151
|
Wang Q, Wang P, Zhou H, Hu Y, Xie C, Gao F, Ma N, Hou H, Zhang H, Li L. 5-Azacytidine specifically inhibits the NIH-3T3 PCD process induced by TNF-alpha and cycloheximide via affecting BCL-XL. J Cell Biochem 2017; 119:1501-1510. [PMID: 28777484 DOI: 10.1002/jcb.26310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 08/02/2017] [Indexed: 11/09/2022]
Abstract
DNA methylation plays a crucial role in lots of biological processes and cancer. 5-azacytidine (5-AC), a DNA methylation inhibitor, has been used as a potential chemotherapeutic agent for cancer. In this study, we used 5-AC treatment to investigate whether DNA methylation was involved in regulation of programmed cell death (PCD) in mouse embryo fibroblast NIH-3T3 cells which could undergo PCD after treatment with TNF-α and cycloheximide (CHX). The results showed that the genomic DNA of NIH-3T3 cells was hypermethylated during PCD induced by TNF-α and CHX, and 5-AC might prevent this PCD process. However, treatment with the other three DNA methylation inhibitors, 5-aza-deoxycytidine, 6-thioguanine and RG108, did not interfere with the NIH-3T3 cell PCD process. Additionally, knockdown of DNMT1 did not affect the apoptosis process. The present results and observations indicated that 5-AC specifically inhibited the NIH-3T3 apoptosis process via a genomic DNA methylation-independent pathway. During the TNF-α and CHX-inducing apoptosis process, the PCD related BCL-2 family proteins were significantly down-regulated. Furthermore, after the small interference RNA-mediated knockdown of BCL-XL, one of the BCL-2 family proteins, 5-AC did not inhibit the apoptosis process, suggesting that 5-AC inhibited the PCD process induced by TNF-α and CHX by affecting the anti-apoptotic protein BCL-XL.
Collapse
Affiliation(s)
- Qing Wang
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Pu Wang
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Hong Zhou
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Yan Hu
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Chengshen Xie
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Fei Gao
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Ningjie Ma
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Haoli Hou
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Hao Zhang
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Lijia Li
- College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
152
|
Mahalingaiah PKS, Ponnusamy L, Singh KP. Oxidative stress-induced epigenetic changes associated with malignant transformation of human kidney epithelial cells. Oncotarget 2017; 8:11127-11143. [PMID: 27655674 PMCID: PMC5355252 DOI: 10.18632/oncotarget.12091] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 09/05/2016] [Indexed: 12/17/2022] Open
Abstract
Renal Cell Carcinoma (RCC) in humans is positively influenced by oxidative stress status in kidneys. We recently reported that adaptive response to low level of chronic oxidative stress induces malignant transformation of immortalized human renal tubular epithelial cells. Epigenetic alterations in human RCC are well documented, but its role in oxidative stress-induced malignant transformation of kidney cells is not known. Therefore, the objective of this study was to evaluate the potential role of epigenetic changes in chronic oxidative stress-induced malignant transformation of HK-2, human renal tubular epithelial cells. The results revealed aberrant expression of epigenetic regulatory genes involved in DNA methylation (DNMT1, DNMT3a and MBD4) and histone modifications (HDAC1, HMT1 and HAT1) in HK-2 cells malignantly transformed by chronic oxidative stress. Additionally, both in vitro soft agar assay and in vivo nude mice study showing decreased tumorigenic potential of malignantly transformed HK-2 cells following treatment with DNA de-methylating agent 5-aza 2’ dC further confirmed the crucial role of DNA hypermethyaltion in oxidative stress-induced malignant transformation. Changes observed in global histone H3 acetylation (H3K9, H3K18, H3K27 and H3K14) and decrease in phospho-H2AX (Ser139) also suggest potential role of histone modifications in increased survival and malignant transformation of HK-2 cells by oxidative stress. In summary, the results of this study suggest that epigenetic reprogramming induced by low levels of oxidative stress act as driver for malignant transformation of kidney epithelial cells. Findings of this study are highly relevant in potential clinical application of epigenetic-based therapeutics for treatments of kidney cancers.
Collapse
Affiliation(s)
- Prathap Kumar S Mahalingaiah
- Department of Environmental Toxicology, The Institute of Environmental and Human Health (TIEHH), Texas Tech University, Lubbock, Texas, USA
| | - Logeswari Ponnusamy
- Department of Environmental Toxicology, The Institute of Environmental and Human Health (TIEHH), Texas Tech University, Lubbock, Texas, USA
| | - Kamaleshwar P Singh
- Department of Environmental Toxicology, The Institute of Environmental and Human Health (TIEHH), Texas Tech University, Lubbock, Texas, USA
| |
Collapse
|
153
|
pVHL suppresses Akt/β-catenin-mediated cell proliferation by inhibiting 14-3-3ζ expression. Biochem J 2017; 474:2679-2689. [DOI: 10.1042/bcj20161097] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 06/16/2017] [Accepted: 06/28/2017] [Indexed: 12/12/2022]
Abstract
The mechanisms controlling degradation of cytosolic β-catenin are important for regulating β-catenin co-transcriptional activity. Loss of von Hippel–Lindau protein (pVHL) has been shown to stabilize β-catenin, increasing β-catenin transactivation and β-catenin-mediated cell proliferation. However, the role of phosphoinositide 3-kinase (PI3K)/Akt in the regulation of β-catenin signaling downstream from pVHL has never been addressed. Here, we report that hyperactivation of PI3K/Akt in cells lacking pVHL contributes to the stabilization and nuclear accumulation of active β-catenin. PI3K/Akt hyperactivation is facilitated by the up-regulation of 14-3-3ζ and the down-regulation of 14-3-3ε, 14-3-3η and 14-3-3θ. Up-regulation of 14-3-3ζ in response to pVHL is important for the recruitment of PI3K to the cell membrane and for stabilization of soluble β-catenin. In contrast, 14-3-3ε and 14-3-3η enhanced PI3K/Akt signaling by inhibiting PI3K and PDK1, respectively. Thus, our results demonstrated that 14-3-3 family members enhance PI3K/Akt/β-catenin signaling in order to increase proliferation. Inhibition of Akt activation and/or 14-3-3 function strongly reduces β-catenin signaling and decreases cell proliferation. Thus, inhibition of Akt and 14-3-3 function efficiently reduces cell proliferation in 786-0 cells characterized by hyperactivation of β-catenin signaling due to pVHL loss.
Collapse
|
154
|
Xi Y, Tang W, Yang S, Li M, He Y, Fu X. Mining the glioma susceptibility genes in children from gene expression profiles and a methylation database. Oncol Lett 2017; 14:3473-3479. [PMID: 28927102 PMCID: PMC5587983 DOI: 10.3892/ol.2017.6579] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 10/24/2016] [Indexed: 01/05/2023] Open
Abstract
Glioma is the most common type of primary brain tumor, which is associated with a poor prognosis due to its aggressive growth behavior and highly invasive nature. Research regarding glioma pathogenesis is expected to provide novel methods of adjuvant therapy for the treatment of glioma. The use of bioinformatics to identify candidate genes is commonly used to understand the genetic basis of disease. The present study used bioinformatics to mine the disease-related genes using gene expression profiles (GSE50021) and dual-channel DNA methylation data (GSE50022). The results identified 17 methylation sites located on 33 transcription factor binding sites, which may be responsible for downregulation of 17 target genes. glutamate metabotropic receptor 2 was one of the 17 downregulated target genes. Furthermore, inositol-trisphosphate 3-kinase A (ITPKA) was revealed to be the gene most associated with the risk of glioma in children. The protein coded by the ITPKA gene appeared in all risk sub-pathways, thus suggesting that ITPKA was the gene most associated with the risk of glioma, and inositol phosphate metabolism may be a key pathway associated with glioma in children. The identification of specific genes helps to determine the pathogenesis and possible therapeutic targets for the treatment of glioma in children.
Collapse
Affiliation(s)
- Yongqiang Xi
- Department of Neurosurgery, The Third People's Hospital of Chengyang, Qingdao, Shandong 266100, P.R. China
| | - Wanzhong Tang
- Department of Neurosurgery, Affiliated Hospital of Medical College of Qingdao University, Qingdao, Shandong 266100, P.R. China
| | - Song Yang
- Department of Neurosurgery, Suqian First Hospital, Suqian, Jiangsu 223800, P.R. China
| | - Maolei Li
- Department of Neurosurgery, People's Hospital of Chengyang, Qingdao, Shandong 266100, P.R. China
| | - Yuchao He
- Department of Neurosurgery, Suqian First Hospital, Suqian, Jiangsu 223800, P.R. China
| | - Xianhua Fu
- Department of Neurosurgery, Suqian First Hospital, Suqian, Jiangsu 223800, P.R. China
| |
Collapse
|
155
|
Raju I, Kaushal GP, Haun RS. Epigenetic regulation of KLK7 gene expression in pancreatic and cervical cancer cells. Biol Chem 2017; 397:1135-1146. [PMID: 27279059 DOI: 10.1515/hsz-2015-0307] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 06/05/2016] [Indexed: 01/19/2023]
Abstract
Kallikrein-related peptidase 7 (KLK7) is a serine protease encoded within the kallikrein gene cluster located on human chromosome region 19q13.3-13.4. KLK7 is overexpressed in human pancreatic ductal adenocarcinomas (PDACs), but not in normal pancreas. Examination of KLK7 mRNA levels in pancreatic cancer cell lines revealed that it is readily detected in MIA PaCa-2 and PK-1 cells, but not in Panc-1 cells. Treatment of Panc-1 cells with the histone deacetylase (HDAC) inhibitor trichostatin A (TSA) significantly induced KLK7 mRNA expression. Similarly, KLK7 is highly expressed in cervical cancer cells, but its expression in the human cervical cancer cell line HeLa is only detected following TSA treatment. Promoter deletion analysis revealed that the proximal -238 promoter region, containing a putative Sp1-binding site, was sufficient for TSA activation of luciferase reporter activity, which was abrogated by the disruption of the Sp1-binding sequence. Consistent with the notion that TSA induced KLK7 expression via Sp1, co-expression of Sp1 with the KLK7-promoter/luciferase construct produced a significant increase in reporter activity. Chromatin immunoprecipitation (ChIP) analysis revealed enriched Sp1 occupancy on the KLK7 promoter following TSA treatment. Similarly, ChIP analysis showed the histone active mark, H3K4Me3, in the KLK7 promoter region was significantly increased after exposure to TSA.
Collapse
|
156
|
Abstract
Decades of studies have shown that epigenetic alterations play a significant role on cancer development both in vitro and in vivo. However, considering that many cancers harbor mutations at epigenetic modifier genes and that transcription factor-mediated gene regulations are tightly coupled with epigenetic modifications, the majority of epigenetic alterations in cancers could be the consequence of the dysfunction or dysregulation of epigenetic modifiers caused by genetic abnormalities. Therefore, it remains unclear whether bona fide epigenetic abnormalities have causal roles on cancer development. Reprogramming technologies enable us to actively alter epigenetic regulations while preserving genomic information. Taking advantage, recent studies have provided in vivo evidence for the significant impact of epigenetic abnormalities on the initiation, maintenance and progression of cancer cells.
