151
|
Liu Z, Zubatiuk T, Roitberg A, Isayev O. Auto3D: Automatic Generation of the Low-Energy 3D Structures with ANI Neural Network Potentials. J Chem Inf Model 2022; 62:5373-5382. [PMID: 36112860 DOI: 10.1021/acs.jcim.2c00817] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Computational programs accelerate the chemical discovery processes but often need proper three-dimensional molecular information as part of the input. Getting optimal molecular structures is challenging because it requires enumerating and optimizing a huge space of stereoisomers and conformers. We developed the Python-based Auto3D package for generating the low-energy 3D structures using SMILES as the input. Auto3D is based on state-of-the-art algorithms and can automatize the isomer enumeration and duplicate filtering process, 3D building process, geometry optimization, and ranking process. Tested on 50 molecules with multiple unspecified stereocenters, Auto3D is guaranteed to find the stereoconfiguration that yields the lowest-energy conformer. With Auto3D, we provide an extension of the ANI model. The new model, dubbed ANI-2xt, is trained on a tautomer-rich data set. ANI-2xt is benchmarked with DFT methods on geometry optimization and electronic and Gibbs free energy calculations. Compared with ANI-2x, ANI-2xt provides a 42% error reduction for tautomeric reaction energy calculations when using the gold-standard coupled-cluster calculation as the reference. ANI-2xt can accurately predict the energies and is several orders of magnitude faster than DFT methods.
Collapse
Affiliation(s)
- Zhen Liu
- Department of Chemistry, Mellon College of Science, Carnegie Mellon University, Pittsburgh, Pennsylvania15213, United States
| | - Tetiana Zubatiuk
- Department of Chemistry, Mellon College of Science, Carnegie Mellon University, Pittsburgh, Pennsylvania15213, United States
| | - Adrian Roitberg
- Department of Chemistry, University of Florida, Gainesville, Florida32611, United States
| | - Olexandr Isayev
- Department of Chemistry, Mellon College of Science, Carnegie Mellon University, Pittsburgh, Pennsylvania15213, United States
| |
Collapse
|
152
|
Coburger P, Masero F, Bösken J, Mougel V, Grützmacher H. A Germapyramidane Switches Between 3D Cluster and 2D Cyclic Structures in Single-Electron Steps. Angew Chem Int Ed Engl 2022; 61:e202211749. [PMID: 36152009 PMCID: PMC9828763 DOI: 10.1002/anie.202211749] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Indexed: 01/12/2023]
Abstract
Reaction of the imidazolium-substituted iphosphate-diide, (Ipr)2 C2 P2 (IDP), with GeCl2 ⋅ dioxane and KBArF24 [(BarF24 )- =tetrakis[(3,5-trifluoromethyl)phenyl]borate)] afforded the dicationic spherical-aromatic nido-cluster [Ge(η4 -IDP)]2+ ([1]2+ ) (Ipr=1,3-bis(2,6-diisopropylphenyl)imidazolium-2-ylidene). This complex is a rare heavy analogue of the elusive pyramidane [C(η4 -C4 H4 )]. [1]2+ undergoes two reversible one-electron reductions, which yield the radical cation [2]⋅+ and the neutral GeII species 3. Both [2]⋅+ and 3 rearrange in solution forming the 2D aromatic and planar imidazolium-substituted digermolide [4]2+ and germole-diide 5, respectively. Both planar species can be oxidized back to [1]2+ using AgSbF6 . These redox-isomerizations correspond to the fundamental transformation of a 3D aromatic cluster into a 2D aromatic ring compound upon reduction and vice versa. The mechanism of these reactions was elucidated using DFT calculations and cyclic voltammetry experiments.
Collapse
Affiliation(s)
- Peter Coburger
- Department of Chemistry and Applied BiosciencesETH ZürichVladimir-Prelog-Weg 1–5/108093ZürichSwitzerland
| | - Fabio Masero
- Department of Chemistry and Applied BiosciencesETH ZürichVladimir-Prelog-Weg 1–5/108093ZürichSwitzerland
| | - Jonas Bösken
- Department of Chemistry and Applied BiosciencesETH ZürichVladimir-Prelog-Weg 1–5/108093ZürichSwitzerland
| | - Victor Mougel
- Department of Chemistry and Applied BiosciencesETH ZürichVladimir-Prelog-Weg 1–5/108093ZürichSwitzerland
| | - Hansjörg Grützmacher
- Department of Chemistry and Applied BiosciencesETH ZürichVladimir-Prelog-Weg 1–5/108093ZürichSwitzerland
| |
Collapse
|
153
|
Tilly DP, Žabka M, Vitorica-Yrezabal I, Sparkes HA, Pridmore N, Clayden J. Supramolecular interactions between ethylene-bridged oligoureas: nanorings and chains formed by cooperative positive allostery. Chem Sci 2022; 13:13153-13159. [PMID: 36425488 PMCID: PMC9667931 DOI: 10.1039/d2sc04716k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/24/2022] [Indexed: 12/02/2022] Open
Abstract
Ethylene-bridged oligoureas are dynamic foldamers in which the polarity of a coherent chain of intramolecular hydrogen bonds may be controlled by intra- or intermolecular interactions with hydrogen-bond donors or acceptors. In this paper, we describe the way that supramolecular interactions between ethylene-bridged oligoureas bearing a 3,5-bis(trifluoromethyl)phenylurea (BTMP) terminus leads to higher-order structures both in the crystalline state and in solution. The oligoureas self-assemble by head-to-tail hydrogen bonding interactions to form either supramolecular 'nanorings' with cyclic hydrogen bond chain directionality, or supramolecular helical chains of hydrogen bonds. The self-assembly process features a cascade of cooperative positive allostery, in which each intermolecular hydrogen bond formation at the BTMP terminus switches the native hydrogen bond chain directionality of monomers, favouring further assembly. Monomers with a benzyl urea terminus self-assemble into nanorings, whereas monomers with a N-ethyl urea terminus form helical chains. In the crystal state, parallel helices have identical handedness and polarity, whereas antiparallel helices have opposite handedness. The overall dipole moment of crystals is zero due to the antiparallel arrangements of local dipoles in the crystal packing. Supramolecular interactions in solution were also examined by VT and DOSY NMR spectroscopy, up to the point of crystal formation. The size of higher aggregates in dichloromethane was estimated by their hydrodynamic radius. The relative orientation of the monomers within the aggregates, determined by 2D ROESY NMR, was the same as in the crystals, where syn-orientations lead to the formation of rings and anti-orientations result in chains. Overall, the switch of hydrogen bond polarity propagates intermolecularly in crystal and solution states, constituting an example of intermolecular communication within supramolecular polymers.
Collapse
Affiliation(s)
- David P Tilly
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
- Department of Chemistry, University of Manchester Oxford Road Manchester M13 9PL UK
| | - Matej Žabka
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | | | - Hazel A Sparkes
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Natalie Pridmore
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Jonathan Clayden
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| |
Collapse
|
154
|
Göller AH. Reliable gas-phase tautomer equilibria of drug-like molecule scaffolds and the issue of continuum solvation. J Comput Aided Mol Des 2022; 36:805-824. [DOI: 10.1007/s10822-022-00480-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022]
|
155
|
Thomas R, Pooventhiran T. Study of the dynamics of the Interaction of glycine and GABA with water and ethanol using theoretical tools. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
156
|
Zhang YA, Palani V, Seim AE, Wang Y, Wang KJ, Wendlandt AE. Stereochemical editing logic powered by the epimerization of unactivated tertiary stereocenters. Science 2022; 378:383-390. [PMID: 36302032 PMCID: PMC9974169 DOI: 10.1126/science.add6852] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The stereoselective synthesis of complex targets requires the precise orchestration of chemical transformations that simultaneously establish the connectivity and spatial orientation of desired bonds. In this work, we describe a complementary paradigm for the synthesis of chiral molecules and their isomers, which tunes the three-dimensional structure of a molecule at a late stage. Key to the success of this strategy is the development of a mild and highly general photocatalytic method composed of decatungstate polyanion and disulfide cocatalysts, which enable the interconversion of unactivated tertiary stereogenic centers that were previously configurationally fixed. We showcase the versatility of this method-and the implementation of stereoediting logic-by the rapid construction of chiral scaffolds that would be challenging to access using existing tools and by the late-stage stereoediting of complex targets.
Collapse
|
157
|
Bursch M, Mewes J, Hansen A, Grimme S. Best-Practice DFT Protocols for Basic Molecular Computational Chemistry. Angew Chem Int Ed Engl 2022; 61:e202205735. [PMID: 36103607 PMCID: PMC9826355 DOI: 10.1002/anie.202205735] [Citation(s) in RCA: 203] [Impact Index Per Article: 67.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Indexed: 01/11/2023]
Abstract
Nowadays, many chemical investigations are supported by routine calculations of molecular structures, reaction energies, barrier heights, and spectroscopic properties. The lion's share of these quantum-chemical calculations applies density functional theory (DFT) evaluated in atomic-orbital basis sets. This work provides best-practice guidance on the numerous methodological and technical aspects of DFT calculations in three parts: Firstly, we set the stage and introduce a step-by-step decision tree to choose a computational protocol that models the experiment as closely as possible. Secondly, we present a recommendation matrix to guide the choice of functional and basis set depending on the task at hand. A particular focus is on achieving an optimal balance between accuracy, robustness, and efficiency through multi-level approaches. Finally, we discuss selected representative examples to illustrate the recommended protocols and the effect of methodological choices.
