151
|
Abstract
The introduction of highly active antiretroviral therapy (HAART) has been an important breakthrough in the treatment of HIV-1 infection and has also a powerful tool to upset the equilibrium of viral production and HIV-1 pathogenesis. Despite the advent of potent combinations of this therapy, the long-lived HIV-1 reservoirs like cells from monocyte-macrophage lineage and resting memory CD4+ T cells which are established early during primary infection constitute a major obstacle to virus eradication. Further HAART interruption leads to immediate rebound viremia from latent reservoirs. This paper focuses on the essentials of the molecular mechanisms for the establishment of HIV-1 latency with special concern to present and future possible treatment strategies to completely purge and target viral persistence in the reservoirs.
Collapse
|
152
|
Bhat KH, Chaitanya CK, Parveen N, Varman R, Ghosh S, Mukhopadhyay S. Proline-proline-glutamic acid (PPE) protein Rv1168c of Mycobacterium tuberculosis augments transcription from HIV-1 long terminal repeat promoter. J Biol Chem 2012; 287:16930-46. [PMID: 22427668 DOI: 10.1074/jbc.m111.327825] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cells of the monocyte/macrophage lineage are shown to play a role in the pathogenesis of human immunodeficiency virus (HIV). The occurrence of HIV type 1 (HIV-1) infection is found to be accelerated in people infected with Mycobacterium tuberculosis, but the mechanism by which mycobacterial protein(s) induces HIV-1 LTR trans-activation is not clearly understood. We show here that the M. tuberculosis proline-proline-glutamic acid (PPE) protein Rv1168c (PPE17) can augment transcription from HIV-1 LTR in monocyte/macrophage cells. Rv1168c interacts specifically with Toll-like receptor-2 (TLR2) resulting in downstream activation of nuclear factor-κB (NF-κB) resulting in HIV-1 LTR trans-activation. Another PPE protein, Rv1196 (PPE18), was also found to interact with TLR2 but had no effect on HIV-1 LTR trans-activation because of its inability to activate the NF-κB signaling pathway. In silico docking analyses and mutation experiments have revealed that the N-terminal domain of Rv1168c specifically interacts with LRR motifs 15-20 of TLR2, and this site of interaction is different from that of Rv1196 protein (LRR motifs 11-15), indicating that the site of interaction on TLR2 dictates the downstream signaling events leading to activation of NF-κB. This information may help in understanding the mechanism of pathogenesis of HIV-1 during M. tuberculosis co-infection.
Collapse
Affiliation(s)
- Khalid Hussain Bhat
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting and Diagnostics, Gruhakalpa Building, Nampally, Hyderabad 500001, India
| | | | | | | | | | | |
Collapse
|
153
|
|
154
|
Guerra C, Morris D, Sipin A, Kung S, Franklin M, Gray D, Tanzil M, Guilford F, Khasawneh FT, Venketaraman V. Glutathione and adaptive immune responses against Mycobacterium tuberculosis infection in healthy and HIV infected individuals. PLoS One 2011; 6:e28378. [PMID: 22164280 PMCID: PMC3229597 DOI: 10.1371/journal.pone.0028378] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 11/07/2011] [Indexed: 11/18/2022] Open
Abstract
Glutathione (GSH), a tripeptide antioxidant, is essential for cellular homeostasis and plays a vital role in diverse cellular functions. Individuals who are infected with Human immuno deficiency virus (HIV) are known to be susceptible to Mycobacterium tuberculosis (M. tb) infection. We report that by enhancing GSH levels, T-cells are able to inhibit the growth of M. tb inside macrophages. In addition, those GSH-replenished T cell cultures produced increased levels of Interleukin-2 (IL-2), Interleukin-12 (IL-12), and Interferon-gamma (IFN-γ), cytokines, which are known to be crucial for the control of intracellular pathogens. Our study reveals that T lymphocytes that are derived from HIV infected individuals are deficient in GSH, and that this deficiency correlates with decreased levels of Th1 cytokines and enhanced growth of M. tb inside human macrophages.
Collapse
Affiliation(s)
- Carlos Guerra
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California, United States of America
| | - Devin Morris
- Graduate of College of Biomedical Sciences, Western University of Health Sciences, Pomona, California, United States of America
| | - Andrea Sipin
- California State Polytechnic University, Pomona, California, United States of America
| | - Steven Kung
- California State Polytechnic University, Pomona, California, United States of America
| | - Mesharee Franklin
- Graduate of College of Biomedical Sciences, Western University of Health Sciences, Pomona, California, United States of America
| | - Dennis Gray
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California, United States of America
- Graduate of College of Biomedical Sciences, Western University of Health Sciences, Pomona, California, United States of America
| | - Michelle Tanzil
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California, United States of America
- Graduate of College of Biomedical Sciences, Western University of Health Sciences, Pomona, California, United States of America
| | | | - Fadi T. Khasawneh
- College of Pharmacy, Western University of Health Sciences, Pomona, California, United States of America
| | - Vishwanath Venketaraman
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California, United States of America
- Graduate of College of Biomedical Sciences, Western University of Health Sciences, Pomona, California, United States of America
- * E-mail:
| |
Collapse
|
155
|
Berzsenyi MD, Roberts SK, Preiss S, Woollard DJ, Beard MR, Skinner NA, Bowden DS, Visvanathan K. Hepatic TLR2 & TLR4 expression correlates with hepatic inflammation and TNF-α in HCV & HCV/HIV infection. J Viral Hepat 2011; 18:852-60. [PMID: 21050341 DOI: 10.1111/j.1365-2893.2010.01390.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Signalling activated by Toll-like receptors (TLRs) can result in the production of tumour necrosis factor alpha (TNF-α) which is implicated in hepatitis C virus (HCV) and human immunodeficiency virus (HIV) infection. No study has examined or compared hepatic expression of TLRs in both HCV and HCV/HIV. Liver and peripheral blood mononuclear cells (PBMCs) were obtained from HCV & HCV/HIV-infected patients and PBMCs from HIV-infected patients. Liver RNA was analysed by microarray and reverse transcription quantitative PCR (RT-qPCR). PBMCs were analysed by flow cytometry. Associations with hepatic histology and infection type were sought. Forty-six HCV, 20 HIV and 27 HCV/HIV-infected patients were recruited. Increasing Metavir inflammatory activity score was associated with increased hepatic TLR mRNA by RT-qPCR: TLR2 (P ≤ 0.001), TLR4 (P = 0.008) and TNF-α (P ≤ 0.001). A high degree of correlation was seen between hepatic mRNA expression of TNF-αvs TLR2 (r(2) = 0.66, P < 0.0001) and TLR4 (r(2) = 0.60, P < 0.0001). No differences in TLR gene or protein expression was observed between HCV, HCV/HIV- or HIV-infected groups. Hepatic TLR2, TLR4 and TNF-α mRNA are associated with hepatic inflammation in both HCV and HCV/HIV infection. High correlation between TNF-α and TLR2/TLR4 suggests a role for the innate immune response in TNF-α production. Activation of the innate immune response appears to be independent of infection type.
Collapse
Affiliation(s)
- M D Berzsenyi
- Department of Gastroenterology, Alfred Hospital, Prahran, Victoria, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
156
|
Abstract
Combination antiretroviral therapy (cART) has led to a very substantial reduction in morbidity and mortality in HIV-infected patients; however, cART alone is unable to cure HIV and therapy is lifelong. Therefore, a new strategy to cure HIV is urgently needed. There is now a concerted effort from scientists, clinicians and funding agencies to identify ways to achieve either a functional cure (long-term control of HIV in the absence of cART) or a sterilizing cure (elimination of all HIV-infected cells). Multiple strategies aiming at achieving a cure for HIV are currently being investigated, including both pharmacotherapy and gene therapy. In this review, we will review the rationale as well as in vitro and clinical trial data that support the role of histone deacetylase inhibitors as one approach to cure HIV.
Collapse
|
157
|
Lara HH, Ixtepan-Turrent L, Garza-Treviño EN, Badillo-Almaraz JI, Rodriguez-Padilla C. Antiviral mode of action of bovine dialyzable leukocyte extract against human immunodeficiency virus type 1 infection. BMC Res Notes 2011; 4:474. [PMID: 22044844 PMCID: PMC3219789 DOI: 10.1186/1756-0500-4-474] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2011] [Accepted: 11/01/2011] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Bovine dialyzable leukocyte extract (bDLE) is derived from immune leukocytes obtained from bovine spleen. DLE has demonstrated to reduce transcription of Human Immunodeficiency Virus Type 1 (HIV-1) and inactivate the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathway. Therefore, we decided to clarify the mode of antiviral action of bDLE on the inhibition of HIV-1 infection through a panel of antiviral assays. RESULTS The cytotoxicity, HIV-1 inhibition activity, residual infectivity of bDLE in HIV-1, time of addition experiments, fusion inhibition of bDLE for fusogenic cells and the duration of cell protection even after the removal of bDLE were all assessed in order to discover more about the mode of the antiviral action.HIV-1 infectivity was inhibited by bDLE at doses that were not cytotoxic for HeLa-CD4-LTR-β-gal cells. Pretreatment of HIV-1 with bDLE did not decrease the infectivity of these viral particles. Cell-based fusion assays helped to determine if bDLE could inhibit fusion of Env cells against CD4 cells by membrane fusion and this cell-based fusion was inhibited only when CD4 cells were treated with bDLE. Infection was inhibited in 80% compared with the positive (without EDL) at all viral life cycle stages in the time of addition experiments when bDLE was added at different time points. Finally, a cell-protection assay against HIV-1 infection by bDLE was performed after treating host cells with bDLE for 30 minutes and then removing them from treatment. From 0 to 7 hours after the bDLE was completely removed from the extracellular compartment, HIV-1 was then added to the host cells. The bDLE was found to protect the cells from HIV-1 infection, an effect that was retained for several hours. CONCLUSIONS bDLE acted as an antiviral compound and prevented host cell infection by HIV-1 at all viral life cycle stages. These cell protection effects lingered for hours after the bDLE was removed. Interestingly, bDLE inhibited fusion of fusogenic cells by acting only on CD4 cells. bDLE had no virucidal effect, but could retain its antiviral effect on target cells after it was removed from the extracellular compartment, protecting the cells from infection for hours.bDLE, which has no reported side effects or toxicity in clinical trials, should therefore be further studied to determine its potential use as a therapeutic agent in HIV-1 infection therapy, in combination with known antiretrovirals.
