia, Charlottesville, VA 22908
- Department of Ophthalmology, Graduate School of Medicine, Nagoya University, Nagoya 464-8601, Japan
| | - Ivana Apicella
- Center for Advanced Vision Science, School of Medicine, University of Virginia, Charlottesville, VA 22908
- Department of Ophthalmology, School of Medicine, University of Virginia, Charlottesville, VA 22908
| | - Felipe Pereira
- Center for Advanced Vision Science, School of Medicine, University of Virginia, Charlottesville, VA 22908
- Department of Ophthalmology, School of Medicine, University of Virginia, Charlottesville, VA 22908
- Departamento de Oftalmologia e Ciências Visuais, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil
| | - Ryan D Makin
- Center for Advanced Vision Science, School of Medicine, University of Virginia, Charlottesville, VA 22908
- Department of Ophthalmology, School of Medicine, University of Virginia, Charlottesville, VA 22908
| | - Eamonn Magner
- Department of Computer Science, University of Kentucky, Lexington, KY 40536
| | - Xinan Liu
- Department of Computer Science, University of Kentucky, Lexington, KY 40536
| | - Jian Sun
- Center for Advanced Vision Science, School of Medicine, University of Virginia, Charlottesville, VA 22908
- Department of Ophthalmology, School of Medicine, University of Virginia, Charlottesville, VA 22908
| | - Mo Wang
- Doheny Eye Institute, Los Angeles, CA 90033
| | | | | | - Xiwen Huang
- Department of Computer Science, University of Kentucky, Lexington, KY 40536
| | - Elmira Baghdasaryan
- Doheny Eye Institute, Los Angeles, CA 90033
- Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Meenakshi Ambati
- Center for Advanced Vision Science, School of Medicine, University of Virginia, Charlottesville, VA 22908
- Department of Ophthalmology, School of Medicine, University of Virginia, Charlottesville, VA 22908
- Center for Digital Image Evaluation, Charlottesville, VA 22901
| | - Vidya L Ambati
- Center for Digital Image Evaluation, Charlottesville, VA 22901
| | - Akshat Pandey
- Center for Advanced Vision Science, School of Medicine, University of Virginia, Charlottesville, VA 22908
- Department of Ophthalmology, School of Medicine, University of Virginia, Charlottesville, VA 22908
| | - Lekha Pandya
- Center for Advanced Vision Science, School of Medicine, University of Virginia, Charlottesville, VA 22908
- Department of Ophthalmology, School of Medicine, University of Virginia, Charlottesville, VA 22908
| | - Tammy Cummings
- Dorn Research Institute, Columbia Veterans Affairs Health Care System, Columbia, SC 29209
- Department of Clinical Pharmacy and Outcomes Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208
| | - Daipayan Banerjee
- Center for Advanced Vision Science, School of Medicine, University of Virginia, Charlottesville, VA 22908
- Department of Ophthalmology, School of Medicine, University of Virginia, Charlottesville, VA 22908
| | - Peirong Huang
- Center for Advanced Vision Science, School of Medicine, University of Virginia, Charlottesville, VA 22908
- Department of Ophthalmology, School of Medicine, University of Virginia, Charlottesville, VA 22908
| | - Praveen Yerramothu
- Center for Advanced Vision Science, School of Medicine, University of Virginia, Charlottesville, VA 22908
- Department of Ophthalmology, School of Medicine, University of Virginia, Charlottesville, VA 22908
| | - Genrich V Tolstonog
- Department of Otolaryngology-Head and Neck Surgery, University Hospital of Lausanne, 1011 Lausanne, Switzerland
| | - Ulrike Held
- Department of Medical Biotechnology, Paul Ehrlich Institute, 63225 Langen, Germany
| | - Jennifer A Erwin
- The Lieber Institute for Brain Development, School of Medicine, Johns Hopkins University, Baltimore, MD 21205
| | - Apua C M Paquola
- The Lieber Institute for Brain Development, School of Medicine, Johns Hopkins University, Baltimore, MD 21205
| | - Joseph R Herdy
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA 92037
| | - Yuichiro Ogura
- Department of Ophthalmology, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan
| | - Hiroko Terasaki
- Department of Ophthalmology, Graduate School of Medicine, Nagoya University, Nagoya 464-8601, Japan
| | - Tetsuro Oshika
- Department of Ophthalmology, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Shaban Darwish
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA 92618
- Organometallic and Organometalloid Chemistry Department, National Research Centre, Giza 12622, Egypt
| | - Ramendra K Singh
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA 92618
| | - Saghar Mozaffari
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA 92618
| | - Deepak Bhattarai
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536
| | - Kyung Bo Kim
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536
| | - James W Hardin
- Dorn Research Institute, Columbia Veterans Affairs Health Care System, Columbia, SC 29209
- Department of Epidemiology and Biostatistics, University of South Carolina, Columbia, SC 29208
| | - Charles L Bennett
- Dorn Research Institute, Columbia Veterans Affairs Health Care System, Columbia, SC 29209
- Department of Clinical Pharmacy and Outcomes Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208
- Center for Medication Safety and Efficacy, College of Pharmacy, University of South Carolina, Columbia, SC 29208
| | - David R Hinton
- Department of Ophthalmology, University of Southern California Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| | - Timothy E Hanson
- Medtronic, Inc., Minneapolis, MN 55432
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN 55455
| | - Christian Röver
- Department of Medical Statistics, University Medical Center Göttingen, D-37073 Göttingen, Germany
| | - Keykavous Parang
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA 92618
| | - Nagaraj Kerur
- Center for Advanced Vision Science, School of Medicine, University of Virginia, Charlottesville, VA 22908
- Department of Ophthalmology, School of Medicine, University of Virginia, Charlottesville, VA 22908
- Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22908
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA 22908
| | - Jinze Liu
- Department of Computer Science, University of Kentucky, Lexington, KY 40536
| | - Brian C Werner
- Department of Orthopaedic Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22908
| | - S Scott Sutton
- Dorn Research Institute, Columbia Veterans Affairs Health Care System, Columbia, SC 29209
- Department of Clinical Pharmacy and Outcomes Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208
| | - Srinivas R Sadda
- Doheny Eye Institute, Los Angeles, CA 90033
- Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Gerald G Schumann
- Department of Medical Biotechnology, Paul Ehrlich Institute, 63225 Langen, Germany
| | - Bradley D Gelfand
- Center for Advanced Vision Science, School of Medicine, University of Virginia, Charlottesville, VA 22908
- Department of Ophthalmology, School of Medicine, University of Virginia, Charlottesville, VA 22908
- Department of Biomedical Engineering, School of Medicine, University of Virginia, Charlottesville, VA 22908
| | - Fred H Gage
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA 92037;
| | - Jayakrishna Ambati
- Center for Advanced Vision Science, School of Medicine, University of Virginia, Charlottesville, VA 22908;
- Department of Ophthalmology, School of Medicine, University of Virginia, Charlottesville, VA 22908
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA 22908
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA 22908
| |
Collapse
|
160
|
Ali A, Han K, Liang P. Role of Transposable Elements in Gene Regulation in the Human Genome. Life (Basel) 2021; 11:118. [PMID: 33557056 PMCID: PMC7913837 DOI: 10.3390/life11020118] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 01/28/2021] [Accepted: 02/02/2021] [Indexed: 02/07/2023] Open
Abstract
Transposable elements (TEs), also known as mobile elements (MEs), are interspersed repeats that constitute a major fraction of the genomes of higher organisms. As one of their important functional impacts on gene function and genome evolution, TEs participate in regulating the expression of genes nearby and even far away at transcriptional and post-transcriptional levels. There are two known principal ways by which TEs regulate the expression of genes. First, TEs provide cis-regulatory sequences in the genome with their intrinsic regulatory properties for their own expression, making them potential factors for regulating the expression of the host genes. TE-derived cis-regulatory sites are found in promoter and enhancer elements, providing binding sites for a wide range of trans-acting factors. Second, TEs encode for regulatory RNAs with their sequences showed to be present in a substantial fraction of miRNAs and long non-coding RNAs (lncRNAs), indicating the TE origin of these RNAs. Furthermore, TEs sequences were found to be critical for regulatory functions of these RNAs, including binding to the target mRNA. TEs thus provide crucial regulatory roles by being part of cis-regulatory and regulatory RNA sequences. Moreover, both TE-derived cis-regulatory sequences and TE-derived regulatory RNAs have been implicated in providing evolutionary novelty to gene regulation. These TE-derived regulatory mechanisms also tend to function in a tissue-specific fashion. In this review, we aim to comprehensively cover the studies regarding these two aspects of TE-mediated gene regulation, mainly focusing on the mechanisms, contribution of different types of TEs, differential roles among tissue types, and lineage-specificity, based on data mostly in humans.
Collapse
Affiliation(s)
- Arsala Ali
- Department of Biological Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada;
| | - Kyudong Han
- Department of Microbiology, Dankook University, Cheonan 31116, Korea;
- Center for Bio-Medical Engineering Core Facility, Dankook University, Cheonan 31116, Korea
| | - Ping Liang
- Department of Biological Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada;
- Centre of Biotechnologies, Brock University, St. Catharines, ON L2S 3A1, Canada
| |
Collapse
|
161
|
Adonin L, Drozdov A, Barlev NA. Sea Urchin as a Universal Model for Studies of Gene Networks. Front Genet 2021; 11:627259. [PMID: 33552139 PMCID: PMC7854572 DOI: 10.3389/fgene.2020.627259] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 12/10/2020] [Indexed: 01/06/2023] Open
Abstract
The purple sea urchin Strongylocentrotus purpuratus has been used for over 150 years as a model organism in developmental biology. Using this model species, scientists have been able to describe, in detail, the mechanisms of cell cycle control and cell adhesion, fertilization, calcium signaling, cell differentiation, and death. Massive parallel sequencing of the sea urchin genome enabled the deciphering of the main components of gene regulatory networks during the activation of embryonic signaling pathways. This knowledge helped to extrapolate aberrations in somatic cells that may lead to diseases, including cancer in humans. Furthermore, since many, if not all, developmental signaling pathways were shown to be controlled by non-coding RNAs (ncRNAs), the sea urchin organism represents an attractive experimental model. In this review, we discuss the main discoveries in the genetics, genomics, and transcriptomics of sea urchins during embryogenesis with the main focus on the role of ncRNAs. This information may be useful for comparative studies between different organisms, and may help identify new regulatory networks controlled by ncRNAs.
Collapse
Affiliation(s)
- Leonid Adonin
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia.,Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, Tyumen, Russia.,Orekhovich Institute of Biomedical Chemistry, Moscow, Russia
| | - Anatoliy Drozdov
- Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Nickolai A Barlev
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia.,Orekhovich Institute of Biomedical Chemistry, Moscow, Russia.,Institute of Cytology, Russian Academy of Sciences, Saint-Petersburg, Russia
| |
Collapse
|
162
|
Qian Y, Li L, Sun Z, Liu J, Yuan W, Wang Z. A multi-omics view of the complex mechanism of vascular calcification. Biomed Pharmacother 2021; 135:111192. [PMID: 33401220 DOI: 10.1016/j.biopha.2020.111192] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 12/19/2020] [Accepted: 12/26/2020] [Indexed: 02/07/2023] Open
Abstract
Vascular calcification is a high incidence and high risk disease with increasing morbidity and high mortality, which is considered the consequence of smooth muscle cell transdifferentiation initiating the mechanism of accumulation of hydroxyl calcium phosphate. Vascular calcification is also thought to be strongly associated with poor outcomes in diabetes and chronic kidney disease. Numerous studies have been accomplished; however, the specific mechanism of the disease remains unclear. Development of the genome project enhanced the understanding of life science and has entered the post-genomic era resulting in a variety of omics techniques used in studies and a large amount of available data; thus, a new perspective on data analysis has been revealed. Omics has a broader perspective and is thus advantageous over a single pathway analysis in the study of complex vascular calcification mechanisms. This paper reviews in detail various omics studies including genomics, proteomics, transcriptomics, metabolomics and multiple group studies on vascular calcification. Advances and deficiencies in the use of omics to study vascular calcification are presented in a comprehensive view. We also review the methodology of the omics studies and omics data analysis and processing. In addition, the methodology and data processing presented here can be applied to other areas. An omics landscape perspective across the boundaries between genomics, transcriptomics, proteomics and metabolomics is used to examine the mechanisms of vascular calcification. The perspective combined with various technologies also provides a direction for the subsequent exploration of clinical significance.