Collapse
Affiliation(s)
- Kenji Ito
- Center for iPS Cell Research & Application, Kyoto University, Kyoto 606-8507, Japan
| | - Yasuhiro Yamada
- Center for iPS Cell Research & Application, Kyoto University, Kyoto 606-8507, Japan
| |
Collapse
|
157
|
Genetic Counseling in Von Hippel-Lindau Disease: Navigating the Landscape of a Well-Established Syndrome. CURRENT GENETIC MEDICINE REPORTS 2017. [DOI: 10.1007/s40142-017-0119-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
158
|
Gu YF, Cohn S, Christie A, McKenzie T, Wolff N, Do QN, Madhuranthakam AJ, Pedrosa I, Wang T, Dey A, Busslinger M, Xie XJ, Hammer RE, McKay RM, Kapur P, Brugarolas J. Modeling Renal Cell Carcinoma in Mice: Bap1 and Pbrm1 Inactivation Drive Tumor Grade. Cancer Discov 2017; 7:900-917. [PMID: 28473526 DOI: 10.1158/2159-8290.cd-17-0292] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 04/29/2017] [Accepted: 05/02/2017] [Indexed: 12/22/2022]
Abstract
Clear cell renal cell carcinoma (ccRCC) is characterized by BAP1 and PBRM1 mutations, which are associated with tumors of different grade and prognosis. However, whether BAP1 and PBRM1 loss causes ccRCC and determines tumor grade is unclear. We conditionally targeted Bap1 and Pbrm1 (with Vhl) in the mouse using several Cre drivers. Sglt2 and Villin proximal convoluted tubule drivers failed to cause tumorigenesis, challenging the conventional notion of ccRCC origins. In contrast, targeting with PAX8, a transcription factor frequently overexpressed in ccRCC, led to ccRCC of different grades. Bap1-deficient tumors were of high grade and showed greater mTORC1 activation than Pbrm1-deficient tumors, which exhibited longer latency. Disrupting one allele of the mTORC1 negative regulator, Tsc1, in Pbrm1-deficient kidneys triggered higher grade ccRCC. This study establishes Bap1 and Pbrm1 as lineage-specific drivers of ccRCC and histologic grade, implicates mTORC1 as a tumor grade rheostat, and suggests that ccRCCs arise from Bowman capsule cells.Significance: Determinants of tumor grade and aggressiveness across cancer types are poorly understood. Using ccRCC as a model, we show that Bap1 and Pbrm1 loss drives tumor grade. Furthermore, we show that the conversion from low grade to high grade can be promoted by activation of mTORC1. Cancer Discov; 7(8); 900-17. ©2017 AACR.See related commentary by Leung and Kim, p. 802This article is highlighted in the In This Issue feature, p. 783.
Collapse
Affiliation(s)
- Yi-Feng Gu
- Department of Internal Medicine, Hematology-Oncology Division, The University of Texas Southwestern Medical Center, Dallas, Texas.,Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Shannon Cohn
- Department of Internal Medicine, Hematology-Oncology Division, The University of Texas Southwestern Medical Center, Dallas, Texas.,Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Alana Christie
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Tiffani McKenzie
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Nicholas Wolff
- Department of Internal Medicine, Hematology-Oncology Division, The University of Texas Southwestern Medical Center, Dallas, Texas.,Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Quyen N Do
- Department of Radiology and the Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Ananth J Madhuranthakam
- Department of Radiology and the Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Ivan Pedrosa
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Radiology and the Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Tao Wang
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, Texas.,Quantitative Biomedical Research Center, Department of Clinical Sciences, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Anwesha Dey
- Department of Molecular Oncology, Genentech, South San Francisco, California
| | | | - Xian-Jin Xie
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Clinical Sciences, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Robert E Hammer
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Renée M McKay
- Department of Internal Medicine, Hematology-Oncology Division, The University of Texas Southwestern Medical Center, Dallas, Texas.,Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Payal Kapur
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, Texas. .,Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - James Brugarolas
- Department of Internal Medicine, Hematology-Oncology Division, The University of Texas Southwestern Medical Center, Dallas, Texas. .,Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
159
|
Wen WS, Hu SL, Ai Z, Mou L, Lu JM, Li S. Methylated of genes behaving as potential biomarkers in evaluating malignant degree of glioblastoma. J Cell Physiol 2017; 232:3622-3630. [PMID: 28145562 DOI: 10.1002/jcp.25831] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 01/30/2017] [Indexed: 12/13/2022]
Abstract
Abnormal methylation genes usually act as oncogenes or anti-oncogenes in the occurrence and development of tumor, indicating their potential role as biomarkers in the evaluation of malignant tumor. However, the research on methylation's association with glioblastoma was rare. We attempted to figure out whether the methylation of genes could serve as the biomarker in evaluating the malignant degree of GBM. Methylation microarray data of 275 GBM patients have been downloaded from The Cancer Genome Atlas (TCGA) dataset. Logistic regression was used to find the methylated genes associated with the malignant degree of patients with the tumor. Functional enrichment analysis and network analysis were further performed on these selected genes. A total of 668, 412, 470, and 620 genes relevant with the methylation or demethylation were found to be associated with the malignant degree, Grades 1-4 of tumor. The higher the degree of malignant tumor, the higher of its methylation degree of its corresponding genes. GO and KEGG analysis results showed that these methylated genes were enriched in many functions as cell adhesion, abnormal transcription, and cell cycle disorder, etc. Of note, CCL11 and LCN11 were found to be significantly related to the progression of GBM. Critical genes associated with cell cycle as CCL11 and LCN1 may play essential roles in the occurrence, development, and transition of glioblastoma. More research was needed to explore its potential molecular mechanism.
Collapse
Affiliation(s)
- Wan-Shun Wen
- Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang Province, China
| | - Sheng-Li Hu
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Zhibing Ai
- Department of Neurology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Lin Mou
- Department of Ophthalmology, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Longmatan District, Luzhou, China
| | - Jing-Min Lu
- Department of Neurology, The Second People's Hospital of Huai'an, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Sen Li
- Department of Spinal Surgery, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Longmatan District, Luzhou, China
| |
Collapse
|
160
|
Mjønes PG, Nordrum IS, Qvigstad G, Sørdal Ø, Rian LLM, Waldum HL. Expression of erythropoietin and neuroendocrine markers in clear cell renal cell carcinoma. APMIS 2017; 125:213-222. [PMID: 28233444 DOI: 10.1111/apm.12654] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 11/26/2016] [Indexed: 12/21/2022]
Abstract
The aim of the study was to investigate the expression of erythropoietin and neuroendocrine markers in clear cell renal cell carcinoma (CCRCC). We retrospectively reviewed the medical records and re-evaluated histopathological specimens of 33 patients with CCRCC and compared with those of 11 cases of non-CCRCC. All patients were treated with a partial or radical nephrectomy at St. Olavs Hospital, Trondheim University Hospital, between 2010 and 2016. Thirty-three patients who were diagnosed with CCRCC had a total of 35 tumours, where 34 of the tumours were CCRCC and one was papillary adenoma. Thirty-three (97%) of 34 CCRCCs were positive for erythropoietin, and the same 33 (97%) tumours demonstrated strong expression for neuron-specific enolase (NSE). Two (6%) of 34 CCRCCs had a positive reaction for synaptophysin, and three (9%) of 34 were positive for CD56. Erythropoietin and NSE were negative in non-CCRCCs, and chromogranin A was negative in all tumours. The above findings suggest that there is a strong association between CCRCC and the expression of erythropoietin and NSE.
Collapse
Affiliation(s)
- Patricia G Mjønes
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Department of Pathology and Medical Genetics, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Ivar S Nordrum
- Department of Pathology and Medical Genetics, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway.,Department of Laboratory Medicine, Children's and Woman's Health, NTNU, Trondheim, Norway
| | - Gunnar Qvigstad
- Department of Gastroenterology and Hepatology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Øystein Sørdal
- Department of Gastroenterology and Hepatology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | | | - Helge L Waldum
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Department of Gastroenterology and Hepatology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| |
Collapse
|
161
|
Hossain T, Mahmudunnabi G, Masud MK, Islam MN, Ooi L, Konstantinov K, Hossain MSA, Martinac B, Alici G, Nguyen NT, Shiddiky MJA. Electrochemical biosensing strategies for DNA methylation analysis. Biosens Bioelectron 2017; 94:63-73. [PMID: 28259051 DOI: 10.1016/j.bios.2017.02.026] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 02/15/2017] [Accepted: 02/16/2017] [Indexed: 12/31/2022]
Abstract
DNA methylation is one of the key epigenetic modifications of DNA that results from the enzymatic addition of a methyl group at the fifth carbon of the cytosine base. It plays a crucial role in cellular development, genomic stability and gene expression. Aberrant DNA methylation is responsible for the pathogenesis of many diseases including cancers. Over the past several decades, many methodologies have been developed to detect DNA methylation. These methodologies range from classical molecular biology and optical approaches, such as bisulfite sequencing, microarrays, quantitative real-time PCR, colorimetry, Raman spectroscopy to the more recent electrochemical approaches. Among these, electrochemical approaches offer sensitive, simple, specific, rapid, and cost-effective analysis of DNA methylation. Additionally, electrochemical methods are highly amenable to miniaturization and possess the potential to be multiplexed. In recent years, several reviews have provided information on the detection strategies of DNA methylation. However, to date, there is no comprehensive evaluation of electrochemical DNA methylation detection strategies. Herein, we address the recent developments of electrochemical DNA methylation detection approaches. Furthermore, we highlight the major technical and biological challenges involved in these strategies and provide suggestions for the future direction of this important field.
Collapse
Affiliation(s)
- Tanvir Hossain
- Department of Biochemistry & Molecular Biology, Shahjalal University of Science & Technology, Sylhet 3114, Bangladesh
| | - Golam Mahmudunnabi
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science & Technology, Sylhet 3114, Bangladesh
| | - Mostafa Kamal Masud
- Department of Biochemistry & Molecular Biology, Shahjalal University of Science & Technology, Sylhet 3114, Bangladesh; Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials (AIIM), University of Wollongong, Squires Way, Innovation Campus, North Wollongong, NSW 2519, Australia; Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD 4111, Australia
| | - Md Nazmul Islam
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD 4111, Australia; School of Natural Sciences, Griffith University (Nathan Campus), Nathan, QLD 4111, Australia
| | - Lezanne Ooi
- Illawarra Health and Medical Research Institute, School of Biological Sciences, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia
| | - Konstantin Konstantinov
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials (AIIM), University of Wollongong, Squires Way, Innovation Campus, North Wollongong, NSW 2519, Australia
| | - Md Shahriar Al Hossain
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials (AIIM), University of Wollongong, Squires Way, Innovation Campus, North Wollongong, NSW 2519, Australia
| | - Boris Martinac
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| | - Gursel Alici
- ARC Centre of Excellence for Electromaterials Science, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD 4111, Australia
| | - Muhammad J A Shiddiky
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD 4111, Australia; School of Natural Sciences, Griffith University (Nathan Campus), Nathan, QLD 4111, Australia.
| |
Collapse
|
162
|
Ozer B, Sezerman U. An integrative study on the impact of highly differentially methylated genes on expression and cancer etiology. PLoS One 2017; 12:e0171694. [PMID: 28178311 PMCID: PMC5298317 DOI: 10.1371/journal.pone.0171694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 01/24/2017] [Indexed: 12/13/2022] Open
Abstract
DNA methylation is an important epigenetic phenomenon that plays a key role in the regulation of expression. Most of the studies on the topic of methylation's role in cancer mechanisms include analyses based on differential methylation, with the integration of expression information as supporting evidence. In the present study, we sought to identify methylation-driven patterns by also integrating protein-protein interaction information. We performed integrative analyses of DNA methylation, expression, SNP and copy number data on paired samples from six different cancer types. As a result, we found that genes that show a methylation change larger than 32.2% may influence cancer-related genes via fewer interaction steps and with much higher percentages compared with genes showing a methylation change less than 32.2%. Additionally, we investigated whether there were shared cancer mechanisms among different cancer types. Specifically, five cancer types shared a change in AGTR1 and IGF1 genes, which implies that there may be similar underlying disease mechanisms among these cancers. Additionally, when the focus was placed on distinctly altered genes within each cancer type, we identified various cancer-specific genes that are also supported in the literature and may play crucial roles as therapeutic targets. Overall, our novel graph-based approach for identifying methylation-driven patterns will improve our understanding of the effects of methylation on cancer progression and lead to improved knowledge of cancer etiology.