Collapse
Affiliation(s)
- Humberto H Lara
- Laboratorio de Inmunología y Virología, Departamento de Microbiología e Inmunología, Universidad Autonoma de Nuevo Leon, Nuevo Leon, Mexico.
| | | | | | | | | |
Collapse
|
158
|
Cross SA, Cook DR, Chi AWS, Vance PJ, Kolson LL, Wong BJ, Jordan-Sciutto KL, Kolson DL. Dimethyl fumarate, an immune modulator and inducer of the antioxidant response, suppresses HIV replication and macrophage-mediated neurotoxicity: a novel candidate for HIV neuroprotection. THE JOURNAL OF IMMUNOLOGY 2011; 187:5015-25. [PMID: 21976775 DOI: 10.4049/jimmunol.1101868] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Despite antiretroviral therapy (ART), HIV infection promotes cognitive dysfunction and neurodegeneration through persistent inflammation and neurotoxin release from infected and/or activated macrophages/microglia. Furthermore, inflammation and immune activation within both the CNS and periphery correlate with disease progression and morbidity in ART-treated individuals. Accordingly, drugs targeting these pathological processes in the CNS and systemic compartments are needed for effective, adjunctive therapy. Using our in vitro model of HIV-mediated neurotoxicity, in which HIV-infected monocyte-derived macrophages release excitatory neurotoxins, we show that HIV infection dysregulates the macrophage antioxidant response and reduces levels of heme oxygenase-1 (HO-1). Furthermore, restoration of HO-1 expression in HIV-infected monocyte-derived macrophages reduces neurotoxin release without altering HIV replication. Given these novel observations, we have identified dimethyl fumarate (DMF), used to treat psoriasis and showing promising results in clinical trials for multiple sclerosis, as a potential neuroprotectant and HIV disease-modifying agent. DMF, an immune modulator and inducer of the antioxidant response, suppresses HIV replication and neurotoxin release. Two distinct mechanisms are proposed: inhibition of NF-κB nuclear translocation and signaling, which could contribute to the suppression of HIV replication, and induction of HO-1, which is associated with decreased neurotoxin release. Finally, we found that DMF attenuates CCL2-induced monocyte chemotaxis, suggesting that DMF could decrease recruitment of activated monocytes to the CNS in response to inflammatory mediators. We propose that dysregulation of the antioxidant response during HIV infection drives macrophage-mediated neurotoxicity and that DMF could serve as an adjunctive neuroprotectant and HIV disease modifier in ART-treated individuals.
Collapse
Affiliation(s)
- Stephanie A Cross
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
159
|
|
160
|
Latency profiles of full length HIV-1 molecular clone variants with a subtype specific promoter. Retrovirology 2011; 8:73. [PMID: 21923919 PMCID: PMC3182984 DOI: 10.1186/1742-4690-8-73] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Accepted: 09/16/2011] [Indexed: 12/31/2022] Open
Abstract
Background HIV-1 transcription initiation depends on cellular transcription factors that bind to promoter sequences in the Long Terminal Repeat (LTR). Each HIV-1 subtype has a specific LTR promoter configuration and even minor sequence changes in the transcription factor binding sites (TFBS) or their arrangement can impact transcriptional activity. Most latency studies have focused on HIV-1 subtype B strains, and the degree to which LTR promoter variation contributes to differences in proviral latency is therefore largely unknown. Latency differences may influence establishment and size of viral reservoirs as well as the possibility to clear the virus by therapeutic intervention. Results We investigated the proviral transcriptional latency properties of different HIV-1 subtypes as their LTRs have unique assemblies of transcription factor binding sites. We constructed recombinant viral genomes with the subtype-specific promoters inserted in the common backbone of the subtype B LAI isolate. The recombinant viruses are isogenic, except for the core promoter region that encodes all major TFBS, including NFκB and Sp1 sites. We developed and optimized an assay to investigate HIV-1 proviral latency in T cell lines. Our data show that the majority of HIV-1 infected T cells only start viral gene expression after TNFα activation. Conclusions There were no gross differences among the subtypes, both in the initial latency level and the activation response, except for subtype AE that combines an increased level of basal transcription with a reduced TNFα response. This subtype AE property is related to the presence of a GABP instead of NFκB binding site in the LTR.
Collapse
|
161
|
Celastrol inhibits Tat-mediated human immunodeficiency virus (HIV) transcription and replication. J Mol Biol 2011; 410:972-83. [PMID: 21763500 DOI: 10.1016/j.jmb.2011.04.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2011] [Accepted: 04/06/2011] [Indexed: 11/21/2022]
Abstract
Current drugs used for antiretroviral therapy against human immunodeficiency virus (HIV) have a narrow spectrum of activity and, more often, have associated toxicities and severe side effects in addition to developing resistance. Thus, there is a need to develop new therapeutic strategies against HIV/AIDS to complement the already existing ones. Surprisingly, transactivator of transcription (Tat), an early virus-encoded protein required for the efficient transcription of the HIV genome, has not been developed as a target for small molecular therapeutics. We have previously described the ability of an endogenous Michael acceptor electrophile (MAE), 15-deoxy-Δ(12,14)-prostaglandin J(2) (15d-PGJ(2)), to inhibit Tat-dependent transcription by targeting its cysteine (Cys)-rich domain. In an effort to identify other MAEs possessing inhibitory activity against HIV-1 Tat, we tested a collection of plant-derived compounds with electrophilic properties, including curcumin, rosmarinic acid, and gambogic acid, for their ability to inhibit Tat. Celastrol (Cel), a triterpenoid MAE isolated from Tripterygium wilfordii, exhibited the highest inhibitory activity against Tat. Using biochemical techniques, we demonstrate that Cel, by covalently modifying the cysteine thiols, inhibits Tat transactivation function. Using circular dichroism spectroscopy, we show that alkylation of Tat brought about a change in the secondary structure of Tat, which inhibited the transcription elongation of the HIV proviral genome by effecting mechanisms other than Tat-TAR (transactivation-responsive region) interaction. Our results demonstrate the underlying mechanism of antiretroviral activity of the plant-derived MAEs and suggest that Cel could serve as a lead compound to develop novel antiviral therapeutics.
Collapse
|
162
|
Ferreira VH, Nazli A, Khan G, Mian MF, Ashkar AA, Gray-Owen S, Kaul R, Kaushic C. Endometrial epithelial cell responses to coinfecting viral and bacterial pathogens in the genital tract can activate the HIV-1 LTR in an NF{kappa}B-and AP-1-dependent manner. J Infect Dis 2011; 204:299-308. [PMID: 21673042 DOI: 10.1093/infdis/jir260] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Sexually transmitted infections (STIs) are associated with increased human immunodeficiency virus type 1 (HIV-1) susceptibility and viral shedding in the genital tract, but the mechanisms underlying this association are poorly understood. METHODS Direct activation of HIV long terminal repeats (LTRs), a proxy measure for HIV-1 replication, was measured after treatment of 1G5 T cells with Toll-like receptor (TLR) ligands, herpes simplex virus type 1 or 2 (HSV-1/2), or Neisseria gonorrhoeae. For indirect activation, 1G5 T cells were incubated with supernatants from female primary genital epithelial cells (GECs) previously exposed to these agents. Proinflammatory cytokines and chemokines were measured in GEC supernatants. Proinflammatory pathways were blocked to determine the mechanisms of direct and indirect HIV-LTR activation. RESULTS HSV-1/2, N. gonorrhoeae, and TLR ligands FimH (TLR-4), flagellin (TLR-5), and Poly (I:C) (TLR-3) directly induced HIV-LTR activation in 1G5 T cells. Supernatants collected from GECs incubated with these agents indirectly induced HIV-LTR activation. Production of tumor necrosis factor α, interleukin 6, interleukin 8, and monocyte chemoattractant protein-1 was elevated in GECs exposed to copathogens. Inhibition of nuclear factor κB and activator protein-1 (AP-1) signaling pathways in 1G5 T cells abrogated both direct and indirect HIV-LTR activation. CONCLUSIONS STIs may increase HIV-1 replication in the female genital tract via proinflammatory signaling pathways directly and indirectly via their effects on GECs. This increased HIV-1 replication may enhance sexual and vertical HIV transmission.
Collapse
Affiliation(s)
- Victor H Ferreira
- Department of Pathology and Molecular Medicine, Centre for Gene Therapeutics, Michael DeGroote Centre for Learning and Discovery, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | | | | | | | | | | | | | | |
Collapse
|
163
|
Abstract
A syndemic is defined as the convergence of two or more diseases that act synergistically to magnify the burden of disease. The intersection and syndemic interaction between the human immunodeficiency virus (HIV) and tuberculosis (TB) epidemics have had deadly consequences around the world. Without adequate control of the TB-HIV syndemic, the long-term TB elimination target set for 2050 will not be reached. There is an urgent need for additional resources and novel approaches for the diagnosis, treatment, and prevention of both HIV and TB. Moreover, multidisciplinary approaches that consider HIV and TB together, rather than as separate problems and diseases, will be necessary to prevent further worsening of the HIV-TB syndemic. This review examines current knowledge of the state and impact of the HIV-TB syndemic and reviews the epidemiological, clinical, cellular, and molecular interactions between HIV and TB.
