151
|
Gopinath K, Dragnea B, Kao C. Interaction between Brome mosaic virus proteins and RNAs: effects on RNA replication, protein expression, and RNA stability. J Virol 2005; 79:14222-34. [PMID: 16254357 PMCID: PMC1280218 DOI: 10.1128/jvi.79.22.14222-14234.2005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2005] [Accepted: 08/20/2005] [Indexed: 11/20/2022] Open
Abstract
Brome mosaic virus (BMV) RNA replication has been examined in a number of systems, including Saccharomyces cerevisiae. We developed an efficient T-DNA-based gene delivery system using Agrobacterium tumefaciens to transiently express BMV RNAs in Nicotiana benthamiana. The expressed RNAs can systemically infect plants and provide material to extract BMV replicase that can perform template-dependent RNA-dependent RNA synthesis in vitro. We also expressed the four BMV-encoded proteins from nonreplicating RNAs and analyzed their effects on BMV RNA accumulation. The capsid protein that coinfiltrated with constructs expressing RNA1 and RNA2 suppressed minus-strand levels but increased plus-strand RNA accumulation. The replication proteins 1a and 2a could function in trans to replicate and transcribe the BMV RNAs. None of the BMV proteins or RNA could efficiently suppress posttranscriptional silencing. However, 1a expressed in trans will suppress the production of a recombinant green fluorescent protein expressed from the nontranslated portions of BMV RNA1 and RNA2, suggesting that 1a may regulate translation from BMV RNAs. BMV replicase proteins 1a did not affect the accumulation of the BMV RNAs in the absence of RNA replication, unlike the situation reported for S. cerevisiae. This work demonstrates that the Agrobacterium-mediated gene delivery system can be used to study the cis- and trans-acting requirements for BMV RNA replication in plants and that significant differences can exist for BMV RNA replication in different hosts.
Collapse
Affiliation(s)
- K Gopinath
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843, USA
| | | | | |
Collapse
|
152
|
Blumenstiel JP, Hartl DL. Evidence for maternally transmitted small interfering RNA in the repression of transposition in Drosophila virilis. Proc Natl Acad Sci U S A 2005; 102:15965-70. [PMID: 16247000 PMCID: PMC1276106 DOI: 10.1073/pnas.0508192102] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Hybrid dysgenesis in Drosophila is a syndrome of gonadal atrophy, sterility, and male recombination, and it occurs in the progeny of crosses between males that harbor certain transposable elements (TEs) and females that lack them. Known examples of hybrid dysgenesis in Drosophila melanogaster result from mobilization of individual families of TEs, such as the P element, the I element, or hobo. An example of hybrid dysgenesis in Drosophila virilis is unique in that multiple, unrelated families of TEs become mobilized, but a TE designated Penelope appears to play a major role. In all known examples of hybrid dysgenesis, the paternal germ line transmits the TEs in an active state, whereas the female germ line maintains repression of the TEs. The mechanism of maternal maintenance of repression is not known. Recent evidence suggests that the molecular machinery of RNA interference may function as an important host defense against TEs. This protection is mediated by the action of endogenous small interfering RNAs (siRNAs) composed of dsRNA molecules of 21-25 nt that can target complementary transcripts for destruction. In this paper, we demonstrate that endogenous siRNA derived from the Penelope element is maternally loaded in embryos through the female germ line in D. virilis. We also present evidence that the maternal inheritance of these endogenous siRNAs may contribute to maternal repression of Penelope.
Collapse
Affiliation(s)
- Justin P Blumenstiel
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA.
| | | |
Collapse
|
153
|
Stenger DC, French R, Gildow FE. Complete deletion of Wheat streak mosaic virus HC-Pro: a null mutant is viable for systemic infection. J Virol 2005; 79:12077-80. [PMID: 16140783 PMCID: PMC1212639 DOI: 10.1128/jvi.79.18.12077-12080.2005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A Wheat streak mosaic virus (WSMV) genome lacking HC-Pro was constructed and confirmed by reverse transcription-PCR to systemically infect wheat, oat, and corn. Coupled in vitro transcription/translation reactions indicated that WSMV P1 proteinase cleaved the polyprotein at the P1/P3 junction of the HC-Pro null mutant. The WSMV HC-Pro null mutant was competent for virion formation, but the virus titer was reduced 4.5-fold relative to that of the wild type. Collectively, these results indicate that WSMV HC-Pro is dispensable for replication and movement, two essential processes that are disrupted by point and small-insertion mutations introduced into potyvirus HC-Pro.
Collapse
Affiliation(s)
- Drake C Stenger
- United States Department of Agriculture--Agricultural Research Service and Department of Plant Pathology, 344 Keim Hall, University of Nebraska, Lincoln, NE 68583, USA.
| | | | | |
Collapse
|
154
|
Lu YZ, Yan DW, Lu YT. Identification of microRNAs from rice. FUNCTIONAL PLANT BIOLOGY : FPB 2005; 32:963-971. [PMID: 32689192 DOI: 10.1071/fp05002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2004] [Accepted: 06/17/2005] [Indexed: 06/11/2023]
Abstract
MicroRNAs (miRNAs) are important regulators in the development of plants and animals. Several hundred have been identified from animals, and about a dozen have been cloned from plants, mainly Arabidopsis thaliana (L.) Heynh. We have identified nine miRNAs in Oryza sativa L., an important food crop that has been sequenced in recent years. The nine miRNAs include miRNA171 and miRNA167, which were also identified in Arabidopsis. These had the typical properties of miRNAs, including short length, an ability to form a stem-loop structure with a flanking genomic sequence and they could be identified by northern blot analyses. In addition, m-fold program and computational analyses indicted that the potential targets of six of the nine miRNAs are four known gene families and two unknown protein families, which comprise 16 unique genes.
Collapse
Affiliation(s)
- Yu-Zhu Lu
- Key Laboratory of MOE for Plant Developmental Biology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Da-Wei Yan
- Key Laboratory of MOE for Plant Developmental Biology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Ying-Tang Lu
- Key Laboratory of MOE for Plant Developmental Biology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
155
|
Tarui Y, Iida H, Ono E, Miki W, Hirasawa E, Fujita KI, Tanaka T, Taniguchi M. Biosynthesis of poly-gamma-glutamic acid in plants: transient expression of poly-gamma-glutamate synthetase complex in tobacco leaves. J Biosci Bioeng 2005; 100:443-8. [PMID: 16310735 DOI: 10.1263/jbb.100.443] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2005] [Accepted: 06/28/2005] [Indexed: 11/17/2022]
Abstract
Transient expression of genes coding for the poly-gamma-glutamate (gammaPGA) synthetase system (pgs) was investigated in tobacco plants. Three genes of the pgs, pgsA, pgsB and pgsC, were separately placed under the control of the CaMV 35S promoter and introduced into tobacco leaves via Agrobacterium infection. Synthesized gammaPGA in plant tissues was detected immunologically with mouse anti-gammaPGA antiserum which specifically reacts with gammaPGA on a nitrocellulose membrane. Confirmation of gammaPGA biosynthesis in the transient expression analysis in tobacco tissue indicates that subunits of pgs complex were expressed and reassembled in a functional form.
Collapse
Affiliation(s)
- Yutaka Tarui
- Department of Biology and Geoscience, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
156
|
Cao X, Zhou P, Zhang X, Zhu S, Zhong X, Xiao Q, Ding B, Li Y. Identification of an RNA silencing suppressor from a plant double-stranded RNA virus. J Virol 2005; 79:13018-27. [PMID: 16189004 PMCID: PMC1235839 DOI: 10.1128/jvi.79.20.13018-13027.2005] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2005] [Accepted: 07/26/2005] [Indexed: 01/05/2023] Open
Abstract
RNA silencing is a mechanism which higher plants and animals have evolved to defend against viral infection in addition to regulation of gene expression for growth and development. As a counterdefense, many plant and some animal viruses studied to date encode RNA silencing suppressors (RSS) that interfere with various steps of the silencing pathway. In this study, we report the first identification of an RSS from a plant double-stranded RNA (dsRNA) virus. Pns10, encoded by S10 of Rice dwarf phytoreovirus (RDV), exhibited RSS activity in coinfiltration assays with the reporter green fluorescent protein (GFP) in transgenic Nicotiana benthamiana line 16c carrying GFP. The other gene segments of the RDV genome did not have such a function. Pns10 suppressed local and systemic silencing induced by sense RNA but did not interfere with local and systemic silencing induced by dsRNA. Expression of Pns10 also increased the expression of beta-glucuronidase in transient assays and enhanced Potato virus X pathogenicity in N. benthamiana. Collectively, our results establish Pns10 as an RSS encoded by a plant dsRNA virus and further suggest that Pns10 targets an upstream step of dsRNA formation in the RNA silencing pathway.
Collapse
Affiliation(s)
- Xuesong Cao
- Peking-Yale Joint Center for Plant Molecular Genetics and Agrobiotechnology, National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
157
|
Ebhardt HA, Thi EP, Wang MB, Unrau PJ. Extensive 3' modification of plant small RNAs is modulated by helper component-proteinase expression. Proc Natl Acad Sci U S A 2005; 102:13398-403. [PMID: 16157869 PMCID: PMC1224661 DOI: 10.1073/pnas.0506597102] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2005] [Indexed: 11/18/2022] Open
Abstract
RNA silencing is an evolutionarily conserved process in eukaryotes that represses gene expression by using 21- to 24-nt guide RNAs to mediate mRNA cleavage or translational inhibition. Plants have two distinct groups of silencing-associated small RNAs (smRNAs): the micro RNAs (miRNAs) and the small interfering RNAs (siRNAs). A recent report by Yu et al. [Yu, B., Yang, Z., Li, J., Minakhina, S., Yang, M., Padgett, R. W., Steward, R. & Chen, X. (2005) Science 307, 932-935] has shown that plant miRNAs are modified at their 3' termini with a methyl group. Here, we show that a large fraction of all silencing-associated smRNAs in tobacco are modified; this modification occurs on the 2' hydroxyl of the terminal ribose and significantly reduces the cloning efficiency of these modified smRNAs. Expression of the strong silencing suppressor P1/helper-component proteinase results in a marked decrease in the 3'-terminal modification of viral siRNAs but does not significantly affect the modification of endogenous miRNAs and 24-nt siRNAs. The differential modification mediated by helper-component proteinase expression implies that exogenous and endogenous smRNAs are processed through independent pathways that are isolated by subcellular compartmentalization and/or the association with distinct Dicer complexes. The degree of terminal modification may play an important role in regulating the extent to which primary smRNA signals can be amplified by RNA-dependent RNA polymerases.
