151
|
Kessler SA, Shimosato-Asano H, Keinath NF, Wuest SE, Ingram G, Panstruga R, Grossniklaus U. Conserved molecular components for pollen tube reception and fungal invasion. Science 2010; 330:968-71. [PMID: 21071669 DOI: 10.1126/science.1195211] [Citation(s) in RCA: 279] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
During sexual reproduction in flowering plants such as Arabidopsis, a tip-growing pollen tube (PT) is guided to the synergid cells of the female gametophyte, where it bursts and releases the two sperm. Here we show that PT reception and powdery mildew (PM) infection, which involves communication between a tip-growing hypha and a plant epidermal cell, share molecular components. NORTIA (NTA), a member of the MLO family originally discovered in the context of PM resistance, and FERONIA (FER), a receptor-like kinase, both control PT reception in synergids. Homozygous fer mutants also display PM resistance, revealing a new function for FER and suggesting that conserved components, such as FER and distinct MLO proteins, are involved in both PT reception and PM infection.
Collapse
Affiliation(s)
- Sharon A Kessler
- Institute of Plant Biology and Zürich Basel Plant Science Center, University of Zürich, Zollikerstrasse 107, CH-8008 Zürich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
152
|
Mongrand S, Stanislas T, Bayer EMF, Lherminier J, Simon-Plas F. Membrane rafts in plant cells. TRENDS IN PLANT SCIENCE 2010; 15:656-63. [PMID: 20934367 DOI: 10.1016/j.tplants.2010.09.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 09/03/2010] [Accepted: 09/08/2010] [Indexed: 05/04/2023]
Abstract
Over the past five years, the structure, composition and possible functions of membrane raft-like domains on plant plasma membranes (PM) have been described. Proteomic analyses have indicated that a high proportion of proteins associated with detergent-insoluble membranes (DIMs), supposed to contain raft-like domains isolated from the PM, might be involved in signalling pathways. Recently, the dynamic association of specific proteins with the DIM fraction upon environmental stress has been reported. Innovative imaging methods have shown that lateral segregation of lipids and proteins exists at the nanoscale level in the plant PM, correlating detergent insolubility and membrane-domain localization of presumptive raft proteins. These data suggest a role for plant rafts as signal transduction platforms, similar to those documented for mammalian cells.
Collapse
Affiliation(s)
- Sébastien Mongrand
- Laboratoire de Biogenèse Membranaire, Unité Mixte de Recherche 5200 (UMR 5200) Centre National de la Recherche Scientifique (CNRS)-Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France
| | | | | | | | | |
Collapse
|
153
|
Leborgne-Castel N, Adam T, Bouhidel K. Endocytosis in plant-microbe interactions. PROTOPLASMA 2010; 247:177-93. [PMID: 20814704 DOI: 10.1007/s00709-010-0195-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Accepted: 08/04/2010] [Indexed: 05/10/2023]
Abstract
Plants encounter throughout their life all kinds of microorganisms, such as bacteria, fungi, or oomycetes, with either friendly or unfriendly intentions. During evolution, plants have developed a wide range of defense mechanisms against attackers. In return, adapted microbes have developed strategies to overcome the plant lines of defense, some of these microbes engaging in mutualistic or parasitic endosymbioses. By sensing microbe presence and activating signaling cascades, the plasma membrane through its dynamics plays a crucial role in the ongoing molecular dialogue between plants and microbes. This review describes the contribution of endocytosis to different aspects of plant-microbe interactions, microbe recognition and development of a basal immune response, and colonization of plant cells by endosymbionts. The putative endocytic routes for the entry of microbe molecules or microbes themselves are explored with a special emphasis on clathrin-mediated endocytosis. Finally, we evaluate recent findings that suggest a link between the compartmentalization of plant plasma membrane into microdomains and endocytosis.
Collapse
Affiliation(s)
- Nathalie Leborgne-Castel
- UMR Plante-Microbe-Environnement 1088 INRA/5184 CNRS/Université de Bourgogne, 17 Rue Sully, BP 86510, 21065 Dijon Cedex, France.
| | | | | |
Collapse
|
154
|
Affiliation(s)
- Francine Govers
- Laboratory of Phytopathology, Wageningen University, 1-6708 PB Wageningen, Netherlands
- Centre for BioSystems Genomics (CBSG), 98-6700 AB Wageningen, Netherlands
| | - Gerco C. Angenent
- Laboratory of Molecular Biology, Wageningen University, 1-6708 PB Wageningen, Netherlands
- Business Unit Bioscience, Plant Research International, 16-6700 AA Wageningen, Netherlands
- Centre for BioSystems Genomics (CBSG), 98-6700 AB Wageningen, Netherlands
| |
Collapse
|
155
|
Salomon S, Grunewald D, Stüber K, Schaaf S, MacLean D, Schulze-Lefert P, Robatzek S. High-throughput confocal imaging of intact live tissue enables quantification of membrane trafficking in Arabidopsis. PLANT PHYSIOLOGY 2010; 154:1096-104. [PMID: 20841454 PMCID: PMC2971591 DOI: 10.1104/pp.110.160325] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 09/13/2010] [Indexed: 05/19/2023]
Abstract
Membrane compartmentalization and trafficking within and between cells is considered an essential cellular property of higher eukaryotes. We established a high-throughput imaging method suitable for the quantitative detection of membrane compartments at subcellular resolution in intact epidermal tissue. Whole Arabidopsis (Arabidopsis thaliana) cotyledon leaves were subjected to quantitative confocal laser microscopy using automated image acquisition, computational pattern recognition, and quantification of membrane compartments. This revealed that our method is sensitive and reliable to detect distinct endomembrane compartments. We applied quantitative confocal laser microscopy to a transgenic line expressing GFP-2xFYVE as a marker for endosomal compartments during biotic or abiotic stresses, and detected markedly quantitative adaptations in response to changing environments. Using a transgenic line expressing the plasma membrane-resident syntaxin GFP-PEN1, we quantified the pathogen-inducible extracellular accumulation of this fusion protein at fungal entry sites. Our protocol provides a platform to study the quantitative and dynamic changes of endomembrane trafficking, and potential adaptations of this machinery to physiological stress.
Collapse
|
156
|
Böhlenius H, Mørch SM, Godfrey D, Nielsen ME, Thordal-Christensen H. The multivesicular body-localized GTPase ARFA1b/1c is important for callose deposition and ROR2 syntaxin-dependent preinvasive basal defense in barley. THE PLANT CELL 2010; 22:3831-44. [PMID: 21057060 PMCID: PMC3015129 DOI: 10.1105/tpc.110.078063] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 09/23/2010] [Accepted: 10/24/2010] [Indexed: 05/18/2023]
Abstract
Host cell vesicle traffic is essential for the interplay between plants and microbes. ADP-ribosylation factor (ARF) GTPases are required for vesicle budding, and we studied the role of these enzymes to identify important vesicle transport pathways in the plant-powdery mildew interaction. A combination of transient-induced gene silencing and transient expression of inactive forms of ARF GTPases provided evidence that barley (Hordeum vulgare) ARFA1b/1c function is important for preinvasive penetration resistance against powdery mildew, manifested by formation of a cell wall apposition, named a papilla. Mutant studies indicated that the plasma membrane-localized REQUIRED FOR MLO-SPECIFIED RESISTANCE2 (ROR2) syntaxin, also important for penetration resistance, and ARFA1b/1c function in the same vesicle transport pathway. This was substantiated by a requirement of ARFA1b/1c for ROR2 accumulation in the papilla. ARFA1b/1c is localized to multivesicular bodies, providing a functional link between ROR2 and these organelles in penetration resistance. During Blumeria graminis f sp hordei penetration attempts, ARFA1b/1c-positive multivesicular bodies assemble near the penetration site hours prior to the earliest detection of callose in papillae. Moreover, we showed that ARFA1b/1c is required for callose deposition in papillae and that the papilla structure is established independently of ARFA1b/1c. This raises the possibility that callose is loaded into papillae via multivesicular bodies, rather than being synthesized directly into this cell wall apposition.