Collapse
Affiliation(s)
- Yongjiang Qian
- Department of Cardiology, Affiliated Hospital of Jiangsu University, 212000, Zhenjiang, China
| | - Lihua Li
- Department of Pathology, Affiliated Hospital of Jiangsu University, 212000, Zhenjiang, China
| | - Zhen Sun
- Department of Cardiology, Affiliated Hospital of Jiangsu University, 212000, Zhenjiang, China
| | - Jia Liu
- Department of Cardiology, Affiliated Hospital of Jiangsu University, 212000, Zhenjiang, China
| | - Wei Yuan
- Department of Cardiology, Affiliated Hospital of Jiangsu University, 212000, Zhenjiang, China
| | - Zhongqun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, 212000, Zhenjiang, China.
| |
Collapse
|
163
|
Komkov AY, Urazbakhtin SZ, Saliutina MV, Komech EA, Shelygin YA, Nugmanov GA, Shubin VP, Smirnova AO, Bobrov MY, Tsukanov AS, Snezhkina AV, Kudryavtseva AV, Lebedev YB, Mamedov IZ. SeqURE - a new copy-capture based method for sequencing of unknown Retroposition events. Mob DNA 2020; 11:33. [PMID: 33317630 PMCID: PMC7734759 DOI: 10.1186/s13100-020-00228-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/01/2020] [Indexed: 11/24/2022] Open
Abstract
Background Retroelements (REs) occupy a significant part of all eukaryotic genomes including humans. The majority of retroelements in the human genome are inactive and unable to retrotranspose. Dozens of active copies are repressed in most normal tissues by various cellular mechanisms. These copies can become active in normal germline and brain tissues or in cancer, leading to new retroposition events. The consequences of such events and their role in normal cell functioning and carcinogenesis are not yet fully understood. If new insertions occur in a small portion of cells they can be found only with the use of specific methods based on RE enrichment and high-throughput sequencing. The downside of the high sensitivity of such methods is the presence of various artifacts imitating real insertions, which in many cases cannot be validated due to lack of the initial template DNA. For this reason, adequate assessment of rare (< 1%) subclonal cancer specific RE insertions is complicated. Results Here we describe a new copy-capture technique which we implemented in a method called SeqURE for Sequencing Unknown of Retroposition Events that allows for efficient and reliable identification of new genomic RE insertions. The method is based on the capture of copies of target molecules (copy-capture), selective amplification and sequencing of genomic regions adjacent to active RE insertions from both sides. Importantly, the template genomic DNA remains intact and can be used for validation experiments. In addition, we applied a novel system for testing method sensitivity and precisely showed the ability of the developed method to reliably detect insertions present in 1 out of 100 cells and a substantial portion of insertions present in 1 out of 1000 cells. Using advantages of the method we showed the absence of somatic Alu insertions in colorectal cancer samples bearing tumor-specific L1HS insertions. Conclusions This study presents the first description and implementation of the copy-capture technique and provides the first methodological basis for the quantitative assessment of RE insertions present in a small portion of cells. Supplementary Information The online version contains supplementary material available at 10.1186/s13100-020-00228-6.
Collapse
Affiliation(s)
- Alexander Y Komkov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia. .,Dmitry Rogachev National Medical and Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia.
| | | | - Maria V Saliutina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | | | - Yuri A Shelygin
- Ryzhikh National Medical Research Centre for Coloproctology of the Ministry of Health of Russia, Moscow, Russia
| | - Gaiaz A Nugmanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Vitaliy P Shubin
- Ryzhikh National Medical Research Centre for Coloproctology of the Ministry of Health of Russia, Moscow, Russia
| | | | - Mikhail Y Bobrov
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia
| | - Alexey S Tsukanov
- Ryzhikh National Medical Research Centre for Coloproctology of the Ministry of Health of Russia, Moscow, Russia
| | - Anastasia V Snezhkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Anna V Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Yuri B Lebedev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Ilgar Z Mamedov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia. .,Dmitry Rogachev National Medical and Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia. .,V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia. .,Central European Institute of Technology, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
164
|
Zhang L, Richards A, Khalil A, Wogram E, Ma H, Young RA, Jaenisch R. SARS-CoV-2 RNA reverse-transcribed and integrated into the human genome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 33330870 DOI: 10.1101/2020.12.12.422516] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Prolonged SARS-CoV-2 RNA shedding and recurrence of PCR-positive tests have been widely reported in patients after recovery, yet these patients most commonly are non-infectious. Here we investigated the possibility that SARS-CoV-2 RNAs can be reverse-transcribed and integrated into the human genome and that transcription of the integrated sequences might account for PCR-positive tests. In support of this hypothesis, we found chimeric transcripts consisting of viral fused to cellular sequences in published data sets of SARS-CoV-2 infected cultured cells and primary cells of patients, consistent with the transcription of viral sequences integrated into the genome. To experimentally corroborate the possibility of viral retro-integration, we describe evidence that SARS-CoV-2 RNAs can be reverse transcribed in human cells by reverse transcriptase (RT) from LINE-1 elements or by HIV-1 RT, and that these DNA sequences can be integrated into the cell genome and subsequently be transcribed. Human endogenous LINE-1 expression was induced upon SARS-CoV-2 infection or by cytokine exposure in cultured cells, suggesting a molecular mechanism for SARS-CoV-2 retro-integration in patients. This novel feature of SARS-CoV-2 infection may explain why patients can continue to produce viral RNA after recovery and suggests a new aspect of RNA virus replication.
Collapse
|
165
|
Yamamoto G, Miyabe I, Tanaka K, Kakuta M, Watanabe M, Kawakami S, Ishida H, Akagi K. SVA retrotransposon insertion in exon of MMR genes results in aberrant RNA splicing and causes Lynch syndrome. Eur J Hum Genet 2020; 29:680-686. [PMID: 33293698 DOI: 10.1038/s41431-020-00779-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 10/30/2020] [Accepted: 11/17/2020] [Indexed: 11/10/2022] Open
Abstract
Lynch syndrome is an autosomal dominant hereditary cancer syndrome in which many cancers develop, the main one being colorectal cancer. Germline pathogenic variants in one of four mismatch repair (MMR) genes are known to be causative of this disease. Accurate diagnosis using genetic testing can greatly benefit the health of those affected. Recently, owing to the improvement of sequence techniques, complicated variants affecting the functions of MMR genes were discovered. In this study, we analyzed insertions of a retrotransposon-like sequence in exon 5 of the MSH6 gene and exon 3 of the MSH2 gene found in Japanese families suspected of having Lynch syndrome. Both of these insertions induced aberrant splicing, and these variants were successfully identified by mRNA sequencing or visual observation of mapping results, although a standard DNA-seq analysis pipeline failed to detect them. The insertion sequences were ~2.5 kbp in length and were found to have the structure of an SVA retrotransposon (SVA). One SVA sequence was not present in the hg19 or hg38 reference genome, but was in a Japanese-specific reference sequence (JRGv2). Our study illustrates the difficulties of identifying SVA insertions in disease genes, and that the possibility of polymorphic insertions should be considered when analyzing mobile elements.
Collapse
Affiliation(s)
- Gou Yamamoto
- Department of Molecular Diagnosis and Cancer Prevention, Saitama Cancer Center, 780 Komuro, Ina-machi, Kitaadachi-gun, Saitama, 362-0806, Japan
| | - Izumi Miyabe
- Department of Molecular Diagnosis and Cancer Prevention, Saitama Cancer Center, 780 Komuro, Ina-machi, Kitaadachi-gun, Saitama, 362-0806, Japan
| | - Keisuke Tanaka
- Department of Molecular Diagnosis and Cancer Prevention, Saitama Cancer Center, 780 Komuro, Ina-machi, Kitaadachi-gun, Saitama, 362-0806, Japan
| | - Miho Kakuta
- Department of Molecular Diagnosis and Cancer Prevention, Saitama Cancer Center, 780 Komuro, Ina-machi, Kitaadachi-gun, Saitama, 362-0806, Japan
| | - Motoko Watanabe
- Department of Clinical Genetics, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Satoru Kawakami
- Department of Urology, Saitama Medical Center, Saitama Medical University, Kawagoe, Saitama, Japan
| | - Hideyuki Ishida
- Department of Digestive Tract and General Surgery, Saitama Medical Center, Saitama Medical University, Kawagoe, Saitama, Japan
| | - Kiwamu Akagi
- Department of Molecular Diagnosis and Cancer Prevention, Saitama Cancer Center, 780 Komuro, Ina-machi, Kitaadachi-gun, Saitama, 362-0806, Japan.
| |
Collapse
|
166
|
Savage AL, Lopez AI, Iacoangeli A, Bubb VJ, Smith B, Troakes C, Alahmady N, Koks S, Schumann GG, Al-Chalabi A, Quinn JP. Frequency and methylation status of selected retrotransposition competent L1 loci in amyotrophic lateral sclerosis. Mol Brain 2020; 13:154. [PMID: 33187550 PMCID: PMC7666467 DOI: 10.1186/s13041-020-00694-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/03/2020] [Indexed: 12/11/2022] Open
Abstract
Long interspersed element-1 (LINE-1/L1) is the only autonomous transposable element in the human genome that currently mobilises in both germline and somatic tissues. Recent studies have identified correlations between altered retrotransposon expression and the fatal neurodegenerative disease amyotrophic lateral sclerosis (ALS) in a subset of patients. The risk of an individual developing ALS is dependent on an interaction of genetic variants and subsequent modifiers during life. These modifiers could include environmental factors, which can lead to epigenetic and genomic changes, such as somatic mutations, occurring in the neuronal cells that degenerate as the disease develops. There are more than 1 million L1 copies in the human genome today, but only 80-100 L1 loci in the reference genome are considered to be retrotransposition-competent (RC) and an even smaller number of these RC-L1s loci are highly active. We hypothesise that RC-L1s could affect normal cellular function through their mutagenic potential conferred by their ability to retrotranspose in neuronal cells and through DNA damage caused by the endonuclease activity of the L1-encoded ORF2 protein. To investigate whether either an increase in the genomic burden of RC-L1s or epigenetic changes to RC-L1s altering their expression, could play a role in disease development, we chose a set of seven well characterised genomic RC-L1 loci that were reported earlier to be highly active in a cellular L1 retrotransposition reporter assay or serve as major source elements for germline and/or somatic retrotransposition events. Analysis of the insertion allele frequency of five polymorphic RC-L1s, out of the set of seven, for their presence or absence, did not identify an increased number individually or when combined in individuals with the disease. However, we did identify reduced levels of methylation of RC-L1s in the motor cortex of those individuals with both familial and sporadic ALS compared to control brains. The changes to the regulation of the loci encompassing these RC-L1s demonstrated tissue specificity and could be related to the disease process.