Collapse
Affiliation(s)
- H Alexander Ebhardt
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6
| | | | | | | |
Collapse
|
158
|
Ballut L, Drucker M, Pugnière M, Cambon F, Blanc S, Roquet F, Candresse T, Schmid HP, Nicolas P, Gall OL, Badaoui S. HcPro, a multifunctional protein encoded by a plant RNA virus, targets the 20S proteasome and affects its enzymic activities. J Gen Virol 2005; 86:2595-2603. [PMID: 16099919 DOI: 10.1099/vir.0.81107-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The proteasome is a multicatalytic complex involved in many cellular processes in eukaryotes, such as protein and RNA turnover, cell division, signal transduction, transcription and translation. Intracellular pathogens are targets of its enzymic activities, and a number of animal viruses are known to interfere with these activities. The first evidence that a plant virus protein, the helper component-proteinase (HcPro) of Lettuce mosaic virus (LMV; genus Potyvirus), interferes with the 20S proteasome ribonuclease is reported here. LMV infection caused an aggregation of the 20S proteasome to high-molecular mass structures in vivo, and specific binding of HcPro to the proteasome was confirmed in vitro using two different approaches. HcPro inhibited the 20S endonuclease activity in vitro, while its proteolytic activities were unchanged or slightly stimulated. This ability of HcPro, a pathogenicity regulator of potyviruses, to interfere with some of the catalytic functions of the 20S proteasome suggests the existence of a novel type of defence and counter-defence interplay in the course of interaction between potyviruses and their hosts.
Collapse
Affiliation(s)
- Lionel Ballut
- UMR 1095 ASP (INRA-Université Blaise Pascal), Campus des Cézeaux, 24 Avenue des Landais, 63177 Aubière Cedex, France
| | - Martin Drucker
- UMR 385 BGPI, CIRAD-INRA-ENSAM, TA 41/K, Campus de Baillarguet, 34398 Montpellier Cedex 5, France
| | - Martine Pugnière
- CPBS, CNRS UMR 5160, Faculté de Pharmacie, 15 Av. Charles Flahault, 34093 Montpellier Cedex 5, France
| | - Florence Cambon
- UMR 1095 ASP (INRA-Université Blaise Pascal), Campus des Cézeaux, 24 Avenue des Landais, 63177 Aubière Cedex, France
| | - Stéphane Blanc
- UMR 385 BGPI, CIRAD-INRA-ENSAM, TA 41/K, Campus de Baillarguet, 34398 Montpellier Cedex 5, France
| | - Françoise Roquet
- CPBS, CNRS UMR 5160, Faculté de Pharmacie, 15 Av. Charles Flahault, 34093 Montpellier Cedex 5, France
| | - Thierry Candresse
- UMR GDPP (INRA-UVSB2), IBVM, BP 81, 33883 Villenave d'Ornon Cedex, France
| | - Hans-Peter Schmid
- UMR 1095 ASP (INRA-Université Blaise Pascal), Campus des Cézeaux, 24 Avenue des Landais, 63177 Aubière Cedex, France
| | - Paul Nicolas
- UMR 1095 ASP (INRA-Université Blaise Pascal), Campus des Cézeaux, 24 Avenue des Landais, 63177 Aubière Cedex, France
| | - Olivier Le Gall
- UMR GDPP (INRA-UVSB2), IBVM, BP 81, 33883 Villenave d'Ornon Cedex, France
| | - Saloua Badaoui
- UMR 1095 ASP (INRA-Université Blaise Pascal), Campus des Cézeaux, 24 Avenue des Landais, 63177 Aubière Cedex, France
| |
Collapse
|
159
|
Hily JM, Scorza R, Webb K, Ravelonandro M. Accumulation of the long class of siRNA is associated with resistance to Plum pox virus in a transgenic woody perennial plum tree. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2005; 18:794-9. [PMID: 16134891 DOI: 10.1094/mpmi-18-0794] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We investigated the hallmarks of posttranscription gene silencing (PTGS) in mature plants, embryos, and seedlings of the transgenic plum trees (Prunus sp.) that are resistant to Plum pox virus (PPV). We previously demonstrated that the transgene insert and resistance to PPV were mutually inherited in progeny of line C5. We show here that C5 constitutively produces a short (22 nt) and a long (25 to 26 nt) species of short interfering (si)RNA from embryo to mature plant in the absence of PPV inoculation. Unlike siRNA, methylation and transcription of the PPV-coat protein transgene were 're-set' following seed germination. Uninoculated transgenic susceptible clones did not display DNA methylation, nor did they produce detectable levels of siRNA. Upon infection, susceptible clones, transgenic or untransformed, did produce siRNA but only the short 22-nt species. These findings show that plum trees respond to virus infection by initiating PTGS-like mechanisms that involve the production of siRNA. We further suggest that high-level virus resistance in transgenic Prunus species requires the production of the long-size class of siRNA. The research adds new insights into PTGS silencing in woody perennial plant species.
Collapse
Affiliation(s)
- Jean-Michel Hily
- USDA-ARS Appalachian Fruit Research Station, 2217 Wiltshire Rd, Kearneysville, WV 25430, USA
| | | | | | | |
Collapse
|
160
|
González-Jara P, Atencio FA, Martínez-García B, Barajas D, Tenllado F, Díaz-Ruíz JR. A Single Amino Acid Mutation in the Plum pox virus Helper Component-Proteinase Gene Abolishes Both Synergistic and RNA Silencing Suppression Activities. PHYTOPATHOLOGY 2005; 95:894-901. [PMID: 18944411 DOI: 10.1094/phyto-95-0894] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
ABSTRACT The effects on symptom expression of single amino acid mutations in the central region of the Plum pox virus (PPV) helper component-proteinase (HC-Pro) gene were analyzed in Nicotiana benthamiana using Potato virus X (PVX) recombinant viruses. PVX recombinant virus expressing the wild-type variant of PPV HC-Pro induced the expected enhancement of PVX pathogenicity, manifested as necrosis and plant death. Recombinant virus expressing a variant of PPV HC-Pro containing a single point mutation ( HCL(134)H) was unable to induce this synergistic phenotype. The RNA silencing suppressor activity of PPV HC-Pro was demonstrated in a transient silencing suppression assay. In contrast, the HCL(134)H mutant showed no such activity. These results indicate that a unique point mutation in PPV HC-Pro impaired its ability to suppress RNA silencing and abolished its capacity to induce synergism, and clearly shows for the first time the link between these two functions in potyvirus HC-Pro. Additionally, we compared the effects on virus accumulation in N. benthamiana plants infected with either the PVX recombinant constructs or with native viruses in double infection experiments. PVX (+) and (-) strand genomic RNA accumulated at similar levels in plants infected with PVX recombinants, leading to an increase in PVX pathology, compared with plants infected with PVX alone. This finding confirms that the enhancement of pathogenicity associated with synergistic interaction is not a consequence of more efficient PVX replication due to RNA silencing suppression by PPV HC-Pro.
Collapse
|
161
|
Cazzonelli CI, Burke J, Velten J. Functional characterization of the geminiviral conserved late element (CLE) in uninfected tobacco. PLANT MOLECULAR BIOLOGY 2005; 58:465-81. [PMID: 16021333 DOI: 10.1007/s11103-005-6589-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2005] [Accepted: 04/27/2005] [Indexed: 05/03/2023]
Abstract
The conserved late element (CLE) was originally identified as an evolutionarily conserved DNA sequence present in geminiviral intergenic regions. CLE has subsequently been observed in promoter sequences of bacterial (T-DNA) and plant origin, suggesting a role in plant and plant viral gene regulation. Synthetic DNA cassettes harboring direct repeats of the CLE motif were placed upstream from a -46 to +1 minimal CaMV 35S promoter-luciferase reporter gene and reporter activity characterized in Nicotiana species during both transient and stable expression. A single direct-repeat cassette of the element (2x CLE) enhances luciferase activity by 2-fold, independent of the element's orientation, while multiple copies of the cassette (4-12x CLE) increases activity up to 10- to 15-fold in an additive manner. Transgenic tobacco lines containing synthetic CLE promoter constructs enhance luciferase expression in leaf, cotyledon and stem tissues, but to a lesser extent in roots. Single nucleotide substitution at six of eight positions within the CLE consensus (GTGGTCCC) eliminates CLE enhancer-like activity. It has been previously reported that CLE interacts with the AC2 protein from Pepper Huasteco Virus (PHV-AC2). PHV-AC2 (also called AL2 or C2) is a member of the transcriptional activator protein, or TrAP, gene family. In transient and stable expression systems PHV-AC2 expression was found to result in a 2-fold increase in luciferase activity, irrespective of the presence of CLE consensus sequences within the reporter's promoter. These data suggests that the PHV-AC2 protein, instead of interacting directly with CLE, functions as either a general transcriptional activator and/or a suppressor of post-transcriptional gene silencing.
Collapse
Affiliation(s)
- Christopher Ian Cazzonelli
- USDA-ARS (United States Department of Agriculture-Agricultural Research Services), Lubbock, TX 79415, USA
| | | | | |
Collapse
|
162
|
Stenger DC, Hein GL, Gildow FE, Horken KM, French R. Plant virus HC-Pro is a determinant of eriophyid mite transmission. J Virol 2005; 79:9054-61. [PMID: 15994799 PMCID: PMC1168748 DOI: 10.1128/jvi.79.14.9054-9061.2005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2005] [Accepted: 03/25/2005] [Indexed: 11/20/2022] Open
Abstract
The eriophyid mite transmitted Wheat streak mosaic virus (WSMV; genus Tritimovirus, family Potyviridae) shares a common genome organization with aphid transmitted species of the genus Potyvirus. Although both tritimoviruses and potyviruses encode helper component-proteinase (HC-Pro) homologues (required for nonpersistent aphid transmission of potyviruses), sequence conservation is low (amino acid identity, approximately 16%), and a role for HC-Pro in semipersistent transmission of WSMV by the wheat curl mite (Aceria tosichella [Keifer]) has not been investigated. Wheat curl mite transmissibility was abolished by replacement of WSMV HC-Pro with homologues of an aphid transmitted potyvirus (Turnip mosaic virus), a rymovirus (Agropyron mosaic virus) vectored by a different eriophyid mite, or a closely related tritimovirus (Oat necrotic mottle virus; ONMV) with no known vector. In contrast, both WSMV-Sidney 81 and a chimeric WSMV genome bearing HC-Pro of a divergent strain (WSMV-El Batán 3; 86% amino acid sequence identity) were efficiently transmitted by A. tosichella. Replacing portions of WSMV-Sidney 81 HC-Pro with the corresponding regions from ONMV showed that determinants of wheat curl mite transmission map to the 5'-proximal half of HC-Pro. WSMV genomes bearing HC-Pro of heterologous species retained the ability to form virions, indicating that loss of vector transmissibility was not a result of failure to encapsidate. Although titer in systemically infected leaves was reduced for all chimeric genomes relative to WSMV-Sidney 81, titer was not correlated with loss of vector transmissibility. Collectively, these results demonstrate for the first time that HC-Pro is required for virus transmission by a vector other than aphids.