Collapse
Affiliation(s)
- Markus Bursch
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| | - Jan‐Michael Mewes
- Mulliken Center for Theoretical ChemistryInstitut für Physikalische und Theoretische ChemieUniversität BonnBeringstraße 453115BonnGermany
| | - Andreas Hansen
- Mulliken Center for Theoretical ChemistryInstitut für Physikalische und Theoretische ChemieUniversität BonnBeringstraße 453115BonnGermany
| | - Stefan Grimme
- Mulliken Center for Theoretical ChemistryInstitut für Physikalische und Theoretische ChemieUniversität BonnBeringstraße 453115BonnGermany
| |
Collapse
|
158
|
Banik N, Braun S, Gerit Brandenburg J, Fricker G, Kalonia DS, Rosenkranz T. Technology development to evaluate the effectiveness of viscosity reducing excipients. Int J Pharm 2022; 626:122204. [PMID: 36116691 DOI: 10.1016/j.ijpharm.2022.122204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/05/2022] [Accepted: 09/11/2022] [Indexed: 10/14/2022]
Abstract
Addition of pharmaceutical excipients is a commonly used approach to decrease the viscosity of highly concentrated protein formulations, which otherwise could not be subcutaneously injected or processed. The variety of protein-protein interactions, which are responsible for increased viscosities, makes a portfolio approach necessary. Screening of several excipients to develop such a portfolio is time and money consuming in industrial settings. Responsible protein-protein interactions were investigated using the interaction parameter kD obtained from dynamic light scattering measurements in the studies presented herein. Together with in-silico calculated excipient parameter, kD could be used as a screening tool accelerating screening and formulation development as kD is suitable to high-throughput formats using small quantities of protein and low concentrations. A qualitative correlation between kD and high-concentration viscosity behavior could be shown in our case.
Collapse
Affiliation(s)
- Niels Banik
- Biomolecule Formulation, Merck KGaA, Frankfurter Straße 250, 64293 Darmstadt, Germany; Institute for Pharmacy and Molecular Biotechnology, Ruprecht-Karls-University, Im Neuenheimer Feld 329, 69120 Heidelberg, Germany
| | - Stefan Braun
- Biomolecule Formulation, Merck KGaA, Frankfurter Straße 250, 64293 Darmstadt, Germany
| | - Jan Gerit Brandenburg
- Chief Science and Technology Office, Merck KGaA, Frankfurter Straße 250, 64293 Darmstadt, Germany
| | - Gert Fricker
- Institute for Pharmacy and Molecular Biotechnology, Ruprecht-Karls-University, Im Neuenheimer Feld 329, 69120 Heidelberg, Germany
| | - Devendra S Kalonia
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, United States
| | - Tobias Rosenkranz
- Biomolecule Formulation, Merck KGaA, Frankfurter Straße 250, 64293 Darmstadt, Germany.
| |
Collapse
|
159
|
Atahan-Evrenk S. Theoretical Study of the Structure and Binding Energies of Dimers of Zn(II)-Porphyrin Derivatives. J Phys Chem A 2022; 126:7102-7109. [PMID: 36194887 PMCID: PMC9574925 DOI: 10.1021/acs.jpca.2c03692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Zinc-complexed porphyrin and chlorophyll derivatives form functional aggregates with remarkable photophysical and optoelectronic properties. Understanding the type and strength of intermolecular interactions between these molecules is essential for designing new materials with desired morphology and functionality. The dimer interactions of a molecular set composed of porphyrin derivatives obtained by substitutional changes starting from free-base porphyrin is studied. It is found that the B97M-rV/def2-TZVP level of theory provides a good compromise between the accuracy and cost to get the dimer geometries and interaction energies (IEs). The neglect of the relaxation energy due to the change in the monomer configurations upon complex formation causes a more significant error than the basis set superposition error. The metal complexation increases the binding energy by about -6 to -8 kcal/mol, and the introduction of keto and hydroxy groups further stabilizes the dimers by about -20 kcal/mol. Although the saturation of one of the pyrrol double bonds does not change the IE, the addition of R groups increases it.
Collapse
Affiliation(s)
- Sule Atahan-Evrenk
- Faculty of Medicine, TOBB University of Economics and Technology, Sogutozu Cd No. 43 Sogutozu, Ankara06560, Turkey
| |
Collapse
|
160
|
Iwanek W. Theoretical calculations of formation and reactivity of o-quinomethide derivatives of resorcin[4]arene with reference to empirical data. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220541. [PMID: 36249340 PMCID: PMC9554518 DOI: 10.1098/rsos.220541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
This paper describes theoretical reaction pathways of alkoxybenzyl derivatives of resorcin[4]arene leading to the formation of o-quinomethide derivatives of resorcin[4]arene (o-QMR[4]A). For each case, the activation energies for the formation of one o-QMR[4]A unit and the activation energies for the backward reaction were calculated. Based on the calculated reaction pathways, the reaction mechanism of o-QMR[4]A formation was proposed. Using the example of o-QMR[4]A generated from a methoxy derivative of resorcin[4]arene, the activation energies with selected nucleophiles were calculated and the reaction mechanisms discussed. Reaction path calculations were performed using the nudged elastic band method and semiempirical extended tight-binding method (GFN2-xTB). Using hydroxybenzyl derivatives of resorcin[4]arene as an example, a comparison of calculated activation energies by selected density-functional theory methods with GFN2-xTB and B97-3c geometries was performed. B97-3c and wB97XD methods were used to calculate the energies of the reactants (R), transition states (TS) and products (P) of the analysed reactions. Theoretical reaction mechanisms were discussed with respect to the orbital-weighted Fukui dual descriptor (Δfw ) and experimental data.
Collapse
Affiliation(s)
- Waldemar Iwanek
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, Seminaryjna 3, 85-326 Bydgoszcz, Poland
| |
Collapse
|
161
|
Adsorption process and mechanisms of AEO-3/dodecane mixed collector on low-rank coal surface driven by water flow: A non-equilibrium molecular dynamics simulation study. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
162
|
Liu X, Turner C. Electronic structure calculations of the fundamental interactions in solvent extraction desalination. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
163
|
Leach IF, Havenith RWA, Klein JEMN. Revisiting Formal Copper(III) Complexes: Bridging Perspectives with Quasi- d 10 Configurations. Eur J Inorg Chem 2022; 2022:e202200247. [PMID: 36619312 PMCID: PMC9804752 DOI: 10.1002/ejic.202200247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/21/2022] [Indexed: 01/11/2023]
Abstract
The formal Cu(III) complex [Cu(CF3)4]1- has often served as a paradigmatic example of challenging oxidation state assignment - with many reports proposing conflicting descriptions. Here we report a computational analysis of this compound, employing Energy Decomposition Analysis and Intrinsic Bond Orbital Analysis. We present a quasi-d 10 perspective of the metal centre, resulting from ambiguities in d-electron counting. The implications for describing reactions which undergo oxidation state changes, such as the formal reductive elimination from the analogous [Cu(CF3)3(CH2Ph)]1- complex (Paeth et al. J. Am. Chem. Soc. 2019, 141, 3153), are probed. Electron flow analysis finds that the changes in electronic structure may be understood as a quasi-d 10 to d 10 transition at the metal centre, rendering this process essentially redox neutral. This is reminiscent of a previously studied formal Ni(IV) complex (Steen et al., Angew. Chem. Int. Ed. 2019, 58, 13133-13139), and indicates that our description of electronic structure has implications for the understanding of elementary organometallic reaction steps.
Collapse
Affiliation(s)
- Isaac F. Leach
- Molecular Inorganic ChemistryStratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
- Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| | - Remco W. A. Havenith
- Molecular Inorganic ChemistryStratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
- Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
- Ghent Quantum Chemistry GroupDepartment of ChemistryGhent UniversityKrijgslaan 281 (S3)Ghent9000 GentBelgium
| | - Johannes E. M. N. Klein
- Molecular Inorganic ChemistryStratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| |
Collapse
|
164
|
Lawniczak JJ, Zhang X, Christianson M, Bailey B, Bremer S, Barcia S, Mukhopadhyay S, Klosin J, Miller TF. Solution-Phase Conformational/Vibrational Anharmonicity in Comonomer Incorporation Polyolefin Catalysis. J Phys Chem A 2022; 126:6858-6869. [PMID: 36137217 DOI: 10.1021/acs.jpca.2c04038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The prediction of comonomer incorporation statistics in polyolefin catalysis necessitates an accurate calculation of free energies corresponding to monomer binding and insertion, often requiring sub-kcal/mol resolution to resolve experimental free energies. Batch reactor experiments are used to probe incorporation statistics of ethene and larger α-olefins for three constrained geometry complexes which are employed as model systems. Herein, over 6 ns of quantum mechanics/molecular mechanics (QM/MM) molecular dynamics is performed in combination with the zero-temperature string method to characterize the solution-phase insertion barrier and to analyze the contributions from conformational and vibrational anharmonicity arising both in vacuum and in solution. Conformational sampling in the solution-phase results in 0-2 kcal/mol corrections to the insertion barrier which are on the same scale necessary to resolve experimental free energies. Anharmonic contributions from conformational sampling in the solution phase are crucial energy contributions missing from static density functional theory calculations and implicit solvation models, and the accurate calculation of these contributions is a key step toward the quantitative prediction of comonomer incorporation statistics.
