151
|
Chavez JD, Tang X, Campbell MD, Reyes G, Kramer PA, Stuppard R, Keller A, Zhang H, Rabinovitch PS, Marcinek DJ, Bruce JE. Mitochondrial protein interaction landscape of SS-31. Proc Natl Acad Sci U S A 2020; 117:15363-15373. [PMID: 32554501 PMCID: PMC7334473 DOI: 10.1073/pnas.2002250117] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Mitochondrial dysfunction underlies the etiology of a broad spectrum of diseases including heart disease, cancer, neurodegenerative diseases, and the general aging process. Therapeutics that restore healthy mitochondrial function hold promise for treatment of these conditions. The synthetic tetrapeptide, elamipretide (SS-31), improves mitochondrial function, but mechanistic details of its pharmacological effects are unknown. Reportedly, SS-31 primarily interacts with the phospholipid cardiolipin in the inner mitochondrial membrane. Here we utilize chemical cross-linking with mass spectrometry to identify protein interactors of SS-31 in mitochondria. The SS-31-interacting proteins, all known cardiolipin binders, fall into two groups, those involved in ATP production through the oxidative phosphorylation pathway and those involved in 2-oxoglutarate metabolic processes. Residues cross-linked with SS-31 reveal binding regions that in many cases, are proximal to cardiolipin-protein interacting regions. These results offer a glimpse of the protein interaction landscape of SS-31 and provide mechanistic insight relevant to SS-31 mitochondrial therapy.
Collapse
Affiliation(s)
- Juan D Chavez
- Department of Genome Sciences, University of Washington, Seattle, WA 98105
| | - Xiaoting Tang
- Department of Genome Sciences, University of Washington, Seattle, WA 98105
| | | | - Gustavo Reyes
- Department of Radiology, University of Washington, Seattle, WA 98105
| | - Philip A Kramer
- Department of Radiology, University of Washington, Seattle, WA 98105
| | - Rudy Stuppard
- Department of Radiology, University of Washington, Seattle, WA 98105
| | - Andrew Keller
- Department of Genome Sciences, University of Washington, Seattle, WA 98105
| | - Huiliang Zhang
- Department of Pathology, University of Washington, Seattle, WA 98195
| | | | - David J Marcinek
- Department of Radiology, University of Washington, Seattle, WA 98105
| | - James E Bruce
- Department of Genome Sciences, University of Washington, Seattle, WA 98105;
| |
Collapse
|
152
|
Lee JW. Protonic Capacitor: Elucidating the biological significance of mitochondrial cristae formation. Sci Rep 2020; 10:10304. [PMID: 32601276 PMCID: PMC7324581 DOI: 10.1038/s41598-020-66203-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 04/17/2020] [Indexed: 11/12/2022] Open
Abstract
For decades, it was not entirely clear why mitochondria develop cristae? The work employing the transmembrane-electrostatic proton localization theory reported here has now provided a clear answer to this fundamental question. Surprisingly, the transmembrane-electrostatically localized proton concentration at a curved mitochondrial crista tip can be significantly higher than that at the relatively flat membrane plane regions where the proton-pumping respiratory supercomplexes are situated. The biological significance for mitochondrial cristae has now, for the first time, been elucidated at a protonic bioenergetics level: 1) The formation of cristae creates more mitochondrial inner membrane surface area and thus more protonic capacitance for transmembrane-electrostatically localized proton energy storage; and 2) The geometric effect of a mitochondrial crista enhances the transmembrane-electrostatically localized proton density to the crista tip where the ATP synthase can readily utilize the localized proton density to drive ATP synthesis.
Collapse
Affiliation(s)
- James Weifu Lee
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA, 23529, USA.
| |
Collapse
|
153
|
Nesci S, Pagliarani A, Algieri C, Trombetti F. Mitochondrial F-type ATP synthase: multiple enzyme functions revealed by the membrane-embedded F O structure. Crit Rev Biochem Mol Biol 2020; 55:309-321. [PMID: 32580582 DOI: 10.1080/10409238.2020.1784084] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Of the two main sectors of the F-type ATP synthase, the membrane-intrinsic FO domain is the one which, during evolution, has undergone the highest structural variations and changes in subunit composition. The FO complexity in mitochondria is apparently related to additional enzyme functions that lack in bacterial and thylakoid complexes. Indeed, the F-type ATP synthase has the main bioenergetic role to synthesize ATP by exploiting the electrochemical gradient built by respiratory complexes. The FO membrane domain, essential in the enzyme machinery, also participates in the bioenergetic cost of synthesizing ATP and in the formation of the cristae, thus contributing to mitochondrial morphology. The recent enzyme involvement in a high-conductance channel, which forms in the inner mitochondrial membrane and promotes the mitochondrial permeability transition, highlights a new F-type ATP synthase role. Point mutations which cause amino acid substitutions in FO subunits produce mitochondrial dysfunctions and lead to severe pathologies. The FO variability in different species, pointed out by cryo-EM analysis, mirrors the multiple enzyme functions and opens a new scenario in mitochondrial biology.
Collapse
Affiliation(s)
- Salvatore Nesci
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | | | - Cristina Algieri
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Fabiana Trombetti
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
154
|
Stephan T, Brüser C, Deckers M, Steyer AM, Balzarotti F, Barbot M, Behr TS, Heim G, Hübner W, Ilgen P, Lange F, Pacheu-Grau D, Pape JK, Stoldt S, Huser T, Hell SW, Möbius W, Rehling P, Riedel D, Jakobs S. MICOS assembly controls mitochondrial inner membrane remodeling and crista junction redistribution to mediate cristae formation. EMBO J 2020; 39:e104105. [PMID: 32567732 PMCID: PMC7361284 DOI: 10.15252/embj.2019104105] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 05/08/2020] [Accepted: 05/13/2020] [Indexed: 12/26/2022] Open
Abstract
Mitochondrial function is critically dependent on the folding of the mitochondrial inner membrane into cristae; indeed, numerous human diseases are associated with aberrant crista morphologies. With the MICOS complex, OPA1 and the F1 Fo -ATP synthase, key players of cristae biogenesis have been identified, yet their interplay is poorly understood. Harnessing super-resolution light and 3D electron microscopy, we dissect the roles of these proteins in the formation of cristae in human mitochondria. We individually disrupted the genes of all seven MICOS subunits in human cells and re-expressed Mic10 or Mic60 in the respective knockout cell line. We demonstrate that assembly of the MICOS complex triggers remodeling of pre-existing unstructured cristae and de novo formation of crista junctions (CJs) on existing cristae. We show that the Mic60-subcomplex is sufficient for CJ formation, whereas the Mic10-subcomplex controls lamellar cristae biogenesis. OPA1 stabilizes tubular CJs and, along with the F1 Fo -ATP synthase, fine-tunes the positioning of the MICOS complex and CJs. We propose a new model of cristae formation, involving the coordinated remodeling of an unstructured crista precursor into multiple lamellar cristae.