Collapse
Affiliation(s)
| | | | | | | | - Hans Thordal-Christensen
- Department of Agriculture and Ecology, Faculty of Life Sciences, University of Copenhagen, 1871 Frederiksberg C, Copenhagen, Denmark
| |
Collapse
|
157
|
The CC-NB-LRR-type Rdg2a resistance gene confers immunity to the seed-borne barley leaf stripe pathogen in the absence of hypersensitive cell death. PLoS One 2010; 5. [PMID: 20844752 PMCID: PMC2937021 DOI: 10.1371/journal.pone.0012599] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Accepted: 08/12/2010] [Indexed: 01/04/2023] Open
Abstract
Background Leaf stripe disease on barley (Hordeum vulgare) is caused by the seed-transmitted hemi-biotrophic fungus Pyrenophora graminea. Race-specific resistance to leaf stripe is controlled by two known Rdg (Resistance to Drechslera graminea) genes: the H. spontaneum-derived Rdg1a and Rdg2a, identified in H. vulgare. The aim of the present work was to isolate the Rdg2a leaf stripe resistance gene, to characterize the Rdg2a locus organization and evolution and to elucidate the histological bases of Rdg2a-based leaf stripe resistance. Principal Findings We describe here the positional cloning and functional characterization of the leaf stripe resistance gene Rdg2a. At the Rdg2a locus, three sequence-related coiled-coil, nucleotide-binding site, and leucine-rich repeat (CC-NB-LRR) encoding genes were identified. Sequence comparisons suggested that paralogs of this resistance locus evolved through recent gene duplication, and were subjected to frequent sequence exchange. Transformation of the leaf stripe susceptible cv. Golden Promise with two Rdg2a-candidates under the control of their native 5′ regulatory sequences identified a member of the CC-NB-LRR gene family that conferred resistance against the Dg2 leaf stripe isolate, against which the Rdg2a-gene is effective. Histological analysis demonstrated that Rdg2a-mediated leaf stripe resistance involves autofluorescing cells and prevents pathogen colonization in the embryos without any detectable hypersensitive cell death response, supporting a cell wall reinforcement-based resistance mechanism. Conclusions This work reports about the cloning of a resistance gene effective against a seed borne disease. We observed that Rdg2a was subjected to diversifying selection which is consistent with a model in which the R gene co-evolves with a pathogen effector(s) gene. We propose that inducible responses giving rise to physical and chemical barriers to infection in the cell walls and intercellular spaces of the barley embryo tissues represent mechanisms by which the CC-NB-LRR-encoding Rdg2a gene mediates resistance to leaf stripe in the absence of hypersensitive cell death.
Collapse
|
158
|
Eichmann R, Bischof M, Weis C, Shaw J, Lacomme C, Schweizer P, Duchkov D, Hensel G, Kumlehn J, Hückelhoven R. BAX INHIBITOR-1 is required for full susceptibility of barley to powdery mildew. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:1217-27. [PMID: 20687811 DOI: 10.1094/mpmi-23-9-1217] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
BAX INHIBITOR-1 (BI-1) is one of the few proteins known to have cross-kingdom conserved functions in negative control of programmed cell death. Additionally, barley BI-1 (HvBI-1) suppresses defense responses and basal resistance to the powdery mildew fungus Blumeria graminis f. sp. hordei and enhances resistance to cell death-provoking fungi when overexpressed in barley. Downregulation of HvBI-1 by transient-induced gene silencing or virus-induced gene silencing limited susceptibility to B. graminis f. sp. hordei, suggesting that HvBI-1 is a susceptibility factor toward powdery mildew. Transient silencing of BI-1 did not limit supersusceptibility induced by overexpression of MLO. Transgenic barley plants harboring an HvBI-1 RNA interference (RNAi) construct displayed lower levels of HvBI-1 transcripts and were less susceptible to powdery mildew than wild-type plants. At the cellular level, HvBI-1 RNAi plants had enhanced resistance to penetration by B. graminis f. sp. hordei. These data support a function of BI-1 in modulating cell-wall-associated defense and in establishing full compatibility of B. graminis f. sp. hordei with barley.
Collapse
Affiliation(s)
- Ruth Eichmann
- Lehrstuhl für Phytopathologie, Technische Universität München, Emil-Ramann-Strasse 2, D-85350 Freising-Weihenstephan, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
159
|
Chen F, Gao MJ, Miao YS, Yuan YX, Wang MY, Li Q, Mao BZ, Jiang LW, He ZH. Plasma membrane localization and potential endocytosis of constitutively expressed XA21 proteins in transgenic rice. MOLECULAR PLANT 2010; 3:917-26. [PMID: 20616165 DOI: 10.1093/mp/ssq038] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The rice pattern recognition receptor (PRR) XA21 confers race-specific resistance in leaf infection by bacterial blight Xathomonas oryzae pv. oryzae (Xoo), and was shown to be primarily localized to the endoplasmic reticulum (ER) when expressed with its native promoter or overexpressed in the protoplast. However, whether the protein is still ER-localization in the intact cell when overexpressed remains to be identified. Here, we showed that XA21, its kinase-dead mutant XA21P(K736EP), and the triple autophosphorylation mutant XA21P(S686A/T688A/S699A) GFP fusions were primarily localized to the plasma membrane (PM) when overexpressed in the intact transgenic rice cell, and also localized to the ER in the transgenic protoplast. The transgenic plants constitutively expressing the wild-type XA21 or its GFP fusion displayed race-specific resistance to Xoo at the adult and seedling stages. XA21 and XA21P(K736EP) could be internalized probably via the SCAMP-positive early endosomal compartment in the protoplast, suggesting that XA21 might be endocytosed to initiate resistance responses during pathogen infection. We also established a root infection system and demonstrated that XA21 also mediated race-specific resistance responses to Xoo in the root. Our current study provides an insight into the nature of the XA21-mediated resistance and a practical approach using the root cell system to further dissect the cellular signaling of the PRR during the rice-Xoo interaction.
Collapse
Affiliation(s)
- Fang Chen
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Marsh E, Alvarez S, Hicks LM, Barbazuk WB, Qiu W, Kovacs L, Schachtman D. Changes in protein abundance during powdery mildew infection of leaf tissues of Cabernet Sauvignon grapevine (Vitis vinifera L.). Proteomics 2010; 10:2057-64. [PMID: 20232356 DOI: 10.1002/pmic.200900712] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A comparative analysis of differentially expressed proteins in a susceptible grapevine (Vitis vinifera 'Cabernet Sauvignon') during the infection of Erysiphe necator, the causal pathogen of grapevine powdery mildew (PM), was conducted using iTRAQ. The quantitative labeling analysis revealed 63 proteins that significantly changed in abundance at 24, 36, 48, and 72 h post inoculation with powdery mildew conidiospores. The functional classification of the PM-responsive proteins showed that they are involved in photosynthesis, metabolism, disease/defense, protein destination, and protein synthesis. A number of the proteins induced in grapevine in response to E. necator are associated with the plant defense response, suggesting that PM-susceptible Cabernet Sauvignon is able to initiate a basal defense but unable to restrict fungal growth or slow down disease progression.
Collapse
Affiliation(s)
- Ellen Marsh
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | | | | | | | | | | | | |
Collapse
|
161
|
Griebel T, Zeier J. A role for beta-sitosterol to stigmasterol conversion in plant-pathogen interactions. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 63:254-268. [PMID: 20444228 DOI: 10.1111/j.1365-313x.2010.04235.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Upon inoculation with pathogenic microbes, plants induce an array of metabolic changes that potentially contribute to induced resistance or even enhance susceptibility. When analysing leaf lipid composition during the Arabidopsis thaliana-Pseudomonas syringae interaction, we found that accumulation of the phytosterol stigmasterol is a significant plant metabolic process that occurs upon bacterial leaf infection. Stigmasterol is synthesized from beta-sitosterol by the cytochrome P450 CYP710A1 via C22 desaturation. Arabidopsis cyp710A1 mutant lines impaired in pathogen-inducible expression of the C22 desaturase and concomitant stigmasterol accumulation are more resistant to both avirulent and virulent P. syringae strains than wild-type plants, and exogenous application of stigmasterol attenuates this resistance phenotype. These data indicate that induced sterol desaturation in wild-type plants favours pathogen multiplication and plant susceptibility. Stigmasterol formation is triggered through perception of pathogen-associated molecular patterns such as flagellin and lipopolysaccharides, and through production of reactive oxygen species, but does not depend on the salicylic acid, jasmonic acid or ethylene defence pathways. Isolated microsomal and plasma membrane preparations exhibited a similar increase in the stigmasterol/beta-sitosterol ratio as whole-leaf extracts after leaf inoculation with P. syringae, indicating that the stigmasterol produced is incorporated into plant membranes. The increased contents of stigmasterol in leaves after pathogen attack do not influence salicylic acid-mediated defence signalling but attenuate pathogen-induced expression of the defence regulator flavin-dependent monooxygenase 1. P. syringae thus promotes plant disease susceptibility through stimulation of sterol C22 desaturation in leaves, which increases the stigmasterol to beta-sitosterol ratio in plant membranes.