Collapse
Affiliation(s)
- James J Lawniczak
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Xinglong Zhang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | | | - Brad Bailey
- The Dow Chemical Company, Midland, Michigan 48674, United States
| | - Sean Bremer
- The Dow Chemical Company, Midland, Michigan 48674, United States
| | - Sarah Barcia
- Kelly Services, Inc., Troy, Michigan 48084, United States
| | | | - Jerzy Klosin
- The Dow Chemical Company, Midland, Michigan 48674, United States
| | - Thomas F Miller
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
165
|
Bursch M, Mewes J, Hansen A, Grimme S. Best‐Practice DFT Protocols for Basic Molecular Computational Chemistry**. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Markus Bursch
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| | - Jan‐Michael Mewes
- Mulliken Center for Theoretical Chemistry Institut für Physikalische und Theoretische Chemie Universität Bonn Beringstraße 4 53115 Bonn Germany
| | - Andreas Hansen
- Mulliken Center for Theoretical Chemistry Institut für Physikalische und Theoretische Chemie Universität Bonn Beringstraße 4 53115 Bonn Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry Institut für Physikalische und Theoretische Chemie Universität Bonn Beringstraße 4 53115 Bonn Germany
| |
Collapse
|
166
|
Afanasyev OI, Kliuev FS, Tsygankov AA, Nelyubina YV, Gutsul E, Novikov VV, Chusov D. Fluoride Additive as a Simple Tool to Qualitatively Improve Performance of Nickel-Catalyzed Asymmetric Michael Addition of Malonates to Nitroolefins. J Org Chem 2022; 87:12182-12195. [PMID: 36069733 DOI: 10.1021/acs.joc.2c01339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nowadays, design of the new chiral ligands for organometallic catalysts is often based on the step-by-step increase in their complexity to improve efficiency. Herein we describe that simple in situ addition of the fluoride source to the asymmetric organometallic catalyst can improve not only activity but also enantioselectivity. Bromide-nickel diimine complexes were found to catalyze asymmetric Michael addition in low yields and ee, but activation with fluoride leads to a significant improvement in catalyst performance. The developed approach was applied to prepare several enantioenriched GABA analogues.
Collapse
Affiliation(s)
- Oleg I Afanasyev
- A.N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, Vavilova St. 28, Moscow 119991, Russian Federation
| | - Fedor S Kliuev
- A.N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, Vavilova St. 28, Moscow 119991, Russian Federation.,National Research University Higher School of Economics, Miasnitskaya Str. 20, Moscow 101000, Russian Federation
| | - Alexey A Tsygankov
- A.N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, Vavilova St. 28, Moscow 119991, Russian Federation
| | - Yulia V Nelyubina
- A.N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, Vavilova St. 28, Moscow 119991, Russian Federation.,Bauman Moscow State Technical University, Baumanskaya Str., 5, 105005 Moscow, Russia
| | - Evgenii Gutsul
- A.N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, Vavilova St. 28, Moscow 119991, Russian Federation
| | - Valentin V Novikov
- A.N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, Vavilova St. 28, Moscow 119991, Russian Federation.,National Research University Higher School of Economics, Miasnitskaya Str. 20, Moscow 101000, Russian Federation
| | - Denis Chusov
- A.N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, Vavilova St. 28, Moscow 119991, Russian Federation.,National Research University Higher School of Economics, Miasnitskaya Str. 20, Moscow 101000, Russian Federation
| |
Collapse
|
167
|
Understanding the solvation dynamics of metformin in water using theoretical tools. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
168
|
Pavan C, Sydor MJ, Bellomo C, Leinardi R, Cananà S, Kendall RL, Rebba E, Corno M, Ugliengo P, Mino L, Holian A, Turci F. Molecular recognition between membrane epitopes and nearly free surface silanols explains silica membranolytic activity. Colloids Surf B Biointerfaces 2022; 217:112625. [PMID: 35738078 PMCID: PMC10796170 DOI: 10.1016/j.colsurfb.2022.112625] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 11/24/2022]
Abstract
Inhaled crystalline silica causes inflammatory lung diseases, but the mechanism for its unique activity compared to other oxides remains unclear, preventing the development of potential therapeutics. Here, the molecular recognition mechanism between membrane epitopes and "nearly free silanols" (NFS), a specific subgroup of surface silanols, is identified and proposed as a novel broad explanation for particle toxicity in general. Silica samples having different bulk and surface properties, specifically different amounts of NFS, are tested with a set of membrane systems of decreasing molecular complexity and different charge. The results demonstrate that NFS content is the primary determinant of membrane disruption causing red blood cell lysis and changes in lipid order in zwitterionic, but not in negatively charged liposomes. NFS-rich silica strongly and irreversibly adsorbs zwitterionic self-assembled phospholipid structures. This selective interaction is corroborated by density functional theory and supports the hypothesis that NFS recognize membrane epitopes that exhibit a positive quaternary amino and negative phosphate group. These new findings define a new paradigm for deciphering particle-biomembrane interactions that will support safer design of materials and what types of treatments might interrupt particle-biomembrane interactions.
Collapse
Affiliation(s)
- Cristina Pavan
- Department of Chemistry, University of Turin, Italy; "G. Scansetti" Interdepartmental Centre for Studies on Asbestos and Other Toxic Particulates, University of Turin, Italy; Louvain Centre for Toxicology and Applied Pharmacology, Université catholique de Louvain, Belgium.
| | - Matthew J Sydor
- Center for Environmental Health Sciences, Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, United States.
| | - Chiara Bellomo
- Department of Chemistry, University of Turin, Italy; "G. Scansetti" Interdepartmental Centre for Studies on Asbestos and Other Toxic Particulates, University of Turin, Italy.
| | - Riccardo Leinardi
- Department of Chemistry, University of Turin, Italy; "G. Scansetti" Interdepartmental Centre for Studies on Asbestos and Other Toxic Particulates, University of Turin, Italy; Louvain Centre for Toxicology and Applied Pharmacology, Université catholique de Louvain, Belgium.
| | - Stefania Cananà
- Department of Chemistry, University of Turin, Italy; "G. Scansetti" Interdepartmental Centre for Studies on Asbestos and Other Toxic Particulates, University of Turin, Italy.
| | - Rebekah L Kendall
- Center for Environmental Health Sciences, Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, United States.
| | - Erica Rebba
- Department of Chemistry, University of Turin, Italy; Nanostructured Interfaces and Surfaces Interdepartmental Centre, University of Turin, Italy.
| | - Marta Corno
- Department of Chemistry, University of Turin, Italy; Nanostructured Interfaces and Surfaces Interdepartmental Centre, University of Turin, Italy.
| | - Piero Ugliengo
- Department of Chemistry, University of Turin, Italy; Nanostructured Interfaces and Surfaces Interdepartmental Centre, University of Turin, Italy.
| | - Lorenzo Mino
- Department of Chemistry, University of Turin, Italy; Nanostructured Interfaces and Surfaces Interdepartmental Centre, University of Turin, Italy.
| | - Andrij Holian
- Center for Environmental Health Sciences, Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, United States.
| | - Francesco Turci
- Department of Chemistry, University of Turin, Italy; "G. Scansetti" Interdepartmental Centre for Studies on Asbestos and Other Toxic Particulates, University of Turin, Italy; Nanostructured Interfaces and Surfaces Interdepartmental Centre, University of Turin, Italy.
| |
Collapse
|
169
|
Fernández-Maestre R, Doerr M. On the separation of enantiomers by drift tube ion mobility spectrometry. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:3011-3020. [PMID: 35916141 DOI: 10.1039/d2ay00946c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Racemic mixtures of twelve common α-amino acids and three chiral drugs were tested for the separation of their enantiomers by drift tube ion mobility spectrometry (IMS)-quadrupole mass spectrometry (QMS) by introducing chiral selectors into the buffer gas of the IMS instrument. (R)-α-(Trifluoromethyl)benzyl alcohol, (L)-ethyl lactate, methyl (S)-2-chloropropionate, and the R and S enantiomers of 2-butanol and 1-phenyl ethanol were evaluated as chiral selectors. Experimental conditions were varied during the tests, including buffer gas temperature, concentration and type of chiral selectors, analyte concentration, electrospray (ESI) voltage, ESI solvent pH, and buffer gas flow rate. The individual enantiomers yielded the same drift times and the racemic mixtures could not be separated. Energy calculations of the chiral selector-ion interactions showed that these separations are unlikely using 2-butanol as a chiral selector but they might be theoretically feasible depending on the chiral selector nature and the type of enantiomers. Several plausible explanations for not achieving separations were analyzed. Recommendations for potential enantiomer separations by IMS are proposed.
Collapse
Affiliation(s)
- Roberto Fernández-Maestre
- Departamento de Quimica, Universidad de Cartagena, Campus de San Pablo, Cartagena, Colombia.
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe Sh. 31, Moscow, 115409, Russia
| | - Markus Doerr
- Universidad Industrial de Santander, Cra 27 Calle 9, Bucaramanga, Colombia.
| |
Collapse
|
170
|
Chan B. High-Level Quantum Chemistry Reference Heats of Formation for a Large Set of C, H, N, and O Species in the NIST Chemistry Webbook and the Identification and Validation of Reliable Protocols for Their Rapid Computation. J Phys Chem A 2022; 126:4981-4990. [PMID: 35878062 DOI: 10.1021/acs.jpca.2c03846] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A recent study has examined the accuracy of NIST heats of formation for a set of C, H, and O-containing species with a proposed low-cost quantum chemistry approach. In the present study, we have used high-level methods such as W1X-2 to obtain these data more rigorously, which we have then used to assess the NIST and the previously computed values. We find that many of these NIST data that are as suggested to be unreliable by the previous study are indeed inconsistent with our high-level reference values. However, we also find substantial deviations for the previously computed values from our benchmark. Thus, we have assessed the performance of alternative low-cost methods. In our assessment, we have additionally examined C, H, N, and O-containing species for which heats of formation are available from the NIST database. We find the ωB97M-V/ma-def2-TZVP, DSD-PBEP86/ma-def2-TZVP, and CCSD(T)-F12b/aug'-cc-pVDZ methods to be adequate for obtaining heats of formation with the atomization approach, once their atomic energies are optimized with our benchmark. Notably, the low-cost ωB97M-V method yields values that agree to be within 10 kJ mol-1 for more than 90% of the (∼1500) species. A higher 20 kJ mol-1 threshold captures 98% of the data. The outlier species typically contain many electron-withdrawing (nitro) groups. In these cases, the use of isodesmic-type reactions rather than the atomization approach is more reliable. Our assessment has also identified significant outliers from the NIST database, for which experimental re-determination of the heats of formation would be desirable.
