151
|
Osei ET, Florez-Sampedro L, Timens W, Postma DS, Heijink IH, Brandsma CA. Unravelling the complexity of COPD by microRNAs: it's a small world after all. Eur Respir J 2015; 46:807-18. [PMID: 26250493 DOI: 10.1183/13993003.02139-2014] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 06/15/2015] [Indexed: 12/11/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a progressive lung disease and is currently the fourth leading cause of death worldwide. Chronic inflammation and repair processes in the small airways are characteristic of COPD. Despite extensive efforts from researchers and industry, there is still no cure for COPD, hence an urgent need for new therapeutic alternatives. MicroRNAs are such an option; they are small noncoding RNAs involved in gene regulation. Their importance has been shown with respect to maintaining the balance between health and disease. Although previous reviews have discussed the expression of microRNAs related to lung disease, a detailed discussion regarding the function of differential miRNA expression in the pathogenesis of COPD is lacking.In this review we link the expression of microRNAs to different features of COPD and explain their importance in the pathogenesis of this disease. We further discuss their potential to contribute to the development of future therapeutic strategies.
Collapse
Affiliation(s)
- Emmanuel T Osei
- University of Groningen, University Medical Center Groningen, Dept of Pathology and Medical Biology, Groningen, The Netherlands University of Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, Groningen, The Netherlands Both authors contributed equally as first authors
| | - Laura Florez-Sampedro
- University of Groningen, University Medical Center Groningen, Dept of Pathology and Medical Biology, Groningen, The Netherlands University of Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, Groningen, The Netherlands Both authors contributed equally as first authors
| | - Wim Timens
- University of Groningen, University Medical Center Groningen, Dept of Pathology and Medical Biology, Groningen, The Netherlands University of Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, Groningen, The Netherlands
| | - Dirkje S Postma
- University of Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, Groningen, The Netherlands University of Groningen, University Medical Center Groningen, Dept of Pulmonology, Groningen, The Netherlands
| | - Irene H Heijink
- University of Groningen, University Medical Center Groningen, Dept of Pathology and Medical Biology, Groningen, The Netherlands University of Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, Groningen, The Netherlands University of Groningen, University Medical Center Groningen, Dept of Pulmonology, Groningen, The Netherlands Both authors contributed equally as last authors
| | - Corry-Anke Brandsma
- University of Groningen, University Medical Center Groningen, Dept of Pathology and Medical Biology, Groningen, The Netherlands University of Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, Groningen, The Netherlands Both authors contributed equally as last authors
| |
Collapse
|
152
|
Putcha N, Drummond MB, Wise RA, Hansel NN. Comorbidities and Chronic Obstructive Pulmonary Disease: Prevalence, Influence on Outcomes, and Management. Semin Respir Crit Care Med 2015; 36:575-91. [PMID: 26238643 DOI: 10.1055/s-0035-1556063] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Comorbidities impact a large proportion of patients with chronic obstructive pulmonary disease (COPD), with over 80% of patients with COPD estimated to have at least one comorbid chronic condition. Guidelines for the treatment of COPD are just now incorporating comorbidities to their management recommendations of COPD, and it is becoming increasingly clear that multimorbidity as well as specific comorbidities have strong associations with mortality and clinical outcomes in COPD, including dyspnea, exercise capacity, quality of life, healthcare utilization, and exacerbation risk. Appropriately, there has been an increased focus upon describing the burden of comorbidity in the COPD population and incorporating this information into existing efforts to better understand the clinical and phenotypic heterogeneity of this group. In this article, we summarize existing knowledge about comorbidity burden and specific comorbidities in COPD, focusing on prevalence estimates, association with outcomes, and existing knowledge about treatment strategies.
Collapse
Affiliation(s)
- Nirupama Putcha
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland
| | - M Bradley Drummond
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Robert A Wise
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Nadia N Hansel
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
153
|
Abstract
Since their initial discovery in the early 1990s, microRNAs have now become the focus of a multitude of lines of investigation ranging from basic biology to translational applications in the clinic. Previously believed to be of no biological relevance, microRNAs regulate processes fundamental to human health and disease. In diseases of the lung, microRNAs have been implicated in developmental programming, as drivers of disease, potential therapeutic targets, and clinical biomarkers; however, several obstacles must be overcome for us to fully realize their potential therapeutic use. Here, we provide for the clinician an overview of microRNA biology in selected diseases of the lung with a focus on their potential clinical application.
Collapse
|
154
|
Metzler-Guillemain C, Victorero G, Lepoivre C, Bergon A, Yammine M, Perrin J, Sari-Minodier I, Boulanger N, Rihet P, Nguyen C. Sperm mRNAs and microRNAs as candidate markers for the impact of toxicants on human spermatogenesis: an application to tobacco smoking. Syst Biol Reprod Med 2015; 61:139-49. [PMID: 25821920 DOI: 10.3109/19396368.2015.1022835] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Spermatozoa contain a complex population of RNAs including messenger RNAs (mRNAs) and small RNAs such as microRNAs (miRNA). It has been reported that these RNAs can be used to understand the mechanisms by which toxicological exposure affects spermatogenesis. The aim of our study was to compare mRNA and miRNA profiles in spermatozoa from eight smokers and eight non-smokers, and search for potential relationships between mRNA and miRNA variation. All men were selected based on their answers to a standard toxic exposure questionnaire, and sperm parameters. Using mRNA and miRNA microarrays, we showed that mRNAs from 15 genes were differentially represented between smokers and non-smokers (p<0.01): five had higher levels and 10 lower levels in the smokers. For the microRNAs, 23 were differentially represented: 16 were higher and seven lower in the smokers (0.004≤p<0.01). Quantitative RT-PCR confirmed the lower levels in smokers compared to non-smokers for hsa-miR-296-5p, hsa-miR-3940, and hsa-miR-520d-3p. Moreover, we observed an inverse relationship between the levels of microRNAs and six potential target mRNAs (B3GAT3, HNRNPL, OASL, ODZ3, CNGB1, and PKD2). Our results indicate that alterations in the level of a small number of microRNAs in response to smoking may contribute to changes in mRNA expression in smokers. We conclude that large-scale analysis of spermatozoa RNAs can be used to help understand the mechanisms by which human spermatogenesis responds to toxic substances including those in tobacco smoke.
Collapse
|
155
|
Imamura K, Kokubu E, Kita D, Ota K, Ishihara K, Saito A. Cigarette smoke condensate modulates migration of human gingival epithelial cells and their interactions with Porphyromonas gingivalis. J Periodontal Res 2015; 50:411-21. [PMID: 25196284 DOI: 10.1111/jre.12222] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2014] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND OBJECTIVE Epithelial cells are recognized as the first line of defense against bacterial infection and environmental harmful stimuli such as cigarette smoke (CS). Although previous studies explored the effects of nicotine on host cells, mechanisms by which CS affects cellular functions remain uncertain. The present study investigated the effects of CS condensate (CSC) on in vitro wound closure of gingival epithelial cells and their potential interactions with a major periodontal pathogen, Porphyromonas gingivalis. MATERIAL AND METHODS Human gingival epithelial cells (Ca9-22) were treated with CSC for 24 h. Cell proliferation was determined using a WST-1 assay. Cell migration was assessed using a wound closure model. The expression of integrins was analyzed by confocal scanning laser microscopy and real-time PCR. Intracellular invasion of P. gingivalis was evaluated by confocal scanning laser microscopy and an antibiotic protection assay. RESULTS Low concentrations (1-10 μg/mL) of CSC showed no significant effect on cell proliferation. CSC demonstrated dual effects on epithelial wound closure of Ca9-22 cells: high concentrations (i.e. 250 μg/mL) significantly inhibited the wound closure whereas low concentrations (i.e. 10 μg/mL) promoted it (p < 0.01). CSC induced distinct changes in cytoskeleton. When CSC-exposed cells were infected with P. gingivalis for 2 h, a significant inhibition of wound closure was observed concurrent with a decrease in integrin α3 expression near the wound area. A significantly increased P. gingivalis invasion into Ca9-22 was observed when exposed to low concentrations of CSC. CONCLUSION Low concentrations of CSC increased invasion of human gingival epithelial cells by P. gingivalis and induced changes in cytoskeleton and integrin expression, thereby modulating the cell migration.
Collapse
Affiliation(s)
- K Imamura
- Department of Periodontology, Tokyo Dental College, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
156
|
De Smet EG, Mestdagh P, Vandesompele J, Brusselle GG, Bracke KR. Non-coding RNAs in the pathogenesis of COPD. Thorax 2015; 70:782-91. [PMID: 25995155 DOI: 10.1136/thoraxjnl-2014-206560] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 04/29/2015] [Indexed: 12/26/2022]
Abstract
A large part of the human genome is transcribed in non-coding RNAs, transcripts that do not code for protein, including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). MiRNAs are short single-stranded RNA molecules that negatively regulate gene expression at the post-transcriptional level. They play an important regulatory role in many biological processes. Consequently, altered expression of these non-coding RNAs has been shown to lead to inflammation and disease. In contrast, lncRNAs, can both enhance or repress the expression of protein-coding genes. COPD is typically caused by tobacco smoking and leads to a progressive decline in lung function and a premature death. Exaggerated pulmonary inflammation is a hallmark feature in this disease, leading to obstructive bronchiolitis and emphysema. In this review, we discuss the miRNA expression patterns in lungs of patients with COPD and in mouse models and we highlight various miRNAs involved in COPD pathogenesis. In addition, we briefly discuss a specific lncRNA that is upregulated upon cigarette smoke exposure, providing a short introduction to this more recently discovered group of non-coding RNAs.
Collapse
Affiliation(s)
- Elise G De Smet
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Pieter Mestdagh
- Center for Medical Genetics, Ghent University, Ghent, Belgium
| | - Jo Vandesompele
- Center for Medical Genetics, Ghent University, Ghent, Belgium
| | - Guy G Brusselle
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Ken R Bracke
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
157
|
Taki FA, Pan X, Zhang B. Revisiting Chaos Theorem to Understand the Nature of miRNAs in Response to Drugs of Abuse. J Cell Physiol 2015; 230:2857-68. [PMID: 25966899 DOI: 10.1002/jcp.25037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 05/05/2015] [Indexed: 11/08/2022]
Abstract
Just like Matryoshka dolls, biological systems follow a hierarchical order that is based on dynamic bidirectional communication among its components. In addition to the convoluted inter-relationships, the complexity of each component spans several folds. Therefore, it becomes rather challenging to investigate phenotypes resulting from these networks as it requires the integration of reductionistic and holistic approaches. One dynamic system is the transcriptome which comprises a variety of RNA species. Some, like microRNAs, have recently received a lot of attention. miRNAs are very pleiotropic and have been considered as therapeutic and diagnostic candidates in the biomedical fields. In this review, we survey miRNA profiles in response to drugs of abuse (DA) using 118 studies. After providing a summary of miRNAs related to substance use disorders (SUD), general patterns of miRNA signatures are compared among studies for single or multiple drugs of abuse. Then, current challenges and drawbacks in the field are discussed. Finally, we provide support for considering miRNAs as a chaotic system in normal versus disrupted states particularly in SUD and propose an integrative approach for studying and analyzing miRNA data.
Collapse
Affiliation(s)
- Faten A Taki
- Department of Biology, East Carolina University, Greenville, North Carolina
| | - Xiaoping Pan
- Department of Biology, East Carolina University, Greenville, North Carolina
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, North Carolina
| |
Collapse
|
158
|
Sheridan JA, Zago M, Nair P, Li PZ, Bourbeau J, Tan WC, Hamid Q, Eidelman DH, Benedetti AL, Baglole CJ. Decreased expression of the NF-κB family member RelB in lung fibroblasts from Smokers with and without COPD potentiates cigarette smoke-induced COX-2 expression. Respir Res 2015; 16:54. [PMID: 25943190 PMCID: PMC4427974 DOI: 10.1186/s12931-015-0214-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 04/21/2015] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Heightened inflammation, including expression of COX-2, is associated with COPD pathogenesis. RelB is an NF-κB family member that attenuates COX-2 in response to cigarette smoke by a mechanism that may involve the miRNA miR-146a. There is no information on the expression of RelB in COPD or if RelB prevents COX-2 expression through miR-146a. METHODS RelB, Cox-2 and miR-146a levels were evaluated in lung fibroblasts and blood samples derived from non-smokers (Normal) and smokers (At Risk) with and without COPD by qRT-PCR. RelB and COX-2 protein levels were evaluated by western blot. Human lung fibroblasts from Normal subjects and smokers with and without COPD, along with RelB knock-down (siRNA) in Normal cells, were exposed to cigarette smoke extract (CSE) in vitro and COX-2 mRNA/protein and miR-146a levels assessed. RESULTS Basal expression of RelB mRNA and protein were significantly lower in lung cells derived from smokers with and without COPD, the latter of which expressed more Cox-2 mRNA and protein in response to CSE. Knock-down of RelB in Normal fibroblasts increased Cox-2 mRNA and protein induction by CSE. Basal miR-146a levels were not different between the three groups, and only Normal fibroblasts increased miR-146a expression in response to smoke. There was a positive correlation between systemic RelB and Cox-2 mRNA levels and circulating miR-146a levels were higher only in GOLD stage I subjects. CONCLUSIONS Our data indicate that RelB attenuates COX-2 expression in lung structural cells, such that loss of pulmonary RelB may be an important determinant in the aberrant, heightened inflammation associated with COPD pathogenesis.
