151
|
Jeyanathan M, Yao Y, Afkhami S, Smaill F, Xing Z. New Tuberculosis Vaccine Strategies: Taking Aim at Un-Natural Immunity. Trends Immunol 2018; 39:419-433. [DOI: 10.1016/j.it.2018.01.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 01/02/2018] [Accepted: 01/16/2018] [Indexed: 12/13/2022]
|
152
|
Zulauf KE, Sullivan JT, Braunstein M. The SecA2 pathway of Mycobacterium tuberculosis exports effectors that work in concert to arrest phagosome and autophagosome maturation. PLoS Pathog 2018; 14:e1007011. [PMID: 29709019 PMCID: PMC5945054 DOI: 10.1371/journal.ppat.1007011] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/10/2018] [Accepted: 04/06/2018] [Indexed: 11/30/2022] Open
Abstract
To subvert host defenses, Mycobacterium tuberculosis (Mtb) avoids being delivered to degradative phagolysosomes in macrophages by arresting the normal host process of phagosome maturation. Phagosome maturation arrest by Mtb involves multiple effectors and much remains unknown about this important aspect of Mtb pathogenesis. The SecA2 dependent protein export system is required for phagosome maturation arrest and consequently growth of Mtb in macrophages. To better understand the role of the SecA2 pathway in phagosome maturation arrest, we identified two effectors exported by SecA2 that contribute to this process: the phosphatase SapM and the kinase PknG. Then, utilizing the secA2 mutant of Mtb as a platform to study effector functions, we identified specific steps in phagosome maturation inhibited by SapM and/or PknG. By identifying a histidine residue that is essential for SapM phosphatase activity, we confirmed for the first time that the phosphatase activity of SapM is required for its effects on phagosome maturation in macrophages. We further demonstrated that SecA2 export of SapM and PknG contributes to the ability of Mtb to replicate in macrophages. Finally, we extended our understanding of the SecA2 pathway, SapM, and PknG by revealing that their contribution goes beyond preventing Mtb delivery to mature phagolysosomes and includes inhibiting Mtb delivery to autophagolysosomes. Together, our results revealed SapM and PknG to be two effectors exported by the SecA2 pathway of Mtb with distinct as well as cumulative effects on phagosome and autophagosome maturation. Our results further reveal that Mtb must have additional mechanisms of limiting acidification of the phagosome, beyond inhibiting recruitment of the V-ATPase proton pump to the phagosome, and they indicate differences between effects of Mtb on phagosome and autophagosome maturation. Mycobacterium tuberculosis (Mtb) is the infectious agent of the disease tuberculosis. Inside the host, Mtb replicates primarily within the phagosome of macrophages. To replicate within macrophages, Mtb modifies the phagosome by inhibiting the normal host process of phagosomes maturing into acidified degradative phagolysosomes. In order to arrest this process of phagosome maturation, Mtb exports multiple effectors to the host-pathogen interface. Here we found that the specialized SecA2 protein export pathway of Mtb exports two such effectors: SapM and PknG. We discovered that SapM and PknG play non-redundant functions in phagosome maturation arrest by Mtb. We further demonstrated that SecA2 export of both SapM and PknG contributes to the ability of Mtb to replicate in macrophages. We also identified a role for the SecA2 pathway, SapM and PknG in arresting the host process of autophagosome maturation. Our research highlights how two effectors, SapM and PknG, work in concert but also have distinct roles in phagosome and autophagosome maturation arrest by Mtb.
Collapse
Affiliation(s)
- Katelyn E. Zulauf
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jonathan Tabb Sullivan
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Miriam Braunstein
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
153
|
Niesteruk A, Hutchison M, Sreeramulu S, Jonker HRA, Richter C, Abele R, Bock C, Schwalbe H. Structural characterization of the intrinsically disordered domain of Mycobacterium tuberculosis protein tyrosine kinase A. FEBS Lett 2018; 592:1233-1245. [PMID: 29494752 DOI: 10.1002/1873-3468.13022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 02/22/2018] [Indexed: 11/10/2022]
Abstract
Although intrinsically disordered proteins or protein domains (IDPs or IDD) are less abundant in bacteria than in eukaryotes, their presence in pathogenic bacterial proteins is important for protein-protein interactions. The protein tyrosine kinase A (PtkA) from Mycobacterium tuberculosis possesses an 80-residue disordered region (IDDPtkA ) of unknown function, located N-terminally to the well-folded kinase core domain. Here, we characterize the conformation of IDDPtkA under varying biophysical conditions and phosphorylation using NMR-spectroscopy. Our results confirm that the N-terminal domain of PtkA exists as an IDD at physiological pH. Furthermore, phosphorylation of IDDPtkA increases the activity of PtkA. Our findings will complement future approaches in understanding molecular mechanisms of key proteins in pathogenic virulence.
Collapse
Affiliation(s)
- Anna Niesteruk
- Goethe-University Frankfurt am Main, Institute for Organic Chemistry and Chemical Biology, Centre for Biomolecular Magnetic Resonance (BMRZ), Frankfurt am Main, Germany
| | - Marie Hutchison
- Goethe-University Frankfurt am Main, Institute for Organic Chemistry and Chemical Biology, Centre for Biomolecular Magnetic Resonance (BMRZ), Frankfurt am Main, Germany
| | - Sridhar Sreeramulu
- Goethe-University Frankfurt am Main, Institute for Organic Chemistry and Chemical Biology, Centre for Biomolecular Magnetic Resonance (BMRZ), Frankfurt am Main, Germany
| | - Hendrik R A Jonker
- Goethe-University Frankfurt am Main, Institute for Organic Chemistry and Chemical Biology, Centre for Biomolecular Magnetic Resonance (BMRZ), Frankfurt am Main, Germany
| | - Christian Richter
- Goethe-University Frankfurt am Main, Institute for Organic Chemistry and Chemical Biology, Centre for Biomolecular Magnetic Resonance (BMRZ), Frankfurt am Main, Germany
| | - Rupert Abele
- Goethe-University Frankfurt am Main, Institute of Biochemistry, Biocenter, Frankfurt am Main, Germany
| | - Christoph Bock
- Goethe-University Frankfurt am Main, Institute of Biochemistry, Biocenter, Frankfurt am Main, Germany
| | - Harald Schwalbe
- Goethe-University Frankfurt am Main, Institute for Organic Chemistry and Chemical Biology, Centre for Biomolecular Magnetic Resonance (BMRZ), Frankfurt am Main, Germany
| |
Collapse
|
154
|
Murase M, Kawasaki T, Hakozaki R, Sueyoshi T, Putri DDP, Kitai Y, Sato S, Ikawa M, Kawai T. Intravesicular Acidification Regulates Lipopolysaccharide Inflammation and Tolerance through TLR4 Trafficking. THE JOURNAL OF IMMUNOLOGY 2018. [DOI: 10.4049/jimmunol.1701390] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
155
|
Roh SH, Stam NJ, Hryc CF, Couoh-Cardel S, Pintilie G, Chiu W, Wilkens S. The 3.5-Å CryoEM Structure of Nanodisc-Reconstituted Yeast Vacuolar ATPase V o Proton Channel. Mol Cell 2018. [PMID: 29526695 DOI: 10.1016/j.molcel.2018.02.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The molecular mechanism of transmembrane proton translocation in rotary motor ATPases is not fully understood. Here, we report the 3.5-Å resolution cryoEM structure of the lipid nanodisc-reconstituted Vo proton channel of the yeast vacuolar H+-ATPase, captured in a physiologically relevant, autoinhibited state. The resulting atomic model provides structural detail for the amino acids that constitute the proton pathway at the interface of the proteolipid ring and subunit a. Based on the structure and previous mutagenesis studies, we propose the chemical basis of transmembrane proton transport. Moreover, we discovered that the C terminus of the assembly factor Voa1 is an integral component of mature Vo. Voa1's C-terminal transmembrane α helix is bound inside the proteolipid ring, where it contributes to the stability of the complex. Our structure rationalizes possible mechanisms by which mutations in human Vo can result in disease phenotypes and may thus provide new avenues for therapeutic interventions.
Collapse
Affiliation(s)
- Soung-Hun Roh
- Department of Bioengineering and James H. Clark Center, Stanford University, Stanford, CA 94305, USA; Biosciences Division, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Nicholas J Stam
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Corey F Hryc
- Graduate Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX 77030, USA; Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sergio Couoh-Cardel
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Grigore Pintilie
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Wah Chiu
- Department of Bioengineering and James H. Clark Center, Stanford University, Stanford, CA 94305, USA; Biosciences Division, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA; Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Stephan Wilkens
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA.
| |
Collapse
|
156
|
Ahmad Z, Morona R, Standish AJ. In vitro characterization and identification of potential substrates of a low molecular weight protein tyrosine phosphatase in Streptococcus pneumoniae. MICROBIOLOGY-SGM 2018; 164:697-703. [PMID: 29485030 DOI: 10.1099/mic.0.000631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Streptococcus pneumoniae is a major human pathogen responsible for significant mortality and morbidity worldwide. Within the annotated genome of the pneumococcus lies a previously uncharacterized protein tyrosine phosphatase which shows homology to low molecular weight protein tyrosine phosphatases (LMWPTPs). LMWPTPs modulate many processes critical for the pathogenicity of a number of bacteria including capsular polysaccharide biosynthesis, stress response and persistence in host macrophages. Here, we demonstrate that Spd1837 is indeed a LMWPTP, by purifying the protein, and characterizing its phosphatase activity. Spd1837 showed specific tyrosine phosphatase activity, and it did not form higher order oligomers in contrast to many other LMWPTPs. Substrate-trapping assays using the wild-type and the phosphatase-deficient Spd1837 identified potential substrates/interacting proteins including major metabolic enzymes such as ATP-dependent-6-phosphofructokinase and Hpr kinase/phosphorylase. Given the tight association between the bacterial basic physiology and virulence, this study hopes to prompt further investigation of how the pneumococcus controls its metabolic flux via the LMWPTP Spd1837.
Collapse
Affiliation(s)
- Zuleeza Ahmad
- Research Centre for Infectious Diseases, Department of Molecular and Cellular Biology, School of Biological Sciences, The University of Adelaide, 5005 South Australia, Australia
| | - Renato Morona
- Research Centre for Infectious Diseases, Department of Molecular and Cellular Biology, School of Biological Sciences, The University of Adelaide, 5005 South Australia, Australia
| | - Alistair J Standish
- Research Centre for Infectious Diseases, Department of Molecular and Cellular Biology, School of Biological Sciences, The University of Adelaide, 5005 South Australia, Australia
| |
Collapse
|
157
|
Pahari S, Kaur G, Negi S, Aqdas M, Das DK, Bashir H, Singh S, Nagare M, Khan J, Agrewala JN. Reinforcing the Functionality of Mononuclear Phagocyte System to Control Tuberculosis. Front Immunol 2018; 9:193. [PMID: 29479353 PMCID: PMC5811511 DOI: 10.3389/fimmu.2018.00193] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 01/23/2018] [Indexed: 12/12/2022] Open
Abstract
The mononuclear phagocyte system (MPS) constitutes dendritic cells, monocytes, and macrophages. This system contributes to various functions that are essential for maintaining homeostasis, activation of innate immunity, and bridging it with the adaptive immunity. Consequently, MPS is highly important in bolstering immunity against the pathogens. However, MPS is the frontline cells in destroying Mycobacterium tuberculosis (Mtb), yet the bacterium prefers to reside in the hostile environment of macrophages. Therefore, it may be very interesting to study the struggle between Mtb and MPS to understand the outcome of the disease. In an event when MPS predominates Mtb, the host remains protected. By contrast, the situation becomes devastating when the pathogen tames and tunes the host MPS, which ultimately culminates into tuberculosis (TB). Hence, it becomes extremely crucial to reinvigorate MPS functionality to overwhelm Mtb and eliminate it. In this article, we discuss the strategies to bolster the function of MPS by exploiting the molecules associated with the innate immunity and highlight the mechanisms involved to overcome the Mtb-induced suppression of host immunity. In future, such approaches may provide an insight to develop immunotherapeutics to treat TB.
