151
|
Xie H, Brines ML, de Lanerolle NC. Transcripts of the transposon mariner are present in epileptic brain. Epilepsy Res 1998; 32:140-53. [PMID: 9761316 DOI: 10.1016/s0920-1211(98)00047-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mobile genetic elements termed transposons have been increasingly implicated in human disease. The small transposon mariner is widespread within non-vertebrate genomes and causes mutation by replication, excision, and insertion of itself without an RNA intermediate. We find that human DNA contains about 60 copies of this gene. Mariner transcripts are abundant in RNA prepared from sclerotic epileptic hippocampi. In contrast, typically no mariner-specific RNA is detected in non-sclerotic hippocampi from other epileptic patients or from autopsies. A complete but non-functional copy was obtained using rapid amplification of cDNA ends (RACE). This human mariner transcript is approximately 45% homologous to a functional counterpart active in Drosophila, with a coding region of 1035 bases flanked by 32 base inverted terminal repeats. The differential expression of mariner transcripts within sclerotic hippocampi suggests the probable activity of an autonomous element which by mutating critical genes could establish an epileptogenic substrate in the hippocampus.
Collapse
Affiliation(s)
- H Xie
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06520-8039, USA
| | | | | |
Collapse
|
152
|
Luo G, Ivics Z, Izsvák Z, Bradley A. Chromosomal transposition of a Tc1/mariner-like element in mouse embryonic stem cells. Proc Natl Acad Sci U S A 1998; 95:10769-73. [PMID: 9724779 PMCID: PMC27970 DOI: 10.1073/pnas.95.18.10769] [Citation(s) in RCA: 185] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/1998] [Indexed: 11/18/2022] Open
Abstract
Mouse has become an increasingly important organism for modeling human diseases and for determining gene function in a mammalian context. Unfortunately, transposon-tagged mutagenesis, one of the most valuable tools for functional genomics, still is not available in this organism. On the other hand, it has long been speculated that members of the Tc1/mariner-like elements may be less dependent on host factors and, hence, can be introduced into heterologous organisms. However, this prediction has not been realized in mice. We report here the chromosomal transposition of the Sleeping Beauty (SB) element in mouse embryonic stem cells, providing evidence that it can be used as an in vivo mutagen in mice.
Collapse
Affiliation(s)
- G Luo
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
153
|
Abstract
Insertion sequences (ISs) constitute an important component of most bacterial genomes. Over 500 individual ISs have been described in the literature to date, and many more are being discovered in the ongoing prokaryotic and eukaryotic genome-sequencing projects. The last 10 years have also seen some striking advances in our understanding of the transposition process itself. Not least of these has been the development of various in vitro transposition systems for both prokaryotic and eukaryotic elements and, for several of these, a detailed understanding of the transposition process at the chemical level. This review presents a general overview of the organization and function of insertion sequences of eubacterial, archaebacterial, and eukaryotic origins with particular emphasis on bacterial elements and on different aspects of the transposition mechanism. It also attempts to provide a framework for classification of these elements by assigning them to various families or groups. A total of 443 members of the collection have been grouped in 17 families based on combinations of the following criteria: (i) similarities in genetic organization (arrangement of open reading frames); (ii) marked identities or similarities in the enzymes which mediate the transposition reactions, the recombinases/transposases (Tpases); (iii) similar features of their ends (terminal IRs); and (iv) fate of the nucleotide sequence of their target sites (generation of a direct target duplication of determined length). A brief description of the mechanism(s) involved in the mobility of individual ISs in each family and of the structure-function relationships of the individual Tpases is included where available.
Collapse
Affiliation(s)
- J Mahillon
- Laboratoire de Génétique Microbienne, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | | |
Collapse
|
154
|
Abstract
Mariner elements, a family of DNA-mediated transposable elements with short, inverted terminal repeats, have been reported in a wide variety of arthropods, as well as planarians, nematodes, and humans. No such element has been reported in a plant. Here we report a mariner element in the plant soybean (Glycine max (L.) Merr.). Although this sequence belongs to the mariner family, it is clearly distinct from previously reported mariner-like elements, as well as from the Tc1 transposon family. Novel aspects of its sequence could be useful as a starting point to identify mariner-like elements in new organisms, and it may prove useful in creating a transformation vector for plants.