Collapse
Affiliation(s)
- Drake C Stenger
- United States Department of Agriculture-Agricultural Research Service and Department of Plant Pathology, 344 Keim Hall, University of Nebraska, Lincoln, NE 68583, USA.
| | | | | | | | | |
Collapse
|
163
|
Wang H, Buckley KJ, Yang X, Buchmann RC, Bisaro DM. Adenosine kinase inhibition and suppression of RNA silencing by geminivirus AL2 and L2 proteins. J Virol 2005; 79:7410-8. [PMID: 15919897 PMCID: PMC1143688 DOI: 10.1128/jvi.79.12.7410-7418.2005] [Citation(s) in RCA: 186] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2004] [Accepted: 02/13/2005] [Indexed: 12/24/2022] Open
Abstract
Most plant viruses are initiators and targets of RNA silencing and encode proteins that suppress this adaptive host defense. The DNA-containing geminiviruses are no exception, and the AL2 protein (also known as AC2, C2, and transcriptional activator protein) encoded by members of the genus Begomovirus has been shown to act as a silencing suppressor. Here, a three-component, Agrobacterium-mediated transient assay is used to further examine the silencing suppression activity of AL2 from Tomato golden mosaic virus (TGMV, a begomovirus) and to determine if the related L2 protein of Beet curly top virus (BCTV, genus Curtovirus) also has suppression activity. We show that TGMV AL2, AL2(1-100) (lacking the transcriptional activation domain), and BCTV L2 can all suppress RNA silencing directed against a green fluorescent protein (GFP) reporter gene when silencing is induced by a construct expressing an inverted repeat GFP RNA (dsGFP). We previously found that these viral proteins interact with and inactivate adenosine kinase (ADK), a cellular enzyme important for adenosine salvage and methyl cycle maintenance. Using the GFP-dsGFP system, we demonstrate here that codelivery of a construct expressing an inverted repeat ADK RNA (dsADK), or addition of an ADK inhibitor (the adenosine analogue A-134974), suppresses GFP-directed silencing in a manner similar to the geminivirus proteins. In addition, AL2/L2 suppression phenotypes and nucleic acid binding properties are shown to be different from those of the RNA virus suppressors HC-Pro and p19. These findings provide strong evidence that ADK activity is required to support RNA silencing, and indicate that the geminivirus proteins suppress silencing by a novel mechanism that involves ADK inhibition. Further, since AL2(1-100) is as effective a suppressor as the full-length AL2 protein, activation and silencing suppression appear to be independent activities.
Collapse
Affiliation(s)
- Hui Wang
- Biotechnology Center, Ohio State University, 201 Rightmire Hall, 1060 Carmack Road, Columbus, OH 43210, USA
| | | | | | | | | |
Collapse
|
164
|
Mallory AC, Bartel DP, Bartel B. MicroRNA-directed regulation of Arabidopsis AUXIN RESPONSE FACTOR17 is essential for proper development and modulates expression of early auxin response genes. THE PLANT CELL 2005; 17:1360-75. [PMID: 15829600 PMCID: PMC1091760 DOI: 10.1105/tpc.105.031716] [Citation(s) in RCA: 591] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2005] [Accepted: 03/20/2005] [Indexed: 05/18/2023]
Abstract
The phytohormone auxin plays critical roles during plant growth, many of which are mediated by the auxin response transcription factor (ARF) family. MicroRNAs (miRNAs), endogenous 21-nucleotide riboregulators, target several mRNAs implicated in auxin responses. miR160 targets ARF10, ARF16, and ARF17, three of the 23 Arabidopsis thaliana ARF genes. Here, we describe roles of miR160-directed ARF17 posttranscriptional regulation. Plants expressing a miRNA-resistant version of ARF17 have increased ARF17 mRNA levels and altered accumulation of auxin-inducible GH3-like mRNAs, YDK1/GH3.2, GH3.3, GH3.5, and DFL1/GH3.6, which encode auxin-conjugating proteins. These expression changes correlate with dramatic developmental defects, including embryo and emerging leaf symmetry anomalies, leaf shape defects, premature inflorescence development, altered phyllotaxy along the stem, reduced petal size, abnormal stamens, sterility, and root growth defects. These defects demonstrate the importance of miR160-directed ARF17 regulation and implicate ARF17 as a regulator of GH3-like early auxin response genes. Many of these defects resemble phenotypes previously observed in plants expressing viral suppressors of RNA silencing and plants with mutations in genes important for miRNA biogenesis or function, providing a molecular rationale for phenotypes previously associated with more general disruptions of miRNA function.
Collapse
Affiliation(s)
- Allison C Mallory
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
| | | | | |
Collapse
|
165
|
Mallory AC, Bartel DP, Bartel B. MicroRNA-directed regulation of Arabidopsis AUXIN RESPONSE FACTOR17 is essential for proper development and modulates expression of early auxin response genes. THE PLANT CELL 2005. [PMID: 15829600 DOI: 10.1105/tpc.105.031716.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The phytohormone auxin plays critical roles during plant growth, many of which are mediated by the auxin response transcription factor (ARF) family. MicroRNAs (miRNAs), endogenous 21-nucleotide riboregulators, target several mRNAs implicated in auxin responses. miR160 targets ARF10, ARF16, and ARF17, three of the 23 Arabidopsis thaliana ARF genes. Here, we describe roles of miR160-directed ARF17 posttranscriptional regulation. Plants expressing a miRNA-resistant version of ARF17 have increased ARF17 mRNA levels and altered accumulation of auxin-inducible GH3-like mRNAs, YDK1/GH3.2, GH3.3, GH3.5, and DFL1/GH3.6, which encode auxin-conjugating proteins. These expression changes correlate with dramatic developmental defects, including embryo and emerging leaf symmetry anomalies, leaf shape defects, premature inflorescence development, altered phyllotaxy along the stem, reduced petal size, abnormal stamens, sterility, and root growth defects. These defects demonstrate the importance of miR160-directed ARF17 regulation and implicate ARF17 as a regulator of GH3-like early auxin response genes. Many of these defects resemble phenotypes previously observed in plants expressing viral suppressors of RNA silencing and plants with mutations in genes important for miRNA biogenesis or function, providing a molecular rationale for phenotypes previously associated with more general disruptions of miRNA function.
Collapse
Affiliation(s)
- Allison C Mallory
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
| | | | | |
Collapse
|
166
|
Kim J, Jung JH, Reyes JL, Kim YS, Kim SY, Chung KS, Kim JA, Lee M, Lee Y, Kim VN, Chua NH, Park CM. microRNA-directed cleavage of ATHB15 mRNA regulates vascular development in Arabidopsis inflorescence stems. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 42:84-94. [PMID: 15773855 PMCID: PMC1382282 DOI: 10.1111/j.1365-313x.2005.02354.x] [Citation(s) in RCA: 249] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Class III homeodomain-leucine zipper proteins regulate critical aspects of plant development, including lateral organ polarity, apical and lateral meristem formation, and vascular development. ATHB15, a member of this transcription factor family, is exclusively expressed in vascular tissues. Recently, a microRNA (miRNA) binding sequence has been identified in ATHB15 mRNA, suggesting that a molecular mechanism governed by miRNA binding may direct vascular development through ATHB15. Here, we show that miR166-mediated ATHB15 mRNA cleavage is a principal mechanism for the regulation of vascular development. In a gain-of-function MIR166a mutant, the decreased transcript level of ATHB15 was accompanied by an altered vascular system with expanded xylem tissue and interfascicular region, indicative of accelerated vascular cell differentiation from cambial/procambial cells. A similar phenotype was observed in Arabidopsis plants with reduced ATHB15 expression but reversed in transgenic plants overexpressing an miR166-resistant ATHB15. ATHB15 mRNA cleavage occurred in standard wheat germ extracts and in Arabidopsis and was mediated by miR166 in Nicotiana benthamiana cells. miR166-assisted ATHB15 repression is likely to be a conserved mechanism that regulates vascular development in all vascular plants.
Collapse
Affiliation(s)
- Joonki Kim
- Graduate School of Chemistry and Molecular Engineering, Seoul National University, Seoul 151-742, South Korea
| | - Jae-Hoon Jung
- Graduate School of Chemistry and Molecular Engineering, Seoul National University, Seoul 151-742, South Korea
| | - Jose L. Reyes
- Laboratory of Plant Molecular Biology, Rockefeller University, New York, New York 10021-3699, USA, and
| | - Youn-Sung Kim
- Graduate School of Chemistry and Molecular Engineering, Seoul National University, Seoul 151-742, South Korea
| | - Sun-Young Kim
- Graduate School of Chemistry and Molecular Engineering, Seoul National University, Seoul 151-742, South Korea
| | - Kyung-Sook Chung
- Graduate School of Chemistry and Molecular Engineering, Seoul National University, Seoul 151-742, South Korea
| | - Jin A. Kim
- Graduate School of Chemistry and Molecular Engineering, Seoul National University, Seoul 151-742, South Korea
| | - Minsun Lee
- Graduate School of Chemistry and Molecular Engineering, Seoul National University, Seoul 151-742, South Korea
| | - Yoontae Lee
- School of Biological Sciences, Seoul National University, Seoul, 151-742, South Korea
| | - V. Narry Kim
- School of Biological Sciences, Seoul National University, Seoul, 151-742, South Korea
| | - Nam-Hai Chua
- Laboratory of Plant Molecular Biology, Rockefeller University, New York, New York 10021-3699, USA, and
| | - Chung-Mo Park
- Graduate School of Chemistry and Molecular Engineering, Seoul National University, Seoul 151-742, South Korea
| |
Collapse
|
167
|
Verchot-Lubicz J. A new cell-to-cell transport model for Potexviruses. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2005; 18:283-90. [PMID: 15828680 DOI: 10.1094/mpmi-18-0283] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
In the last five years, we have gained significant insight into the role of the Potexvirus proteins in virus movement and RNA silencing. Potexviruses require three movement proteins, named triple gene block (TGB)p1, TGBp2, and TGBp3, and the viral coat protein (CP) to facilitate viral cell-to-cell and vascular transport. TGBp1 is a multifunctional protein that has RNA helicase activity, promotes translation of viral RNAs, increases plasmodesmal size exclusion limits, and suppresses RNA silencing. TGBp2 and TGBp3 are membrane-binding proteins. CP is required for genome encapsidation and forms ribonucleoprotein complexes along with TGBp1 and viral RNA. This review considers the functions of the TGB proteins, how they interact with each other and CP, and how silencing suppression might be linked to viral transport. A new model of the mechanism for Potexvirus transport is proposed.
Collapse
Affiliation(s)
- Jeanmarie Verchot-Lubicz
- Oklahoma State University, Department of Entomology and Plant Pathology, Stillwater, OK 74078, USA.
| |
Collapse
|
168
|
Wroblewski T, Tomczak A, Michelmore R. Optimization of Agrobacterium-mediated transient assays of gene expression in lettuce, tomato and Arabidopsis. PLANT BIOTECHNOLOGY JOURNAL 2005; 3:259-73. [PMID: 17173625 DOI: 10.1111/j.1467-7652.2005.00123.x] [Citation(s) in RCA: 311] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Agrobacterium-mediated transient assays for gene function are increasingly being used as alternatives to genetic complementation and stable transformation. However, such assays are variable and not equally successful in different plant species. We analysed a range of genetic and physiological factors affecting transient expression following agroinfiltration, and developed a protocol for efficient and routine transient assays in several plant species. Lettuce exhibited high levels of transient expression and was at least as easy to work with as Nicotiana benthamiana. Transient expression occurred in the majority of cells within the infiltrated tissue and approached 100% in some regions. High levels of transient expression were obtained in some ecotypes of Arabidopsis; however, Arabidopsis remains recalcitrant to routine, genotype-independent transient assays. Transient expression levels often exceeded those observed in stably transformed plants. The laboratory Agrobacterium tumefaciens strain C58C1 was the best strain for use in plant species that did not elicit a necrotic response to A. tumefaciens. A wild A. tumefaciens strain, 1D1246, was identified that provided high levels of transient expression in solanaceous plants without background necrosis, enabling routine transient assays in these species.