Collapse
Affiliation(s)
- Susanta Pahari
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Gurpreet Kaur
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Shikha Negi
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Mohammad Aqdas
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Deepjyoti K Das
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Hilal Bashir
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Sanpreet Singh
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Mukta Nagare
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Junaid Khan
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Javed N Agrewala
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| |
Collapse
|
158
|
Evolution of virulence in the Mycobacterium tuberculosis complex. Curr Opin Microbiol 2018; 41:68-75. [DOI: 10.1016/j.mib.2017.11.021] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 10/27/2017] [Accepted: 11/04/2017] [Indexed: 01/16/2023]
|
159
|
Hoffmann E, Machelart A, Song OR, Brodin P. Proteomics of Mycobacterium Infection: Moving towards a Better Understanding of Pathogen-Driven Immunomodulation. Front Immunol 2018; 9:86. [PMID: 29441067 PMCID: PMC5797607 DOI: 10.3389/fimmu.2018.00086] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/11/2018] [Indexed: 12/11/2022] Open
Abstract
Intracellular bacteria are responsible for many infectious diseases in humans and have developed diverse mechanisms to interfere with host defense pathways. In particular, intracellular vacuoles are an essential niche used by pathogens to alter cellular and organelle functions, which facilitate replication and survival. Mycobacterium tuberculosis (Mtb), the pathogen causing tuberculosis in humans, is not only able to modulate its intraphagosomal fate by blocking phagosome maturation but has also evolved strategies to successfully prevent clearance by immune cells and to establish long-term survival in the host. Mass spectrometry (MS)-based proteomics allows the identification and quantitative analysis of complex protein mixtures and is increasingly employed to investigate host–pathogen interactions. Major challenges are limited availability and purity of pathogen-containing compartments as well as the asymmetric ratio in protein abundance when comparing bacterial and host proteins during the infection. Recent advances in purification techniques and MS technology helped to overcome previous difficulties and enable the detailed proteomic characterization of infected host cells and their pathogen-containing vacuoles. Here, we summarize current findings of the proteomic analysis of Mycobacterium-infected host cells and highlight progress that has been made to study the protein composition of mycobacterial vacuoles. Current investigations focus on the pathogenicity during Mtb infection, which will allow to better understand pathogen-induced changes and immunomodulation of infected host cells. Consequently, future research in this field will have important implications on host response, pathogen survival, and persistence, induced adaptive immunity and metabolic changes of immune cells promoting the development of novel host-directed therapies in tuberculosis.
Collapse
Affiliation(s)
- Eik Hoffmann
- CNRS, INSERM, CHU Lille, U1019, UMR8204, Centre d'Infection et d'Immunité de Lille (CIIL), Institut Pasteur de Lille, Université de Lille, Lille, France
| | - Arnaud Machelart
- CNRS, INSERM, CHU Lille, U1019, UMR8204, Centre d'Infection et d'Immunité de Lille (CIIL), Institut Pasteur de Lille, Université de Lille, Lille, France
| | - Ok-Ryul Song
- CNRS, INSERM, CHU Lille, U1019, UMR8204, Centre d'Infection et d'Immunité de Lille (CIIL), Institut Pasteur de Lille, Université de Lille, Lille, France
| | - Priscille Brodin
- CNRS, INSERM, CHU Lille, U1019, UMR8204, Centre d'Infection et d'Immunité de Lille (CIIL), Institut Pasteur de Lille, Université de Lille, Lille, France
| |
Collapse
|
160
|
Zondervan NA, van Dam JCJ, Schaap PJ, Martins Dos Santos VAP, Suarez-Diez M. Regulation of Three Virulence Strategies of Mycobacterium tuberculosis: A Success Story. Int J Mol Sci 2018; 19:E347. [PMID: 29364195 PMCID: PMC5855569 DOI: 10.3390/ijms19020347] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 01/19/2018] [Accepted: 01/21/2018] [Indexed: 12/28/2022] Open
Abstract
Tuberculosis remains one of the deadliest diseases. Emergence of drug-resistant and multidrug-resistant M. tuberculosis strains makes treating tuberculosis increasingly challenging. In order to develop novel intervention strategies, detailed understanding of the molecular mechanisms behind the success of this pathogen is required. Here, we review recent literature to provide a systems level overview of the molecular and cellular components involved in divalent metal homeostasis and their role in regulating the three main virulence strategies of M. tuberculosis: immune modulation, dormancy and phagosomal rupture. We provide a visual and modular overview of these components and their regulation. Our analysis identified a single regulatory cascade for these three virulence strategies that respond to limited availability of divalent metals in the phagosome.
Collapse
Affiliation(s)
- Niels A Zondervan
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| | - Jesse C J van Dam
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| | - Peter J Schaap
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| | - Vitor A P Martins Dos Santos
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
- LifeGlimmer GmbH, Markelstrasse 38, 12163 Berlin, Germany.
| | - Maria Suarez-Diez
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| |
Collapse
|
161
|
Intracellular Growth of Bacterial Pathogens: The Role of Secreted Effector Proteins in the Control of Phagocytosed Microorganisms. Microbiol Spectr 2018; 3. [PMID: 27337278 DOI: 10.1128/microbiolspec.vmbf-0003-2014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The ability of intracellular pathogens to subvert the host response, to facilitate invasion and subsequent infection, is the hallmark of microbial pathogenesis. Bacterial pathogens produce and secrete a variety of effector proteins, which are the primary means by which they exert control over the host cell. Secreted effectors work independently, yet in concert with each other, to facilitate microbial invasion, replication, and intracellular survival in host cells. In this review we focus on defined host cell processes targeted by bacterial pathogens. These include phagosome maturation and its subprocesses: phagosome-endosome and phagosome-lysosome fusion events, as well as phagosomal acidification, cytoskeleton remodeling, and lysis of the phagosomal membrane. We further describe the mode of action for selected effectors from six pathogens: the Gram-negative Legionella, Salmonella, Shigella, and Yersinia, the Gram-positive Listeria, and the acid-fast actinomycete Mycobacterium.
Collapse
|
162
|
Protein tyrosine kinase, PtkA, is required for Mycobacterium tuberculosis growth in macrophages. Sci Rep 2018; 8:155. [PMID: 29317718 PMCID: PMC5760654 DOI: 10.1038/s41598-017-18547-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 12/13/2017] [Indexed: 01/08/2023] Open
Abstract
Protein phosphorylation plays a key role in Mycobacterium tuberculosis (Mtb) physiology and pathogenesis. We have previously shown that a secreted protein tyrosine phosphatase, PtpA, is essential for Mtb inhibition of host macrophage acidification and maturation, and is a substrate of the protein tyrosine kinase, PtkA, encoded in the same operon. In this study, we constructed a ∆ptkA deletion mutant in Mtb and found that the mutant exhibited impaired intracellular survival in the THP-1 macrophage infection model, correlated with the strain's inability to inhibit macrophage phagosome acidification. By contrast, the mutant displayed increased resistance to oxidative stress in vitro. Proteomic and transcriptional analyses revealed upregulation of ptpA, and increased secretion of TrxB2, in the ΔptkA mutant. Kinase and protein-protein interaction studies demonstrated that TrxB2 is a substrate of PtkA phosphorylation. Taken together these studies establish a central role for the ptkA-ptpA operon in Mtb pathogenesis.
Collapse
|
163
|
Mascarello A, Orbem Menegatti AC, Calcaterra A, Martins PGA, Chiaradia-Delatorre LD, D'Acquarica I, Ferrari F, Pau V, Sanna A, De Logu A, Botta M, Botta B, Terenzi H, Mori M. Naturally occurring Diels-Alder-type adducts from Morus nigra as potent inhibitors of Mycobacterium tuberculosis protein tyrosine phosphatase B. Eur J Med Chem 2018; 144:277-288. [DOI: 10.1016/j.ejmech.2017.11.087] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 11/14/2017] [Accepted: 11/27/2017] [Indexed: 12/18/2022]
|
164
|
Podinovskaia M, Spang A. The Endosomal Network: Mediators and Regulators of Endosome Maturation. ENDOCYTOSIS AND SIGNALING 2018; 57:1-38. [DOI: 10.1007/978-3-319-96704-2_1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
165
|
Stutz MD, Clark MP, Doerflinger M, Pellegrini M. Mycobacterium tuberculosis: Rewiring host cell signaling to promote infection. J Leukoc Biol 2017; 103:259-268. [PMID: 29345343 PMCID: PMC6446910 DOI: 10.1002/jlb.4mr0717-277r] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 09/05/2017] [Accepted: 09/26/2017] [Indexed: 12/16/2022] Open
Abstract
The ability of Mycobacterium tuberculosis to cause disease hinges upon successfully thwarting the innate defenses of the macrophage host cell. The pathogen's trump card is its armory of virulence factors that throw normal host cell signaling into disarray. This process of subverting the macrophage begins upon entry into the cell, when M. tuberculosis actively inhibits the fusion of the bacilli‐laden phagosomes with lysosomes. The pathogen then modulates an array of host signal transduction pathways, which dampens the macrophage's host‐protective cytokine response, while simultaneously adapting host cell metabolism to stimulate lipid body accumulation. Mycobacterium tuberculosis also renovates the surface of its innate host cells by altering the expression of key molecules required for full activation of the adaptive immune response. Finally, the pathogen coordinates its exit from the host cell by shifting the balance from the host‐protective apoptotic cell death program toward a lytic form of host cell death. Thus, M. tuberculosis exploits its extensive repertoire of virulence factors in order to orchestrate the infection process to facilitate its growth, dissemination, and entry into latency. This review offers critical insights into the most recent advances in our knowledge of how M. tuberculosis manipulates host cell signaling. An appreciation of such interactions between the pathogen and host is critical for guiding novel therapies and understanding the factors that lead to the development of active disease in only a subset of exposed individuals.
Collapse
Affiliation(s)
- Michael D Stutz
- Division of Infection and Immunity, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Michelle P Clark
- Division of Infection and Immunity, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Marcel Doerflinger
- Division of Infection and Immunity, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Marc Pellegrini
- Division of Infection and Immunity, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
166
|
Liu CH, Liu H, Ge B. Innate immunity in tuberculosis: host defense vs pathogen evasion. Cell Mol Immunol 2017; 14:963-975. [PMID: 28890547 PMCID: PMC5719146 DOI: 10.1038/cmi.2017.88] [Citation(s) in RCA: 326] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 07/25/2017] [Accepted: 07/26/2017] [Indexed: 12/16/2022] Open
Abstract
The major innate immune cell types involved in tuberculosis (TB) infection are macrophages, dendritic cells (DCs), neutrophils and natural killer (NK) cells. These immune cells recognize the TB-causing pathogen Mycobacterium tuberculosis (Mtb) through various pattern recognition receptors (PRRs), including but not limited to Toll-like receptors (TLRs), Nod-like receptors (NLRs) and C-type lectin receptors (CLRs). Upon infection by Mtb, the host orchestrates multiple signaling cascades via the PRRs to launch a variety of innate immune defense functions such as phagocytosis, autophagy, apoptosis and inflammasome activation. In contrast, Mtb utilizes numerous exquisite strategies to evade or circumvent host innate immunity. Here we discuss recent research on major host innate immune cells, PRR signaling, and the cellular functions involved in Mtb infection, with a specific focus on the host's innate immune defense and Mtb immune evasion. A better understanding of the molecular mechanisms underlying host-pathogen interactions could provide a rational basis for the development of effective anti-TB therapeutics.