Collapse
Affiliation(s)
- Jared A Sheridan
- Department of Medicine, 1001 Decarie Blvd, Montreal, QC, H4A 3J1, Canada.
| | - Michela Zago
- Department of Medicine, 1001 Decarie Blvd, Montreal, QC, H4A 3J1, Canada.
| | | | - Pei Z Li
- Respiratory Epidemiology and Clinical Research Unit, Montreal Chest Institute, McGill University, Montreal, QC, Canada.
| | - Jean Bourbeau
- Respiratory Epidemiology and Clinical Research Unit, Montreal Chest Institute, McGill University, Montreal, QC, Canada.
| | - Wan C Tan
- The UBC James Hogg Research Centre, University of British Columbia, Vancouver, BC, Canada.
| | - Qutayba Hamid
- Department of Medicine, 1001 Decarie Blvd, Montreal, QC, H4A 3J1, Canada.
- Research Institute of the McGill University Health Centre, 1001 Decarie Blvd, Montreal, QC, H4A 3J1, Canada.
| | - David H Eidelman
- Department of Medicine, 1001 Decarie Blvd, Montreal, QC, H4A 3J1, Canada.
- Research Institute of the McGill University Health Centre, 1001 Decarie Blvd, Montreal, QC, H4A 3J1, Canada.
| | - Andrea L Benedetti
- Department of Epidemiology and Biostatistics, 1001 Decarie Blvd, Montreal, QC, H4A 3J1, Canada.
| | - Carolyn J Baglole
- Department of Medicine, 1001 Decarie Blvd, Montreal, QC, H4A 3J1, Canada.
- Research Institute of the McGill University Health Centre, 1001 Decarie Blvd, Montreal, QC, H4A 3J1, Canada.
| |
Collapse
|
159
|
Vrijens K, Bollati V, Nawrot TS. MicroRNAs as potential signatures of environmental exposure or effect: a systematic review. ENVIRONMENTAL HEALTH PERSPECTIVES 2015; 123:399-411. [PMID: 25616258 PMCID: PMC4421768 DOI: 10.1289/ehp.1408459] [Citation(s) in RCA: 229] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Accepted: 01/14/2015] [Indexed: 05/19/2023]
Abstract
BACKGROUND The exposome encompasses all life-course environmental exposures from the prenatal period onward that influence health. MicroRNAs (miRNAs) are interesting entities within this concept as markers and causation of disease. MicroRNAs are short oligonucleotide sequences that can interact with several mRNA targets. OBJECTIVES We reviewed the current state of the field on the potential of using miRNAs as biomarkers for environmental exposure. We investigated miRNA signatures in response to all types of environmental exposure to which a human can be exposed, including cigarette smoke, air pollution, nanoparticles, and diverse chemicals; and we examined the health conditions for which the identified miRNAs have been reported (i.e., cardiovascular disease, cancer, and diabetes). METHODS We searched the PubMed and ScienceDirect databases to identify relevant studies. RESULTS For all exposures incorporated in this review, 27 miRNAs were differentially expressed in at least two independent studies. miRNAs that had expression alterations associated with smoking observed in multiple studies are miR-21, miR-34b, miR-125b, miR-146a, miR-223, and miR-340; and those miRNAs that were observed in multiple air pollution studies are miR-9, miR-10b, miR-21, miR-128, miR-143, miR-155, miR-222, miR-223, and miR-338. We found little overlap among in vitro, in vivo, and human studies between miRNAs and exposure. Here, we report on disease associations for those miRNAs identified in multiple studies on exposure. CONCLUSIONS miRNA changes may be sensitive indicators of the effects of acute and chronic environmental exposure. Therefore, miRNAs are valuable novel biomarkers for exposure. Further studies should elucidate the role of the mediation effect of miRNA between exposures and effect through all stages of life to provide a more accurate assessment of the consequences of miRNA changes.
Collapse
Affiliation(s)
- Karen Vrijens
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | | | | |
Collapse
|
160
|
Persistence of smoking-induced dysregulation of miRNA expression in the small airway epithelium despite smoking cessation. PLoS One 2015; 10:e0120824. [PMID: 25886353 PMCID: PMC4401720 DOI: 10.1371/journal.pone.0120824] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 02/05/2015] [Indexed: 11/30/2022] Open
Abstract
Even after quitting smoking, the risk of the development of chronic obstructive pulmonary disease (COPD) and lung cancer remains significantly higher compared to healthy nonsmokers. Based on the knowledge that COPD and most lung cancers start in the small airway epithelium (SAE), we hypothesized that smoking modulates miRNA expression in the SAE linked to the pathogenesis of smoking-induced airway disease, and that some of these changes persist after smoking cessation. SAE was collected from 10th to 12th order bronchi using fiberoptic bronchoscopy. Affymetrix miRNA 2.0 arrays were used to assess miRNA expression in the SAE from 9 healthy nonsmokers and 10 healthy smokers, before and after they quit smoking for 3 months. Smoking status was determined by urine nicotine and cotinine measurement. There were significant differences in the expression of 34 miRNAs between healthy smokers and healthy nonsmokers (p<0.01, fold-change >1.5), with functions associated with lung development, airway epithelium differentiation, inflammation and cancer. After quitting smoking for 3 months, 12 out of the 34 miRNAs did not return to normal levels, with Wnt/β-catenin signaling pathway being the top identified enriched pathway of the target genes of the persistent dysregulated miRNAs. In the context that many of these persistent smoking-dependent miRNAs are associated with differentiation, inflammatory diseases or lung cancer, it is likely that persistent smoking-related changes in SAE miRNAs play a role in the subsequent development of these disorders.
Collapse
|
161
|
Coogan PF, Castro-Webb N, Yu J, O'Connor GT, Palmer JR, Rosenberg L. Active and passive smoking and the incidence of asthma in the Black Women's Health Study. Am J Respir Crit Care Med 2015; 191:168-76. [PMID: 25387276 DOI: 10.1164/rccm.201406-1108oc] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Evidence linking active or passive smoking to the incidence of adult-onset asthma is inconsistent with both positive and inverse associations being reported. Most previous studies of active smoking have not accounted for passive smoke exposure, which may have introduced bias. OBJECTIVES To assess the separate associations of active and passive smoking to the incidence of adult-onset asthma in the U.S. Black Women's Health Study, a prospective cohort of African American women followed since 1995 with mailed biennial questionnaires. METHODS Active smoking status was reported at baseline and updated on all follow-up questionnaires. Passive smoke exposure during childhood, adolescence, and adulthood was ascertained in 1997. Asthma cases comprised women who reported doctor-diagnosed asthma with concurrent asthma medication use. Cox regression models were used to derive multivariable hazard ratios (HRs) and 95% confidence intervals (CIs) for former and current smoking and for passive smoking among nonsmokers compared with a reference category of never active or passive smokers. MEASUREMENTS AND MAIN RESULTS Among 46,182 participants followed from 1995 to 2011, 1,523 reported incident asthma. The multivariable HRs for former active smoking, current active smoking, and passive smoking only were, respectively, 1.36 (95% CI, 1.11-1.67), 1.43 (95% CI, 1.15-1.77), and 1.21 (95% CI, 1.00-1.45), compared with never active/passive smoking. CONCLUSIONS In this large population with 16 years of follow-up, active smoking increased the incidence of adult-onset asthma, and passive smoke exposure increased the risk among nonsmokers. Continued efforts to reduce exposure to tobacco smoke may have a beneficial effect on the incidence of adult-onset asthma.
Collapse
|
162
|
Mathis C, Gebel S, Poussin C, Belcastro V, Sewer A, Weisensee D, Hengstermann A, Ansari S, Wagner S, Peitsch MC, Hoeng J. A systems biology approach reveals the dose- and time-dependent effect of primary human airway epithelium tissue culture after exposure to cigarette smoke in vitro. Bioinform Biol Insights 2015; 9:19-35. [PMID: 25788831 PMCID: PMC4357630 DOI: 10.4137/bbi.s19908] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Revised: 12/03/2014] [Accepted: 12/04/2014] [Indexed: 02/07/2023] Open
Abstract
To establish a relevant in vitro model for systems toxicology-based mechanistic assessment of environmental stressors such as cigarette smoke (CS), we exposed human organotypic bronchial epithelial tissue cultures at the air liquid interface (ALI) to various CS doses. Previously, we compared in vitro gene expression changes with published human airway epithelia in vivo data to assess their similarities. Here, we present a follow-up evaluation of these in vitro transcriptomics data, using complementary computational approaches and an integrated mRNA-microRNA (miRNA) analysis. The main cellular pathways perturbed by CS exposure were related to stress responses (oxidative stress and xenobiotic metabolism), inflammation (inhibition of nuclear factor-κB and the interferon gamma-dependent pathway), and proliferation/differentiation. Within post-exposure periods up to 48 hours, a transient kinetic response was observed at lower CS doses, whereas higher doses resulted in more sustained responses. In conclusion, this systems toxicology approach has potential for product testing according to "21st Century Toxicology".
Collapse
Affiliation(s)
- Carole Mathis
- Philip Morris International R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Stephan Gebel
- Philip Morris International R&D, Philip Morris Research Laboratories GmbH, Cologne, Germany
| | - Carine Poussin
- Philip Morris International R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Vincenzo Belcastro
- Philip Morris International R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Alain Sewer
- Philip Morris International R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Dirk Weisensee
- Philip Morris International R&D, Philip Morris Research Laboratories GmbH, Cologne, Germany
| | - Arnd Hengstermann
- Philip Morris International R&D, Philip Morris Research Laboratories GmbH, Cologne, Germany
| | - Sam Ansari
- Philip Morris International R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Sandra Wagner
- Philip Morris International R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Manuel C Peitsch
- Philip Morris International R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Julia Hoeng
- Philip Morris International R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| |
Collapse
|
163
|
Wei J, Li F, Yang J, Liu X, Cho WC. MicroRNAs as regulators of airborne pollution-induced lung inflammation and carcinogenesis. Arch Toxicol 2015; 89:677-85. [PMID: 25667014 DOI: 10.1007/s00204-015-1462-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 01/08/2015] [Indexed: 12/14/2022]
Abstract
The increasing incidence of pulmonary inflammation and lung cancer, as well as exacerbation of pre-existing chronic lung diseases by exposure to airborne pollutants, e.g., particulate matter and cigarette smoke, is becoming a major public health concern in the world. However, the exact mechanisms of pulmonary injury from exposure to these airborne insults have not been fully elucidated. Nevertheless, accumulating evidence suggests that microRNAs (miRNAs) may play a unique role in the regulation of airborne agent-induced lung inflammation and carcinogenesis. Since epigenetic modifications are heritable and reversible, this may provide a new insight into the relationship of miRNAs and environmental pollution-related lung disorders. The aim of this review was to update our existing knowledge regarding the mechanisms by which airborne pollutants altering miRNA profiles in the lung, specifically for cigarette smoke and airborne particulate matter, and the potential biological roles of miRNAs in the initiation of pulmonary inflammation and lung cancer, as well as the regulation of underlying genetic susceptibility to these environmental stressors.