Collapse
Affiliation(s)
- Bugra Ozer
- Biological Sciences and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
- * E-mail:
| | - Ugur Sezerman
- Department of Biostatistics and Medical Informatics, Acibadem University, Istanbul, Turkey
| |
Collapse
|
163
|
Impact of Nonsynonymous Single-Nucleotide Variations on Post-Translational Modification Sites in Human Proteins. Methods Mol Biol 2017. [PMID: 28150238 DOI: 10.1007/978-1-4939-6783-4_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Post-translational modifications (PTMs) are covalent modifications that proteins might undergo following or sometimes during the process of translation. Together with gene diversity, PTMs contribute to the overall variety of possible protein function for a given organism. Single-nucleotide polymorphisms (SNPs) are the most common form of variations found in the human genome, and have been found to be associated with diseases like Alzheimer's disease (AD) and Parkinson's disease (PD), among many others. Studies have also shown that non-synonymous single-nucleotide variation (nsSNV) at the PTM site, which alters the corresponding encoded amino acid in the translated protein sequence, can lead to abnormal activity of a protein and can contribute to a disease phenotype. Significant advances in next-generation sequencing (NGS) technologies and high-throughput proteomics have resulted in the generation of a huge amount of data for both SNPs and PTMs. However, these data are unsystematically distributed across a number of diverse databases. Thus, there is a need for efforts toward data standardization and validation of bioinformatics algorithms that can fully leverage SNP and PTM information for biomedical research. In this book chapter, we will present some of the commonly used databases for both SNVs and PTMs and describe a broad approach that can be applied to many scenarios for studying the impact of nsSNVs on PTM sites of human proteins.
Collapse
|
164
|
Porta C, Chiellino S, Ferrari A, Mariucci S, Liguigli W. Pharmacotherapy for treating metastatic clear cell renal cell carcinoma. Expert Opin Pharmacother 2017; 18:205-216. [DOI: 10.1080/14656566.2017.1282462] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Camillo Porta
- Medical Oncology, I.R.C.C.S. San Matteo University Hospital Foundation, Pavia, Italy
- Italian Nephro-Oncology Group/Gruppo Italiano di Oncologia Nefrologica (G.I.O.N.), Pavia, Italy
| | - Silvia Chiellino
- Medical Oncology, I.R.C.C.S. San Matteo University Hospital Foundation, Pavia, Italy
| | - Alessandra Ferrari
- Medical Oncology, I.R.C.C.S. San Matteo University Hospital Foundation, Pavia, Italy
| | - Sara Mariucci
- Medical Oncology, I.R.C.C.S. San Matteo University Hospital Foundation, Pavia, Italy
| | - Wanda Liguigli
- Medical Oncology, Istituti Ospitalieri Cremona, Cremona, Italy
| |
Collapse
|
165
|
Bhat AA, Wani HA, Ishaq S, Waza AA, Malik RA, Shabir I, Jeelani S, Kadla S, Qureshie W, Masood A, Majid S. Promoter Hypermethylation and Its Impact on Expression of MGMT Gene in the GIT Malignant Patients of Kashmiri Origin. Cancer Invest 2017; 35:116-121. [DOI: 10.1080/07357907.2016.1271887] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Arif Akbar Bhat
- Department of Biochemistry, Government Medical College Srinagar, Srinagar, India
| | - Hilal Ahmad Wani
- Multidisciplinary Research Unit, Government Medical College Srinagar, Srinagar, India
| | - Shiekh Ishaq
- Department of Biochemistry, Government Medical College Srinagar, Srinagar, India
| | - Ajaz Ahmad Waza
- Department of Biotechnology, University of Kashmir, Hazratbal Srinagar, India
| | | | - Iram Shabir
- Department of Biochemistry, Government Medical College Srinagar, Srinagar, India
| | - Showkat Jeelani
- Department of Surgery, Government Medical College Srinagar, Srinagar, India
| | - Showkat Kadla
- Department of Medicine, Government Medical College Srinagar, Srinagar, India
| | - Waseem Qureshie
- Registrar, Government Medical College Srinagar, Srinagar, India
| | - Akbar Masood
- Department of Biochemistry, University of Kashmir, Srinagar, India
| | - Sabhiya Majid
- Department of Biochemistry, Government Medical College Srinagar, Srinagar, India
| |
Collapse
|
166
|
Interplay between epigenetics and metabolism in oncogenesis: mechanisms and therapeutic approaches. Oncogene 2017; 36:3359-3374. [PMID: 28092669 PMCID: PMC5485177 DOI: 10.1038/onc.2016.485] [Citation(s) in RCA: 185] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/07/2016] [Accepted: 11/07/2016] [Indexed: 02/06/2023]
Abstract
Epigenetic and metabolic alterations in cancer cells are highly intertwined. Oncogene-driven metabolic rewiring modifies the epigenetic landscape via modulating the activities of DNA and histone modification enzymes at the metabolite level. Conversely, epigenetic mechanisms regulate the expression of metabolic genes, thereby altering the metabolome. Epigenetic-metabolomic interplay has a critical role in tumourigenesis by coordinately sustaining cell proliferation, metastasis and pluripotency. Understanding the link between epigenetics and metabolism could unravel novel molecular targets, whose intervention may lead to improvements in cancer treatment. In this review, we summarized the recent discoveries linking epigenetics and metabolism and their underlying roles in tumorigenesis; and highlighted the promising molecular targets, with an update on the development of small molecule or biologic inhibitors against these abnormalities in cancer.
Collapse
|
167
|
Stålberg P, Westin G, Thirlwell C. Genetics and epigenetics in small intestinal neuroendocrine tumours. J Intern Med 2016; 280:584-594. [PMID: 27306880 DOI: 10.1111/joim.12526] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Neuroendocrine tumour of the small intestine (SI-NET), formerly known as midgut carcinoid tumour, is the most common small intestinal malignancy. The incidence is rising, with recent reports of 0.67 per 100 000 in the USA and 1.12 per 100 000 in Sweden. SI-NETs often present a challenge in terms of diagnosis and treatment, as patients often have widespread disease and are beyond cure by surgery. Somatostatin analogues provide the mainstay of medical treatment to control hormonal excess and increase the time to progression. Despite overall favourable prognosis (5-year overall survival of 65%), there is a need to find markers to identify both patients with worse outcome and new targets for therapy. Loss on chromosome 18 has been reported in 60-90% of SI-NETs, but mutated genes on this chromosome have failed detection. Recently, a putative tumour suppressor role has been suggested for TCEB3C occurring at 18q21 (encoding elongin A3), which may undergo epigenetic repression. CDKN1B has recently been revealed as the only recurrently mutated gene in SI-NETs but, with a frequency as low as 8%, its role as a driver in SI-NET development may be questioned. Integrated genomewide analysis including exome and whole-genome sequencing, gene expression, DNA methylation and copy number analysis has identified three novel molecular subtypes of SI-NET with differing clinical outcome. DNA methylation analysis has demonstrated that SI-NETs have significant epigenetic dysregulation in 70-80% of tumours. In this review, we focus on understanding of the genetic, epigenetic and molecular events that lead to development and progression of SI-NETs.
Collapse
Affiliation(s)
- P Stålberg
- Department of Surgical Sciences, Uppsala University and University Hospital, Uppsala, Sweden
| | - G Westin
- Department of Surgical Sciences, Uppsala University and University Hospital, Uppsala, Sweden
| | - C Thirlwell
- Cancer Institute, University College London, London, UK
| |
Collapse
|
168
|
Zengeya TT, Garlick JM, Kulkarni RA, Miley M, Roberts AM, Yang Y, Crooks DR, Sourbier C, Linehan WM, Meier JL. Co-opting a Bioorthogonal Reaction for Oncometabolite Detection. J Am Chem Soc 2016; 138:15813-15816. [PMID: 27960310 DOI: 10.1021/jacs.6b09706] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Dysregulated metabolism is a hallmark of many diseases, including cancer. Methods to fluorescently detect metabolites have the potential to enable new approaches to cancer detection and imaging. However, fluorescent sensing methods for naturally occurring cellular metabolites are relatively unexplored. Here we report the development of a chemical approach to detect the oncometabolite fumarate. Our strategy exploits a known bioorthogonal reaction, the 1,3-dipolar cycloaddition of nitrileimines and electron-poor olefins, to detect fumarate via fluorescent pyrazoline cycloadduct formation. We demonstrate hydrazonyl chlorides serve as readily accessible nitrileimine precursors, whose reactivity and spectral properties can be tuned to enable detection of fumarate and other dipolarophile metabolites. Finally, we show this reaction can be used to detect enzyme activity changes caused by mutations in fumarate hydratase, which underlie the familial cancer predisposition syndrome hereditary leiomyomatosis and renal cell cancer. Our studies define a novel intersection of bioorthogonal chemistry and metabolite reactivity that may be harnessed to enable biological profiling, imaging, and diagnostic applications.
Collapse
Affiliation(s)
- Thomas T Zengeya
- Chemical Biology Laboratory, National Cancer Institute , Frederick, Maryland 21702, United States
| | - Julie M Garlick
- Chemical Biology Laboratory, National Cancer Institute , Frederick, Maryland 21702, United States
| | - Rhushikesh A Kulkarni
- Chemical Biology Laboratory, National Cancer Institute , Frederick, Maryland 21702, United States
| | - Mikayla Miley
- Chemical Biology Laboratory, National Cancer Institute , Frederick, Maryland 21702, United States
| | - Allison M Roberts
- Chemical Biology Laboratory, National Cancer Institute , Frederick, Maryland 21702, United States
| | - Youfeng Yang
- Urologic Oncology Branch, National Cancer Institute , Bethesda, Maryland 20817, United States
| | - Daniel R Crooks
- Urologic Oncology Branch, National Cancer Institute , Bethesda, Maryland 20817, United States
| | - Carole Sourbier
- Urologic Oncology Branch, National Cancer Institute , Bethesda, Maryland 20817, United States
| | - W Marston Linehan
- Urologic Oncology Branch, National Cancer Institute , Bethesda, Maryland 20817, United States
| | - Jordan L Meier
- Chemical Biology Laboratory, National Cancer Institute , Frederick, Maryland 21702, United States
| |
Collapse
|
169
|
Abstract
The majority of kidney cancers are associated with mutations in the von Hippel-Lindau gene and a small proportion are associated with infrequent mutations in other well characterized tumour-suppressor genes. In the past 15 years, efforts to uncover other key genes involved in renal cancer have identified many genes that are dysregulated or silenced via epigenetic mechanisms, mainly through methylation of promoter CpG islands or dysregulation of specific microRNAs. In addition, the advent of next-generation sequencing has led to the identification of several novel genes that are mutated in renal cancer, such as PBRM1, BAP1 and SETD2, which are all involved in histone modification and nucleosome and chromatin remodelling. In this Review, we discuss how altered DNA methylation, microRNA dysregulation and mutations in histone-modifying enzymes disrupt cellular pathways in renal cancers.
Collapse
Affiliation(s)
- Mark R Morris
- Brain Tumour Research Centre, Wolverhampton School of Sciences, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK
| | - Farida Latif
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
170
|
Serrano-Oviedo L, Giménez-Bachs JM, Nam-Cha SY, Cimas FJ, García-Cano J, Sánchez-Prieto R, Salinas-Sánchez AS. Implication of VHL, ERK5, and HIF-1alpha in clear cell renal cell carcinoma: Molecular basis. Urol Oncol 2016; 35:114.e15-114.e22. [PMID: 27836247 DOI: 10.1016/j.urolonc.2016.10.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 10/07/2016] [Accepted: 10/10/2016] [Indexed: 12/20/2022]
Abstract
OBJECTIVES To determine the expression status of several proteins related to VHL gene function and its relationship with common clinicopathological parameters. MATERIAL AND METHODS Observational, analytical, cross-sectional study with 50 patients diagnosed with clear cell renal cell carcinoma. The study analyzed VHL mutations and hypermethylation as well as protein expression of VHL, CA-IX, HIF-1alpha, VEGF, ERK1/2, and ERK5, relating them to clinical variables. A bivariate and multivariate descriptive logistical regression analysis was performed, using the presence of metastasis at diagnosis as dependent variable. RESULTS The study identified 13 (26%) VHL mutations related to nuclear grade (P = 0.036). VHL hypermethylation was found in 20% of cases. VHL expression was associated with the presence of mutations (P = 0.013), and the absence of expression was associated with nuclear grade and the presence of metastasis (P<0.05). HIF-1alpha was negative in only 5 cases. Vascular endothelial growth factor (VEGF) was positive in 31 of 47 cases and was associated with Fuhrman nuclear grade, presence of metastasis, and stage (P<0.05). ERK5 expression was increased in 58% of cases and associated with the presence of metastasis and more advanced stages (P<0.05). In the logistic regression analysis, the only variable remaining in the model was VEGF expression (P = 0.014). CONCLUSIONS VEGF has prognostic value in clear cell renal cell carcinoma, and ERK5 may be a new prognostic marker in this type of tumor owing to its relationship with metastasis and more advanced stages.