Collapse
Affiliation(s)
- Cui Hua Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Haiying Liu
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100176, China
| | - Baoxue Ge
- Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| |
Collapse
|
167
|
Kumar P. IFNγ-producing CD4 + T lymphocytes: the double-edged swords in tuberculosis. Clin Transl Med 2017; 6:21. [PMID: 28646367 PMCID: PMC5482791 DOI: 10.1186/s40169-017-0151-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/07/2017] [Indexed: 11/30/2022] Open
Abstract
IFNγ-producing CD4+ T cells (IFNγ+CD4+ T cells) are the key orchestrators of protective immunity against Mycobacterium tuberculosis (Mtb). Primarily, these cells act by enabling Mtb-infected macrophages to enforce phagosome-lysosome fusion, produce reactive nitrogen intermediates (RNIs), and activate autophagy pathways. However, TB is a heterogeneous disease and a host of clinical and experimental findings has also implicated IFNγ+CD4+ T cells in TB pathogenesis. High frequency of IFNγ+CD4+ T cells is the most invariable feature of the active disease. Active TB patients mount a heightened IFNγ+CD4+ T cell response to mycobacterial antigens and demonstrate an IFNγ-inducible transcriptomic signature. IFNγ+CD4+ T cells have also been shown to mediate TB-associated immune reconstitution inflammatory syndrome (TB-IRIS) observed in a subset of antiretroviral therapy (ART)-treated HIV- and Mtb-coinfected people. The pathological face of IFNγ+CD4+ T cells during mycobacterial infection is further uncovered by studies in the animal model of TB-IRIS and in Mtb-infected PD-1-/- mice. This manuscript encompasses the evidence supporting the dual role of IFNγ+CD4+ T cells during Mtb infection and sheds light on immune mechanisms involved in protection versus pathogenesis.
Collapse
Affiliation(s)
- Pawan Kumar
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India.
| |
Collapse
|
168
|
Queval CJ, Brosch R, Simeone R. The Macrophage: A Disputed Fortress in the Battle against Mycobacterium tuberculosis. Front Microbiol 2017; 8:2284. [PMID: 29218036 PMCID: PMC5703847 DOI: 10.3389/fmicb.2017.02284] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 11/06/2017] [Indexed: 01/09/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb), the etiological agent of human tuberculosis (TB), has plagued humans for thousands of years. TB still remains a major public health problem in our era, causing more than 4,400 deaths worldwide every day and killing more people than HIV. After inhaling Mtb-contaminated aerosols, TB primo-infection starts in the terminal lung airways, where Mtb is taken up by alveolar macrophages. Although macrophages are known as professional killers for pathogens, Mtb has adopted remarkable strategies to circumvent host defenses, building suitable conditions to survive and proliferate. Within macrophages, Mtb initially resides inside phagosomes, where its survival mostly depends on its ability to take control of phagosomal processing, through inhibition of phagolysosome biogenesis and acidification processes, and by progressively getting access to the cytosol. Bacterial access to the cytosolic space is determinant for specific immune responses and cell death programs, both required for the replication and the dissemination of Mtb. Comprehension of the molecular events governing Mtb survival within macrophages is fundamental for the improvement of vaccine-based and therapeutic strategies in order to help the host to better defend itself in the battle against the fierce invader Mtb. In this mini-review, we discuss recent research exploring how Mtb conquers and transforms the macrophage into a strategic base for its survival and dissemination as well as the associated defense strategies mounted by host.
Collapse
Affiliation(s)
| | | | - Roxane Simeone
- Unit for Integrated Mycobacterial Pathogenomics, Institut Pasteur, Paris, France
| |
Collapse
|
169
|
Genome Sequences of the Mycobacterium tuberculosis H37Rv- ptkA Deletion Mutant and Its Parental Strain. GENOME ANNOUNCEMENTS 2017; 5:5/44/e01156-17. [PMID: 29097456 PMCID: PMC5668532 DOI: 10.1128/genomea.01156-17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mycobacterium tuberculosis, the etiological agent of tuberculosis, is one of the most devastating infectious agents in the world. Here, we report the draft genome sequences of the M. tuberculosis protein tyrosine kinase (ptkA) deletion mutant and its parental strain H37Rv, which are used in genetic studies and for drug discovery.
Collapse
|
170
|
Uribe-Querol E, Rosales C. Control of Phagocytosis by Microbial Pathogens. Front Immunol 2017; 8:1368. [PMID: 29114249 PMCID: PMC5660709 DOI: 10.3389/fimmu.2017.01368] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 10/05/2017] [Indexed: 12/17/2022] Open
Abstract
Phagocytosis is a fundamental process of cells to capture and ingest foreign particles. Small unicellular organisms such as free-living amoeba use this process to acquire food. In pluricellular organisms, phagocytosis is a universal phenomenon that all cells are able to perform (including epithelial, endothelial, fibroblasts, etc.), but some specialized cells (such as neutrophils and macrophages) perform this very efficiently and were therefore named professional phagocytes by Rabinovitch. Cells use phagocytosis to capture and clear all particles larger than 0.5 µm, including pathogenic microorganisms and cellular debris. Phagocytosis involves a series of steps from recognition of the target particle, ingestion of it in a phagosome (phagocytic vacuole), maturation of this phagosome into a phagolysosome, to the final destruction of the ingested particle in the robust antimicrobial environment of the phagolysosome. For the most part, phagocytosis is an efficient process that eliminates invading pathogens and helps maintaining homeostasis. However, several pathogens have also evolved different strategies to prevent phagocytosis from proceeding in a normal way. These pathogens have a clear advantage to perpetuate the infection and continue their replication. Here, we present an overview of the phagocytic process with emphasis on the antimicrobial elements professional phagocytes use. We also summarize the current knowledge on the microbial strategies different pathogens use to prevent phagocytosis either at the level of ingestion, phagosome formation, and maturation, and even complete escape from phagosomes.
Collapse
Affiliation(s)
- Eileen Uribe-Querol
- División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Carlos Rosales
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
171
|
Bertoldo JB, Rodrigues T, Dunsmore L, Aprile FA, Marques MC, Rosado LA, Boutureira O, Steinbrecher TB, Sherman W, Corzana F, Terenzi H, Bernardes GJL. A Water-Bridged Cysteine-Cysteine Redox Regulation Mechanism in Bacterial Protein Tyrosine Phosphatases. Chem 2017; 3:665-677. [PMID: 29094109 PMCID: PMC5656095 DOI: 10.1016/j.chempr.2017.07.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 06/01/2017] [Accepted: 07/07/2017] [Indexed: 11/25/2022]
Abstract
The emergence of multidrug-resistant Mycobacterium tuberculosis (Mtb) strains highlights the need to develop more efficacious and potent drugs. However, this goal is dependent on a comprehensive understanding of Mtb virulence protein effectors at the molecular level. Here, we used a post-expression cysteine (Cys)-to-dehydrolanine (Dha) chemical editing strategy to identify a water-mediated motif that modulates accessibility of the protein tyrosine phosphatase A (PtpA) catalytic pocket. Importantly, this water-mediated Cys-Cys non-covalent motif is also present in the phosphatase SptpA from Staphylococcus aureus, which suggests a potentially preserved structural feature among bacterial tyrosine phosphatases. The identification of this structural water provides insight into the known resistance of Mtb PtpA to the oxidative conditions that prevail within an infected host macrophage. This strategy could be applied to extend the understanding of the dynamics and function(s) of proteins in their native state and ultimately aid in the design of small-molecule modulators.
Collapse
Affiliation(s)
- Jean B Bertoldo
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.,Centro de Biologia Molecular Estrutural, Departamento de Bioquímica, Universidade Federal de Santa Catarina, 88040-970 Florianópolis-SC, Brazil
| | - Tiago Rodrigues
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisbon, Portugal
| | - Lavinia Dunsmore
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Francesco A Aprile
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Marta C Marques
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisbon, Portugal
| | - Leonardo A Rosado
- Centro de Biologia Molecular Estrutural, Departamento de Bioquímica, Universidade Federal de Santa Catarina, 88040-970 Florianópolis-SC, Brazil
| | - Omar Boutureira
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | | | - Woody Sherman
- Schrödinger, 120 West 45th Street, New York, NY 10036, USA
| | - Francisco Corzana
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, 26006 Logroño, Spain
| | - Hernán Terenzi
- Centro de Biologia Molecular Estrutural, Departamento de Bioquímica, Universidade Federal de Santa Catarina, 88040-970 Florianópolis-SC, Brazil
| | - Gonçalo J L Bernardes
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.,Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisbon, Portugal
| |
Collapse
|
172
|
He X, Jiang HW, Chen H, Zhang HN, Liu Y, Xu ZW, Wu FL, Guo SJ, Hou JL, Yang MK, Yan W, Deng JY, Bi LJ, Zhang XE, Tao SC. Systematic Identification of Mycobacterium tuberculosis Effectors Reveals that BfrB Suppresses Innate Immunity. Mol Cell Proteomics 2017; 16:2243-2253. [PMID: 29018126 DOI: 10.1074/mcp.ra117.000296] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Indexed: 12/14/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) has evolved multiple strategies to counter the human immune system. The effectors of Mtb play important roles in the interactions with the host. However, because of the lack of highly efficient strategies, there are only a handful of known Mtb effectors, thus hampering our understanding of Mtb pathogenesis. In this study, we probed Mtb proteome microarray with biotinylated whole-cell lysates of human macrophages, identifying 26 Mtb membrane proteins and secreted proteins that bind to macrophage proteins. Combining GST pull-down with mass spectroscopy then enabled the specific identification of all binders. We refer to this proteome microarray-based strategy as SOPHIE (Systematic unlOcking of Pathogen and Host Interacting Effectors). Detailed investigation of a novel effector identified here, the iron storage protein BfrB (Rv3841), revealed that BfrB inhibits NF-κB-dependent transcription through binding and reducing the nuclear abundance of the ribosomal protein S3 (RPS3), which is a functional subunit of NF- κB. The importance of this interaction was evidenced by the promotion of survival in macrophages of the mycobacteria, Mycobacterium smegmatis, by overexpression of BfrB. Thus, beyond demonstrating the power of SOPHIE in the discovery of novel effectors of human pathogens, we expect that the set of Mtb effectors identified in this work will greatly facilitate the understanding of the pathogenesis of Mtb, possibly leading to additional potential molecular targets in the battle against tuberculosis.