Collapse
Affiliation(s)
- Abigail L Savage
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Ana Illera Lopez
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Alfredo Iacoangeli
- Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK
- Department of Biostatistics and Health Informatics, King's College London, London, UK
| | - Vivien J Bubb
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Bradley Smith
- Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK
| | - Claire Troakes
- London Neurodegenerative Diseases Brain Bank, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, UK
| | - Nada Alahmady
- Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK
- Department of Biology, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Sulev Koks
- Perron Institute for Neurological and Translational Science, Perth, WA, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia
| | - Gerald G Schumann
- Division of Medical Biotechnology, Paul-Ehrlich-Institut, Langen, Germany
| | - Ammar Al-Chalabi
- Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK
| | - John P Quinn
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.
| |
Collapse
|
167
|
Ewing AD, Smits N, Sanchez-Luque FJ, Faivre J, Brennan PM, Richardson SR, Cheetham SW, Faulkner GJ. Nanopore Sequencing Enables Comprehensive Transposable Element Epigenomic Profiling. Mol Cell 2020; 80:915-928.e5. [PMID: 33186547 DOI: 10.1016/j.molcel.2020.10.024] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 12/12/2022]
Abstract
Transposable elements (TEs) drive genome evolution and are a notable source of pathogenesis, including cancer. While CpG methylation regulates TE activity, the locus-specific methylation landscape of mobile human TEs has to date proven largely inaccessible. Here, we apply new computational tools and long-read nanopore sequencing to directly infer CpG methylation of novel and extant TE insertions in hippocampus, heart, and liver, as well as paired tumor and non-tumor liver. As opposed to an indiscriminate stochastic process, we find pronounced demethylation of young long interspersed element 1 (LINE-1) retrotransposons in cancer, often distinct to the adjacent genome and other TEs. SINE-VNTR-Alu (SVA) retrotransposons, including their internal tandem repeat-associated CpG island, are near-universally methylated. We encounter allele-specific TE methylation and demethylation of aberrantly expressed young LINE-1s in normal tissues. Finally, we recover the complete sequences of tumor-specific LINE-1 insertions and their retrotransposition hallmarks, demonstrating how long-read sequencing can simultaneously survey the epigenome and detect somatic TE mobilization.
Collapse
Affiliation(s)
- Adam D Ewing
- Mater Research Institute, University of Queensland, Woolloongabba, QLD 4102, Australia.
| | - Nathan Smits
- Mater Research Institute, University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Francisco J Sanchez-Luque
- GENYO, Pfizer-University of Granada-Andalusian Government Centre for Genomics and Oncological Research, PTS Granada 18016, Spain; MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine (IGMM), University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Jamila Faivre
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif 94800, France
| | - Paul M Brennan
- Translational Neurosurgery, Centre for Clinical Brain Sciences, Edinburgh EH16 4SB, UK
| | - Sandra R Richardson
- Mater Research Institute, University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Seth W Cheetham
- Mater Research Institute, University of Queensland, Woolloongabba, QLD 4102, Australia.
| | - Geoffrey J Faulkner
- Mater Research Institute, University of Queensland, Woolloongabba, QLD 4102, Australia; Queensland Brain Institute, University of Queensland, St. Lucia, QLD 4067, Australia.
| |
Collapse
|
168
|
Palazzo AF, Koonin EV. Functional Long Non-coding RNAs Evolve from Junk Transcripts. Cell 2020; 183:1151-1161. [PMID: 33068526 DOI: 10.1016/j.cell.2020.09.047] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/20/2020] [Accepted: 09/17/2020] [Indexed: 12/30/2022]
Abstract
Transcriptome studies reveal pervasive transcription of complex genomes, such as those of mammals. Despite popular arguments for functionality of most, if not all, of these transcripts, genome-wide analysis of selective constraints indicates that most of the produced RNA are junk. However, junk is not garbage. On the contrary, junk transcripts provide the raw material for the evolution of diverse long non-coding (lnc) RNAs by non-adaptive mechanisms, such as constructive neutral evolution. The generation of many novel functional entities, such as lncRNAs, that fuels organismal complexity does not seem to be driven by strong positive selection. Rather, the weak selection regime that dominates the evolution of most multicellular eukaryotes provides ample material for functional innovation with relatively little adaptation involved.
Collapse
Affiliation(s)
- Alexander F Palazzo
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1M1, Canada.
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| |
Collapse
|
169
|
Dueva R, Iliakis G. Replication protein A: a multifunctional protein with roles in DNA replication, repair and beyond. NAR Cancer 2020; 2:zcaa022. [PMID: 34316690 PMCID: PMC8210275 DOI: 10.1093/narcan/zcaa022] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/23/2020] [Accepted: 08/27/2020] [Indexed: 02/07/2023] Open
Abstract
Single-stranded DNA (ssDNA) forms continuously during DNA replication and is an important intermediate during recombination-mediated repair of damaged DNA. Replication protein A (RPA) is the major eukaryotic ssDNA-binding protein. As such, RPA protects the transiently formed ssDNA from nucleolytic degradation and serves as a physical platform for the recruitment of DNA damage response factors. Prominent and well-studied RPA-interacting partners are the tumor suppressor protein p53, the RAD51 recombinase and the ATR-interacting proteins ATRIP and ETAA1. RPA interactions are also documented with the helicases BLM, WRN and SMARCAL1/HARP, as well as the nucleotide excision repair proteins XPA, XPG and XPF–ERCC1. Besides its well-studied roles in DNA replication (restart) and repair, accumulating evidence shows that RPA is engaged in DNA activities in a broader biological context, including nucleosome assembly on nascent chromatin, regulation of gene expression, telomere maintenance and numerous other aspects of nucleic acid metabolism. In addition, novel RPA inhibitors show promising effects in cancer treatment, as single agents or in combination with chemotherapeutics. Since the biochemical properties of RPA and its roles in DNA repair have been extensively reviewed, here we focus on recent discoveries describing several non-canonical functions.
Collapse
Affiliation(s)
- Rositsa Dueva
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, 45122 Essen, Germany
| | - George Iliakis
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, 45122 Essen, Germany
| |
Collapse
|
170
|
Transposon expression in the Drosophila brain is driven by neighboring genes and diversifies the neural transcriptome. Genome Res 2020; 30:1559-1569. [PMID: 32973040 PMCID: PMC7605248 DOI: 10.1101/gr.259200.119] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 09/22/2020] [Indexed: 12/15/2022]
Abstract
Somatic transposon expression in neural tissue is commonly considered as a measure of mobilization and has therefore been linked to neuropathology and organismal individuality. We combined genome sequencing data with single-cell mRNA sequencing of the same inbred fly strain to map transposon expression in the Drosophila midbrain and found that transposon expression patterns are highly stereotyped. Every detected transposon is resident in at least one cellular gene with a matching expression pattern. Bulk RNA sequencing from fly heads of the same strain revealed that coexpression is a physical link in the form of abundant chimeric transposon-gene mRNAs. We identified 264 genes where transposons introduce cryptic splice sites into the nascent transcript and thereby significantly expand the neural transcript repertoire. Some genes exclusively produce chimeric mRNAs with transposon sequence; on average, 11.6% of the mRNAs produced from a given gene are chimeric. Conversely, most transposon-containing transcripts are chimeric, which suggests that somatic expression of these transposons is largely driven by cellular genes. We propose that chimeric mRNAs produced by alternative splicing into polymorphic transposons, rather than transposon mobilization, may contribute to functional differences between individual cells and animals.
Collapse
|
171
|
Ambati J, Magagnoli J, Leung H, Wang SB, Andrews CA, Fu D, Pandey A, Sahu S, Narendran S, Hirahara S, Fukuda S, Sun J, Pandya L, Ambati M, Pereira F, Varshney A, Cummings T, Hardin JW, Edun B, Bennett CL, Ambati K, Fowler BJ, Kerur N, Röver C, Leitinger N, Werner BC, Stein JD, Sutton SS, Gelfand BD. Repurposing anti-inflammasome NRTIs for improving insulin sensitivity and reducing type 2 diabetes development. Nat Commun 2020; 11:4737. [PMID: 32968070 PMCID: PMC7511405 DOI: 10.1038/s41467-020-18528-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 08/27/2020] [Indexed: 12/20/2022] Open
Abstract
Innate immune signaling through the NLRP3 inflammasome is activated by multiple diabetes-related stressors, but whether targeting the inflammasome is beneficial for diabetes is still unclear. Nucleoside reverse-transcriptase inhibitors (NRTI), drugs approved to treat HIV-1 and hepatitis B infections, also block inflammasome activation. Here, we show, by analyzing five health insurance databases, that the adjusted risk of incident diabetes is 33% lower in patients with NRTI exposure among 128,861 patients with HIV-1 or hepatitis B (adjusted hazard ratio for NRTI exposure, 0.673; 95% confidence interval, 0.638 to 0.710; P < 0.0001; 95% prediction interval, 0.618 to 0.734). Meanwhile, an NRTI, lamivudine, improves insulin sensitivity and reduces inflammasome activation in diabetic and insulin resistance-induced human cells, as well as in mice fed with high-fat chow; mechanistically, inflammasome-activating short interspersed nuclear element (SINE) transcripts are elevated, whereas SINE-catabolizing DICER1 is reduced, in diabetic cells and mice. These data suggest the possibility of repurposing an approved class of drugs for prevention of diabetes.
Collapse
Affiliation(s)
- Jayakrishna Ambati
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA.
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA.
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA, USA.
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, USA.
| | - Joseph Magagnoli
- Dorn Research Institute, Columbia VA Health Care System, Columbia, SC, USA
- Department of Clinical Pharmacy & Outcomes Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Hannah Leung
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Shao-Bin Wang
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Chris A Andrews
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, MI, USA
- Center for Eye Policy and Innovation, University of Michigan, Ann Arbor, MI, USA
| | - Dongxu Fu
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Akshat Pandey
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Srabani Sahu
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Siddharth Narendran
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Shuichiro Hirahara
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Shinichi Fukuda
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Tsukuba, Ibaraki, Japan
| | - Jian Sun
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Lekha Pandya
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Meenakshi Ambati
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Felipe Pereira
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Akhil Varshney
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Tammy Cummings
- Dorn Research Institute, Columbia VA Health Care System, Columbia, SC, USA
- Department of Clinical Pharmacy & Outcomes Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - James W Hardin
- Department of Epidemiology & Biostatistics, University of South Carolina, Columbia, SC, USA
| | - Babatunde Edun
- Dorn Research Institute, Columbia VA Health Care System, Columbia, SC, USA
- Department of Medicine, Baystate Medical Center, Springfield, MA, USA
| | - Charles L Bennett
- Dorn Research Institute, Columbia VA Health Care System, Columbia, SC, USA
- Department of Clinical Pharmacy & Outcomes Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
- Center for Medication Safety and Efficacy, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Kameshwari Ambati
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Benjamin J Fowler
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, KY, USA
| | - Nagaraj Kerur
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Christian Röver
- Department of Medical Statistics, University Medical Center Göttingen, Göttingen, Germany
| | - Norbert Leitinger
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Brian C Werner
- Department of Orthopaedics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Joshua D Stein
- Department of Clinical Pharmacy & Outcomes Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Health Management and Policy, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - S Scott Sutton
- Dorn Research Institute, Columbia VA Health Care System, Columbia, SC, USA
- Department of Clinical Pharmacy & Outcomes Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Bradley D Gelfand
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Biomedical Engineering, University of Virginia School of Medicine, Charlottesville, VA, USA
| |
Collapse
|
172
|
Abstract
Mosaicism refers to the occurrence of two or more genomes in an individual derived from a single zygote. Germline mosaicism is a mutation that is limited to the gonads and can be transmitted to offspring. Somatic mosaicism is a postzygotic mutation that occurs in the soma, and it may occur at any developmental stage or in adult tissues. Mosaic variation may be classified in six ways: (a) germline or somatic origin, (b) class of DNA mutation (ranging in scale from single base pairs to multiple chromosomes), (c) developmental context, (d) body location(s), (e) functional consequence (including deleterious, neutral, or advantageous), and (f) additional sources of mosaicism, including mitochondrial heteroplasmy, exogenous DNA sources such as vectors, and epigenetic changes such as imprinting and X-chromosome inactivation. Technological advances, including single-cell and other next-generation sequencing, have facilitated improved sensitivity and specificity to detect mosaicism in a variety of biological contexts.