Collapse
Affiliation(s)
- Leticia Serrano-Oviedo
- Unidad de Medicina Molecular, Laboratorio de Oncología, Centro Regional de Investigaciones Biomédicas, Unidad de Biomedicina CSIC-Universidad de Castilla-La Mancha, Albacete, Spain
| | - José M Giménez-Bachs
- Servicio de Urología, Complejo Hospitalario Universitario de Albacete, Albacete, Spain.
| | - Syongh Y Nam-Cha
- Servicio de Anatomía Patológica, Complejo Hospitalario Universitario de Albacete, Albacete, Spain
| | - Francisco J Cimas
- Unidad de Medicina Molecular, Laboratorio de Oncología, Centro Regional de Investigaciones Biomédicas, Unidad de Biomedicina CSIC-Universidad de Castilla-La Mancha, Albacete, Spain
| | - Jesús García-Cano
- Unidad de Medicina Molecular, Laboratorio de Oncología, Centro Regional de Investigaciones Biomédicas, Unidad de Biomedicina CSIC-Universidad de Castilla-La Mancha, Albacete, Spain
| | - Ricardo Sánchez-Prieto
- Unidad de Medicina Molecular, Laboratorio de Oncología, Centro Regional de Investigaciones Biomédicas, Unidad de Biomedicina CSIC-Universidad de Castilla-La Mancha, Albacete, Spain
| | | |
Collapse
|
171
|
Abstract
Alterations in the epigenome and metabolism both affect molecular rewiring in cancer cells and facilitate cancer development and progression. However, recent evidence suggests the existence of important bidirectional regulatory mechanisms between metabolic remodelling and the epigenome (specifically methylation and acetylation of histones) in cancer. Most chromatin-modifying enzymes require substrates or cofactors that are intermediates of cell metabolism. Such metabolites, and often the enzymes that produce them, can transfer into the nucleus, directly linking metabolism to nuclear transcription. We discuss how metabolic remodelling can contribute to tumour epigenetic alterations, thereby affecting cancer cell differentiation, proliferation and/or apoptosis, as well as therapeutic responses.
Collapse
Affiliation(s)
- Adam Kinnaird
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
- Division of Urology, Department of Surgery, University of Alberta, Edmonton, Alberta T6G 2R7, Canada
| | - Steven Zhao
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Kathryn E Wellen
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
172
|
Shanmugasundaram K, Block K. Renal Carcinogenesis, Tumor Heterogeneity, and Reactive Oxygen Species: Tactics Evolved. Antioxid Redox Signal 2016; 25:685-701. [PMID: 27287984 PMCID: PMC5069729 DOI: 10.1089/ars.2015.6569] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 06/07/2016] [Accepted: 06/10/2016] [Indexed: 12/13/2022]
Abstract
SIGNIFICANCE The number of kidney cancers is growing 3-5% each year due to unknown etiologies. Intra- and inter-tumor mediators increase oxidative stress and drive tumor heterogeneity. Recent Advances: Technology advancement in state-of-the-art instrumentation and methodologies allows researchers to detect and characterize global landscaping modifications in genes, proteins, and pathophysiology patterns at the single-cell level. CRITICAL ISSUES We postulate that the sources of reactive oxygen species (ROS) and their activation within subcellular compartments will change over a timeline of tumor evolvement and contribute to tumor heterogeneity. Therefore, the complexity of intracellular changes within a tumor and ROS-induced tumor heterogeneity coupled to the advancement of detecting these events globally are limited at the level of data collection, organization, and interpretation using software algorithms and bioinformatics. FUTURE DIRECTIONS Integrative and collaborative research, combining the power of numbers with careful experimental design, protocol development, and data interpretation, will translate cancer biology and therapeutics to a heightened level or leave the abundant raw data as stagnant and underutilized. Antioxid. Redox Signal. 25, 685-701.
Collapse
Affiliation(s)
| | - Karen Block
- Department of Medicine, University of Texas Health Science Center, San Antonio, Texas
- South Texas Veterans Health Care System, Audie L. Murphy Memorial Hospital Division, San Antonio, Texas
| |
Collapse
|
173
|
Abstract
For several decades, we have known that epigenetic regulation is disrupted in cancer. Recently, an increasing body of data suggests epigenetics might be an intersection of current cancer research trends: next generation sequencing, immunology, metabolomics, and cell aging. The new emphasis on epigenetics is also related to the increasing production of drugs capable of interfering with epigenetic mechanisms and able to trigger clinical responses in even advanced phase patients. In this review, we will use myeloid malignancies as proof of concept examples of how epigenetic mechanisms can trigger or promote oncogenesis. We will also show how epigenetic mechanisms are related to genetic aberrations, and how they affect other systems, like immune response. Finally, we will show how we can try to influence the fate of cancer cells with epigenetic therapy.
Collapse
Affiliation(s)
- Maximilian Stahl
- Department of Internal Medicine, Section of Hematology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Nathan Kohrman
- Department of Internal Medicine, Section of Hematology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Steven D. Gore
- Department of Internal Medicine, Section of Hematology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Tae Kon Kim
- Department of Internal Medicine, Section of Hematology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Amer M. Zeidan
- Department of Internal Medicine, Section of Hematology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Thomas Prebet
- Department of Internal Medicine, Section of Hematology, Yale Cancer Center at Yale University, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
174
|
Stark A, Shin DJ, Pisanic T, Hsieh K, Wang TH. A parallelized microfluidic DNA bisulfite conversion module for streamlined methylation analysis. Biomed Microdevices 2016; 18:5. [PMID: 26759004 DOI: 10.1007/s10544-015-0029-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Aberrant methylation of DNA has been identified as an epigenetic biomarker for numerous cancer types. The vast majority of techniques aimed at detecting methylation require bisulfite conversion of the DNA sample prior to analysis, which until now has been a benchtop process. Although microfluidics has potential benefits of simplified operation, sample and reagent economy, and scalability, bisulfite conversion has yet to be implemented in this format. Here, we present a novel droplet microfluidic design that facilitates rapid bisulfite conversion by reducing the necessary processing steps while retaining comparable performance to existing methods. This new format has a reduced overall processing time and is readily scalable for use in high throughput DNA methylation analysis.
Collapse
Affiliation(s)
- Alejandro Stark
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Dong Jin Shin
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Thomas Pisanic
- Johns Hopkins Institute for NanoBioTechnology, Baltimore, MD, 21218, USA
| | - Kuangwen Hsieh
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Tza-Huei Wang
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA. .,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA. .,Johns Hopkins Institute for NanoBioTechnology, Baltimore, MD, 21218, USA.
| |
Collapse
|
175
|
Myszczyszyn A, Czarnecka AM, Matak D, Szymanski L, Lian F, Kornakiewicz A, Bartnik E, Kukwa W, Kieda C, Szczylik C. The Role of Hypoxia and Cancer Stem Cells in Renal Cell Carcinoma Pathogenesis. Stem Cell Rev Rep 2016. [PMID: 26210994 PMCID: PMC4653234 DOI: 10.1007/s12015-015-9611-y] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The cancer stem cell (CSC) model has recently been approached also in renal cell carcinoma (RCC). A few populations of putative renal tumor-initiating cells (TICs) were identified, but they are indifferently understood; however, the first and most thoroughly investigated are CD105-positive CSCs. The article presents a detailed comparison of all renal CSC-like populations identified by now as well as their presumable origin. Hypoxic activation of hypoxia-inducible factors (HIFs) contributes to tumor aggressiveness by multiple molecular pathways, including the governance of immature stem cell-like phenotype and related epithelial-to-mesenchymal transition (EMT)/de-differentiation, and, as a result, poor prognosis. Due to intrinsic von Hippel-Lindau protein (pVHL) loss of function, clear-cell RCC (ccRCC) develops unique pathological intra-cellular pseudo-hypoxic phenotype with a constant HIF activation, regardless of oxygen level. Despite satisfactory evidence concerning pseudo-hypoxia importance in RCC biology, its influence on putative renal CSC-like largely remains unknown. Thus, the article discusses a current knowledge of HIF-1α/2α signaling pathways in the promotion of undifferentiated tumor phenotype in general, including some experimental findings specific for pseudo-hypoxic ccRCC, mostly dependent from HIF-2α oncogenic functions. Existing gaps in understanding both putative renal CSCs and their potential connection with hypoxia need to be filled in order to propose breakthrough strategies for RCC treatment.
Collapse
Affiliation(s)
- Adam Myszczyszyn
- Department of Oncology with Laboratory of Molecular Oncology, Military Institute of Medicine, Szaserow 128, 04-141, Warsaw, Poland
| | - Anna M Czarnecka
- Department of Oncology with Laboratory of Molecular Oncology, Military Institute of Medicine, Szaserow 128, 04-141, Warsaw, Poland.
| | - Damian Matak
- Department of Oncology with Laboratory of Molecular Oncology, Military Institute of Medicine, Szaserow 128, 04-141, Warsaw, Poland.,School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Lukasz Szymanski
- Department of Oncology with Laboratory of Molecular Oncology, Military Institute of Medicine, Szaserow 128, 04-141, Warsaw, Poland.,Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Fei Lian
- Emory School of Medicine, Atlanta, GA, USA
| | - Anna Kornakiewicz
- Department of Oncology with Laboratory of Molecular Oncology, Military Institute of Medicine, Szaserow 128, 04-141, Warsaw, Poland.,School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland.,Department of General Surgery and Transplantology, Medical University of Warsaw, Warsaw, Poland
| | - Ewa Bartnik
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland.,Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Wojciech Kukwa
- Department of Otolaryngology, Czerniakowski Hospital, Medical University of Warsaw, Warsaw, Poland
| | - Claudine Kieda
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Orléans, France
| | - Cezary Szczylik
- Department of Oncology with Laboratory of Molecular Oncology, Military Institute of Medicine, Szaserow 128, 04-141, Warsaw, Poland
| |
Collapse
|
176
|
Targeting renal cell carcinoma with a HIF-2 antagonist. Nature 2016; 539:112-117. [PMID: 27595394 DOI: 10.1038/nature19796] [Citation(s) in RCA: 525] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 08/26/2016] [Indexed: 02/06/2023]
Abstract
Clear cell renal cell carcinoma (ccRCC) is characterized by inactivation of the von Hippel-Lindau tumour suppressor gene (VHL). Because no other gene is mutated as frequently in ccRCC and VHL mutations are truncal, VHL inactivation is regarded as the governing event. VHL loss activates the HIF-2 transcription factor, and constitutive HIF-2 activity restores tumorigenesis in VHL-reconstituted ccRCC cells. HIF-2 has been implicated in angiogenesis and multiple other processes, but angiogenesis is the main target of drugs such as the tyrosine kinase inhibitor sunitinib. HIF-2 has been regarded as undruggable. Here we use a tumourgraft/patient-derived xenograft platform to evaluate PT2399, a selective HIF-2 antagonist that was identified using a structure-based design approach. PT2399 dissociated HIF-2 (an obligatory heterodimer of HIF-2α-HIF-1β) in human ccRCC cells and suppressed tumorigenesis in 56% (10 out of 18) of such lines. PT2399 had greater activity than sunitinib, was active in sunitinib-progressing tumours, and was better tolerated. Unexpectedly, some VHL-mutant ccRCCs were resistant to PT2399. Resistance occurred despite HIF-2 dissociation in tumours and evidence of Hif-2 inhibition in the mouse, as determined by suppression of circulating erythropoietin, a HIF-2 target and possible pharmacodynamic marker. We identified a HIF-2-dependent gene signature in sensitive tumours. Gene expression was largely unaffected by PT2399 in resistant tumours, illustrating the specificity of the drug. Sensitive tumours exhibited a distinguishing gene expression signature and generally higher levels of HIF-2α. Prolonged PT2399 treatment led to resistance. We identified binding site and second site suppressor mutations in HIF-2α and HIF-1β, respectively. Both mutations preserved HIF-2 dimers despite treatment with PT2399. Finally, an extensively pretreated patient whose tumour had given rise to a sensitive tumourgraft showed disease control for more than 11 months when treated with a close analogue of PT2399, PT2385. We validate HIF-2 as a target in ccRCC, show that some ccRCCs are HIF-2 independent, and set the stage for biomarker-driven clinical trials.