Collapse
|
164
|
Feily A, Namazi MR. Glucose-6-phosphate-dehydrogenase deficiency may impart susceptibility to the development of AIDS. Arch Med Res 2011; 42:77. [PMID: 21376267 DOI: 10.1016/j.arcmed.2011.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2010] [Accepted: 12/21/2010] [Indexed: 10/18/2022]
Affiliation(s)
- Amir Feily
- Department of Dermatology, Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | |
Collapse
|
165
|
Mohanram V, Johansson U, Sköld AE, Fink J, Kumar Pathak S, Mäkitalo B, Walther-Jallow L, Spetz AL. Exposure to apoptotic activated CD4+ T cells induces maturation and APOBEC3G-mediated inhibition of HIV-1 infection in dendritic cells. PLoS One 2011; 6:e21171. [PMID: 21698207 PMCID: PMC3116862 DOI: 10.1371/journal.pone.0021171] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 05/21/2011] [Indexed: 12/19/2022] Open
Abstract
Dendritic cells (DCs) are activated by signaling via pathogen-specific receptors or exposure to inflammatory mediators. Here we show that co-culturing DCs with apoptotic HIV-infected activated CD4(+) T cells (ApoInf) or apoptotic uninfected activated CD4(+) T cells (ApoAct) induced expression of co-stimulatory molecules and cytokine release. In addition, we measured a reduced HIV infection rate in DCs after co-culture with ApoAct. A prerequisite for reduced HIV infection in DCs was activation of CD4(+) T cells before apoptosis induction. DCs exposed to ApoAct or ApoInf secreted MIP-1α, MIP-1β, MCP-1, and TNF-α; this effect was retained in the presence of exogenous HIV. The ApoAct-mediated induction of co-stimulatory CD86 molecules and reduction of HIV infection in DCs were partially abrogated after blocking TNF-α using monoclonal antibodies. APOBEC3G expression in DCs was increased in co-cultures of DCs and ApoAct but not by apoptotic resting CD4(+) T cells (ApoRest). Silencing of APOBEC3G in DC abrogated the HIV inhibitory effect mediated by ApoAct. Sequence analyses of an env region revealed significant induction of G-to-A hypermutations in the context of GG or GA dinucleotides in DNA isolated from DCs exposed to HIV and ApoAct. Thus, ApoAct-mediated DC maturation resulted in induction of APOBEC3G that was important for inhibition of HIV-infection in DCs. These findings underscore the complexity of differential DC responses evoked upon interaction with resting as compared with activated dying cells during HIV infection.
Collapse
Affiliation(s)
- Venkatramanan Mohanram
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Ulrika Johansson
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Annette E. Sköld
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Joshua Fink
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Sushil Kumar Pathak
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Barbro Mäkitalo
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Lilian Walther-Jallow
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Anna-Lena Spetz
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
166
|
Furler RL, Uittenbogaart CH. Signaling through the P38 and ERK pathways: a common link between HIV replication and the immune response. Immunol Res 2011; 48:99-109. [PMID: 20725863 DOI: 10.1007/s12026-010-8170-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
One of the defining characteristics of HIV is its ability to manipulate the human immune response to promote its own replication. Since the beginning of the epidemic, there has been controversy whether a robust immune response to the virus is beneficial or detrimental for the host. Therefore, the effects of HIV on signaling pathways and cytokine production need to be characterized in order to distinguish between protective immune responses and inappropriate immune activation. Cytokine and biomarker expression during HIV infection results from the combined effects of intracellular signaling pathways orchestrated by kinases like P38 and ERK. The P38 and ERK Mitogen-Activated Protein Kinase (MAPK) pathways govern the regulation of cytokines (IL-2, IL-10, and TNF-α) as well biomarkers (PD-1, Fas/FasL, among others) that are skewed in chronic HIV infection. HIV utilizes the P38 and ERK pathways to produce new virions and to deplete CD4+ T cells from the host's immune system. Understanding the interplay between HIV and the cytokines induced by activation of the P38 and ERK pathways may provide insights into HIV immunopathogenesis and the development of a protective vaccine.
Collapse
Affiliation(s)
- Robert L Furler
- Department of Microbiology, Immunology & Molecular Genetics, UCLA AIDS Institute, David E. Geffen School of Medicine, University of California-Los Angeles, CA 90095-7363, USA
| | | |
Collapse
|
167
|
Micheva-Viteva S, Kobayashi Y, Edelstein LC, Pacchia AL, Lee HLR, Graci JD, Breslin J, Phelan BD, Miller LK, Colacino JM, Gu Z, Ron Y, Peltz SW, Dougherty JP. High-throughput screening uncovers a compound that activates latent HIV-1 and acts cooperatively with a histone deacetylase (HDAC) inhibitor. J Biol Chem 2011; 286:21083-91. [PMID: 21498519 DOI: 10.1074/jbc.m110.195537] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Current antiretroviral therapy (ART) provides potent suppression of HIV-1 replication. However, ART does not target latent viral reservoirs, so persistent infection remains a challenge. Small molecules with pharmacological properties that allow them to reach and activate viral reservoirs could potentially be utilized to eliminate the latent arm of the infection when used in combination with ART. Here we describe a cell-based system modeling HIV-1 latency that was utilized in a high-throughput screen to identify small molecule antagonists of HIV-1 latency. A more detailed analysis is provided for one of the hit compounds, antiviral 6 (AV6), which required nuclear factor of activated T cells for early mRNA expression while exhibiting RNA-stabilizing activity. It was found that AV6 reproducibly activated latent provirus from different lymphocyte-based clonal cell lines as well as from latently infected primary resting CD4(+) T cells without causing general T cell proliferation or activation. Moreover, AV6 complemented the latency antagonist activity of a previously described histone deacetylase (HDAC) inhibitor. This is a proof of concept showing that a high-throughput screen employing a cell-based model of HIV-1 latency can be utilized to identify new classes of compounds that can be used in concert with other persistent antagonists with the aim of viral clearance.
Collapse
Affiliation(s)
- Sofiya Micheva-Viteva
- Department of Molecular Genetics, Microbiology, and Immunology, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
168
|
Influence of host gene transcription level and orientation on HIV-1 latency in a primary-cell model. J Virol 2011; 85:5384-93. [PMID: 21430059 DOI: 10.1128/jvi.02536-10] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) establishes a latent reservoir in resting memory CD4(+) T cells. This latent reservoir is a major barrier to the eradication of HIV-1 in infected individuals and is not affected by highly active antiretroviral therapy (HAART). Reactivation of latent HIV-1 is a possible strategy for elimination of this reservoir. The mechanisms with which latency is maintained are unclear. In the analysis of the regulation of HIV-1 gene expression, it is important to consider the nature of HIV-1 integration sites. In this study, we analyzed the integration and transcription of latent HIV-1 in a primary CD4(+) T cell model of latency. The majority of integration sites in latently infected cells were in introns of transcription units. Serial analysis of gene expression (SAGE) demonstrated that more than 90% of those host genes harboring a latent integrated provirus were transcriptionally active, mostly at high levels. For latently infected cells, we observed a modest preference for integration in the same transcriptional orientation as the host gene (63.8% versus 36.2%). In contrast, this orientation preference was not observed in acutely infected or persistently infected cells. These results suggest that transcriptional interference may be one of the important factors in the establishment and maintenance of HIV-1 latency. Our findings suggest that disrupting the negative control of HIV-1 transcription by upstream host promoters could facilitate the reactivation of latent HIV-1 in some resting CD4(+) T cells.
Collapse
|
169
|
Hummelen R, Vos AP, van't Land B, van Norren K, Reid G. Altered host-microbe interaction in HIV: a target for intervention with pro- and prebiotics. Int Rev Immunol 2011; 29:485-513. [PMID: 20839912 DOI: 10.3109/08830185.2010.505310] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The intestinal immune system is severely affected by HIV and circulating microbial products from the intestinal tract that provide an ongoing source of systemic inflammation and concomitant viral replication. In addition, HIV-infected individuals can have a deregulated immune response that may hamper the anti-viral capacity of the host. Various probiotic organisms and prebiotic agents have been shown to enhance intestinal epithelial barrier functions, reduce inflammation, and support effective Th-1 responses. As these characteristics may benefit HIV patients, this review aims to provide a theoretical framework for the development of probiotic and prebiotic interventions specifically for this population.
Collapse
Affiliation(s)
- Ruben Hummelen
- Department of Public Health, Erasmus MC, University Medical Centre Rotterdam, The Netherlands
| | | | | | | | | |
Collapse
|
170
|
TRIM22 inhibits HIV-1 transcription independently of its E3 ubiquitin ligase activity, Tat, and NF-kappaB-responsive long terminal repeat elements. J Virol 2011; 85:5183-96. [PMID: 21345949 DOI: 10.1128/jvi.02302-10] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous studies identified clones of the U937 promonocytic cell line that were either permissive or nonpermissive for human immunodeficiency virus type 1 (HIV-1) replication. These clones were investigated further in the search for host restriction factors that could explain their differential capacity to support HIV-1 replication. Among known HIV-1 restriction factors screened, tripartite motif-containing protein 22 (TRIM22) was the only factor constitutively expressed in nonpermissive and absent in permissive U937 cells. Stable TRIM22 knockdown (KD) rescued HIV-1 long-terminal-repeat (LTR)-driven transcription in KD-nonpermissive cells to the levels observed in permissive cells. Conversely, transduction-mediated expression of TRIM22 in permissive cells reduced LTR-driven luciferase expression by ∼7-fold, supporting a negative role of TRIM22 in HIV-1 transcription. This finding was further confirmed in the human T cell line A3.01 expressing TRIM22. Moreover, overexpression of TRIM22 in 293T cells significantly impaired basal and phorbol myristate acetate-ionomycin-induced HIV-1 LTR-driven gene expression, whereas inhibition of tumor necrosis factor alpha-induced viral transcription was a consequence of lower basal expression. In agreement, TRIM22 equally inhibited an LTR construct lacking the tandem NF-κB binding sites. In addition, TRIM22 did not affect Tat-mediated LTR transactivation. Finally, these effects were independent of TRIM22 E3 ubiquitin-ligase activity. In the context of replication-competent virus, significantly higher levels of HIV-1 production were observed in KD-nonpermissive versus control nonpermissive U937 cells after infection. In contrast, lower peak levels of HIV-1 replication characterized U937 and A3.01 cells expressing TRIM22 versus their control transduced counterpart. Thus, nuclear TRIM22 significantly impairs HIV-1 replication, likely by interfering with Tat- and NF-κB-independent LTR-driven transcription.