Collapse
Affiliation(s)
- Bun Chan
- Graduate School of Engineering, Nagasaki University, Bunkyo 1-14, Nagasaki 852-8521, Japan
| |
Collapse
|
171
|
Qiao Z, Christensen AS, Welborn M, Manby FR, Anandkumar A, Miller TF. Informing geometric deep learning with electronic interactions to accelerate quantum chemistry. Proc Natl Acad Sci U S A 2022; 119:e2205221119. [PMID: 35901215 PMCID: PMC9351474 DOI: 10.1073/pnas.2205221119] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/06/2022] [Indexed: 01/30/2023] Open
Abstract
Predicting electronic energies, densities, and related chemical properties can facilitate the discovery of novel catalysts, medicines, and battery materials. However, existing machine learning techniques are challenged by the scarcity of training data when exploring unknown chemical spaces. We overcome this barrier by systematically incorporating knowledge of molecular electronic structure into deep learning. By developing a physics-inspired equivariant neural network, we introduce a method to learn molecular representations based on the electronic interactions among atomic orbitals. Our method, OrbNet-Equi, leverages efficient tight-binding simulations and learned mappings to recover high-fidelity physical quantities. OrbNet-Equi accurately models a wide spectrum of target properties while being several orders of magnitude faster than density functional theory. Despite only using training samples collected from readily available small-molecule libraries, OrbNet-Equi outperforms traditional semiempirical and machine learning-based methods on comprehensive downstream benchmarks that encompass diverse main-group chemical processes. Our method also describes interactions in challenging charge-transfer complexes and open-shell systems. We anticipate that the strategy presented here will help to expand opportunities for studies in chemistry and materials science, where the acquisition of experimental or reference training data is costly.
Collapse
Affiliation(s)
- Zhuoran Qiao
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125
| | | | | | | | - Anima Anandkumar
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125
- Nvidia Corporation, Santa Clara, CA 95051
| | - Thomas F. Miller
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125
- Entos, Inc., Los Angeles, CA 90027
| |
Collapse
|
172
|
Three new turn-on fluorescent sensors for the selective detection of Zn2+: Synthesis, properties and DFT studies. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
173
|
Evidence of significant non-covalent interactions in the solution of Levetiracetam in water and methanol. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119289] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
174
|
Pototskiy RA, Boym MA, Nelyubina YV, Perekalin D. Synthesis of the Sterically Shielded Rhodium(I) Arene Complex by Cycloaddition of the Phosphorous‐Substituted Alkyne. Z Anorg Allg Chem 2022. [DOI: 10.1002/zaac.202200231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Roman A Pototskiy
- A N Nesmeyanov Institute of Organoelement Compounds RAS: Institut elementoorganiceskih soedinenij imeni A N Nesmeanova RAN RUSSIAN FEDERATION
| | - Mikhail A Boym
- A N Nesmeyanov Institute of Organoelement Compounds RAS: Institut elementoorganiceskih soedinenij imeni A N Nesmeanova RAN RUSSIAN FEDERATION
| | - Yulia V Nelyubina
- A N Nesmeyanov Institute of Organoelement Compounds RAS: Institut elementoorganiceskih soedinenij imeni A N Nesmeanova RAN RUSSIAN FEDERATION
| | - Dmitry Perekalin
- A N Nesmeyanov Institute of Organoelement Compounds RAS: Institut elementoorganiceskih soedinenij imeni A N Nesmeanova RAN Laboratory of Functional Organometallic Compounds Vavilova 28 119991 Moscow RUSSIAN FEDERATION
| |
Collapse
|
175
|
Villot C, Ballesteros F, Wang D, Lao KU. Coupled Cluster Benchmarking of Large Noncovalent Complexes in L7 and S12L as Well as the C 60 Dimer, DNA-Ellipticine, and HIV-Indinavir. J Phys Chem A 2022; 126:4326-4341. [PMID: 35766331 DOI: 10.1021/acs.jpca.2c01421] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this work, we report the benchmark binding energies of the seven complexes within the L7 data set, six host-guest complexes from the S12L data set, a C60 dimer, the DNA-ellipticine intercalation complex, and the largest system of the study, the HIV-indinavir system, which contained 343 atoms or 139 heavy atoms. The high-quality values reported were obtained via a focal point method that relies on the canonical form of second-order Møller-Plesset theory and the domain-based local pair natural orbital scheme for the coupled cluster with single double and perturbative triple excitations [DLPNO-CCSD(T)] extrapolated to the complete basis set (CBS) limit. The results in this work not only corroborate but also improve upon some previous benchmark values for large noncovalent complexes albeit at a relatively steep cost. Although local CCSD(T) and the largely successful fixed-node diffusion Monte Carlo (FN-DMC) have been shown to generally agree for small- to medium-size systems, a discrepancy in their reported binding energy values arises for large complexes, where the magnitude of the disagreement is a definite cause for concern. For example, the largest deviation in the L7 data set was 2.8 kcal/mol (∼10%) on the low end in C3GC. Such a deviation only grows worse in the S12L set, which showed a difference of up to 10.4 kcal/mol (∼25%) by a conservative estimation in buckycatcher-C60. The DNA-ellipticine complex also generated a disagreement of 4.4 kcal/mol (∼10%) between both state-of-the-art methods. The disagreement between local CCSD(T) and FN-DMC in large noncovalent complexes shows that it is urgently needed to have the canonical CCSD(T), the Monte Carlo CCSD(T), or the full configuration interaction quantum Monte Carlo approaches available to large systems on the hundred-atom scale to solve this dilemma. In addition, the performances of cheaper popular computational methods were assessed for the studied complexes with respect to DLPNO-CCSD(T)/CBS. r2SCAN-3c, B97M-V, and PBE0+D4 work well in large noncovalent complexes in this work, and GFN2-xTB performs well in π-π stacking complexes. B97M-V is the most reliable computationally efficient approach to predicting noncovalent interactions for large complexes, being the only one to have binding errors within the so-called 1 kcal/mol "chemical accuracy". The benchmark interaction energies of these host-guest complexes, molecular materials, and biological systems with electronic and medicinal implications provide crucial reference data for the improvement of current and future lower-cost methods.
Collapse
Affiliation(s)
- Corentin Villot
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284 United States
| | - Francisco Ballesteros
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284 United States
| | - Danyang Wang
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284 United States
| | - Ka Un Lao
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284 United States
| |
Collapse
|
176
|
Hellmers J, Hedegård ED, König C. Fragmentation-Based Decomposition of a Metalloenzyme-Substrate Interaction: A Case Study for a Lytic Polysaccharide Monooxygenase. J Phys Chem B 2022; 126:5400-5412. [PMID: 35833656 DOI: 10.1021/acs.jpcb.2c02883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present a novel decomposition scheme for electronic interaction energies based on the flexible formulation of fragmentation schemes through fragment combination ranges (FCRs; J. Chem. Phys., 2021, 155, 164105). We devise a clear additive decomposition with contribution of nondisjoint fragments and correction terms for overlapping fragments and apply this scheme to the metalloenzyme-substrate complex of a lytic polysaccharide monooxygenase (LPMO) with an oligosaccharide. By this, we further illustrate the straightforward adaptability of the FCR-based schemes to novel systems. Our calculations suggest that the description of the electronic structure is a larger error source than the fragmentation scheme. In particular, we find a large impact of the basis set size on the interaction energies. Still, the introduction of three-body interaction terms in the fragmentation setup improves the agreement to the supermolecular reference. Yet, the qualitative results for the decomposition scheme with two-body terms only largely agree within the investigated electronic-structure approaches and basis sets, which are B97-3c, DFT (TPSS and B3LYP), and MP2 methods. The overlap contributions are found to be small, allowing analysis of the interaction energy into individual amino acid residues: We find a particularly strong interaction between the substrate and the LPMO copper active site.
Collapse
Affiliation(s)
- Janine Hellmers
- Institute of Physical Chemistry and Electrochemistry, Leibniz University Hannover, 30167 Hannover, Germany
| | - Erik Donovan Hedegård
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, 5230 Odense, Denmark
| | - Carolin König
- Institute of Physical Chemistry and Electrochemistry, Leibniz University Hannover, 30167 Hannover, Germany
| |
Collapse
|
177
|
Ossinger S, Prescimone A, Häussinger D, Wenger OS. Manganese(I) Complex with Monodentate Arylisocyanide Ligands Shows Photodissociation Instead of Luminescence. Inorg Chem 2022; 61:10533-10547. [PMID: 35768069 PMCID: PMC9377510 DOI: 10.1021/acs.inorgchem.2c01438] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recently reported manganese(I) complexes with chelating arylisocyanide ligands exhibit luminescent metal-to-ligand charge-transfer (MLCT) excited states, similar to ruthenium(II) polypyridine complexes with the same d6 valence electron configuration used for many different applications in photophysics and photochemistry. However, chelating arylisocyanide ligands require substantial synthetic effort, and therefore it seemed attractive to explore the possibility of using more readily accessible monodentate arylisocyanides instead. Here, we synthesized the new Mn(I) complex [Mn(CNdippPhOMe2)6]PF6 with the known ligand CNdippPhOMe2 = 4-(3,5-dimethoxyphenyl)-2,6-diisopropylphenylisocyanide. This complex was investigated by NMR spectroscopy, single-crystal structure analysis, high-resolution electrospray ionization mass spectrometry (HR-ESI-MS) measurements, IR spectroscopy supported by density functional theory (DFT) calculations, cyclic voltammetry, and time-resolved as well as steady-state UV-vis absorption spectroscopy. The key finding is that the new Mn(I) complex is nonluminescent and instead undergoes arylisocyanide ligand loss during continuous visible laser irradiation into ligand-centered and charge-transfer absorption bands, presumably owed to the population of dissociative d-d excited states. Thus, it seems that chelating bi- or tridentate binding motifs are essential for obtaining emissive MLCT excited states in manganese(I) arylisocyanides. Our work contributes to understanding the basic properties of photoactive first-row transition metal complexes and could help advance the search for alternatives to precious metal-based luminophores, photocatalysts, and sensors.