Collapse
|
177
|
Hu SL, Chang A, Perazella MA, Okusa MD, Jaimes EA, Weiss RH. The Nephrologist's Tumor: Basic Biology and Management of Renal Cell Carcinoma. J Am Soc Nephrol 2016; 27:2227-37. [PMID: 26961346 PMCID: PMC4978061 DOI: 10.1681/asn.2015121335] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Kidney cancer, or renal cell carcinoma (RCC), is a disease of increasing incidence that is commonly seen in the general practice of nephrology. However, RCC is under-recognized by the nephrology community, such that its presence in curricula and research by this group is lacking. In the most common form of RCC, clear cell renal cell carcinoma (ccRCC), inactivation of the von Hippel-Lindau tumor suppressor is nearly universal; thus, the biology of ccRCC is characterized by activation of hypoxia-relevant pathways that lead to the associated paraneoplastic syndromes. Therefore, RCC is labeled the internist's tumor. In light of this characterization and multiple other metabolic abnormalities recently associated with ccRCC, it can now be viewed as a metabolic disease. In this review, we discuss the basic biology, pathology, and approaches for treatment of RCC. It is important to distinguish between kidney confinement and distant spread of RCC, because this difference affects diagnostic and therapeutic approaches and patient survival, and it is important to recognize the key interplay between RCC, RCC therapy, and CKD. Better understanding of all aspects of this disease will lead to optimal patient care and more recognition of an increasingly prevalent nephrologic disease, which we now appropriately label the nephrologist's tumor.
Collapse
Affiliation(s)
- Susie L Hu
- Division of Kidney Disease and Hypertension, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Anthony Chang
- Department of Pathology, University of Chicago, Chicago, Illinois
| | - Mark A Perazella
- Division of Nephrology, Yale University, New Haven, Connecticut; Medical Service Veterans Affairs Connecticut, West Haven, Connecticut
| | - Mark D Okusa
- Division of Nephrology and Center for Immunity, Inflammation and Regenerative Medicine, University of Virginia, Charlottesville, Virginia
| | - Edgar A Jaimes
- Renal Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; Renal Division, Weill-Cornell Medical College, New York, New York
| | - Robert H Weiss
- Division of Nephrology and Cancer Center, University of California, Davis, California; and Medical Service, Veterans Affairs Northern California Health Care System, Sacramento, California
| |
Collapse
|
178
|
Abstract
Enhancer elements function as the logic gates of the genetic regulatory circuitry. One of their most important functions is the integration of extracellular signals with intracellular cell fate information to generate cell type-specific transcriptional responses. Mutations occurring in cancer often misregulate enhancers that normally control the signal-dependent expression of growth-related genes. This misregulation can result from trans-acting mechanisms, such as activation of the transcription factors or epigenetic regulators that control enhancer activity, or can be caused in cis by direct mutations that alter the activity of the enhancer or its target gene specificity. These processes can generate tumour type-specific super-enhancers and establish a 'locked' gene regulatory state that drives the uncontrolled proliferation of cancer cells. Here, we review the role of enhancers in cancer, and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Inderpreet Sur
- Division of Functional Genomics and Systems Biology, Department of Medical Biochemistry and Biophysics, and Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Jussi Taipale
- Division of Functional Genomics and Systems Biology, Department of Medical Biochemistry and Biophysics, and Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm SE-171 77, Sweden
- Genome-Scale Biology Program, University of Helsinki, Biomedicum, PO Box 63, Helsinki 00014, Finland
| |
Collapse
|
179
|
Shenoy N, Pagliaro L. Sequential pathogenesis of metastatic VHL mutant clear cell renal cell carcinoma: putting it together with a translational perspective. Ann Oncol 2016; 27:1685-95. [PMID: 27329246 DOI: 10.1093/annonc/mdw241] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 06/06/2016] [Indexed: 01/01/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) accounts for ∼80% of all RCC, and biallelic Von Hippel-Lindau (VHL) gene defects occur in ∼75% of sporadic ccRCC. The etiopathogenesis of VHL mutant metastatic RCC, based on our understanding to date of molecular mechanisms involved, is a sequence of events which can be grouped under the following: (i) loss of VHL activity (germline/somatic mutation + inactivation of the wild-type copy); (ii) constitutive activation of the hypoxia-inducible factor (HIF) pathway due to loss of VHL activity and transcription of genes involved in angiogenesis, epithelial-mesenchymal transition, invasion, metastasis, survival, anaerobic glycolysis and pentose phosphate pathway; (iii) interactions of the HIF pathway with other oncogenic pathways; (iv) genome-wide epigenetic changes (potentially driven by an overactive HIF pathway) and the influence of epigenetics on various oncogenic, apoptotic, cell cycle regulatory and mismatch repair pathways (inhibition of multiple tumor suppressor genes); (v) immune evasion, at least partially caused by changes in the epigenome. These mechanisms interact throughout the pathogenesis and progression of disease, and also confer chemoresistance and radioresistance, making it one of the most difficult metastatic cancers to treat. This article puts together the sequential pathogenesis of VHL mutant ccRCC by elaborating these mechanisms and the interplay of oncogenic pathways, epigenetics, metabolism and immune evasion, with a perspective on potential therapeutic strategies. We reflect on the huge gap between our understanding of the molecular biology and currently accepted standard of care in metastatic ccRCC, and present ideas for better translational research involving therapeutic strategies with combinatorial drug approach, targeting different aspects of the pathogenesis.
Collapse
Affiliation(s)
- N Shenoy
- Division of Medical Oncology, Mayo Clinic, Rochester, USA
| | - L Pagliaro
- Division of Medical Oncology, Mayo Clinic, Rochester, USA
| |
Collapse
|
180
|
Abstract
Activation of hypoxia pathways is both associated with and contributes to an aggressive phenotype across multiple types of solid cancers. The regulation of gene transcription by hypoxia-inducible factor (HIF) is a key element in this response. HIF directly upregulates the expression of many hundreds of protein-coding genes, which act to both improve oxygen delivery and to reduce oxygen demand. However, it is now becoming apparent that many classes of noncoding RNAs are also regulated by hypoxia, with several (e.g. micro RNAs, long noncoding RNAs and antisense RNAs) under direct transcriptional regulation by HIF. These hypoxia-regulated, noncoding RNAs may act as effectors of the indirect response to HIF by acting on specific coding transcripts or by affecting generic RNA-processing pathways. In addition, noncoding RNAs may also act as modulators of the HIF pathway, either by integrating other physiological responses or, in the case of HIF-regulated, noncoding RNAs, by providing negative or positive feedback and feedforward loops that affect upstream or downstream components of the HIF cascade. These hypoxia-regulated, noncoding transcripts play important roles in the aggressive hypoxic phenotype observed in cancer.
Collapse
|
181
|
Du Z, Li L, Huang X, Jin J, Huang S, Zhang Q, Tao Q. The epigenetic modifier CHD5 functions as a novel tumor suppressor for renal cell carcinoma and is predominantly inactivated by promoter CpG methylation. Oncotarget 2016; 7:21618-30. [PMID: 26943038 PMCID: PMC5008310 DOI: 10.18632/oncotarget.7822] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 01/29/2016] [Indexed: 12/31/2022] Open
Abstract
Renal cell carcinoma (RCC) is the most common urological cancer with steadily increasing incidence. A series of tumor suppressor genes (TSGs) have been identified methylated in RCC as potential epigenetic biomarkers. We identified a 1p36.3 TSG candidate CHD5 as a methylated target in RCC through epigenome study. As the role of CHD5 in RCC pathogenesis remains elusive, we further studied its expression and molecular functions in RCC cells. We found that CHD5 was broadly expressed in most normal genitourinary tissues including kidney, but frequently silenced or downregulated by promoter CpG methylation in 78% of RCC cell lines and 44% (24/55) of primary tumors. In addition, CHD5 mutations appear to be rare in RCC tumors through genome database mining. In methylated/silenced RCC cell lines, CHD5 expression could be restored with azacytidine demethylation treatment. Ectopic expression of CHD5 in RCC cells significantly inhibited their clonogenicity, migration and invasion. Moreover, we found that CHD5, as a chromatin remodeling factor, suppressed the expression of multiple targets including oncogenes (MYC, MDM2, STAT3, CCND1, YAP1), epigenetic master genes (Bmi-1, EZH2, JMJD2C), as well as epithelial-mesenchymal transition and stem cell markers (SNAI1, FN1, OCT4). Further chromatin immunoprecipitation (ChIP) assays confirmed the binding of CHD5 to target gene promoters. Thus, we demonstrate that CHD5 functions as a novel TSG for RCC, but is predominantly inactivated by promoter methylation in primary tumors.
Collapse
Affiliation(s)
- Zhenfang Du
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Oncology in South China, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong and CUHK-Shenzhen Research Institute, Shatin, Hong Kong
| | - Lili Li
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Oncology in South China, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong and CUHK-Shenzhen Research Institute, Shatin, Hong Kong
| | - Xin Huang
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Oncology in South China, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong and CUHK-Shenzhen Research Institute, Shatin, Hong Kong
| | - Jie Jin
- Department of Urology, Peking University First Hospital and Institute of Urology, National Research Center for Genitourinary Oncology, Beijing, China
| | - Suming Huang
- Departments of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Qian Zhang
- Department of Urology, Peking University First Hospital and Institute of Urology, National Research Center for Genitourinary Oncology, Beijing, China
| | - Qian Tao
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Oncology in South China, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong and CUHK-Shenzhen Research Institute, Shatin, Hong Kong
| |
Collapse
|
182
|
Mazor T, Pankov A, Song JS, Costello JF. Intratumoral Heterogeneity of the Epigenome. Cancer Cell 2016; 29:440-451. [PMID: 27070699 PMCID: PMC4852161 DOI: 10.1016/j.ccell.2016.03.009] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 03/11/2016] [Accepted: 03/14/2016] [Indexed: 02/06/2023]
Abstract
Investigation into intratumoral heterogeneity (ITH) of the epigenome is in a formative stage. The patterns of tumor evolution inferred from epigenetic ITH and genetic ITH are remarkably similar, suggesting widespread co-dependency of these disparate mechanisms. The biological and clinical relevance of epigenetic ITH are becoming more apparent. Rare tumor cells with unique and reversible epigenetic states may drive drug resistance, and the degree of epigenetic ITH at diagnosis may predict patient outcome. This perspective presents these current concepts and clinical implications of epigenetic ITH, and the experimental and computational techniques at the forefront of ITH exploration.