Collapse
|
171
|
Zhou X, Shapiro L, Fellingham G, Willardson BM, Burton GF. HIV replication in CD4+ T lymphocytes in the presence and absence of follicular dendritic cells: inhibition of replication mediated by α-1-antitrypsin through altered IκBα ubiquitination. THE JOURNAL OF IMMUNOLOGY 2011; 186:3148-55. [PMID: 21263074 DOI: 10.4049/jimmunol.1001358] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Follicular dendritic cells (FDCs) increase HIV replication and virus production in lymphocytes by increasing the activation of NF-κB in infected cells. Because α-1-antitrypsin (AAT) decreases HIV replication in PBMCs and monocytic cells and decreases NF-κB activity, we postulated that AAT might also block FDC-mediated HIV replication. Primary CD4(+) T cells were infected with HIV and cultured with FDCs or their supernatant with or without AAT, and ensuing viral RNA and p24 production were monitored. NF-κB activation in the infected cells was also assessed. Virus production was increased in the presence of FDC supernatant, but the addition of AAT at concentrations >0.5 mg/ml inhibited virus replication. AAT blocked the nuclear translocation of NF-κB p50/p65 despite an unexpected elevation in associated phosphorylated and ubiquitinated IκBα (Ub-IκBα). In the presence of AAT, degradation of cytoplasmic IκBα was dramatically inhibited compared with control cultures. AAT did not inhibit the proteasome; however, it altered the pattern of ubiquitination of IκBα. AAT decreased IκBα polyubiquitination linked through ubiquitin lysine residue 48 and increased ubiquitination linked through lysine residue 63. Moreover, lysine reside 63-linked Ub-IκBα degradation was substantially slower than lysine residue 48-linked Ub-IκBα in the presence of AAT, correlating altered ubiquitination with a prolonged IκBα t(1/2). Because AAT is naturally occurring and available clinically, examination of its use as an inhibitory agent in HIV-infected subjects may be informative and lead to the development of similar agents that inhibit HIV replication using a novel mechanism.
Collapse
Affiliation(s)
- Xueyuan Zhou
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | | | | | | | | |
Collapse
|
172
|
Shibata S, Maeda S, Kondo N, Chimura N, Inoue A, Fukata T. Identification of the signaling pathway of TNF-α-induced CCL17/TARC transcription in a canine keratinocyte cell line. Vet Immunol Immunopathol 2010; 139:90-8. [PMID: 20837364 DOI: 10.1016/j.vetimm.2010.08.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 08/12/2010] [Accepted: 08/17/2010] [Indexed: 10/19/2022]
Abstract
A CC chemokine, CCL17/TARC, has been shown to be a factor in the immunopathogenesis of canine atopic dermatitis (cAD). In canine keratinocytes, the transcription of CCL17 mRNA is preferentially induced by tumor necrosis factor-alpha (TNF-α); however, its regulatory mechanism has not been elucidated. The aim of the present study is to clarify the regulatory mechanism of TNF-α-induced CCL17 mRNA transcription in canine keratinocytes leading to the development of a chemokine-targeted therapy for cAD. In a cell line of canine epidermal keratinocyte, CPEK, stimulation with TNF-α induced not only the activation of nuclear factor-kappa B (NF-κB) but also the phosphorylation of c-Jun-N-terminal kinase (JNK) and mitogen-activated protein kinase p38 (p38). Extracellular signal-regulated kinase (ERK) was found to be constitutively phosphorylated, which was temporarily augmented by TNF-α. Results of the inhibition assay indicated that the CCL17 mRNA transcription level was significantly decreased by p38 inhibitors but was not altered by either JNK or NF-κB inhibitors. Surprisingly, the ERK inhibitor increased the transcription level of CCL17 mRNA. Stimulation with epidermal growth factor (EGF), an ERK activator, suppressed the transcription of CCL17 mRNA. The present results suggest that TNF-α-induced CCL17 mRNA transcription in CPEK is positively regulated by p38 but negatively controlled by ERK.
Collapse
Affiliation(s)
- Sanae Shibata
- The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | | | | | | | | | | |
Collapse
|
173
|
Burnett JC, Lim KI, Calafi A, Rossi JJ, Schaffer DV, Arkin AP. Combinatorial latency reactivation for HIV-1 subtypes and variants. J Virol 2010; 84:5958-74. [PMID: 20357084 PMCID: PMC2876650 DOI: 10.1128/jvi.00161-10] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2010] [Accepted: 03/24/2010] [Indexed: 12/11/2022] Open
Abstract
The eradication of HIV-1 will likely require novel clinical approaches to purge the reservoir of latently infected cells from a patient. We hypothesize that this therapy should target a wide range of latent integration sites, act effectively against viral variants that have acquired mutations in their promoter regions, and function across multiple HIV-1 subtypes. By using primary CD4(+) and Jurkat cell-based in vitro HIV-1 latency models, we observe that single-agent latency reactivation therapy is ineffective against most HIV-1 subtypes. However, we demonstrate that the combination of two clinically promising drugs-namely, prostratin and suberoylanilide hydroxamic acid (SAHA)-overcomes the limitations of single-agent approaches and can act synergistically for many HIV-1 subtypes, including A, B, C, D, and F. Finally, by identifying the proviral integration position of latent Jurkat cell clones, we demonstrate that this drug combination does not significantly enhance the expression of endogenous genes nearest to the proviral integration site, indicating that its effects may be selective.
Collapse
Affiliation(s)
- John C. Burnett
- Department of Chemical Engineering and Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720, Department of Bioengineering, University of California, Berkeley, California 94720, Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, Division of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, California 91010
| | - Kwang-il Lim
- Department of Chemical Engineering and Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720, Department of Bioengineering, University of California, Berkeley, California 94720, Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, Division of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, California 91010
| | - Arash Calafi
- Department of Chemical Engineering and Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720, Department of Bioengineering, University of California, Berkeley, California 94720, Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, Division of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, California 91010
| | - John J. Rossi
- Department of Chemical Engineering and Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720, Department of Bioengineering, University of California, Berkeley, California 94720, Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, Division of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, California 91010
| | - David V. Schaffer
- Department of Chemical Engineering and Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720, Department of Bioengineering, University of California, Berkeley, California 94720, Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, Division of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, California 91010
| | - Adam P. Arkin
- Department of Chemical Engineering and Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720, Department of Bioengineering, University of California, Berkeley, California 94720, Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, Division of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, California 91010
| |
Collapse
|
174
|
Kusunoki Y, Hamasaki K, Koyama K, Imai K, Hayashi T, Martin PJ, Nakachi K. Increased DNA damage in hematopoietic cells of mice with graft-versus-host disease. Mutat Res 2010; 689:59-64. [PMID: 20471404 DOI: 10.1016/j.mrfmmm.2010.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Accepted: 05/06/2010] [Indexed: 01/07/2023]
Abstract
Patients who received hematopoietic cell transplants have an increased risk for a new malignancy. In addition to genotoxic regimens such as radiotherapy and chemotherapy, graft-versus-host disease (GVHD) is a risk factor for development of new malignancies in long-term survivors. To understand mechanisms underlying this malignant transformation, we evaluated genomic damage in several murine models of GVHD by enumerating reticulocytes containing micronuclei (MN) in the blood after semi-allogeneic (parent-into-F1) hematopoietic cell transplantation. On day 40 after transplantation, MN frequencies were significantly increased in unirradiated (C57BL6 x DBA/2) F1 (BDF1) and (BALB/c x C57BL6) F1 (CBF1) mice that received cells from C57BL6 (B6) donors. MN frequencies were not significantly increased in F1 mice that received cells from DBA/2 or BALB/c donors. Serum levels of tumor necrosis factor-alpha (TNF-alpha) were higher after transplantation with B6 donors than with DBA/2 or BALB/c donors. The results indicate that GVHD, without irradiation, can induce genomic damage associated with inflammatory reactions manifested by increased TNF-alpha levels.
Collapse
Affiliation(s)
- Yoichiro Kusunoki
- Department of Radiobiology/Molecular Epidemiology, Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima 732 0815, Japan.
| | | | | | | | | | | | | |
Collapse
|
175
|
Herbein G, Gras G, Khan KA, Abbas W. Macrophage signaling in HIV-1 infection. Retrovirology 2010; 7:34. [PMID: 20380698 PMCID: PMC2865443 DOI: 10.1186/1742-4690-7-34] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Accepted: 04/09/2010] [Indexed: 02/07/2023] Open
Abstract
The human immunodeficiency virus-1 (HIV-1) is a member of the lentivirus genus. The virus does not rely exclusively on the host cell machinery, but also on viral proteins that act as molecular switches during the viral life cycle which play significant functions in viral pathogenesis, notably by modulating cell signaling. The role of HIV-1 proteins (Nef, Tat, Vpr, and gp120) in modulating macrophage signaling has been recently unveiled. Accessory, regulatory, and structural HIV-1 proteins interact with signaling pathways in infected macrophages. In addition, exogenous Nef, Tat, Vpr, and gp120 proteins have been detected in the serum of HIV-1 infected patients. Possibly, these proteins are released by infected/apoptotic cells. Exogenous accessory regulatory HIV-1 proteins are able to enter macrophages and modulate cellular machineries including those that affect viral transcription. Furthermore HIV-1 proteins, e.g., gp120, may exert their effects by interacting with cell surface membrane receptors, especially chemokine co-receptors. By activating the signaling pathways such as NF-kappaB, MAP kinase (MAPK) and JAK/STAT, HIV-1 proteins promote viral replication by stimulating transcription from the long terminal repeat (LTR) in infected macrophages; they are also involved in macrophage-mediated bystander T cell apoptosis. The role of HIV-1 proteins in the modulation of macrophage signaling will be discussed in regard to the formation of viral reservoirs and macrophage-mediated T cell apoptosis during HIV-1 infection.
Collapse
Affiliation(s)
- Georges Herbein
- Department of Virology, UPRES 4266 Pathogens and Inflammation, IFR 133 INSERM, University of Franche-Comté, CHU Besançon, F-25030 Besançon, France.
| | | | | | | |
Collapse
|
176
|
Herbein G, Varin A. The macrophage in HIV-1 infection: from activation to deactivation? Retrovirology 2010; 7:33. [PMID: 20380696 PMCID: PMC2859752 DOI: 10.1186/1742-4690-7-33] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Accepted: 04/09/2010] [Indexed: 01/09/2023] Open
Abstract
Macrophages play a crucial role in innate and adaptative immunity in response to microorganisms and are an important cellular target during HIV-1 infection. Recently, the heterogeneity of the macrophage population has been highlighted. Classically activated or type 1 macrophages (M1) induced in particular by IFN-γ display a pro-inflammatory profile. The alternatively activated or type 2 macrophages (M2) induced by Th-2 cytokines, such as IL-4 and IL-13 express anti-inflammatory and tissue repair properties. Finally IL-10 has been described as the prototypic cytokine involved in the deactivation of macrophages (dM). Since the capacity of macrophages to support productive HIV-1 infection is known to be modulated by cytokines, this review shows how modulation of macrophage activation by cytokines impacts the capacity to support productive HIV-1 infection. Based on the activation status of macrophages we propose a model starting with M1 classically activated macrophages with accelerated formation of viral reservoirs in a context of Th1 and proinflammatory cytokines. Then IL-4/IL-13 alternatively activated M2 macrophages will enter into the game that will stop the expansion of the HIV-1 reservoir. Finally IL-10 deactivation of macrophages will lead to immune failure observed at the very late stages of the HIV-1 disease.