Collapse
Affiliation(s)
- T Jarvik
- Department of Biology, University of Utah, Salt Lake City, Utah 84112, USA
| | | |
Collapse
|
155
|
Lewis JP, Macrina FL. IS195, an insertion sequence-like element associated with protease genes in Porphyromonas gingivalis. Infect Immun 1998; 66:3035-42. [PMID: 9632563 PMCID: PMC108310 DOI: 10.1128/iai.66.7.3035-3042.1998] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Porphyromonas gingivalis is recognized as an important etiologic agent in adult and early-onset periodontal disease. Proteases produced by this organism contribute to its virulence in mice. Protease-encoding genes have been shown to contain multiple copies of repeated nucleotide sequences. These conserved sequences have also been found in hemagglutinin genes. In the process of studying the genetic loci containing the conserved repeated sequences, we have characterized a prtP gene homolog from P. gingivalis W83 encoding a cysteine protease with Lys-X specificity. However, this prtP gene was interrupted by an insertion sequence-like element which we designated IS195. Furthermore, IS195 and another element, IS1126, were present downstream of prtP gene homologs (kgp) found in P. gingivalis H66 and 381. IS195, a 1,068-bp insertion sequence-like element, contained 11-bp inverted repeats at its termini and was bordered by 9-bp direct repeats presumed to be a transposition-mediated target site duplication. Its central region contained one large open reading frame encoding a predicted 300-amino-acid protein which appeared to be a transposase. We isolated two naturally occurring variants of P. gingivalis W83, one carrying IS195 within the coding region of the prtP gene and another containing an intact prtP gene. Biochemical characterization revealed a lack of trypsin-like Lys-X specific proteolytic activity in the P. gingivalis W83 variant carrying the disrupted prtP gene. Studies using a mouse model revealed a reduction of virulence resulting from insertion of IS195 into the coding region of the prtP gene. An allelic-exchange mutant defective in the prtP gene also was constructed and tested in vivo. It displayed intermediate virulence compared to that of the wild-type and prtP::IS195 mutant strains. We conclude that the Lys-X cysteine protease contributes to virulence in soft tissue infections.
Collapse
Affiliation(s)
- J P Lewis
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia 23298-0678, USA
| | | |
Collapse
|
156
|
Ling KY, Vaillant B, Haynes WJ, Saimi Y, Kung C. A comparison of internal eliminated sequences in the genes that encode two K(+)-channel isoforms in Paramecium tetraurelia. J Eukaryot Microbiol 1998; 45:459-65. [PMID: 9703683 DOI: 10.1111/j.1550-7408.1998.tb05100.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
We examined both the somatic (macro-) and the germinal (micronuclear) DNAs that encode two K(+)-channel isoforms, PAK1 and PAK11, in Paramecium tetraurelia. The coding regions of these two isoforms are 88% identical in nucleotides and 95% identical in amino acids. Their introns are also highly conserved. Even some of the internal eliminated sequences in PAK1 and PAK11 are clearly related. PAK1 has five IESs; PAK11 has four. The first (5'-most) IESs of the two genes are located at the same site in the coding sequence but differ in size. The 2nd IES in PAK1 (206-bp), the largest among the nine IESs, has no PAK11 counterpart. The 3rd, 4th and 5th IESs in PAK1 have a counterpart in PAK11 that is similar in size and in sequence, and identical in its position in the coding sequence. In addition, the first IES of PAK11 bears some resemblance to the 4th one of PAK1. The similarities and differences between the two sets of IESs are discussed with respect to the origin and divergence of the two K(+)-channel isoforms.