Collapse
Affiliation(s)
- Tali Mazor
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94158, USA
| | - Aleksandr Pankov
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94158, USA
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA 94158, USA
| | - Jun S. Song
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA 94158, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Champaign, IL 61801, USA
- Department of Physics, University of Illinois at Urbana-Champaign, Champaign, IL 61801, USA
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, IL 61801, USA
| | - Joseph F. Costello
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
183
|
Chen T, Long B, Ren G, Xiang T, Li L, Wang Z, He Y, Zeng Q, Hong S, Hu G. Protocadherin20 Acts as a Tumor Suppressor Gene: Epigenetic Inactivation in Nasopharyngeal Carcinoma. J Cell Biochem 2016; 116:1766-75. [PMID: 25736877 DOI: 10.1002/jcb.25135] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 02/06/2015] [Indexed: 11/12/2022]
Abstract
Genetic alterations of 13q21 (PCDH 8,9,17, and 20) are frequently observed in multiple tumors, suggesting the presence of critical tumor suppressor genes (TSGs). Protocadherin20 (PCDH20), located at 13q21.2, belongs to the δ1-protocadherins, which constitutes one of the largest subgroup within the adherin superfamily. Frequent downregulation/silencing of PCDH20 was found in NPC cell lines using semiquantitative PCR. PCDH20 mRNA was broadly expressed in normal nasopharyngeal tissues and cell lines. Promoter methylation of PCDH20 was observed in 80% (4/5) of NPC cell lines and 78.4% (40 of 51) of primary tumors by methylation-specific PCR, but rarely in normal nasopharygeal tissues and nasopharyngeal epithelial cell line (NP69). The silencing of PCDH20 can be reversed by pharmacological demethylation, indicating an epigenetic mechanism. Restoration of PCDH20 expression in NPC cells strongly suppressed cell numbers and colony formation. Overexpression of PCDH20 antagonized Wnt/β-catenin signaling pathway and promoted β-catenin to translocate from nucleus to cytoplasm and membrane. PCDH20 significantly inhibited the migration and invasion ability of NPC cells. PCDH20 also inhibited epithelial-mesenchymal transition (EMT) through enhanced expression of E-cadherin. Our study identified PCDH20 as a functional tumor suppressor and an important antagonist of Wnt/β-catenin signaling and EMT, with frequent epigenetic inactivation in NPC.
Collapse
Affiliation(s)
- Tao Chen
- Department of Otolaryngology, The first Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China
| | - Biaoli Long
- Department of Otolaryngology, The first Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China
| | - Guosheng Ren
- Molecular Oncology and Epigenetics Laboratory, The first Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China
| | - Tingxiu Xiang
- Molecular Oncology and Epigenetics Laboratory, The first Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China
| | - Lili Li
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Zhaohui Wang
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Ya He
- Department of Otolaryngology, The first Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China
| | - Quan Zeng
- Department of Otolaryngology, The first Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China
| | - Suling Hong
- Department of Otolaryngology, The first Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China
| | - Guohua Hu
- Department of Otolaryngology, The first Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China
| |
Collapse
|
184
|
Si Y, He F, Wen H, Li J, Zhao J, Ren Y, Zhao M, Ji L, Huang Z, Zhang M, Chen S. Genetic polymorphisms and DNA methylation in exon 1 CpG-rich regions of PACAP gene and its effect on mRNA expression and growth traits in half smooth tongue sole (Cynoglossus semilaevis). FISH PHYSIOLOGY AND BIOCHEMISTRY 2016; 42:407-421. [PMID: 26494141 DOI: 10.1007/s10695-015-0147-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 10/16/2015] [Indexed: 06/05/2023]
Abstract
The pituitary adenylate cyclase activating polypeptide (PACAP) is a new type of hypophysiotropic hormone and plays an important role in regulating the synthesis and secretion of growth hormone and gonadotropin. The research on the relationship between PACAP and different growth traits would contribute to explain its function during the process of growth. Moreover, epigenetic modifications, especially DNA methylation at the CpG sites of the SNPs, play important roles in regulating gene expression. The results suggest that a SNP mutation (c.C151G) in the PACAP gene of male half smooth tongue sole (Cynoglossus semilaevis) is significantly associated with growth traits and serum physiological and biochemical parameters such as inorganic phosphorus (P < 0.05). The SNP is located in a CpG-rich region of exon 1. Intriguingly, the transition (C→G) added a new methylation site of PACAP gene. This SNP was also significantly related to the expression and methylation level of PACAP (P < 0.05). Individuals with GG genotype had faster growth rates than those of CG and CC genotypes. Moreover, GG genotype had significantly higher PACAP expression level and lower methylation level than CG and CC genotypes. In the serum indexes, only inorganic phosphorus content within GG genotypes was significantly higher than CC genotypes. This implied that the mutation and methylation status of PACAP gene could influence growth traits and this locus could be considered as a candidate genetic or epigenetic marker for Cynoglossus semilaevis molecular breeding.
Collapse
Affiliation(s)
- Yufeng Si
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
- Fisheries College, Ocean University of China, Qingdao, China
| | - Feng He
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China.
- Fisheries College, Ocean University of China, Qingdao, China.
| | - Haishen Wen
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
- Fisheries College, Ocean University of China, Qingdao, China
| | - Jifang Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
- Fisheries College, Ocean University of China, Qingdao, China
| | - Junli Zhao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
- Fisheries College, Ocean University of China, Qingdao, China
| | - Yuanyuan Ren
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
- Fisheries College, Ocean University of China, Qingdao, China
| | - Meilin Zhao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
- Fisheries College, Ocean University of China, Qingdao, China
| | - Liqin Ji
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
- Fisheries College, Ocean University of China, Qingdao, China
| | - Zhengju Huang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
- Fisheries College, Ocean University of China, Qingdao, China
| | - Mo Zhang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
- Fisheries College, Ocean University of China, Qingdao, China
| | - Songlin Chen
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| |
Collapse
|
185
|
Schödel J, Grampp S, Maher ER, Moch H, Ratcliffe PJ, Russo P, Mole DR. Hypoxia, Hypoxia-inducible Transcription Factors, and Renal Cancer. Eur Urol 2016; 69:646-657. [PMID: 26298207 PMCID: PMC5012644 DOI: 10.1016/j.eururo.2015.08.007] [Citation(s) in RCA: 265] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 08/05/2015] [Indexed: 12/18/2022]
Abstract
CONTEXT Renal cancer is a common urologic malignancy, and therapeutic options for metastatic disease are limited. Most clear cell renal cell carcinomas (ccRCC) are associated with loss of von Hippel-Lindau tumor suppressor (pVHL) function and deregulation of hypoxia pathways. OBJECTIVE This review summarizes recent evidence from genetic and biological studies showing that hypoxia and hypoxia-related pathways play critical roles in the development and progress of renal cancer. EVIDENCE ACQUISITION We used a systematic search for articles using the keywords hypoxia, HIF, renal cancer, and VHL. EVIDENCE SYNTHESIS Identification of the tumor suppressor pVHL has allowed the characterization of important ccRCC-associated pathways. pVHL targets α-subunits of hypoxia-inducible transcription factors (HIF) for proteasomal degradation. The two main HIF-α isoforms have opposing effects on RCC biology, possibly through distinct interactions with additional oncogenes. Furthermore, HIF-1α activity is commonly diminished by chromosomal deletion in ccRCCs, and increased HIF-1 activity reduces tumor burden in xenograft tumor models. Conversely, polymorphisms at the HIF-2α gene locus predispose to the development of ccRCCs, and HIF-2α promotes tumor growth. Genetic studies have revealed a prominent role for chromatin-modifying enzyme genes in ccRCC, and these may further modulate specific aspects of the HIF response. This suggests that, rather than global activation of HIF, specific components of the response are important in promoting kidney cancer. Some of these processes are already targets for current therapeutic strategies, and further dissection of this pathway might yield novel methods of treating RCC. CONCLUSIONS In contrast to many tumor types, HIF-1α and HIF-2α have opposing effects in ccRCC biology, with HIF-1α acting as a tumor suppressor and HIF-2α acting as an oncogene. The overall effect of VHL inactivation will depend on fine-tuning of the HIF response. PATIENT SUMMARY High levels of hypoxia-inducible transcription factors (HIF) are particularly important in the clear cell type of kidney cancer, in which they are no longer properly regulated by the von Hippel-Lindau protein. The two HIF-α proteins have opposing effects on tumor evolution.
Collapse
Affiliation(s)
- Johannes Schödel
- Medizinische Klinik 4 and Translational Research Center, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany.
| | - Steffen Grampp
- Medizinische Klinik 4 and Translational Research Center, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Eamonn R Maher
- Department of Medical Genetics, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK; Cambridge NIHR Biomedical Research Centre, Addenbrooke's Hospital, Cambridge, UK
| | - Holger Moch
- Institute of Surgical Pathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Peter J Ratcliffe
- Henry Wellcome Building for Molecular Physiology, University of Oxford, Oxford, UK
| | - Paul Russo
- Department of Surgery, Urology Service, Memorial Sloan Kettering Cancer Center, NY, NY, USA; Weill Medical College, Cornell University, Memorial Sloan Kettering Cancer Center, NY, NY, USA
| | - David R Mole
- Henry Wellcome Building for Molecular Physiology, University of Oxford, Oxford, UK
| |
Collapse
|
186
|
Lue JK, Amengual JE, O'Connor OA. Epigenetics and Lymphoma: Can We Use Epigenetics to Prime or Reset Chemoresistant Lymphoma Programs? Curr Oncol Rep 2016; 17:40. [PMID: 26141799 DOI: 10.1007/s11912-015-0464-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Non-Hodgkin lymphoma is a diverse group of lymphocyte-derived neoplasms. Although a heterogeneous group of malignancies, it has become apparent that epigenetic alterations, such as disturbances of DNA methylation and histone modification, are a common occurrence in both B cell and T cell lymphomas, contributing to lymphomagenesis. As a result, the use of epigenetic targeted therapy has been incorporated into various pre-clinical and clinical studies, demonstrating significant efficacy in lymphoma, with vorinostat becoming the first epigenetic therapy to receive FDA approval in any malignancy. The role of epigenetic drugs is evolving, with its potential use in combination therapy as well as a means of overcoming chemotherapy resistance. In this review, we discuss the epigenetic alterations in non-Hodgkin lymphomas as well as provide an overview of current epigenetic drugs and their role in clinical practice, and on-going clinical trials.
Collapse
Affiliation(s)
- Jennifer K Lue
- Center for Lymphoid Malignancies, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, Columbia University, New York, NY, USA
| | | | | |
Collapse
|
187
|
Xiang W, He J, Huang C, Chen L, Tao D, Wu X, Wang M, Luo G, Xiao X, Zeng F, Jiang G. miR-106b-5p targets tumor suppressor gene SETD2 to inactive its function in clear cell renal cell carcinoma. Oncotarget 2016; 6:4066-79. [PMID: 25714014 PMCID: PMC4414173 DOI: 10.18632/oncotarget.2926] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 12/15/2014] [Indexed: 12/04/2022] Open
Abstract
Inactivation of human SET domain containing protein 2 (SETD2) is a common event in clear cell renal cell carcinoma (ccRCC). However, the mechanism underlying loss of SETD2 function, particularly the post-transcriptional regulatory mechanism, still remains unclear. In the present study, we found that SETD2 was downregulated and inversely correlated with high expression of miR-106b-5p in ccRCC tissues and cell lines. Over-expression of miR-106b-5p resulted in the decreased mRNA and protein levels of SETD2 in ccRCC cells. In an SETD2 3′-UTR luciferase reporter system, miR-106b-5p downregulated the luciferase activity, and the effects were abolished by mutating the predicted miR-106b-5p binding site. Moreover, attenuation of miR-106b-5p induced cell cycle arrest at G0/G1 phase, suppressed cell proliferation, enhanced processing of caspase-3, and promoted cell apoptosis in ccRCC cells, whereas these effects were reversed upon knockdown of SETD2. In addition, transfection of miR-106b-5p antagomir resulted in the increased binding of H3K36me3 to the promoter of p53 and enhanced its activity, as well as upregulated the mRNA and protein levels of p53, and the effects were also abolished by cotransfection with si-SETD2. Collectively, our findings extend the knowledge about the regulation of SETD2 at the posttranscriptional level by miRNA and regulatory mechanism downstream of SETD2 in ccRCC.