Collapse
Affiliation(s)
- Georges Herbein
- Department of Virology, UPRES EA 4266 Pathogens and Inflammation, IFR 133 INSERM, Franche-Comte University, CHU Besançon, Besançon, France.
| | | |
Collapse
|
177
|
Szeto GL, Brice AK, Yang HC, Barber SA, Siliciano RF, Clements JE. Minocycline attenuates HIV infection and reactivation by suppressing cellular activation in human CD4+ T cells. J Infect Dis 2010; 201:1132-40. [PMID: 20205570 DOI: 10.1086/651277] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Treatment of human immunodeficiency virus (HIV) infection with highly active antiretroviral therapy (HAART) is effective but can be associated with toxic effects and is expensive. Other options may be useful for long-term therapy. The immunomodulatory antibiotic minocycline could be an effective, low-cost adjunctive treatment to HAART. Minocycline mediated a dose-dependent decrease in single-cycle CXCR4-tropic HIV infection and decreased viral RNA after infection of CD4+ T cells with HIV NL4-3. Reactivation from latency was also decreased in a primary CD4+ T cell-derived model and in resting CD4+ T cells from HIV-infected patients. Minocycline treatment resulted in significant changes in activation marker expression and inhibited proliferation and cytokine secretion of CD4+ T cells in response to activation. This study demonstrates that minocycline reduces HIV replication and reactivation and decreases CD4+ T cell activation. The anti-HIV effects of minocycline are mediated by altering the cellular environment rather than directly targeting virus, placing minocycline in the class of anticellular anti-HIV drugs.
Collapse
Affiliation(s)
- Gregory L Szeto
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | | | |
Collapse
|
178
|
Gringhuis SI, van der Vlist M, van den Berg LM, den Dunnen J, Litjens M, Geijtenbeek TBH. HIV-1 exploits innate signaling by TLR8 and DC-SIGN for productive infection of dendritic cells. Nat Immunol 2010; 11:419-26. [PMID: 20364151 DOI: 10.1038/ni.1858] [Citation(s) in RCA: 213] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Accepted: 03/02/2010] [Indexed: 12/30/2022]
Abstract
Pattern-recognition receptors (PRRs) elicit antiviral immune responses to human immunodeficiency virus type 1 (HIV-1). Here we show that HIV-1 required signaling by the PRRs Toll-like receptor 8 (TLR8) and DC-SIGN for replication in dendritic cells (DCs). HIV-1 activated the transcription factor NF-kappaB through TLR8 to initiate the transcription of integrated provirus by RNA polymerase II (RNAPII). However, DC-SIGN signaling was required for the generation of full-length viral transcripts. Binding of the HIV-1 envelope glycoprotein gp120 to DC-SIGN induced kinase Raf-1-dependent phosphorylation of the NF-kappaB subunit p65 at Ser276, which recruited the transcription-elongation factor pTEF-b to nascent transcripts. Transcription elongation and generation of full-length viral transcripts was dependent on pTEF-b-mediated phosphorylation of RNAPII at Ser2. Inhibition of either pathway abrogated replication and prevented HIV-1 transmission. Thus, HIV-1 subverts crucial components of the immune system for replication that might be targeted to prevent infection and dissemination.
Collapse
Affiliation(s)
- Sonja I Gringhuis
- Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
179
|
Regis EG, Barreto-de-Souza V, Morgado MG, Bozza MT, Leng L, Bucala R, Bou-Habib DC. Elevated levels of macrophage migration inhibitory factor (MIF) in the plasma of HIV-1-infected patients and in HIV-1-infected cell cultures: a relevant role on viral replication. Virology 2010; 399:31-38. [PMID: 20085845 DOI: 10.1016/j.virol.2009.12.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Revised: 11/09/2009] [Accepted: 12/14/2009] [Indexed: 01/06/2023]
Abstract
The cytokine macrophage migration inhibitory factor (MIF) is involved in the pathogenesis of inflammatory and infectious diseases, however its role in HIV-1 infection is unknown. Here we show that HIV-1-infected patients present elevated plasma levels of MIF, that HIV-1-infected peripheral blood mononuclear cells (PBMCs) release a greater amount of MIF, and that the HIV-1 envelope glycoprotein gp120 induces MIF secretion from uninfected PBMCs. The HIV-1 replication in PBMCs declines when these cells are treated with anti-MIF antibodies, and exposure of HIV-1-infected cells to the ABC-transporter inhibitor probenecid results in inhibition of MIF secretion. The addition of recombinant MIF (rhMIF) to HIV-1-infected PBMCs enhances viral replication of CCR5- or CXCR4-tropic HIV-1 isolates. Using a T CD4(+) cell lineage containing an HIV long terminal repeats (LTR)-Luciferase construct, we detected that rhMIF promotes transcription from HIV-1 LTR. Our results show that HIV-1 induces MIF secretion and suggest that MIF influences the HIV-1 biology through activation of HIV-1 LTR.
Collapse
Affiliation(s)
- Eduardo G Regis
- Laboratory on Thymus Research, Oswaldo Cruz Institute/FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | | | - Mariza G Morgado
- Laboratory of AIDS and Molecular Immunology, Oswaldo Cruz Institute/FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | - Marcelo T Bozza
- Department of Immunology, Institute of Microbiology, Federal University of Rio de Janeiro, RJ, Brazil
| | - Lin Leng
- Yale School of Medicine, CT, USA
| | | | - Dumith C Bou-Habib
- Laboratory on Thymus Research, Oswaldo Cruz Institute/FIOCRUZ, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
180
|
Cobo Ibáñez T, Zamora F, Herranz P, Steiner M. Tratamiento con antifactor de necrosis tumoral en pacientes con artritis psoriásica e infección por el virus de la inmunodeficiencia humana. Med Clin (Barc) 2009; 133:682-3. [DOI: 10.1016/j.medcli.2008.11.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Accepted: 11/06/2008] [Indexed: 10/20/2022]
|
181
|
Redel L, Le Douce V, Cherrier T, Marban C, Janossy A, Aunis D, Van Lint C, Rohr O, Schwartz C. HIV-1 regulation of latency in the monocyte-macrophage lineage and in CD4+ T lymphocytes. J Leukoc Biol 2009; 87:575-88. [PMID: 19801499 DOI: 10.1189/jlb.0409264] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The introduction in 1996 of the HAART raised hopes for the eradication of HIV-1. Unfortunately, the discovery of latent HIV-1 reservoirs in CD4+ T cells and in the monocyte-macrophage lineage proved the optimism to be premature. The long-lived HIV-1 reservoirs constitute a major obstacle to the eradication of HIV-1. In this review, we focus on the establishment and maintenance of HIV-1 latency in the two major targets for HIV-1: the CD4+ T cells and the monocyte-macrophage lineage. Understanding the cell-type molecular mechanisms of establishment, maintenance, and reactivation of HIV-1 latency in these reservoirs is crucial for efficient therapeutic intervention. A complete viral eradication, the holy graal for clinicians, might be achieved by strategic interventions targeting latently and productively infected cells. We suggest that new approaches, such as the combination of different kinds of proviral activators, may help to reduce dramatically the size of latent HIV-1 reservoirs in patients on HAART.
Collapse
Affiliation(s)
- Laetitia Redel
- INSERM Unit 575, Pathophysiology of Central Nervous System, Institute of Virology, Strasbourg, France
| | | | | | | | | | | | | | | | | |
Collapse
|
182
|
Yang HC, Xing S, Shan L, O'Connell K, Dinoso J, Shen A, Zhou Y, Shrum CK, Han Y, Liu JO, Zhang H, Margolick JB, Siliciano RF. Small-molecule screening using a human primary cell model of HIV latency identifies compounds that reverse latency without cellular activation. J Clin Invest 2009; 119:3473-86. [PMID: 19805909 DOI: 10.1172/jci39199] [Citation(s) in RCA: 169] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Accepted: 07/29/2009] [Indexed: 11/17/2022] Open
Abstract
The development of highly active antiretroviral therapy (HAART) to treat individuals infected with HIV-1 has dramatically improved patient outcomes, but HAART still fails to cure the infection. The latent viral reservoir in resting CD4+ T cells is a major barrier to virus eradication. Elimination of this reservoir requires reactivation of the latent virus. However, strategies for reactivating HIV-1 through nonspecific T cell activation have clinically unacceptable toxicities. We describe here the development of what we believe to be a novel in vitro model of HIV-1 latency that we used to search for compounds that can reverse latency. Human primary CD4+ T cells were transduced with the prosurvival molecule Bcl-2, and the resulting cells were shown to recapitulate the quiescent state of resting CD4+ T cells in vivo. Using this model system, we screened small-molecule libraries and identified a compound that reactivated latent HIV-1 without inducing global T cell activation, 5-hydroxynaphthalene-1,4-dione (5HN). Unlike previously described latency-reversing agents, 5HN activated latent HIV-1 through ROS and NF-kappaB without affecting nuclear factor of activated T cells (NFAT) and PKC, demonstrating that TCR pathways can be dissected and utilized to purge latent virus. Our study expands the number of classes of latency-reversing therapeutics and demonstrates the utility of this in vitro model for finding strategies to eradicate HIV-1 infection.