Collapse
Affiliation(s)
- Thomas Griebel
- Julius-von-Sachs-Institute of Biological Sciences, University of Würzburg, Julius-von-Sachs Platz 3, D-97082 Würzburg, Germany
| | - Jürgen Zeier
- Department of Biology, Plant Biology Section, University of Fribourg, Route Albert Gockel 3, CH-1700 Fribourg, Switzerland
| |
Collapse
|
162
|
Furt F, König S, Bessoule JJ, Sargueil F, Zallot R, Stanislas T, Noirot E, Lherminier J, Simon-Plas F, Heilmann I, Mongrand S. Polyphosphoinositides are enriched in plant membrane rafts and form microdomains in the plasma membrane. PLANT PHYSIOLOGY 2010; 152:2173-87. [PMID: 20181756 PMCID: PMC2850013 DOI: 10.1104/pp.109.149823] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Accepted: 02/12/2010] [Indexed: 05/18/2023]
Abstract
In this article, we analyzed the lipid composition of detergent-insoluble membranes (DIMs) purified from tobacco (Nicotiana tabacum) plasma membrane (PM), focusing on polyphosphoinositides, lipids known to be involved in various signal transduction events. Polyphosphoinositides were enriched in DIMs compared with whole PM, whereas all structural phospholipids were largely depleted from this fraction. Fatty acid composition analyses suggest that enrichment of polyphosphoinositides in DIMs is accompanied by their association with more saturated fatty acids. Using an immunogold-electron microscopy strategy, we were able to visualize domains of phosphatidylinositol 4,5-bisphosphate in the plane of the PM, with 60% of the epitope found in clusters of approximately 25 nm in diameter and 40% randomly distributed at the surface of the PM. Interestingly, the phosphatidylinositol 4,5-bisphosphate cluster formation was not significantly sensitive to sterol depletion induced by methyl-beta-cyclodextrin. Finally, we measured the activities of various enzymes of polyphosphoinositide metabolism in DIMs and PM and showed that these activities are present in the DIM fraction but not enriched. The putative role of plant membrane rafts as signaling membrane domains or membrane-docking platforms is discussed.
Collapse
|
163
|
Harris MO, Freeman TP, Moore JA, Anderson KG, Payne SA, Anderson KM, Rohfritsch O. H-gene-mediated resistance to Hessian fly exhibits features of penetration resistance to fungi. PHYTOPATHOLOGY 2010; 100:279-289. [PMID: 20128702 DOI: 10.1094/phyto-100-3-0279] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Features shared by host-specific phytophagous insects and biotrophic plant pathogens include gene-for-gene interactions and the ability to induce susceptibility in plants. The Hessian fly shows both. To protect against Hessian fly, grasses have H genes. Avirulent larvae die on H-gene-containing resistant plants but the cause of death is not known. Imaging techniques were used to examine epidermal cells at larval attack sites, comparing four resistant wheat genotypes (H6, H9, H13, and H26) to a susceptible genotype. Present in both resistant and susceptible plants attacked by larvae were small holes in the tangential cell wall, with the size of the holes (0.1 microm in diameter) matching that of the larval mandible. Absent from attacked resistant plants were signs of induced susceptibility, including nutritive tissue and ruptured cell walls. Present in attacked resistant plants were signs of induced resistance, including cell death and fortification of the cell wall. Both presumably limit larval access to food, because the larva feeds on the leaf surface by sucking up liquids released from ruptured cells. Resistance was associated with several subcellular responses, including elaboration of the endoplasmic reticulum-Golgi complex and associated vesicles. Similar responses are observed in plant resistance to fungi, suggesting that "vesicle-associated penetration resistance" also functions against insects.
Collapse
Affiliation(s)
- M O Harris
- Department of Entomology, NDSU, Fargo, 58105, USA.
| | | | | | | | | | | | | |
Collapse
|
164
|
Kwaaitaal M, Keinath NF, Pajonk S, Biskup C, Panstruga R. Combined bimolecular fluorescence complementation and Forster resonance energy transfer reveals ternary SNARE complex formation in living plant cells. PLANT PHYSIOLOGY 2010; 152:1135-47. [PMID: 20071602 PMCID: PMC2832253 DOI: 10.1104/pp.109.151142] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Accepted: 01/08/2010] [Indexed: 05/18/2023]
Abstract
Various fluorophore-based microscopic methods, comprising Förster resonance energy transfer (FRET) and bimolecular fluorescence complementation (BiFC), are suitable to study pairwise interactions of proteins in living cells. The analysis of interactions between more than two protein partners using these methods, however, remains difficult. In this study, we report the successful application of combined BiFC-FRET-fluorescence lifetime imaging microscopy and BiFC-FRET-acceptor photobleaching measurements to visualize the formation of ternary soluble N-ethylmaleimide-sensitive factor attachment receptor complexes in leaf epidermal cells. This method expands the repertoire of techniques to study protein-protein interactions in living plant cells by a procedure capable of visualizing simultaneously interactions between three fluorophore-tagged polypeptide partners.
Collapse
|
165
|
Hayward RD, Goguen JD, Leong JM. No better time to FRET: shedding light on host pathogen interactions. J Biol 2010; 9:12. [PMID: 20236488 PMCID: PMC2871520 DOI: 10.1186/jbiol225] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Understanding the spatio-temporal subversion of host cell signaling by bacterial virulence factors is key to combating infectious diseases. Following a recent study by Buntru and co-workers published in BMC Biology, we review how fluorescence (Forster) resonance energy transfer (FRET) has been applied to studying host-pathogen interactions and consider the prospects for its future application. See research article http://www.biomedcentral.com/1741-7007/7/81.
Collapse
Affiliation(s)
- Richard D Hayward
- Institute of Structural and Molecular Biology, University College London and Birkbeck, University of London, Gower Street, London WC1E6BT, UK.
| | | | | |
Collapse
|
166
|
Lipka U, Fuchs R, Kuhns C, Petutschnig E, Lipka V. Live and let die – Arabidopsis nonhost resistance to powdery mildews. Eur J Cell Biol 2010; 89:194-9. [DOI: 10.1016/j.ejcb.2009.11.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
167
|
A remorin protein interacts with symbiotic receptors and regulates bacterial infection. Proc Natl Acad Sci U S A 2010; 107:2343-8. [PMID: 20133878 DOI: 10.1073/pnas.0913320107] [Citation(s) in RCA: 210] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Remorin proteins have been hypothesized to play important roles during cellular signal transduction processes. Induction of some members of this multigene family has been reported during biotic interactions. However, no roles during host-bacteria interactions have been assigned to remorin proteins until now. We used root nodule symbiosis between Medicago truncatula and Sinorhizobium meliloti to study the roles of a remorin that is specifically induced during nodulation. Here we show that this oligomeric remorin protein attaches to the host plasma membrane surrounding the bacteria and controls infection and release of rhizobia into the host cytoplasm. It interacts with the core set of symbiotic receptors that are essential for perception of bacterial signaling molecules, and thus might represent a plant-specific scaffolding protein.
Collapse
|
168
|
|
169
|
Pavan S, Jacobsen E, Visser RGF, Bai Y. Loss of susceptibility as a novel breeding strategy for durable and broad-spectrum resistance. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2010; 25:1-12. [PMID: 20234841 PMCID: PMC2837247 DOI: 10.1007/s11032-009-9323-6] [Citation(s) in RCA: 176] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Accepted: 07/31/2009] [Indexed: 05/18/2023]
Abstract
Recent studies on plant immunity have suggested that a pathogen should suppress induced plant defense in order to infect a plant species, which otherwise would have been a nonhost to the pathogen. For this purpose, pathogens exploit effector molecules to interfere with different layers of plant defense responses. In this review, we summarize the latest findings on plant factors that are activated by pathogen effectors to suppress plant immunity. By looking from a different point of view into host and nonhost resistance, we propose a novel breeding strategy: disabling plant disease susceptibility genes (S-genes) to achieve durable and broad-spectrum resistance.
Collapse
Affiliation(s)
- Stefano Pavan
- Graduate School Experimental Plant Sciences, Wageningen UR-Plant Breeding, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Department of Agroforestry, Environmental Biology and Chemistry, Section of Genetics and Plant Breeding, University of Bari, Via Amendola 165/A, 70126 Bari, Italy
| | - Evert Jacobsen
- Graduate School Experimental Plant Sciences, Wageningen UR-Plant Breeding, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Richard G. F. Visser
- Graduate School Experimental Plant Sciences, Wageningen UR-Plant Breeding, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Yuling Bai
- Graduate School Experimental Plant Sciences, Wageningen UR-Plant Breeding, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
170
|
Liu P, Li RL, Zhang L, Wang QL, Niehaus K, Baluska F, Samaj J, Lin JX. Lipid microdomain polarization is required for NADPH oxidase-dependent ROS signaling in Picea meyeri pollen tube tip growth. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 60:303-13. [PMID: 19566595 DOI: 10.1111/j.1365-313x.2009.03955.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The polarization of sterol-enriched lipid microdomains has been linked to morphogenesis and cell movement in diverse cell types. Recent biochemical evidence has confirmed the presence of lipid microdomains in plant cells; however, direct evidence for a functional link between these microdomains and plant cell growth is still lacking. Here, we reported the involvement of lipid microdomains in NADPH oxidase (NOX)-dependent reactive oxygen species (ROS) signaling in Picea meyeri pollen tube growth. Staining with di-4-ANEPPDHQ or filipin revealed that sterol-enriched microdomains were polarized to the growing tip of the pollen tube. Sterol sequestration with filipin disrupted membrane microdomain polarization, depressed tip-based ROS formation, dissipated tip-focused cytosolic Ca(2+) gradient and thereby arrested tip growth. NOX clustered at the growing tip, and corresponded with the ordered membrane domains. Immunoblot analysis and native gel assays demonstrated that NOX was partially associated with detergent-resistant membranes and, furthermore, that NOX in a sterol-dependent fashion depends on membrane microdomains for its enzymatic activity. In addition, in vivo time-lapse imaging revealed the coexistence of a steep tip-high apical ROS gradient and subapical ROS production, highlighting the reported signaling role for ROS in polar cell growth. Our results suggest that the polarization of lipid microdomains to the apical plasma membrane, and the inclusion of NOX into these domains, contribute, at least in part, to the ability to grow in a highly polarized manner to form pollen tubes.