Collapse
Affiliation(s)
- Sascha Ossinger
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Alessandro Prescimone
- Department
of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Daniel Häussinger
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Oliver S. Wenger
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| |
Collapse
|
178
|
Sun Z, Wang M, He Q, Liu Z. Molecular Modeling of Ionic Liquids: Force‐Field Validation and Thermodynamic Perspective from Large‐Scale Fast‐Growth Solvation Free Energy Calculations. ADVANCED THEORY AND SIMULATIONS 2022. [DOI: 10.1002/adts.202200274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Zhaoxi Sun
- Beijing National Laboratory for Molecular Sciences College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Mao Wang
- NCS Testing Technology Co., Ltd. No. 13, Gaoliangqiao Xiejie Beijing 100081 China
| | - Qiaole He
- AI Department of Enzymaster (Ningbo) Bio‐Engineering Co., Ltd. North Century Avenue 333 Ningbo 315100 China
| | - Zhirong Liu
- Beijing National Laboratory for Molecular Sciences College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| |
Collapse
|
179
|
Calculation of Lipophilicity of Organophosphate Pesticides Using Density Functional Theory. MEMBRANES 2022; 12:membranes12060632. [PMID: 35736339 PMCID: PMC9228327 DOI: 10.3390/membranes12060632] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/09/2022] [Accepted: 06/18/2022] [Indexed: 12/30/2022]
Abstract
Higher lipophilicity facilitates the passage of a substance across lipid cell membranes, the blood–brain barrier and protein binding, and may also indicate its toxicity. We proposed eight methods for predicting the lipophilicity of the 22 most commonly used organophosphate pesticides. In this work, to determine the lipophilicity and thermodynamic parameters of the solvation of pesticides, we used methods of density functional theory with various basis sets, as well as modern Grimm methods. The prediction models were evaluated and compared against eight performance statistics, as well as time and RAM used in the calculation. The results show that the PBE-SVP method provided the best of the proposed predictive capabilities. In addition, this method consumes relatively less CPU and RAM resources. These methods make it possible to reliably predict the ability of pesticide molecules to penetrate cell membranes and have a negative effect on cells and the organism as a whole.
Collapse
|
180
|
Gasevic T, Stückrath JB, Grimme S, Bursch M. Optimization of the r 2SCAN-3c Composite Electronic-Structure Method for Use with Slater-Type Orbital Basis Sets. J Phys Chem A 2022; 126:3826-3838. [PMID: 35654439 PMCID: PMC9255700 DOI: 10.1021/acs.jpca.2c02951] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The "Swiss army knife" composite density functional electronic-structure method r2SCAN-3c (J. Chem. Phys. 2021, 154, 064103) is extended and optimized for the use with Slater-type orbital basis sets. The meta generalized-gradient approximation (meta-GGA) functional r2SCAN by Furness et al. is combined with a tailor-made polarized triple-ζ Slater-type atomic orbital (STO) basis set (mTZ2P), the semiclassical London dispersion correction (D4), and a geometrical counterpoise (gCP) correction. Relativistic effects are treated explicitly with the scalar-relativistic zeroth-order regular approximation (SR-ZORA). The performance of the new implementation is assessed on eight geometry and 74 energy benchmark sets, including the extensive GMTKN55 database as well as recent sets such as ROST61 and IONPI19. In geometry optimizations, the STO-based r2SCAN-3c is either on par with or more accurate than the hybrid density functional approximation M06-2X-D3(0)/TZP. In energy calculations, the overall accuracy is similar to the original implementation of r2SCAN-3c with Gaussian-type atomic orbitals (GTO), but basic properties, intermolecular noncovalent interactions, and barrier heights are better described with the STO approach, resulting in a lower weighted mean absolute deviation (WTMAD-2(STO) = 7.15 vs 7.50 kcal mol-1 with the original method) for the GMTKN55 database. The STO-optimized r2SCAN-3c outperforms many conventional hybrid/QZ approaches in most common applications at a fraction of their cost. The reliable, robust, and accurate r2SCAN-3c implementation with STOs is a promising alternative to the original implementation with GTOs and can be generally used for a broad field of quantum chemical problems.
Collapse
Affiliation(s)
- Thomas Gasevic
- Mulliken Center for Theoretical Chemistry, Universität Bonn, Beringstr. 4, D-53115 Bonn, Germany
| | - Julius B Stückrath
- Mulliken Center for Theoretical Chemistry, Universität Bonn, Beringstr. 4, D-53115 Bonn, Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Universität Bonn, Beringstr. 4, D-53115 Bonn, Germany
| | - Markus Bursch
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
181
|
Chan B. A step-by-step investigation of sodium chloride clusters: accurate references, assessment of low-cost methods, and convergence from molecule to salt. Mol Phys 2022. [DOI: 10.1080/00268976.2022.2088422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Bun Chan
- Graduate School of Engineering, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
182
|
Ehlert S, Grimme S, Hansen A. Conformational Energy Benchmark for Longer n-Alkane Chains. J Phys Chem A 2022; 126:3521-3535. [PMID: 35616628 DOI: 10.1021/acs.jpca.2c02439] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present the first benchmark set focusing on the conformational energies of highly flexible, long n-alkane chains, termed ACONFL. Unbranched alkanes are ubiquitous building blocks in nature, so the goal is to be able to calculate their properties most accurately to improve the modeling of, e.g., complex (biological) systems. Very accurate DLPNO-CCSD(T1)/CBS reference values are provided, which allow for a statistical meaningful evaluation of even the best available density functional methods. The performance of established and modern (dispersion corrected) density functionals is comprehensively assessed. The recently introduced r2SCAN-V functional shows excellent performance, similar to efficient composite DFT methods like B97-3c and r2SCAN-3c, which provide an even better cost-accuracy ratio, while almost reaching the accuracy of much more computationally demanding hybrid or double hybrid functionals with large QZ AO basis sets. In addition, we investigated the performance of common wave function methods, where MP2/CBS surprisingly performs worse compared to the simple D4 dispersion corrected Hartree-Fock. Furthermore, we investigate the performance of several semiempirical and force field methods, which are commonly used for the generation of conformational ensembles in multilevel workflows or in large scale molecular dynamics studies. Outstanding performance is obtained by the recently introduced general force field, GFN-FF, while other commonly applied methods like the universal force field yield large errors. We recommend the ACONFL as a helpful benchmark set for parametrization of new semiempirical or force field methods and machine learning potentials as well as a meaningful validation set for newly developed DFT or dispersion methods.
Collapse
Affiliation(s)
- Sebastian Ehlert
- Mulliken Center for Theoretical Chemistry, Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstrasse 4, 53115 Bonn, Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstrasse 4, 53115 Bonn, Germany
| | - Andreas Hansen
- Mulliken Center for Theoretical Chemistry, Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstrasse 4, 53115 Bonn, Germany
| |
Collapse
|
183
|
Quesada-Moreno MM, Fatima M, Medel R, Pérez C, Schnell M. Sniffing out camphor: the fine balance between hydrogen bonding and London dispersion in the chirality recognition with α-fenchol. Phys Chem Chem Phys 2022; 24:12849-12859. [PMID: 35532923 DOI: 10.1039/d2cp00308b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Binary complexes between the chiral monoterpenoids camphor and α-fenchol were explored with vibrational and rotational jet spectroscopy as well as density functional theory in order to explore how chirality can influence the binding preferences in gas-phase complexes. The global minimum structures of the two diastereomers were assigned. It is found that chirality recognition leads to different compromises in the fine balance between intermolecular interactions. While one isomer features a stronger hydrogen bond, the other one is more tightly arranged and stabilized by larger London dispersion interactions. These new spectroscopic results help understand the influence of chirality in molecular aggregation and unveil the kind of interactions involved between a chiral alcohol and a chiral ketone with large dispersion contributions.
Collapse
Affiliation(s)
- María Mar Quesada-Moreno
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany. .,Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, Avda. Fuentenueva s/n, 18071, Granada, Spain
| | - Mariyam Fatima
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany. .,I. Institute of Physics, Universität zu Köln, Zülpicher Straße 77, 50937 Köln, Germany
| | - Robert Medel
- Institut für Physikalische Chemie, Universität Göttingen, Tammannstr. 6, D-37077 Göttingen, Germany.
| | - Cristóbal Pérez
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany. .,Departamento de Química Física y Química Inorgánica, Facultad de Ciencias & I.U. CINQUIMA, Universidad de Valladolid, E-47011 Valladolid, Spain
| | - Melanie Schnell
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany. .,Christian-Albrechts-Universität zu Kiel, Institut für Physikalische Chemie, Max-Eyth-Straße 1, 24118 Kiel, Germany.
| |
Collapse
|
184
|
Jatrolignans C and D: New Neolignan Epimers from Jatropha curcas. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113540. [PMID: 35684476 PMCID: PMC9182123 DOI: 10.3390/molecules27113540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 05/24/2022] [Accepted: 05/30/2022] [Indexed: 11/25/2022]
Abstract
Two new neolignans jatrolignans, C (1) and D (2), a pair of epimers, were isolated from the whole plants of Jatropha curcas L. (Euphorbiaceae). Their structures were determined with HRESIMS, IR, and NMR data analysis, and electronic circular dichroism (ECD) experiments via a comparison of the experimental and the calculated ECD spectra. Their antichlamydial activity was evaluated in Chlamydia abortus. They both showed dose-dependent antichlamydial effects. Significant growth inhibitory effects were observed at a minimum concentration of 40 μM.