Collapse
Affiliation(s)
- Hung-Chih Yang
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
183
|
Structural basis of HIV-1 activation by NF-kappaB--a higher-order complex of p50:RelA bound to the HIV-1 LTR. J Mol Biol 2009; 393:98-112. [PMID: 19683540 DOI: 10.1016/j.jmb.2009.08.023] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 08/04/2009] [Accepted: 08/05/2009] [Indexed: 12/22/2022]
Abstract
The activation and latency of human immunodeficiency virus type 1 (HIV-1) are tightly controlled by the transcriptional activity of its long terminal repeat (LTR) region. The LTR is regulated by viral proteins as well as host factors, including the nuclear factor kappaB (NF-kappaB) that becomes activated in virus-infected cells. The two tandem NF-kappaB sites of the LTR are among the most highly conserved sequence elements of the HIV-1 genome. Puzzlingly, these sites are arranged in a manner that seems to preclude simultaneous binding of both sites by NF-kappaB, although previous biochemical work suggests otherwise. Here, we have determined the crystal structure of p50:RelA bound to the tandem kappaB element of the HIV-1 LTR as a dimeric dimer, providing direct structural evidence that NF-kappaB can occupy both sites simultaneously. The two p50:RelA dimers bind the adjacent kappaB sites and interact through a protein contact that is accommodated by DNA bending. The two dimers clamp DNA from opposite faces of the double helix and form a topological trap of the bound DNA. Consistent with these structural features, our biochemical analyses indicate that p50:RelA binds the HIV-1 LTR tandem kappaB sites with an apparent anti-cooperativity but enhanced kinetic stability. The slow on and off rates we observe may be relevant to viral latency because viral activation requires sustained NF-kappaB activation. Furthermore, our work demonstrates that the specific arrangement of the two kappaB sites on the HIV-1 LTR can modulate the assembly kinetics of the higher-order NF-kappaB complex on the viral promoter. This phenomenon is unlikely restricted to the HIV-1 LTR but probably represents a general mechanism for the function of composite DNA elements in transcription.
Collapse
|
184
|
HIV-1 Tat dysregulation of lipopolysaccharide-induced cytokine responses: microbial interactions in HIV infection. AIDS 2009; 23:1473-84. [PMID: 19622906 DOI: 10.1097/qad.0b013e32832d7abe] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To examine whether the HIV-1 Tat protein impairs the lipopolysaccharide (LPS)-induced cytokine responses. DESIGN Concurrent infections with pathogens including bacteria and viruses are common in AIDS patients. However, cytokine and interferon responses during infection with or translocation from the gut of these pathogens in HIV-infected patients are not well studied. As HIV-1 Tat contributes partly to the HIV-induced immune dysregulation, we investigated whether the protein may play a role in perturbing the LPS-induced cytokine responses. METHODS Expression levels of cytokines in human primary blood monocytes/macrophages were determined by quantitative polymerase chain reaction and enzyme-linked immunosorbent assay. Expression level of the cell surface Toll-like receptor 4 was examined by flow cytometry. Activations of signaling molecules were assayed by western blot and immunofluorescence. RESULTS We demonstrated that HIV-1 Tat downregulated the LPS-induction of IFN-beta and concomitantly upregulated IL-6 expression in primary blood monocytes/macrophages, whereas the viral protein had no significant effects on TNF-alpha expression. To delineate the underlying mechanism, we showed that Tat inhibited the LPS-activation of ERK1/2 but not the p38 mitogen-activated protein kinases. The viral protein suppressed the LPS-induced activation of NFkappaB p65 via its induction of IkappaBalpha expression, which resulted in retention of NFkappaB p65 in the cytosol. CONCLUSION These findings suggest that Tat may play a role in modulating the immune responses triggered by other coinfecting pathogens and thus providing a permissive environment for both HIV and other opportunistic microbes.
Collapse
|
185
|
Ranjbar S, Boshoff HI, Mulder A, Siddiqi N, Rubin EJ, Goldfeld AE. HIV-1 replication is differentially regulated by distinct clinical strains of Mycobacterium tuberculosis. PLoS One 2009; 4:e6116. [PMID: 19568431 PMCID: PMC2699470 DOI: 10.1371/journal.pone.0006116] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Accepted: 06/02/2009] [Indexed: 12/03/2022] Open
Abstract
Background Tuberculosis (TB) is the largest cause of death in human immunodeficiency virus type 1 (HIV-1) infection, having claimed an estimated one third to one half of the 30 million AIDS deaths that have occurred worldwide. Different strains of Mycobacterium tuberculosis (MTb), the causative agent of TB, are known to modify the host immune response in a strain-specific manner. However, a MTb strain-specific impact upon the regulation of HIV-1 replication has not previously been established. Methology/Principal Findings We isolated normal human peripheral blood mononuclear cells (PBMC) and co-infected them with HIV-1 and with either the well characterized CDC1551 or HN878 MTb clinical isolate. We show that HIV-1 co-infection with the CDC1551 MTb strain results in higher levels of virus replication relative to co-infection with the HN878 MTb strain ex vivo. Furthermore, we show that the distinct pattern of CDC1551 or HN878 induced HIV-1 replication is associated with significantly increased levels of TNF and IL-6, and of the transcription and nuclear translocation of the p65 subunit of the transcription factor NF-κB, by CDC1551 relative to HN878. Conclusions/Significance These results provide a precedent for TB strain-specific effects upon HIV-1 replication and thus for TB strain-specific pathogenesis in the outcome of HIV-1/TB co-infection. MTb strain-specific factors and mechanisms involved in the regulation of HIV-1 during co-infection will be of importance in understanding the basic pathogenesis of HIV-1/TB co-infection.
Collapse
Affiliation(s)
- Shahin Ranjbar
- Immune Disease Institute, Boston, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (SR); (AEG)
| | - Helena I. Boshoff
- The Tuberculosis Research Section, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Amara Mulder
- Immune Disease Institute, Boston, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Noman Siddiqi
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Eric J. Rubin
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Anne E. Goldfeld
- Immune Disease Institute, Boston, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (SR); (AEG)
| |
Collapse
|
186
|
Rong L, Perelson AS. Modeling HIV persistence, the latent reservoir, and viral blips. J Theor Biol 2009; 260:308-31. [PMID: 19539630 DOI: 10.1016/j.jtbi.2009.06.011] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Revised: 04/20/2009] [Accepted: 06/08/2009] [Indexed: 02/02/2023]
Abstract
HIV-1 eradication from infected individuals has not been achieved with the prolonged use of highly active antiretroviral therapy (HAART). The cellular reservoir for HIV-1 in resting memory CD4(+) T cells remains a major obstacle to viral elimination. The reservoir does not decay significantly over long periods of time but is able to release replication-competent HIV-1 upon cell activation. Residual ongoing viral replication may likely occur in many patients because low levels of virus can be detected in plasma by sensitive assays and transient episodes of viremia, or HIV-1 blips, are often observed in patients even with successful viral suppression for many years. Here we review our current knowledge of the factors contributing to viral persistence, the latent reservoir, and blips, and mathematical models developed to explore them and their relationships. We show how mathematical modeling has helped improve our understanding of HIV-1 dynamics in patients on HAART and of the quantitative events underlying HIV-1 latency, reservoir stability, low-level viremic persistence, and emergence of intermittent viral blips. We also discuss treatment implications related to these studies.
Collapse
Affiliation(s)
- Libin Rong
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | | |
Collapse
|
187
|
Zhou Y, Frey TK, Yang JJ. Viral calciomics: interplays between Ca2+ and virus. Cell Calcium 2009; 46:1-17. [PMID: 19535138 PMCID: PMC3449087 DOI: 10.1016/j.ceca.2009.05.005] [Citation(s) in RCA: 218] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Revised: 05/15/2009] [Accepted: 05/18/2009] [Indexed: 12/23/2022]
Abstract
Ca2+ is one of the most universal and versatile signaling molecules and is involved in almost every aspect of cellular processes. Viruses are adept at utilizing the universal Ca2+ signal to create a tailored cellular environment that meets their own demands. This review summarizes most of the known mechanisms by which viruses perturb Ca2+ homeostasis and utilize Ca2+ and cellular Ca2+-binding proteins to their benefit in their replication cycles. Ca2+ plays important roles in virion structure formation, virus entry, viral gene expression, posttranslational processing of viral proteins and virion maturation and release. As part of the review, we introduce an algorithm to identify linear “EF-hand” Ca2+-binding motifs which resulted in the prediction of a total of 93 previously unrecognized Ca2+-binding motifs in virus proteins. Many of these proteins are nonstructural proteins, a class of proteins among which Ca2+ interactions had not been formerly appreciated. The presence of linear Ca2+-binding motifs in viral proteins enlarges the spectrum of Ca2+–virus interplay and expands the total scenario of viral calciomics.
Collapse
Affiliation(s)
- Yubin Zhou
- Department of Chemistry, Georgia State University, 50 Decatur St., Atlanta, GA 30303 USA
| | | | | |
Collapse
|
188
|
Ballatori N, Krance SM, Notenboom S, Shi S, Tieu K, Hammond CL. Glutathione dysregulation and the etiology and progression of human diseases. Biol Chem 2009; 390:191-214. [PMID: 19166318 DOI: 10.1515/bc.2009.033] [Citation(s) in RCA: 739] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Glutathione (GSH) plays an important role in a multitude of cellular processes, including cell differentiation, proliferation, and apoptosis, and as a result, disturbances in GSH homeostasis are implicated in the etiology and/or progression of a number of human diseases, including cancer, diseases of aging, cystic fibrosis, and cardiovascular, inflammatory, immune, metabolic, and neurodegenerative diseases. Owing to the pleiotropic effects of GSH on cell functions, it has been quite difficult to define the role of GSH in the onset and/or the expression of human diseases, although significant progress is being made. GSH levels, turnover rates, and/or oxidation state can be compromised by inherited or acquired defects in the enzymes, transporters, signaling molecules, or transcription factors that are involved in its homeostasis, or from exposure to reactive chemicals or metabolic intermediates. GSH deficiency or a decrease in the GSH/glutathione disulfide ratio manifests itself largely through an increased susceptibility to oxidative stress, and the resulting damage is thought to be involved in diseases, such as cancer, Parkinson's disease, and Alzheimer's disease. In addition, imbalances in GSH levels affect immune system function, and are thought to play a role in the aging process. Just as low intracellular GSH levels decrease cellular antioxidant capacity, elevated GSH levels generally increase antioxidant capacity and resistance to oxidative stress, and this is observed in many cancer cells. The higher GSH levels in some tumor cells are also typically associated with higher levels of GSH-related enzymes and transporters. Although neither the mechanism nor the implications of these changes are well defined, the high GSH content makes cancer cells chemoresistant, which is a major factor that limits drug treatment. The present report highlights and integrates the growing connections between imbalances in GSH homeostasis and a multitude of human diseases.