Collapse
Affiliation(s)
- Tadeusz Wroblewski
- The Genome Center, University of California, Davis, 1 Shiels Ave., Davis, CA 95616, USA
| | | | | |
Collapse
|
169
|
Abstract
Geminiviruses are single-stranded circular DNA viruses that cause economically significant diseases in a wide range of crop plants worldwide. In plants, post-transcriptional gene silencing (PTGS) acts as a natural anti-viral defense system and plays a role in genome maintenance and development. During the past decade there has been considerable evidence of PTGS suppression by viruses, which is often required to establish infection in plants. In particular, nuclear-replicating geminiviruses, which have no double-stranded RNA phase in their replication cycle, can induce and suppress the PTGS and become targets for PTGS. Here, we summarize recent developments in determining how these viruses trigger PTGS and how they suppress the induced PTGS, as well as how we can use the system to control these viruses in plants better and manipulate the system to study functional genomics in crop plants.
Collapse
Affiliation(s)
- Ramachandran Vanitharani
- International Laboratory for Tropical Agricultural Biotechnology, Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132, USA
| | | | | |
Collapse
|
170
|
Qi Y, Zhong X, Itaya A, Ding B. Dissecting RNA silencing in protoplasts uncovers novel effects of viral suppressors on the silencing pathway at the cellular level. Nucleic Acids Res 2004; 32:e179. [PMID: 15601991 PMCID: PMC545478 DOI: 10.1093/nar/gnh180] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2004] [Revised: 11/05/2004] [Accepted: 11/24/2004] [Indexed: 01/15/2023] Open
Abstract
Short interfering RNA (siRNA)-mediated RNA silencing plays an important role in cellular defence against viral infection and abnormal gene expression in multiple organisms. Many viruses have evolved silencing suppressors for counter-defence. We have developed an RNA silencing system in the protoplasts of Nicotiana benthamiana to investigate the functions of viral suppressors at the cellular level. We showed that RNA silencing against a green fluorescent protein (GFP) reporter gene in the protoplasts could be induced rapidly and specifically by co-transfection with the reporter gene and various silencing inducers [i.e. siRNA, double-stranded RNA (dsRNA) or plasmid encoding dsRNA]. Using this system, we uncovered novel roles of some viral suppressors. Notably, the Cucumber mosaic virus 2b protein, shown previously to function predominantly by preventing the long-distance transmission of systemic silencing signals, was a very strong silencing suppressor in the protoplasts. Some suppressors thought to interfere with upstream steps of siRNA production appeared to also act downstream. Therefore, a viral suppressor can affect multiple steps of the RNA silencing pathway. Our analyses suggest that protoplast-based transient RNA silencing is a useful experimental system to investigate the functions of viral suppressors and further dissect the mechanistic details of the RNA silencing pathway in single cells.
Collapse
Affiliation(s)
- Yijun Qi
- Department of Plant Cellular and Molecular Biology and Plant Biotechnology Center, 207 Rightmire Hall, Ohio State University, 1060 Carmack Road, Columbus, OH 43210, USA.
| | | | | | | |
Collapse
|
171
|
Sanchez-Vargas I, Travanty EA, Keene KM, Franz AWE, Beaty BJ, Blair CD, Olson KE. RNA interference, arthropod-borne viruses, and mosquitoes. Virus Res 2004; 102:65-74. [PMID: 15068882 DOI: 10.1016/j.virusres.2004.01.017] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
RNA interference (RNAi) probably functions as an antiviral mechanism in most eukaryotic organisms. Variations in the activity of this antiviral pathway in mosquitoes could explain, in part, why some mosquitoes are competent vectors of medically important, arthropod-borne viruses (arboviruses) and others are not. There are three lines of evidence that show the RNAi pathway exists in Aedes species that transmit arboviruses. The first is that recombinant Sindbis viruses expressing a RNA fragment from a genetically unrelated dengue-2 virus (DENV-2) interfere with DENV-2 replication in Aedes aegypti mosquitoes by a mechanism similar to virus-induced gene silencing described in plants. The second is that transfection of C6/36 (Aedes albopictus) cells with either double-stranded RNA or synthetic small interfering RNAs derived from an arbovirus genome interferes with replication of the homologous virus. The third is that a hairpin DENV-2-specific RNA transcribed from a plasmid can generate virus-resistant C6/36 cells. We hypothesize that genetically modified mosquitoes can be generated that transcribe a flavivirus-specific dsRNA, triggering the RNAi response soon after ingestion of a blood meal. This could induce the RNAi pathway in the midgut prior to establishment of virus infection and profoundly change vector competence. Towards this goal, we are developing transgenic A. aegypti lines that are refractory to DENV by exploiting the RNAi pathway.
Collapse
Affiliation(s)
- Irma Sanchez-Vargas
- Arthropod-Borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | | | | | | | | | | | | |
Collapse
|
172
|
Vanitharani R, Chellappan P, Pita JS, Fauquet CM. Differential roles of AC2 and AC4 of cassava geminiviruses in mediating synergism and suppression of posttranscriptional gene silencing. J Virol 2004; 78:9487-98. [PMID: 15308741 PMCID: PMC506916 DOI: 10.1128/jvi.78.17.9487-9498.2004] [Citation(s) in RCA: 203] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2004] [Accepted: 04/21/2004] [Indexed: 11/20/2022] Open
Abstract
Posttranscriptional gene silencing (PTGS) in plants is a natural defense mechanism against virus infection. In mixed infections, virus synergism is proposed to result from suppression of the host defense mechanism by the viruses. Synergistic severe mosaic disease caused by simultaneous infection with isolates of the Cameroon strain of African cassava mosaic virus (ACMV-[CM]) and East African cassava mosaic Cameroon virus (EACMCV) in cassava and tobacco is characterized by a dramatic increase in symptom severity and a severalfold increase in viral-DNA accumulation by both viruses compared to that in singly infected plants. Here, we report that synergism between ACMV-[CM] and EACMCV is a two-way process, as the presence of the DNA-A component of ACMV-[CM] or EACMCV in trans enhanced the accumulation of viral DNA of EACMCV and ACMV-[CM], respectively, in tobacco BY-2 protoplasts. Furthermore, transient expression of ACMV-[CM] AC4 driven by the Cauliflower mosaic virus 35S promoter (p35S-AC4) enhanced EACMCV DNA accumulation by approximately 8-fold in protoplasts, while p35S-AC2 of EACMCV enhanced ACMV-[CM] DNA accumulation, also by approximately 8-fold. An Agrobacterium-based leaf infiltration assay determined that ACMV-[CM] AC4 and EACMCV AC2, the putative synergistic genes, were able to suppress PTGS induced by green fluorescent protein (GFP) and eliminated the short interfering RNAs associated with PTGS, with a correlated increase in GFP mRNA accumulation. In addition, we have identified AC4 of Sri Lankan cassava mosaic virus and AC2 of Indian cassava mosaic virus as suppressors of PTGS, indicating that geminiviruses evolved differently in regard to interaction with the host. The specific and different roles played by these AC2 and AC4 proteins of cassava geminiviruses in regulating anti-PTGS activity and their relation to synergism are discussed.
Collapse
Affiliation(s)
- Ramachandran Vanitharani
- International Laboratory for Tropical Agricultural Biotechnology, Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA
| | | | | | | |
Collapse
|
173
|
Abstract
RNA interference (RNAi) is an ancient mechanism of gene suppression, whose machinery and biological functions are only partially understood. Intensive studies have focused on developing RNAi technologies for treating human diseases and for improving plant traits. Yet application of RNAi to improving the nutritional value of plants for human and animal nutrition, and development of the related RNAi technologies are still in their infancy. Here we discuss current knowledge of plant RNAi function, as well as concepts and strategies for the improvement of plant nutritional value through the development of plant RNAi technologies.
Collapse
Affiliation(s)
- Guiliang Tang
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | | |
Collapse
|
174
|
Reavy B, Dawson S, Canto T, MacFarlane SA. Heterologous expression of plant virus genes that suppress post-transcriptional gene silencing results in suppression of RNA interference in Drosophila cells. BMC Biotechnol 2004; 4:18. [PMID: 15331016 PMCID: PMC517504 DOI: 10.1186/1472-6750-4-18] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2003] [Accepted: 08/25/2004] [Indexed: 11/11/2022] Open
Abstract
Background RNA interference (RNAi) in animals and post-transcriptional gene silencing (PTGS) in plants are related phenomena whose functions include the developmental regulation of gene expression and protection from transposable elements and viruses. Plant viruses respond by expressing suppressor proteins that interfere with the PTGS system. Results Here we demonstrate that both transient and constitutive expression of the Tobacco etch virus HC-Pro silencing suppressor protein, which inhibits the maintenance of PTGS in plants, prevents dsRNA-induced RNAi of a lacZ gene in cultured Drosophila cells. Northern blot analysis of the RNA present in Drosophila cells showed that HC-Pro prevented degradation of lacZ RNA during RNAi but that there was accumulation of the short (23nt) RNA species associated with RNAi. A mutant HC-Pro that does not suppress PTGS in plants also does not affect RNAi in Drosophila. Similarly, the Cucumber mosaic virus 2b protein, which inhibits the systemic spread of PTGS in plants, does not suppress RNAi in Drosophila cells. In addition, we have used the Drosophila system to demonstrate that the 16K cysteine-rich protein of Tobacco rattle virus, which previously had no known function, is a silencing suppressor protein. Conclusion These results indicate that at least part of the process of RNAi in Drosophila and PTGS in plants is conserved, and that plant virus silencing suppressor proteins may be useful tools to investigate the mechanism of RNAi.
Collapse
Affiliation(s)
- Brian Reavy
- Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Sheila Dawson
- Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Tomas Canto
- Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, UK
| | | |
Collapse
|
175
|
Zhou N, Fang J, Mukhtar M, Acheampong E, Pomerantz RJ. Inhibition of HIV-1 fusion with small interfering RNAs targeting the chemokine coreceptor CXCR4. Gene Ther 2004; 11:1703-12. [PMID: 15306840 DOI: 10.1038/sj.gt.3302339] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
RNA interference (RNAi) is an evolutionarily conserved process by which plants and animals protect their genomes utilizing small, double-stranded RNAs to degrade target RNAs in a sequence-specific manner. Post-transcriptional gene silencing by these moieties can lead to degradation of both cellular and viral RNAs. It has recently been shown that double-stranded, small interfering RNAs (siRNAs) of 21-25 nucleotides can be transfected into relevant cells to target specific RNAs. This approach was utilized to inhibit human immunodeficiency virus type I (HIV-1) infection in human cells. siRNAs with homology to a motif in the mRNA that encodes for the HIV-1 chemokine coreceptor CXCR4 was utilized. Complementary studies via immunofluorescence microscopy and fluorescence-activated cell sorting demonstrated downregulation of CXCR4 from the surface of cells transfected with the specific siRNAs. As well, siRNAs without sequence homology to CXCR4 were used as controls and demonstrated no downregulation of CXCR4. siRNAs targeted to another chemokine coreceptor, APJ, showed specificity for downregulation of APJ but had no effects on CXCR4. Transfections with siRNAs targeting CXCR4 mRNA were shown to inhibit HIV-1 envelope fusion, which is relatively resistant to most viral inhibitors targeting chemokine coreceptors. The specificity of this effect was demonstrated by the inhibition of fusion by CXCR4-tropic and dual-tropic (CXCR4 and CCR5) envelope glycoproteins from HIV-1 on CXCR4+ indicator cells, but the lack of effects by siRNAs targeting CXCR4 mRNA on dual-tropic HIV-1 envelopes in CCR5+ indicator cells utilizing these fusion assays. Interestingly, siRNAs targeting CXCR4 selectively inhibited CXCR4-tropic cell-free virus infection of human cells but at only modest levels as compared to cell:cell fusion. siRNA may be a potential molecular therapeutic approach to alter a cellular cofactor critical for infection of human cells by relevant strains of HIV-1. The targeting of a cellular cofactor, rather than the HIV-1-specific mRNAs or genomic RNA, holds promise as the rapid mutational ability of the HIV-1 genome may obviate the potential clinical use of RNAi directly against this virus.