Collapse
Affiliation(s)
- Jeremy Thorpe
- Department of Neurology, Kennedy Krieger Institute, Baltimore, Maryland 21205, USA; , .,Program in Biochemistry, Cellular, and Molecular Biology, Johns Hopkins School of Medicine, Baltimore, Maryland 21287, USA;
| | - Ikeoluwa A Osei-Owusu
- Department of Neurology, Kennedy Krieger Institute, Baltimore, Maryland 21205, USA; , .,Program in Human Genetics, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA;
| | | | - Rossella Tupler
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA.,Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy;
| | - Jonathan Pevsner
- Department of Neurology, Kennedy Krieger Institute, Baltimore, Maryland 21205, USA; , .,Program in Biochemistry, Cellular, and Molecular Biology, Johns Hopkins School of Medicine, Baltimore, Maryland 21287, USA; .,Program in Human Genetics, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA; .,Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
173
|
Shademan M, Zare K, Zahedi M, Mosannen Mozaffari H, Bagheri Hosseini H, Ghaffarzadegan K, Goshayeshi L, Dehghani H. Promoter methylation, transcription, and retrotransposition of LINE-1 in colorectal adenomas and adenocarcinomas. Cancer Cell Int 2020; 20:426. [PMID: 32905102 PMCID: PMC7466817 DOI: 10.1186/s12935-020-01511-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/21/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The methylation of the CpG islands of the LINE-1 promoter is a tight control mechanism on the function of mobile elements. However, simultaneous quantification of promoter methylation and transcription of LINE-1 has not been performed in progressive stages of colorectal cancer. In addition, the insertion of mobile elements in the genome of advanced adenoma stage, a precancerous stage before colorectal carcinoma has not been emphasized. In this study, we quantify promoter methylation and transcripts of LINE-1 in three stages of colorectal non-advanced adenoma, advanced adenoma, and adenocarcinoma. In addition, we analyze the insertion of LINE-1, Alu, and SVA elements in the genome of patient tumors with colorectal advanced adenomas. METHODS LINE-1 hypomethylation status was evaluated by absolute quantitative analysis of methylated alleles (AQAMA) assay. To quantify the level of transcripts for LINE-1, quantitative RT-PCR was performed. To find mobile element insertions, the advanced adenoma tissue samples were subjected to whole genome sequencing and MELT analysis. RESULTS We found that the LINE-1 promoter methylation in advanced adenoma and adenocarcinoma was significantly lower than that in non-advanced adenomas. Accordingly, the copy number of LINE-1 transcripts in advanced adenoma was significantly higher than that in non-advanced adenomas, and in adenocarcinomas was significantly higher than that in the advanced adenomas. Whole-genome sequencing analysis of colorectal advanced adenomas revealed that at this stage polymorphic insertions of LINE-1, Alu, and SVA comprise approximately 16%, 51%, and 74% of total insertions, respectively. CONCLUSIONS Our correlative analysis showing a decreased methylation of LINE-1 promoter accompanied by the higher level of LINE-1 transcription, and polymorphic genomic insertions in advanced adenoma, suggests that the early and advanced polyp stages may host very important pathogenic processes concluding to cancer.
Collapse
Affiliation(s)
- Milad Shademan
- Graduate Program in Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Khadijeh Zare
- Stem Cell Biology and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Azadi Square, Mashhad, 91779-48974 Iran
| | - Morteza Zahedi
- Graduate Program in Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hooman Mosannen Mozaffari
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Gastroenterology and Hepatology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hadi Bagheri Hosseini
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Gastroenterology and Hepatology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kamran Ghaffarzadegan
- Pathology Department, Education and Research Department, Razavi Hospital, Mashhad, Iran
| | - Ladan Goshayeshi
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hesam Dehghani
- Stem Cell Biology and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Azadi Square, Mashhad, 91779-48974 Iran
- Division of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
- Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
174
|
Deuitch N, Li ST, Courtney E, Shaw T, Dent R, Tan V, Yackowski L, Torene R, Berkofsky-Fessler W, Ngeow J. Early-onset breast cancer in a woman with a germline mobile element insertion resulting in BRCA2 disruption: a case report. Hum Genome Var 2020; 7:24. [PMID: 32884827 PMCID: PMC7447638 DOI: 10.1038/s41439-020-00111-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/03/2020] [Accepted: 08/03/2020] [Indexed: 11/24/2022] Open
Abstract
Mobile element insertions (MEIs) contribute to genomic diversity, but they can be responsible for human disease in some cases. Initial clinical testing (BRCA1, BRCA2 and PALB2) in a 40-year-old female with unilateral breast cancer did not detect any pathogenic variants. Subsequent reanalysis for MEIs detected a novel likely pathogenic insertion of the retrotransposon element (RE) c.7894_7895insSVA in BRCA2. This case highlights the importance of bioinformatic pipeline optimization for the detection of MEIs in genes associated with hereditary cancer, as early detection can significantly impact clinical management.
Collapse
Affiliation(s)
- Natalie Deuitch
- Cancer Genetics Service, Division of Medical Oncology, National Cancer Centre, Singapore, Singapore
- Department of Genetics, Stanford University School of Medicine, Stanford, CA USA
| | - Shao-Tzu Li
- Cancer Genetics Service, Division of Medical Oncology, National Cancer Centre, Singapore, Singapore
| | - Eliza Courtney
- Cancer Genetics Service, Division of Medical Oncology, National Cancer Centre, Singapore, Singapore
| | - Tarryn Shaw
- Cancer Genetics Service, Division of Medical Oncology, National Cancer Centre, Singapore, Singapore
| | - Rebecca Dent
- Division of Medical Oncology, National Cancer Centre, Singapore, Singapore
| | - Veronique Tan
- Division of Breast Surgical Oncology, National Cancer Centre, Singapore, Singapore
| | | | | | | | - Joanne Ngeow
- Cancer Genetics Service, Division of Medical Oncology, National Cancer Centre, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
175
|
Barberet J, Barry F, Choux C, Guilleman M, Karoui S, Simonot R, Bruno C, Fauque P. What impact does oocyte vitrification have on epigenetics and gene expression? Clin Epigenetics 2020; 12:121. [PMID: 32778156 PMCID: PMC7418205 DOI: 10.1186/s13148-020-00911-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 07/21/2020] [Indexed: 02/07/2023] Open
Abstract
Children conceived by assisted reproductive technologies (ART) have a moderate risk for a number of adverse events and conditions. The question whether this additional risk is associated with specific procedures used in ART or whether it is related to the intrinsic biological factors associated with infertility remains unresolved. One of the main hypotheses is that laboratory procedures could have an effect on the epigenome of gametes and embryos. This suspicion is linked to the fact that ART procedures occur precisely during the period when there are major changes in the organization of the epigenome. Oocyte freezing protocols are generally considered safe; however, some evidence suggests that vitrification may be associated with modifications of the epigenetic marks. In this manuscript, after describing the main changes that occur during epigenetic reprogramming, we will provide current information regarding the impact of oocyte vitrification on epigenetic regulation and the consequences on gene expression, both in animals and humans. Overall, the literature suggests that epigenetic and transcriptomic profiles are sensitive to the stress induced by oocyte vitrification, and it also underlines the need to improve our knowledge in this field.
Collapse
Affiliation(s)
- Julie Barberet
- CHU Dijon Bourgogne, Laboratoire de Biologie de la Reproduction, CECOS, 14 rue Gaffarel, 21079 Dijon Cedex, France
| | - Fatima Barry
- CHU Dijon Bourgogne, Laboratoire de Biologie de la Reproduction, CECOS, 14 rue Gaffarel, 21079 Dijon Cedex, France
| | - Cécile Choux
- Gynécologie-Obstétrique, CHU Dijon Bourgogne, 14 rue Gaffarel, 21079 Dijon Cedex, France
| | - Magali Guilleman
- CHU Dijon Bourgogne, Laboratoire de Biologie de la Reproduction, CECOS, 14 rue Gaffarel, 21079 Dijon Cedex, France
| | - Sara Karoui
- CHU Dijon Bourgogne, Laboratoire de Biologie de la Reproduction, CECOS, 14 rue Gaffarel, 21079 Dijon Cedex, France
| | - Raymond Simonot
- CHU Dijon Bourgogne, Laboratoire de Biologie de la Reproduction, CECOS, 14 rue Gaffarel, 21079 Dijon Cedex, France
| | - Céline Bruno
- CHU Dijon Bourgogne, Laboratoire de Biologie de la Reproduction, CECOS, 14 rue Gaffarel, 21079 Dijon Cedex, France
| | - Patricia Fauque
- CHU Dijon Bourgogne, Laboratoire de Biologie de la Reproduction, CECOS, 14 rue Gaffarel, 21079 Dijon Cedex, France
| |
Collapse
|
176
|
Zhang X, Zhang R, Yu J. New Understanding of the Relevant Role of LINE-1 Retrotransposition in Human Disease and Immune Modulation. Front Cell Dev Biol 2020; 8:657. [PMID: 32850797 PMCID: PMC7426637 DOI: 10.3389/fcell.2020.00657] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/01/2020] [Indexed: 12/21/2022] Open
Abstract
Long interspersed nuclear element-1 (LINE-1) retrotransposition is a major hallmark of cancer accompanied by global chromosomal instability, genomic instability, and genetic heterogeneity and has become one indicator for the occurrence, development, and poor prognosis of many diseases. LINE-1 also modulates the immune system and affects the immune microenvironment in a variety of ways. Aberrant expression of LINE-1 retrotransposon can provide strong stimuli for an innate immune response, activate the immune system, and induce autoimmunity and inflammation. Therefore, inhibition the activity of LINE-1 has become a potential treatment strategy for various diseases. In this review, we discussed the components and regulatory mechanisms involved with LINE-1, its correlations with disease and immunity, and multiple inhibitors of LINE-1, providing a new understanding of LINE-1.
Collapse
Affiliation(s)
- Xiao Zhang
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Rui Zhang
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Jinpu Yu
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
177
|
|
178
|
Cao X, Zhang Y, Payer LM, Lords H, Steranka JP, Burns KH, Xing J. Polymorphic mobile element insertions contribute to gene expression and alternative splicing in human tissues. Genome Biol 2020; 21:185. [PMID: 32718348 PMCID: PMC7385971 DOI: 10.1186/s13059-020-02101-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Mobile elements are a major source of structural variants in the human genome, and some mobile elements can regulate gene expression and transcript splicing. However, the impact of polymorphic mobile element insertions (pMEIs) on gene expression and splicing in diverse human tissues has not been thoroughly studied. The multi-tissue gene expression and whole genome sequencing data generated by the Genotype-Tissue Expression (GTEx) project provide a great opportunity to systematically evaluate the role of pMEIs in regulating gene expression in human tissues. RESULTS Using the GTEx whole genome sequencing data, we identify 20,545 high-quality pMEIs from 639 individuals. Coupling pMEI genotypes with gene expression profiles, we identify pMEI-associated expression quantitative trait loci (eQTLs) and splicing quantitative trait loci (sQTLs) in 48 tissues. Using joint analyses of pMEIs and other genomic variants, pMEIs are predicted to be the potential causal variant for 3522 eQTLs and 3717 sQTLs. The pMEI-associated eQTLs and sQTLs show a high level of tissue specificity, and these pMEIs are enriched in the proximity of affected genes and in regulatory elements. Using reporter assays, we confirm that several pMEIs associated with eQTLs and sQTLs can alter gene expression levels and isoform proportions, respectively. CONCLUSION Overall, our study shows that pMEIs are associated with thousands of gene expression and splicing variations, indicating that pMEIs could have a significant role in regulating tissue-specific gene expression and transcript splicing. Detailed mechanisms for the role of pMEIs in gene regulation in different tissues will be an important direction for future studies.
Collapse
Affiliation(s)
- Xiaolong Cao
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Yeting Zhang
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
- Human Genetic Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Lindsay M Payer
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Hannah Lords
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Jared P Steranka
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Kathleen H Burns
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Jinchuan Xing
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA.