Collapse
Affiliation(s)
- Till Stephan
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Clinic of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Christian Brüser
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Clinic of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Markus Deckers
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Anna M Steyer
- Department of Neurogenetics, Electron Microscopy Core Unit, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Francisco Balzarotti
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Mariam Barbot
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Clinic of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Tiana S Behr
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Clinic of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Gudrun Heim
- Laboratory of Electron Microscopy, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Wolfgang Hübner
- Department of Physics, University Bielefeld, Bielefeld, Germany
| | - Peter Ilgen
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Clinic of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Felix Lange
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Clinic of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - David Pacheu-Grau
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Jasmin K Pape
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Stefan Stoldt
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Clinic of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Thomas Huser
- Department of Physics, University Bielefeld, Bielefeld, Germany
| | - Stefan W Hell
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Goettingen, Goettingen, Germany
| | - Wiebke Möbius
- Department of Neurogenetics, Electron Microscopy Core Unit, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Peter Rehling
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Goettingen, Goettingen, Germany
| | - Dietmar Riedel
- Laboratory of Electron Microscopy, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Stefan Jakobs
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Clinic of Neurology, University Medical Center Göttingen, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Goettingen, Goettingen, Germany
| |
Collapse
|
155
|
Löwe M, Kalacheva M, Boersma AJ, Kedrov A. The more the merrier: effects of macromolecular crowding on the structure and dynamics of biological membranes. FEBS J 2020; 287:5039-5067. [DOI: 10.1111/febs.15429] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 12/23/2022]
Affiliation(s)
- Maryna Löwe
- Synthetic Membrane Systems Institute of Biochemistry Heinrich Heine University Düsseldorf Germany
| | | | | | - Alexej Kedrov
- Synthetic Membrane Systems Institute of Biochemistry Heinrich Heine University Düsseldorf Germany
| |
Collapse
|
156
|
Mannella CA. Consequences of Folding the Mitochondrial Inner Membrane. Front Physiol 2020; 11:536. [PMID: 32581834 PMCID: PMC7295984 DOI: 10.3389/fphys.2020.00536] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/30/2020] [Indexed: 12/18/2022] Open
Abstract
A fundamental first step in the evolution of eukaryotes was infolding of the chemiosmotic membrane of the endosymbiont. This allowed the proto-eukaryote to amplify ATP generation while constraining the volume dedicated to energy production. In mitochondria, folding of the inner membrane has evolved into a highly regulated process that creates specialized compartments (cristae) tuned to optimize function. Internalizing the inner membrane also presents complications in terms of generating the folds and maintaining mitochondrial integrity in response to stresses. This review describes mechanisms that have evolved to regulate inner membrane topology and either preserve or (when appropriate) rupture the outer membrane.
Collapse
Affiliation(s)
- Carmen A. Mannella
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
157
|
Mitochondrial OXPHOS Biogenesis: Co-Regulation of Protein Synthesis, Import, and Assembly Pathways. Int J Mol Sci 2020; 21:ijms21113820. [PMID: 32481479 PMCID: PMC7312649 DOI: 10.3390/ijms21113820] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/21/2020] [Accepted: 05/25/2020] [Indexed: 02/07/2023] Open
Abstract
The assembly of mitochondrial oxidative phosphorylation (OXPHOS) complexes is an intricate process, which—given their dual-genetic control—requires tight co-regulation of two evolutionarily distinct gene expression machineries. Moreover, fine-tuning protein synthesis to the nascent assembly of OXPHOS complexes requires regulatory mechanisms such as translational plasticity and translational activators that can coordinate mitochondrial translation with the import of nuclear-encoded mitochondrial proteins. The intricacy of OXPHOS complex biogenesis is further evidenced by the requirement of many tightly orchestrated steps and ancillary factors. Early-stage ancillary chaperones have essential roles in coordinating OXPHOS assembly, whilst late-stage assembly factors—also known as the LYRM (leucine–tyrosine–arginine motif) proteins—together with the mitochondrial acyl carrier protein (ACP)—regulate the incorporation and activation of late-incorporating OXPHOS subunits and/or co-factors. In this review, we describe recent discoveries providing insights into the mechanisms required for optimal OXPHOS biogenesis, including the coordination of mitochondrial gene expression with the availability of nuclear-encoded factors entering via mitochondrial protein import systems.
Collapse
|
158
|
Chorev DS, Tang H, Rouse SL, Bolla JR, von Kügelgen A, Baker LA, Wu D, Gault J, Grünewald K, Bharat TAM, Matthews SJ, Robinson CV. The use of sonicated lipid vesicles for mass spectrometry of membrane protein complexes. Nat Protoc 2020; 15:1690-1706. [PMID: 32238951 PMCID: PMC7305028 DOI: 10.1038/s41596-020-0303-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 01/23/2020] [Indexed: 12/28/2022]
Abstract
Recent applications of mass spectrometry (MS) to study membrane protein complexes are yielding valuable insights into the binding of lipids and their structural and functional roles. To date, most native MS experiments with membrane proteins are based on detergent solubilization. Many insights into the structure and function of membrane proteins have been obtained using detergents; however, these can promote local lipid rearrangement and can cause fluctuations in the oligomeric state of protein complexes. To overcome these problems, we developed a method that does not use detergents or other chemicals. Here we report a detailed protocol that enables direct ejection of protein complexes from membranes for analysis by native MS. Briefly, lipid vesicles are prepared directly from membranes of different sources and subjected to sonication pulses. The resulting destabilized vesicles are concentrated, introduced into a mass spectrometer and ionized. The mass of the observed protein complexes is determined and this information, in conjunction with 'omics'-based strategies, is used to determine subunit stoichiometry as well as cofactor and lipid binding. Within this protocol, we expand the applications of the method to include peripheral membrane proteins of the S-layer and amyloid protein export machineries overexpressed in membranes from which the most abundant components have been removed. The described experimental procedure takes approximately 3 d from preparation to MS. The time required for data analysis depends on the complexity of the protein assemblies embedded in the membrane under investigation.