Collapse
Affiliation(s)
- N Zhou
- Division of Infectious Diseases and Environmental Medicine, Department of Medicine, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | |
Collapse
|
176
|
Noris E, Lucioli A, Tavazza R, Caciagli P, Accotto GP, Tavazza M. Tomato yellow leaf curl Sardinia virus can overcome transgene-mediated RNA silencing of two essential viral genes. J Gen Virol 2004; 85:1745-1749. [PMID: 15166460 DOI: 10.1099/vir.0.79944-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To evaluate RNA silencing for the control of geminivirus infection, two classes of post-transcriptionally silenced (PTS) plants were tested using Tomato yellow leaf curl Sardinia virus (TYLCSV) Rep-210-transgenic plants, a sense×antisense hybrid and two multicopy sense lines. In both classes, PTS plants accumulated low or undetectable amounts of Rep-210 protein and mRNA but high amounts of Rep-210 small interfering RNAs. PTS plants were susceptible to TYLCSV when challenged by agroinoculation or using high viruliferous whitefly (Bemisia tabaci) pressure, although some plants were resistant at low whitefly pressure. Delayed infections were also observed, indicating that TYLCSV could overcome transgene silencing of rep and of the nested C4 gene. TYLCSV infection boosted transgene silencing but this did not lead to recovery. The data suggest that if the virus reaches a threshold level of expression/replication in the initially infected cells then virus spreading can no longer be prevented.
Collapse
Affiliation(s)
- Emanuela Noris
- Istituto di Virologia Vegetale, CNR, Strada delle Cacce 73, 10135 Torino, Italy
| | - Alessandra Lucioli
- ENEA CR Casaccia, Settore Biotec, Via Anguillarese 301, 00060 Rome, Italy
| | - Raffaela Tavazza
- ENEA CR Casaccia, Settore Biotec, Via Anguillarese 301, 00060 Rome, Italy
| | - Piero Caciagli
- Istituto di Virologia Vegetale, CNR, Strada delle Cacce 73, 10135 Torino, Italy
| | - Gian Paolo Accotto
- Istituto di Virologia Vegetale, CNR, Strada delle Cacce 73, 10135 Torino, Italy
| | - Mario Tavazza
- ENEA CR Casaccia, Settore Biotec, Via Anguillarese 301, 00060 Rome, Italy
| |
Collapse
|
177
|
Stenger DC, French R. Functional replacement of Wheat streak mosaic virus HC-Pro with the corresponding cistron from a diverse array of viruses in the family Potyviridae. Virology 2004; 323:257-67. [PMID: 15193921 DOI: 10.1016/j.virol.2004.03.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2004] [Revised: 03/09/2004] [Accepted: 03/17/2004] [Indexed: 11/17/2022]
Abstract
Helper component-proteinase (HC-Pro) of Wheat streak mosaic virus strain Sidney 81 (WSMV-Sidney 81) was systematically replaced with the corresponding cistron derived from four strains of WSMV (Type, TK1, CZ, and El Batán 3), the tritimovirus Oat necrotic mottle virus (ONMV), the rymoviruses Agropyron mosaic virus (AgMV) and Hordeum mosaic virus (HoMV), or the potyviruses Tobacco etch virus (TEV) and Turnip mosaic virus (TuMV). These HC-Pro proteins varied in amino acid sequence identity shared with HC-Pro of WSMV-Sidney 81 from high (strains of WSMV at approximately 86-99%) to moderate (ONMV at 70%) to low (rymoviruses and potyviruses at approximately 15-17%). Surprisingly, all chimeric viral genomes examined were capable of systemic infection of wheat upon inoculation with RNA transcripts produced in vitro. HC-Pro replacements derived from tritimoviruses did not alter host range relative to WSMV-Sidney 81, as each of these chimeric viruses was able to systemically infect wheat, oat, and corn line SDp2. These results indicate that differences in host range among tritimoviruses, including the inability of ONMV to infect wheat or the inability of WSMV strains Type and El Batán 3 to infect SDp2 corn, are not determined by HC-Pro. In contrast, all chimeric viruses bearing HC-Pro replacements derived from rymoviruses or potyviruses were unable to infect SDp2 corn and oat. Collectively, these results indicate that HC-Pro from distantly related virus species of the family Potyviridae are competent to provide WSMV-Sidney 81 with all functions necessary for infection of a permissive host (wheat) and that virus-host interactions required for systemic infection of oat and SDp2 corn are more stringent. Changes in symptom severity or mechanical transmission efficiency observed for some chimeric viruses further suggest that HC-Pro affects virulence in WSMV.
Collapse
Affiliation(s)
- Drake C Stenger
- Agricultural Research Service, United States Department of Agriculture, University of Nebraska, Lincoln, NE 68583, USA.
| | | |
Collapse
|
178
|
Li Y, Bao YM, Wei CH, Kang ZS, Zhong YW, Mao P, Wu G, Chen ZL, Schiemann J, Nelson RS. Rice dwarf phytoreovirus segment S6-encoded nonstructural protein has a cell-to-cell movement function. J Virol 2004; 78:5382-9. [PMID: 15113917 PMCID: PMC400330 DOI: 10.1128/jvi.78.10.5382-5389.2004] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rice dwarf virus (RDV) is a member of the genus Phytoreovirus, which is composed of viruses with segmented double-stranded RNA genomes. Proteins that support the intercellular movement of these viruses in the host have not been identified. Microprojectile bombardment was used to determine which open reading frames (ORFs) support intercellular movement of a heterologous virus. A plasmid containing an infectious clone of Potato virus X (PVX) defective in cell-to-cell movement and expressing either beta-glucuronidase or green fluorescent protein (GFP) was used for cobombardment with plasmids containing ORFs from RDV gene segments S1 through S12 onto leaves of Nicotiana benthamiana. Cell-to-cell movement of the movement-defective PVX was restored by cobombardment with a plasmid containing S6. In the absence of S6, no other gene segment supported movement. Identical results were obtained with Nicotiana tabacum, a host that allows fewer viruses to infect and spread within its tissue. S6 supported the cell-to-cell movement of the movement-defective PVX in sink and source leaves of N. benthamiana. A mutant S6 lacking the translation start codon did not complement the cell-to-cell movement of the movement-defective PVX. An S6 protein product (Pns6)-enhanced GFP fusion was observed near or within cell walls of epidermal cells from N. tabacum. By immunocytochemistry, unfused Pns6 was localized to plasmodesmata in rice leaves infected with RDV. S6 thus encodes a protein with characteristics identical to those of other viral proteins required for the cell-to-cell movement of their genome and therefore is likely required for the cell-to-cell movement of RDV.
Collapse
Affiliation(s)
- Yi Li
- Peking-Yale Joint Center for Plant Molecular Genetics and Agrobiotechnology, The National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
179
|
Rohila JS, Chen M, Cerny R, Fromm ME. Improved tandem affinity purification tag and methods for isolation of protein heterocomplexes from plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 38:172-81. [PMID: 15053770 DOI: 10.1111/j.1365-313x.2004.02031.x] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A synthetic gene encoding the tandem affinity purification (TAP) tag has been constructed, and the TAP tag assayed for its effects on expression levels and subcellular localization by fusion to green fluorescent protein (GFP) as well as for its effects on steroid-dependent translocation to the nucleus and transcription when fused to a hybrid glucocorticoid receptor. A nuclear localization signal (NLS) was detected in the calmodulin-binding protein (CBP) domain and removed by mutation to improve the usefulness of the TAP tag. Additionally, purification improvements were made, including inhibition of a co-purifying protease, and adding a protein cross-linking step to increase the recovery of interacting proteins. The improved synthetic TAP tag gene and methods were used to isolate proteins interacting with the hybrid glucocorticoid receptor and to identify them by mass spectrometry. The two proteins identified, HSP70 and HSP90, are known to interact with the glucocorticoid receptor in vivo in mammalian cells and in vitro in plants.
Collapse
Affiliation(s)
- Jai S Rohila
- Plant Science Initiative, University of Nebraska, Lincoln, NE 68588, USA
| | | | | | | |
Collapse
|
180
|
Senda M, Masuta C, Ohnishi S, Goto K, Kasai A, Sano T, Hong JS, MacFarlane S. Patterning of virus-infected Glycine max seed coat is associated with suppression of endogenous silencing of chalcone synthase genes. THE PLANT CELL 2004; 16:807-18. [PMID: 15037735 PMCID: PMC412858 DOI: 10.1105/tpc.019885] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2003] [Accepted: 01/14/2004] [Indexed: 05/20/2023]
Abstract
Most commercial Glycine max (soybean) varieties have yellow seeds because of loss of pigmentation in the seed coat. It has been suggested that inhibition of seed coat pigmentation in yellow G. max may be controlled by homology-dependent silencing of chalcone synthase (CHS) genes. Our analysis of CHS mRNA and short-interfering RNAs provide clear evidence that the inhibition of seed coat pigmentation in yellow G. max results from posttranscriptional rather than transcriptional silencing of the CHS genes. Furthermore, we show that mottling symptoms present on the seed coat of G. max plants infected with some viruses can be caused by suppression of CHS posttranscriptional gene silencing (PTGS) by a viral silencing suppressor protein. These results demonstrate that naturally occurring PTGS plays a key role in expression of a distinctive phenotype in plants and present a simple clear example of the elucidation of the molecular mechanism for viral symptom induction.
Collapse
Affiliation(s)
- Mineo Senda
- Gene Research Center, Hirosaki University, Hirosaki, 036-8561, Japan
| | | | | | | | | | | | | | | |
Collapse
|
181
|
Bucher E, Hemmes H, de Haan P, Goldbach R, Prins M. The influenza A virus NS1 protein binds small interfering RNAs and suppresses RNA silencing in plants. J Gen Virol 2004; 85:983-991. [PMID: 15039540 DOI: 10.1099/vir.0.19734-0] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
RNA silencing comprises a set of sequence-specific RNA degradation pathways that occur in a wide range of eukaryotes, including animals, fungi and plants. A hallmark of RNA silencing is the presence of small interfering RNA molecules (siRNAs). The siRNAs are generated by cleavage of larger double-stranded RNAs (dsRNAs) and provide the sequence specificity for degradation of cognate RNA molecules. In plants, RNA silencing plays a key role in developmental processes and in control of virus replication. It has been shown that many plant viruses encode proteins, denoted RNA silencing suppressors, that interfere with this antiviral response. Although RNA silencing has been shown to occur in vertebrates, no relationship with inhibition of virus replication has been demonstrated to date. Here we show that the NS1 protein of human influenza A virus has an RNA silencing suppression activity in plants, similar to established RNA silencing suppressor proteins of plant viruses. In addition, NS1 was shown to be capable of binding siRNAs. The data presented here fit with a potential role for NS1 in counteracting innate antiviral responses in vertebrates by sequestering siRNAs.