Collapse
Affiliation(s)
- Xiang He
- From the ‡Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China.,§School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - He-Wei Jiang
- From the ‡Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hong Chen
- From the ‡Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hai-Nan Zhang
- From the ‡Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yin Liu
- From the ‡Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhao-Wei Xu
- From the ‡Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fan-Lin Wu
- From the ‡Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shu-Juan Guo
- From the ‡Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jing-Li Hou
- ¶Instrumental Analysis Center of Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ming-Kun Yang
- ‖Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Wei Yan
- From the ‡Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiao-Yu Deng
- **State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Li-Jun Bi
- ‡‡National Key Laboratory of Biomacromolecules, Key Laboratory of Non-Coding; RNA and Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,§§School of Stomatology and Medicine, Foshan University, Foshan 528000, Guangdong Province, China
| | - Xian-En Zhang
- ‡‡National Key Laboratory of Biomacromolecules, Key Laboratory of Non-Coding; RNA and Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Sheng-Ce Tao
- From the ‡Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China; .,§School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.,¶¶State Key Laboratory of Oncogenes and Related Genes, Shanghai 200240, China
| |
Collapse
|
173
|
Abstract
In this article, we have described several cellular pathological effects caused by the Mycobacterium tuberculosis ESX-1. The effects include induction of necrosis, NOD2 signaling, type I interferon production, and autophagy. We then attempted to suggest that these pathological effects are mediated by the cytosolic access of M. tuberculosis-derived materials as a result of the phagosome-disrupting activity of the major ESX-1 substrate ESAT-6. Such activity of ESAT-6 is most likely due to its pore-forming activity at the membrane. The amyloidogenic characteristic of ESAT-6 is reviewed here as a potential mechanism of membrane pore formation. In addition to ESAT-6, the ESX-1 substrate EspB interferes with membrane-mediated innate immune mechanisms such as efferocytosis and autophagy, most likely through its ability to bind phospholipids. Overall, the M. tuberculosis ESX-1 secretion system appears to be a specialized system for the deployment of host membrane-targeting proteins, whose primary function is to interrupt key steps in innate immune mechanisms against pathogens. Inhibitors that block the ESX-1 system or block host factors critical for ESX-1 toxicity have been identified and should represent attractive potential new antituberculosis drugs.
Collapse
|
174
|
Kissing S, Saftig P, Haas A. Vacuolar ATPase in phago(lyso)some biology. Int J Med Microbiol 2017; 308:58-67. [PMID: 28867521 DOI: 10.1016/j.ijmm.2017.08.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/28/2017] [Accepted: 08/23/2017] [Indexed: 12/23/2022] Open
Abstract
Many eukaryotic cells ingest extracellular particles in a process termed phagocytosis which entails the generation of a new intracellular compartment, the phagosome. Phagosomes change their composition over time and this maturation process culminates in their fusion with acidic, hydrolase-rich lysosomes. During the maturation process, degradation and, when applicable, killing of the cargo may ensue. Many of the events that are pathologically relevant depend on strong acidification of phagosomes by the 'vacuolar' ATPase (V-ATPase). This protein complex acidifies the lumen of some intracellular compartments at the expense of ATP hydrolysis. We discuss here the roles and importance of V-ATPase in intracellular trafficking, its distribution, inhibition and activities, its role in the defense against microorganisms and the counteractivities of pathogens.
Collapse
Affiliation(s)
- Sandra Kissing
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, Olshausenstrasse 40, D-24098 Kiel, Germany
| | - Paul Saftig
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, Olshausenstrasse 40, D-24098 Kiel, Germany.
| | - Albert Haas
- Institut für Zellbiologie, Friedrich-Wilhelms-Universität Bonn, Ulrich-Haberland-Str. 61A, D-53121 Bonn, Germany.
| |
Collapse
|
175
|
Wang J, Ge P, Qiang L, Tian F, Zhao D, Chai Q, Zhu M, Zhou R, Meng G, Iwakura Y, Gao GF, Liu CH. The mycobacterial phosphatase PtpA regulates the expression of host genes and promotes cell proliferation. Nat Commun 2017; 8:244. [PMID: 28811474 PMCID: PMC5557760 DOI: 10.1038/s41467-017-00279-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 06/16/2017] [Indexed: 01/05/2023] Open
Abstract
Mycobacterium tuberculosis PtpA is a secreted effector protein that dephosphorylates several proteins in the host cell cytoplasm, such as p-JNK, p-p38, and p-VPS33B, leading to suppression of host innate immunity. Here we show that, in addition, PtpA enters the nucleus of host cells and regulates the expression of host genes, some of which are known to be involved in host innate immunity or in cell proliferation and migration (such as GADD45A). PtpA can bind directly to the promoter region of GADD45A in vitro. Both phosphatase activity and DNA-binding ability of PtpA are important in suppressing host innate immune responses. Furthermore, PtpA-expressing Mycobacterium bovis BCG promotes proliferation and migration of human lung adenoma A549 cells in vitro and in a mouse xenograft model. Further research is needed to test whether mycobacteria, via PtpA, might affect cell proliferation or migration in humans. Mycobacterium tuberculosis secretes a protein, PtpA, that dephosphorylates proteins in the host cell cytoplasm, weakening immune responses. Here, the authors show that PtpA also enters the nucleus, affects the expression of several host genes, and promotes proliferation and migration of a cancer cell line.
Collapse
Affiliation(s)
- Jing Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Pupu Ge
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Lihua Qiang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,Institute of Health Sciences, Anhui University, Hefei, 230601, China
| | - Feng Tian
- Center for Bioinformatics, Peking University, Beijing, 100871, China
| | - Dongdong Zhao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Qiyao Chai
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Mingzhao Zhu
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Rongbin Zhou
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, Chinese Academy of Sciences Center for Excellence in Molecular Cell Sciences, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, 230027, China
| | - Guangxun Meng
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yoichiro Iwakura
- Division of Experimental Animal Immunology, Center for Animal Disease Models, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, 278-0022, Japan
| | - George Fu Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Cui Hua Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China. .,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 101408, China.
| |
Collapse
|
176
|
Gidon A, Åsberg SE, Louet C, Ryan L, Haug M, Flo TH. Persistent mycobacteria evade an antibacterial program mediated by phagolysosomal TLR7/8/MyD88 in human primary macrophages. PLoS Pathog 2017; 13:e1006551. [PMID: 28806745 PMCID: PMC5570494 DOI: 10.1371/journal.ppat.1006551] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/24/2017] [Accepted: 07/25/2017] [Indexed: 12/20/2022] Open
Abstract
Pathogenic mycobacteria reside in macrophages where they avoid lysosomal targeting and degradation through poorly understood mechanisms proposed to involve arrest of phagosomal maturation at an early endosomal stage. A clear understanding of how this relates to host defenses elicited from various intracellular compartments is also missing and can only be studied using techniques allowing single cell and subcellular analyses. Using confocal imaging of human primary macrophages infected with Mycobacterium avium (Mav) we show evidence that Mav phagosomes are not arrested at an early endosomal stage, but mature to a (LAMP1+/LAMP2+/CD63+) late endosomal/phagolysosomal stage where inflammatory signaling and Mav growth restriction is initiated through a mechanism involving Toll-like receptors (TLR) 7 and 8, the adaptor MyD88 and transcription factors NF-κB and IRF-1. Furthermore, a fraction of the mycobacteria re-establish in a less hostile compartment (LAMP1-/LAMP2-/CD63-) where they not only evade destruction, but also recognition by TLRs, growth restriction and inflammatory host responses that could be detrimental for intracellular survival and establishment of chronic infections. Mycobacterium avium is increasingly reported as a causative agent of non-tuberculous disease in immunocompromised patients and in individuals with underlying disease or using immunosuppressant drugs, with prevalence often higher than the more pathogenic M. tuberculosis in developed countries. Both M. avium and M. tuberculosis cause persistent infections by surviving inside host macrophages. Here, we identify from which compartment M. avium evoke inflammatory signaling in human primary macrophages, and the pattern-recognition receptors involved. In essence, we present three key findings: 1) M. avium phagosomes are not arrested at an early endosomal stage, but rather mature normally into phagolysosomes from where a fraction of the bacteria escape and re-establish in a new compartment. 2) In addition to avoiding degradation in phagolysosomes, by escaping M. avium also evade inflammatory signaling. 3) M. avium unable to escape is degraded in phagolysosomes and recognized by Toll-like receptors 7 and 8. Our results can contribute to new understanding of intracellular infections, and thus have vital clinical implications for development of novel anti-microbial strategies and host-targeted therapy to mycobacterial and other infectious diseases.
Collapse
Affiliation(s)
- Alexandre Gidon
- Centre of Molecular Inflammation Research and Department of Cancer Research and Molecular Medicine, Faculty of Medicine, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Signe Elisabeth Åsberg
- Centre of Molecular Inflammation Research and Department of Cancer Research and Molecular Medicine, Faculty of Medicine, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Claire Louet
- Centre of Molecular Inflammation Research and Department of Cancer Research and Molecular Medicine, Faculty of Medicine, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Liv Ryan
- Centre of Molecular Inflammation Research and Department of Cancer Research and Molecular Medicine, Faculty of Medicine, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Markus Haug
- Centre of Molecular Inflammation Research and Department of Cancer Research and Molecular Medicine, Faculty of Medicine, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- The Central Norway Regional Health Authority, Trondheim, Norway
| | - Trude Helen Flo
- Centre of Molecular Inflammation Research and Department of Cancer Research and Molecular Medicine, Faculty of Medicine, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- * E-mail:
| |
Collapse
|
177
|
Sundaramurthy V, Korf H, Singla A, Scherr N, Nguyen L, Ferrari G, Landmann R, Huygen K, Pieters J. Survival of Mycobacterium tuberculosis and Mycobacterium bovis BCG in lysosomes in vivo. Microbes Infect 2017; 19:515-526. [PMID: 28689009 DOI: 10.1016/j.micinf.2017.06.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 03/31/2017] [Accepted: 06/27/2017] [Indexed: 12/24/2022]
Abstract
Mycobacterium tuberculosis is one of the most successful pathogens known, having infected more than a third of the global population. An important strategy for intracellular survival of pathogenic mycobacteria relies on their capacity to resist delivery to lysosomes, instead surviving within macrophage phagosomes. Several factors of both mycobacterial and host origin have been implicated in this process. However, whether or not this strategy is employed in vivo is not clear. Here we show that in vivo, following intravenous infection, M. tuberculosis and Mycobacterium bovis BCG initially survived by resisting lysosomal transfer. However, after prolonged infection the bacteria were transferred to lysosomes yet continued to proliferate. A M. bovis BCG mutant lacking protein kinase G (PknG), that cannot avoid lysosomal transfer and is readily cleared in vitro, was found to survive and proliferate in vivo. The ability to survive and proliferate in lysosomal organelles in vivo was found to be due to an altered host environment rather than changes in the inherent ability of the bacteria to arrest phagosome maturation. Thus, within an infected host, both M. tuberculosis and M. bovis BCG adapts to infection-specific host responses. These results are important to understand the pathology of tuberculosis and may have implications for the development of effective strategies to combat tuberculosis.