Collapse
Affiliation(s)
- Peng Liu
- Key Laboratory of Photosynthesis and Molecular Environmental Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
171
|
Kierzkowski D, Kmieciak M, Piontek P, Wojtaszek P, Szweykowska-Kulinska Z, Jarmolowski A. The Arabidopsis CBP20 targets the cap-binding complex to the nucleus, and is stabilized by CBP80. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 59:814-25. [PMID: 19453442 DOI: 10.1111/j.1365-313x.2009.03915.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The cap-binding protein complex (CBC) binds to the caps of all RNA polymerase II transcripts, and plays an important role in RNA metabolism. We characterized interactions, localization and nuclear-cytoplasmic transport of two subunits of the Arabidopsis thaliana cap-binding protein complex (AtCBC): AtCBP20 and AtCBP80. Using CFP/YFP-tagged proteins, we show that transport of AtCBC from the cytoplasm to the nucleus in the plant cell is different from that described in other eukaryotic cells. We show that the smaller subunit of the complex, AtCBP20, plays a crucial role in the nuclear import of AtCBC. The C-terminal part of AtCBP20 contains two functionally independent nuclear localization signals (NLSs). At least one of these two NLSs is required for the import of CBC into the plant nucleus. The interaction between the A. thaliana CBP20 and CBP80 was also analyzed in detail, using the yeast two-hybrid system and fluorescence resonance energy transfer (FRET) assays. The N-terminal part of AtCBP20 is essential for interaction with AtCBP80. Furthermore, AtCBP80 is important for the protein stability of the smaller subunit of CBC. Based on these data, we propose a model for the nuclear-cytoplasmic trafficking of the CBC complex in plants.
Collapse
Affiliation(s)
- Daniel Kierzkowski
- Department of Molecular and Cellular Biology, Faculty of Biology, Adam Mickiewicz University, Umultowska, Poland
| | | | | | | | | | | |
Collapse
|
172
|
Wang W, Wen Y, Berkey R, Xiao S. Specific targeting of the Arabidopsis resistance protein RPW8.2 to the interfacial membrane encasing the fungal Haustorium renders broad-spectrum resistance to powdery mildew. THE PLANT CELL 2009; 21:2898-913. [PMID: 19749153 PMCID: PMC2768920 DOI: 10.1105/tpc.109.067587] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 07/27/2009] [Accepted: 08/25/2009] [Indexed: 05/18/2023]
Abstract
Powdery mildew fungal pathogens penetrate the plant cell wall and develop a feeding structure called the haustorium to steal photosynthetate from the host cell. Here, we report that the broad-spectrum mildew resistance protein RPW8.2 from Arabidopsis thaliana is induced and specifically targeted to the extrahaustorial membrane (EHM), an enigmatic interfacial membrane believed to be derived from the host cell plasma membrane. There, RPW8.2 activates a salicylic acid (SA) signaling-dependent defense strategy that concomitantly enhances the encasement of the haustorial complex and onsite accumulation of H(2)O(2), presumably for constraining the haustorium while reducing oxidative damage to the host cell. Targeting of RPW8.2 to the EHM, however, is SA independent and requires function of the actin cytoskeleton. Natural mutations that impair either defense activation or EHM targeting of RPW8.2 compromise the efficacy of RPW8.2-mediated resistance. Thus, the interception of haustoria is key for RPW8-mediated broad-spectrum mildew resistance.
Collapse
|
173
|
Stanislas T, Bouyssie D, Rossignol M, Vesa S, Fromentin J, Morel J, Pichereaux C, Monsarrat B, Simon-Plas F. Quantitative proteomics reveals a dynamic association of proteins to detergent-resistant membranes upon elicitor signaling in tobacco. Mol Cell Proteomics 2009; 8:2186-98. [PMID: 19525550 PMCID: PMC2742443 DOI: 10.1074/mcp.m900090-mcp200] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Revised: 06/02/2009] [Indexed: 11/06/2022] Open
Abstract
A large body of evidence from the past decade supports the existence, in membrane from animal and yeast cells, of functional microdomains playing important roles in protein sorting, signal transduction, or infection by pathogens. In plants, as previously observed for animal microdomains, detergent-resistant fractions, enriched in sphingolipids and sterols, were isolated from plasma membrane. A characterization of their proteic content revealed their enrichment in proteins involved in signaling and response to biotic and abiotic stress and cell trafficking suggesting that these domains were likely to be involved in such physiological processes. In the present study, we used (14)N/(15)N metabolic labeling to compare, using a global quantitative proteomics approach, the content of tobacco detergent-resistant membranes extracted from cells treated or not with cryptogein, an elicitor of defense reaction. To analyze the data, we developed a software allowing an automatic quantification of the proteins identified. The results obtained indicate that, although the association to detergent-resistant membranes of most proteins remained unchanged upon cryptogein treatment, five proteins had their relative abundance modified. Four proteins related to cell trafficking (four dynamins) were less abundant in the detergent-resistant membrane fraction after cryptogein treatment, whereas one signaling protein (a 14-3-3 protein) was enriched. This analysis indicates that plant microdomains could, like their animal counterpart, play a role in the early signaling process underlying the setup of defense reaction. Furthermore proteins identified as differentially associated to tobacco detergent-resistant membranes after cryptogein challenge are involved in signaling and vesicular trafficking as already observed in similar studies performed in animal cells upon biological stimuli. This suggests that the ways by which the dynamic association of proteins to microdomains could participate in the regulation of the signaling process may be conserved between plant and animals.
Collapse
Affiliation(s)
- Thomas Stanislas
- From the ‡Institut National de la Recherche Agronomique (INRA), Unité Mixte de Recherche (UMR) Plante Microbe Environnement 1088/CNRS 5184/Université de Bourgogne, 17 Rue Sully, BP 86510 F-21000 Dijon, France
| | - David Bouyssie
- ¶Institut de Pharmacologie et de Biologie Structurale (IPBS), CNRS, 205 route de Narbonne, F-31077 Toulouse, France
- ‖IPBS, Université Paul Sabatier, Université de Toulouse, F-31077 Toulouse, France, and
| | - Michel Rossignol
- ¶Institut de Pharmacologie et de Biologie Structurale (IPBS), CNRS, 205 route de Narbonne, F-31077 Toulouse, France
- ‖IPBS, Université Paul Sabatier, Université de Toulouse, F-31077 Toulouse, France, and
- **IPBS, Institut Fédératif de Recherche 40 Plateforme Protéomique, 205 route de Narbonne, F-31077 Toulouse, France
| | - Simona Vesa
- From the ‡Institut National de la Recherche Agronomique (INRA), Unité Mixte de Recherche (UMR) Plante Microbe Environnement 1088/CNRS 5184/Université de Bourgogne, 17 Rue Sully, BP 86510 F-21000 Dijon, France
| | - Jérôme Fromentin
- From the ‡Institut National de la Recherche Agronomique (INRA), Unité Mixte de Recherche (UMR) Plante Microbe Environnement 1088/CNRS 5184/Université de Bourgogne, 17 Rue Sully, BP 86510 F-21000 Dijon, France
| | - Johanne Morel
- From the ‡Institut National de la Recherche Agronomique (INRA), Unité Mixte de Recherche (UMR) Plante Microbe Environnement 1088/CNRS 5184/Université de Bourgogne, 17 Rue Sully, BP 86510 F-21000 Dijon, France
| | - Carole Pichereaux
- ¶Institut de Pharmacologie et de Biologie Structurale (IPBS), CNRS, 205 route de Narbonne, F-31077 Toulouse, France
- ‖IPBS, Université Paul Sabatier, Université de Toulouse, F-31077 Toulouse, France, and
- **IPBS, Institut Fédératif de Recherche 40 Plateforme Protéomique, 205 route de Narbonne, F-31077 Toulouse, France
| | - Bernard Monsarrat
- ¶Institut de Pharmacologie et de Biologie Structurale (IPBS), CNRS, 205 route de Narbonne, F-31077 Toulouse, France
- ‖IPBS, Université Paul Sabatier, Université de Toulouse, F-31077 Toulouse, France, and
| | - Françoise Simon-Plas
- From the ‡Institut National de la Recherche Agronomique (INRA), Unité Mixte de Recherche (UMR) Plante Microbe Environnement 1088/CNRS 5184/Université de Bourgogne, 17 Rue Sully, BP 86510 F-21000 Dijon, France
| |
Collapse
|
174
|
Kierszniowska S, Walther D, Schulze WX. Ratio-dependent significance thresholds in reciprocal 15N-labeling experiments as a robust tool in detection of candidate proteins responding to biological treatment. Proteomics 2009; 9:1916-24. [PMID: 19260003 DOI: 10.1002/pmic.200800443] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Metabolic labeling of plant tissues with (15)N has become widely used in plant proteomics. Here, we describe a robust experimental design and data analysis workflow implementing two parallel biological replicate experiments with reciprocal labeling and series of 1:1 control mixtures. Thereby, we are able to unambiguously distinguish (i) inherent biological variation between cultures and (ii) specific responses to a biological treatment. The data analysis workflow is based on first determining the variation between cultures based on (15)N/(14)N ratios in independent 1:1 mixtures before biological treatment is applied. In a second step, ratio-dependent SD is used to define p-values for significant deviation of protein ratios in the biological experiment from the distribution of protein ratios in the 1:1 mixture. This approach allows defining those proteins showing significant biological response superimposed on the biological variation before treatment. The proposed workflow was applied to a series of experiments, in which changes in composition of detergent resistant membrane domains was analyzed in response to sucrose resupply after carbon starvation. Especially in experiments involving cell culture treatment (starvation) prior to the actual biological stimulus of interest (resupply), a clear distinction between culture to culture variations and biological response is of utmost importance.