Collapse
Affiliation(s)
- Dror S Chorev
- Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, UK
| | - Haiping Tang
- Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, UK
| | - Sarah L Rouse
- Department of Life Sciences, Imperial College London, London, UK
| | - Jani Reddy Bolla
- Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, UK
| | - Andriko von Kügelgen
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
- Central Oxford Structural Microscopy Imaging Centre, Oxford, UK
| | - Lindsay A Baker
- Division of Structural Biology, University of Oxford, Oxford, UK
| | - Di Wu
- Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, UK
| | - Joseph Gault
- Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, UK
| | - Kay Grünewald
- Division of Structural Biology, University of Oxford, Oxford, UK
- Heinrich Pette Institute, Leibniz-Institut für Experimentelle Virologie, Centre for Structural Systems Biology, c/o DESY, Hamburg, Germany
| | - Tanmay A M Bharat
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
- Central Oxford Structural Microscopy Imaging Centre, Oxford, UK
| | | | - Carol V Robinson
- Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, UK.
| |
Collapse
|
159
|
Hartley AM, Meunier B, Pinotsis N, Maréchal A. Rcf2 revealed in cryo-EM structures of hypoxic isoforms of mature mitochondrial III-IV supercomplexes. Proc Natl Acad Sci U S A 2020; 117:9329-9337. [PMID: 32291341 PMCID: PMC7196821 DOI: 10.1073/pnas.1920612117] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The organization of the mitochondrial electron transport chain proteins into supercomplexes (SCs) is now undisputed; however, their assembly process, or the role of differential expression isoforms, remain to be determined. In Saccharomyces cerevisiae, cytochrome c oxidase (CIV) forms SCs of varying stoichiometry with cytochrome bc1 (CIII). Recent studies have revealed, in normoxic growth conditions, an interface made exclusively by Cox5A, the only yeast respiratory protein that exists as one of two isoforms depending on oxygen levels. Here we present the cryo-EM structures of the III2-IV1 and III2-IV2 SCs containing the hypoxic isoform Cox5B solved at 3.4 and 2.8 Å, respectively. We show that the change of isoform does not affect SC formation or activity, and that SC stoichiometry is dictated by the level of CIII/CIV biosynthesis. Comparison of the CIV5B- and CIV5A-containing SC structures highlighted few differences, found mainly in the region of Cox5. Additional density was revealed in all SCs, independent of the CIV isoform, in a pocket formed by Cox1, Cox3, Cox12, and Cox13, away from the CIII-CIV interface. In the CIV5B-containing hypoxic SCs, this could be confidently assigned to the hypoxia-induced gene 1 (Hig1) type 2 protein Rcf2. With conserved residues in mammalian Hig1 proteins and Cox3/Cox12/Cox13 orthologs, we propose that Hig1 type 2 proteins are stoichiometric subunits of CIV, at least when within a III-IV SC.
Collapse
Affiliation(s)
- Andrew M Hartley
- Institute of Structural and Molecular Biology, Birkbeck College, WC1E 7HX London, United Kingdom
| | - Brigitte Meunier
- Institute for Integrative Biology of the Cell (I2BC), CNRS, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Nikos Pinotsis
- Institute of Structural and Molecular Biology, Birkbeck College, WC1E 7HX London, United Kingdom
| | - Amandine Maréchal
- Institute of Structural and Molecular Biology, Birkbeck College, WC1E 7HX London, United Kingdom;
- Institute of Structural and Molecular Biology, University College London, WC1E 6BT London, United Kingdom
| |
Collapse
|
160
|
Bertero E, Kutschka I, Maack C, Dudek J. Cardiolipin remodeling in Barth syndrome and other hereditary cardiomyopathies. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165803. [PMID: 32348916 DOI: 10.1016/j.bbadis.2020.165803] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/19/2019] [Accepted: 04/13/2020] [Indexed: 12/18/2022]
Abstract
Mitochondria play a prominent role in cardiac energy metabolism, and their function is critically dependent on the integrity of mitochondrial membranes. Disorders characterized by mitochondrial dysfunction are commonly associated with cardiac disease. The mitochondrial phospholipid cardiolipin directly interacts with a number of essential protein complexes in the mitochondrial membranes including the respiratory chain, mitochondrial metabolite carriers, and proteins critical for mitochondrial morphology. Barth syndrome is an X-linked disorder caused by an inherited defect in the biogenesis of the mitochondrial phospholipid cardiolipin. How cardiolipin deficiency impacts on mitochondrial function and how mitochondrial dysfunction causes cardiomyopathy has been intensively studied in cellular and animal models of Barth syndrome. These findings may also have implications for the molecular mechanisms underlying other inherited disorders associated with defects in cardiolipin, such as Sengers syndrome and dilated cardiomyopathy with ataxia (DCMA).
Collapse
Affiliation(s)
- Edoardo Bertero
- Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, 97078 Würzburg, Germany
| | - Ilona Kutschka
- Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, 97078 Würzburg, Germany
| | - Christoph Maack
- Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, 97078 Würzburg, Germany
| | - Jan Dudek
- Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, 97078 Würzburg, Germany.
| |
Collapse
|
161
|
Umeda R, Satouh Y, Takemoto M, Nakada-Nakura Y, Liu K, Yokoyama T, Shirouzu M, Iwata S, Nomura N, Sato K, Ikawa M, Nishizawa T, Nureki O. Structural insights into tetraspanin CD9 function. Nat Commun 2020; 11:1606. [PMID: 32231207 PMCID: PMC7105497 DOI: 10.1038/s41467-020-15459-7] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 03/06/2020] [Indexed: 01/16/2023] Open
Abstract
Tetraspanins play critical roles in various physiological processes, ranging from cell adhesion to virus infection. The members of the tetraspanin family have four membrane-spanning domains and short and large extracellular loops, and associate with a broad range of other functional proteins to exert cellular functions. Here we report the crystal structure of CD9 and the cryo-electron microscopic structure of CD9 in complex with its single membrane-spanning partner protein, EWI-2. The reversed cone-like molecular shape of CD9 generates membrane curvature in the crystalline lipid layers, which explains the CD9 localization in regions with high membrane curvature and its implications in membrane remodeling. The molecular interaction between CD9 and EWI-2 is mainly mediated through the small residues in the transmembrane region and protein/lipid interactions, whereas the fertilization assay revealed the critical involvement of the LEL region in the sperm-egg fusion, indicating the different dependency of each binding domain for other partner proteins. Tetraspanins play critical roles in various physiological processes, ranging from cell adhesion to virus infection. Here authors report the crystal structure of CD9 and the cryo-electron microscopic structure of CD9 in complex with its single membrane-spanning partner protein, EWI-2.