Collapse
Affiliation(s)
| | - Hannelie Korf
- Scientific Institute of Public Health (WIV-ISP (Site Ukkel)), Juliette Wytsmanstraat 14, 1050 Brussels, Belgium
| | - Ashima Singla
- National Center for Biological Sciences, GKVK, Bellary Road, Bengaluru, India
| | - Nicole Scherr
- Biozentrum, University of Basel, Klingelbergstrasse 70, Basel, Switzerland
| | - Liem Nguyen
- Department of Molecular Biology and Microbiology, Department of Molecular Biology and Microbiology, Case Western Reserve University, 10900 Euclid Ave, LC 4860, Cleveland, OH, USA
| | - Giorgio Ferrari
- Biozentrum, University of Basel, Klingelbergstrasse 70, Basel, Switzerland
| | - Regine Landmann
- Department of Biomedicine, University Hospital, Hebelstrasse 20, 4056, Basel, Switzerland
| | - Kris Huygen
- Scientific Institute of Public Health (WIV-ISP (Site Ukkel)), Juliette Wytsmanstraat 14, 1050 Brussels, Belgium
| | - Jean Pieters
- Biozentrum, University of Basel, Klingelbergstrasse 70, Basel, Switzerland
| |
Collapse
|
178
|
Abstract
Reversible protein phosphorylation is the most common type of epigenetic posttranslational modification in living cells used as a major regulation mechanism of biological processes. The Mycobacterium tuberculosis genome encodes for 11 serine/threonine protein kinases that are responsible for sensing environmental signals to coordinate a cellular response to ensure the pathogen's infectivity, survival, and growth. To overcome killing mechanisms generated within the host during infection, M. tuberculosis enters a state of nonreplicating persistence that is characterized by arrested growth, limited metabolic activity, and phenotypic resistance to antimycobacterial drugs. In this article we focus our attention on the role of M. tuberculosis serine/threonine protein kinases in sensing the host environment to coordinate the bacilli's physiology, including growth, cell wall components, and central metabolism, to establish a persistent infection.
Collapse
|
179
|
Zhao J, Beyrakhova K, Liu Y, Alvarez CP, Bueler SA, Xu L, Xu C, Boniecki MT, Kanelis V, Luo ZQ, Cygler M, Rubinstein JL. Molecular basis for the binding and modulation of V-ATPase by a bacterial effector protein. PLoS Pathog 2017; 13:e1006394. [PMID: 28570695 PMCID: PMC5469503 DOI: 10.1371/journal.ppat.1006394] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 06/13/2017] [Accepted: 05/01/2017] [Indexed: 12/16/2022] Open
Abstract
Intracellular pathogenic bacteria evade the immune response by replicating within host cells. Legionella pneumophila, the causative agent of Legionnaires’ Disease, makes use of numerous effector proteins to construct a niche supportive of its replication within phagocytic cells. The L. pneumophila effector SidK was identified in a screen for proteins that reduce the activity of the proton pumping vacuolar-type ATPases (V-ATPases) when expressed in the yeast Saccharomyces cerevisae. SidK is secreted by L. pneumophila in the early stages of infection and by binding to and inhibiting the V-ATPase, SidK reduces phagosomal acidification and promotes survival of the bacterium inside macrophages. We determined crystal structures of the N-terminal region of SidK at 2.3 Å resolution and used single particle electron cryomicroscopy (cryo-EM) to determine structures of V-ATPase:SidK complexes at ~6.8 Å resolution. SidK is a flexible and elongated protein composed of an α-helical region that interacts with subunit A of the V-ATPase and a second region of unknown function that is flexibly-tethered to the first. SidK binds V-ATPase strongly by interacting via two α-helical bundles at its N terminus with subunit A. In vitro activity assays show that SidK does not inhibit the V-ATPase completely, but reduces its activity by ~40%, consistent with the partial V-ATPase deficiency phenotype its expression causes in yeast. The cryo-EM analysis shows that SidK reduces the flexibility of the A-subunit that is in the ‘open’ conformation. Fluorescence experiments indicate that SidK binding decreases the affinity of V-ATPase for a fluorescent analogue of ATP. Together, these results reveal the structural basis for the fine-tuning of V-ATPase activity by SidK. V-ATPase-driven acidification of lysosomes in phagocytic cells activates enzymes important for killing of phagocytized pathogens. Successful pathogens can subvert host defenses by secreting effectors that target V-ATPases to inhibit lysosomal acidification or lysosomal fusion with other cell compartments. This study reveals the structure of the V-ATPase:SidK complex, an assembly formed from the interaction of host and pathogen proteins involved in the infection of phagocytic white blood cells by Legionella pneumophila. The structure and activity of the V-ATPase is altered upon SidK binding, providing insight into the infection strategy used by L. pneumophila and possibly other intravacuolar pathogens.
Collapse
Affiliation(s)
- Jianhua Zhao
- The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Ksenia Beyrakhova
- Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Yao Liu
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Claudia P. Alvarez
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | | | - Li Xu
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Caishuang Xu
- Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Michal T. Boniecki
- Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Voula Kanelis
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Zhao-Qing Luo
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Miroslaw Cygler
- Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- * E-mail: (JLR); (MC)
| | - John L. Rubinstein
- The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- * E-mail: (JLR); (MC)
| |
Collapse
|
180
|
Song OR, Deboosere N, Delorme V, Queval CJ, Deloison G, Werkmeister E, Lafont F, Baulard A, Iantomasi R, Brodin P. Phenotypic assays for Mycobacterium tuberculosis infection. Cytometry A 2017; 91:983-994. [PMID: 28544095 DOI: 10.1002/cyto.a.23129] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 03/23/2017] [Accepted: 04/13/2017] [Indexed: 12/13/2022]
Abstract
Tuberculosis (TB) is still a major global threat, killing more than one million persons each year. With the constant increase of Mycobacterium tuberculosis strains resistant to first- and second-line drugs, there is an urgent need for the development of new drugs to control the propagation of TB. Although screenings of small molecules on axenic M. tuberculosis cultures were successful for the identification of novel putative anti-TB drugs, new drugs in the development pipeline remains scarce. Host-directed therapy may represent an alternative for drug development against TB. Indeed, M. tuberculosis has multiple specific interactions within host phagocytes, which may be targeted by small molecules. In order to enable drug discovery strategies against microbes residing within host macrophages, we developed multiple fluorescence-based HT/CS phenotypic assays monitoring the intracellular replication of M. tuberculosis as well as its intracellular trafficking. What we propose here is a population-based, multi-parametric analysis pipeline that can be used to monitor the intracellular fate of M. tuberculosis and the dynamics of cellular events such as phagosomal maturation (acidification and permeabilization), zinc poisoning system or lipid body accumulation. Such analysis allows the quantification of biological events considering the host-pathogen interplay and may thus be derived to other intracellular pathogens. © 2017 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Ok-Ryul Song
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, F-59000, France
| | - Nathalie Deboosere
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, F-59000, France
| | - Vincent Delorme
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, F-59000, France.,Tuberculosis Research Laboratory, Institut Pasteur Korea, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Korea
| | - Christophe J Queval
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, F-59000, France
| | - Gaspard Deloison
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, F-59000, France
| | - Elisabeth Werkmeister
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, F-59000, France
| | - Frank Lafont
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, F-59000, France
| | - Alain Baulard
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, F-59000, France
| | - Raffaella Iantomasi
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, F-59000, France
| | - Priscille Brodin
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, F-59000, France
| |
Collapse
|
181
|
Qasem A, Naser AE, Naser SA. The alternate effects of anti-TNFα therapeutics and their role in mycobacterial granulomatous infection in Crohn's disease. Expert Rev Anti Infect Ther 2017; 15:637-643. [PMID: 28481651 DOI: 10.1080/14787210.2017.1328276] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Crohn's disease is an inflammatory bowel disease that has been debated to be associated with bacterial triggers such as Mycobacterium avium subspecies paratuberculosis (MAP). Standard treatment of Crohn's disease (CD) patients includes a family of immunomodulators and biologics such as Anti-Tumor Necrosis Factor alpha (Anti-TNFα). This cytokine in particular has been known to play vital roles in fighting microbial infections through formation and maintenance of granulomas. Areas covered: This perspective is focused on elucidating the negative effects of using Anti-TNFα therapeutic agents as a treatment option in CD patients who are more likely suspected to have MAP infection, and the role of other immunomodulators in MAP infection. Expert commentary: While treatment with Anti-TNFα is beneficial to reduce inflammation and to provide short term relief to the patients, it also compromises the immune system causing susceptibility to microbial infection. More than 50% of CD patients have shown no response to Anti-TNFα treatment which indicates a demand for introducing novel CD treatment in combination with antibiotics as a future CD treatment plan.
Collapse
Affiliation(s)
- Ahmad Qasem
- a Burnett School of Biomedical Sciences, College of Medicine , University of Central Florida , Orlando , FL , USA
| | - Abed Elrahman Naser
- a Burnett School of Biomedical Sciences, College of Medicine , University of Central Florida , Orlando , FL , USA
| | - Saleh A Naser
- a Burnett School of Biomedical Sciences, College of Medicine , University of Central Florida , Orlando , FL , USA
| |
Collapse
|
182
|
Awuh JA, Flo TH. Molecular basis of mycobacterial survival in macrophages. Cell Mol Life Sci 2017; 74:1625-1648. [PMID: 27866220 PMCID: PMC11107535 DOI: 10.1007/s00018-016-2422-8] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 11/06/2016] [Accepted: 11/14/2016] [Indexed: 12/31/2022]
Abstract
Macrophages play an essential role in the immune system by ingesting and degrading invading pathogens, initiating an inflammatory response and instructing adaptive immune cells, and resolving inflammation to restore homeostasis. More interesting is the fact that some bacteria have evolved to use macrophages as a natural habitat and tools of spread in the host, e.g., Mycobacterium tuberculosis (Mtb) and some non-tuberculous mycobacteria (NTM). Mtb is considered one of humanity's most successful pathogens and is the causal agent of tuberculosis, while NTMs cause opportunistic infections all of which are of significant public health concern. Here, we describe mechanisms by which intracellular pathogens, with an emphasis on mycobacteria, manipulate macrophage functions to circumvent killing and live inside these cells even under considerable immunological pressure. Such macrophage functions include the selective evasion or engagement of pattern recognition receptors, production of cytokines, reactive oxygen and nitrogen species, phagosome maturation, as well as other killing mechanisms like autophagy and cell death. A clear understanding of host responses elicited by a specific pathogen and strategies employed by the microbe to evade or exploit these is of significant importance for the development of effective vaccines and targeted immunotherapy against persistent intracellular infections like tuberculosis.
Collapse
Affiliation(s)
- Jane Atesoh Awuh
- Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, PB 8905, 7491, Trondheim, Norway
| | - Trude Helen Flo
- Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, PB 8905, 7491, Trondheim, Norway.
| |
Collapse
|
183
|
Joseph S, Yuen A, Singh V, Hmama Z. Mycobacterium tuberculosis Cpn60.2 (GroEL2) blocks macrophage apoptosis via interaction with mitochondrial mortalin. Biol Open 2017; 6:481-488. [PMID: 28288970 PMCID: PMC5399554 DOI: 10.1242/bio.023119] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Earlier studies suggested that Mycobacterium tuberculosis (Mtb) proteins exported within the host macrophage play an essential role in tuberculosis pathogenesis. In fact, Mtb proteins interact with and deactivate key regulators of many macrophage functions such as phago-lysosome fusion and antigen presentation, resulting in the intracellular persistence of pathogenic mycobacteria. Cpn60.2 is an abundant Mtb chaperone protein, restricted to cell cytoplasm and surface, that was reported to be essential for bacterial growth. Here, we provide evidence that once Mtb is ingested by the macrophage, Cpn60.2 is able to detach from the bacterial surface and crosses the phagosomal membrane towards mitochondria organelles. Once there, Cpn60.2 interacts with host mortalin, a member of the HSP 70 gene family that contributes to apoptosis modulation. In this regard, we showed that Cpn60.2 blocks macrophage apoptosis, a phenotype that is reversed when cells are pretreated with a specific mortalin inhibitor. Our findings have extended the current knowledge of the Mtb Cpn60.2 functions to add a strong anti-apoptotic activity dependent on its interaction with mitochondrial mortalin, which otherwise promotes Mtb survival in the hostile macrophage environment.