Collapse
Affiliation(s)
- Wei Xiang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Province, Wuhan 430022, China
| | - Jun He
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Province, Wuhan 430022, China
| | - Chao Huang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Province, Wuhan 430022, China
| | - Lejun Chen
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Province, Wuhan 430022, China
| | - Dan Tao
- Department of Oncology, The Fifth Hospital of Wuhan, Hubei Province, Wuhan 430050, China
| | - Xinchao Wu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Province, Wuhan 430022, China
| | - Miao Wang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Province, Wuhan 430022, China
| | - Gang Luo
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Province, Wuhan 430022, China
| | - Xingyuan Xiao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Province, Wuhan 430022, China
| | - Fuqing Zeng
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Province, Wuhan 430022, China
| | - Guosong Jiang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Province, Wuhan 430022, China
| |
Collapse
|
188
|
Liu QJ, Shen HL, Lin J, Xu XH, Ji ZG, Han X, Shang DH, Yang PQ. Synergistic roles of p53 and HIF1α in human renal cell carcinoma-cell apoptosis responding to the inhibition of mTOR and MDM2 signaling pathways. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:745-55. [PMID: 26937175 PMCID: PMC4762585 DOI: 10.2147/dddt.s88779] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Introduction mTOR and MDM2 signaling pathways are frequently deregulated in cancer development, and inhibition of mTOR or MDM2 independently enhances carcinoma-cell apoptosis. However, responses to mTOR and MDM2 antagonists in renal cell carcinoma (RCC) remain unknown. Materials and methods A498 cells treated with MDM2 antagonist MI-319 and/or mTOR inhibitor rapamycin were employed in the present study. Cell apoptosis and Western blot analysis were performed. Results and conclusion We found that the MDM2 inhibitor MI-319 induced RCC cell apoptosis mainly dependent on p53 overexpression, while the mTOR antagonist rapamycin promoted RCC cell apoptosis primarily through upregulation of HIF1α expression. Importantly, strong synergistic effects of MI-319 and rapamycin combinations at relatively low concentrations on RCC cell apoptosis were observed. Depletion of p53 or HIF1α impaired both antagonist-elicited apoptoses to differential extents, corresponding to their expression changes responding to chemical treatments, and double knockdown of p53 and HIF1α remarkably hindered MI-319- or rapamycin-induced apoptosis, suggesting that both p53 and HIF1α are involved in MDM2 or mTOR antagonist-induced apoptosis. Collectively, we propose that concurrent activation of p53 and HIF1α may effectively result in cancer-cell apoptosis, and that combined MDM2 antagonists and mTOR inhibitors may be useful in RCC therapy.
Collapse
Affiliation(s)
- Qing-jun Liu
- Department of Urology Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Hong-liang Shen
- Department of Urology Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Jun Lin
- Department of Urology Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Xiu-hong Xu
- Department of Urology Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Zheng-guo Ji
- Department of Urology Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Xiao Han
- Department of Urology Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Dong-hao Shang
- Department of Urology Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Pei-qian Yang
- Department of Urology Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
189
|
Generation and Characterisation of a Pax8-CreERT2 Transgenic Line and a Slc22a6-CreERT2 Knock-In Line for Inducible and Specific Genetic Manipulation of Renal Tubular Epithelial Cells. PLoS One 2016; 11:e0148055. [PMID: 26866916 PMCID: PMC4751286 DOI: 10.1371/journal.pone.0148055] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 01/12/2016] [Indexed: 01/05/2023] Open
Abstract
Genetically relevant mouse models need to recapitulate the hallmarks of human disease by permitting spatiotemporal gene targeting. This is especially important for replicating the biology of complex diseases like cancer, where genetic events occur in a sporadic fashion within developed somatic tissues. Though a number of renal tubule targeting mouse lines have been developed their utility for the study of renal disease is limited by lack of inducibility and specificity. In this study we describe the generation and characterisation of two novel mouse lines directing CreERT2 expression to renal tubular epithelia. The Pax8-CreERT2 transgenic line uses the mouse Pax8 promoter to direct expression of CreERT2 to all renal tubular compartments (proximal and distal tubules as well as collecting ducts) whilst the Slc22a6-CreERT2 knock-in line utilises the endogenous mouse Slc22a6 locus to specifically target the epithelium of proximal renal tubules. Both lines show high organ and tissue specificity with no extrarenal activity detected. To establish the utility of these lines for the study of renal cancer biology, Pax8-CreERT2 and Slc22a6-CreERT2 mice were crossed to conditional Vhl knockout mice to induce long-term renal tubule specific Vhl deletion. These models exhibited renal specific activation of the hypoxia inducible factor pathway (a VHL target). Our results establish Pax8-CreERT2 and Slc22a6-CreERT2 mice as valuable tools for the investigation and modelling of complex renal biology and disease.
Collapse
|
190
|
Genomic characterization of sarcomatoid transformation in clear cell renal cell carcinoma. Proc Natl Acad Sci U S A 2016; 113:2170-5. [PMID: 26864202 DOI: 10.1073/pnas.1525735113] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The presence of sarcomatoid features in clear cell renal cell carcinoma (ccRCC) confers a poor prognosis and is of unknown pathogenesis. We performed exome sequencing of matched normal-carcinomatous-sarcomatoid specimens from 21 subjects. Two tumors had hypermutation consistent with mismatch repair deficiency. In the remainder, sarcomatoid and carcinomatous elements shared 42% of somatic single-nucleotide variants (SSNVs). Sarcomatoid elements had a higher overall SSNV burden (mean 90 vs. 63 SSNVs, P = 4.0 × 10(-4)), increased frequency of nonsynonymous SSNVs in Pan-Cancer genes (mean 1.4 vs. 0.26, P = 0.002), and increased frequency of loss of heterozygosity (LOH) across the genome (median 913 vs. 460 Mb in LOH, P < 0.05), with significant recurrent LOH on chromosomes 1p, 9, 10, 14, 17p, 18, and 22. The most frequent SSNVs shared by carcinomatous and sarcomatoid elements were in known ccRCC genes including von Hippel-Lindau tumor suppressor (VHL), polybromo 1 (PBRM1), SET domain containing 2 (SETD2), phosphatase and tensin homolog (PTEN). Most interestingly, sarcomatoid elements acquired biallelic tumor protein p53 (TP53) mutations in 32% of tumors (P = 5.47 × 10(-17)); TP53 mutations were absent in carcinomatous elements in nonhypermutated tumors and rare in previously studied ccRCCs. Mutations in known cancer drivers AT-rich interaction domain 1A (ARID1A) and BRCA1 associated protein 1 (BAP1) were significantly mutated in sarcomatoid elements and were mutually exclusive with TP53 and each other. These findings provide evidence that sarcomatoid elements arise from dedifferentiation of carcinomatous ccRCCs and implicate specific genes in this process. These findings have implications for the treatment of patients with these poor-prognosis cancers.
Collapse
|
191
|
Ravasio R, Ceccacci E, Minucci S. Self-renewal of tumor cells: epigenetic determinants of the cancer stem cell phenotype. Curr Opin Genet Dev 2016; 36:92-9. [DOI: 10.1016/j.gde.2016.04.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 04/05/2016] [Accepted: 04/05/2016] [Indexed: 01/11/2023]
|
192
|
Evelönn EA, Degerman S, Köhn L, Landfors M, Ljungberg B, Roos G. DNA methylation status defines clinicopathological parameters including survival for patients with clear cell renal cell carcinoma (ccRCC). Tumour Biol 2016; 37:10219-28. [PMID: 26831665 DOI: 10.1007/s13277-016-4893-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 01/19/2016] [Indexed: 12/20/2022] Open
Abstract
Epigenetic alterations in the methylome have been associated with tumor development and progression in renal cell carcinoma (RCC). In this study, 45 tumor samples, 12 tumor-free kidney cortex tissues, and 24 peripheral blood samples from patients with clear cell RCC (ccRCC) were analyzed by genome-wide promoter-directed methylation arrays and related to clinicopathological parameters. Unsupervised hierarchical clustering separated the tumors into two distinct methylation groups (clusters A and B), where cluster B had higher average methylation and increased number of hypermethylated CpG sites (CpGs). Furthermore, tumors in cluster B had, compared with cluster A, a larger tumor diameter (p = 0.033), a higher morphologic grade (p < 0.001), a higher tumor-node-metastasis (TNM) stage (p < 0.001), and a worse prognosis (p = 0.005). Higher TNM stage was correlated to an increase in average methylation level (p = 0.003) and number of hypermethylated CpGs (p = 0.003), whereas a number of hypomethylated CpGs were mainly unchanged. However, the predicted age of the tumors based on methylation profile did not correlate with TNM stage, morphological grade, or methylation cluster. Differently methylated (DM) genes (n = 840) in ccRCC samples compared with tumor-free kidney cortex samples were predominantly hypermethylated and a high proportion were identified as polycomb target genes. The DM genes were overrepresented by transcription factors, ligands, and receptors, indicating functional alterations of significance for ccRCC progression. To conclude, increased number of hypermethylated genes was associated with increased TNM stage of the tumors. DNA methylation classification of ccRCC tumor samples at diagnosis can serve as a clinically applicable prognostic marker in ccRCC.
Collapse
Affiliation(s)
| | - Sofie Degerman
- Department of Medical Biosciences, Pathology, Umeå University, SE-90185, Umeå, Sweden
| | - Linda Köhn
- Department of Medical Biosciences, Pathology, Umeå University, SE-90185, Umeå, Sweden
| | - Mattias Landfors
- Department of Medical Biosciences, Pathology, Umeå University, SE-90185, Umeå, Sweden
- Department of Mathematics and Mathematical Statistics, Umeå University, Umeå, Sweden
| | - Börje Ljungberg
- Department of Surgical and Perioperative Sciences, Urology and Andrology, Umeå University, Umeå, Sweden
| | - Göran Roos
- Department of Medical Biosciences, Pathology, Umeå University, SE-90185, Umeå, Sweden.
| |
Collapse
|
193
|
Lakshminarasimhan R, Liang G. The Role of DNA Methylation in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 945:151-172. [PMID: 27826838 PMCID: PMC7409375 DOI: 10.1007/978-3-319-43624-1_7] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The malignant transformation of normal cells is driven by both genetic and epigenetic changes. With the advent of next-generation sequencing and large-scale multinational consortium studies, it has become possible to profile the genomes and epigenomes of thousands of primary tumors from nearly every cancer type. From these genome-wide studies, it became clear that the dynamic regulation of DNA methylation is a critical epigenetic mechanism of cancer initiation, maintenance, and progression. Proper control of DNA methylation is not only crucial for regulating gene transcription, but its broader consequences include maintaining the integrity of the genome and modulating immune response. Here, we describe the aberrant DNA methylation changes that take place in cancer and how they contribute to the disease phenotype. Further, we highlight potential clinical implications of these changes in the context of prognostic and diagnostic biomarkers, as well as therapeutic targets.
Collapse
Affiliation(s)
- Ranjani Lakshminarasimhan
- Department of Urology, University of Southern California, Norris Comprehensive Cancer Center, Los Angeles, CA, 90089, USA
| | - Gangning Liang
- Department of Urology, University of Southern California, Norris Comprehensive Cancer Center, Los Angeles, CA, 90089, USA.
| |
Collapse
|
194
|
Song B, Zhang Y, Liu J, Feng X, Zhou T, Shao L. Unraveling the neurotoxicity of titanium dioxide nanoparticles: focusing on molecular mechanisms. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2016; 7:645-54. [PMID: 27335754 PMCID: PMC4901937 DOI: 10.3762/bjnano.7.57] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 04/21/2016] [Indexed: 05/09/2023]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) possess unique characteristics and are widely used in many fields. Numerous in vivo studies, exposing experimental animals to these NPs through systematic administration, have suggested that TiO2 NPs can accumulate in the brain and induce brain dysfunction. Nevertheless, the exact mechanisms underlying the neurotoxicity of TiO2 NPs remain unclear. However, we have concluded from previous studies that these mechanisms mainly consist of oxidative stress (OS), apoptosis, inflammatory response, genotoxicity, and direct impairment of cell components. Meanwhile, other factors such as disturbed distributions of trace elements, disrupted signaling pathways, dysregulated neurotransmitters and synaptic plasticity have also been shown to contribute to neurotoxicity of TiO2 NPs. Recently, studies on autophagy and DNA methylation have shed some light on possible mechanisms of nanotoxicity. Therefore, we offer a new perspective that autophagy and DNA methylation could contribute to neurotoxicity of TiO2 NPs. Undoubtedly, more studies are needed to test this idea in the future. In short, to fully understand the health threats posed by TiO2 NPs and to improve the bio-safety of TiO2 NPs-based products, the neurotoxicity of TiO2 NPs must be investigated comprehensively through studying every possible molecular mechanism.