Collapse
Affiliation(s)
- Rie Umeda
- Department of Biological Sciences Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Yuhkoh Satouh
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi, 371-8512, Japan.,Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, Japan
| | - Mizuki Takemoto
- Department of Biological Sciences Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan.,Preferred Networks, Inc., Bunkyo-ku, Tokyo, Japan
| | - Yoshiko Nakada-Nakura
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kehong Liu
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takeshi Yokoyama
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Mikako Shirouzu
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - So Iwata
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, Japan
| | - Norimichi Nomura
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ken Sato
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi, 371-8512, Japan.,Gunma University Initiative for Advanced Research (GIAR), Gunma University, Maebashi, 371-8512, Japan
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, Japan
| | - Tomohiro Nishizawa
- Department of Biological Sciences Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan. .,Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology, Bunkyo-ku, Tokyo, Japan.
| | - Osamu Nureki
- Department of Biological Sciences Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
162
|
Cell organelles as targets of mammalian cadmium toxicity. Arch Toxicol 2020; 94:1017-1049. [PMID: 32206829 DOI: 10.1007/s00204-020-02692-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 02/25/2020] [Indexed: 02/07/2023]
Abstract
Ever increasing environmental presence of cadmium as a consequence of industrial activities is considered a health hazard and is closely linked to deteriorating global health status. General animal and human cadmium exposure ranges from ingestion of foodstuffs sourced from heavily polluted hotspots and cigarette smoke to widespread contamination of air and water, including cadmium-containing microplastics found in household water. Cadmium is promiscuous in its effects and exerts numerous cellular perturbations based on direct interactions with macromolecules and its capacity to mimic or displace essential physiological ions, such as iron and zinc. Cell organelles use lipid membranes to form complex tightly-regulated, compartmentalized networks with specialized functions, which are fundamental to life. Interorganellar communication is crucial for orchestrating correct cell behavior, such as adaptive stress responses, and can be mediated by the release of signaling molecules, exchange of organelle contents, mechanical force generated through organelle shape changes or direct membrane contact sites. In this review, cadmium effects on organellar structure and function will be critically discussed with particular consideration to disruption of organelle physiology in vertebrates.
Collapse
|
163
|
Multistep peripherin-2/rds self-assembly drives membrane curvature for outer segment disk architecture and photoreceptor viability. Proc Natl Acad Sci U S A 2020; 117:4400-4410. [PMID: 32041874 DOI: 10.1073/pnas.1912513117] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Rod and cone photoreceptor outer segment (OS) structural integrity is essential for normal vision; disruptions contribute to a broad variety of retinal ciliopathies. OSs possess many hundreds of stacked membranous disks, which capture photons and scaffold the phototransduction cascade. Although the molecular basis of OS structure remains unresolved, recent studies suggest that the photoreceptor-specific tetraspanin, peripherin-2/rds (P/rds), may contribute to the highly curved rim domains at disk edges. Here, we demonstrate that tetrameric P/rds self-assembly is required for generating high-curvature membranes in cellulo, implicating the noncovalent tetramer as a minimal unit of function. P/rds activity was promoted by disulfide-mediated tetramer polymerization, which transformed localized regions of curvature into high-curvature tubules of extended lengths. Transmission electron microscopy visualization of P/rds purified from OS membranes revealed disulfide-linked tetramer chains up to 100 nm long, suggesting that chains maintain membrane curvature continuity over extended distances. We tested this idea in Xenopus laevis photoreceptors, and found that transgenic expression of nonchain-forming P/rds generated abundant high-curvature OS membranes, which were improperly but specifically organized as ectopic incisures and disk rims. These striking phenotypes demonstrate the importance of P/rds tetramer chain formation for the continuity of rim formation during disk morphogenesis. Overall, this study advances understanding of the normal structure and function of P/rds for OS architecture and biogenesis, and clarifies how pathogenic loss-of-function mutations in P/rds cause photoreceptor structural defects to trigger progressive retinal degenerations. It also introduces the possibility that other tetraspanins may generate or sense membrane curvature in support of diverse biological functions.
Collapse
|
164
|
Kinetic coupling of the respiratory chain with ATP synthase, but not proton gradients, drives ATP production in cristae membranes. Proc Natl Acad Sci U S A 2020; 117:2412-2421. [PMID: 31964824 DOI: 10.1073/pnas.1917968117] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Mitochondria have a characteristic ultrastructure with invaginations of the inner membrane called cristae that contain the protein complexes of the oxidative phosphorylation system. How this particular morphology of the respiratory membrane impacts energy conversion is currently unknown. One proposed role of cristae formation is to facilitate the establishment of local proton gradients to fuel ATP synthesis. Here, we determined the local pH values at defined sublocations within mitochondria of respiring yeast cells by fusing a pH-sensitive GFP to proteins residing in different mitochondrial subcompartments. Only a small proton gradient was detected over the inner membrane in wild type or cristae-lacking cells. Conversely, the obtained pH values did barely permit ATP synthesis in a reconstituted system containing purified yeast F1F0 ATP synthase, although, thermodynamically, a sufficiently high driving force was applied. At higher driving forces, where robust ATP synthesis was observed, a P-side pH value of 6 increased the ATP synthesis rate 3-fold compared to pH 7. In contrast, when ATP synthase was coreconstituted with an active proton-translocating cytochrome oxidase, ATP synthesis readily occurred at the measured, physiological pH values. Our study thus reveals that the morphology of the inner membrane does not influence the subcompartmental pH values and is not necessary for robust oxidative phosphorylation in mitochondria. Instead, it is likely that the dense packing of the oxidative phosphorylation complexes in the cristae membranes assists kinetic coupling between proton pumping and ATP synthesis.