Collapse
|
185
|
Piskorz TK, Martí-Centelles V, Young TA, Lusby PJ, Duarte F. Computational Modeling of Supramolecular Metallo-organic Cages-Challenges and Opportunities. ACS Catal 2022; 12:5806-5826. [PMID: 35633896 PMCID: PMC9127791 DOI: 10.1021/acscatal.2c00837] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/09/2022] [Indexed: 01/18/2023]
Abstract
Self-assembled metallo-organic cages have emerged as promising biomimetic platforms that can encapsulate whole substrates akin to an enzyme active site. Extensive experimental work has enabled access to a variety of structures, with a few notable examples showing catalytic behavior. However, computational investigations of metallo-organic cages are scarce, not least due to the challenges associated with their modeling and the lack of accurate and efficient protocols to evaluate these systems. In this review, we discuss key molecular principles governing the design of functional metallo-organic cages, from the assembly of building blocks through binding and catalysis. For each of these processes, computational protocols will be reviewed, considering their inherent strengths and weaknesses. We will demonstrate that while each approach may have its own specific pitfalls, they can be a powerful tool for rationalizing experimental observables and to guide synthetic efforts. To illustrate this point, we present several examples where modeling has helped to elucidate fundamental principles behind molecular recognition and reactivity. We highlight the importance of combining computational and experimental efforts to speed up supramolecular catalyst design while reducing time and resources.
Collapse
Affiliation(s)
- Tomasz K. Piskorz
- Chemistry
Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, United
Kingdom
| | - Vicente Martí-Centelles
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Universitat
Politècnica de València, Universitat de València, Valencia 46022, Spain
| | - Tom A. Young
- Chemistry
Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, United
Kingdom
| | - Paul J. Lusby
- EaStCHEM
School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster
Road, Edinburgh, Scotland EH9 3FJ, United Kingdom
| | - Fernanda Duarte
- Chemistry
Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, United
Kingdom
| |
Collapse
|
186
|
Abstract
Currently, there is a substantial research effort to develop near-infrared fluorescent polymethine cyanine dyes for biological imaging and sensing. In water, cyanine dyes with extended conjugation are known to cross over the "cyanine limit" and undergo a symmetry breaking Peierls transition that favors an unsymmetric distribution of π-electron density and produces a broad absorption profile and low fluorescence brightness. This study shows how supramolecular encapsulation of a newly designed series of cationic, cyanine dyes by cucurbit[7]uril (CB7) can be used to alter the π-electron distribution within the cyanine chromophore. For two sets of dyes, supramolecular location of the surrounding CB7 over the center of the dye favors a nonpolar ground state, with a symmetric π-electron distribution that produces a sharpened absorption band with enhanced fluorescence brightness. The opposite supramolecular effect (i.e., broadened absorption and partially quenched fluorescence) is observed with a third set of dyes because the surrounding CB7 is located at one end of the encapsulated cyanine chromophore. From the perspective of enhanced near-infrared bioimaging and sensing in water, the results show how that the principles of host/guest chemistry can be employed to mitigate the "cyanine limit" problem.
Collapse
Affiliation(s)
- Dong-Hao Li
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556, United States
| | - Bradley D Smith
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556, United States
| |
Collapse
|
187
|
Zhao YR, Zou GA, Aisa HA. Guaianolides and unusual 3-oxa-guaianolides from Artemisia macrocephala. PHYTOCHEMISTRY 2022; 197:113108. [PMID: 35131640 DOI: 10.1016/j.phytochem.2022.113108] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/19/2022] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
Eight undescribed guaianolides (macrocephalolides A-H) and two known analogues (parishin C, artabsinolide E) were isolated from the whole plant of Artemisia macrocephala growing in Xinjiang, China. Their structures were determined on the basis of extensive spectroscopic analysis, with absolute configurations established by comparison of experimental and calculated ECD data, as well as confirmation of single-crystal X-ray diffraction crystallography. Macrocephalolides A-B featured an unusual type of 3-oxa-guaianolide with a cyclopentenone moiety. Macrocephalolides C-E possessed a dihydro-2H-pyran acetal segment, representing an unprecedented 2, 3-secoguaianolide skeleton with 6/7/5 tricyclic ring system in natural sesquiterpenes. The X-ray crystal structures of parishin C and artabsinolide E were reported for the first time.
Collapse
Affiliation(s)
- Yan-Rong Zhao
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization and the Key Laboratory of Plant Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China; University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Guo-An Zou
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization and the Key Laboratory of Plant Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China; University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| | - Haji Akber Aisa
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization and the Key Laboratory of Plant Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China; University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| |
Collapse
|
188
|
Chan B, Dawson W, Nakajima T. Searching for a Reliable Density Functional for Molecule-Environment Interactions, Found B97M-V/def2-mTZVP. J Phys Chem A 2022; 126:2397-2406. [PMID: 35390254 DOI: 10.1021/acs.jpca.2c02032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the present study, we have examined density functional theory methods for the calculation of the interaction energy between a small molecule and its environment. For simple systems such as a neutral solute in a neutral solvent, good accuracy can be attained using low-cost "3c" methods, in particular r2SCAN-3c. When part(s) of the system is charged, the accurate computation of the interactions is more challenging. In these cases, we find the B97M-V/def2-mTZVP method to agree well with reference values; it also shows good accuracy for the more straightforward neutral systems. Thus, B97M-V/def2-mTZVP provides a means for accurate and low-cost computation of interaction energies, notably the binding between a substrate or a drug molecule and an enzyme, which may facilitate rational drug design.
Collapse
Affiliation(s)
- Bun Chan
- Graduate School of Engineering, Nagasaki University, Bunkyo 1-14, Nagasaki 852-8521, Japan
| | - William Dawson
- RIKEN Center for Computational Science, 7-1-26, Minatojima-minami-machi, Chuo-ku, Kobe 650-0047, Japan
| | - Takahito Nakajima
- RIKEN Center for Computational Science, 7-1-26, Minatojima-minami-machi, Chuo-ku, Kobe 650-0047, Japan
| |
Collapse
|
189
|
Sahu K, Dutta J, Nayak S, Nayak P, Biswal HS, Kar S. Investigation of the Nature of Intermolecular Interactions in Tetra(thiocyanato)corrolato-Ag(III) Complexes: Agostic or Hydrogen Bonded? Inorg Chem 2022; 61:6539-6546. [PMID: 35442024 DOI: 10.1021/acs.inorgchem.2c00353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Tetra(thiocyanato)corrolato-Ag(III) complexes presented here constitute a new class of metallo-corrole complexes. The spectroscopic properties of these complexes are quite unusual and interesting. For example, the absorption spectra of these β-substituted corrolato-Ag(III) complexes are very different from those of the β-unsubstituted corrolato-Ag(III) derivatives. Single-crystal XRD analysis of a representative tetra(thiocyanato)corrolato-Ag(III) derivative reveals C-H···Ag interactions. The C-H···Ag interactions are rarely demonstrated in the crystal lattice of a discrete coordination/organometallic compound. Optimization of the hydrogen positions of the crystal structure discloses the geometrical parameters of the said interaction as a Ag···H distance of 2.597 Å and ∠C-H···Ag of 109.62°. The natural bond orbital analysis provides information about the donor-acceptor orbitals involved in the interactions and their interaction energies. It was observed that the σC-H orbital overlaps with the vacant d-orbital of Ag with an interaction energy of 17.93 kJ/mol. The filled d-orbital of Ag overlaps with the σ*C-H orbital with an interaction energy of 4.79 kJ/mol. The highlights of this work are that the H···Ag distance is outside of the distance range for the typical agostic interaction but fitted with the weak H-bond distance. However, the ∠C-H···Ag angle is within the range of the agostic interaction. Both crystallographic data and electronic structure calculations reveal that these kinds of intermolecular interactions in square-planar d8 Ag(III) complexes are intermediate in nature. Thus, they cannot be categorically called either hydrogen bonding or agostic interaction.
Collapse
Affiliation(s)
- Kasturi Sahu
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar 752050, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400 094, India
| | - Juhi Dutta
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar 752050, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400 094, India
| | - Srimoy Nayak
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar 752050, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400 094, India
| | - Panisha Nayak
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar 752050, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400 094, India
| | - Himansu S Biswal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar 752050, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400 094, India
| | - Sanjib Kar
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar 752050, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400 094, India
| |
Collapse
|
190
|
Altun A, Neese F, Bistoni G. Open-Shell Variant of the London Dispersion-Corrected Hartree-Fock Method (HFLD) for the Quantification and Analysis of Noncovalent Interaction Energies. J Chem Theory Comput 2022; 18:2292-2307. [PMID: 35167304 PMCID: PMC9009084 DOI: 10.1021/acs.jctc.1c01295] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The London dispersion
(LD)-corrected Hartree–Fock (HF) method
(HFLD) is an ab initio approach for the quantification
and analysis of noncovalent interactions (NCIs) in large systems that
is based on the domain-based local pair natural orbital coupled-cluster
(DLPNO-CC) theory. In the original HFLD paper, we discussed the implementation,
accuracy, and efficiency of its closed-shell variant. Herein, an extension
of this method to open-shell molecular systems is presented. Its accuracy
is tested on challenging benchmark sets for NCIs, using CCSD(T) energies
at the estimated complete basis set limit as reference. The HFLD scheme
was found to be as accurate as the best-performing dispersion-corrected
exchange-correlation functionals, while being nonempirical and equally
efficient. In addition, it can be combined with the well-established
local energy decomposition (LED) for the analysis of NCIs, thus yielding
additional physical insights.