Collapse
Affiliation(s)
- Sunil Joseph
- Division of Infectious Diseases, Department of Medicine, Vancouver Costal Health Research Institute, University of British Columbia, Vancouver, British Columbia V6H 3Z6, Canada
| | - Alex Yuen
- Division of Infectious Diseases, Department of Medicine, Vancouver Costal Health Research Institute, University of British Columbia, Vancouver, British Columbia V6H 3Z6, Canada
| | - Vijender Singh
- Division of Infectious Diseases, Department of Medicine, Vancouver Costal Health Research Institute, University of British Columbia, Vancouver, British Columbia V6H 3Z6, Canada
| | - Zakaria Hmama
- Division of Infectious Diseases, Department of Medicine, Vancouver Costal Health Research Institute, University of British Columbia, Vancouver, British Columbia V6H 3Z6, Canada
| |
Collapse
|
184
|
Zheng X, Av-Gay Y. System for Efficacy and Cytotoxicity Screening of Inhibitors Targeting Intracellular Mycobacterium tuberculosis. J Vis Exp 2017. [PMID: 28448028 DOI: 10.3791/55273] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), is a leading cause of morbidity and mortality worldwide. With the increased spread of multi drug-resistant TB (MDR-TB), there is a real urgency to develop new therapeutic strategies against M. tuberculosis infections. Traditionally, compounds are evaluated based on their antibacterial activity under in vitro growth conditions in broth; however, results are often misleading for intracellular pathogens like M. tuberculosis since in-broth phenotypic screening conditions are significantly different from the actual disease conditions within the human body. Screening for inhibitors that work inside macrophages has been traditionally difficult due to the complexity, variability in infection, and slow replication rate of M. tuberculosis. In this study, we report a new approach to rapidly assess the effectiveness of compounds on the viability of M. tuberculosis in a macrophage infection model. Using a combination of a cytotoxicity assay and an in-broth M. tuberculosis viability assay, we were able to create a screening system that generates a comprehensive analysis of compounds of interest. This system is capable of producing quantitative data at a low cost that is within reach of most labs and yet is highly scalable to fit large industrial settings.
Collapse
Affiliation(s)
- Xingji Zheng
- Department of Medicine, University of British Columbia;
| | - Yossef Av-Gay
- Department of Medicine, University of British Columbia
| |
Collapse
|
185
|
Oot RA, Couoh-Cardel S, Sharma S, Stam NJ, Wilkens S. Breaking up and making up: The secret life of the vacuolar H + -ATPase. Protein Sci 2017; 26:896-909. [PMID: 28247968 DOI: 10.1002/pro.3147] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 02/21/2017] [Indexed: 01/24/2023]
Abstract
The vacuolar ATPase (V-ATPase; V1 Vo -ATPase) is a large multisubunit proton pump found in the endomembrane system of all eukaryotic cells where it acidifies the lumen of subcellular organelles including lysosomes, endosomes, the Golgi apparatus, and clathrin-coated vesicles. V-ATPase function is essential for pH and ion homeostasis, protein trafficking, endocytosis, mechanistic target of rapamycin (mTOR), and Notch signaling, as well as hormone secretion and neurotransmitter release. V-ATPase can also be found in the plasma membrane of polarized animal cells where its proton pumping function is involved in bone remodeling, urine acidification, and sperm maturation. Aberrant (hypo or hyper) activity has been associated with numerous human diseases and the V-ATPase has therefore been recognized as a potential drug target. Recent progress with moderate to high-resolution structure determination by cryo electron microscopy and X-ray crystallography together with sophisticated single-molecule and biochemical experiments have provided a detailed picture of the structure and unique mode of regulation of the V-ATPase. This review summarizes the recent advances, focusing on the structural and biophysical aspects of the field.
Collapse
Affiliation(s)
- Rebecca A Oot
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, 13210
| | - Sergio Couoh-Cardel
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, 13210
| | - Stuti Sharma
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, 13210
| | - Nicholas J Stam
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, 13210
| | - Stephan Wilkens
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, 13210
| |
Collapse
|
186
|
Zhang ZY. Drugging the Undruggable: Therapeutic Potential of Targeting Protein Tyrosine Phosphatases. Acc Chem Res 2017; 50:122-129. [PMID: 27977138 DOI: 10.1021/acs.accounts.6b00537] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Protein tyrosine phosphatases (PTPs) are essential signaling enzymes that, together with protein tyrosine kinases, regulate tyrosine phosphorylation inside the cell. Proper level of tyrosine phosphorylation is important for a diverse array of cellular processes, such as proliferation, metabolism, motility, and survival. Aberrant tyrosine phosphorylation, resulting from alteration of PTP expression, misregulation, and mutation, has been linked to the etiology of many human ailments including cancer, diabetes/obesity, autoimmune disorders, and infectious diseases. However, despite the fact that PTPs have been garnering attention as compelling drug targets, they remain a largely underexploited resource for therapeutic intervention. Indeed, PTPs have been widely dismissed as "undruggable", due to concerns that (1) the highly conserved active site (i.e., pTyr-binding pocket) makes it difficult to achieve inhibitor selectivity among closely related family members, and (2) the positive-charged active site prefers negatively charged molecules, which usually lack cell permeability. To address the issue of selectivity, we advanced a novel paradigm for the acquisition of highly potent and selective PTP inhibitors through generation of bivalent ligands that interact with both PTP active site and adjacent unique peripheral pockets. To overcome the bioavailability issue, we have identified nonhydrolyzable pTyr mimetics that are sufficiently polar to bind the PTP active site, yet still capable of efficiently penetrating cell membranes. We show that these pTyr mimetics interact in the desired inhibitory fashion with the PTP active site and tethering them to appropriate molecular fragments to engage less conserved interactions outside of PTP active site can increase PTP inhibitor potency and selectivity. We demonstrate through three pTyr mimetics fragment-based approaches that it is completely feasible to obtain highly potent and selective PTP inhibitors with robust in vivo efficacy in animal models of oncology, diabetes/obesity, autoimmune disorders, and tuberculosis. We hope that these results will help dispel concerns about the druggability of PTPs and entice further effort in fostering a PTP-based drug discovery enterprise. Well-characterized, potent, selective and bioactive inhibitors are essential tools for functional interrogation of PTPs in disease biology and target validation. They will also play a critical role in illuminating the druggability of PTPs and provide the groundwork for new therapies for the treatment of human diseases.
Collapse
Affiliation(s)
- Zhong-Yin Zhang
- Department of Medicinal Chemistry
and Molecular Pharmacology, Department of Chemistry, Center for Cancer
Research, and Institute for Drug Discovery, Purdue University, 720
Clinic Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|
187
|
Ong EZ, Zhang SL, Tan HC, Gan ES, Chan KR, Ooi EE. Dengue virus compartmentalization during antibody-enhanced infection. Sci Rep 2017; 7:40923. [PMID: 28084461 PMCID: PMC5234037 DOI: 10.1038/srep40923] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 12/13/2016] [Indexed: 11/23/2022] Open
Abstract
Secondary infection with a heterologous dengue virus (DENV) serotype increases the risk of severe dengue, through a process termed antibody-dependent enhancement (ADE). During ADE, DENV is opsonized with non- or sub-neutralizing antibody levels that augment entry into monocytes and dendritic cells through Fc-gamma receptors (FcγRs). We previously reported that co-ligation of leukocyte immunoglobulin-like receptor-B1 (LILRB1) by antibody-opsonized DENV led to recruitment of SH2 domain-containing phosphatase-1 (SHP-1) to dephosphorylate spleen tyrosine kinase (Syk) and reduce interferon stimulated gene induction. Here, we show that LILRB1 also signals through SHP-1 to attenuate the otherwise rapid acidification for lysosomal enzyme activation following FcγR-mediated uptake of DENV. Reduced or slower trafficking of antibody-opsonized DENV to lytic phagolysosomal compartments, demonstrates how co-ligation of LILRB1 also permits DENV to overcome a cell-autonomous immune response, enhancing intracellular survival of DENV. Our findings provide insights on how antiviral drugs that modify phagosome acidification should be used for viruses such as DENV.
Collapse
Affiliation(s)
- Eugenia Z Ong
- Experimental Therapeutics Centre, Agency for Science, Technology and Research (A*STAR), 138669, Singapore.,Program in Emerging Infectious Diseases, Duke-NUS Medical School, 169857, Singapore
| | - Summer L Zhang
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 169857, Singapore
| | - Hwee Cheng Tan
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 169857, Singapore
| | - Esther S Gan
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 169857, Singapore
| | - Kuan Rong Chan
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 169857, Singapore
| | - Eng Eong Ooi
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 169857, Singapore.,Department of Microbiology and Immunology, National University of Singapore, 8 Medical Drive, Block MD4, 117545, Singapore.,Saw Swee Hock School of Public Health, National University of Singapore, 12 Science Drive 2, 117597, Singapore.,Singapore MIT Alliance Research and Technology, Infectious Diseases Interdisciplinary Research Group, CREATE Campus, 138602, Singapore
| |
Collapse
|
188
|
Abstract
Micro-organisms and higher organisms have evolved together and interact in complex ways. Only a small percentage of microbes are inherently pathogenic. Pathogenicity, the ability of infectious agents to cause disease, must be interpreted in the context of the properties of both transmissible agent and host. Understanding this interplay is important to developing methods to prevent infection and reduce the severity of disease. The initial step in infection is usually adherence, mediated by the interaction of surface structures on the pathogen with host cell membrane proteins or carbohydrates. This often presents excellent targets for immunity. Intracellular pathogens have evolved methods to neutralize the cellular defenses that can destroy invaders.
Collapse
|
189
|
Abstract
Intracellular bacterial pathogens have evolved to exploit the protected niche provided within the boundaries of a eukaryotic host cell. Upon entering a host cell, some bacteria can evade the adaptive immune response of its host and replicate in a relatively nutrient-rich environment devoid of competition from other host flora. Growth within a host cell is not without their hazards, however. Many pathogens enter their hosts through receptor-mediated endocytosis or phagocytosis, two intracellular trafficking pathways that terminate in a highly degradative organelle, the phagolysosome. This usually deadly compartment is maintained at a low pH and contains degradative enzymes and reactive oxygen species, resulting in an environment to which few bacterial species are adapted. Some intracellular pathogens, such as Shigella, Listeria, Francisella, and Rickettsia, escape the phagosome to replicate within the cytosol of the host cell. Bacteria that remain within a vacuole either alter the trafficking of their initial phagosomal compartment or adapt to survive within the harsh environment it will soon become. In this chapter, we focus on the mechanisms by which different vacuolar pathogens either evade lysosomal fusion, as in the case of Mycobacterium and Chlamydia, or allow interaction with lysosomes to varying degrees, such as Brucella and Coxiella, and their specific adaptations to inhabit a replicative niche.