- Human Genetic Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA.
| |
Collapse
|
179
|
Abstract
Mobile genetic elements have significantly shaped our genomic landscape. LINE-1 retroelements are the only autonomously active elements left in the human genome. Since new insertions can have detrimental consequences, cells need to efficiently control LINE-1 retrotransposition. Here, we demonstrate that the intrinsic immune factor TRIM5α senses and restricts LINE-1 retroelements. Previously, rhesus TRIM5α has been shown to efficiently block HIV-1 replication, while human TRIM5α was found to be less active. Surprisingly, we found that both human and rhesus TRIM5α efficiently repress human LINE-1 retrotransposition. TRIM5α interacts with LINE-1 ribonucleoprotein complexes in the cytoplasm, which is essential for restriction. In line with its postulated role as pattern recognition receptor, we show that TRIM5α also induces innate immune signaling upon interaction with LINE-1 ribonucleoprotein complexes. The signaling events activate the transcription factors AP-1 and NF-κB, leading to the down-regulation of LINE-1 promoter activity. Together, our findings identify LINE-1 as important target of human TRIM5α, which restricts and senses LINE-1 via two distinct mechanisms. Our results corroborate TRIM5α as pattern recognition receptor and shed light on its previously undescribed activity against mobile genetic elements, such as LINE-1, to protect the integrity of our genome.
Collapse
|
180
|
Chen X, Li D. ERVcaller: identifying polymorphic endogenous retrovirus and other transposable element insertions using whole-genome sequencing data. Bioinformatics 2020; 35:3913-3922. [PMID: 30895294 DOI: 10.1093/bioinformatics/btz205] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 02/28/2019] [Accepted: 03/19/2019] [Indexed: 12/12/2022] Open
Abstract
MOTIVATION Approximately 8% of the human genome is derived from endogenous retroviruses (ERVs). In recent years, an increasing number of human diseases have been found to be associated with ERVs. However, it remains challenging to accurately detect the full spectrum of polymorphic (unfixed) ERVs using whole-genome sequencing (WGS) data. RESULTS We designed a new tool, ERVcaller, to detect and genotype transposable element (TE) insertions, including ERVs, in the human genome. We evaluated ERVcaller using both simulated and real benchmark WGS datasets. Compared to existing tools, ERVcaller consistently obtained both the highest sensitivity and precision for detecting simulated ERV and other TE insertions derived from real polymorphic TE sequences. For the WGS data from the 1000 Genomes Project, ERVcaller detected the largest number of TE insertions per sample based on consensus TE loci. By analyzing the experimentally verified TE insertions, ERVcaller had 94.0% TE detection sensitivity and 96.6% genotyping accuracy. Polymerase chain reaction and Sanger sequencing in a small sample set verified 86.7% of examined insertion statuses and 100% of examined genotypes. In conclusion, ERVcaller is capable of detecting and genotyping TE insertions using WGS data with both high sensitivity and precision. This tool can be applied broadly to other species. AVAILABILITY AND IMPLEMENTATION http://www.uvm.edu/genomics/software/ERVcaller.html. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Xun Chen
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT, USA
| | - Dawei Li
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT, USA.,Neuroscience, Behavior, and Health Initiative, University of Vermont, Burlington, VT, USA.,Department of Computer Science, University of Vermont, Burlington, VT, USA
| |
Collapse
|
181
|
Lanciano S, Cristofari G. Measuring and interpreting transposable element expression. Nat Rev Genet 2020; 21:721-736. [PMID: 32576954 DOI: 10.1038/s41576-020-0251-y] [Citation(s) in RCA: 168] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2020] [Indexed: 12/21/2022]
Abstract
Transposable elements (TEs) are insertional mutagens that contribute greatly to the plasticity of eukaryotic genomes, influencing the evolution and adaptation of species as well as physiology or disease in individuals. Measuring TE expression helps to understand not only when and where TE mobilization can occur but also how this process alters gene expression, chromatin accessibility or cellular signalling pathways. Although genome-wide gene expression assays such as RNA sequencing include transposon-derived transcripts, most computational analytical tools discard or misinterpret TE-derived reads. Emerging approaches are improving the identification of expressed TE loci and helping to discriminate TE transcripts that permit TE mobilization from chimeric gene-TE transcripts or pervasive transcription. Here we review the main challenges associated with the detection of TE expression, including mappability, insertional and internal sequence polymorphisms, and the diversity of the TE transcriptional landscape, as well as the different experimental and computational strategies to solve them.
Collapse
|
182
|
Lin KY, Wang WD, Lin CH, Rastegari E, Su YH, Chang YT, Liao YF, Chang YC, Pi H, Yu BY, Chen SH, Lin CY, Lu MY, Su TY, Tzou FY, Chan CC, Hsu HJ. Piwi reduction in the aged niche eliminates germline stem cells via Toll-GSK3 signaling. Nat Commun 2020; 11:3147. [PMID: 32561720 PMCID: PMC7305233 DOI: 10.1038/s41467-020-16858-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 05/30/2020] [Indexed: 12/13/2022] Open
Abstract
Transposons are known to participate in tissue aging, but their effects on aged stem cells remain unclear. Here, we report that in the Drosophila ovarian germline stem cell (GSC) niche, aging-related reductions in expression of Piwi (a transposon silencer) derepress retrotransposons and cause GSC loss. Suppression of Piwi expression in the young niche mimics the aged niche, causing retrotransposon depression and coincident activation of Toll-mediated signaling, which promotes Glycogen synthase kinase 3 activity to degrade β-catenin. Disruption of β-catenin-E-cadherin-mediated GSC anchorage then results in GSC loss. Knocking down gypsy (a highly active retrotransposon) or toll, or inhibiting reverse transcription in the piwi-deficient niche, suppresses GSK3 activity and β-catenin degradation, restoring GSC-niche attachment. This retrotransposon-mediated impairment of aged stem cell maintenance may have relevance in many tissues, and could represent a viable therapeutic target for aging-related tissue degeneration.
Collapse
Affiliation(s)
- Kun-Yang Lin
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei, 11529, Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, 40227, Taiwan
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Wen-Der Wang
- Department of BioAgricultural Sciences, National Chiayi University, Chiayi City, 60004, Taiwan
| | - Chi-Hung Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Elham Rastegari
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Yu-Han Su
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Yu-Tzu Chang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Yung-Feng Liao
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Yi-Chieh Chang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Haiwei Pi
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Bo-Yi Yu
- Institute of Information Science, Academia Sinica, Taipei, 11529, Taiwan
| | - Shu-Hwa Chen
- Institute of Information Science, Academia Sinica, Taipei, 11529, Taiwan
| | - Chung-Yen Lin
- Institute of Information Science, Academia Sinica, Taipei, 11529, Taiwan
| | - Mei-Yeh Lu
- Biodiversity Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Tsu-Yi Su
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, 10617, Taiwan
| | - Fei-Yang Tzou
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, 10617, Taiwan
| | - Chih-Chiang Chan
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, 10617, Taiwan
| | - Hwei-Jan Hsu
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei, 11529, Taiwan.
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan.
- Biotechnology Center, National Chung Hsing University, Taichung, 40227, Taiwan.
| |
Collapse
|
183
|
Hunter RG. Stress, Adaptation, and the Deep Genome: Why Transposons Matter. Integr Comp Biol 2020; 60:1495-1505. [DOI: 10.1093/icb/icaa050] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Synopsis
Stress is a common, if often unpredictable life event. It can be defined from an evolutionary perspective as a force an organism perceives it must adapt to. Thus stress is a useful tool to study adaptation and the adaptive capacity of organisms. The deep genome, long neglected as a pile of “junk” has emerged as a source of regulatory DNA and RNA as well as a potential stockpile of adaptive capacity at the organismal and species levels. Recent work on the regulation of transposable elements (TEs), the principle constituents of the deep genome, by stress has shown that these elements are responsive to host stress and other environmental cues. Further, we have shown that some are likely directly regulated by the glucocorticoid receptor (GR), one of the two major vertebrate stress steroid receptors in a fashion that appears adaptive. On the basis of this and other emerging evidence I argue that the deep genome may represent an adaptive toolkit for organisms to respond to their environments at both individual and evolutionary scales. This argues that genomes may be adapted for what Waddington called “trait adaptability” rather than being purely passive objects of natural selection and single nucleotide level mutation.
Collapse
Affiliation(s)
- Richard G Hunter
- Department of Psychology, University of Massachusetts Boston, 100 William T. Morrissey Blvd, Boston, MA 02125, USA
- Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| |
Collapse
|
184
|
Abstract
PIWI-interacting small RNAs (piRNAs) establish sequence-specific adaptive restriction of resident genomic parasites to guard genome integrity. In this issue of Cell, Yu, Koppetsch, et al. describe an innate piRNA-response that specifically fragments the viral RNA genome in the germline of recently invaded koalas. This first line of defense might ensure survival until adaptive immunity develops.
Collapse
Affiliation(s)
- Astrid D Haase
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Todd S Macfarlan
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
185
|
Yoshiji S, Iwasaki Y, Iwasaki K, Honjo S, Hirano K, Ono K, Yamazaki Y, Sasano H, Hamasaki A. Alu-Mediated MEN1 Gene Deletion and Loss of Heterozygosity in a Patient with Multiple Endocrine Neoplasia Type 1. J Endocr Soc 2020; 4:bvaa051. [PMID: 32715270 PMCID: PMC7371388 DOI: 10.1210/jendso/bvaa051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Indexed: 01/15/2023] Open
Abstract
Multiple endocrine neoplasia type 1 (MEN1) is an autosomal dominant disorder caused by mutations of the tumor suppressor gene MEN1. Most of the germline MEN1 gene mutations have been small mutations, and the whole gene deletion is rarely observed. In the present study, we revealed Alu retrotransposon-mediated de novo germline deletion of the whole MEN1 gene and somatic copy-neutral loss of heterozygosity (LOH) in a patient with MEN1. The patient is a 39-year-old woman who was referred to our department for the management of prolactinoma. She was also diagnosed with primary hyperparathyroidism and suspected of MEN1. Although nucleotide sequencing did not detect any MEN1 gene mutations, multiplex ligation-dependent probe amplification (MLPA) revealed a large germline deletion of the MEN1 gene. Subsequent quantitative polymerase chain reaction (qPCR)–based copy number mapping showed a monoallelic loss of approximately 18.5-kilobase region containing the whole MEN1 gene. Intriguingly, the 2 breakpoints were flanked by Alu repetitive elements, suggesting the contribution of Alu/Alu-mediated rearrangements (AAMR) to the whole MEN1 gene deletion. Furthermore, copy number mapping using MLPA and qPCR in combination with single nucleotide polymorphism analysis revealed copy-neutral LOH as a somatic event for parathyroid tumorigenesis. In conclusion, copy number mapping revealed a novel combination of Alu/Alu-mediated de novo germline deletion of the MEN1 gene and somatic copy-neutral LOH as a cytogenetic basis for the MEN1 pathogenesis. Moreover, subsequent in silico analysis highlighted the possible predisposition of the MEN1 gene to Alu retrotransposon-mediated genomic deletion.