Collapse
Affiliation(s)
- Jun Wei
- Center of Medical Research, General Hospital, Ningxia Medical University, Yinchuan, Ningxia, 750004, People's Republic of China
| | | | | | | | | |
Collapse
|
164
|
Moon EJ, Giaccia A. Dual roles of NRF2 in tumor prevention and progression: possible implications in cancer treatment. Free Radic Biol Med 2015; 79:292-9. [PMID: 25458917 PMCID: PMC4339613 DOI: 10.1016/j.freeradbiomed.2014.11.009] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 11/13/2014] [Accepted: 11/13/2014] [Indexed: 12/16/2022]
Abstract
The cap'n'collar (CNC) family serves as cellular sensors of oxidative and electrophilic stresses and shares structural similarities including basic leucine zipper (bZIP) and CNC domains. They form heterodimers with small MAF proteins to regulate antioxidant and phase II enzymes through antioxidant response element (ARE)-mediated transactivation. Among the CNC family members, NRF2 is required for systemic protection against redox-mediated injury and carcinogenesis. On the other hand, NRF2 is activated by oncogenic pathways, metabolism, and hypoxia. Constitutive NRF2 activation is observed in a variety of human cancers and it is highly correlated with tumor progression and aggressiveness. In this review, we will discuss how NRF2 plays dual roles in cancer prevention and progression depending on the cellular context and environment. Therefore, a better understanding of NRF2 will be necessary to exploit this complex network of balancing antioxidant pathways to inhibit tumor progression.
Collapse
Affiliation(s)
- Eui Jung Moon
- Division of Radiation Biology & Oncology, Department of Radiation Oncology, Stanford University, Stanford, CA 94305, USA
| | - Amato Giaccia
- Division of Radiation Biology & Oncology, Department of Radiation Oncology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
165
|
Gesthalter YB, Vick J, Steiling K, Spira A. Translating the transcriptome into tools for the early detection and prevention of lung cancer. Thorax 2015; 70:476-81. [PMID: 25628310 DOI: 10.1136/thoraxjnl-2014-206605] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 01/09/2015] [Indexed: 12/21/2022]
Abstract
Despite advances in the management of lung cancer, this disease remains a significant global health burden with survival rates that have not significantly improved in decades. The mortality reduction achieved by low-dose helical CT (LDCT) screening of select high-risk patients is challenged by the high false positive rate of this screening modality and the potential for morbidity associated with follow-up diagnostic evaluation in patients with high risk for iatrogenic complications. The diagnostic dilemma of the indeterminate nodule incidentally identified on diagnostic or screening CT has created a need for reliable biomarkers capable of distinguishing benign from malignant disease. Furthermore, there is an urgent need to develop molecular biomarkers to supplement clinical risk models in order to identify patients at highest risk for having an early stage lung cancer that may derive the greatest benefit from LDCT screening, as well as identifying patients at high-risk for developing lung cancer that may be candidates for emerging chemopreventive strategies. Evolving bioinformatic techniques and the application of these algorithms to analyse the transcriptomic changes associated with lung cancer promise translational discoveries that can bridge these large clinical gaps. The identification of lung cancer associated transcriptomic alterations in readily accessible tissue sampling sites offers the potential to develop early diagnostic and risk stratification strategies applicable to large populations. This review summarises the challenges associated with the early detection, screening and chemoprevention of lung cancer with an emphasis on how genomic information encapsulated by the transcriptome can facilitate future innovations in these clinical settings.
Collapse
Affiliation(s)
- Yaron B Gesthalter
- The Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, USA Division of Pulmonary, Allergy, and Critical Care Medicine, Boston University School of Medicine, Boston, Massachusetts, USA Division of Computational Biomedicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Jessica Vick
- Division of Computational Biomedicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Katrina Steiling
- The Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, USA Division of Computational Biomedicine, Boston University School of Medicine, Boston, Massachusetts, USA Bioinformatics Program, Boston University, Boston, Massachusetts, USA
| | - Avrum Spira
- The Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, USA Division of Computational Biomedicine, Boston University School of Medicine, Boston, Massachusetts, USA Bioinformatics Program, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
166
|
Abstract
Idiopathic pulmonary fibrosis (IPF) is a lethal chronic lung disorder with no effective treatment and a prognosis worse than that of lung cancer. Despite extensive research efforts, its etiology and pathogenesis still remain largely unknown. Current experimental evidence has shifted the disease paradigm from chronic inflammation towards the premise of abnormal epithelial wound repair in response to repeated epigenetic injurious stimuli in genetically predisposed individuals. Epigenetics is defined as the study of heritable changes in gene function by factors other than an individual's DNA sequence, providing valuable information regarding adaption of genes to environmental changes. Although cancer is the most studied disease with relevance to epigenetic modifications, recent data support the idea that epigenomic alterations may lead to variable disease phenotypes, including fibroproliferative lung disorders such as IPF. This review article summarizes the latest experimental and translational epigenetic studies in the research field of chronic lung disorders, mainly focusing on IPF, highlights current methodology limitations, and underlines future directions and perspectives.
Collapse
Affiliation(s)
- Argyrios Tzouvelekis
- Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, 300 Cedar St., TAC-441 South, P.O. Box 208057, New Haven, CT 06520, USA
| | | |
Collapse
|
167
|
Yang IV, Schwartz DA. Epigenetics of idiopathic pulmonary fibrosis. Transl Res 2015; 165:48-60. [PMID: 24746870 PMCID: PMC4182166 DOI: 10.1016/j.trsl.2014.03.011] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 03/18/2014] [Accepted: 03/21/2014] [Indexed: 12/15/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a complex lung disease of unknown etiology. Development of IPF is influenced by both genetic and environmental factors. Recent work by our and other groups has identified strong genetic predisposition factors for the development of pulmonary fibrosis, and cigarette smoke remains the most strongly associated environmental exposure risk factor. Gene expression profiling studies of IPF lung have taught us quite a bit about the biology of this fatal disease, and those of peripheral blood have provided important biomarkers. However, epigenetic marks may be the missing link that connects the environmental exposure in genetically predisposed individuals to transcriptional changes associated with disease development. Moreover, epigenetic marks represent a promising therapeutic target for IPF. In this review, the disease is introduced, genetic and gene expression studies in IPF are summarized, exposures relevant to IPF and known epigenetic changes associated with cigarette smoke exposure are discussed, and epigenetic studies conducted so far in IPF are summarized. Limitations, challenges, and future opportunities in this field are also discussed.
Collapse
Affiliation(s)
- Ivana V Yang
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colo; Department of Epidemiology, Colorado School of Public Health, Aurora, Colo.
| | - David A Schwartz
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colo; Department of Immunology, University of Colorado School of Medicine, Aurora, Colo
| |
Collapse
|
168
|
Effect of culture conditions on microRNA expression in primary adult control and COPD lung fibroblasts in vitro. In Vitro Cell Dev Biol Anim 2015; 51:390-9. [PMID: 25552310 DOI: 10.1007/s11626-014-9820-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 09/08/2014] [Indexed: 12/27/2022]
Abstract
In vitro cell cultures, including lung fibroblasts, have been used to identify microRNAs (miRNAs) associated with chronic obstructive pulmonary disease (COPD) pathogenesis. However, culture conditions may affect miRNA expression. We examined whether miRNA expression in primary adult lung fibroblasts varies with cell density or passage in vitro and whether culture conditions confound the identification of altered miRNA expression in COPD lung fibroblasts. Primary adult control and COPD lung fibroblasts were cultured until passage 3 or 8, after which cells were further cultured for 3 or 7 d (low vs. high density). Then, cells at low density were cultured with serum-free media, and those at high density were cultured with serum-free media in the absence or presence of interleukin-1β (IL-1β) and tumor necrosis factor alpha (TNF-α) for 24 h. RNA was extracted to perform miRNA microarray from which 1.25-fold differential expression and 10% false discovery rate were applied to identify "invariant" and "variant" miRNA for the various culture conditions. Of the 2226 miRNAs evaluated, 39.0% for cell density, 40.7% for cell passage, and 29.4% for both conditions were identified as "invariant" miRNAs. Furthermore, 38.1% of the evaluated miRNAs were "invariant" for cell passage with IL-1β and TNF-α. Differentially expressed miRNAs between control and COPD lung fibroblasts were identified with and without IL-1β and TNF-α, and of these, 32 out of the 34 top-ranked miRNAs exceeded the differences due to culture conditions. Thus, culture conditions may affect miRNA expression of adult human lung fibroblasts. Nevertheless, in vitro cultures can be used to assess differential miRNA expression in COPD lung fibroblasts.
Collapse
|
169
|
B S, Dharshini AP, Kumar GR. NGS meta data analysis for identification of SNP and INDEL patterns in human airway transcriptome: A preliminary indicator for lung cancer. Appl Transl Genom 2014; 4:4-9. [PMID: 26937342 PMCID: PMC4745382 DOI: 10.1016/j.atg.2014.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 12/05/2014] [Accepted: 12/08/2014] [Indexed: 12/22/2022]
Abstract
High-throughput sequencing of RNA (RNA-Seq) was developed primarily to analyze global gene expression in different tissues. It is also an efficient way to discover coding SNPs and when multiple individuals with different genetic backgrounds were used, RNA-Seq is very effective for the identification of SNPs. The objective of this study was to perform SNP and INDEL discoveries in human airway transcriptome of healthy never smokers, healthy current smokers, smokers without lung cancer and smokers with lung cancer. By preliminary comparative analysis of these four data sets, it is expected to get SNP and INDEL patterns responsible for lung cancer. A total of 85,028 SNPs and 5738 INDELs in healthy never smokers, 32,671 SNPs and 1561 INDELs in healthy current smokers, 50,205 SNPs and 3008 INDELs in smokers without lung cancer and 51,299 SNPs and 3138 INDELs in smokers with lung cancer were identified. The analysis of the SNPs and INDELs in genes that were reported earlier as differentially expressed was also performed. It has been found that a smoking person has SNPs at position 62,186,542 and 62,190,293 in SCGB1A1 gene and 180,017,251, 180,017,252, and 180,017,597 in SCGB3A1 gene and INDELs at position 35,871,168 in NFKBIA gene and 180,017,797 in SCGB3A1 gene. The SNPs identified in this study provides a resource for genetic studies in smokers and shall contribute to the development of a personalized medicine. This study is only a preliminary kind and more vigorous data analysis and wet lab validation are required.
Collapse
Affiliation(s)
- Sathya B
- Department of Bioinformatics, School of Bio Engineering, SRM University, Chennai 603203, India
| | - Akila Parvathy Dharshini
- Department of Bioinformatics, AU KBC Research Centre, Anna University, MIT Campus, Chennai 600044, India
| | - Gopal Ramesh Kumar
- Department of Bioinformatics, AU KBC Research Centre, Anna University, MIT Campus, Chennai 600044, India
| |
Collapse
|
170
|
Wang B, Liu Y, Luo F, Xu Y, Qin Y, Lu X, Xu W, Shi L, Liu Q, Xiang Q. Epigenetic silencing of microRNA-218 via EZH2-mediated H3K27 trimethylation is involved in malignant transformation of HBE cells induced by cigarette smoke extract. Arch Toxicol 2014; 90:449-61. [PMID: 25526925 DOI: 10.1007/s00204-014-1435-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 12/09/2014] [Indexed: 11/26/2022]
Abstract
Abnormal expression of miRNAs has been implicated in the pathogenesis of human lung cancers, most of which are attributable to cigarette smoke. The mechanisms of action, however, remain obscure. Here, we report that there are decreased expression of miR-218 and increased expression of EZH2 and H3K27me3 during cigarette smoke extract (CSE)-induced transformation of human bronchial epithelial (HBE) cells. Depletion of EZH2 by siRNA or by the EZH2 inhibitor, 3-deazaneplanocin A, attenuated CSE-induced decreases of miR-218 levels and increases of H3K27me3, which epigenetically controls gene transcription, and BMI1, an oncogene. Furthermore, ChIP assays demonstrated that EZH2 and H3K27me3 are enriched at the miR-218-1 promoter in HBE cells exposed to CSE, indicating that EZH2 mediates epigenetic silencing of miR-218 via histone methylation. In addition, miR-218 directly targeted BMI1, through which miR-218 ablates cancer stem cells (CSCs) self-renewal in transformed HBE cells. In CSE-transformed HBE cells, the protein level of Oct-4 and mRNA levels of CD133 and CD44, indicators of the acquisition of CSC-like properties, were reduced by over-expression of miR-218, and over-expression of miR-218 decreased the malignancy of transformed HBE cells. Thus, we conclude that epigenetic silencing of miR-218 via EZH2-mediated H3K27 trimethylation is involved in the acquisition of CSC-like properties and malignant transformation of HBE cells induced by CSE and thereby contributes to the carcinogenesis of cigarette smoke.