Collapse
|
190
|
Stam NJ, Wilkens S. Structure of the Lipid Nanodisc-reconstituted Vacuolar ATPase Proton Channel: DEFINITION OF THE INTERACTION OF ROTOR AND STATOR AND IMPLICATIONS FOR ENZYME REGULATION BY REVERSIBLE DISSOCIATION. J Biol Chem 2016; 292:1749-1761. [PMID: 27965356 DOI: 10.1074/jbc.m116.766790] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 12/11/2016] [Indexed: 12/14/2022] Open
Abstract
Eukaryotic vacuolar H+-ATPase (V-ATPase) is a multisubunit enzyme complex that acidifies subcellular organelles and the extracellular space. V-ATPase consists of soluble V1-ATPase and membrane-integral Vo proton channel sectors. To investigate the mechanism of V-ATPase regulation by reversible disassembly, we recently determined a cryo-EM reconstruction of yeast Vo The structure indicated that, when V1 is released from Vo, the N-terminal cytoplasmic domain of subunit a (aNT) changes conformation to bind rotor subunit d However, insufficient resolution precluded a precise definition of the aNT-d interface. Here we reconstituted Vo into lipid nanodiscs for single-particle EM. 3D reconstructions calculated at ∼15-Å resolution revealed two sites of contact between aNT and d that are mediated by highly conserved charged residues. Alanine mutagenesis of some of these residues disrupted the aNT-d interaction, as shown by isothermal titration calorimetry and gel filtration of recombinant subunits. A recent cryo-EM study of holo V-ATPase revealed three major conformations corresponding to three rotational states of the central rotor of the enzyme. Comparison of the three V-ATPase conformations with the structure of nanodisc-bound Vo revealed that Vo is halted in rotational state 3. Combined with our prior work that showed autoinhibited V1-ATPase to be arrested in state 2, we propose a model in which the conformational mismatch between free V1 and Vo functions to prevent unintended reassembly of holo V-ATPase when activity is not needed.
Collapse
Affiliation(s)
- Nicholas J Stam
- From the Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, New York 13210
| | - Stephan Wilkens
- From the Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, New York 13210.
| |
Collapse
|
191
|
Proteomic changes in the ileum of sheep infected with Mycobacterium avium subspecies paratuberculosis. Vet J 2016; 219:1-3. [PMID: 28093102 DOI: 10.1016/j.tvjl.2016.11.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 11/09/2016] [Accepted: 11/20/2016] [Indexed: 11/22/2022]
Abstract
Johne's disease (JD) is a chronic enteritis of ruminants caused by Mycobacterium avium subspecies paratuberculosis (MAP). To identify the processes activated in the sheep intestine during natural MAP infection, and to provide a panel of differential host and pathogen proteins with diagnostic and prognostic potential, a differential shotgun proteomics workflow, including mass spectrometry, label-free quantisation and pathway analysis, was applied to ileal tissues of ewes with and without JD. Out of 2889 total proteins identified, 384 were differentially expressed and 341 were expressed at a higher level in JD. On the basis of Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) analysis, these proteins were involved in numerous relevant biological networks and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, including inhibition of phagosome acidification (such as V-ATPase), bacterial invasion, leucocyte recruitment and activation, and antimicrobial activity (such as haptoglobin, lactoferrin, cathelicidins, calgranulins and interleukins). A total of 28 MAP proteins were identified, including bacterioferritin, β-lactamase and heparin-binding haemagglutinin (HBHA), a mycobacterial adhesin crucial for dissemination of infection.
Collapse
|
192
|
Bhat SA, Iqbal IK, Kumar A. Imaging the NADH:NAD + Homeostasis for Understanding the Metabolic Response of Mycobacterium to Physiologically Relevant Stresses. Front Cell Infect Microbiol 2016; 6:145. [PMID: 27878107 PMCID: PMC5099167 DOI: 10.3389/fcimb.2016.00145] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 10/21/2016] [Indexed: 11/18/2022] Open
Abstract
The NADH:NAD+ ratio is the primary indicator of the metabolic state of bacteria. NAD(H) homeostasis is critical for Mycobacterium tuberculosis (Mtb) survival and is thus considered an important drug target, but the spatio-temporal measurements of NAD(H) remain a challenge. Genetically encoded fluorescent biosensors of the NADH:NAD+ ratios were recently described, paving the way for investigations of the metabolic state of pathogens during infection. Here we have adapted the genetically encoded biosensor Peredox for measurement of the metabolic state of Mtb in vitro and during infection of macrophage cells. Using Peredox, here we show that inhibition of the electron transport chain, disruption of the membrane potential and proton gradient, exposure to reactive oxygen species and treatment with antimycobacterial drugs led to the accumulation of NADH in mycobacterial cells. We have further demonstrated that Mtb residing in macrophages displays higher NADH:NAD+ ratios, that may indicate a metabolic stress faced by the intracellular Mtb. We also demonstrate that the Mtb residing in macrophages display a metabolic heterogeneity, which may perhaps explain the tolerance displayed by intracellular Mtb. Next we studied the effect of immunological modulation by interferon gamma on metabolism of intracellular Mtb, since macrophage activation is known to restrict mycobacterial growth. We observed that activation of resting macrophages with interferon-gamma results in higher NADH:NAD+ levels in resident Mtb cells. We have further demonstrated that exposure of Isoniazid, Bedaquiline, Rifampicin, and O-floxacin results in higher NADH:NAD+ ratios in the Mtb residing in macrophages. However, intracellular Mtb displays lower NADH:NAD+ ratio upon exposure to clofazimine. In summary, we have generated reporter strains capable of measuring the metabolic state of Mtb cells in vitro and in vivo with spatio-temporal resolution. We believe that this tool will facilitate further studies on mycobacterial physiology and will create new avenues of research for anti-tuberculosis drug discovery.
Collapse
Affiliation(s)
- Shabir A Bhat
- Council of Scientific and Industrial Research - Institute of Microbial Technology Chandigarh, India
| | - Iram K Iqbal
- Council of Scientific and Industrial Research - Institute of Microbial Technology Chandigarh, India
| | - Ashwani Kumar
- Council of Scientific and Industrial Research - Institute of Microbial Technology Chandigarh, India
| |
Collapse
|
193
|
Sharma AK, Dhasmana N, Dubey N, Kumar N, Gangwal A, Gupta M, Singh Y. Bacterial Virulence Factors: Secreted for Survival. Indian J Microbiol 2016; 57:1-10. [PMID: 28148975 DOI: 10.1007/s12088-016-0625-1] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 10/03/2016] [Indexed: 12/29/2022] Open
Abstract
Virulence is described as an ability of an organism to infect the host and cause a disease. Virulence factors are the molecules that assist the bacterium colonize the host at the cellular level. These factors are either secretory, membrane associated or cytosolic in nature. The cytosolic factors facilitate the bacterium to undergo quick adaptive-metabolic, physiological and morphological shifts. The membrane associated virulence factors aid the bacterium in adhesion and evasion of the host cell. The secretory factors are important components of bacterial armoury which help the bacterium wade through the innate and adaptive immune response mounted within the host. In extracellular pathogens, the secretory virulence factors act synergistically to kill the host cells. In this review, we revisit the role of some of the secreted virulence factors of two human pathogens: Mycobacterium tuberculosis-an intracellular pathogen and Bacillus anthracis-an extracellular pathogen. The advances in research on the role of secretory factors of these pathogens during infection are discussed.
Collapse
Affiliation(s)
- Aditya Kumar Sharma
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, 110007 India.,Academy of Scientific and Innovative Research (AcSIR), 2, Rafi Marg, Anusandhan Bhawan, New Delhi, 110001 India
| | - Neha Dhasmana
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, 110007 India.,Academy of Scientific and Innovative Research (AcSIR), 2, Rafi Marg, Anusandhan Bhawan, New Delhi, 110001 India
| | - Neha Dubey
- Department of Zoology, University of Delhi, Delhi, 110007 India
| | - Nishant Kumar
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, 110007 India.,Academy of Scientific and Innovative Research (AcSIR), 2, Rafi Marg, Anusandhan Bhawan, New Delhi, 110001 India
| | - Aakriti Gangwal
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, 110007 India
| | - Meetu Gupta
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, 110007 India
| | - Yogendra Singh
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, 110007 India.,Department of Zoology, University of Delhi, Delhi, 110007 India
| |
Collapse
|
194
|
Zheng X, Av-Gay Y. New Era of TB Drug Discovery and Its Impact on Disease Management. CURRENT TREATMENT OPTIONS IN INFECTIOUS DISEASES 2016. [DOI: 10.1007/s40506-016-0098-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
195
|
Sharma AK, Arora D, Singh LK, Gangwal A, Sajid A, Molle V, Singh Y, Nandicoori VK. Serine/Threonine Protein Phosphatase PstP of Mycobacterium tuberculosis Is Necessary for Accurate Cell Division and Survival of Pathogen. J Biol Chem 2016; 291:24215-24230. [PMID: 27758870 DOI: 10.1074/jbc.m116.754531] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Indexed: 02/06/2023] Open
Abstract
Protein phosphatases play vital roles in phosphorylation-mediated cellular signaling. Although there are 11 serine/threonine protein kinases in Mycobacterium tuberculosis, only one serine/threonine phosphatase, PstP, has been identified. Although PstP has been biochemically characterized and multiple in vitro substrates have been identified, its physiological role has not yet been elucidated. In this study, we have investigated the impact of PstP on cell growth and survival of the pathogen in the host. Overexpression of PstP led to elongated cells and partially compromised survival. We find that depletion of PstP is detrimental to cell survival, eventually leading to cell death. PstP depletion results in elongated multiseptate cells, suggesting a role for PstP in regulating cell division events. Complementation experiments performed with PstP deletion mutants revealed marginally compromised survival, suggesting that all of the domains, including the extracellular domain, are necessary for complete rescue. On the other hand, the catalytic activity of PstP is absolutely essential for the in vitro growth. Mice infection experiments establish a definitive role for PstP in pathogen survival within the host. Depletion of PstP from established infections causes pathogen clearance, indicating that the continued presence of PstP is necessary for pathogen survival. Taken together, our data suggest an important role for PstP in establishing and maintaining infection, possibly via the modulation of cell division events.
Collapse
Affiliation(s)
- Aditya K Sharma
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi-110007, India.,the Academy of Scientific and Innovative Research (AcSIR), CSIR-IGIB, Delhi-110025, India
| | - Divya Arora
- From the National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Lalit K Singh
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi-110007, India
| | - Aakriti Gangwal
- the Department of Zoology, University of Delhi Delhi-110007, India
| | - Andaleeb Sajid
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi-110007, India
| | - Virginie Molle
- the Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Université Montpellier 2, CNRS, UMR 5235, Montpellier, France, and
| | - Yogendra Singh
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi-110007, India, .,the Department of Zoology, University of Delhi Delhi-110007, India
| | - Vinay Kumar Nandicoori
- From the National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi-110067, India,
| |
Collapse
|
196
|
The ubiquitin ligase TRIM27 functions as a host restriction factor antagonized by Mycobacterium tuberculosis PtpA during mycobacterial infection. Sci Rep 2016; 6:34827. [PMID: 27698396 PMCID: PMC5048167 DOI: 10.1038/srep34827] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 09/19/2016] [Indexed: 11/08/2022] Open
Abstract
Macrophage-mediated innate immune responses play crucial roles in host defense against pathogens. Recent years have seen an explosion of host proteins that act as restriction factors blocking viral replication in infected cells. However, the essential factors restricting Mycobacterium tuberculosis (Mtb) and their regulatory roles during mycobacterial infection remain largely unknown. We previously reported that Mtb tyrosine phosphatase PtpA, a secreted effector protein required for intracellular survival of Mtb, inhibits innate immunity by co-opting the host ubiquitin system. Here, we identified a new PtpA-interacting host protein TRIM27, which is reported to possess a conserved RING domain and usually acts as an E3 ubiquitin ligase that interferes with various cellular processes. We further demonstrated that TRIM27 restricts survival of mycobacteria in macrophages by promoting innate immune responses and cell apoptosis. Interestingly, Mtb PtpA could antagonize TRIM27-promoted JNK/p38 MAPK pathway activation and cell apoptosis through competitively binding to the RING domain of TRIM27. TRIM27 probably works as a potential restriction factor for Mtb and its function is counteracted by Mtb effector proteins such as PtpA. Our study suggests a potential tuberculosis treatment via targeting of the TRIM27-PtpA interfaces.