Collapse
Affiliation(s)
- Ahmet Altun
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Giovanni Bistoni
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany.,Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy
| |
Collapse
|
191
|
Prasad VK, Otero-de-la-Roza A, DiLabio GA. Small-Basis Set Density-Functional Theory Methods Corrected with Atom-Centered Potentials. J Chem Theory Comput 2022; 18:2913-2930. [PMID: 35412817 DOI: 10.1021/acs.jctc.2c00036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Density functional theory (DFT) is currently the most popular method for modeling noncovalent interactions and thermochemistry. The accurate calculation of noncovalent interaction energies, reaction energies, and barrier heights requires choosing an appropriate functional and, typically, a relatively large basis set. Deficiencies of the density-functional approximation and the use of a limited basis set are the leading sources of error in the calculation of noncovalent and thermochemical properties in molecular systems. In this article, we present three new DFT methods based on the BLYP, M06-2X, and CAM-B3LYP functionals in combination with the 6-31G* basis set and corrected with atom-centered potentials (ACPs). ACPs are one-electron potentials that have the same form as effective-core potentials, except they do not replace any electrons. The ACPs developed in this work are used to generate energy corrections to the underlying DFT/basis-set method such that the errors in predicted chemical properties are minimized while maintaining the low computational cost of the parent methods. ACPs were developed for the elements H, B, C, N, O, F, Si, P, S, and Cl. The ACP parameters were determined using an extensive training set of 118655 data points, mostly of complete basis set coupled-cluster level quality. The target molecular properties for the ACP-corrected methods include noncovalent interaction energies, molecular conformational energies, reaction energies, barrier heights, and bond separation energies. The ACPs were tested first on the training set and then on a validation set of 42567 additional data points. We show that the ACP-corrected methods can predict the target molecular properties with accuracy close to complete basis set wavefunction theory methods, but at a computational cost of double-ζ DFT methods. This makes the new BLYP/6-31G*-ACP, M06-2X/6-31G*-ACP, and CAM-B3LYP/6-31G*-ACP methods uniquely suited to the calculation of noncovalent, thermochemical, and kinetic properties in large molecular systems.
Collapse
Affiliation(s)
- Viki Kumar Prasad
- Department of Chemistry, University of British Columbia, Okanagan, 3247 University Way, Kelowna, British Columbia V1V 1V7, Canada
| | - Alberto Otero-de-la-Roza
- Departamento de Química Física y Analítica, Facultad de Química, Universidad de Oviedo, MALTA Consolider Team, Oviedo E-33006, Spain
| | - Gino A DiLabio
- Department of Chemistry, University of British Columbia, Okanagan, 3247 University Way, Kelowna, British Columbia V1V 1V7, Canada
| |
Collapse
|
192
|
Jayapaul J, Komulainen S, Zhivonitko VV, Mareš J, Giri C, Rissanen K, Lantto P, Telkki VV, Schröder L. Hyper-CEST NMR of metal organic polyhedral cages reveals hidden diastereomers with diverse guest exchange kinetics. Nat Commun 2022; 13:1708. [PMID: 35361759 PMCID: PMC8971460 DOI: 10.1038/s41467-022-29249-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 03/03/2022] [Indexed: 01/04/2023] Open
Abstract
Guest capture and release are important properties of self-assembling nanostructures. Over time, a significant fraction of guests might engage in short-lived states with different symmetry and stereoselectivity and transit frequently between multiple environments, thereby escaping common spectroscopy techniques. Here, we investigate the cavity of an iron-based metal organic polyhedron (Fe-MOP) using spin-hyperpolarized 129Xe Chemical Exchange Saturation Transfer (hyper-CEST) NMR. We report strong signals unknown from previous studies that persist under different perturbations. On-the-fly delivery of hyperpolarized gas yields CEST signatures that reflect different Xe exchange kinetics from multiple environments. Dilute pools with ~ 104-fold lower spin numbers than reported for directly detected hyperpolarized nuclei are readily detected due to efficient guest turnover. The system is further probed by instantaneous and medium timescale perturbations. Computational modeling indicates that these signals originate likely from Xe bound to three Fe-MOP diastereomers (T, C3, S4). The symmetry thus induces steric effects with aperture size changes that tunes selective spin manipulation as it is employed in CEST MRI agents and, potentially, impacts other processes occurring on the millisecond time scale.
Collapse
Affiliation(s)
- Jabadurai Jayapaul
- Molecular Imaging, Department of Structural Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125, Berlin, Germany
- Division of Translational Molecular Imaging, Deutsches Krebsforschungszentrum (DKFZ), 69120, Heidelberg, Germany
| | | | | | - Jiří Mareš
- NMR Research Unit, University of Oulu, 90014, Oulu, Finland
- Research Unit of Medical Imaging, Physics and Technology (MIPT), University of Oulu, 90014, Oulu, Finland
| | - Chandan Giri
- University of Jyvaskyla, Department of Chemistry, 40014, Jyväskylä, Finland
| | - Kari Rissanen
- University of Jyvaskyla, Department of Chemistry, 40014, Jyväskylä, Finland
| | - Perttu Lantto
- NMR Research Unit, University of Oulu, 90014, Oulu, Finland.
| | | | - Leif Schröder
- Molecular Imaging, Department of Structural Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125, Berlin, Germany.
- Division of Translational Molecular Imaging, Deutsches Krebsforschungszentrum (DKFZ), 69120, Heidelberg, Germany.
| |
Collapse
|
193
|
Soyemi A, Szilvási T. Benchmarking Semiempirical QM Methods for Calculating the Dipole Moment of Organic Molecules. J Phys Chem A 2022; 126:1905-1921. [PMID: 35290045 DOI: 10.1021/acs.jpca.1c10144] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The dipole moment is a simple descriptor of the charge distribution and polarity and is important for understanding and predicting various molecular properties. Semiempirical (SE) methods offer a cost-effective way to calculate dipole moment that can be used in high-throughput screening applications although the accuracy of the methods is still in question. Therefore, we have evaluated AM1, GFN0-xTB, GFN1-xTB, GFN2-xTB, PM3, PM6, PM7, B97-3c, HF-3c, and PBEh-3c SE methods, which cover a variety of SE approximations, to directly assess the performance of SE methods in predicting molecular dipole moments and their directions using 7211 organic molecules contained in the QM7b database. We find that B97-3c and PBEh-3c perform best against coupled-cluster reference values yielding dipole moments with a mean absolute error (MAE) of 0.10 and 0.11 D, respectively, which is similar to the MAE of density functional theory (DFT) methods (∼0.1 D) reported earlier. Analysis of the atomic composition shows that all SE methods show good performance for hydrocarbons for which the spread of error was within 1 D of the reference data, while the worst performances are for sulfur-containing compounds for which only B97-3c and PBEh-3c show acceptable performance. We also evaluate the effect of SE optimized geometry, instead of the benchmark DFT geometry, that shows a dramatic drop in the performance of AM1 and PM3 for which the range of error tripled. Based on our overall findings, we highlight that there is an optimal compromise between accuracy and computational cost using GFN2-xTB (MAE: 0.25 D) that is 3 orders of magnitude faster than B97-3c and PBEh-3c. Thus, we recommend using GFN2-xTB for cost-efficient calculation of the dipole moment of organic molecules containing C, H, O, and N atoms, whereas, for sulfur-containing organic molecules, we suggest PBEh-3c.
Collapse
Affiliation(s)
- Ademola Soyemi
- Department of Chemical and Biological Engineering, University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Tibor Szilvási
- Department of Chemical and Biological Engineering, University of Alabama, Tuscaloosa, Alabama 35487, United States
| |
Collapse
|
194
|
Katsyuba SA, Zvereva EE. What quantum chemical simulations tell us about the infrared spectra, structure and interionic interactions of a bulk ionic liquid. Phys Chem Chem Phys 2022; 24:7349-7355. [PMID: 35266472 DOI: 10.1039/d1cp05745f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The recently developed efficient protocol to explicit quantum mechanical modeling of the structure and IR spectra of liquids and solutions [Katsyuba et al., J. Phys. Chem. B, 2020, 124, 6664-6670] is applied to ionic liquid 1-ethyl-3-methyl-imidazolium tetrafluoroborate [Emim][BF4], and its C2-deuterated analog [Emim-d][BF4]. It is shown that the solvation strongly modifies the frequencies and IR intensities of both cationic and anionic components of the ionic liquids. The main features of the bulk spectra are reproduced by the simulations for cluster ([Emim][BF4])8, representing an ion pair solvated by the first solvation shell. The geometry of the cluster closely resembles the solid-state structure of the actual ionic liquid and is characterized by short contacts of all CH moieties of the imidazolium ring with [BF4]- anions. Both structural and spectroscopic analyses allow the contacts to be interpreted as hydrogen bonds of approximately equal strength. The enthalpies of these liquid-state H-bonds, estimated with the use of empirical correlations, amount to 1.2-1.5 kcal mol-1, while the analogous estimates obtained for the gas-phase charged species [Emim][BF4]2- and [Emim]2[BF4]+ increase to 3.6-3.9 kcal mol-1.
Collapse
Affiliation(s)
- Sergey A Katsyuba
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Centre of RAS, Arbuzov st. 8, 420088, Kazan, Russia.
| | - Elena E Zvereva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Centre of RAS, Arbuzov st. 8, 420088, Kazan, Russia. .,IFP Energies Nouvelles, 1 et 4 avenue de Bois-Préau, 92852 Rueil-Malmaison Cedex, France
| |
Collapse
|
195
|
Kawano SI, Nakaya M, Saitow M, Ishiguro A, Yanai T, Onoe J, Tanaka K. Thermally Stable Array of Discrete C 60s on a Two-Dimensional Crystalline Adlayer of Macrocycles both in Vacuo and under Ambient Pressure. J Am Chem Soc 2022; 144:6749-6758. [PMID: 35315659 DOI: 10.1021/jacs.1c13610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A periodic monolayer array of discrete C60s was generated on an atomically flat Au(111) surface with the aid of a template adlayer. The template was a two-dimensional (2D) array of molecular pits prepared on an Au(111) surface through 2D crystallization of shape-persistent macrocycles composed of four carbazole and four salphens/Ni-salphens with a 1 nm hollow. Scanning tunneling microscopy imaging under ultra-high vacuum revealed that the square-shaped macrocycles, with 1.5 nm sides, were arranged with a periodic spacing of approximately 4.0 nm on the Au(111) surface, where the orientation and periodicity of the macrocycles were dependent on their chemical structures. After sublimation of C60s onto the adlayer, a single C60 molecule was entrapped in each pit, and an ordered molecular array of C60s was attained with a pattern similar to that of the macrocycles. The periodic pattern of C60s on the surface was thermally stable up to approximately 200 °C, even under ambient pressure. Scanning tunneling spectroscopy suggested the existence of an electronic interaction between the C60s and the Au(111) surface that was influenced by the macrocycle template on the surface.