Collapse
Affiliation(s)
- Bairu Wang
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Yi Liu
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Fei Luo
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Yuan Xu
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Yu Qin
- Jiangsu Center for Disease Control and Prevention, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Xiaolin Lu
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Wenchao Xu
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Le Shi
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Qizhan Liu
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China.
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China.
| | - Quanyong Xiang
- Jiangsu Center for Disease Control and Prevention, Nanjing, 210009, Jiangsu, People's Republic of China.
| |
Collapse
|
171
|
Hogan EM, Casserly AP, Scofield MD, Mou Z, Zhao-Shea R, Johnson CW, Tapper AR, Gardner PD. miRNAome analysis of the mammalian neuronal nicotinic acetylcholine receptor gene family. RNA (NEW YORK, N.Y.) 2014; 20:1890-1899. [PMID: 25344397 PMCID: PMC4238110 DOI: 10.1261/rna.034066.112] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 09/05/2014] [Indexed: 06/04/2023]
Abstract
Nicotine binds to and activates a family of ligand-gated ion channels, neuronal nicotinic acetylcholine receptors (nAChRs). Chronic nicotine exposure alters the expression of various nAChR subtypes, which likely contributes to nicotine dependence; however, the underlying mechanisms regulating these changes remain unclear. A growing body of evidence indicates that microRNAs (miRNAs) may be involved in nAChR regulation. Using bioinformatics, miRNA library screening, site-directed mutagenesis, and gene expression analysis, we have identified a limited number of miRNAs that functionally interact with the 3'-untranslated regions (3' UTRs) of mammalian neuronal nAChR subunit genes. In silico analyses revealed specific, evolutionarily conserved sites within the 3' UTRs through which the miRNAs regulate gene expression. Mutating these sites disrupted miRNA regulation confirming the in silico predictions. In addition, the miRNAs that target nAChR 3' UTRs are expressed in mouse brain and are regulated by chronic nicotine exposure. Furthermore, we show that expression of one of these miRNAs, miR-542-3p, is modulated by nicotine within the mesocorticolimbic reward pathway. Importantly, overexpression of miR-542-3p led to a decrease in the protein levels of its target, the nAChR β2 subunit. Bioinformatic analysis suggests that a number of the miRNAs play a general role in regulating cholinergic signaling. Our results provide evidence for a novel mode of nicotine-mediated regulation of the mammalian nAChR gene family.
Collapse
Affiliation(s)
- Eric M Hogan
- Brudnick Neuropsychiatric Research Institute, Department of Psychiatry, University of Massachusetts Medical School, Worcester, Massachusetts 01604, USA Brudnick Neuropsychiatric Research Institute, Department of Psychiatry, University of Massachusetts Medical School, Worcester, Massachusetts 01604, USA
| | - Alison P Casserly
- Brudnick Neuropsychiatric Research Institute, Department of Psychiatry, University of Massachusetts Medical School, Worcester, Massachusetts 01604, USA UMMS MD/PhD Program, University of Massachusetts Medical School, Worcester, Massachusetts 01604, USA
| | - Michael D Scofield
- Brudnick Neuropsychiatric Research Institute, Department of Psychiatry, University of Massachusetts Medical School, Worcester, Massachusetts 01604, USA Brudnick Neuropsychiatric Research Institute, Department of Psychiatry, University of Massachusetts Medical School, Worcester, Massachusetts 01604, USA
| | - Zhongming Mou
- Brudnick Neuropsychiatric Research Institute, Department of Psychiatry, University of Massachusetts Medical School, Worcester, Massachusetts 01604, USA
| | - Rubing Zhao-Shea
- Brudnick Neuropsychiatric Research Institute, Department of Psychiatry, University of Massachusetts Medical School, Worcester, Massachusetts 01604, USA
| | - Chris W Johnson
- Brudnick Neuropsychiatric Research Institute, Department of Psychiatry, University of Massachusetts Medical School, Worcester, Massachusetts 01604, USA
| | - Andrew R Tapper
- Brudnick Neuropsychiatric Research Institute, Department of Psychiatry, University of Massachusetts Medical School, Worcester, Massachusetts 01604, USA Brudnick Neuropsychiatric Research Institute, Department of Psychiatry, University of Massachusetts Medical School, Worcester, Massachusetts 01604, USA UMMS MD/PhD Program, University of Massachusetts Medical School, Worcester, Massachusetts 01604, USA
| | - Paul D Gardner
- Brudnick Neuropsychiatric Research Institute, Department of Psychiatry, University of Massachusetts Medical School, Worcester, Massachusetts 01604, USA Brudnick Neuropsychiatric Research Institute, Department of Psychiatry, University of Massachusetts Medical School, Worcester, Massachusetts 01604, USA UMMS MD/PhD Program, University of Massachusetts Medical School, Worcester, Massachusetts 01604, USA
| |
Collapse
|
172
|
Gruzieva O, Merid SK, Melén E. An update on epigenetics and childhood respiratory diseases. Paediatr Respir Rev 2014; 15:348-54. [PMID: 25151612 DOI: 10.1016/j.prrv.2014.07.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 07/24/2014] [Indexed: 01/28/2023]
Abstract
Epigenetic mechanisms, defined as changes in phenotype or gene expression caused by mechanisms other than changes in the underlying DNA sequence, have been proposed to constitute a link between genetic and environmental factors that affect complex diseases. Recent studies show that DNA methylation, one of the key epigenetic mechanisms, is altered in children exposed to air pollutants and environmental tobacco smoke early in life. Several candidate gene studies on epigenetics have been published to date, but it is only recently that global methylation analyses have been performed for respiratory disorders such as asthma and chronic obstructive pulmonary disease. However, large-scale studies with adequate power are yet to be presented in children, and implications for clinical use remain to be evaluated. In this review, we summarize the recent advances in epigenetics and respiratory disorders in children, with a main focus on methodological challenges and analyses related to phenotype and exposure using global methylation approaches.
Collapse
Affiliation(s)
- Olena Gruzieva
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Simon Kebede Merid
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Erik Melén
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Sachs' Children's Hospital, Stockholm, Sweden.
| |
Collapse
|
173
|
Bondanese VP, Francisco-Garcia A, Bedke N, Davies DE, Sanchez-Elsner T. Identification of host miRNAs that may limit human rhinovirus replication. World J Biol Chem 2014; 5:437-456. [PMID: 25426267 PMCID: PMC4243148 DOI: 10.4331/wjbc.v5.i4.437] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 09/01/2014] [Accepted: 10/10/2014] [Indexed: 02/05/2023] Open
Abstract
AIM: To test whether the replication of human rhinovirus (HRV) is regulated by microRNAs in human bronchial epithelial cells.
METHODS: For the present study, the human cell line BEAS-2B (derived from normal human bronchial epithelial cells) was adopted. DICER knock-down, by siRNA transfection in BEAS-2B cells, was performed in order to inhibit microRNA maturation globally. Alternatively, antisense oligonucleotides (anti-miRs) were transfected to inhibit the activity of specific microRNAs. Cells were infected with HRV-1B. Viral replication was assessed by measuring the genomic viral RNA by reverse transcription quantitative polymerase chain reaction (RT-qPCR). Association between microRNA-induced-silencing-complex and viral RNA was detected by Ago2 co-immunoprecipitation followed by RT-qPCR. Targetscan v.6 was used to predict microRNA target sites on several HRV strains.
RESULTS: Here, we show that microRNAs affect replication of HRV-1B. DICER knock-down significantly reduced the expression of mature microRNAs in a bronchial epithelial cell line (BEAS-2B) and in turn, increased the synthesis of HRV-1B RNA. Additionally, HRV-1B RNA co-immunoprecipitated with argonaute 2 protein, an important effector for microRNA activity suggesting that microRNAs bind to viral RNA during infection. In order to identify specific microRNAs involved in this interaction, we employed bioinformatics analysis, and selected a group of microRNAs that have been reported to be under-expressed in asthmatic bronchial epithelial cells and were predicted to target different strains of rhinoviruses (HRV-1B, -16, -14, -27). Our results suggest that, out of this group of microRNAs, miR-128 and miR-155 contribute to the innate defense against HRV-1B: transfection of specific anti-miRs increased viral replication, as anticipated in-silico.
CONCLUSION: Taken together, our results suggest that pathological changes in microRNA expression, as already reported for asthma or chronic obstructive pulmonary disease have the potential to affect Rhinovirus replication and therefore may play a role in virus-induced exacerbations.
Collapse
|
174
|
Systems toxicology approaches enable mechanistic comparison of spontaneous and cigarette smoke-related lung tumor development in the A/J mouse model. Interdiscip Toxicol 2014; 7:73-84. [PMID: 26109882 PMCID: PMC4427718 DOI: 10.2478/intox-2014-0010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 06/23/2014] [Accepted: 06/26/2014] [Indexed: 01/09/2023] Open
Abstract
The A/J mouse is highly susceptible to lung tumor induction and has been widely used as a screening model in carcinogenicity testing and chemoprevention studies. However, the A/J mouse model has several disadvantages. Most notably, it develops lung tumors spontaneously. Moreover, there is a considerable gap in our understanding of the underlying mechanisms of pulmonary chemical carcinogenesis in the A/J mouse. Therefore, we examined the differences between spontaneous and cigarette smoke-related lung tumors in the A/J mouse model using mRNA and microRNA (miRNA) profiling. Male A/J mice were exposed whole-body to mainstream cigarette smoke (MS) for 18 months. Gene expression interaction term analysis of lung tumors and surrounding non-tumorous parenchyma samples from animals that were exposed to either 300 mg/m3 MS or sham-exposed to fresh air indicated significant differential expression of 296 genes. Ingenuity Pathway Analysis® (IPA®) indicated an overall suppression of the humoral immune response, which was accompanied by a disruption of sphingolipid and glycosaminoglycan metabolism and a deregulation of potentially oncogenic miRNA in tumors of MS-exposed A/J mice. Thus, we propose that MS exposure leads to severe perturbations in pathways essential for tumor recognition by the immune system, thereby potentiating the ability of tumor cells to escape from immune surveillance. Further, exposure to MS appeared to affect expression of miRNA, which have previously been implicated in carcinogenesis and are thought to contribute to tumor progression. Finally, we identified a 50-gene expression signature and show its utility in distinguishing between cigarette smoke-related and spontaneous lung tumors.
Collapse
|
175
|
Abstract
Diseases and death caused by exposure to tobacco smoke have become the single most serious preventable public health concern. Thus, biomarkers that can monitor tobacco exposure and health effects can play a critical role in tobacco product regulation and public health policy. Biomarkers of exposure to tobacco toxicants are well established and have been used in population studies to establish public policy regarding exposure to second-hand smoke, an example being the nicotine metabolite cotinine, which can be measured in urine. Biomarkers of biological response to tobacco smoking range from those indicative of inflammation to mRNA and microRNA patterns related to tobacco use and/or disease state. Biomarkers identifying individuals with an increased risk for a pathological response to tobacco have also been described. The challenge for any novel technology or biomarker is its translation to clinical and/or regulatory application, a process that requires first technical validation of the assay and then careful consideration of the context the biomarker assay may be used in the regulatory setting. Nonetheless, the current efforts to investigate new biomarker of tobacco smoke exposure promise to offer powerful new tools in addressing the health hazards of tobacco product use. This review will examine such biomarkers, albeit with a focus on those related to cigarette smoking.