Collapse
|
175
|
Osterrieder A, Carvalho CM, Latijnhouwers M, Johansen JN, Stubbs C, Botchway S, Hawes C. Fluorescence lifetime imaging of interactions between Golgi tethering factors and small GTPases in plants. Traffic 2009; 10:1034-46. [PMID: 19490533 DOI: 10.1111/j.1600-0854.2009.00930.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Peripheral tethering factors bind to small GTPases in order to obtain their correct location within the Golgi apparatus. Using fluorescence resonance energy transfer (FRET) and fluorescence lifetime imaging microscopy (FLIM) we visualized interactions between Arabidopsis homologues of tethering factors and small GTPases at the Golgi stacks in planta. Co-expression of the coiled-coil proteins AtGRIP and golgin candidate 5 (GC5) [TATA element modulatory factor (TMF)] and the putative post-Golgi tethering factor AtVPS52 fused to green fluorescent protein (GFP) with mRFP (monomeric red fluorescent protein) fusions to the small GTPases AtRab-H1(b), AtRab-H1(c) and AtARL1 resulted in reduced GFP lifetimes compared to the control proteins. Interestingly, we observed differences in GFP quenching between the different protein combinations as well as selective quenching of GFP-AtVPS52-labelled structures. The data presented here indicate that the FRET-FLIM technique should prove invaluable in assessing protein interactions in living plant cells at the organelle level.
Collapse
|
176
|
Feechan A, Jermakow AM, Dry IB. Grapevine MLO candidates required for powdery mildew pathogenicity? PLANT SIGNALING & BEHAVIOR 2009; 4:522-3. [PMID: 19816131 PMCID: PMC2688300 DOI: 10.4161/psb.4.6.8575] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Accepted: 03/25/2009] [Indexed: 05/24/2023]
Abstract
MLOs belong to the largest family of seven-transmembrane (7TM) domain proteins found in plants. The Arabidopsis and rice genomes contain 15 and 12 MLO family members, respectively. Although the biological function of most MLO family members remains elusive, a select group of MLO proteins have been demonstrated to negatively regulate defence responses to the obligate biotrophic pathogen, powdery mildew, thereby acting as “susceptibility” genes. Recently we identified a family of 17 putative VvMLO genes in the genome of the cultivated winegrape species, Vitis vinifera . Expression analysis indicated that the VvMLO family members respond differently to biotic and abiotic stimuli. Infection of V. vinifera by grape powdery mildew (Erysiphe necator ) specifically upregulates four VvMLO genes that are orthologous to the Arabidopsis and tomato MLOs previously demonstrated to be required for powdery mildew susceptibility. We postulate that one or more of these E. necator responsive VvMLOs may have a role in the powdery mildew susceptibility of grapevine.
Collapse
Affiliation(s)
- Angela Feechan
- CSIRO Plant Industry, Glen Osmond, South Australia, Australia
| | | | | |
Collapse
|
177
|
Raffaele S, Bayer E, Lafarge D, Cluzet S, German Retana S, Boubekeur T, Leborgne-Castel N, Carde JP, Lherminier J, Noirot E, Satiat-Jeunemaître B, Laroche-Traineau J, Moreau P, Ott T, Maule AJ, Reymond P, Simon-Plas F, Farmer EE, Bessoule JJ, Mongrand S. Remorin, a solanaceae protein resident in membrane rafts and plasmodesmata, impairs potato virus X movement. THE PLANT CELL 2009; 21:1541-55. [PMID: 19470590 PMCID: PMC2700541 DOI: 10.1105/tpc.108.064279] [Citation(s) in RCA: 276] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Revised: 04/20/2009] [Accepted: 05/06/2009] [Indexed: 05/17/2023]
Abstract
Remorins (REMs) are proteins of unknown function specific to vascular plants. We have used imaging and biochemical approaches and in situ labeling to demonstrate that REM clusters at plasmodesmata and in approximately 70-nm membrane domains, similar to lipid rafts, in the cytosolic leaflet of the plasma membrane. From a manipulation of REM levels in transgenic tomato (Solanum lycopersicum) plants, we show that Potato virus X (PVX) movement is inversely related to REM accumulation. We show that REM can interact physically with the movement protein TRIPLE GENE BLOCK PROTEIN1 from PVX. Based on the localization of REM and its impact on virus macromolecular trafficking, we discuss the potential for lipid rafts to act as functional components in plasmodesmata and the plasma membrane.
Collapse
Affiliation(s)
- Sylvain Raffaele
- Laboratoire de Biogenèse Membranaire, Unité Mixte de Recherche 5200, Centre National de la Recherche Scientifique-University of Bordeaux, Bordeaux 33076, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
178
|
Affiliation(s)
- Simone Lepper
- Department of Parasitology, Hygiene Institute, University of Heidelberg Medical School, 69120 Heidelberg, Germany
| | | |
Collapse
|
179
|
Hoefle C, Loehrer M, Schaffrath U, Frank M, Schultheiss H, Hückelhoven R. Transgenic suppression of cell death limits penetration success of the soybean rust fungus Phakopsora pachyrhizi into epidermal cells of barley. PHYTOPATHOLOGY 2009; 99:220-6. [PMID: 19203273 DOI: 10.1094/phyto-99-3-0220] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The basidiomycete Phakopsora pachyrhizi (P. pachyrhizi) causes Asian soybean rust, one of the most devastating plant diseases on soybean. When inoculated on the nonhost barley P. pachyrhizi caused only very small necrotic spots, typical for an incompatible interaction, which involves a hypersensitive cell death reaction. A microscopic inspection of the interaction of barley with P. pachyrhizi revealed that the fungus germinated on barley and formed functional appressoria on epidermal cells. The fungus attempted to directly penetrate through periclinal cell walls but often failed, arrested in plant cell wall appositions that stained positively for callose. Penetration resistance depends on intact ROR1(REQUIRED FOR mlo-SPECIFIED RESISTANCE 1) and ROR2 genes of barley. If the fungus succeeded in penetration, epidermal cell death took place. Dead epidermal cells did not generally restrict fungal development but allowed for mesophyll invasion, which was followed by mesophyll cell death and fungal arrest. Transient or stable over expression of the barley cell death suppressor BAX inhibitor-1 reduced both epidermal cell death and fungal penetration success. Data suggest that P. pachyrhizi provokes a programmed cell death facilitating fungal entry into epidermal cells of barley.
Collapse
Affiliation(s)
- Caroline Hoefle
- Lehrstuhl für Phytopathologie, Technische Universität München, 85350 Freising-Weihenstephan, Germany
| | | | | | | | | | | |
Collapse
|
180
|
Hu P, Meng Y, Wise RP. Functional contribution of chorismate synthase, anthranilate synthase, and chorismate mutase to penetration resistance in barley-powdery mildew interactions. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:311-20. [PMID: 19245325 DOI: 10.1094/mpmi-22-3-0311] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Plant processes resulting from primary or secondary metabolism have been hypothesized to contribute to defense against microbial attack. Barley chorismate synthase (HvCS), anthranilate synthase alpha subunit 2 (HvASa2), and chorismate mutase 1 (HvCM1) occupy pivotal branch points downstream of the shikimate pathway leading to the synthesis of aromatic amino acids. Here, we provide functional evidence that these genes contribute to penetration resistance to Blumeria graminis f. sp. hordei, the causal agent of powdery mildew disease. Single-cell transient-induced gene silencing of HvCS and HvCM1 in mildew resistance locus a (Mla) compromised cells resulted in increased susceptibility. Correspondingly, overexpression of HvCS, HvASa2, and HvCM1 in lines carrying mildew resistance locus o (Mlo), a negative regulator of penetration resistance, significantly decreased susceptibility. Barley stripe mosaic virus-induced gene silencing of HvCS, HvASa2, and HvCM1 significantly increased B. graminis f. sp. hordei penetration into epidermal cells, followed by formation of haustoria and secondary hyphae. However, sporulation of B. graminis f. sp. hordei was not detected on the silenced host plants up to 3 weeks after inoculation. Taken together, these results establish a previously unrecognized role for the influence of HvCS, HvASa2, and HvCM1 on penetration resistance and on the rate of B. graminis f. sp. hordei development in Mla-mediated, barley-powdery mildew interactions.