Collapse
|
165
|
Abstract
Adult cardiomyocytes are postmitotic cells that undergo very limited cell division. Thus, cardiomyocyte death as occurs during myocardial infarction has very detrimental consequences for the heart. Mitochondria have emerged as an important regulator of cardiovascular health and disease. Mitochondria are well established as bioenergetic hubs for generating ATP but have also been shown to regulate cell death pathways. Indeed many of the same signals used to regulate metabolism and ATP production, such as calcium and reactive oxygen species, are also key regulators of mitochondrial cell death pathways. It is widely hypothesized that an increase in calcium and reactive oxygen species activate a large conductance channel in the inner mitochondrial membrane known as the PTP (permeability transition pore) and that opening of this pore leads to necroptosis, a regulated form of necrotic cell death. Strategies to reduce PTP opening either by inhibition of PTP or inhibiting the rise in mitochondrial calcium or reactive oxygen species that activate PTP have been proposed. A major limitation of inhibiting the PTP is the lack of knowledge about the identity of the protein(s) that form the PTP and how they are activated by calcium and reactive oxygen species. This review will critically evaluate the candidates for the pore-forming unit of the PTP and discuss recent data suggesting that assumption that the PTP is formed by a single molecular identity may need to be reconsidered.
Collapse
Affiliation(s)
- Tyler M Bauer
- Laboratory of Cardiac Physiology, National Heart, Lung and Blood Institute, Bethesda, MD
| | - Elizabeth Murphy
- Laboratory of Cardiac Physiology, National Heart, Lung and Blood Institute, Bethesda, MD
| |
Collapse
|
166
|
Fuchs P, Rugen N, Carrie C, Elsässer M, Finkemeier I, Giese J, Hildebrandt TM, Kühn K, Maurino VG, Ruberti C, Schallenberg-Rüdinger M, Steinbeck J, Braun HP, Eubel H, Meyer EH, Müller-Schüssele SJ, Schwarzländer M. Single organelle function and organization as estimated from Arabidopsis mitochondrial proteomics. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:420-441. [PMID: 31520498 DOI: 10.1111/tpj.14534] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/23/2019] [Accepted: 08/28/2019] [Indexed: 05/14/2023]
Abstract
Mitochondria host vital cellular functions, including oxidative phosphorylation and co-factor biosynthesis, which are reflected in their proteome. At the cellular level plant mitochondria are organized into hundreds of discrete functional entities, which undergo dynamic fission and fusion. It is the individual organelle that operates in the living cell, yet biochemical and physiological assessments have exclusively focused on the characteristics of large populations of mitochondria. Here, we explore the protein composition of an individual average plant mitochondrion to deduce principles of functional and structural organisation. We perform proteomics on purified mitochondria from cultured heterotrophic Arabidopsis cells with intensity-based absolute quantification and scale the dataset to the single organelle based on criteria that are justified by experimental evidence and theoretical considerations. We estimate that a total of 1.4 million protein molecules make up a single Arabidopsis mitochondrion on average. Copy numbers of the individual proteins span five orders of magnitude, ranging from >40 000 for Voltage-Dependent Anion Channel 1 to sub-stoichiometric copy numbers, i.e. less than a single copy per single mitochondrion, for several pentatricopeptide repeat proteins that modify mitochondrial transcripts. For our analysis, we consider the physical and chemical constraints of the single organelle and discuss prominent features of mitochondrial architecture, protein biogenesis, oxidative phosphorylation, metabolism, antioxidant defence, genome maintenance, gene expression, and dynamics. While assessing the limitations of our considerations, we exemplify how our understanding of biochemical function and structural organization of plant mitochondria can be connected in order to obtain global and specific insights into how organelles work.
Collapse
Affiliation(s)
- Philippe Fuchs
- Institut für Biologie und Biotechnologie der Pflanzen (IBBP), Westfälische Wilhelms-Universität, Schlossplatz 7-8, 48143, Münster, Germany
- Institut für Nutzpflanzenforschung und Ressourcenschutz (INRES), Rheinische Friedrich-Wilhelms-Universität Bonn, Friedrich-Ebert-Allee 144, 53113, Bonn, Germany
| | - Nils Rugen
- Institut für Pflanzengenetik, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| | - Chris Carrie
- Department Biologie I - Botanik, Ludwig-Maximilians-Universität München, Grosshadernerstr. 2-4, 82152, Planegg-Martinsried, Germany
| | - Marlene Elsässer
- Institut für Biologie und Biotechnologie der Pflanzen (IBBP), Westfälische Wilhelms-Universität, Schlossplatz 7-8, 48143, Münster, Germany
- Institut für Nutzpflanzenforschung und Ressourcenschutz (INRES), Rheinische Friedrich-Wilhelms-Universität Bonn, Friedrich-Ebert-Allee 144, 53113, Bonn, Germany
- Institut für Zelluläre und Molekulare Botanik (IZMB), Rheinische Friedrich-Wilhelms-Universität Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Iris Finkemeier
- Institut für Biologie und Biotechnologie der Pflanzen (IBBP), Westfälische Wilhelms-Universität, Schlossplatz 7-8, 48143, Münster, Germany
| | - Jonas Giese
- Institut für Biologie und Biotechnologie der Pflanzen (IBBP), Westfälische Wilhelms-Universität, Schlossplatz 7-8, 48143, Münster, Germany
| | - Tatjana M Hildebrandt
- Institut für Pflanzengenetik, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| | - Kristina Kühn
- Institut für Biologie, Martin-Luther-Universität Halle-Wittenberg, Weinbergweg 10, 06120, Halle/Saale, Germany
| | - Veronica G Maurino
- Institute of Developmental and Molecular Biology of Plants, and Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Cristina Ruberti
- Institut für Biologie und Biotechnologie der Pflanzen (IBBP), Westfälische Wilhelms-Universität, Schlossplatz 7-8, 48143, Münster, Germany
| | - Mareike Schallenberg-Rüdinger