Collapse
Affiliation(s)
- Shin-Ichiro Kawano
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Masato Nakaya
- Department of Energy Science and Engineering, Graduate School of Engineering, Nagoya University, Chikusa, Nagoya 464-8603, Japan
| | - Masaaki Saitow
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Atsuki Ishiguro
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Takeshi Yanai
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan.,Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Jun Onoe
- Department of Energy Science and Engineering, Graduate School of Engineering, Nagoya University, Chikusa, Nagoya 464-8603, Japan
| | - Kentaro Tanaka
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| |
Collapse
|
196
|
Prasad VK, Otero-de-la-Roza A, DiLabio GA. Fast and Accurate Quantum Mechanical Modeling of Large Molecular Systems Using Small Basis Set Hartree-Fock Methods Corrected with Atom-Centered Potentials. J Chem Theory Comput 2022; 18:2208-2232. [PMID: 35313106 DOI: 10.1021/acs.jctc.1c01128] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
There has been significant interest in developing fast and accurate quantum mechanical methods for modeling large molecular systems. In this work, by utilizing a machine learning regression technique, we have developed new low-cost quantum mechanical approaches to model large molecular systems. The developed approaches rely on using one-electron Gaussian-type functions called atom-centered potentials (ACPs) to correct for the basis set incompleteness and the lack of correlation effects in the underlying minimal or small basis set Hartree-Fock (HF) methods. In particular, ACPs are proposed for ten elements common in organic and bioorganic chemistry (H, B, C, N, O, F, Si, P, S, and Cl) and four different base methods: two minimal basis sets (MINIs and MINIX) plus a double-ζ basis set (6-31G*) in combination with dispersion-corrected HF (HF-D3/MINIs, HF-D3/MINIX, HF-D3/6-31G*) and the HF-3c method. The new ACPs are trained on a very large set (73 832 data points) of noncovalent properties (interaction and conformational energies) and validated additionally on a set of 32 048 data points. All reference data are of complete basis set coupled-cluster quality, mostly CCSD(T)/CBS. The proposed ACP-corrected methods are shown to give errors in the tenths of a kcal/mol range for noncovalent interaction energies and up to 2 kcal/mol for molecular conformational energies. More importantly, the average errors are similar in the training and validation sets, confirming the robustness and applicability of these methods outside the boundaries of the training set. In addition, the performance of the new ACP-corrected methods is similar to complete basis set density functional theory (DFT) but at a cost that is orders of magnitude lower, and the proposed ACPs can be used in any computational chemistry program that supports effective-core potentials without modification. It is also shown that ACPs improve the description of covalent and noncovalent bond geometries of the underlying methods and that the improvement brought about by the application of the ACPs is directly related to the number of atoms to which they are applied, allowing the treatment of systems containing some atoms for which ACPs are not available. Overall, the ACP-corrected methods proposed in this work constitute an alternative accurate, economical, and reliable quantum mechanical approach to describe the geometries, interaction energies, and conformational energies of systems with hundreds to thousands of atoms.
Collapse
Affiliation(s)
- Viki Kumar Prasad
- Department of Chemistry, University of British Columbia, Okanagan, 3247 University Way, Kelowna, British Columbia, Canada V1V 1V7
| | - Alberto Otero-de-la-Roza
- MALTA Consolider Team, Departamento de Química Física y Analítica, Facultad de Química, Universidad de Oviedo, E-33006 Oviedo, Spain
| | - Gino A DiLabio
- Department of Chemistry, University of British Columbia, Okanagan, 3247 University Way, Kelowna, British Columbia, Canada V1V 1V7
| |
Collapse
|
197
|
Tarzia A, Jelfs KE. Unlocking the computational design of metal-organic cages. Chem Commun (Camb) 2022; 58:3717-3730. [PMID: 35229861 PMCID: PMC8932387 DOI: 10.1039/d2cc00532h] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 02/22/2022] [Indexed: 12/11/2022]
Abstract
Metal-organic cages are macrocyclic structures that can possess an intrinsic void that can hold molecules for encapsulation, adsorption, sensing, and catalysis applications. As metal-organic cages may be comprised from nearly any combination of organic and metal-containing components, cages can form with diverse shapes and sizes, allowing for tuning toward targeted properties. Therefore, their near-infinite design space is almost impossible to explore through experimentation alone and computational design can play a crucial role in exploring new systems. Although high-throughput computational design and screening workflows have long been known as powerful tools in drug and materials discovery, their application in exploring metal-organic cages is more recent. We show examples of structure prediction and host-guest/catalytic property evaluation of metal-organic cages. These examples are facilitated by advances in methods that handle metal-containing systems with improved accuracy and are the beginning of the development of automated cage design workflows. We finally outline a scope for how high-throughput computational methods can assist and drive experimental decisions as the field pushes toward functional and complex metal-organic cages. In particular, we highlight the importance of considering realistic, flexible systems.
Collapse
Affiliation(s)
- Andrew Tarzia
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, Wood Lane, London, W12 0BZ, UK.
| | - Kim E Jelfs
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, Wood Lane, London, W12 0BZ, UK.
| |
Collapse
|
198
|
Structural, Electronic, and Charge Transport Properties of New Materials based on 2-(5-Mercapto-1,3,4-Oxadiazol-2-yl) Phenol for Organic Solar Cells and Light Emitting Diodes by DFT and TD-DFT. J CHEM-NY 2022. [DOI: 10.1155/2022/1802826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This work reports on the density functional theory (DFT) and its time-dependent extension (TD-DFT) study of the structural, electronic, and charge transport properties of 2-(5-mercapto-1,3,4-oxadiazol-2-yl) phenol (MODP) and some of its transition M2+ complexes (M = Fe, Co, Cu, Ni, Zn, Pd, Pt). Reorganization energy, integral charge transfer, mobility, open circuit voltage, and electronic properties of these compounds have been calculated by employing the global hybrid functional PBE0 in conjunction with the Karlsruhe basis set def2-TZVP. Results show that MODP and its transition metal complexes are good electron donors for organic solar cells (OSC) owing to their relatively higher HOMO and LUMO energies compared to the prototypical (6, 6)-phenyl-C61-butyric acid methyl ester (PCBM). Energy gaps ranging between 2.502 and 4.455 eV, energy driving forces (∆EL-L) ranging between 2.08 and 2.44 eV, and large open circuit voltages (
) ranging from 1.12 to 2.05 eV were obtained. The results also revealed that MODP and its Pd(II) and Pt(II) complexes could serve as ambipolar charge transport materials owing to their very small reorganization energies, integral charge transfers, high rate charge transfers, and mobilities. All studied molecules showed OSC donor and hole/electron transport characteristics required by organic light-emitting diodes (OLEDs). Based on these results, new ways for designing charge transport materials for OLEDs as well as donor materials in OSCs are proposed.
Collapse
|
199
|
Abarbanel OD, Rozon J, Hutchison GR. Strategies for Computer-Aided Discovery of Novel Open-Shell Polymers. J Phys Chem Lett 2022; 13:2158-2164. [PMID: 35226497 DOI: 10.1021/acs.jpclett.2c00509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Organic π-conjugated polymers with a triplet ground state have been the focus of recent research for their interesting and unique electronic properties, arising from the presence of the two unpaired electrons. These compounds are usually built from alternating electron-donating and electron-accepting monomer pairs which lower the HOMO-LUMO gap and yield a triplet state instead of the typical singlet ground state. In this paper, we use density functional theory calculations to explore the design rules that govern the creation of a ground-state triplet conjugated polymer and find that a small HOMO-LUMO gap in the singlet state is the best predictor for the existence of a triplet ground state, compared to previous use of a pro-quinoidal bonding character. This work can accelerate the discovery of new stable triplet materials by reducing the computational resources needed for electronic-state calculations and the number of potential candidates for synthesis.
Collapse
Affiliation(s)
- Omri D Abarbanel
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Julisa Rozon
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Geoffrey R Hutchison
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
200
|
Engsvang M, Elm J. Modeling the Binding Free Energy of Large Atmospheric Sulfuric Acid-Ammonia Clusters. ACS OMEGA 2022; 7:8077-8083. [PMID: 35284723 PMCID: PMC8908776 DOI: 10.1021/acsomega.1c07303] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
Sulfuric acid and ammonia are believed to account for a large fraction of new-particle formation in the atmosphere. However, it remains unclear how small clusters grow to larger sizes, eventually ending up as stable aerosol particles. Here we present the largest sulfuric acid-ammonia clusters studied to date using quantum chemical methods by calculating the binding free energies of (SA) n (A) n clusters, with n up to 20. Based on benchmark calculations, we apply the B97-3c//GFN1-xTB level of theory to calculate the cluster structures and thermochemical parameters. We find that the cluster structures drastically evolve at larger sizes. We identify that an ammonium ion is fully coordinated in the core of the cluster at n = 7, and at n = 13 we see the emergence of the first fully coordinated bisulfate ion. We identify multiple ammonium and bisulfate ions that are embedded in the core of the cluster structure at n = 19. The binding free energy per acid-base pair levels out around n = 8-10, indicating that at a certain point the thermochemistry of the clusters converges toward a constant value.
Collapse
|