Collapse
Affiliation(s)
- William Mattes
- Division of Systems Biology, Food & Drug Administration, National Center for Toxicological Research, Jefferson, Arkansas, USA.
| | - Xi Yang
- Division of Systems Biology, Food & Drug Administration, National Center for Toxicological Research, Jefferson, Arkansas, USA
| | - Michael S Orr
- Office of Science, Food & Drug Administration, Center for Tobacco Products, Rockville, Maryland, USA
| | - Patricia Richter
- Office of Science, Food & Drug Administration, Center for Tobacco Products, Rockville, Maryland, USA
| | - Donna L Mendrick
- Division of Systems Biology, Food & Drug Administration, National Center for Toxicological Research, Jefferson, Arkansas, USA
| |
Collapse
|
176
|
Vucic EA, Thu KL, Pikor LA, Enfield KSS, Yee J, English JC, MacAulay CE, Lam S, Jurisica I, Lam WL. Smoking status impacts microRNA mediated prognosis and lung adenocarcinoma biology. BMC Cancer 2014; 14:778. [PMID: 25342220 PMCID: PMC4216369 DOI: 10.1186/1471-2407-14-778] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 10/13/2014] [Indexed: 01/08/2023] Open
Abstract
Background Cigarette smoke is associated with the majority of lung cancers: however, 25% of lung cancer patients are non-smokers, and half of all newly diagnosed lung cancer patients are former smokers. Lung tumors exhibit distinct epidemiological, clinical, pathological, and molecular features depending on smoking status, suggesting divergent mechanisms underlie tumorigenesis in smokers and non-smokers. MicroRNAs (miRNAs) are integral contributors to tumorigenesis and mediate biological responses to smoking. Based on the hypothesis that smoking-specific miRNA differences in lung adenocarcinomas reflect distinct tumorigenic processes selected by different smoking and non-smoking environments, we investigated the contribution of miRNA disruption to lung tumor biology and patient outcome in the context of smoking status. Methods We applied a whole transcriptome sequencing based approach to interrogate miRNA levels in 94 patient-matched lung adenocarcinoma and non-malignant lung parenchymal tissue pairs from current, former and never smokers. Results We discovered novel and distinct smoking status-specific patterns of miRNA and miRNA-mediated gene networks, and identified miRNAs that were prognostically significant in a smoking dependent manner. Conclusions We conclude that miRNAs disrupted in a smoking status-dependent manner affect distinct cellular pathways and differentially influence lung cancer patient prognosis in current, former and never smokers. Our findings may represent promising biologically relevant markers for lung cancer prognosis or therapeutic intervention. Electronic supplementary material The online version of this article (doi:10.1186/1471-2407-14-778) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Emily A Vucic
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia V5Z 1L3, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
177
|
Deregulation of serum microRNA expression is associated with cigarette smoking and lung cancer. BIOMED RESEARCH INTERNATIONAL 2014; 2014:364316. [PMID: 25386559 PMCID: PMC4217347 DOI: 10.1155/2014/364316] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 08/11/2014] [Accepted: 08/13/2014] [Indexed: 02/05/2023]
Abstract
Lung cancer is the leading cause of cancer-related death and cigarette smoking is the main risk factor for lung cancer. Circulating microRNAs (miRNAs) are considered potential biomarkers of various cancers, including lung cancer. However, it is unclear whether changes in circulating miRNAs are associated with smoking and smoking-related lung cancer. In this study, we determined the serum miRNA profiles of 10 nonsmokers, 10 smokers, and 10 lung-cancer patients with miRCURY LNA microRNA arrays. The differentially expressed miRNAs were then confirmed in a larger sample. We found that let-7i-3p and miR-154-5p were significantly downregulated in the sera of smokers and lung-cancer patients, so the serum levels of let-7i-3p and miR-154-5p are associated with smoking and smoking-related lung cancer. The areas under receiver operating characteristic curves for let-7i-3p and miR-154-5p were approximately 0.892 and 0.957, respectively. In conclusion, our results indicate that changes in serum miRNAs are associated with cigarette smoking and lung cancer and that let-7i-3p and miR-154-5p are potential biomarkers of smoking-related lung cancer.
Collapse
|
178
|
Katoh M. Cardio-miRNAs and onco-miRNAs: circulating miRNA-based diagnostics for non-cancerous and cancerous diseases. Front Cell Dev Biol 2014; 2:61. [PMID: 25364765 PMCID: PMC4207049 DOI: 10.3389/fcell.2014.00061] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 09/29/2014] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular diseases and cancers are the leading causes of morbidity and mortality in the world. MicroRNAs (miRNAs) are short non-coding RNAs that primarily repress target mRNAs. Here, miR-24, miR-125b, miR-195, and miR-214 were selected as representative cardio-miRs that are upregulated in human heart failure. To bridge the gap between miRNA studies in cardiology and oncology, the targets and functions of these miRNAs in cardiovascular diseases and cancers will be reviewed. ACVR1B, BCL2, BIM, eNOS, FGFR3, JPH2, MEN1, MYC, p16, and ST7L are miR-24 targets that have been experimentally validated in human cells. ARID3B, BAK1, BCL2, BMPR1B, ERBB2, FGFR2, IL6R, MUC1, SITR7, Smoothened, STAT3, TET2, and TP53 are representative miR-125b targets. ACVR2A, BCL2, CCND1, E2F3, GLUT3, MYB, RAF1, VEGF, WEE1, and WNT7A are representative miR-195 targets. BCL2L2, ß-catenin, BIM, CADM1, EZH2, FGFR1, NRAS, PTEN, TP53, and TWIST1 are representative miR-214 targets. miR-125b is a good cardio-miR that protects cardiomyocytes; miR-195 is a bad cardio-miR that elicits cardiomyopathy and heart failure; miR-24 and miR-214 are bi-functional cardio-miRs. By contrast, miR-24, miR-125b, miR-195, and miR-214 function as oncogenic or tumor suppressor miRNAs in a cancer (sub)type-dependent manner. Circulating miR-24 is elevated in diabetes, breast cancer and lung cancer. Circulating miR-195 is elevated in acute myocardial infarction, breast cancer, prostate cancer and colorectal adenoma. Circulating miR-125b and miR-214 are elevated in some cancers. Cardio-miRs and onco-miRs bear some similarities in functions and circulation profiles. miRNAs regulate WNT, FGF, Hedgehog and other signaling cascades that are involved in orchestration of embryogenesis and homeostasis as well as pathogenesis of human diseases. Because circulating miRNA profiles are modulated by genetic and environmental factors and are dysregulated by genetic and epigenetic alterations in somatic cells, circulating miRNA association studies (CMASs) within several thousands of cases each for common non-cancerous diseases and major cancers are necessary for miRNA-based diagnostics.
Collapse
Affiliation(s)
- Masaru Katoh
- Department of Omics Network, National Cancer Center Tokyo, Japan
| |
Collapse
|
179
|
|
180
|
Abstract
BACKGROUND Ambient particulate matter (PM) has been associated with mortality and morbidity for cardiovascular disease. MicroRNAs control gene expression at a posttranscriptional level. Altered microRNA expression has been reported in processes related to cardiovascular disease and PM exposure, such as systemic inflammation, endothelial dysfunction, and atherosclerosis. Polymorphisms in microRNA-related genes could influence response to PM. METHODS We investigated the association of exposure to ambient particles in several time windows (4-hour to 28-day moving averages) and blood leukocyte expression changes in 14 candidate microRNAs in 153 elderly males from the Normative Aging Study (examined 2005-2009). Potential effect modification by six single nucleotide polymorphisms (SNPs) in three microRNA-related genes was investigated. Fine PM (PM2.5), black carbon, organic carbon, and sulfates were measured at a stationary ambient monitoring site. Linear regression models, adjusted for potential confounders, were used to assess effects of particles and SNP-by-pollutant interaction. An in silico pathway analysis was performed on target genes of microRNAs associated with the pollutants. RESULTS We found a negative association for pollutants in all moving averages and miR-1, -126, -135a, -146a, -155, -21, -222, and -9. The strongest associations were observed with the 7-day moving averages for PM2.5 and black carbon and with the 48-hour moving averages for organic carbon. The association with sulfates was stable across the moving averages. The in silico pathway analysis identified 18 pathways related to immune response shared by at least two microRNAs; in particular, the "high-mobility group protein B1/advanced glycosylation end product-specific receptor signaling pathway" was shared by miR-126, -146a, -155, -21, and -222. No important associations were observed for miR-125a-5p, -125b, -128, -147, -218, and -96. We found significant SNP-by-pollutant interactions for rs7813, rs910925, and rs1062923 in GEMIN4 and black carbon and PM2.5 for miR-1, -126, -146a, -222, and -9, and for rs1640299 in DGCR8 and SO4 for miR-1 and -135a. CONCLUSIONS Exposure to ambient particles could cause a downregulation of microRNAs involved in processes related to PM exposure. Polymorphisms in GEMIN4 and DGCR8 could modify these associations.
Collapse
|
181
|
Nair VS, Pritchard CC, Tewari M, Ioannidis JPA. Design and Analysis for Studying microRNAs in Human Disease: A Primer on -Omic Technologies. Am J Epidemiol 2014; 180:140-52. [PMID: 24966218 PMCID: PMC4082346 DOI: 10.1093/aje/kwu135] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 04/30/2014] [Indexed: 12/18/2022] Open
Abstract
microRNAs (miRNAs) are fundamental to cellular biology. Although only approximately 22 bases long, miRNAs regulate complex processes in health and disease, including human cancer. Because miRNAs are highly stable in circulation when compared with several other classes of nucleic acids, they have generated intense interest as clinical biomarkers in diverse epidemiologic studies. As with other molecular biomarker fields, however, miRNA research has become beleaguered by pitfalls related to terminology and classification; procedural, assay, and study cohort heterogeneity; and methodological inconsistencies. Together, these issues have led to both false-positive and potentially false-negative miRNA associations. In this review, we summarize the biological rationale for studying miRNAs in human disease with a specific focus on circulating miRNAs, which highlight some of the most challenging topics in the field to date. Examples from lung cancer are used to illustrate the potential utility and some of the pitfalls in contemporary miRNA research. Although the field is in its infancy, several important lessons have been learned relating to cohort development, sample preparation, and statistical analysis that should be considered for future studies. The goal of this primer is to equip epidemiologists and clinical researchers with sound principles of study design and analysis when using miRNAs.
Collapse
Affiliation(s)
| | | | | | - John P. A. Ioannidis
- Correspondence to Dr. John P. A. Ioannidis, Stanford University School of Medicine, Stanford Prevention Research Center, 1265 Welch Road, MSOB X306, Stanford, CA 94305 ()
| |
Collapse
|
182
|
Computational prediction of microRNA networks incorporating environmental toxicity and disease etiology. Sci Rep 2014; 4:5576. [PMID: 24992957 PMCID: PMC4081875 DOI: 10.1038/srep05576] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 06/17/2014] [Indexed: 12/25/2022] Open
Abstract
MicroRNAs (miRNAs) play important roles in multiple biological processes and have attracted much scientific attention recently. Their expression can be altered by environmental factors (EFs), which are associated with many diseases. Identification of the phenotype-genotype relationships among miRNAs, EFs, and diseases at the network level will help us to better understand toxicology mechanisms and disease etiologies. In this study, we developed a computational systems toxicology framework to predict new associations among EFs, miRNAs and diseases by integrating EF structure similarity and disease phenotypic similarity. Specifically, three comprehensive bipartite networks: EF-miRNA, EF-disease and miRNA-disease associations, were constructed to build predictive models. The areas under the receiver operating characteristic curves using 10-fold cross validation ranged from 0.686 to 0.910. Furthermore, we successfully inferred novel EF-miRNA-disease networks in two case studies for breast cancer and cigarette smoke. Collectively, our methods provide a reliable and useful tool for the study of chemical risk assessment and disease etiology involving miRNAs.
Collapse
|
183
|
Deng Q, Huang S, Zhang X, Zhang W, Feng J, Wang T, Hu D, Guan L, Li J, Dai X, Deng H, Zhang X, Wu T. Plasma microRNA expression and micronuclei frequency in workers exposed to polycyclic aromatic hydrocarbons. ENVIRONMENTAL HEALTH PERSPECTIVES 2014; 122:719-25. [PMID: 24633190 PMCID: PMC4080537 DOI: 10.1289/ehp.1307080] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 03/13/2014] [Indexed: 05/05/2023]
Abstract
BACKGROUND Ubiquitous polycyclic aromatic hydrocarbons (PAHs) have been shown to alter gene expression patterns and elevate micronuclei (MN) frequency, but the underlying mechanisms are largely unknown. MicroRNAs (miRNAs) are key gene regulators that may be influenced by PAH exposures and mediate their effects on MN frequency. OBJECTIVES We sought to identify PAH-associated miRNAs and evaluate their associations with MN frequency. METHODS We performed a two-stage study in healthy male coke oven workers to identify miRNAs associated with PAH exposures quantified using urinary monohydroxy-PAHs and plasma benzo[a]pyrene-r-7,t-8,c-10-tetrahydrotetrol-albumin (BPDE-Alb) adducts. In the discovery stage, we used Solexa sequencing to test differences in miRNA expression profiles between pooled plasma samples from 20 exposed workers and 20 controls. We then validated associations with eight selected miRNAs in 365 workers. We further evaluated associations between the PAH-associated miRNAs and MN frequency. RESULTS In the discovery stage, miRNA expression profiles differed between the exposed and control groups, with 68 miRNAs significantly down-regulated [fold change (FC) ≤ -5] and 3 miRNAs mildly up-regulated (+2 ≤ FC < +5) in the exposed group. In the validation analysis, urinary 4-hydroxyphenanthrene and/or plasma BPDE-Alb adducts were associated with lower miR-24-3p, miR-27a-3p, miR-142-5p, and miR-28-5p expression (p < 0.030). Urinary 1-hydroxynaphthalene, 2-hydroxynaphthalene, 2-hydroxyphenanthrene, and the sum of monohydroxy-PAHs were associated with higher miR-150-5p expression (p < 0.030). These miRNAs were associated with higher MN frequency (p < 0.005), with stronger associations in drinkers (pinteraction < 0.015). CONCLUSIONS Associations of PAH exposures with miRNA expression, and of miRNA expression with MN frequency, suggest potential mechanisms of adverse effects of PAHs that are worthy of further investigation.