Collapse
Affiliation(s)
- Pingsha Hu
- Interdepartmental Genetics Program, Department of Plant Pathology and Center for Plant Responses to Environmental Stresses, Iowa State University, Ames 50011-1020, USA
| | | | | |
Collapse
|
181
|
Meyer D, Pajonk S, Micali C, O'Connell R, Schulze-Lefert P. Extracellular transport and integration of plant secretory proteins into pathogen-induced cell wall compartments. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 57:986-99. [PMID: 19000165 DOI: 10.1111/j.1365-313x.2008.03743.x] [Citation(s) in RCA: 177] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Many fungal parasites enter plant cells by penetrating the host cell wall and, thereafter, differentiate specialized intracellular feeding structures, called haustoria, by invagination of the plant's plasma membrane. Arabidopsis PEN gene products are known to act at the cell periphery and function in the execution of apoplastic immune responses to limit fungal entry. This response underneath fungal contact sites is tightly linked with the deposition of plant cell wall polymers, including PMR4/GSL5-dependent callose, in the paramural space, thereby producing localized wall thickenings called papillae. We show that powdery mildew fungi specifically induce the extracellular transport and entrapment of the fusion protein GFP-PEN1 syntaxin and its interacting partner monomeric yellow fluorescent protein (mYFP)-SNAP33 within the papillary matrix. Remarkably, PMR4/GSL5 callose, GFP-PEN1, mYFP-SNAP33, and the ABC transporter GFP-PEN3 are selectively incorporated into extracellular encasements surrounding haustoria of the powdery mildew Golovinomyces orontii, suggesting that the same secretory defense responses become activated during the formation of papillae and haustorial encasements. This is consistent with a time-course analysis of the encasement process, indicating that these extracellular structures are generated through the extension of papillae. We show that PMR4/GSL5 callose accumulation in papillae and haustorial encasements occurs independently of PEN1 syntaxin. We propose a model in which exosome biogenesis/release serves as a common transport mechanism by which the proteins PEN1 and PEN3, otherwise resident in the plasma membrane, together with membrane lipids, become stably incorporated into both pathogen-induced cell wall compartments.
Collapse
Affiliation(s)
- Dorit Meyer
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research-Cologne, Carl-von-Linné-Weg 10, Köln, Germany
| | | | | | | | | |
Collapse
|
182
|
Raffaele S, Leger A, Roby D. Very long chain fatty acid and lipid signaling in the response of plants to pathogens. PLANT SIGNALING & BEHAVIOR 2009; 4:94-9. [PMID: 19649180 PMCID: PMC2637489 DOI: 10.4161/psb.4.2.7580] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Accepted: 12/10/2008] [Indexed: 05/18/2023]
Abstract
Recent findings indicate that lipid signaling is essential for plant resistance to pathogens. Besides oxylipins and unsaturated fatty acids known to play important signaling functions during plant-pathogen interactions, the very long chain fatty acid (VLCFA) biosynthesis pathway has been recently associated to plant defense through different aspects. VLCFAs are indeed required for the biosynthesis of the plant cuticle and the generation of sphingolipids. Elucidation of the roles of these lipids in biotic stress responses is the result of the use of genetic approaches together with the identification of the genes/proteins involved in their biosynthesis. This review focuses on recent observations which revealed the complex function of the cuticle and cuticle-derived signals, and the key role of sphingolipids as bioactive molecules involved in signal transduction and cell death regulation during plant-pathogen interactions.
Collapse
Affiliation(s)
- Sylvain Raffaele
- Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR CNRS-INRA 2594/441, Castanet-Tolosan, France
| | | | | |
Collapse
|
183
|
Minami A, Fujiwara M, Furuto A, Fukao Y, Yamashita T, Kamo M, Kawamura Y, Uemura M. Alterations in detergent-resistant plasma membrane microdomains in Arabidopsis thaliana during cold acclimation. PLANT & CELL PHYSIOLOGY 2009; 50:341-59. [PMID: 19106119 DOI: 10.1093/pcp/pcn202] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Microdomains in the plasma membrane (PM) have been proposed to be involved in many important cellular events in plant cells. To understand the role of PM microdomains in plant cold acclimation, we isolated the microdomains as detergent-resistant plasma membrane fractions (DRMs) from Arabidopsis seedlings and compared lipid and protein compositions before and after cold acclimation. The DRM was enriched in sterols and glucocerebrosides, and the proportion of free sterols in the DRM increased after cold acclimation. The protein-to-lipid ratio in the DRM was greater than that in the total PM fraction. The protein amount recovered in DRMs decreased gradually during cold acclimation. Cold acclimation further resulted in quantitative changes in DRM protein profiles. Subsequent mass spectrometry and Western blot analyses revealed that P-type H(+)-ATPases, aquaporins and endocytosis-related proteins increased and, conversely, tubulins, actins and V-type H(+)-ATPase subunits decreased in DRMs during cold acclimation. Functional categorization of cold-responsive proteins in DRMs suggests that plant PM microdomains function as platforms of membrane transport, membrane trafficking and cytoskeleton interaction. These comprehensive changes in microdomains may be associated with cold acclimation of Arabidopsis.
Collapse
|
184
|
Chapter 10 FRET and FLIM applications in plants. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/s0075-7535(08)00010-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
|
185
|
Bolwell GP, Daudi A. Reactive Oxygen Species in Plant–Pathogen Interactions. REACTIVE OXYGEN SPECIES IN PLANT SIGNALING 2009. [DOI: 10.1007/978-3-642-00390-5_7] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
186
|
Hong JK, Hwang BK. The promoter of the pepper pathogen-induced membrane protein gene CaPIMP1 mediates environmental stress responses in plants. PLANTA 2009; 229:249-59. [PMID: 18936963 DOI: 10.1007/s00425-008-0824-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2008] [Accepted: 09/10/2008] [Indexed: 05/23/2023]
Abstract
The promoter of the pepper pathogen-induced membrane protein gene CaPIMP1 was analyzed by an Agrobacterium-mediated transient expression assay in tobacco leaves. Several stress-related cis-acting elements (GT-1, W-box and ABRE) are located within the CaPIMP1 promoter. In tobacco leaf tissues transiently transformed with a CaPIMP1 promoter-beta-glucuronidase (GUS) gene fusion, serially 5'-deleted CaPIMP1 promoters were differentially activated by Pseudomonas syringae pv. tabaci, ethylene, methyl jasmonate, abscisic acid, and nitric oxide. The -1,193 bp region of the CaPIMP1 gene promoter sequence exhibited full promoter activity. The -417- and -593 bp promoter regions were sufficient for GUS gene activation by ethylene and methyl jasmonate treatments, respectively. However, CaPIMP1 promoter sequences longer than -793 bp were required for promoter activation by abscisic acid and sodium nitroprusside treatments. CaPIMP1 expression was activated in pepper leaves by treatment with ethylene, methyl jasmonate, abscisic acid, beta-amino-n-butyric acid, NaCl, mechanical wounding, and low temperature, but not with salicylic acid. Overexpression of CaPIMP1 in Arabidopsis conferred hypersensitivity to mannitol, NaCl, and ABA during seed germination but not during seedling development. In contrast, transgenic plants overexpressing CaPIMP1 exhibited enhanced tolerance to oxidative stress induced by methyl viologen during germination and early seedling stages. These results suggest that CaPIMP1 expression may alter responsiveness to environmental stress, as well as to pathogen infection.
Collapse
Affiliation(s)
- Jeum Kyu Hong
- Department of Horticulture, College of Life Sciences and Natural Resources, Jinju National University, 150 Chilamdong, Jinju, Kyungnam, 660-758, Republic of Korea
| | | |
Collapse
|
187
|
|
188
|
Rodakowska E, Derba-Maceluch M, Kasprowicz A, Zawadzki P, Szuba A, Kierzkowski D, Wojtaszek P. Signaling and Cell Walls. SIGNALING IN PLANTS 2009. [DOI: 10.1007/978-3-540-89228-1_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
189
|
Feechan A, Jermakow AM, Torregrosa L, Panstruga R, Dry IB. Identification of grapevine MLO gene candidates involved in susceptibility to powdery mildew. FUNCTIONAL PLANT BIOLOGY : FPB 2008; 35:1255-1266. [PMID: 32688872 DOI: 10.1071/fp08173] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Accepted: 09/09/2008] [Indexed: 05/28/2023]
Abstract
The European cultivated grapevine, Vitis vinifera L., is a host for the powdery mildew pathogen Erisyphe necator, which is the most economically important fungal disease of viticulture. MLO proteins mediate powdery mildew susceptibility in the model plant species Arabidopsis and the crop plants barley and tomato. Seven VvMLO cDNA sequences were isolated from grapevine and were subsequently identified as part of a 17 member VvMLO gene family within the V. vinifera genome. Phylogenetic analysis of the 17 VvMLO genes in the grape genome indicated that the proteins they encode fall into six distinct clades. The expression of representative VvMLOs from each clade were analysed in a range of grape tissues, as well as in response to a range of biotic and abiotic factors. The VvMLOs investigated have unique, but overlapping tissue expression patterns. Expression analysis of VvMLO genes following E. necator infection identified four upregulated VvMLOs which are orthologous to the Arabidopsis AtMLO2, AtMLO6 and AtMLO12 and tomato SlMLO1 genes required for powdery mildew susceptibility. This suggests a degree of functional redundancy between the proteins encoded by these genes in terms of susceptibility to powdery mildew, and, as such, represent potential targets for modification to generate powdery mildew resistant grapevines.