Collapse
Affiliation(s)
- Etienne Bucher
- Laboratory of Virology, Wageningen University, Binnenhaven 11, 6709 PD Wageningen, The Netherlands
| | - Hans Hemmes
- Laboratory of Virology, Wageningen University, Binnenhaven 11, 6709 PD Wageningen, The Netherlands
| | - Peter de Haan
- Viruvation BV, Wassenaarseweg 72, 2333 AL Leiden, The Netherlands
| | - Rob Goldbach
- Laboratory of Virology, Wageningen University, Binnenhaven 11, 6709 PD Wageningen, The Netherlands
| | - Marcel Prins
- Laboratory of Virology, Wageningen University, Binnenhaven 11, 6709 PD Wageningen, The Netherlands
| |
Collapse
|
182
|
Delgadillo MO, Sáenz P, Salvador B, García JA, Simón-Mateo C. Human influenza virus NS1 protein enhances viral pathogenicity and acts as an RNA silencing suppressor in plants. J Gen Virol 2004; 85:993-999. [PMID: 15039541 DOI: 10.1099/vir.0.19735-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
RNA silencing has a well-established function as an antiviral defence mechanism in plants and insects. Using an Agrobacterium-mediated transient assay, we report here that NS1 protein from human influenza A virus suppresses RNA silencing in plants in a manner similar to P1/HC-Pro protein of Tobacco etch potyvirus, a well-characterized plant virus silencing suppressor. Moreover, we have shown that NS1 protein expression strongly enhances the symptoms of Potato virus X in three different plant hosts, suggesting that NS1 protein could be inhibiting defence mechanisms activated in the plant on infection. These data provide further evidence that an RNA silencing pathway could also be activated as a defence response in mammals.
Collapse
Affiliation(s)
- M Otilia Delgadillo
- Centro Nacional de Biotecnología (CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Pilar Sáenz
- Centro Nacional de Biotecnología (CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Beatriz Salvador
- Centro Nacional de Biotecnología (CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Juan Antonio García
- Centro Nacional de Biotecnología (CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Carmen Simón-Mateo
- Centro Nacional de Biotecnología (CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
183
|
Silhavy D, Burgyán J. Effects and side-effects of viral RNA silencing suppressors on short RNAs. TRENDS IN PLANT SCIENCE 2004; 9:76-83. [PMID: 15102373 DOI: 10.1016/j.tplants.2003.12.010] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In eukaryotes, short RNAs play a crucial regulatory role in many processes including development, maintenance of genome stability and antiviral responses. These different but overlapping RNA-guided pathways are collectively termed 'RNA silencing'. To counteract an antiviral RNA silencing response, plant viruses express silencing suppressor proteins. Recent results have shown that silencing suppressors operate by modifying the accumulation and/or activity of short RNAs involved in the antiviral response. Because RNA silencing pathways intersect, silencing suppressors can also inhibit other short-RNA-regulated pathways. Thus, suppressors contribute to viral symptoms. These findings fuel further research to test whether certain symptoms caused by animal viruses are also manifestations of altered RNA regulatory pathways.
Collapse
Affiliation(s)
- Dániel Silhavy
- Agricultural Biotechnology Center, Plant Biology, PO Box 411, H-2101, Gödöllo, Hungary
| | | |
Collapse
|
184
|
Moissiard G, Voinnet O. Viral suppression of RNA silencing in plants. MOLECULAR PLANT PATHOLOGY 2004; 5:71-82. [PMID: 20565584 DOI: 10.1111/j.1364-3703.2004.00207.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
SUMMARY RNA silencing is a conserved eukaryotic pathway involved in suppression of gene expression via sequence-specific interactions that are mediated by nt 21-24-long RNA molecules. In plants, cell-autonomous and noncell-autonomous steps of RNA silencing form the basis of an elaborate immune system that is activated by, and targeted against, viruses. As a counter-defensive strategy, viruses have evolved suppressor proteins that inhibit various stages of the silencing process. These suppressors are diverse in sequence and structure and appear to be encoded by virtually any type of plant viruses. In this review, we consider the impact of silencing suppression on virus infections and its possible contribution to symptom development. We examine the presumed mode of action of some silencing suppressors and discuss their value as molecular probes of the RNA silencing mechanism. Finally, the biotechnological applications of silencing suppression are considered.
Collapse
Affiliation(s)
- Guillaume Moissiard
- Institut de Biologie Moléculaire des Plantes du CNRS, 12, rue du Général Zimmer, 67084 Strasbourg Cedex, France
| | | |
Collapse
|
185
|
Abstract
MicroRNAs, small noncoding RNAs, are implicated in gene regulation in both metazoans and plants. In plants, many of the targets of miRNA-mediated gene regulation encode transcription factors with functions in development, such as the Class III HD-Zip gene family whose members direct polarity establishment in leaves and vasculature. Three recent papers provide insight into how miRNAs, likely acting through a complex containing an Argonaute protein, regulate Class III HD-Zip gene expression in Arabidopsis and maize.1-3 While the precise biological activity of Argonaute proteins remains an enigma, ARGONAUTE1 in Arabidopsis is required for the proper regulation of miRNA165/166, which targets cleavage of Class III HD-Zip mRNAs. Consistent with their proposed role in negative regulation, expression of miRNA165/166 is complementary to that of Class III HD-Zip gene expression, but this is perturbed in agronaute1 mutants. Determining how these complementary patterns of expression are formed should lead us closer to an understanding of the molecular mechanisms by which asymmetry is established in developing leaves.
Collapse
Affiliation(s)
- John L Bowman
- Section of Plant Biology, Division of Biological Sciences, University of California, One Shields Ave., Davis, CA 95616, USA.
| |
Collapse
|
186
|
Ruiz-Ferrer V, Goytia E, Martínez-García B, López-Abella D, López-Moya JJ. Expression of functionally active helper component protein of Tobacco etch potyvirus in the yeast Pichia pastoris. J Gen Virol 2004; 85:241-249. [PMID: 14718639 DOI: 10.1099/vir.0.19557-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Tobacco etch potyvirus (TEV) is transmitted by aphids in a non-persistent manner with the assistance of a virus-encoded protein known as helper component (HC-Pro). To produce a biologically active form of recombinant TEV HC-Pro protein, heterologous expression in the methylotrophic yeast Pichia pastoris was used. A cDNA encoding the TEV HC-Pro region, fused to a Saccharomyces cerevisiae alpha-mating factor secretory peptide coding region, was inserted into the P. pastoris genome using a modified version of the pPIC9 vector. The expressed TEV HC-Pro protein was obtained directly from culture medium of recombinant yeast colonies; it was able to interact with TEV particles in a protein overlay binding assay, and also to assist aphid transmission of purified TEV particles to plants using the aphid Myzus persicae as vector. Our results indicate that P. pastoris provides a rapid and low-cost heterologous expression system that can be used to obtain biologically active potyvirus HC-Pro protein for in vitro transmission assays.
Collapse
Affiliation(s)
- Virginia Ruiz-Ferrer
- Departamento de Biología de Plantas, Centro de Investigaciones Biológicas, (CIB, CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Elisa Goytia
- Departamento de Biología de Plantas, Centro de Investigaciones Biológicas, (CIB, CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Belén Martínez-García
- Departamento de Biología de Plantas, Centro de Investigaciones Biológicas, (CIB, CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Dionisio López-Abella
- Departamento de Biología de Plantas, Centro de Investigaciones Biológicas, (CIB, CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Juan José López-Moya
- Departamento de Biología de Plantas, Centro de Investigaciones Biológicas, (CIB, CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| |
Collapse
|
187
|
Susi P, Hohkuri M, Wahlroos T, Kilby NJ. Characteristics of RNA silencing in plants: similarities and differences across kingdoms. PLANT MOLECULAR BIOLOGY 2004; 54:157-174. [PMID: 15159620 DOI: 10.1023/b:plan.0000028797.63168.a7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
RNA silencing is a collective term that encompasses the sequence of events that leads to the targeted degradation of cellular mRNA and thus to the silencing of corresponding gene expression. RNA silencing is initiated after introduction into the host genome of a gene that is homologous to an endogenous gene. Transcription of the introduced gene results in the formation of double-stranded RNA (dsRNA) that is cut into smaller dsRNA species termed small interfering RNAs (siRNAs) by an RNaseIII-like enzyme called 'Dicer'. siRNAs associate with a protein complex termed the 'RNA-induced silencing complex' (RISC), which mediates the binding of one strand of siRNAs with mRNAs transcribed from the native 'target' gene. The binding of siRNAs with native gene mRNAs earmarks native gene mRNAs for destruction, resulting in gene silencing. In plants, RNA silencing appears to serve as a defence mechanism against viral pathogens and also to suppress the activity of virus-like mobile genetic elements. In an apparent response to RNA silencing, some plant viruses express suppressors of RNA silencing. RNA silencing also is directly implicated in the regulation of the function(s) of microRNAs, which are the key determinants in an additional cellular mechanism related to the translational repression of genes, the effect of which ultimately impinges on development. The high degree of sequence similarity that exists between genes involved in RNA silencing in widely different organisms underscores the conserved nature of many aspects of the RNA silencing mechanism. However, depending (for example) on the precise nature of the target gene involved, there also are significant differences in the silencing pathways that are engaged by various organisms.
Collapse
Affiliation(s)
- P Susi
- Department of Biochemistry and Food Chemistry, University of Turku, Tykistökatu 6 A, 20520 Turku, Finland.
| | | | | | | |
Collapse
|
188
|
Agrawal N, Dasaradhi PVN, Mohmmed A, Malhotra P, Bhatnagar RK, Mukherjee SK. RNA interference: biology, mechanism, and applications. Microbiol Mol Biol Rev 2003; 67:657-85. [PMID: 14665679 PMCID: PMC309050 DOI: 10.1128/mmbr.67.4.657-685.2003] [Citation(s) in RCA: 707] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Double-stranded RNA-mediated interference (RNAi) is a simple and rapid method of silencing gene expression in a range of organisms. The silencing of a gene is a consequence of degradation of RNA into short RNAs that activate ribonucleases to target homologous mRNA. The resulting phenotypes either are identical to those of genetic null mutants or resemble an allelic series of mutants. Specific gene silencing has been shown to be related to two ancient processes, cosuppression in plants and quelling in fungi, and has also been associated with regulatory processes such as transposon silencing, antiviral defense mechanisms, gene regulation, and chromosomal modification. Extensive genetic and biochemical analysis revealed a two-step mechanism of RNAi-induced gene silencing. The first step involves degradation of dsRNA into small interfering RNAs (siRNAs), 21 to 25 nucleotides long, by an RNase III-like activity. In the second step, the siRNAs join an RNase complex, RISC (RNA-induced silencing complex), which acts on the cognate mRNA and degrades it. Several key components such as Dicer, RNA-dependent RNA polymerase, helicases, and dsRNA endonucleases have been identified in different organisms for their roles in RNAi. Some of these components also control the development of many organisms by processing many noncoding RNAs, called micro-RNAs. The biogenesis and function of micro-RNAs resemble RNAi activities to a large extent. Recent studies indicate that in the context of RNAi, the genome also undergoes alterations in the form of DNA methylation, heterochromatin formation, and programmed DNA elimination. As a result of these changes, the silencing effect of gene functions is exercised as tightly as possible. Because of its exquisite specificity and efficiency, RNAi is being considered as an important tool not only for functional genomics, but also for gene-specific therapeutic activities that target the mRNAs of disease-related genes.