Collapse
Affiliation(s)
- Qifei Deng
- State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
184
|
Abstract
MicroRNAs (miRNAs) are a class of small noncoding RNA which exert post-transcriptional gene regulation activity by targeting messenger RNAs. miRNAs have been found to be involved in various fundamental biological processes and deregulation of miRNAs is known to result in pathological conditions. In this review, we provide an overview of recent discoveries on the role played by this class of molecules in lung development and in pulmonary diseases, such as asthma, cystic fibrosis, chronic obstructive pulmonary disease, and pulmonary artery hypertension. Considering the relevant role of these miRNAs under physiological and pathological conditions, they represent new clinical targets as well as diagnostic and prognostic tools. Therefore, this review pays special attention to recent advances and possible future directions for the use of miRNAs for clinical applications.
Collapse
Affiliation(s)
- Roberto Sessa
- Cardiovascular research institute, University of California San Francisco, CA 94158, USA
| | | |
Collapse
|
185
|
Wali RK, Hensing TA, Ray DW, Dela Cruz M, Tiwari AK, Radosevich A, Jepeal L, Fernando HC, Litle VR, Charlot M, Momi N, Backman V, Roy HK. Buccal microRNA dysregulation in lung field carcinogenesis: gender-specific implications. Int J Oncol 2014; 45:1209-15. [PMID: 24919547 PMCID: PMC4144027 DOI: 10.3892/ijo.2014.2495] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 05/13/2014] [Indexed: 12/18/2022] Open
Abstract
MicroRNAs (miRNAs) have been shown to be reliable early biomarkers in a variety of cancers including that of lung. We ascertained whether the biomarker potential of miRNAs could be validated in microscopically normal and easily accessible buccal epithelial brushings from cigarette smokers as a consequence of lung cancer linked ‘field carcinogenesis’. We found that compared to neoplasia-free subjects, a panel of 68 miRNAs were upregulated and 3 downregulated in the normal appearing buccal mucosal cells collected from patients harboring lung cancer (n=76). The performance characteristics of selected miRNAs (with ≥1-fold change) were excellent with an average under the receiver operator characteristic curve (AUROC) of >0.80. Several miRNAs also displayed gender specificity between the groups. These results provide the first proof-of-concept scenario in which minimally intrusive cheek brushings could provide an initial screening tool in a large at-risk population.
Collapse
Affiliation(s)
- Ramesh K Wali
- Department of Medicine, Boston University Medical Center, Boston, MA 02118, USA
| | - Thomas A Hensing
- Department of Surgery, NorthShore University Health Systems, Evanston, IL 60201, USA
| | - Daniel W Ray
- Department of Medicine, NorthShore University Health Systems, Evanston, IL 60201, USA
| | - Mart Dela Cruz
- Department of Medicine, Boston University Medical Center, Boston, MA 02118, USA
| | - Ashish K Tiwari
- Department of Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Andrew Radosevich
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60201, USA
| | - Lisa Jepeal
- Department of Medicine, Boston University Medical Center, Boston, MA 02118, USA
| | - Hiran C Fernando
- Department of Surgery, Boston University Medical Center, Boston, MA 02118, USA
| | - Virginia R Litle
- Department of Surgery, Boston University Medical Center, Boston, MA 02118, USA
| | - Marjory Charlot
- Department of Medicine, Boston University Medical Center, Boston, MA 02118, USA
| | - Navneet Momi
- Department of Medicine, Boston University Medical Center, Boston, MA 02118, USA
| | - Vadim Backman
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60201, USA
| | - Hemant K Roy
- Department of Medicine, Boston University Medical Center, Boston, MA 02118, USA
| |
Collapse
|
186
|
Liclican EL, Walser TC, Hazra S, Krysan K, Park SJ, Pagano PC, Gardner BK, Larsen JE, Minna JD, Dubinett SM. Loss of miR125a expression in a model of K-ras-dependent pulmonary premalignancy. Cancer Prev Res (Phila) 2014; 7:845-55. [PMID: 24913817 DOI: 10.1158/1940-6207.capr-14-0063] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Understanding the molecular pathogenesis of lung cancer is necessary to identify biomarkers/targets specific to individual airway molecular profiles and to identify options for targeted chemoprevention. Herein, we identify mechanisms by which loss of microRNA (miRNA)125a-3p (miR125a) contributes to the malignant potential of human bronchial epithelial cells (HBEC) harboring an activating point mutation of the K-ras proto-oncogene (HBEC K-ras). Among other miRNAs, we identified significant miR125a loss in HBEC K-ras lines and determined that miR125a is regulated by the PEA3 transcription factor. PEA3 is upregulated in HBEC K-ras cells, and genetic knockdown of PEA3 restores miR125a expression. From a panel of inflammatory/angiogenic factors, we identified increased CXCL1 and vascular endothelial growth factor (VEGF) production by HBEC K-ras cells and determined that miR125a overexpression significantly reduces K-ras-mediated production of these tumorigenic factors. miR125a overexpression also abrogates increased proliferation of HBEC K-ras cells and suppresses anchorage-independent growth (AIG) of HBEC K-ras/P53 cells, the latter of which is CXCL1-dependent. Finally, pioglitazone increases levels of miR125a in HBEC K-ras cells via PEA3 downregulation. In addition, pioglitazone and miR125a overexpression elicit similar phenotypic responses, including suppression of both proliferation and VEGF production. Our findings implicate miR125a loss in lung carcinogenesis and lay the groundwork for future studies to determine whether miR125a is a possible biomarker for lung carcinogenesis and/or a chemoprevention target. Moreover, our studies illustrate that pharmacologic augmentation of miR125a in K-ras-mutated pulmonary epithelium effectively abrogates several deleterious downstream events associated with the mutation.
Collapse
Affiliation(s)
- Elvira L Liclican
- Division of Pulmonary and Critical Care Medicine, Department of Medicine; Departments of Jonsson Comprehensive Cancer Center
| | - Tonya C Walser
- Division of Pulmonary and Critical Care Medicine, Department of Medicine; Departments of Jonsson Comprehensive Cancer Center
| | - Saswati Hazra
- Division of Pulmonary and Critical Care Medicine, Department of Medicine; Departments of Jonsson Comprehensive Cancer Center
| | - Kostyantyn Krysan
- Division of Pulmonary and Critical Care Medicine, Department of Medicine; Departments of Jonsson Comprehensive Cancer Center
| | - Stacy J Park
- Division of Pulmonary and Critical Care Medicine, Department of Medicine; Departments of Jonsson Comprehensive Cancer Center
| | - Paul C Pagano
- Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA
| | - Brian K Gardner
- Division of Pulmonary and Critical Care Medicine, Department of Medicine; Departments of Jonsson Comprehensive Cancer Center
| | - Jill E Larsen
- Departments of Medicine and Pharmacology, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - John D Minna
- Departments of Medicine and Pharmacology, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Steven M Dubinett
- Division of Pulmonary and Critical Care Medicine, Department of Medicine; Departments of Pathology and Laboratory Medicine and Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA; Jonsson Comprehensive Cancer Center; VA Greater Los Angeles Health Care Center, Los Angeles, California; and
| |
Collapse
|
187
|
Novel insights into miRNA in lung and heart inflammatory diseases. Mediators Inflamm 2014; 2014:259131. [PMID: 24991086 PMCID: PMC4058468 DOI: 10.1155/2014/259131] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 03/03/2014] [Accepted: 04/21/2014] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are noncoding regulatory sequences that govern posttranscriptional inhibition of genes through binding mainly at regulatory regions. The regulatory mechanism of miRNAs are influenced by complex crosstalk among single nucleotide polymorphisms (SNPs) within miRNA seed region and epigenetic modifications. Circulating miRNAs exhibit potential characteristics as stable biomarker. Functionally, miRNAs are involved in basic regulatory mechanisms of cells including inflammation. Thus, miRNA dysregulation, resulting in aberrant expression of a gene, is suggested to play an important role in disease susceptibility. This review focuses on the role of miRNA as diagnostic marker in pathogenesis of lung inflammatory diseases and in cardiac remodelling events during inflammation. From recent reports, In this context, the information about the models in which miRNAs expression were investigated including types of biological samples, as well as on the methods for miRNA validation and prediction/definition of their gene targets are emphasized in the review. Besides disease pathogenesis, promising role of miRNAs in early disease diagnosis and prognostication is also discussed. However, some miRNAs are also indicated with protective role. Thus, identifications and usage of such potential miRNAs as well as disruption of disease susceptible miRNAs using antagonists, antagomirs, are imperative and may provide a novel therapeutic approach towards combating the disease progression.
Collapse
|
188
|
O'Toole TE, Abplanalp W, Li X, Cooper N, Conklin DJ, Haberzettl P, Bhatnagar A. Acrolein decreases endothelial cell migration and insulin sensitivity through induction of let-7a. Toxicol Sci 2014; 140:271-82. [PMID: 24812010 DOI: 10.1093/toxsci/kfu087] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Acrolein is a major reactive component of vehicle exhaust, and cigarette and wood smoke. It is also present in several food substances and is generated endogenously during inflammation and lipid peroxidation. Although previous studies have shown that dietary or inhalation exposure to acrolein results in endothelial activation, platelet activation, and accelerated atherogenesis, the basis for these effects is unknown. Moreover, the effects of acrolein on microRNA (miRNA) have not been studied. Using AGILENT miRNA microarray high-throughput technology, we found that treatment of cultured human umbilical vein endothelial cells with acrolein led to a significant (>1.5-fold) upregulation of 12, and downregulation of 15, miRNAs. Among the miRNAs upregulated were members of the let-7 family and this upregulation was associated with decreased expression of their protein targets, β3 integrin, Cdc34, and K-Ras. Exposure to acrolein attenuated β3 integrin-dependent migration and reduced Akt phosphorylation in response to insulin. These effects of acrolein on endothelial cell migration and insulin signaling were reversed by expression of a let-7a inhibitor. Also, inhalation exposure of mice to acrolein (1 ppm x 6 h/day x 4 days) upregulated let-7a and led to a decrease in insulin-stimulated Akt phosphorylation in the aorta. These results suggest that acrolein exposure has broad effects on endothelial miRNA repertoire and that attenuation of endothelial cell migration and insulin signaling by acrolein is mediated in part by the upregulation of let-7a. This mechanism may be a significant feature of vascular injury caused by inflammation, oxidized lipids, and exposure to environmental pollutants.
Collapse
Affiliation(s)
| | | | - Xiaohong Li
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky 40202
| | - Nigel Cooper
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky 40202
| | | | | | | |
Collapse
|
189
|
Gross TJ, Powers LS, Boudreau RL, Brink B, Reisetter A, Goel K, Gerke AK, Hassan IH, Monick MM. A microRNA processing defect in smokers' macrophages is linked to SUMOylation of the endonuclease DICER. J Biol Chem 2014; 289:12823-34. [PMID: 24668803 PMCID: PMC4007470 DOI: 10.1074/jbc.m114.565473] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 03/24/2014] [Indexed: 11/06/2022] Open
Abstract
Despite the fact that alveolar macrophages play an important role in smoking-related disease, little is known about what regulates their pathophysiologic phenotype. Evaluating smoker macrophages, we found significant down-regulation of multiple microRNAs (miRNAs). This work investigates the hypothesis that cigarette smoke alters mature miRNA expression in lung macrophages by inhibiting processing of primary miRNA transcripts. Studies on smoker alveolar macrophages showed a defect in miRNA maturation. Studies on the miRNA biogenesis machinery led us to focus on the cytosolic RNA endonuclease, DICER. DICER cleaves the stem-loop structure from pre-miRNAs, allowing them to dissociate into their mature 20-22-nucleotide single-stranded form. DICER activity assays confirmed impaired DICER activity following cigarette smoke exposure. Further protein studies demonstrated a decreased expression of the native 217-kDa form of DICER and an accumulation of high molecular weight forms with cigarette smoke exposure. This molecular mass shift was shown to contain SUMO moieties and could be blocked by silencing RNA directed at the primary SUMOylating ligase, Ubc9. In determining the cigarette smoke components responsible for changes in DICER, we found that N-acetylcysteine, an antioxidant and anti-aldehyde, protected DICER protein and activity from cigarette smoke extract. This massive down-regulation of miRNAs (driven in part by alterations in DICER) may be an important regulator of the disease-promoting macrophage phenotype found in the lungs of smokers.