Collapse
Affiliation(s)
- Angela Feechan
- CSIRO Plant Industry, PO Box 350, Glen Osmond, SA 5064, Australia
| | | | | | - Ralph Panstruga
- Max-Planck-Institut für Züchtungsforschung, Department of Plant Microbe Interactions, D-50829 Köln, Germany
| | - Ian B Dry
- CSIRO Plant Industry, PO Box 350, Glen Osmond, SA 5064, Australia
| |
Collapse
|
190
|
Jami SK, Clark GB, Turlapati SA, Handley C, Roux SJ, Kirti PB. Ectopic expression of an annexin from Brassica juncea confers tolerance to abiotic and biotic stress treatments in transgenic tobacco. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2008; 46:1019-30. [PMID: 18768323 DOI: 10.1016/j.plaphy.2008.07.006] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Accepted: 07/10/2008] [Indexed: 05/18/2023]
Abstract
Plant annexins belong to a multigene family and are suggested to play a role in stress responses. A full-length cDNA for a gene encoding an annexin protein was isolated and characterized from Brassica juncea (AnnBj1). AnnBj1 message levels were regulated by abscisic acid, ethephon, salicylic acid, and methyl jasmonate as well as chemicals that induce osmotic stress (NaCl, Mannitol or PEG), heavy metal stress (CdCl(2)) and oxidative stress (methyl viologen or H(2)O(2)). In order to determine if AnnBj1 functions in protection against stress, we generated transgenic tobacco plants ectopically expressing AnnBj1 under the control of constitutive CaMV 35S promoter. The transgenic tobacco plants showed significant tolerance to dehydration (mannitol), salt (NaCl), heavy metal (CdCl(2)) and oxidative stress (H(2)O(2)) at the seedling stage and retained higher chlorophyll levels in response to the above stresses as determined in detached leaf senescence assays. The transgenic plants also showed decreased accumulation of thiobarbituric acid-reactive substances (TBARS) compared to wild-type plants in response to mannitol treatments in leaf disc assays. AnnBj1 recombinant protein exhibited low levels of peroxidase activity in vitro and transgenic plants showed increased total peroxidase activity. Additionally, the transgenic plants showed enhanced resistance to the oomycete pathogen, Phytophthora parasitica var. nicotianae, and increased message levels for several pathogenesis-related proteins. Our results demonstrate that ectopic expression of AnnBj1 in tobacco provides tolerance to a variety of abiotic and biotic stresses.
Collapse
Affiliation(s)
- Sravan Kumar Jami
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad-500046, AP, India
| | | | | | | | | | | |
Collapse
|
191
|
Fournier J, Timmers ACJ, Sieberer BJ, Jauneau A, Chabaud M, Barker DG. Mechanism of infection thread elongation in root hairs of Medicago truncatula and dynamic interplay with associated rhizobial colonization. PLANT PHYSIOLOGY 2008; 148:1985-95. [PMID: 18931145 PMCID: PMC2593660 DOI: 10.1104/pp.108.125674] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Accepted: 10/10/2008] [Indexed: 05/18/2023]
Abstract
In temperate legumes, endosymbiotic nitrogen-fixing rhizobia gain access to inner root tissues via a specialized transcellular apoplastic compartment known as the infection thread (IT). To study IT development in living root hairs, a protocol has been established for Medicago truncatula that allows confocal microscopic observations of the intracellular dynamics associated with IT growth. Fluorescent labeling of both the IT envelope (AtPIP2;1-green fluorescent protein) and the host endoplasmic reticulum (green fluorescent protein-HDEL) has revealed that IT growth is a fundamentally discontinuous process and that the variable rate of root hair invagination is reflected in changes in the host cell cytoarchitecture. The concomitant use of fluorescently labeled Sinorhizobium meliloti has further revealed that a bacteria-free zone is frequently present at the growing tip of the IT, thus indicating that bacterial contact is not essential for thread progression. Finally, these in vivo studies have shown that gaps within the bacterial file are a common feature during the early stages of IT development, and that segments of the file are able to slide collectively down the thread. Taken together, these observations lead us to propose that (1) IT growth involves a host-driven cellular mechanism analogous to that described for intracellular infection by arbuscular mycorrhizal fungi; (2) the non-regular growth of the thread is a consequence of the rate-limiting colonization by the infecting rhizobia; and (3) bacterial colonization involves a combination of bacterial cell division and sliding movement within the extracellular matrix of the apoplastic compartment.
Collapse
Affiliation(s)
- Joëlle Fournier
- Laboratoire des Interactions Plantes Micro-Organismes, UMR CNRS-INRA 2594/441, F-31320 Castanet-Tolosan, France.
| | | | | | | | | | | |
Collapse
|
192
|
Zappel NF, Panstruga R. Heterogeneity and lateral compartmentalization of plant plasma membranes. CURRENT OPINION IN PLANT BIOLOGY 2008; 11:632-40. [PMID: 18774330 DOI: 10.1016/j.pbi.2008.07.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Revised: 07/25/2008] [Accepted: 07/29/2008] [Indexed: 05/24/2023]
Abstract
Membrane specialization through lateral compartmentalization is pivotal to the development of organisms and their response to environmental signals. The membrane raft hypothesis is lively discussed as a concept for domain formation. In recent years plant scientists have begun to critically assess the membrane raft hypothesis, and this provided the first insights into the mechanisms underlying microdomain formation in plant plasma membranes. Several groups have now shown that phytosterols can induce phase separation, a prerequisite for the formation of membrane rafts. Furthermore, the protein repertoire of detergent-resistant membranes (DRMs) has been extensively characterized and the degree of fatty acid desaturation has been identified as an important factor in DRM formation. Recent studies comprising sterol-deficient mutants demonstrated the importance of correct sterol composition and endocytosis for proper membrane compartmentalization.
Collapse
Affiliation(s)
- Nana Friderike Zappel
- Max Planck Institute for Plant Breeding Research, Department of Plant Microbe Interactions, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | | |
Collapse
|
193
|
Kierszniowska S, Seiwert B, Schulze WX. Definition of Arabidopsis sterol-rich membrane microdomains by differential treatment with methyl-beta-cyclodextrin and quantitative proteomics. Mol Cell Proteomics 2008; 8:612-23. [PMID: 19036721 PMCID: PMC2667346 DOI: 10.1074/mcp.m800346-mcp200] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Plasma membranes are dynamic compartments with key functions in solute transport, cell shape, and communication between cells and the environment. In mammalian cells and yeast, the plasma membrane has been shown to be compartmented into so-called lipid rafts, which are defined by their resistance to treatment with non-ionic detergents. In plants, the existence of lipid rafts has been postulated, but the precise composition of this membrane compartment is still under debate. Here we were able to experimentally clearly distinguish (i) true sterol-dependent “raft proteins” and (ii) sterol-independent “non-raft” proteins and co-purifying “contaminants” in plant detergent-resistant membranes. We used quantitative proteomics techniques involving 15N metabolic labeling and specific disruption of sterol-rich membrane domains by methyl-β-cyclodextrin. Among the sterol-dependent proteins we found an over-representation of glycosylphosphatidylinositol-anchored proteins. A large fraction of these proteins has functions in cell wall anchoring. We were able to distinguish constant and variable components of plant sterol-rich membrane microdomains based on their responsiveness to the drug methyl-β-cyclodextrin. Predominantly proteins with signaling functions, such as receptor kinases, G-proteins, and calcium signaling proteins, were identified as variable members in plant lipid rafts, whereas cell wall-related proteins and specific proteins with unknown functions make up a core set of sterol-dependent plant plasma membrane proteins. This allows the plant to maintain a balance between static anchoring of cell shape forming elements and variable adjustment to changing external conditions.
Collapse
Affiliation(s)
- Sylwia Kierszniowska
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Golm, Germany
| | | | | |
Collapse
|
194
|
Abstract
The plant apoplast constitutes a space for early recognition of potentially harmful non-self. Basal pathogen recognition operates via dynamic sensing of conserved microbial patterns by pattern recognition receptors or of elicitor-active molecules released from plant cell walls during infection. Recognition elicits defence reactions depending on cellular export via SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) complex-mediated vesicle fusion or plasma membrane transporter activity. Lipid rafts appear also involved in focusing immunity-associated proteins to the site of pathogen contact. Simultaneously, pathogen effectors target recognition, apoplastic host proteins and transport for cell wall-associated defence. This microreview highlights most recent reports on the arms race for plant disease and immunity at the cell surface.