Collapse
Affiliation(s)
- Satoshi Yoshiji
- Department of Diabetes and Endocrinology, Tazuke Kofukai Medical Research Institute, Kitano Hospital, Osaka, Japan
| | - Yorihiro Iwasaki
- Department of Diabetes and Endocrinology, Tazuke Kofukai Medical Research Institute, Kitano Hospital, Osaka, Japan
| | - Kanako Iwasaki
- Department of Diabetes and Endocrinology, Tazuke Kofukai Medical Research Institute, Kitano Hospital, Osaka, Japan
| | - Sachiko Honjo
- Department of Diabetes and Endocrinology, Tazuke Kofukai Medical Research Institute, Kitano Hospital, Osaka, Japan
| | - Koichi Hirano
- Department of Laboratory Medicine, Tazuke Kofukai Medical Research Institute, Kitano Hospital, Osaka, Japan
| | - Katsuhiko Ono
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Yuto Yamazaki
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Hironobu Sasano
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Akihiro Hamasaki
- Department of Diabetes and Endocrinology, Tazuke Kofukai Medical Research Institute, Kitano Hospital, Osaka, Japan
| |
Collapse
|
186
|
Hattori A, Fukami M. Established and Novel Mechanisms Leading to de novo Genomic Rearrangements in the Human Germline. Cytogenet Genome Res 2020; 160:167-176. [DOI: 10.1159/000507837] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 03/31/2020] [Indexed: 01/05/2023] Open
Abstract
During gametogenesis, the human genome can acquire various de novo rearrangements. Most constitutional genomic rearrangements are created through 1 of the 4 well-known mechanisms, i.e., nonallelic homologous recombination, erroneous repair after double-strand DNA breaks, replication errors, and retrotransposition. However, recent studies have identified 2 types of extremely complex rearrangements that cannot be simply explained by these mechanisms. The first type consists of chaotic structural changes in 1 or a few chromosomes that result from “chromoanagenesis (an umbrella term that covers chromothripsis, chromoanasynthesis, and chromoplexy).” The other type is large independent rearrangements in multiple chromosomes indicative of “transient multifocal genomic crisis.” Germline chromoanagenesis (chromothripsis) likely occurs predominantly during spermatogenesis or postzygotic embryogenesis, while multifocal genomic crisis appears to be limited to a specific time window during oogenesis and early embryogenesis or during spermatogenesis. This review article introduces the current understanding of the molecular basis of de novo rearrangements in the germline.
Collapse
|
187
|
Ueberham U, Arendt T. Genomic Indexing by Somatic Gene Recombination of mRNA/ncRNA - Does It Play a Role in Genomic Mosaicism, Memory Formation, and Alzheimer's Disease? Front Genet 2020; 11:370. [PMID: 32411177 PMCID: PMC7200996 DOI: 10.3389/fgene.2020.00370] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 03/25/2020] [Indexed: 12/26/2022] Open
Abstract
Recent evidence indicates that genomic individuality of neurons, characterized by DNA-content variation, is a common if not universal phenomenon in the human brain that occurs naturally but can also show aberrancies that have been linked to the pathomechanism of Alzheimer’s disease and related neurodegenerative disorders. Etiologically, this genomic mosaic has been suggested to arise from defects of cell cycle regulation that may occur either during brain development or in the mature brain after terminal differentiation of neurons. Here, we aim to draw attention towards another mechanism that can give rise to genomic individuality of neurons, with far-reaching consequences. This mechanism has its origin in the transcriptome rather than in replication defects of the genome, i.e., somatic gene recombination of RNA. We continue to develop the concept that somatic gene recombination of RNA provides a physiological process that, through integration of intronless mRNA/ncRNA into the genome, allows a particular functional state at the level of the individual neuron to be indexed. By insertion of defined RNAs in a somatic recombination process, the presence of specific mRNA transcripts within a definite temporal context can be “frozen” and can serve as an index that can be recalled at any later point in time. This allows information related to a specific neuronal state of differentiation and/or activity relevant to a memory trace to be fixed. We suggest that this process is used throughout the lifetime of each neuron and might have both advantageous and deleterious consequences.
Collapse
Affiliation(s)
- Uwe Ueberham
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | - Thomas Arendt
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| |
Collapse
|
188
|
Batista RL, Mendonca BB. Integrative and Analytical Review of the 5-Alpha-Reductase Type 2 Deficiency Worldwide. APPLICATION OF CLINICAL GENETICS 2020; 13:83-96. [PMID: 32346305 PMCID: PMC7167369 DOI: 10.2147/tacg.s198178] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/20/2020] [Indexed: 12/12/2022]
Abstract
Introduction The conversion of testosterone into dihydrotestosterone is catalyzed by the 5α-reductase type 2 enzyme which plays a crucial role in the external genitalia virilization. It is encoded by the SRD5A2 gene. Allelic variants in this gene cause a 46,XY DSD with no genotype-phenotype relationship. It was firstly reported in the early 70s from isolated clusters. Since then, several cases have been reported. Putting together, it will expand the knowledge on the molecular bases of androgen milieu. Methods We searched for SRD5A2 allelic variants (AV) in the literature (PubMed, Embase, MEDLINE) and websites (ensembl, HGMD, ClinVar). Only cases with AV in both alleles, either in homozygous or compound heterozygous were included. The included cases were analyzed according to ethnicity, exon, domain, aminoacid (aa) conservation, age at diagnosis, sex assignment, gender reassignment, external genitalia virilization and functional studies. External genitalia virilization was scored using Sinnecker scale. Conservation analysis was carried out using the CONSURF platform. For categorical variables, we used X2 test and Cramer's V. Continuous variables were analyzed by t test or ANOVA. Concordance was estimated by Kappa. Results We identified 434 cases of 5ARD2 deficiencies from 44 countries. Most came from Turkey (23%), China (17%), Italy (9%), and Brazil (7%). Sixty-nine percent were assigned as female. There were 70% of homozygous allelic variants and 30% compound heterozygous. Most were missense variants (76%). However, small indels (11%), splicing (5%) and large deletions (4%) were all reported. They were distributed along with all exons with exon 1 (33%) and exon 4 (25%) predominance. Allelic variants in the exon 4 (NADPH-binding domain) resulted in lower virilization (p<0.0001). The codons 55, 65, 196, 235 and 246 are hotspots making up 25% of all allelic variants. Most of them (76%) were located at conserved aa. However, allelic variants at non-conserved aa were more frequently indels (28% vs 6%; p<0.01). The overall rate of gender change from female to male ranged from 16% to 70%. The lowest rate of gender change from female to male occurred in Turkey and the highest in Brazil. External genitalia virilization was similar between those who changed and those who kept their assigned gender. The gender change rate was significantly different across the countries (V=0.44; p<0.001) even with similar virilization scores. Conclusion 5ARD2 deficiency has a worldwide distribution. Allelic variants at the NADPH-ligand region cause lower virilization. Genitalia virilization influenced sex assignment but not gender change which was influenced by cultural aspects across the countries. Molecular diagnosis influenced on sex assignment, favoring male sex assignment in newborns with 5α-reductase type 2 deficiency.
Collapse
Affiliation(s)
- Rafael Loch Batista
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Disciplina de Endocrinologia, do Departamento de Clínica Médica, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Berenice Bilharinho Mendonca
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Disciplina de Endocrinologia, do Departamento de Clínica Médica, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
189
|
Del Re B, Giorgi G. Long INterspersed element-1 mobility as a sensor of environmental stresses. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:465-493. [PMID: 32144842 DOI: 10.1002/em.22366] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 06/10/2023]
Abstract
Long INterspersed element (LINE-1, L1) retrotransposons are the most abundant transposable elements in the human genome, constituting approximately 17%. They move by a "copy-paste" mechanism, involving reverse transcription of an RNA intermediate and insertion of its cDNA copy at a new site in the genome. L1 retrotransposition (L1-RTP) can cause insertional mutations, alter gene expression, transduce exons, and induce epigenetic dysregulation. L1-RTP is generally repressed; however, a number of observations collected over about 15 years revealed that it can occur in response to environmental stresses. Moreover, emerging evidence indicates that L1-RTP can play a role in the onset of several neurological and oncological diseases in humans. In recent years, great attention has been paid to the exposome paradigm, which proposes that health effects of an environmental factor should be evaluated considering both cumulative environmental exposures and the endogenous processes resulting from the biological response. L1-RTP could be an endogenous process considered for this application. Here, we summarize the current understanding of environmental factors that can affect the retrotransposition of human L1 elements. Evidence indicates that L1-RTP alteration is triggered by numerous and various environmental stressors, such as chemical agents (heavy metals, carcinogens, oxidants, and drugs), physical agents (ionizing and non-ionizing radiations), and experiential factors (voluntary exercise, social isolation, maternal care, and environmental light/dark cycles). These data come from in vitro studies on cell lines and in vivo studies on transgenic animals: future investigations should be focused on physiologically relevant models to gain a better understanding of this topic.
Collapse
Affiliation(s)
- Brunella Del Re
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Gianfranco Giorgi
- Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
| |
Collapse
|
190
|
Goubert C, Zevallos NA, Feschotte C. Contribution of unfixed transposable element insertions to human regulatory variation. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190331. [PMID: 32075552 PMCID: PMC7061991 DOI: 10.1098/rstb.2019.0331] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2019] [Indexed: 12/11/2022] Open
Abstract
Thousands of unfixed transposable element (TE) insertions segregate in the human population, but little is known about their impact on genome function. Recently, a few studies associated unfixed TE insertions to mRNA levels of adjacent genes, but the biological significance of these associations, their replicability across cell types and the mechanisms by which they may regulate genes remain largely unknown. Here, we performed a TE-expression QTL analysis of 444 lymphoblastoid cell lines (LCL) and 289 induced pluripotent stem cells using a newly developed set of genotypes for 2743 polymorphic TE insertions. We identified 211 and 176 TE-eQTL acting in cis in each respective cell type. Approximately 18% were shared across cell types with strongly correlated effects. Furthermore, analysis of chromatin accessibility QTL in a subset of the LCL suggests that unfixed TEs often modulate the activity of enhancers and other distal regulatory DNA elements, which tend to lose accessibility when a TE inserts within them. We also document a case of an unfixed TE likely influencing gene expression at the post-transcriptional level. Our study points to broad and diverse cis-regulatory effects of unfixed TEs in the human population and underscores their plausible contribution to phenotypic variation. This article is part of a discussion meeting issue 'Crossroads between transposons and gene regulation'.
Collapse
Affiliation(s)
| | | | - Cédric Feschotte
- Department of Molecular Biology and Genetics, Cornell University, 526 Campus Road, Ithaca, NY 14853, USA
| |
Collapse
|
191
|
Zhou W, Emery SB, Flasch DA, Wang Y, Kwan KY, Kidd JM, Moran JV, Mills RE. Identification and characterization of occult human-specific LINE-1 insertions using long-read sequencing technology. Nucleic Acids Res 2020; 48:1146-1163. [PMID: 31853540 PMCID: PMC7026601 DOI: 10.1093/nar/gkz1173] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 11/14/2019] [Accepted: 12/05/2019] [Indexed: 11/13/2022] Open
Abstract
Long Interspersed Element-1 (LINE-1) retrotransposition contributes to inter- and intra-individual genetic variation and occasionally can lead to human genetic disorders. Various strategies have been developed to identify human-specific LINE-1 (L1Hs) insertions from short-read whole genome sequencing (WGS) data; however, they have limitations in detecting insertions in complex repetitive genomic regions. Here, we developed a computational tool (PALMER) and used it to identify 203 non-reference L1Hs insertions in the NA12878 benchmark genome. Using PacBio long-read sequencing data, we identified L1Hs insertions that were absent in previous short-read studies (90/203). Approximately 81% (73/90) of the L1Hs insertions reside within endogenous LINE-1 sequences in the reference assembly and the analysis of unique breakpoint junction sequences revealed 63% (57/90) of these L1Hs insertions could be genotyped in 1000 Genomes Project sequences. Moreover, we observed that amplification biases encountered in single-cell WGS experiments led to a wide variation in L1Hs insertion detection rates between four individual NA12878 cells; under-amplification limited detection to 32% (65/203) of insertions, whereas over-amplification increased false positive calls. In sum, these data indicate that L1Hs insertions are often missed using standard short-read sequencing approaches and long-read sequencing approaches can significantly improve the detection of L1Hs insertions present in individual genomes.