Collapse
Affiliation(s)
- Thomas J. Gross
- From the Department of Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | - Linda S. Powers
- From the Department of Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | - Ryan L. Boudreau
- From the Department of Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | - Brandi Brink
- From the Department of Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | - Anna Reisetter
- From the Department of Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | - Khushboo Goel
- From the Department of Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | - Alicia K. Gerke
- From the Department of Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | - Ihab H. Hassan
- From the Department of Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | - Martha M. Monick
- From the Department of Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| |
Collapse
|
190
|
Wu DW, Chuang CY, Lin WL, Sung WW, Cheng YW, Lee H. Paxillin promotes tumor progression and predicts survival and relapse in oral cavity squamous cell carcinoma by microRNA-218 targeting. Carcinogenesis 2014; 35:1823-9. [PMID: 24894864 DOI: 10.1093/carcin/bgu102] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
High-risk human papillomavirus (HPV) 16-infected oral cavity squamous cell carcinoma (OCSCC) differs significantly from non-HPV-infected OCSCC. However, the molecular pathogenesis of HPV-infected OCSCC remains unclear. Paxillin (PXN) has been reported to promote lung tumor progression by miR-218 targeting. In addition, expression of miR-218 has been shown to be reduced by HPV16 E6 in cervical cancer. We thus asked whether PXN can promote tumor progression by E6-reduced miR-218 in OCSCC, especially in HPV-infected OCSCC. Mechanistic studies demonstrated that PXN expression increased markedly upon E6-mediated reductions in miR-218, resulting in increased colony formation and invasion capabilities in HPV-infected OCSCC cells. Among tumor specimens, HPV16/18 infection was negatively associated with miR-218 expression and positively associated with PXN expression. Kaplan-Meier and Cox regression models demonstrated that patients with low-miR-218 tumors or high-PXN tumors exhibited shorter overall survival (OS) and relapse-free survival (RFS) than those with high-miR-218 tumors or low-PXN tumors. Interestingly, HPV-infected patients with low-miR-218, high-PXN tumors and both combinations exhibited the worst OS and RFS compared with patients in their counterparts. These observations in patients were consistent with the findings from the cell model. Therefore, we suggest that PXN might be targeted to suppress tumor progression and consequently to improve outcomes in OCSCC, especially in HPV-infected OCSCC.
Collapse
Affiliation(s)
- De-Wei Wu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 115, Taiwan, Republic of China, School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan, Republic of China and Department of Otolaryngology and Department of Pathology, Chung Shan Medical University Hospital, Taichung 402, Taiwan, Republic of China
| | - Chun-Yi Chuang
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan, Republic of China and Department of Otolaryngology and
| | - Wea-Long Lin
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan, Republic of China and Department of Pathology, Chung Shan Medical University Hospital, Taichung 402, Taiwan, Republic of China
| | - Wen-Wei Sung
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan, Republic of China and
| | - Ya-Wen Cheng
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 115, Taiwan, Republic of China, School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan, Republic of China and Department of Otolaryngology and Department of Pathology, Chung Shan Medical University Hospital, Taichung 402, Taiwan, Republic of China
| | - Huei Lee
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 115, Taiwan, Republic of China, School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan, Republic of China and Department of Otolaryngology and Department of Pathology, Chung Shan Medical University Hospital, Taichung 402, Taiwan, Republic of China
| |
Collapse
|
191
|
|
192
|
Deng Q, Dai X, Guo H, Huang S, Kuang D, Feng J, Wang T, Zhang W, Huang K, Hu D, Deng H, Zhang X, Wu T. Polycyclic aromatic hydrocarbons-associated microRNAs and their interactions with the environment: influences on oxidative DNA damage and lipid peroxidation in coke oven workers. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:4120-4128. [PMID: 24555497 DOI: 10.1021/es4055516] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We previously identified five polycyclic aromatic hydrocarbons (PAHs)-associated microRNAs (miRNAs) and found they were associated with chromosome damage. As oxidative damage is the common contributory cause of various PAHs-related diseases, we further investigated the influences of these miRNAs and their interactions with environmental factors on oxidative DNA damage and lipid peroxidation. We measured PAHs internal exposure biomarkers [urinary monohydroxy-PAHs (OH-PAHs) and plasma benzo[a]pyrene-r-7,t-8,t-9,c-10-tetrahydotetrol-albumin (BPDE-Alb) adducts], the expression levels of PAHs-associated plasma miRNAs (miR-24-3p, miR-27a-3p, miR-142-5p, miR-28-5p, and miR-150-5p), and urinary biomarkers of oxidative DNA damage [8-hydroxydeoxyguanosine (8-OH-dG)] and lipid peroxidation [8-iso-prostaglandin-F2α (8-iso-PGF2α)] in 365 healthy male coke oven workers. These miRNAs were associated with a dose-response increase in 8-OH-dG (β > 0), and with a dose-response decrease in 8-iso-PGF2α (β < 0), especially in workers with lower PAHs exposure levels, in nonsmokers, and in nondrinkers. These miRNAs interacted antagonistically with ΣOH-PAHs and BPDE-Alb adducts (βinteraction < 0) and synergistically with drinking status (βinteraction > 0) to influence 8-OH-dG, while they interacted synergistically with BPDE-Alb adducts (βinteraction > 0) and antagonistically with smoking status (βinteraction < 0) to influence 8-iso-PGF2α. Our results suggested that miRNAs and their interactions with environmental factors might be novel mechanisms mediating the effects of PAHs exposure on oxidative DNA damage and lipid peroxidation.
Collapse
Affiliation(s)
- Qifei Deng
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430030, Hubei, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
193
|
Valencia-Quintana R, Sánchez-Alarcón J, Tenorio-Arvide MG, Deng Y, Montiel-González JMR, Gómez-Arroyo S, Villalobos-Pietrini R, Cortés-Eslava J, Flores-Márquez AR, Arenas-Huertero F. The microRNAs as potential biomarkers for predicting the onset of aflatoxin exposure in human beings: a review. Front Microbiol 2014; 5:102. [PMID: 24672518 PMCID: PMC3957091 DOI: 10.3389/fmicb.2014.00102] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 02/26/2014] [Indexed: 12/21/2022] Open
Abstract
The identification of aflatoxins as human carcinogens has stimulated extensive research efforts, which continue to the present, to assess potential health hazards resulting from contamination of the human food supply and to minimize exposure. The use of biomarkers that are mechanistically supported by toxicological studies will be important tools for identifying stages in the progression of development of the health effects of environmental agents. miRNAs are small non-coding mRNAs that regulate post-transcriptional gene expression. Also, they are molecular markers of cellular responses to various chemical agents. Growing evidence has demonstrated that environmental chemicals can induce changes in miRNA expression. miRNAs are good biomarkers because they are well defined, chemically uniform, restricted to a manageable number of species, and stable in cells and in the circulation. miRNAs have been used as serological markers of HCC and other tumors. The expression patterns of different miRNAs can distinguish among HCC-hepatitis viruses related, HCC cirrhosis-derivate, and HCC unrelated to either of them. The main objective of this review is to find unreported miRNAs in HCC related to other causes, so that they can be used as specific molecular biomarkers in populations exposed to aflatoxins and as early markers of exposure, damage/presence of HCC. Until today specific miRNAs as markers for aflatoxins-exposure and their reliability are currently lacking. Based on their elucidated mechanisms of action, potential miRNAs that could serve as possible markers of HCC by exposure to aflatoxins are miR-27a, miR-27b, miR-122, miR-148, miR-155, miR-192, miR-214, miR-221, miR-429, and miR-500. Future validation for all of these miRNAs will be needed to assess their prognostic significance and confirm their relationship with the induction of HCC due to aflatoxin exposure.
Collapse
Affiliation(s)
- Rafael Valencia-Quintana
- Evaluación de Riesgos Ambientales, Facultad de Agrobiología, Universidad Autónoma de Tlaxcala Tlaxcala, México
| | - Juana Sánchez-Alarcón
- Evaluación de Riesgos Ambientales, Facultad de Agrobiología, Universidad Autónoma de Tlaxcala Tlaxcala, México
| | - María G Tenorio-Arvide
- Departamento de Investigación en Ciencias Agrícolas, Benemérita Universidad Autónoma de Puebla Puebla, México
| | - Youjun Deng
- Department of Soil and Crop Sciences, Texas AgriLife, Texas A&M University College Station, TX, USA
| | - José M R Montiel-González
- Evaluación de Riesgos Ambientales, Facultad de Agrobiología, Universidad Autónoma de Tlaxcala Tlaxcala, México
| | - Sandra Gómez-Arroyo
- Departamento de Ciencias Ambientales, Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México Distrito Federal, México
| | - Rafael Villalobos-Pietrini
- Departamento de Ciencias Ambientales, Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México Distrito Federal, México
| | - Josefina Cortés-Eslava
- Departamento de Ciencias Ambientales, Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México Distrito Federal, México
| | - Ana R Flores-Márquez
- Departamento de Ciencias Ambientales, Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México Distrito Federal, México
| | - Francisco Arenas-Huertero
- Laboratorio de Patología Experimental, Hospital Infantil de México Federico Gómez Distrito Federal, México
| |
Collapse
|
194
|
Clay CC, Maniar-Hew K, Gerriets JE, Wang TT, Postlethwait EM, Evans MJ, Fontaine JH, Miller LA. Early life ozone exposure results in dysregulated innate immune function and altered microRNA expression in airway epithelium. PLoS One 2014; 9:e90401. [PMID: 24594710 PMCID: PMC3942419 DOI: 10.1371/journal.pone.0090401] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 01/30/2014] [Indexed: 12/26/2022] Open
Abstract
Exposure to ozone has been associated with increased incidence of respiratory morbidity in humans; however the mechanism(s) behind the enhancement of susceptibility are unclear. We have previously reported that exposure to episodic ozone during postnatal development results in an attenuated peripheral blood cytokine response to lipopolysaccharide (LPS) that persists with maturity. As the lung is closely interfaced with the external environment, we hypothesized that the conducting airway epithelium of neonates may also be a target of immunomodulation by ozone. To test this hypothesis, we evaluated primary airway epithelial cell cultures derived from juvenile rhesus macaque monkeys with a prior history of episodic postnatal ozone exposure. Innate immune function was measured by expression of the proinflammatory cytokines IL-6 and IL-8 in primary cultures established following in vivo LPS challenge or, in response to in vitro LPS treatment. Postnatal ozone exposure resulted in significantly attenuated IL-6 mRNA and protein expression in primary cultures from juvenile animals; IL-8 mRNA was also significantly reduced. The effect of antecedent ozone exposure was modulated by in vivo LPS challenge, as primary cultures exhibited enhanced cytokine expression upon secondary in vitro LPS treatment. Assessment of potential IL-6-targeting microRNAs miR-149, miR-202, and miR-410 showed differential expression in primary cultures based upon animal exposure history. Functional assays revealed that miR-149 is capable of binding to the IL-6 3' UTR and decreasing IL-6 protein synthesis in airway epithelial cell lines. Cumulatively, our findings suggest that episodic ozone during early life contributes to the molecular programming of airway epithelium, such that memory from prior exposures is retained in the form of a dysregulated IL-6 and IL-8 response to LPS; differentially expressed microRNAs such as miR-149 may play a role in the persistent modulation of the epithelial innate immune response towards microbes in the mature lung.