Collapse
|
197
|
Qin XB, Zhang WJ, Zou L, Huang PJ, Sun BJ. Identification potential biomarkers in pulmonary tuberculosis and latent infection based on bioinformatics analysis. BMC Infect Dis 2016; 16:500. [PMID: 27655333 PMCID: PMC5031349 DOI: 10.1186/s12879-016-1822-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 09/09/2016] [Indexed: 11/30/2022] Open
Abstract
Background The study aimed to identify the potential biomarkers in pulmonary tuberculosis (TB) and TB latent infection based on bioinformatics analysis. Methods The microarray data of GSE57736 were downloaded from Gene Expression Omnibus database. A total of 7 pulmonary TB and 8 latent infection samples were used to identify the differentially expressed genes (DEGs). The protein-protein interaction (PPI) network was constructed by Cytoscape software. Then network-based neighborhood scoring analysis was performed to identify the important genes. Furthermore, the functional enrichment analysis, correlation analysis and logistic regression analysis for the identified important genes were performed. Results A total of 1084 DEGs were identified, including 565 down- and 519 up-regulated genes. The PPI network was constructed with 446 nodes and 768 edges. Down-regulated genes RIC8 guanine nucleotide exchange factor A (RIC8A), basic leucine zipper transcription factor, ATF-like (BATF) and microtubule associated monooxygenase, calponin LIM domain containing 1 (MICAL1) and up-regulated genes ATPase, Na+/K+ transporting, alpha 4 polypeptide (ATP1A4), histone cluster 1, H3c (HIST1H3C), histone cluster 2, H3d (HIST2H3D), histone cluster 1, H3e (HIST1H3E) and tyrosine kinase 2 (TYK2) were selected as important genes in network-based neighborhood scoring analysis. The functional enrichment analysis results showed that these important DEGs were mainly enriched in regulation of osteoblast differentiation and nucleoside triphosphate biosynthetic process. The gene pairs RIC8A-ATP1A4, HIST1H3C-HIST2H3D, HIST1H3E-BATF and MICAL1-TYK2 were identified with high positive correlations. Besides, these genes were selected as significant feature genes in logistic regression analysis. Conclusions The genes such as RIC8A, ATP1A4, HIST1H3C, HIST2H3D, HIST1H3E, BATF, MICAL1 and TYK2 may be potential biomarkers in pulmonary TB or TB latent infection.
Collapse
Affiliation(s)
- Xue-Bing Qin
- Nanlou Respiratory Diseases Department, Chinese PLA General Hospital, No. 28, Fuxing Road, Beijing, 100853, China
| | - Wei-Jue Zhang
- Department of Respiratory, Chinese PLA General Hospital, Beijing, 100853, China.,Medical College, Nankai University, Tianjin, 300071, China
| | - Lin Zou
- Nanlou Health Care Department, Chinese PLA General Hospital, Beijing, 100853, China
| | - Pei-Jia Huang
- Nanlou Respiratory Diseases Department, Chinese PLA General Hospital, No. 28, Fuxing Road, Beijing, 100853, China
| | - Bao-Jun Sun
- Nanlou Respiratory Diseases Department, Chinese PLA General Hospital, No. 28, Fuxing Road, Beijing, 100853, China.
| |
Collapse
|
198
|
Mahmoud RY, Li W, Eldomany RA, Emara M, Yu J. The Shigella ProU system is required for osmotic tolerance and virulence. Virulence 2016; 8:362-374. [PMID: 27558288 DOI: 10.1080/21505594.2016.1227906] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
To cope with hyperosmotic stress encountered in the environments and in the host, the pathogenic as well as non-pathogenic microbes use diverse transport systems to obtain osmoprotectants. To study the role of Shigella sonnei ProU system in response to hyperosmotic stress and virulence, we constructed deletion and complementation strains of proV and used an RNAi approach to silence the whole ProU operon. We compared the response between wild type and the mutants to the hyperosmotic pressure in vitro, and assessed virulence properties of the mutants using gentamicin protection assay as well as Galleria mellonella moth larvae model. In response to osmotic stress by either NaCl or KCl, S. sonnei highly up-regulates transcription of proVWX genes. Supplementation of betaine greatly elevates the growth of the wild type S. sonnei but not the proV mutants in M9 medium containing 0.2 M NaCl or 0.2 M KCl. The proV mutants are also defective in intracellular growth compared with the wild type. The moth larvae model of G. mellonella shows that either deletion of proV gene or knockdown of proVWX transcripts by RNAi significantly attenuates virulence. ProU system in S. sonnei is required to cope with osmotic stress for survival and multiplication in vitro, and for infection.
Collapse
Affiliation(s)
- Rasha Y Mahmoud
- a Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS) , University of Strathclyde , Glasgow , Scotland , UK.,b Department of Microbiology and Immunology, Faculty of Pharmacy , Helwan University , Cairo , Egypt
| | - Wenqin Li
- a Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS) , University of Strathclyde , Glasgow , Scotland , UK
| | - Ramadan A Eldomany
- c Department of Microbiology and Immunology, Faculty of Pharmacy , Kafr Elsheikh University , Kafr Elsheikh , Egypt
| | - Mohamed Emara
- b Department of Microbiology and Immunology, Faculty of Pharmacy , Helwan University , Cairo , Egypt
| | - Jun Yu
- a Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS) , University of Strathclyde , Glasgow , Scotland , UK
| |
Collapse
|
199
|
Kugadas A, Lamont EA, Bannantine JP, Shoyama FM, Brenner E, Janagama HK, Sreevatsan S. A Mycobacterium avium subsp. paratuberculosis Predicted Serine Protease Is Associated with Acid Stress and Intraphagosomal Survival. Front Cell Infect Microbiol 2016; 6:85. [PMID: 27597934 PMCID: PMC4992679 DOI: 10.3389/fcimb.2016.00085] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 08/05/2016] [Indexed: 11/22/2022] Open
Abstract
The ability to maintain intra-cellular pH is crucial for bacteria and other microbes to survive in diverse environments, particularly those that undergo fluctuations in pH. Mechanisms of acid resistance remain poorly understood in mycobacteria. Although, studies investigating acid stress in M. tuberculosis are gaining traction, few center on Mycobacterium avium subsp. paratuberculosis (MAP), the etiological agent of chronic enteritis in ruminants. We identified a MAP acid stress response network involved in macrophage infection. The central node of this network was MAP0403, a predicted serine protease that shared an 86% amino acid identity with MarP in M. tuberculosis. Previous studies confirmed MarP as a serine protease integral to maintaining intra-bacterial pH and survival in acid in vitro and in vivo. We show that MAP0403 is upregulated in infected macrophages and MAC-T cells that coincided with phagosome acidification. Treatment of mammalian cells with bafilomcyin A1, a potent inhibitor of phagosomal vATPases, diminished MAP0403 transcription. MAP0403 expression was also noted in acidic medium. A surrogate host, M. smegmatis mc(2) 155, was designed to express MAP0403 and when exposed to either macrophages or in vitro acid stress had increased bacterial cell viability, which corresponds to maintenance of intra-bacterial pH in acidic (pH = 5) conditions, compared to the parent strain. These data suggest that MAP0403 may be the equivalent of MarP in MAP. Future studies confirming MAP0403 as a serine protease and exploring its structure and possible substrates are warranted.
Collapse
Affiliation(s)
- Abirami Kugadas
- Division of Infectious Diseases, Brigham and Women's Hospital, University of MinnesotaBoston, MA, USA
| | - Elise A. Lamont
- Department of Veterinary and Biomedical Science, University of MinnesotaSaint Paul, MN, USA
| | - John P. Bannantine
- United States Department of Agriculture, National Animal Disease Center, Agricultural Research ServiceAmes, IA, USA
| | - Fernanda M. Shoyama
- Department of Veterinary Population Medicine, University of MinnesotaSaint Paul, MN, USA
| | - Evan Brenner
- Department of Veterinary Population Medicine, University of MinnesotaSaint Paul, MN, USA
| | | | - Srinand Sreevatsan
- Department of Veterinary and Biomedical Science, University of MinnesotaSaint Paul, MN, USA
- Department of Veterinary Population Medicine, University of MinnesotaSaint Paul, MN, USA
| |
Collapse
|
200
|
Gupta A, Meena J, Sharma D, Gupta P, Gupta UD, Kumar S, Sharma S, Panda AK, Misra A. Inhalable Particles for "Pincer Therapeutics" Targeting Nitazoxanide as Bactericidal and Host-Directed Agent to Macrophages in a Mouse Model of Tuberculosis. Mol Pharm 2016; 13:3247-55. [PMID: 27463245 DOI: 10.1021/acs.molpharmaceut.6b00459] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Nitazoxanide (NTZ) has moderate mycobactericidal activity and is also an inducer of autophagy in mammalian cells. High-payload (40-50% w/w) inhalable particles containing NTZ alone or in combination with antituberculosis (TB) agents isoniazid (INH) and rifabutin (RFB) were prepared with high incorporation efficiency of 92%. In vitro drug release was corrected for drug degradation during the course of study and revealed first-order controlled release. Particles were efficiently taken up in vitro by macrophages and maintained intracellular drug concentrations at one order of magnitude higher than NTZ in solution for 6 h. Dose-dependent killing of Mtb and restoration of lung and spleen architecture were observed in experimentally infected mice treated with inhalations containing NTZ. Adjunct NTZ with INH and RFB cleared culturable bacteria from the lung and spleen and markedly healed tissue architecture. NTZ can be used in combination with INH-RFB to kill the pathogen and heal the host.
Collapse
Affiliation(s)
- Anuradha Gupta
- CSIR-Central Drug Research Institute , Lucknow 226031, India
| | - Jairam Meena
- National Institute of Immunology , New Delhi 110067, India
| | - Deepak Sharma
- CSIR-Central Drug Research Institute , Lucknow 226031, India
| | - Pushpa Gupta
- National JALMA Institute for Leprosy and Other Mycobacterial Diseases (ICMR) , Agra 282001, India
| | - Umesh Dutta Gupta
- National JALMA Institute for Leprosy and Other Mycobacterial Diseases (ICMR) , Agra 282001, India
| | - Sadan Kumar
- CSIR-Central Drug Research Institute , Lucknow 226031, India
| | - Sharad Sharma
- CSIR-Central Drug Research Institute , Lucknow 226031, India
| | - Amulya K Panda
- National Institute of Immunology , New Delhi 110067, India
| | - Amit Misra
- CSIR-Central Drug Research Institute , Lucknow 226031, India
| |
Collapse
|