Collapse
Affiliation(s)
- Weichen Zhou
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, 100 Washtenaw Avenue, Ann Arbor, MI 48109, USA
| | - Sarah B Emery
- Department of Human Genetics, University of Michigan Medical School, 1241 East Catherine Street, Ann Arbor, MI 48109, USA
| | - Diane A Flasch
- Department of Human Genetics, University of Michigan Medical School, 1241 East Catherine Street, Ann Arbor, MI 48109, USA
| | - Yifan Wang
- Department of Human Genetics, University of Michigan Medical School, 1241 East Catherine Street, Ann Arbor, MI 48109, USA
| | - Kenneth Y Kwan
- Department of Human Genetics, University of Michigan Medical School, 1241 East Catherine Street, Ann Arbor, MI 48109, USA.,Molecular and Behavioral Neuroscience Institute, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA
| | - Jeffrey M Kidd
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, 100 Washtenaw Avenue, Ann Arbor, MI 48109, USA.,Department of Human Genetics, University of Michigan Medical School, 1241 East Catherine Street, Ann Arbor, MI 48109, USA
| | - John V Moran
- Department of Human Genetics, University of Michigan Medical School, 1241 East Catherine Street, Ann Arbor, MI 48109, USA.,Department of Internal Medicine, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Ryan E Mills
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, 100 Washtenaw Avenue, Ann Arbor, MI 48109, USA.,Department of Human Genetics, University of Michigan Medical School, 1241 East Catherine Street, Ann Arbor, MI 48109, USA
| |
Collapse
|
192
|
Rodriguez-Martin B, Alvarez EG, Baez-Ortega A, Zamora J, Supek F, Demeulemeester J, Santamarina M, Ju YS, Temes J, Garcia-Souto D, Detering H, Li Y, Rodriguez-Castro J, Dueso-Barroso A, Bruzos AL, Dentro SC, Blanco MG, Contino G, Ardeljan D, Tojo M, Roberts ND, Zumalave S, Edwards PA, Weischenfeldt J, Puiggròs M, Chong Z, Chen K, Lee EA, Wala JA, Raine KM, Butler A, Waszak SM, Navarro FCP, Schumacher SE, Monlong J, Maura F, Bolli N, Bourque G, Gerstein M, Park PJ, Wedge DC, Beroukhim R, Torrents D, Korbel JO, Martincorena I, Fitzgerald RC, Van Loo P, Kazazian HH, Burns KH, Campbell PJ, Tubio JMC. Pan-cancer analysis of whole genomes identifies driver rearrangements promoted by LINE-1 retrotransposition. Nat Genet 2020; 52:306-319. [PMID: 32024998 PMCID: PMC7058536 DOI: 10.1038/s41588-019-0562-0] [Citation(s) in RCA: 222] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 11/26/2019] [Indexed: 01/24/2023]
Abstract
About half of all cancers have somatic integrations of retrotransposons. Here, to characterize their role in oncogenesis, we analyzed the patterns and mechanisms of somatic retrotransposition in 2,954 cancer genomes from 38 histological cancer subtypes within the framework of the Pan-Cancer Analysis of Whole Genomes (PCAWG) project. We identified 19,166 somatically acquired retrotransposition events, which affected 35% of samples and spanned a range of event types. Long interspersed nuclear element (LINE-1; L1 hereafter) insertions emerged as the first most frequent type of somatic structural variation in esophageal adenocarcinoma, and the second most frequent in head-and-neck and colorectal cancers. Aberrant L1 integrations can delete megabase-scale regions of a chromosome, which sometimes leads to the removal of tumor-suppressor genes, and can induce complex translocations and large-scale duplications. Somatic retrotranspositions can also initiate breakage-fusion-bridge cycles, leading to high-level amplification of oncogenes. These observations illuminate a relevant role of L1 retrotransposition in remodeling the cancer genome, with potential implications for the development of human tumors.
Collapse
Affiliation(s)
- Bernardo Rodriguez-Martin
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Biomedical Research Centre (CINBIO), University of Vigo, Vigo, Spain
- Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Eva G Alvarez
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Biomedical Research Centre (CINBIO), University of Vigo, Vigo, Spain
- Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Adrian Baez-Ortega
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Jorge Zamora
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- The Biomedical Research Centre (CINBIO), Universidade de Vigo, Vigo, Spain
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Fran Supek
- Genome Data Science, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Jonas Demeulemeester
- The Francis Crick Institute, London, UK
- Department of Human Genetics, University of Leuven, Leuven, Belgium
| | - Martin Santamarina
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Biomedical Research Centre (CINBIO), University of Vigo, Vigo, Spain
- Genomes and Disease, Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Young Seok Ju
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- Cancer Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Cambridge, UK
| | - Javier Temes
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Daniel Garcia-Souto
- Genomes and Disease, Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Harald Detering
- Biomedical Research Centre (CINBIO), University of Vigo, Vigo, Spain
- Department of Biochemistry, Genetics and Immunology, University of Vigo, Vigo, Spain
- Galicia Sur Health Research Institute, Vigo, Spain
| | - Yilong Li
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Jorge Rodriguez-Castro
- Genomes and Disease, Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Ana Dueso-Barroso
- Faculty of Science and Technology, University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | - Alicia L Bruzos
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Biomedical Research Centre (CINBIO), University of Vigo, Vigo, Spain
- Genomes and Disease, Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Stefan C Dentro
- The Francis Crick Institute, London, UK
- Experimental Cancer Genetics, Wellcome Sanger Institute, Cambridge, UK
- Oxford Big Data Institute, University of Oxford, Oxford, UK
| | - Miguel G Blanco
- DNA Repair and Genome Integrity, Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Department of Biochemistry and Molecular Biology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Gianmarco Contino
- Medical Research Council (MRC) Cancer Unit, University of Cambridge, Cambridge, UK
| | - Daniel Ardeljan
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Baltimore, MD, USA
| | - Marta Tojo
- The Biomedical Research Centre (CINBIO), Universidade de Vigo, Vigo, Spain
- Department of Biochemistry, Genetics and Immunology, University of Vigo, Vigo, Spain
| | - Nicola D Roberts
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Sonia Zumalave
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Genomes and Disease, Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Paul A Edwards
- University of Cambridge, Cambridge, UK
- Li Ka Shing Centre, Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Joachim Weischenfeldt
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
- Finsen Laboratory and Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- Department of Urology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | | | - Zechen Chong
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Genetics and Informatics Institute, University of Alabama at Birmingham (UAB) School of Medicine, Birmingham, AL, USA
| | - Ken Chen
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Eunjung Alice Lee
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jeremiah A Wala
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Keiran M Raine
- Cancer Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Cambridge, UK
| | - Adam Butler
- Cancer Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Cambridge, UK
| | - Sebastian M Waszak
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Fabio C P Navarro
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Department of Computer Science, Yale University, New Haven, CT, USA
| | - Steven E Schumacher
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jean Monlong
- Department of Human Genetics, McGill University, Montreal, Québec, Canada
| | - Francesco Maura
- Cancer Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Cambridge, UK
- Department of Oncology and Onco-Hematology, University of Milan, Milan, Italy
- Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Niccolo Bolli
- Department of Oncology and Onco-Hematology, University of Milan, Milan, Italy
- Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Guillaume Bourque
- Canadian Center for Computational Genomics, McGill University, Montreal, Quebec, Canada
| | - Mark Gerstein
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Department of Computer Science, Yale University, New Haven, CT, USA
| | - Peter J Park
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Ludwig Center at Harvard, Boston, MA, USA
| | - David C Wedge
- Cancer Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Cambridge, UK
- Experimental Cancer Genetics, Wellcome Sanger Institute, Cambridge, UK
- Oxford NIHR Biomedical Research Centre, Oxford, UK
| | - Rameen Beroukhim
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - David Torrents
- Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | - Jan O Korbel
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK
| | | | - Rebecca C Fitzgerald
- Medical Research Council (MRC) Cancer Unit, University of Cambridge, Cambridge, UK
| | - Peter Van Loo
- The Francis Crick Institute, London, UK
- Department of Human Genetics, University of Leuven, Leuven, Belgium
| | - Haig H Kazazian
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Baltimore, MD, USA
| | - Kathleen H Burns
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Baltimore, MD, USA
- McKusick-Nathans Institute of Genetic Medicine, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter J Campbell
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK.
- Department of Haematology, University of Cambridge, Cambridge, UK.
| | - Jose M C Tubio
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain.
- Biomedical Research Centre (CINBIO), University of Vigo, Vigo, Spain.
- Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain.
- Cancer Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Cambridge, UK.
| |
Collapse
|
193
|
Abstract
Since Barbara McClintock’s groundbreaking discovery of mobile DNA sequences some 70 years ago, transposable elements have come to be recognized as important mutagenic agents impacting genome composition, genome evolution, and human health. Transposable elements are a major constituent of prokaryotic and eukaryotic genomes, and the transposition mechanisms enabling transposon proliferation over evolutionary time remain engaging topics for study, suggesting complex interactions with the host, both antagonistic and mutualistic. The impact of transposition is profound, as over 100 human heritable diseases have been attributed to transposon insertions. Transposition can be highly mutagenic, perturbing genome integrity and gene expression in a wide range of organisms. This mutagenic potential has been exploited in the laboratory, where transposons have long been utilized for phenotypic screening and the generation of defined mutant libraries. More recently, barcoding applications and methods for RNA-directed transposition are being used towards new phenotypic screens and studies relevant for gene therapy. Thus, transposable elements are significant in affecting biology both
in vivo and in the laboratory, and this review will survey advances in understanding the biological role of transposons and relevant laboratory applications of these powerful molecular tools.
Collapse
Affiliation(s)
- Anuj Kumar
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.,Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
194
|
Loh JW, Ha H, Lin T, Sun N, Burns KH, Xing J. Integrated Mobile Element Scanning (ME-Scan) method for identifying multiple types of polymorphic mobile element insertions. Mob DNA 2020; 11:12. [PMID: 32110248 PMCID: PMC7035633 DOI: 10.1186/s13100-020-00207-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 02/14/2020] [Indexed: 01/29/2023] Open
Abstract
Background Mobile elements are ubiquitous components of mammalian genomes and constitute more than half of the human genome. Polymorphic mobile element insertions (pMEIs) are a major source of human genomic variation and are gaining research interest because of their involvement in gene expression regulation, genome integrity, and disease. Results Building on our previous Mobile Element Scanning (ME-Scan) protocols, we developed an integrated ME-Scan protocol to identify three major active families of human mobile elements, AluYb, L1HS, and SVA. This approach selectively amplifies insertion sites of currently active retrotransposons for Illumina sequencing. By pooling the libraries together, we can identify pMEIs from all three mobile element families in one sequencing run. To demonstrate the utility of the new ME-Scan protocol, we sequenced 12 human parent-offspring trios. Our results showed high sensitivity (> 90%) and accuracy (> 95%) of the protocol for identifying pMEIs in the human genome. In addition, we also tested the feasibility of identifying somatic insertions using the protocol. Conclusions The integrated ME-Scan protocol is a cost-effective way to identify novel pMEIs in the human genome. In addition, by developing the protocol to detect three mobile element families, we demonstrate the flexibility of the ME-Scan protocol. We present instructions for the library design, a sequencing protocol, and a computational pipeline for downstream analyses as a complete framework that will allow researchers to easily adapt the ME-Scan protocol to their own projects in other genomes.