Collapse
Affiliation(s)
- Candice C. Clay
- California National Primate Research Center, University of California Davis, Davis, California, United States of America
| | - Kinjal Maniar-Hew
- California National Primate Research Center, University of California Davis, Davis, California, United States of America
| | - Joan E. Gerriets
- California National Primate Research Center, University of California Davis, Davis, California, United States of America
| | - Theodore T. Wang
- California National Primate Research Center, University of California Davis, Davis, California, United States of America
| | - Edward M. Postlethwait
- Department of Environmental Health Sciences, School of Public Health, University of Alabama, Birmingham, Alabama, United States of America
| | - Michael J. Evans
- California National Primate Research Center, University of California Davis, Davis, California, United States of America
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - Justin H. Fontaine
- California National Primate Research Center, University of California Davis, Davis, California, United States of America
| | - Lisa A. Miller
- California National Primate Research Center, University of California Davis, Davis, California, United States of America
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| |
Collapse
|
195
|
Suojalehto H, Lindström I, Majuri ML, Mitts C, Karjalainen J, Wolff H, Alenius H. Altered microRNA expression of nasal mucosa in long-term asthma and allergic rhinitis. Int Arch Allergy Immunol 2014; 163:168-78. [PMID: 24513959 DOI: 10.1159/000358486] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 01/08/2014] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Asthma and allergic rhinitis (AR) commonly coexist and can be taken as manifestations of one syndrome. Evidence exists that microRNAs (miRNAs) are important in controlling inflammatory processes and they are considered promising biomarkers. However, little is known about the differences in miRNA expression in patients with chronic allergic airway disease. This study evaluated the inflammatory and miRNA profiles of the nasal mucosa of patients with long-term asthma with and without AR. METHODS We analyzed inflammatory cells, cytokines, and miRNAs in nasal biopsies and measured exhaled and nasal nitric oxide levels during the nonpollen season in 117 middle-aged men who had suffered mainly from allergic asthma for approximately 20 years and also in 33 healthy controls. RESULTS The differences in the number of nasal eosinophils and cytokine expression levels were modest in nasal biopsies taken from asthmatics. Downregulation of miR-18a, miR-126, let-7e, miR-155, and miR-224 and upregulation of miR-498, miR-187, miR-874, miR-143, and miR-886-3p were observed in asthmatic patients in comparison to controls. The differences in miRNA expression were mainly similar in asthmatics with and without AR. With regard to asthma severity, a trend of increased miRNA expression in persistent asthma was seen, whereas the downregulation of certain miRNAs was most distinct in nonpersistent-asthma patients. CONCLUSIONS Differences in miRNA expression in the nasal mucosa of subjects with long-term asthma and AR can be seen also when no markers of Th2-type inflammation are detected. Asthma severity had only a minor impact on miRNA expression.
Collapse
Affiliation(s)
- Hille Suojalehto
- Control of Hypersensitivity Diseases Team, Finnish Institute of Occupational Health, Helsinki, Finland
| | | | | | | | | | | | | |
Collapse
|
196
|
Siddeek B, Inoubli L, Lakhdari N, Rachel PB, Fussell KC, Schneider S, Mauduit C, Benahmed M. MicroRNAs as potential biomarkers in diseases and toxicology. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2014; 764-765:46-57. [PMID: 24486656 DOI: 10.1016/j.mrgentox.2014.01.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 01/20/2014] [Accepted: 01/20/2014] [Indexed: 02/06/2023]
Abstract
MiRNAs (microRNAs) are single-stranded non-coding RNAs of approximately 21-23 nucleotides in length whose main function is to inhibit gene expression by interfering with mRNA processes. MicroRNAs suppress gene expression by affecting mRNA (messenger RNAs) stability, targeting the mRNA for degradation, or both. In this review, we have examined how microRNA expression could be altered following exposure to chemicals and how they could represent appropriate tissue and more interestingly circulating biomarkers. Among the key questions before using the microRNA for evaluation of risk toxicity, it remains still to clarify how they could be causally involved in the adverse effects and how stable their changes are.
Collapse
Affiliation(s)
- Bénazir Siddeek
- Inserm, U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Team 5, Nice, F-06204, France; Université de Nice Sophia-Antipolis, UFR Médecine, Nice, F-06000, France; BASF Agro, Ecully F-69130, France
| | - Lilia Inoubli
- Inserm, U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Team 5, Nice, F-06204, France; Université de Nice Sophia-Antipolis, UFR Médecine, Nice, F-06000, France
| | - Nadjem Lakhdari
- Inserm, U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Team 5, Nice, F-06204, France; Université de Nice Sophia-Antipolis, UFR Médecine, Nice, F-06000, France
| | - Paul Bellon Rachel
- Inserm, U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Team 5, Nice, F-06204, France; Université de Nice Sophia-Antipolis, UFR Médecine, Nice, F-06000, France
| | | | - Steffen Schneider
- BASF SE, experimental toxicology and ecology, 67056 Ludwigshafen, Germany
| | - Claire Mauduit
- Inserm, U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Team 5, Nice, F-06204, France; Université de Nice Sophia-Antipolis, UFR Médecine, Nice, F-06000, France; Université Lyon 1, UFR Médecine Lyon Sud, Lyon, F-69921, France; Hospices Civils de Lyon, Hôpital Lyon Sud, laboratoire d'anatomie et de cytologie pathologiques, Pierre-Bénite, F-69495, France
| | - Mohamed Benahmed
- Inserm, U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Team 5, Nice, F-06204, France; Université de Nice Sophia-Antipolis, UFR Médecine, Nice, F-06000, France; Centre Hospitalier Universitaire de Nice, Pôle Digestif, Gynécologie, Obstetrique, Centre de Reproduction, Nice, F-06202, France.
| |
Collapse
|
197
|
Izzotti A, Pulliero A. The effects of environmental chemical carcinogens on the microRNA machinery. Int J Hyg Environ Health 2014; 217:601-27. [PMID: 24560354 DOI: 10.1016/j.ijheh.2014.01.001] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 01/03/2014] [Accepted: 01/06/2014] [Indexed: 12/29/2022]
Abstract
The first evidence that microRNA expression is early altered by exposure to environmental chemical carcinogens in still healthy organisms was obtained for cigarette smoke. To date, the cumulative experimental data indicate that similar effects are caused by a variety of environmental carcinogens, including polycyclic aromatic hydrocarbons, nitropyrenes, endocrine disruptors, airborne mixtures, carcinogens in food and water, and carcinogenic drugs. Accordingly, the alteration of miRNA expression is a general mechanism that plays an important pathogenic role in linking exposure to environmental toxic agents with their pathological consequences, mainly including cancer development. This review summarizes the existing experimental evidence concerning the effects of chemical carcinogens on the microRNA machinery. For each carcinogen, the specific microRNA alteration signature, as detected in experimental studies, is reported. These data are useful for applying microRNA alterations as early biomarkers of biological effects in healthy organisms exposed to environmental carcinogens. However, microRNA alteration results in carcinogenesis only if accompanied by other molecular damages. As an example, microRNAs altered by chemical carcinogens often inhibits the expression of mutated oncogenes. The long-term exposure to chemical carcinogens causes irreversible suppression of microRNA expression thus allowing the transduction into proteins of mutated oncogenes. This review also analyzes the existing knowledge regarding the mechanisms by which environmental carcinogens alter microRNA expression. The underlying molecular mechanism involves p53-microRNA interconnection, microRNA adduct formation, and alterations of Dicer function. On the whole, reported findings provide evidence that microRNA analysis is a molecular toxicology tool that can elucidate the pathogenic mechanisms activated by environmental carcinogens.
Collapse
Affiliation(s)
- A Izzotti
- Department of Health Sciences, University of Genoa, Italy; Mutagenesis Unit, IRCCS University Hospital San Martino - IST National Research Cancer Institute, Genoa, Italy.
| | - A Pulliero
- Department of Health Sciences, University of Genoa, Italy
| |
Collapse
|
198
|
Matthaei M, Hu J, Kallay L, Eberhart CG, Cursiefen C, Qian J, Lackner EM, Jun AS. Endothelial cell microRNA expression in human late-onset Fuchs' dystrophy. Invest Ophthalmol Vis Sci 2014; 55:216-25. [PMID: 24334445 DOI: 10.1167/iovs.13-12689] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE MicroRNAs (miRNAs) are a class of endogenous noncoding RNA and post transcriptionally modulate gene expression during development and disease. Our study investigated the differential miRNA expression in human Fuchs' endothelial corneal dystrophy (FECD) compared with normal endothelium to identify miRNA sequences that are involved in the pathogenesis of FECD. METHODS Comparative miRNA expression profiles of endothelial samples obtained from FECD patients during lamellar corneal transplant surgery and from normal donor globes were generated using OpenArray plate technology. Differential expression of individual miRNAs was validated in the original and in independent samples using stem-loop RT qPCR assays. Expression of miRNA target genes was assessed using qPCR and tissue microarray (TMA) immunolabeling. RESULTS Our results demonstrate downregulation of 87 miRNAs in FECD compared with normal endothelium (>3-fold change; P < 0.01). Correspondingly, DICER1, (encoding an endoribonuclease critical to miRNA biogenesis) showed a moderate but significant decrease in FECD samples (P < 0.05). Significant repression of three miR-29 family members (miR-29a-3p, miR-29b-2-5p, and miR-29c-5p) was paralleled by upregulation of their extracellular matrix associated mRNA targets collagen I and collagen IV. Tissue microarray immunolabeling showed histologically verifiable subendothelial collagen I and collagen IV deposition and increased endothelial laminin protein expression in FECD samples. CONCLUSIONS The present study provides the first miRNA profile in FECD and normal endothelial cells and demonstrates widespread miRNA downregulation in FECD. Decreased endothelial expression of miR-29 family members may be associated with increased subendothelial extracellular matrix accumulation in FECD.
Collapse
Affiliation(s)
- Mario Matthaei
- The Wilmer Eye Institute, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | | | | | | | | | | | | | | |
Collapse
|
199
|
Liloglou T, Bediaga NG, Brown BR, Field JK, Davies MP. Epigenetic biomarkers in lung cancer. Cancer Lett 2014; 342:200-12. [DOI: 10.1016/j.canlet.2012.04.018] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 04/18/2012] [Accepted: 04/22/2012] [Indexed: 12/31/2022]
|
200
|
Ning B, Su Z, Mei N, Hong H, Deng H, Shi L, Fuscoe JC, Tolleson WH. Toxicogenomics and cancer susceptibility: advances with next-generation sequencing. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2014; 32:121-58. [PMID: 24875441 PMCID: PMC5712441 DOI: 10.1080/10590501.2014.907460] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The aim of this review is to comprehensively summarize the recent achievements in the field of toxicogenomics and cancer research regarding genetic-environmental interactions in carcinogenesis and detection of genetic aberrations in cancer genomes by next-generation sequencing technology. Cancer is primarily a genetic disease in which genetic factors and environmental stimuli interact to cause genetic and epigenetic aberrations in human cells. Mutations in the germline act as either high-penetrance alleles that strongly increase the risk of cancer development, or as low-penetrance alleles that mildly change an individual's susceptibility to cancer. Somatic mutations, resulting from either DNA damage induced by exposure to environmental mutagens or from spontaneous errors in DNA replication or repair are involved in the development or progression of the cancer. Induced or spontaneous changes in the epigenome may also drive carcinogenesis. Advances in next-generation sequencing technology provide us opportunities to accurately, economically, and rapidly identify genetic variants, somatic mutations, gene expression profiles, and epigenetic alterations with single-base resolution. Whole genome sequencing, whole exome sequencing, and RNA sequencing of paired cancer and adjacent normal tissue present a comprehensive picture of the cancer genome. These new findings should benefit public health by providing insights in understanding cancer biology, and in improving cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Baitang Ning
- National Center for Toxicological Research, Food and Drug Administration, Jefferson, Arkansas, USA
| | - Zhenqiang Su
- National Center for Toxicological Research, Food and Drug Administration, Jefferson, Arkansas, USA
| | - Nan Mei
- National Center for Toxicological Research, Food and Drug Administration, Jefferson, Arkansas, USA
| | - Huixiao Hong
- National Center for Toxicological Research, Food and Drug Administration, Jefferson, Arkansas, USA
| | - Helen Deng
- Arkansas Department of Health and Human Service, Little Rock, Arkansas, USA
| | - Leming Shi
- National Center for Toxicological Research, Food and Drug Administration, Jefferson, Arkansas, USA
- Center for Pharmacogenomics, School of Pharmacy, Fudan University, Pudong District, Shanghai, China
| | - James C. Fuscoe
- National Center for Toxicological Research, Food and Drug Administration, Jefferson, Arkansas, USA
| | - William H. Tolleson
- National Center for Toxicological Research, Food and Drug Administration, Jefferson, Arkansas, USA
| |
Collapse
|