Collapse
Affiliation(s)
- Nazzareno Ballatori
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, NY 14642, USA.
| | | | | | | | | | | |
Collapse
|
189
|
Rahier JF, Ben-Horin S, Chowers Y, Conlon C, De Munter P, D'Haens G, Domènech E, Eliakim R, Eser A, Frater J, Gassull M, Giladi M, Kaser A, Lémann M, Moreels T, Moschen A, Pollok R, Reinisch W, Schunter M, Stange EF, Tilg H, Van Assche G, Viget N, Vucelic B, Walsh A, Weiss G, Yazdanpanah Y, Zabana Y, Travis SPL, Colombel JF. European evidence-based Consensus on the prevention, diagnosis and management of opportunistic infections in inflammatory bowel disease. J Crohns Colitis 2009; 3:47-91. [PMID: 21172250 DOI: 10.1016/j.crohns.2009.02.010] [Citation(s) in RCA: 366] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Revised: 02/24/2009] [Accepted: 02/25/2009] [Indexed: 02/08/2023]
|
190
|
Garg R, Barat C, Ouellet M, Lodge R, Tremblay MJ. Leishmania infantum amastigotes enhance HIV-1 production in cocultures of human dendritic cells and CD4 T cells by inducing secretion of IL-6 and TNF-alpha. PLoS Negl Trop Dis 2009; 3:e441. [PMID: 19468304 PMCID: PMC2680485 DOI: 10.1371/journal.pntd.0000441] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Accepted: 04/23/2009] [Indexed: 12/20/2022] Open
Abstract
Background Visceral leishmaniasis has emerged as an important opportunistic disease among patients infected with HIV-1. Both HIV-1 and the protozoan parasite Leishmania can productively infect cells of the macrophage-dendritic cell lineage. Methodology/Principal Findings Here we demonstrate that Leishmania infantum amastigotes increase HIV-1 production when human primary dendritic cells (DCs) are cocultured together with autologous CD4+ T cells. Interestingly, the promastigote form of the parasite does not modulate virus replication. Moreover, we report that amastigotes promote virus replication in both cell types. Our results indicate that this process is due to secretion of parasite-induced soluble factors by DCs. Luminex micro-beads array system analyses indicate that Leishmania infantum amastigotes induce a higher secretion of several cytokines (i.e. IL-1α, IL-2, IL-6, IL-10 and TNF-α) and chemokines (i.e. MIP-1α, MIP-1β and RANTES) in these cells. Studies conducted with pentoxifylline and neutralizing antibodies revealed that the Leishmania-dependent augmentation in HIV-1 replication is due to a higher secretion of IL-6 and TNF-α. Conclusions/Significance Altogether these findings suggest that the presence of Leishmania within DC/T-cell conjugates leads to an enhancement of virus production and demonstrate that HIV-1 and Leishmania can establish complex interactions in such a cellular microenvironment. Visceral leishmaniasis (VL) is a potentially deadly parasitic disease afflicting millions worldwide. Although itself an important infectious illness, VL has also emerged as an opportunistic disease among patients infected with HIV-1. This is partly due to the increasing overlap between urban regions of high HIV-1 transmission and areas where Leishmania is endemic. Furthermore, VL increases the development and clinical progression of AIDS-related diseases. Conversely, HIV-1-infected individuals are at greater risk of developing VL or suffering relapse. Finally, HIV-1 and Leishmania can both productively infect cells of the macrophage-dendritic cell lineage, resulting in a cumulative deficiency of the immune response. We therefore studied the effect of Leishmania infantum on HIV-1 production when dendritic cells (DCs) are cocultured with autologous CD4+ T cells. We show that amastigotes promote virus replication in both DCs and lymphocytes, due to a parasite-mediated production of soluble factors by DCs. Micro-beads array analyses indicate that Leishmania infantum amastigotes infection induces a higher secretion of several cytokines in these cells, and use of specific neutralizing antibodies revealed that the Leishmania-induced increase in HIV-1 replication is due to IL-6 and TNF-α. These findings suggest that Leishmania's presence within DC/T-cell conjugates leads to an enhanced HIV-1 production.
Collapse
Affiliation(s)
- Ravendra Garg
- Centre de Recherche en Infectiologie, Centre Hospitalier de l'Université Laval, and Faculté de Médecine, Université Laval, Québec, Québec, Canada
| | - Corinne Barat
- Centre de Recherche en Infectiologie, Centre Hospitalier de l'Université Laval, and Faculté de Médecine, Université Laval, Québec, Québec, Canada
| | - Michel Ouellet
- Centre de Recherche en Infectiologie, Centre Hospitalier de l'Université Laval, and Faculté de Médecine, Université Laval, Québec, Québec, Canada
| | - Robert Lodge
- Centre de Recherche en Infectiologie, Centre Hospitalier de l'Université Laval, and Faculté de Médecine, Université Laval, Québec, Québec, Canada
| | - Michel J. Tremblay
- Centre de Recherche en Infectiologie, Centre Hospitalier de l'Université Laval, and Faculté de Médecine, Université Laval, Québec, Québec, Canada
- * E-mail:
| |
Collapse
|
191
|
Emer JJ. Is There a Potential Role for Anti-tumor Necrosis Factor Therapy in Patients with Human Immunodeficiency Virus? THE JOURNAL OF CLINICAL AND AESTHETIC DERMATOLOGY 2009; 2:29-35. [PMID: 20729936 PMCID: PMC2923946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Anti-tumor necrosis factor therapy has shown remarkable safety and efficacy in the treatment of many autoimmune and inflammatory disorders, although limited published data exists regarding these treatments in patients with concomitant human immunodeficiency virus and/or acquired immune deficiency syndrome. The use of tumor necrosis factor inhibition is associated with an increased risk of severe infections, including tuberculosis and risk of worsening hepatitis B virus, but its effect on viral infections is conflicting. Currently, package inserts for the three anti-tumor necrosis factor medications (infliximab, etanercept, and adalimumab) affirm that caution should be exercised when considering their use in patients with chronic infection or a history of recurrent infection, as clinical trials for these medications have historically excluded patients with chronic viral infections. With the increasing prevalence of chronic viral infections in patients who are candidates for anti-tumor necrosis factor therapy, there is reason for additional research to assess the safety, efficacy, and potential role of tumor necrosis factor inhibition in this population. This article is an up-to-date review of the emerging use of biologic therapies in patients infected with the human immunodeficiency virus and concurrent psoriatic or rheumatological disease.
Collapse
Affiliation(s)
- Jason J Emer
- The Mount Sinai School of Medicine, Department of Dermatology, New York, New York
| |
Collapse
|
192
|
Graci JD, Colacino JM, Peltz SW, Dougherty JP, Gu Z. HIV Type-1 Latency: Targeted Induction of Proviral Reservoirs. ACTA ACUST UNITED AC 2009; 19:177-87. [DOI: 10.1177/095632020901900501] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
HIV type-1 (HIV-1) can establish a state of latency in infected patients, most notably in resting CD4+ T-cells. This long-lived reservoir allows for rapid re-emergence of viraemia upon cessation of highly active antiretroviral therapy, even after extensive and seemingly effective treatment. Successful depletion of such latent reservoirs is probably essential to ‘cure’ HIV-1 infection and will require therapeutic agents that can specifically and efficiently act on cells harbouring latent HIV-1 provirus. The mechanisms underlying HIV-1 latency are not well characterized, and it is becoming clear that numerous factors, both cell- and virus-derived, are involved in the maintenance of proviral latency. The interplay of these various factors in the context of viral reactivation is still poorly understood. In this article, we review the current knowledge regarding the mechanisms underlying maintenance of HIV-1 latency, both transcriptional and post-transcriptional, with a focus on potential targets that might be exploited to therapeutically purge latent proviral reservoirs from infected patients.
Collapse
Affiliation(s)
| | | | | | - Joseph P Dougherty
- Department of Molecular Genetics, Microbiology, and Immunology, University of Medicine & Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Zhengxian Gu
- PTC Therapeutics, Inc., South Plainfield, NJ, USA
| |
Collapse
|
193
|
Isolation of a cellular factor that can reactivate latent HIV-1 without T cell activation. Proc Natl Acad Sci U S A 2009; 106:6321-6. [PMID: 19336585 DOI: 10.1073/pnas.0809536106] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
HIV-1 latency in resting CD4(+) T cells represents a major barrier to virus eradication in patients on highly active antiretroviral therapy (HAART). Eliminating the latent HIV-1 reservoir may require the reactivation of viral gene expression in latently infected cells. Most approaches for reactivating latent HIV-1 require nonspecific T cell activation, which has potential toxicity. To identify factors for reactivating latent HIV-1 without inducing global T cell activation, we performed a previously undescribed unbiased screen for genes that could activate transcription from the HIV-1 LTR in an NF-kappaB-independent manner, and isolated an alternatively spliced form of the transcription factor Ets-1, DeltaVII-Ets-1. DeltaVII-Ets-1 activated HIV-1 transcription through 2 conserved regions in the LTR, and reactivated latent HIV-1 in cells from patients on HAART without causing significant T cell activation. Our results highlight the therapeutic potential of cellular factors for the reactivation of latent HIV-1 and provide an efficient approach for their identification.
Collapse
|
194
|
Bren GD, Trushin SA, Whitman J, Shepard B, Badley AD. HIV gp120 induces, NF-kappaB dependent, HIV replication that requires procaspase 8. PLoS One 2009; 4:e4875. [PMID: 19287489 PMCID: PMC2653723 DOI: 10.1371/journal.pone.0004875] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Accepted: 02/18/2009] [Indexed: 12/24/2022] Open
Abstract
Background HIV envelope glycoprotein gp120 causes cellular activation resulting in anergy, apoptosis, proinflammatory cytokine production, and through an unknown mechanism, enhanced HIV replication. Methodology/Principal Findings We describe that the signals which promote apoptosis are also responsible for the enhanced HIV replication. Specifically, we demonstrate that the caspase 8 cleavage fragment Caspase8p43, activates p50/p65 Nuclear Factor κB (NF-κB), in a manner which is inhibited by dominant negative IκBα. This caspase 8 dependent NF-κB activation occurs following stimulation with gp120, TNF, or CD3/CD28 crosslinking, but these treatments do not activate NF-κB in cells deficient in caspase 8. The Casp8p43 cleavage fragment also transactivates the HIV LTR through NF-κB, and the absence of caspase 8 following HIV infection greatly inhibits HIV replication. Conclusion/Significance Gp120 induced caspase 8 dependent NF-κB activation is a novel pathway of HIV replication which increases understanding of the biology of T-cell death, as well as having implications for understanding treatment and prevention of HIV infection.