Collapse
Affiliation(s)
- Jui Wan Loh
- 1Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, NJ 08854 USA
| | - Hongseok Ha
- 1Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, NJ 08854 USA.,2Human Genetic Institute of New Jersey, Rutgers, the State University of New Jersey, Piscataway, 08854 NJ USA
| | - Timothy Lin
- 1Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, NJ 08854 USA
| | - Nawei Sun
- 1Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, NJ 08854 USA.,2Human Genetic Institute of New Jersey, Rutgers, the State University of New Jersey, Piscataway, 08854 NJ USA
| | - Kathleen H Burns
- 3Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, 21205 MD USA
| | - Jinchuan Xing
- 1Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, NJ 08854 USA.,2Human Genetic Institute of New Jersey, Rutgers, the State University of New Jersey, Piscataway, 08854 NJ USA
| |
Collapse
|
195
|
LINE-1 retrotransposon encoded ORF1p expression and promoter methylation in oral squamous cell carcinoma: a pilot study. Cancer Genet 2020; 244:21-29. [PMID: 32088612 DOI: 10.1016/j.cancergen.2020.01.050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 01/24/2020] [Accepted: 01/27/2020] [Indexed: 12/16/2022]
Abstract
Oral squamous cell carcinoma (OSCC) is highly predominant in India due to excessive use of tobacco. Here we investigated Long INterpersed Element 1 (LINE or L1) retrotransposon activity in OSCC samples in the same population. There are almost 500,000 copies of L1 occupied around 30% of the human genome. Although most of them are inactive, around 150-200 copies are actively jumping in a human genome. L1 encodes two proteins designated as ORF1p and ORF2p and expression of both proteins are critical for the process of retrotransposition. Here we have analyzed L1 ORF1p expression in a small cohort (n = 15) of paired cancer-normal tissues obtained from operated oral cancer patients. Immunohistochemistry (IHC) with the human ORF1 antibody showed the presence of ORF1p in almost 60% cancer samples, and few of them also showed aberrant p53 expression. Investigating L1 promoter methylation status, showed certain trends towards hypomethylation of the L1 promoter in cancer tissues compared to its normal counterpart. Our data raise the possibility that L1ORF1p expression might have some role in the onset and progression of this particular type of cancer.
Collapse
|
196
|
Maquat LE. Short interspersed nuclear element (SINE)-mediated post-transcriptional effects on human and mouse gene expression: SINE-UP for active duty. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190344. [PMID: 32075563 DOI: 10.1098/rstb.2019.0344] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Primate-specific Alu short interspersed nuclear elements (SINEs) and rodent-specific B and ID (B/ID) SINEs are non-autonomous and generally non-coding retrotransposons that have been copied and pasted into the respective genomes so as to constitute what is estimated to be a remarkable 13% and 8% of those genomes. In the context of messenger RNAs (mRNAs), those residing within 3'-untranslated regions (3'UTRs) can influence mRNA export from the nucleus to the cytoplasm, mRNA translation and/or mRNA decay via proteins with which they associate either individually or base-paired in cis or in trans with a partially complementary SINE. Each of these influences impinges on the primary function of mRNA, which is to serve as a template for protein synthesis. This review describes how human cells have used 3'UTR Alu elements to mediate post-transcriptional gene regulation and also describes examples of convergent evolution between human and mouse 3'UTR SINEs. This article is part of a discussion meeting issue 'Crossroads between transposons and gene regulation'.
Collapse
Affiliation(s)
- Lynne E Maquat
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.,Center for RNA Biology, University of Rochester, Rochester, NY, USA
| |
Collapse
|
197
|
McKerrow W, Tang Z, Steranka JP, Payer LM, Boeke JD, Keefe D, Fenyö D, Burns KH, Liu C. Human transposon insertion profiling by sequencing (TIPseq) to map LINE-1 insertions in single cells. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190335. [PMID: 32075555 PMCID: PMC7061987 DOI: 10.1098/rstb.2019.0335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Long interspersed element-1 (LINE-1, L1) sequences, which comprise about 17% of human genome, are the product of one of the most active types of mobile DNAs in modern humans. LINE-1 insertion alleles can cause inherited and de novo genetic diseases, and LINE-1-encoded proteins are highly expressed in some cancers. Genome-wide LINE-1 mapping in single cells could be useful for defining somatic and germline retrotransposition rates, and for enabling studies to characterize tumour heterogeneity, relate insertions to transcriptional and epigenetic effects at the cellular level, or describe cellular phylogenies in development. Our laboratories have reported a genome-wide LINE-1 insertion site mapping method for bulk DNA, named transposon insertion profiling by sequencing (TIPseq). There have been significant barriers applying LINE-1 mapping to single cells, owing to the chimeric artefacts and features of repetitive sequences. Here, we optimize a modified TIPseq protocol and show its utility for LINE-1 mapping in single lymphoblastoid cells. Results from single-cell TIPseq experiments compare well to known LINE-1 insertions found by whole-genome sequencing and TIPseq on bulk DNA. Among the several approaches we tested, whole-genome amplification by multiple displacement amplification followed by restriction enzyme digestion, vectorette ligation and LINE-1-targeted PCR had the best assay performance. This article is part of a discussion meeting issue 'Crossroads between transposons and gene regulation'.
Collapse
Affiliation(s)
- Wilson McKerrow
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, USA
| | - Zuojian Tang
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, USA
| | - Jared P Steranka
- Department of Pathology, Johns Hopkins University School of Medicine, 733N Broadway, Baltimore, MD 21205, USA
| | - Lindsay M Payer
- Department of Pathology, Johns Hopkins University School of Medicine, 733N Broadway, Baltimore, MD 21205, USA
| | - Jef D Boeke
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, USA
| | - David Keefe
- Department of Obstetrics and Gynecology, New York University Langone School of Medicine, 462 First Avenue, New York, NY 10016, USA.,Department of Cell Biology, New York University Langone School of Medicine, 462 First Avenue, New York, NY 10016, USA
| | - David Fenyö
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, USA
| | - Kathleen H Burns
- Department of Pathology, Johns Hopkins University School of Medicine, 733N Broadway, Baltimore, MD 21205, USA.,McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, 733N Broadway, Baltimore, MD 21205, USA.,High Throughput (HiT) Biology Center, Johns Hopkins University School of Medicine, 733N Broadway, Baltimore, MD 21205, USA.,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 401N Broadway, Baltimore, MD 21231, USA
| | - Chunhong Liu
- Department of Pathology, Johns Hopkins University School of Medicine, 733N Broadway, Baltimore, MD 21205, USA
| |
Collapse
|
198
|
Casanova EL, Konkel MK. The Developmental Gene Hypothesis for Punctuated Equilibrium: Combined Roles of Developmental Regulatory Genes and Transposable Elements. Bioessays 2020; 42:e1900173. [PMID: 31943266 PMCID: PMC7029956 DOI: 10.1002/bies.201900173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/30/2019] [Indexed: 12/13/2022]
Abstract
Theories of the genetics underlying punctuated equilibrium (PE) have been vague to date. Here the developmental gene hypothesis is proposed, which states that: 1) developmental regulatory (DevReg) genes are responsible for the orchestration of metazoan morphogenesis and their extreme conservation and mutation intolerance generates the equilibrium or stasis present throughout much of the fossil record and 2) the accumulation of regulatory elements and recombination within these same genes-often derived from transposable elements-drives punctuated bursts of morphological divergence and speciation across metazoa. This two-part hypothesis helps to explain the features that characterize PE, providing a theoretical genetic basis for the once-controversial theory. Also see the video abstract here https://youtu.be/C-fu-ks5yDs.
Collapse
Affiliation(s)
- Emily L. Casanova
- Department of Biomedical Sciences, University of South Carolina School of Medicine at Greenville, Greenville, South Carolina, USA
| | - Miriam K. Konkel
- Department of Genetics and Biochemistry, Clemson Center for Human Genetics, Biomedical Data Science and Informatics Program, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
199
|
Tharp ME, Malki S, Bortvin A. Maximizing the ovarian reserve in mice by evading LINE-1 genotoxicity. Nat Commun 2020; 11:330. [PMID: 31949138 PMCID: PMC6965193 DOI: 10.1038/s41467-019-14055-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 12/06/2019] [Indexed: 11/21/2022] Open
Abstract
Female reproductive success critically depends on the size and quality of a finite ovarian reserve. Paradoxically, mammals eliminate up to 80% of the initial oocyte pool through the enigmatic process of fetal oocyte attrition (FOA). Here, we interrogate the striking correlation of FOA with retrotransposon LINE-1 (L1) expression in mice to understand how L1 activity influences FOA and its biological relevance. We report that L1 activity triggers FOA through DNA damage-driven apoptosis and the complement system of immunity. We demonstrate this by combined inhibition of L1 reverse transcriptase activity and the Chk2-dependent DNA damage checkpoint to prevent FOA. Remarkably, reverse transcriptase inhibitor AZT-treated Chk2 mutant oocytes that evade FOA initially accumulate, but subsequently resolve, L1-instigated genotoxic threats independent of piRNAs and differentiate, resulting in an increased functional ovarian reserve. We conclude that FOA serves as quality control for oocyte genome integrity, and is not obligatory for oogenesis nor fertility.
Collapse
Affiliation(s)
- Marla E Tharp
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, 21218, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Safia Malki
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, 21218, USA
| | - Alex Bortvin
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, 21218, USA.
| |
Collapse
|
200
|
Ardeljan D, Wang X, Oghbaie M, Taylor MS, Husband D, Deshpande V, Steranka JP, Gorbounov M, Yang WR, Sie B, Larman HB, Jiang H, Molloy KR, Altukhov I, Li Z, McKerrow W, Fenyö D, Burns KH, LaCava J. LINE-1 ORF2p expression is nearly imperceptible in human cancers. Mob DNA 2019; 11:1. [PMID: 31892958 PMCID: PMC6937734 DOI: 10.1186/s13100-019-0191-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/22/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Long interspersed element-1 (LINE-1, L1) is the major driver of mobile DNA activity in modern humans. When expressed, LINE-1 loci produce bicistronic transcripts encoding two proteins essential for retrotransposition, ORF1p and ORF2p. Many types of human cancers are characterized by L1 promoter hypomethylation, L1 transcription, L1 ORF1p protein expression, and somatic L1 retrotransposition. ORF2p encodes the endonuclease and reverse transcriptase activities required for L1 retrotransposition. Its expression is poorly characterized in human tissues and cell lines. RESULTS We report mass spectrometry-based tumor proteome profiling studies wherein ORF2p eludes detection. To test whether ORF2p could be detected with specific reagents, we developed and validated five rabbit monoclonal antibodies with immunoreactivity for specific epitopes on the protein. These reagents readily detect ectopic ORF2p expressed from bicistronic L1 constructs. However, endogenous ORF2p is not detected in human tumor samples or cell lines by western blot, immunoprecipitation, or immunohistochemistry despite high levels of ORF1p expression. Moreover, we report endogenous ORF1p-associated interactomes, affinity isolated from colorectal cancers, wherein we similarly fail to detect ORF2p. These samples include primary tumors harboring hundreds of somatically acquired L1 insertions. The new data are available via ProteomeXchange with identifier PXD013743. CONCLUSIONS Although somatic retrotransposition provides unequivocal genetic evidence for the expression of ORF2p in human cancers, we are unable to directly measure its presence using several standard methods. Experimental systems have previously indicated an unequal stoichiometry between ORF1p and ORF2p, but in vivo, the expression of these two proteins may be more strikingly uncoupled. These findings are consistent with observations that ORF2p is not tolerable for cell growth.
Collapse
Affiliation(s)
- Daniel Ardeljan
- McKusick Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Xuya Wang
- Institute for Systems Genetics, Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY 10016 USA
| | - Mehrnoosh Oghbaie
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY 10065 USA
| | - Martin S. Taylor
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA
| | - David Husband
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Vikram Deshpande
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA
| | - Jared P. Steranka
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Mikhail Gorbounov
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Wan Rou Yang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Brandon Sie
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - H. Benjamin Larman
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Hua Jiang
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY 10065 USA
| | - Kelly R. Molloy
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY 10065 USA
| | - Ilya Altukhov
- Moscow Institute of Physics and Technology, Dolgoprudny, 141701 Russia
| | - Zhi Li
- Institute for Systems Genetics, Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY 10016 USA
| | - Wilson McKerrow
- Institute for Systems Genetics, Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY 10016 USA
| | - David Fenyö
- Institute for Systems Genetics, Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY 10016 USA
| | - Kathleen H. Burns
- McKusick Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - John LaCava
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY 10065 USA
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, 9713 AV The Netherlands
| |
Collapse
|