- Institut für Zelluläre und Molekulare Botanik (IZMB), Rheinische Friedrich-Wilhelms-Universität Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Janina Steinbeck
- Institut für Biologie und Biotechnologie der Pflanzen (IBBP), Westfälische Wilhelms-Universität, Schlossplatz 7-8, 48143, Münster, Germany
| | - Hans-Peter Braun
- Institut für Pflanzengenetik, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| | - Holger Eubel
- Institut für Pflanzengenetik, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| | - Etienne H Meyer
- Institut für Biologie, Martin-Luther-Universität Halle-Wittenberg, Weinbergweg 10, 06120, Halle/Saale, Germany
| | - Stefanie J Müller-Schüssele
- Institut für Nutzpflanzenforschung und Ressourcenschutz (INRES), Rheinische Friedrich-Wilhelms-Universität Bonn, Friedrich-Ebert-Allee 144, 53113, Bonn, Germany
| | - Markus Schwarzländer
- Institut für Biologie und Biotechnologie der Pflanzen (IBBP), Westfälische Wilhelms-Universität, Schlossplatz 7-8, 48143, Münster, Germany
| |
Collapse
|
167
|
Mnatsakanyan N, Llaguno MC, Yang Y, Yan Y, Weber J, Sigworth FJ, Jonas EA. A mitochondrial megachannel resides in monomeric F 1F O ATP synthase. Nat Commun 2019; 10:5823. [PMID: 31862883 PMCID: PMC6925261 DOI: 10.1038/s41467-019-13766-2] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 11/25/2019] [Indexed: 11/08/2022] Open
Abstract
Purified mitochondrial ATP synthase has been shown to form Ca2+-activated, large conductance channel activity similar to that of mitochondrial megachannel (MMC) or mitochondrial permeability transition pore (mPTP) but the oligomeric state required for channel formation is being debated. We reconstitute purified monomeric ATP synthase from porcine heart mitochondria into small unilamellar vesicles (SUVs) with the lipid composition of mitochondrial inner membrane and analyze its oligomeric state by electron cryomicroscopy. The cryo-EM density map reveals the presence of a single ATP synthase monomer with no density seen for a second molecule tilted at an 86o angle relative to the first. We show that this preparation of SUV-reconstituted ATP synthase monomers, when fused into giant unilamellar vesicles (GUVs), forms voltage-gated and Ca2+-activated channels with the key features of mPTP. Based on our findings we conclude that the ATP synthase monomer is sufficient, and dimer formation is not required, for mPTP activity.
Collapse
Affiliation(s)
- Nelli Mnatsakanyan
- Section of Endocrinology, Department of Internal Medicine, Yale University, New Haven, CT, USA.
| | - Marc C Llaguno
- Center for Cellular and Molecular Imaging, Yale University, New Haven, CT, USA
| | - Youshan Yang
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT, USA
| | - Yangyang Yan
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT, USA
| | - Joachim Weber
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Fred J Sigworth
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT, USA
| | - Elizabeth A Jonas
- Section of Endocrinology, Department of Internal Medicine, Yale University, New Haven, CT, USA.
| |
Collapse
|
168
|
Gronnier J, Legrand A, Loquet A, Habenstein B, Germain V, Mongrand S. Mechanisms governing subcompartmentalization of biological membranes. CURRENT OPINION IN PLANT BIOLOGY 2019; 52:114-123. [PMID: 31546133 DOI: 10.1016/j.pbi.2019.08.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/14/2019] [Accepted: 08/20/2019] [Indexed: 06/10/2023]
Abstract
Membranes show a tremendous variety of lipids and proteins operating biochemistry, transport and signalling. The dynamics and the organization of membrane constituents are regulated in space and time to execute precise functions. Our understanding of the molecular mechanisms that shape and govern membrane subcompartmentalization and inter-organelle contact sites still remains limited. Here, we review some reported mechanisms implicated in regulating plant membrane domains including those of plasma membrane, plastids, mitochondria and endoplasmic reticulum. Finally, we discuss several state-of-the-art methods that allow nowadays researchers to decipher the architecture of these structures at the molecular and atomic level.
Collapse
Affiliation(s)
- Julien Gronnier
- Department of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland
| | - Anthony Legrand
- Univ. Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire (LBM), UMR 5200, 33140 Villenave d'Ornon, France; Institute of Chemistry & Biology of Membranes & Nanoobjects (UMR5248 CBMN), IECB, CNRS, Université de Bordeaux, Institut Polytechnique de Bordeaux, All, Geoffroy Saint-Hilaire, Pessac, France
| | - Antoine Loquet
- Institute of Chemistry & Biology of Membranes & Nanoobjects (UMR5248 CBMN), IECB, CNRS, Université de Bordeaux, Institut Polytechnique de Bordeaux, All, Geoffroy Saint-Hilaire, Pessac, France
| | - Birgit Habenstein
- Institute of Chemistry & Biology of Membranes & Nanoobjects (UMR5248 CBMN), IECB, CNRS, Université de Bordeaux, Institut Polytechnique de Bordeaux, All, Geoffroy Saint-Hilaire, Pessac, France
| | - Véronique Germain
- Univ. Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire (LBM), UMR 5200, 33140 Villenave d'Ornon, France
| | - Sébastien Mongrand
- Univ. Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire (LBM), UMR 5200, 33140 Villenave d'Ornon, France.
| |
Collapse
|
169
|
Chorev DS, Robinson CV. Response to Comment on “Protein assemblies ejected directly from native membranes yield complexes for mass spectrometry”. Science 2019; 366:366/6466/eaax3102. [DOI: 10.1126/science.aax3102] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 10/09/2019] [Indexed: 01/26/2023]
Abstract
Hirst et al. claim that proteins ejected directly from mitochondrial membranes in our study are degraded, are incorrectly assigned, lack lipids, and show discrepancies with “native states” mostly obtained in detergent micelles. Here, we add further evidence in full support of our assignments and show that all complexes are either ejected intact or in known intermediate states, with core subunit interactions maintained. None are degraded or rearranged.