Collapse
Affiliation(s)
- Neema Agrawal
- International Center for Genetic Engineering and Biotechnology, New Delhi 110 067, India
| | | | | | | | | | | |
Collapse
|
189
|
Kubota K, Tsuda S, Tamai A, Meshi T. Tomato mosaic virus replication protein suppresses virus-targeted posttranscriptional gene silencing. J Virol 2003; 77:11016-26. [PMID: 14512550 PMCID: PMC224966 DOI: 10.1128/jvi.77.20.11016-11026.2003] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Posttranscriptional gene silencing (PTGS), a homology-dependent RNA degradation system, has a role in defending against virus infection in plants, but plant viruses encode a suppressor to combat PTGS. Using transgenic tobacco in which the expression of green fluorescent protein (GFP) is posttranscriptionally silenced, we investigated a tomato mosaic virus (ToMV)-encoded PTGS suppressor. Infection with wild-type ToMV (L strain) interrupted GFP silencing in tobacco, coincident with visible symptoms, whereas some attenuated strains of ToMV (L(11) and L(11)A strains) failed to suppress GFP silencing. Analyses of recombinant viruses containing the L and L(11)A strains revealed that a single base change in the replicase gene, which causes an amino acid substitution, is responsible for the symptomless and suppressor-defective phenotypes of the attenuated strains. An agroinfiltration assay indicated that the 130K replication protein acts as a PTGS suppressor. Small interfering RNAs (siRNAs) of 21 to 25 nucleotides accumulated during ToMV infection, suggesting that the major target of the ToMV-encoded suppressor is downstream from the production of siRNAs in the PTGS pathway. Analysis with GFP-tagged recombinant viruses revealed that the suppressor inhibits the establishment of the ToMV-targeted PTGS system in the inoculated leaves but does not detectably suppress the activity of the preexisting, sequence-specific PTGS machinery there. Taken together, these results indicate that it is likely that the ToMV-encoded suppressor, the 130K replication protein, blocks the utilization of silencing-associated small RNAs, so that a homology-dependent RNA degradation machinery is not newly formed.
Collapse
Affiliation(s)
- Kenji Kubota
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | | | | | | |
Collapse
|
190
|
Mitter N, Sulistyowati E, Dietzgen RG. Cucumber mosaic virus infection transiently breaks dsRNA-induced transgenic immunity to Potato virus Y in tobacco. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2003; 16:936-44. [PMID: 14558695 DOI: 10.1094/mpmi.2003.16.10.936] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Post-transcriptional gene silencing (PTGS), an intrinsic plant defense mechanism, can be efficiently triggered by double stranded (ds)RNA-producing transgenes and can provide high level virus resistance by specific targeting of cognate viral RNA. The discovery of virus-encoded suppressors of PTGS led to concerns about the stability of such resistance. Here, we show that Cucumber mosaic virus (CMV) is able to suppress dsRNA-induced PTGS and the associated Potato virus Y (PVY) immunity in tobacco. CMV suppression supported only a transient PVY accumulation and did not prevent recovery of the transgenic plants from PVY infection. CMV inoculation resulted in strongly increased transgene mRNA levels due to suppression of PTGS, but accumulation of PVY-specific small interfering (si)RNA was unaffected. However, PVY accumulation in previously immune plants resulted in increased PVY siRNA levels and transgene mRNA was no longer detected, despite the presence of CMV. Transgene mRNA returned to high levels once PVY was no longer detected in CMV-infected plants. Recovered and chronically CMV-infected tissues were immune to further PVY infection.
Collapse
Affiliation(s)
- Neena Mitter
- Queensland Department of Primary Industries, Agency for Food and Fibre Sciences, Agricultural Biotechnology and Cooperative Research Centre for Tropical Plant Protection, The University of Queensland, St. Lucia Qld 4072, Australia
| | | | | |
Collapse
|
191
|
Mallory AC, Mlotshwa S, Bowman LH, Vance VB. The capacity of transgenic tobacco to send a systemic RNA silencing signal depends on the nature of the inducing transgene locus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 35:82-92. [PMID: 12834404 DOI: 10.1046/j.1365-313x.2003.01785.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
RNA silencing is a conserved eukaryotic pathway in which double-stranded RNA (dsRNA) triggers destruction of homologous target RNA via production of short-interfering RNA (siRNA). In plants, at least some cases of RNA silencing can spread systemically. The signal responsible for systemic spread is expected to include an RNA component to account for the sequence specificity of the process, and transient silencing assays have shown that the capacity for systemic silencing correlates with the accumulation of a particular class of small RNA. Here, we report the results of grafting experiments to study transmission of silencing from stably transformed tobacco lines in the presence or absence of helper component-proteinase (HC-Pro), a viral suppressor of silencing. The studied lines carry either a tail-to-tail inverted repeat, the T4-IR transgene locus, or one of two different amplicon transgene loci encoding replication-competent viral RNA. We find that the T4-IR locus, like many sense-transgene-silenced loci, can send a systemic silencing signal, and this ability is not detectably altered by HC-Pro. Paradoxically, neither amplicon locus effectively triggers systemic silencing except when suppressed for silencing by HC-Pro. In contrast to results from transient assays, these grafting experiments reveal no consistent correlation between capacity for systemic silencing and accumulation of any particular class of small RNA. In addition, although all transgenic lines used to transmit systemic silencing signals were methylated at specific sites within the transgene locus, silencing in grafted scions occurred without detectable methylation at those sites in the target locus of the scion.
Collapse
Affiliation(s)
- Allison C Mallory
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | | | | | | |
Collapse
|
192
|
Papp I, Mette MF, Aufsatz W, Daxinger L, Schauer SE, Ray A, van der Winden J, Matzke M, Matzke AJM. Evidence for nuclear processing of plant micro RNA and short interfering RNA precursors. PLANT PHYSIOLOGY 2003; 132:1382-90. [PMID: 12857820 PMCID: PMC167078 DOI: 10.1104/pp.103.021980] [Citation(s) in RCA: 234] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2003] [Revised: 03/23/2003] [Accepted: 04/04/2003] [Indexed: 05/18/2023]
Abstract
The Arabidopsis genome encodes four Dicer-like (DCL) proteins, two of which contain putative nuclear localization signals. This suggests one or more nuclear pathways for processing double-stranded (ds) RNA in plants. To study the subcellular location of processing of nuclear-encoded dsRNA involved in transcriptional silencing, we examined short interfering (si) RNA and micro (mi) RNA accumulation in transgenic Arabidopsis expressing nuclear and cytoplasmic variants of P19, a viral protein that suppresses posttranscriptional gene silencing. P19 binds specifically to DCL-generated 21- to 25-nucleotide (nt) dsRNAs with 2-nt 3' overhangs and reportedly suppresses the accumulation of all size classes of siRNA. Nuclear P19 resulted in a significant reduction of 21- to 22-nt siRNAs and a 21-nt miRNA, but had a lesser effect on 24-nt siRNAs. Cytoplasmic P19 did not decrease the quantity but resulted in a 2-nt truncation of siRNAs and miRNA. This suggests that the direct products of DCL cleavage of dsRNA precursors of 21- to 22-nt siRNAs and miRNA are present in the nucleus, where their accumulation is partially repressed, and in the cytoplasm, where both normal sized and truncated forms accumulate. DCL1, which contains two putative nuclear localization signals, is required for miRNA production but not siRNA production. DCL1-green fluorescent protein fusion proteins localize to nuclei in transient expression assays, indicating that DCL1 is a nuclear protein. The results are consistent with a model in which dsRNA precursors of miRNAs and at least some 21- to 22-nt siRNAs are processed in the nucleus, the former by nuclear DCL1 and the latter by an unknown nuclear DCL.
Collapse
Affiliation(s)
- István Papp
- Institute of Molecular Biology, Austrian Academy of Sciences, Billrothstrasse 11, A-5020 Salzburg, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
193
|
Hou H, Qiu W. A novel co-delivery system consisting of a Tomato bushy stunt virus and a defective interfering RNA for studying gene silencing. J Virol Methods 2003; 111:37-42. [PMID: 12821195 DOI: 10.1016/s0166-0934(03)00149-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Virus induced gene silencing (VIGS) and suppression are RNA-specific defense and counter-defense circuits in plant-virus interactions. These phenomena have been investigated extensively with an Agrobacterium-mediated transient expression system. In this study, a virus-based transient expression system was developed to study these phenomena. A Tomato bushy stunt virus (TBSV) viral vector with an inactivated P19 suppressor gene, referred to as pHST2-14, was chosen to express the P1 of Tobacco etch virus (TEV). TEV P1 is a component of a well-characterized VIGS suppressor, TEV P1/HC-Pro protein. A TBSV defective interfering RNA (DI) that contains the 3' proximal portion of a green fluorescence protein (GFP) gene, DI-P, was used as a silencing inducer of the homologous GFP gene on GFP transgenic Nicotiana benthamiana (NbGFP) plants. The TEV P1 gene was inserted into pHST2-14 to generate TBSV-P1. Transcripts of TBSV-P1 were then mixed with DI-P transcripts and inoculated onto NbGFP plants. DI-P consistently accumulated in NbGFP plants that were inoculated with TBSV-P1 and DI-P, and efficiently induced silencing of GFP transgene. These results demonstrate that a TBSV-based co-delivery system can provide a new alternative tool to investigate gene silencing and its influence by a TBSV-expressed foreign protein. It also can be used to elucidate functions of endogenous genes in plants.
Collapse
Affiliation(s)
- Hesheng Hou
- Department of Biology, Liaoning Normal University, Dalian, Liaoning 116029, China
| | | |
Collapse
|
194
|
Pandolfini T, Molesini B, Avesani L, Spena A, Polverari A. Expression of self-complementary hairpin RNA under the control of the rolC promoter confers systemic disease resistance to plum pox virus without preventing local infection. BMC Biotechnol 2003; 3:7. [PMID: 12823862 PMCID: PMC194883 DOI: 10.1186/1472-6750-3-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2003] [Accepted: 06/25/2003] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Homology-dependent selective degradation of RNA, or post-transcriptional gene silencing (PTGS), is involved in several biological phenomena, including adaptative defense mechanisms against plant viruses. Small interfering RNAs mediate the selective degradation of target RNA by guiding a multicomponent RNAse. Expression of self-complementary hairpin RNAs within two complementary regions separated by an intron elicits PTGS with high efficiency. Plum pox virus (PPV) is the etiological agent of sharka disease in Drupaceae, although it can also be transmitted to herbaceous species (e.g. Nicotiana benthamiana). Once inside the plant, PPV is transmitted via plasmodesmata from cell to cell, and at longer distances, via phloem. The rolC promoter drives expression in phloem cells. RolC expression is absent in both epidermal and mesophyll cells. The aim of the present study was to confer systemic disease resistance without preventing local viral infection. RESULTS In the ihprolC-PP197 gene (intron hair pin rolC PPV 197), a 197 bp sequence homologous to the PPV RNA genome (from base 134 to 330) was placed as two inverted repeats separated by the DNA sequence of the rolA intron. This hairpin construct is under the control of the rolC promoter.N. benthamiana plants transgenic for the ihprolC-PP197 gene contain siRNAs homologous to the 197 bp sequence. The transgenic progeny of ihprolC-PP197 plants are resistant to PPV systemic infection. Local infection is unaffected. Most (80%) transgenic plants are virus free and symptomless. Some plants (20%) contain virus in uninoculated apical leaves; however they show only mild symptoms of leaf mottling. PPV systemic resistance cosegregates with the ihprolC-PP197 transgene and was observed in progeny plants of all independent transgenic lines analyzed. SiRNAs of 23-25 nt homologous to the PPV sequence used in the ihprolC-PP197 construct were detected in transgenic plants before and after inoculation. Transitivity of siRNAs was observed in transgenic plants 6 weeks after viral inoculation. CONCLUSIONS The ihprolC-PP197 transgene confers systemic resistance to PPV disease in N. benthamiana. Local infection is unaffected. This transgene and/or similar constructs could be used to confer PPV resistance to fruit trees where systemic disease causes economic damage.