Collapse
Affiliation(s)
- Gary D. Bren
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Sergey A. Trushin
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, United States of America
- Program in Translational Immunovirology and Biodefense, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Joe Whitman
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Brett Shepard
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Andrew D. Badley
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, United States of America
- Program in Translational Immunovirology and Biodefense, Mayo Clinic, Rochester, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
195
|
Extracellular high mobility group box-1 inhibits R5 and X4 HIV-1 strains replication in mononuclear phagocytes without induction of chemokines and cytokines. AIDS 2009; 23:567-77. [PMID: 19194273 DOI: 10.1097/qad.0b013e328325a47e] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE High mobility group box-1 (HMGB1) is a nuclear chromatin protein. Furthermore, it induces chemotaxis and inflammation once released in the extracellular milieu, and it has been reported to upregulate, but also to inhibit HIV-1 replication in different cell types. We here investigated the potential role of extracellular HMGB1 in both R5 and X4 HIV-1 replication in primary human monocyte-derived macrophages (MDM) and U937 promonocytic cells, respectively. DESIGN MDM or U937 cells were infected with R5 and X4 HIV-1 strains, respectively, in the presence or absence of endotoxin-free recombinant (r) HMGB1 or necrotic cell supernatants either containing or depleted of endogenous HMGB1. METHODS HIV replication was measured by means of virion-associated reverse transcriptase activity in culture supernatants and cell-associated viral protein expression. Cytokine and chemokine production were measured by enzyme-linked immunosorbent assay; cell surface expression of CD4, CC chemokine receptor 5, receptor for advanced glycation end-products, Toll-like receptor-2 and Toll-like receptor-4 were analyzed by flow cytometry. RESULTS Both rHMGB1 and necrotic cell supernatant-associated HMGB1 inhibited replication of R5 HIV-1 in MDM. Surprisingly enough, no upregulation of CC chemokine receptor 5-binding chemokines or of other chemokines and cytokines was observed in rHMGB1-stimulated MDM. HMGB1 also induced chemotaxis and strongly inhibited the replication of X4 HIV-1 in the 'Minus' subset of U937 cell clones expressing high levels of putative HMGB1 receptors (receptor for advanced glycation end-products, Toll-like receptors 2 and 4). CONCLUSION Extracellular HMGB1 is a potent inhibitor of both R5 and X4 HIV-1 replication in mononuclear phagocytic cells without inducing the release of HIV-Modulatory chemokines or cytokines.
Collapse
|
196
|
Murakami T, Harada H, Suico MA, Shuto T, Suzu S, Kai H, Okada S. Ephedrae herba, a component of Japanese herbal medicine Mao-to, efficiently activates the replication of latent human immunodeficiency virus type 1 (HIV-1) in a monocytic cell line. Biol Pharm Bull 2009; 31:2334-7. [PMID: 19043222 DOI: 10.1248/bpb.31.2334] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The persistence of latent human immunodeficiency virus type 1 (HIV-1)-infected cellular reservoirs, despite prolonged treatment with highly active antiretroviral therapy (HAART), represents a major hurdle to virus eradication. In this study, we evaluated the effect of Japanese herbal medicine on the induction of HIV-1 replication in latently infected monocytic cell line, U1, in order to eradicate virus efficiently. We found that Mao-to was able to induce HIV-1 replication either alone or in combination with tumor necrosis factor-alpha (TNF-alpha). Among the four components of Mao-to, only Ephedrae herba had strong effects in inducing HIV-1 replication. Analysis by Western blotting revealed that Ephedrae herba induced the nuclear translocation of nuclear factor-kappa B (NF-kappaB). Reporter assay data also showed that Ephedrae herba and, slightly, Mao-to activated the NF-kappaB promoter, indicating that these herbal agents may induce HIV-1 replication through NF-kappaB activation. These findings suggest that Mao-to and its component, Ephedrea herba, may be good candidates to augment HAART by inducing the expression of latent HIV-1 with the ultimate goal of eliminating persistent viral reservoirs in individuals infected with HIV-1.
Collapse
Affiliation(s)
- Toru Murakami
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Global COE Cell Fate Regulation Research and Education Unit, Kumamoto University, Japan
| | | | | | | | | | | | | |
Collapse
|
197
|
Abstract
Recent research has emphasized the notion that human immunodeficiency virus type 1 (HIV-1) latency is controlled by a restrictive histone code at, or DNA methylation of, the integrated viral promoter (long terminal repeat [LTR]). The present concept of HIV-1 latency has essentially been patterned from the principles of cellular gene regulation. Here we introduce an experimental system that allows for the qualitative and quantitative kinetic study of latency establishment and maintenance at the population level. In this system, we find no evidence that HIV-1 latency establishment is the consequence of downregulation of initial active infection followed by the establishment of a restrictive histone code at the viral LTR. Latent infection was established following integration of the virus in the absence of viral gene expression (silent integration) and was a function of the NF-kappaB activation level in the host cell at the time of infection. In the absence of a role for epigenetic regulation, we demonstrate that transcriptional interference, a mechanism that has recently been suggested to add to the stabilization of HIV-1 latency, is the primary mechanism to govern latency maintenance. These findings provide direct experimental evidence that the high number of viral integration events (>90%) found in actively expressed genes of CD4(+) memory T cells from highly active antiretroviral therapy-suppressed patients represent indeed latent infection events and that transcriptional interference may be the primary mechanism to control HIV-1 latency in vivo. HIV-1 latency may thus not be governed by the principles of cellular gene regulation, and therapeutic strategies to deplete the pool of latently HIV-1-infected cells should be reconsidered.
Collapse
|
198
|
Follicular dendritic cells and human immunodeficiency virus type 1 transcription in CD4+ T cells. J Virol 2008; 83:150-8. [PMID: 18971284 DOI: 10.1128/jvi.01652-08] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
HIV replication occurs throughout the natural course of infection in secondary lymphoid tissues and in particular within the germinal centers (GCs), where follicular dendritic cells (FDCs) are adjacent to CD4(+) T cells. Because FDCs provide signaling that increases lymphocyte activation, we postulated that FDCs could increase human immunodeficiency virus (HIV) replication. We cultured HIV-infected CD4(+) T cells alone or with FDCs and measured subsequent virus expression using HIV-p24 production and reverse transcription-PCR analyses. When cultured with FDCs, infected CD4(+) T cells produced almost fourfold more HIV than when cultured alone, and the rate of virus transcription was doubled. Both FDCs and their supernatant increased HIV transcription and resulted in nuclear translocation of NF-kappaB and phosphorylated c-Jun in infected cells. FDCs produced soluble tumor necrosis factor alpha (TNF-alpha) ex vivo, and the addition of a blocking soluble TNF receptor ablated FDC-mediated HIV transcription. Furthermore, TNF-alpha was found highly expressed within GCs, and ex vivo GC CD4(+) T cells supported greater levels of HIV-1 replication than other CD4(+) T cells. These data indicated that FDCs increase HIV transcription and production by a soluble TNF-alpha-mediated mechanism. This FDC-mediated effect may account, at least in part, for the presence of persistent HIV replication in GCs. Therefore, in addition to providing an important reservoir of infectious virus, FDCs increase HIV production, contributing to a tissue microenvironment that is highly conducive to HIV transmission and expression.
Collapse
|
199
|
Han Y, Lin YB, An W, Xu J, Yang HC, O'Connell K, Dordai D, Boeke JD, Siliciano JD, Siliciano RF. Orientation-dependent regulation of integrated HIV-1 expression by host gene transcriptional readthrough. Cell Host Microbe 2008; 4:134-46. [PMID: 18692773 DOI: 10.1016/j.chom.2008.06.008] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Revised: 04/09/2008] [Accepted: 05/23/2008] [Indexed: 12/11/2022]
Abstract
Integrated HIV-1 genomes are found within actively transcribed host genes in latently infected CD4(+) T cells. Readthrough transcription of the host gene might therefore suppress HIV-1 gene expression and promote the latent infection that allows viral persistence in patients on therapy. To address the effect of host gene readthrough, we used homologous recombination to insert HIV-1 genomes in either orientation into an identical position within an intron of an actively transcribed host gene, hypoxanthine-guanine phosphoribosyltransferase (HPRT). Constructs were engineered to permit or block readthrough transcription of HPRT. Readthrough transcription inhibited HIV-1 gene expression for convergently orientated provirus but enhanced HIV-1 gene expression when HIV-1 was in the same orientation as the host gene. Orientation had a >10-fold effect on HIV-1 gene expression. Due to the nature of HIV-1 integration sites in vivo, this orientation-dependent regulation can influence the vast majority of infected cells and adds complexity to the maintenance of latency.
Collapse
Affiliation(s)
- Yefei Han
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
200
|
Abstract
The use of antiretroviral therapy in HIV type 1 (HIV-1)-infected patients does not lead to virus eradication. This is due, to a significant degree, to the fact that HIV-1 can establish a highly stable reservoir of latently infected cells. In this work, we describe an ex vivo experimental system that generates high levels of HIV-1 latently infected memory cells using primary CD4+ T cells. Using this model, we were able to dissect the T cell-signaling pathways and to characterize the long terminal repeat (LTR) cis-acting elements involved in reactivation of HIV-1 in memory CD4+ T cells. We conclude that Lck and nuclear factor of activated T cells (NFAT), but not NF-kappaB, are required for optimal latent virus reactivation in memory T cells. We also found that the cis-acting elements which are critical toward HIV-1 reactivation are the Sp1 and kappaB/NFAT transcription factor binding sites.
Collapse
|