Collapse
Affiliation(s)
- Bin Song
- Guizhou Provincial People’s Hospital, Guiyang 550002, China
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yanli Zhang
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jia Liu
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xiaoli Feng
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ting Zhou
- Guizhou Provincial People’s Hospital, Guiyang 550002, China
| | - Longquan Shao
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
195
|
Ruf M, Mittmann C, Nowicka AM, Hartmann A, Hermanns T, Poyet C, van den Broek M, Sulser T, Moch H, Schraml P. pVHL/HIF-regulated CD70 expression is associated with infiltration of CD27+ lymphocytes and increased serum levels of soluble CD27 in clear cell renal cell carcinoma. Clin Cancer Res 2015; 21:889-98. [PMID: 25691774 DOI: 10.1158/1078-0432.ccr-14-1425] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE CD70, a member of the TNF ligand superfamily, has been shown frequently overexpressed in clear cell renal cell carcinoma (ccRCC). The mechanisms of CD70's upregulation and its role in ccRCC are unknown. EXPERIMENTAL DESIGN CD70 expression was immunohistochemically analyzed in 667 RCCs and RCC metastases. Von Hippel-Lindau gene (VHL) mutations, expression patterns of VHL protein (pVHL), hypoxia-inducible factor (HIF) α, and several HIF targets were studied in tissues and cell lines and correlated with CD70 overexpression. Gene promoter analysis was performed to confirm CD70 as HIF target gene. Consecutive tissue sections were immunostained to reveal the relation between CD70-expressing RCCs and tumor-infiltrating lymphocytes positive for the CD70 receptor (CD27). CD70-mediated release of soluble CD27 in RCC was assessed by coculture experiments and sera analysis of patients with RCC. RESULTS Elevated CD70 expression was seen in 80% of primary tumors and metastases of ccRCC and correlated with dysregulation of the pVHL/HIF pathway. In vitro analyses demonstrated that CD70 upregulation is driven by HIF. Furthermore, CD27(+) lymphocytes preferentially infiltrate CD70-expressing ccRCCs. CD70-dependent release of soluble CD27 in cocultures may explain the high CD27 levels observed in sera of patients with CD70-expressing ccRCC. The combination of lymphocyte infiltration and CD70 expression in RCC was associated with worse patient outcome. CONCLUSION Our findings demonstrate that in ccRCC, CD70 expression is regulated by HIF as a consequence of pVHL inactivation. Increased serum levels of CD27 suggest the existence of CD70-expressing ccRCC, thus representing a potential serum marker for patients suffering from this disease.
Collapse
Affiliation(s)
- Melanie Ruf
- Institute of Surgical Pathology, University Hospital Zurich, Zurich, Switzerland.
| | - Christiane Mittmann
- Institute of Surgical Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Anna M Nowicka
- Institute of Surgical Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Arndt Hartmann
- Institute of Pathology, University Hospital Erlangen, Erlangen, Germany
| | - Thomas Hermanns
- Department of Urology, University Hospital Zurich, Zurich, Switzerland
| | - Cédric Poyet
- Department of Urology, University Hospital Zurich, Zurich, Switzerland
| | | | - Tullio Sulser
- Department of Urology, University Hospital Zurich, Zurich, Switzerland
| | - Holger Moch
- Institute of Surgical Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Peter Schraml
- Institute of Surgical Pathology, University Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
196
|
Abstract
The approval of DNA methylation inhibitors azacytidine and decitabine for the treatment of myelodysplastic syndromes and acute myeloid leukaemia has demonstrated that modulation of relatively broad epigenetic regulatory processes can show beneficial efficacy/safety profiles in defined patient groups. This chapter will focus on the biochemical mechanisms controlling DNA methylation, consequences of aberrant DNA methylation in complex chronic diseases, existing modulators of DNA methylation used in the clinic, and opportunities for new drugs targeting this central epigenetic mechanism.
Collapse
Affiliation(s)
- Tom D. Heightman
- Astex Pharmaceuticals 436 Cambridge Science Park Cambridge CB4 0QA UK
| | - Michael McCullar
- Astex Pharmaceuticals Inc. 4140 Dublin Boulevard, Suite 200 Dublin CA 94568 USA
| |
Collapse
|
197
|
Sheng Y, Wang H, Liu D, Zhang C, Deng Y, Yang F, Zhang T, Zhang C. Methylation of tumor suppressor gene CDH13 and SHP1 promoters and their epigenetic regulation by the UHRF1/PRMT5 complex in endometrial carcinoma. Gynecol Oncol 2015; 140:145-51. [PMID: 26597461 DOI: 10.1016/j.ygyno.2015.11.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 10/24/2015] [Accepted: 11/17/2015] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Epigenetic changes in cancer and precancerous lesions could be utilized as biomarkers for cancer early detection. This study aims to investigate the novel biomarkers in endometrial carcinoma, and explore their epigenetic regulation. METHODS Methylation of six tumor suppressor genes (CDH13, SHP1, HIN1, DKK3, CTNNA1 and PCDH8) was evaluated in 155 endometrium samples. Changes of methylation and mRNA expression after treatment with 5-Aza-2'-deoxycytidine (5-Aza-CdR) or/and trichostatin A (TSA) were investigated by MSP and qRT-PCR respectively. Co-immunoprecipitation was used to detect the interactions between UHRF1 and PRMT5 proteins. RESULTS CDH13 and SHP1 promoters were highly methylated (81.36% and 86.44%, respectively) in endometrial carcinoma, while CDH13 promoter methylation was also present in complex hyperplasia and atypical hyperplasia (51.72% and 50.00%, respectively). Methylation of CDH13 and SHP1 promoters was associated with age and tumor differentiation or muscular infiltration depth. CDH13 and SHP1 promoters were completely methylated in endometrial carcinoma cell lines and were partially reversed by 5-Aza-CdR or TSA to induce mRNA levels (P<0.01). After combined treatment with these two agents, methylation of CDH13 and SHP1 promoters was completely reversed and expression of their mRNA was significantly increased (P<0.01). Moreover, PRMT5 could bind to UHRF1 and down-regulated by 5-Aza-CdR and/or TSA treatment (P<0.05). CONCLUSIONS Our data demonstrate for the first time that SHP1 methylation has high specificity for diagnosis of endometrial carcinoma, while CDH13 promoter methylation plays a role in the earlier stage. Furthermore, UHRF1 could form a complex with PRMT5 to contribute to the endometrial carcinogenesis.
Collapse
Affiliation(s)
- Yan Sheng
- Institute of Pathology and Pathophysiology, Shandong University School of Medicine, Jinan 250012, China; Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Hongtao Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research for Cancer, The Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Dongchen Liu
- Institute of Pathology and Pathophysiology, Shandong University School of Medicine, Jinan 250012, China
| | - Cheng Zhang
- Institute of Pathology and Pathophysiology, Shandong University School of Medicine, Jinan 250012, China
| | - Yupeng Deng
- Institute of Pathology and Pathophysiology, Shandong University School of Medicine, Jinan 250012, China
| | - Fan Yang
- Institute of Pathology and Pathophysiology, Shandong University School of Medicine, Jinan 250012, China
| | - Tingguo Zhang
- Institute of Pathology and Pathophysiology, Shandong University School of Medicine, Jinan 250012, China.
| | - Cuijuan Zhang
- Institute of Pathology and Pathophysiology, Shandong University School of Medicine, Jinan 250012, China.
| |
Collapse
|
198
|
Zhou J, Zhu G, Huang J, Li L, Du Y, Gao Y, Wu D, Wang X, Hsieh JT, He D, Wu K. Non-canonical GLI1/2 activation by PI3K/AKT signaling in renal cell carcinoma: A novel potential therapeutic target. Cancer Lett 2015; 370:313-23. [PMID: 26577809 DOI: 10.1016/j.canlet.2015.11.006] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 10/08/2015] [Accepted: 11/04/2015] [Indexed: 12/21/2022]
Abstract
Renal cell carcinoma (RCC) is the most lethal urologic malignancy; however, the molecular events supporting RCC carcinogenesis and progression remain poorly understood. In this study, based on the analysis of gene expression profile data from human clear cell RCC (ccRCC) and the corresponding normal tissues, we discovered that Hedgehog (HH) pathway component genes GLI1 and GLI2 were significantly elevated in ccRCC. Survival analysis of a large cohort of ccRCC samples demonstrated that the expression of GLI1 and GLI2 was negatively correlated with patient overall survival. Clinical sample-based VHL mutation and cell model-based VHL manipulation studies all indicated that the activation of GLI1 and GLI2 was not affected by VHL status. Further signaling pathway dissections demonstrated that GLI1 and GLI2 were activated by the phosphoinositide 3-kinase (PI3K)/AKT pathway, but not mediated by the canonical HH/SMO/GLI signaling. Up-regulation of GLI1 and GLI2 promoted RCC proliferation and clonogenic ability, whereas, a combination of GLIs inhibitor Gant61 and AKT inhibitor Perifosine synergistically suppressed RCC growth and induced apoptosis in vitro and in vivo. Therefore, this study identifies that GLI1 and GLI2 are critical for RCC carcinogenesis, and also provides an alternative therapeutic strategy for RCC.
Collapse
Affiliation(s)
- Jiancheng Zhou
- Department of Urology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Guodong Zhu
- Department of Urology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Jun Huang
- Department of Urology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Lei Li
- Department of Urology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yuefeng Du
- Department of Urology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yang Gao
- Department of Urology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Dapeng Wu
- Department of Urology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Xinyang Wang
- Department of Urology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Jer-Tsong Hsieh
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Dalin He
- Department of Urology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| | - Kaijie Wu
- Department of Urology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
199
|
Sonoda K. Molecular biology of gynecological cancer. Oncol Lett 2015; 11:16-22. [PMID: 26834851 DOI: 10.3892/ol.2015.3862] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 09/24/2015] [Indexed: 12/20/2022] Open
Abstract
Cancer is a pathological condition in which the balance between cell growth and death is disordered. Various molecules have been reported to be involved in the oncogenic process of invasion, metastasis and resistance to treatment. An exponential growth in the collection of genomic and proteomic data in the past 20 years has provided major advances in understanding the molecular mechanisms of human cancer, which has been applied to diagnostic and treatment strategies. Targeted therapies have been developed and adopted, particularly for advanced, refractory or recurrent cancers, depending on individual molecular profiles. The aim of the present review is to provide a report of the current literature regarding the molecular biology of gynecological cancers.
Collapse
Affiliation(s)
- Kenzo Sonoda
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
| |
Collapse
|
200
|
Cribbs A, Feldmann M, Oppermann U. Towards an understanding of the role of DNA methylation in rheumatoid arthritis: therapeutic and diagnostic implications. Ther Adv Musculoskelet Dis 2015; 7:206-19. [PMID: 26425149 DOI: 10.1177/1759720x15598307] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The term 'epigenetics' loosely describes DNA-templated processes leading to heritable changes in gene activity and expression, which are independent of the underlying DNA sequence. Epigenetic mechanisms comprise of post-translational modifications of chromatin, methylation of DNA, nucleosome positioning as well as expression of noncoding RNAs. Major advances in understanding the role of DNA methylation in regulating chromatin functions have been made over the past decade, and point to a role of this epigenetic mechanism in human disease. Rheumatoid arthritis (RA) is an autoimmune disorder where altered DNA methylation patterns have been identified in a number of different disease-relevant cell types. However, the contribution of DNA methylation changes to RA disease pathogenesis is at present poorly understood and in need of further investigation. Here we review the current knowledge regarding the role of DNA methylation in rheumatoid arthritis and indicate its potential therapeutic implications.
Collapse
Affiliation(s)
- Adam Cribbs
- Kennedy Institute of Rheumatology, Oxford, and Botnar Research Centre, NIHR Oxford Biomedical Research Unit, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7LD, UK
| | | | - Udo Oppermann
- Botnar Research Centre, NIHR Oxford Biomedical Research Unit, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, and Structural Genomics Consortium, University of Oxford, Oxford, UK
| |
Collapse
|