Collapse
Affiliation(s)
- Dror S. Chorev
- Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, UK
| | - Carol V. Robinson
- Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, UK
| |
Collapse
|
170
|
Barros MH, McStay GP. Modular biogenesis of mitochondrial respiratory complexes. Mitochondrion 2019; 50:94-114. [PMID: 31669617 DOI: 10.1016/j.mito.2019.10.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/04/2019] [Accepted: 10/10/2019] [Indexed: 11/29/2022]
Abstract
Mitochondrial function relies on the activity of oxidative phosphorylation to synthesise ATP and generate an electrochemical gradient across the inner mitochondrial membrane. These coupled processes are mediated by five multi-subunit complexes that reside in this inner membrane. These complexes are the product of both nuclear and mitochondrial gene products. Defects in the function or assembly of these complexes can lead to mitochondrial diseases due to deficits in energy production and mitochondrial functions. Appropriate biogenesis and function are mediated by a complex number of assembly factors that promote maturation of specific complex subunits to form the active oxidative phosphorylation complex. The understanding of the biogenesis of each complex has been informed by studies in both simple eukaryotes such as Saccharomyces cerevisiae and human patients with mitochondrial diseases. These studies reveal each complex assembles through a pathway using specific subunits and assembly factors to form kinetically distinct but related assembly modules. The current understanding of these complexes has embraced the revolutions in genomics and proteomics to further our knowledge on the impact of mitochondrial biology in genetics, medicine, and evolution.
Collapse
Affiliation(s)
- Mario H Barros
- Departamento de Microbiologia - Instituto de Ciências Biomédicas, Universidade de São Paulo, Brazil.
| | - Gavin P McStay
- Department of Biological Sciences, Staffordshire University, Stoke-on-Trent, United Kingdom.
| |
Collapse
|
171
|
Oppenheimer N, Stein DB, Shelley MJ. Rotating Membrane Inclusions Crystallize Through Hydrodynamic and Steric Interactions. PHYSICAL REVIEW LETTERS 2019; 123:148101. [PMID: 31702169 DOI: 10.1103/physrevlett.123.148101] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Indexed: 06/10/2023]
Abstract
We show that rotating membrane inclusions can crystallize due to combined hydrodynamic and steric interactions. Alone, steric repulsion of unconfined particles, even with thermal fluctuations, does not lead to crystallization, nor do rotational hydrodynamic interactions which allow only a marginally stable lattice. Hydrodynamic interactions enable particles to explore states inaccessible to a nonrotational system, yet, unlike Brownian motion, Hamiltonian conservation confines the ensemble which, when combined with steric interactions, anneals into a stable crystal state.
Collapse
Affiliation(s)
- Naomi Oppenheimer
- Center for Computational Biology, Flatiron Institute, New York, New York 10010, USA
| | - David B Stein
- Center for Computational Biology, Flatiron Institute, New York, New York 10010, USA
| | - Michael J Shelley
- Center for Computational Biology, Flatiron Institute, New York, New York 10010, USA
- Courant Institute, New York University, New York, New York 10012, USA
| |
Collapse
|
172
|
Purified F-ATP synthase forms a Ca 2+-dependent high-conductance channel matching the mitochondrial permeability transition pore. Nat Commun 2019; 10:4341. [PMID: 31554800 PMCID: PMC6761146 DOI: 10.1038/s41467-019-12331-1] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 08/29/2019] [Indexed: 12/20/2022] Open
Abstract
The molecular identity of the mitochondrial megachannel (MMC)/permeability transition pore (PTP), a key effector of cell death, remains controversial. By combining highly purified, fully active bovine F-ATP synthase with preformed liposomes we show that Ca2+ dissipates the H+ gradient generated by ATP hydrolysis. After incorporation of the same preparation into planar lipid bilayers Ca2+ elicits currents matching those of the MMC/PTP. Currents were fully reversible, were stabilized by benzodiazepine 423, a ligand of the OSCP subunit of F-ATP synthase that activates the MMC/PTP, and were inhibited by Mg2+ and adenine nucleotides, which also inhibit the PTP. Channel activity was insensitive to inhibitors of the adenine nucleotide translocase (ANT) and of the voltage-dependent anion channel (VDAC). Native gel-purified oligomers and dimers, but not monomers, gave rise to channel activity. These findings resolve the long-standing mystery of the MMC/PTP and demonstrate that Ca2+ can transform the energy-conserving F-ATP synthase into an energy-dissipating device. The molecular identity of the mitochondrial megachannel (MMC)/permeability transition pore (PTP), a key effector of cell death, remains controversial. Here authors demonstrate that the membrane embedded bovine F-ATP synthase elicits Ca2 + -dependent currents matching those of the MMC/PTP.
Collapse
|
173
|
Kondadi AK, Anand R, Reichert AS. Functional Interplay between Cristae Biogenesis, Mitochondrial Dynamics and Mitochondrial DNA Integrity. Int J Mol Sci 2019; 20:ijms20174311. [PMID: 31484398 PMCID: PMC6747513 DOI: 10.3390/ijms20174311] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/30/2019] [Accepted: 08/30/2019] [Indexed: 12/11/2022] Open
Abstract
Mitochondria are vital cellular organelles involved in a plethora of cellular processes such as energy conversion, calcium homeostasis, heme biogenesis, regulation of apoptosis and ROS reactive oxygen species (ROS) production. Although they are frequently depicted as static bean-shaped structures, our view has markedly changed over the past few decades as many studies have revealed a remarkable dynamicity of mitochondrial shapes and sizes both at the cellular and intra-mitochondrial levels. Aberrant changes in mitochondrial dynamics and cristae structure are associated with ageing and numerous human diseases (e.g., cancer, diabetes, various neurodegenerative diseases, types of neuro- and myopathies). Another unique feature of mitochondria is that they harbor their own genome, the mitochondrial DNA (mtDNA). MtDNA exists in several hundreds to thousands of copies per cell and is arranged and packaged in the mitochondrial matrix in structures termed mt-nucleoids. Many human diseases are mechanistically linked to mitochondrial dysfunction and alteration of the number and/or the integrity of mtDNA. In particular, several recent studies identified remarkable and partly unexpected links between mitochondrial structure, fusion and fission dynamics, and mtDNA. In this review, we will provide an overview about these recent insights and aim to clarify how mitochondrial dynamics, cristae ultrastructure and mtDNA structure influence each other and determine mitochondrial functions.