Collapse
Affiliation(s)
- Caroline Hoefle
- Lehrstuhl für Phytopathologie, Technische Universität München, Am Hochanger 2, 85350 Freising, Germany
| | | |
Collapse
|
195
|
Bayle V, Nussaume L, Bhat RA. Combination of novel green fluorescent protein mutant TSapphire and DsRed variant mOrange to set up a versatile in planta FRET-FLIM assay. PLANT PHYSIOLOGY 2008; 148:51-60. [PMID: 18621983 PMCID: PMC2528103 DOI: 10.1104/pp.108.117358] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Accepted: 07/05/2008] [Indexed: 05/22/2023]
Abstract
Förster resonance energy transfer (FRET) measurements based on fluorescence lifetime imaging microscopy (FLIM) are increasingly being used to assess molecular conformations and associations in living systems. Reduction in the excited-state lifetime of the donor fluorophore in the presence of an appropriately positioned acceptor is taken as strong evidence of FRET. Traditionally, cyan fluorescent protein has been widely used as a donor fluorophore in FRET experiments. However, given its photolabile nature, low quantum yield, and multiexponential lifetime, cyan fluorescent protein is far from an ideal donor in FRET imaging. Here, we report the application and use of the TSapphire mutant of green fluorescent protein as an efficient donor to mOrange in FLIM-based FRET imaging in intact plant cells. Using time-correlated single photon counting-FLIM, we show that TSapphire expressed in living plant cells decays with lifetime of 2.93 +/- 0.09 ns. Chimerically linked TSapphire and mOrange (with 16-amino acid linker in between) exhibit substantial energy transfer based on the reduction in the lifetime of TSapphire in the presence of the acceptor mOrange. Experiments performed with various genetically and/or biochemically known interacting plant proteins demonstrate the versatility of the FRET-FLIM system presented here in different subcellular compartments tested (cytosol, nucleus, and at plasma membrane). The better spectral overlap with red monomers, higher photostability, and monoexponential lifetime of TSapphire makes it an ideal FRET-FLIM donor to study protein-protein interactions in diverse eukaryotic systems overcoming, in particular, many technical challenges encountered (like autofluorescence of cell walls and fluorescence of pigments associated with photosynthetic apparatus) while studying plant protein dynamics and interactions.
Collapse
Affiliation(s)
- Vincent Bayle
- Laboratory of Plant Developmental Biology, Service of Plant Biology and Environmental Microbiology/Institute for Biotechnology and Environmental Biology, UMR6191 CEA/CNRS/Mediterranean University Aix-Marseille, St. Paul Lez Durance, France
| | | | | |
Collapse
|
196
|
Pajonk S, Kwon C, Clemens N, Panstruga R, Schulze-Lefert P. Activity determinants and functional specialization of Arabidopsis PEN1 syntaxin in innate immunity. J Biol Chem 2008; 283:26974-84. [PMID: 18678865 DOI: 10.1074/jbc.m805236200] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In eukaryotes, proteins of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) family are believed to have a general role for the fusion of intracellular transport vesicles with acceptor membranes. Arabidopsis thaliana PEN1 syntaxin resides in the plasma membrane and was previously shown to act together with its partner SNAREs, the adaptor protein SNAP33, and endomembrane-anchored VAMP721/722 in the execution of secretory immune responses against powdery mildew fungi. We conducted a structure-function analysis of PEN1 and show that N-terminal phospho-mimicking and non-phosphorylatable variants neither affected binary nor ternary SNARE complex formation with cognate partners in vitro. However, expression of these syntaxin variants at native protein levels in a pen1 mutant background suggests that phosphorylation is required for full resistance activity in planta. All tested site-directed substitutions of SNARE domain or "linker region" residues reduced PEN1 defense activity. Two of the variants failed to form ternary complexes with the partner SNAREs in vitro, possibly explaining their diminished in planta activity. However, impaired pathogen defense in plants expressing a linker region variant is likely because of PEN1 destabilization. Although Arabidopsis PEN1 and SYP122 syntaxins share overlapping functions in plant growth and development, PEN1 activity in disease resistance is apparently the result of a complete functional specialization. Our findings are consistent with the hypothesis that PEN1 acts in plant defense through the formation of ternary SNARE complexes and point to the existence of unknown regulatory factors. Our data indirectly support structural inferences that the four-helical coiled coil bundle in ternary SNARE complexes is formed in a sequential order from the N- to C-terminal direction.
Collapse
Affiliation(s)
- Simone Pajonk
- Max Planck Institute for Plant Breeding Research, Department of Plant Microbe Interactions, D-50829 Köln, Germany
| | | | | | | | | |
Collapse
|
197
|
Hong JK, Choi DS, Kim SH, Yi SY, Kim YJ, Hwang BK. Distinct roles of the pepper pathogen-induced membrane protein gene CaPIMP1 in bacterial disease resistance and oomycete disease susceptibility. PLANTA 2008; 228:485-497. [PMID: 18506481 DOI: 10.1007/s00425-008-0752-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2008] [Accepted: 05/08/2008] [Indexed: 05/26/2023]
Abstract
Plant integral membrane proteins have essential roles in diverse internal and external physiological processes as signal receptors or ion transporters. The pepper CaPIMP1 gene encoding a putative integral membrane protein with four transmembrane domains was isolated and functionally characterized from pepper leaves infected with the avirulent strain Xanthomonas campestris pv. vesicatoria (Xcv). CaPIMP1-green fluorescence protein (GFP) fusions localized to the plasma membrane in onion cells, as observed by confocal microscopy. CaPIMP1 was expressed in an organ-specific manner in healthy pepper plants. Infection with Xcv induced differential accumulation of CaPIMP1 transcripts in pepper leaf tissues during compatible and incompatible interactions. The function of CaPIMP1 was examined by using the virus-induced gene silencing technique in pepper plants and by overexpression in Arabidopsis. CaPIMP1-silenced pepper plants were highly susceptible to Xcv infection and expressed lower levels of the defense-related gene CaSAR82A. CaPIMP1 overexpression (CaPIMP1-OX) in transgenic Arabidopsis conferred enhanced resistance to P. syringae pv. tomato infection, accompanied by enhanced AtPDF1.2 gene expression. In contrast, CaPIMP1-OX plants were highly susceptible to the biotrophic oomycete Hyaloperonospora parasitica. Taken together, we propose that CaPIMP1 plays distinct roles in both bacterial disease resistance and oomycete disease susceptibility.
Collapse
Affiliation(s)
- Jeum Kyu Hong
- Laboratory of Molecular Plant Pathology, School of Life Sciences and Biotechnology, Korea University, Anam-dong, Sungbuk-ku, Seoul, 136-713, Republic of Korea
| | | | | | | | | | | |
Collapse
|
198
|
Bassham DC, Blatt MR. SNAREs: cogs and coordinators in signaling and development. PLANT PHYSIOLOGY 2008; 147:1504-15. [PMID: 18678742 PMCID: PMC2492632 DOI: 10.1104/pp.108.121129] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2008] [Accepted: 05/14/2008] [Indexed: 05/18/2023]
Affiliation(s)
- Diane C Bassham
- Department of Genetics, Development, and Cell Biology and Plant Sciences Institute, Iowa State University, Ames, Iowa 50011, USA.
| | | |
Collapse
|
199
|
Lipka U, Fuchs R, Lipka V. Arabidopsis non-host resistance to powdery mildews. CURRENT OPINION IN PLANT BIOLOGY 2008; 11:404-11. [PMID: 18499508 DOI: 10.1016/j.pbi.2008.04.004] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Accepted: 04/06/2008] [Indexed: 05/18/2023]
Abstract
Immunity of an entire plant species against all genetic variants of a particular parasite is referred to as non-host resistance. Although non-host resistance represents the most common and durable form of plant resistance in nature, it has thus far been poorly understood at the molecular level. Recently, novel model systems have established the first mechanistic insights. The genetic dissection of Arabidopsis non-host resistance to non-adapted biotrophic powdery mildew fungi provided evidence for functionally redundant but operationally distinct pre- and post-invasion immune responses. Conceptually, these complex and successive defence mechanisms explain the durable and robust nature of non-host resistance. Pathogen lifestyle and infection biology, ecological parameters and the evolutionary relationship of the interaction partners determine differences and commonalities in other model systems.
Collapse
Affiliation(s)
- Ulrike Lipka
- The Sainsbury Laboratory, John Innes Centre, Colney, Norwich NR4 7UH, UK
| | | | | |
Collapse
|
200
|
Kwon C, Bednarek P, Schulze-Lefert P. Secretory pathways in plant immune responses. PLANT PHYSIOLOGY 2008; 147:1575-83. [PMID: 18678749 PMCID: PMC2492620 DOI: 10.1104/pp.108.121566] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2008] [Accepted: 06/10/2008] [Indexed: 05/18/2023]
Affiliation(s)
- Chian Kwon
- Department of Plant Microbe Interactions, Max-Planck Institut für Züchtungsforschung, D-50829 Cologne, Germany
| | | | | |
Collapse
|