Collapse
Affiliation(s)
- Tiziana Pandolfini
- Dipartimento Scientifico-Tecnologico, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Barbara Molesini
- Dipartimento Scientifico-Tecnologico, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Linda Avesani
- Dipartimento Scientifico-Tecnologico, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Angelo Spena
- Dipartimento Scientifico-Tecnologico, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Annalisa Polverari
- Dipartimento Scientifico-Tecnologico, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| |
Collapse
|
195
|
Dong X, van Wezel R, Stanley J, Hong Y. Functional characterization of the nuclear localization signal for a suppressor of posttranscriptional gene silencing. J Virol 2003; 77:7026-33. [PMID: 12768021 PMCID: PMC156164 DOI: 10.1128/jvi.77.12.7026-7033.2003] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2003] [Accepted: 03/28/2003] [Indexed: 11/20/2022] Open
Abstract
The nucleus-localized C2 protein of Tomato yellow leaf curl virus-China (TYLCV-C) is an active suppressor of posttranscriptional gene silencing (PTGS). Consistently, infection with TYLCV-C resulted in PTGS arrest in plants. The C2 protein possesses a functional, arginine-rich nuclear localization signal within the basic amino acid-rich region (17)KVQHRIAKKTTRRRR(31). When expressed from potato virus X, C2-RRRR(31)DVGG (in which the four consecutive arginine residues (28)RRRR(31) were replaced with DVGG) that had been tagged with a green fluorescent protein (GFP) failed to transport GFP into nuclei and was dysfunctional in inducing necrosis and suppressing PTGS in plants. Amino acid substitution mutants C2-K(17)D-GFP, C2-HR(21)DV-GFP, and C2-KK(25)DI-GFP localized to nuclei and produced necrosis, but only C2-K(17)D-GFP suppressed PTGS. The N-terminal portions C2(1-31) and C2(17-31) fused in frame to GFP were capable of targeting GFP to nuclei, but neither caused necrosis nor affected PTGS. Our data establish that nuclear localization is likely required for C2 protein to function in C2-mediated induction of necrosis and suppression of PTGS, which may follow diverse pathways in plants. Possible mechanisms of how the C2 protein involves these biological functions are discussed.
Collapse
Affiliation(s)
- Xiangli Dong
- Horticulture Research International, East Malling, West Malling, Kent ME19 6BJ, United Kingdom
| | | | | | | |
Collapse
|
196
|
Guo HS, Fei JF, Xie Q, Chua NH. A chemical-regulated inducible RNAi system in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 34:383-92. [PMID: 12713544 DOI: 10.1046/j.1365-313x.2003.01723.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Constitutive expression of an intron-containing self-complementary 'hairpin' RNA (ihpRNA) has recently been shown to efficiently silence target genes in transgenic plants. However, this technique cannot be applied to genes whose silencing may block plant regeneration or result in embryo lethality. To obviate these potential problems, we have used a chemical-inducible Cre/loxP (CLX) recombination system to trigger the expression of an intron-containing inverted-repeat RNA (RNAi) in plants. A detailed characterization of the inducible RNAi system in transgenic Arabidopsis thaliana and Nicotiana benthamiana plants demonstrated that this system is stringently controlled. Moreover, it can be used to induce silencing of both transgenes and endogenous genes at different developmental stages and at high efficiency and without any detectable secondary affects. In addition to inducing complete silencing, the RNAi can be produced at various times after germination to initiate and obtain different degrees of gene silencing. Upon induction, transgenic plants with genetic chimera were obtained as demonstrated by PCR analysis. Such chimeric plants may provide a useful system to study signaling mechanisms of gene silencing in Arabidopsis as well as other cases of long-distance signaling without grafting. The merits of using the inducible CLX system for RNAi expression are discussed.
Collapse
Affiliation(s)
- Hui-Shan Guo
- Laboratory of Molecular Cell Biology, Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, 117604 Singapore
| | | | | | | |
Collapse
|
197
|
Reddy MSS, Dinkins RD, Collins GB. Gene silencing in transgenic soybean plants transformed via particle bombardment. PLANT CELL REPORTS 2003; 21:676-83. [PMID: 12789418 DOI: 10.1007/s00299-002-0567-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2002] [Revised: 11/12/2002] [Accepted: 11/13/2002] [Indexed: 05/24/2023]
Abstract
Transgenes are susceptible to silencing in plants especially when multiple copies of the gene of interest are introduced. Transgenic plants derived by particle bombardment, which is the common method for transforming soybean, have a tendency to have multiple integration events. Three independent transgenic soybean plants obtained via particle bombardment were analyzed for transgene silencing. A GUS transgenic soybean line had at least 100 copies of the GUS gene while there were approximately 60 copies of the transgene in the two soybean lines transformed with a 15-kDa zein storage protein gene from maize. Soybean plants transformed with the GUS gene showed variable GUS expression. The coding region and promoter of the GUS gene in the plants with low expression of GUS were heavily methylated. Variability in GUS expression was observed in the progeny of the high expressors in the T(2) and T(3) generations as well. Expression level of the 15-kDa zein gene in transgenic soybean plants showed correlation with the level of transgene methylation. The helper component-proteinase from potyviruses is known to suppress post-transcriptional gene silencing. Transgenic plants were inoculated with the soybean mosaic potyvirus (SMV) to test possible effects on transgene silencing in soybean. Infection with SMV did not suppress transgene silencing in these plants and suggests that the silencing in these plants may not be due to post-transcriptional gene silencing.
Collapse
Affiliation(s)
- M S Srinivasa Reddy
- Department of Agronomy, N109 Agriculture Science Center Building North, University of Kentucky, KY 40546-0091, Lexington, USA
| | | | | |
Collapse
|
198
|
Tenllado F, Barajas D, Vargas M, Atencio FA, González-Jara P, Díaz-Ruíz JR. Transient expression of homologous hairpin RNA causes interference with plant virus infection and is overcome by a virus encoded suppressor of gene silencing. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2003; 16:149-158. [PMID: 12575749 DOI: 10.1094/mpmi.2003.16.2.149] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Specific post-transcriptional gene silencing (PTGS) of target genes can be induced in a variety of organisms by providing homologous double-stranded RNA (dsRNA) molecules. In plants, PTGS is part of a defense mechanism against virus infection. We have previously shown and patented that direct delivery to nontransgenic plants of dsRNA derived from viral sequences specifically interfere with virus infection. Here, we show that transient expression of constructs encoding hairpin RNA homologous to a rapidly replicating plant tobamovirus also interferes with virus multiplication in a sequence-dependent manner. A three-day lag period between delivery of hairpin RNA and virus into the same tissues completely block virus infectivity. Several hallmarks characteristic of PTGS were associated with viral interference mediated by hairpin RNA: high level of sequence identity between the hairpin RNA and the target RNA, presence of siRNAs in extracts derived from leaves infiltrated with hairpin RNA, and helper component-proteinase (HC-Pro) of potyviruses, a suppressor of PTGS, overcame interference. No evidence for a mobile silencing suppression signal induced by transient expression of HC-Pro was observed. The approach described here has the potential to be used as a versatile tool for studying the onset of PTGS in cases involving virus infection, in opposition to dsRNA-transgenic plants, which allow primarily for the study of PTGS maintenance.
Collapse
Affiliation(s)
- F Tenllado
- Departamento de Biología de Plantas, Centro de Investigaciones Biológicas, CSIC, Velázquez 144, 28006 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
199
|
Thomas CL, Leh V, Lederer C, Maule AJ. Turnip crinkle virus coat protein mediates suppression of RNA silencing in Nicotiana benthamiana. Virology 2003; 306:33-41. [PMID: 12620795 DOI: 10.1016/s0042-6822(02)00018-1] [Citation(s) in RCA: 158] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
All of the protein products of Turnip crinkle virus (TCV; Tombusviridae, Carmovirus) were tested for their ability to suppress RNA silencing of a reporter gene after transient expression in Agrobacterium-infiltrated Nicotiana benthamiana leaves. Only the capsid protein, P38, showed suppression activity, although this was not obvious when P38 was expressed as part of a TCV infection of the same tissues. When P38 was expressed from a PVX vector, symptoms with enhanced severity that correlated with increased PVX RNA accumulation were observed. This contradiction between ectopic expression of P38 and TCV infection could be accounted for if the active determinant of suppressor activity within P38 was sequestered within the capsid protein structure. The N-terminal 25 amino acids were shown to be important for this activity. This region forms part of the unexposed R-domain that interacts with the RNA within the virus particle. This observation throws light on some of the complex biology exhibited by TCV.
Collapse
Affiliation(s)
- Carole L Thomas
- John Innes Centre, Norwich Research Park, NR4 7UH, Colney, Norwich, UK
| | | | | | | |
Collapse
|
200
|
Qu F, Ren T, Morris TJ. The coat protein of turnip crinkle virus suppresses posttranscriptional gene silencing at an early initiation step. J Virol 2003; 77:511-22. [PMID: 12477856 PMCID: PMC140649 DOI: 10.1128/jvi.77.1.511-522.2003] [Citation(s) in RCA: 248] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Posttranscriptional gene silencing (PTGS), or RNA silencing, is a sequence-specific RNA degradation process that targets foreign RNA, including viral and transposon RNA for destruction. Several RNA plant viruses have been shown to encode suppressors of PTGS in order to survive this host defense. We report here that the coat protein (CP) of Turnip crinkle virus (TCV) strongly suppresses PTGS. The Agrobacterium infiltration system was used to demonstrate that TCV CP suppressed the local PTGS as strongly as several previously reported virus-coded suppressors and that the action of TCV CP eliminated the small interfering RNAs associated with PTGS. We have also shown that the TCV CP must be present at the time of silencing initiation to be an effective suppressor. TCV CP was able to suppress PTGS induced by sense, antisense, and double-stranded RNAs, and it prevented systemic silencing. These data suggest that TCV CP functions to suppress RNA silencing at an early initiation step, likely by interfering the function of the Dicer-like RNase in plants.
Collapse
Affiliation(s)
- Feng Qu
- School of Biological Sciences, University of Nebraska-Lincoln, 68588-0118, USA
| | | | | |
Collapse
|