Collapse
Affiliation(s)
- Arun Kumar Kondadi
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany.
| | - Ruchika Anand
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Andreas S Reichert
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany.
| |
Collapse
|
174
|
Live-cell STED nanoscopy of mitochondrial cristae. Sci Rep 2019; 9:12419. [PMID: 31455826 PMCID: PMC6712041 DOI: 10.1038/s41598-019-48838-2] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 08/13/2019] [Indexed: 12/12/2022] Open
Abstract
Mitochondria are highly dynamic organelles that exhibit a complex inner architecture. They exhibit a smooth outer membrane and a highly convoluted inner membrane that forms invaginations called cristae. Imaging cristae in living cells poses a formidable challenge for super-resolution light microscopy. Relying on a cell line stably expressing the mitochondrial protein COX8A fused to the SNAP-tag and using STED (stimulated emission depletion) nanoscopy, we demonstrate the visualization of cristae dynamics in cultivated human cells. We show that in human HeLa cells lamellar cristae are often arranged in groups separated by voids that are generally occupied by mitochondrial nucleoids.
Collapse
|
175
|
Nesci S, Pagliarani A. Emerging Roles for the Mitochondrial ATP Synthase Supercomplexes. Trends Biochem Sci 2019; 44:821-823. [PMID: 31402189 DOI: 10.1016/j.tibs.2019.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 07/19/2019] [Accepted: 07/23/2019] [Indexed: 10/26/2022]
Abstract
As pointed out by Gu et al. (Science 2019) in mammalian mitochondria, the H-shaped tetrameric structure of the ATP synthase, the cell powerhouse, consists of two V-shaped dimers linked by two IF1 in antiparallel arrangement. This supramolecular structure reveals new functional/structural roles of the enzyme complex in mitochondria.
Collapse
Affiliation(s)
- Salvatore Nesci
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra, 50 - 40064 Ozzano Emilia, Bologna, Italy.
| | - Alessandra Pagliarani
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra, 50 - 40064 Ozzano Emilia, Bologna, Italy.
| |
Collapse
|
176
|
Baker N, Patel J, Khacho M. Linking mitochondrial dynamics, cristae remodeling and supercomplex formation: How mitochondrial structure can regulate bioenergetics. Mitochondrion 2019; 49:259-268. [PMID: 31207408 DOI: 10.1016/j.mito.2019.06.003] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 05/18/2019] [Accepted: 06/06/2019] [Indexed: 01/21/2023]
Abstract
The dynamic and fluid nature of mitochondria allows for modifications in mitochondrial shape, connectivity and cristae architecture. The precise balance of mitochondrial dynamics is among the most critical features in the control of mitochondrial function. In the past few years, mitochondrial shape has emerged as a key regulatory factor in the determination of the bioenergetic capacity of cells. This is mostly due to the recent discoveries linking changes in cristae organization with supercomplex assembly of the electron transport chain (ETC), also defined as the formation of respirosomes. Here we will review the most current advances demonstrating the impact of mitochondrial dynamics and cristae shape on oxidative metabolism, respiratory efficiency, and redox state. Furthermore, we will discuss the implications of mitochondrial dynamics and supercomplex assembly under physiological and pathological conditions.
Collapse
Affiliation(s)
- Nicole Baker
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology (OISB), Center for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario, Canada
| | - Jeel Patel
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology (OISB), Center for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario, Canada
| | - Mireille Khacho
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology (OISB), Center for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
177
|
Gu J, Zhang L, Zong S, Guo R, Liu T, Yi J, Wang P, Zhuo W, Yang M. Cryo-EM structure of the mammalian ATP synthase tetramer bound with inhibitory protein IF1. Science 2019; 364:1068-1075. [PMID: 31197009 DOI: 10.1126/science.aaw4852] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 05/23/2019] [Indexed: 12/26/2022]
Abstract
The mitochondrial adenosine triphosphate (ATP) synthase produces most of the ATP required by mammalian cells. We isolated porcine tetrameric ATP synthase and solved its structure at 6.2-angstrom resolution using a single-particle cryo-electron microscopy method. Two classical V-shaped ATP synthase dimers lie antiparallel to each other to form an H-shaped ATP synthase tetramer, as viewed from the matrix. ATP synthase inhibitory factor subunit 1 (IF1) is a well-known in vivo inhibitor of mammalian ATP synthase at low pH. Two IF1 dimers link two ATP synthase dimers, which is consistent with the ATP synthase tetramer adopting an inhibited state. Within the tetramer, we refined structures of intact ATP synthase in two different rotational conformations at 3.34- and 3.45-Å resolution.
Collapse
Affiliation(s)
- Jinke Gu
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Laixing Zhang
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shuai Zong
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Runyu Guo
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Tianya Liu
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jingbo Yi
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Peiyi Wang
- SUSTech Cryo-EM Facility Center, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wei Zhuo
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Maojun Yang
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
178
|
Abstract
F1Fo ATP synthases produce most of the ATP in the cell. F-type ATP synthases have been investigated for more than 50 years, but a full understanding of their molecular mechanisms has become possible only with the recent structures of complete, functionally competent complexes determined by electron cryo-microscopy (cryo-EM). High-resolution cryo-EM structures offer a wealth of unexpected new insights. The catalytic F1 head rotates with the central γ-subunit for the first part of each ATP-generating power stroke. Joint rotation is enabled by subunit δ/OSCP acting as a flexible hinge between F1 and the peripheral stalk. Subunit a conducts protons to and from the c-ring rotor through two conserved aqueous channels. The channels are separated by ∼6 Å in the hydrophobic core of Fo, resulting in a strong local field that generates torque to drive rotary catalysis in F1. The structure of the chloroplast F1Fo complex explains how ATPase activity is turned off at night by a redox switch. Structures of mitochondrial ATP synthase dimers indicate how they shape the inner membrane cristae. The new cryo-EM structures complete our picture of the ATP synthases and reveal the unique mechanism by which they transform an electrochemical membrane potential into biologically useful chemical energy.
Collapse
Affiliation(s)
- Werner Kühlbrandt
- Department of Structural Biology, Max Planck Institute of Biophysics, 60438 Frankfurt, Germany;
| |
Collapse
|