Collapse
Affiliation(s)
- K Y Ling
- Laboratory of Molecular Biology, University of Wisconsin, Madison 53706, USA
| | | | | | | | | |
Collapse
|
157
|
Drew AC, Brindley PJ, Lewis FA, Liang YS, Minchella DJ. Tandemly repeated genomic sequence demonstrates inter- and intra-strain genetic variation in Schistosoma japonicum. Trop Med Int Health 1998; 3:373-80. [PMID: 9623942 DOI: 10.1046/j.1365-3156.1998.00228.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Genetic variability within and among four geographical strains of Schistosoma japonicum was examined using a novel repetitive element. The element, termed Sirh1.0, was isolated from genomic DNA of a Philippine strain of S. japonicum using a combination of restriction fragment PCR and band-stab PCR. Sjrh1.0 is a tandemly repeated element, the sequence of which appears to be species-specific, in that it hybridized to DNA from S. japonicum but not to DNA from S. mansoni. Its sequence does not match previously deposited sequences in GenBank. When employed as a probe in Southern hybridization analysis, radiolabelled Sjrh1.0 revealed sex-specific and strain-specific differences in genomic DNA of individual worms. We also found individual genetic variation within geographical isolates of the Asian schistosome.
Collapse
Affiliation(s)
- A C Drew
- Molecular Parasitology Unit, Queensland Institute of Medical Research, Brisbane, Australia
| | | | | | | | | |
Collapse
|
158
|
Lampe DJ, Grant TE, Robertson HM. Factors affecting transposition of the Himar1 mariner transposon in vitro. Genetics 1998; 149:179-87. [PMID: 9584095 PMCID: PMC1460121 DOI: 10.1093/genetics/149.1.179] [Citation(s) in RCA: 162] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mariner family transposable elements are widespread in animals, but their regulation is poorly understood, partly because only two are known to be functional. These are particular copies of the Dmmar1 element from Drosophila mauritiana, for example, Mos1, and the consensus sequence of the Himar1 element from the horn fly, Haematobia irritans. An in vitro transposition system was refined to investigate several parameters that influence the transposition of Himar1. Transposition products accumulated linearly over a period of 6 hr. Transposition frequency increased with temperature and was dependent on Mg2+ concentration. Transposition frequency peaked over a narrow range of transposase concentration. The decline at higher concentrations, a phenomenon observed in vivo with Mos1, supports the suggestion that mariners may be regulated in part by "overproduction inhibition." Transposition frequency decreased exponentially with increasing transposon size and was affected by the sequence of the flanking DNA of the donor site. A noticeable bias in target site usage suggests a preference for insertion into bent or bendable DNA sequences rather than any specific nucleotide sequences beyond the TA target site.
Collapse
Affiliation(s)
- D J Lampe
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| | | | | |
Collapse
|
159
|
Hartl DL, Lohe AR, Lozovskaya ER. Modern thoughts on an ancyent marinere: function, evolution, regulation. Annu Rev Genet 1998; 31:337-58. [PMID: 9442899 DOI: 10.1146/annurev.genet.31.1.337] [Citation(s) in RCA: 189] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The mariner/Tc1 superfamily of transposable elements is one of the most diverse and widespread Class II transposable elements. Within the larger assemblage, the mariner-like elements (MLEs) and the Tc1-like elements (TLEs) are distinct families differing characteristically in the composition of the "D,D(35)E" cation-binding domain. Based on levels of sequence similarity, the elements in each family can be subdivided further into several smaller subfamilies. MLEs and TLEs both have an extraordinarily wide host range. They are abundant in insect genomes and other invertebrates and are found even in some vertebrate species including, in the case of mariner, humans, in which one element on chromosome 17p has been implicated as a hotspot of recombination. In spite of the extraordinary evolutionary success of the elements, virtually nothing is known about their mode of regulation within genomes. There is abundant evidence that the elements are disseminated to naive host genomes by horizontal transmission, and there is a substantial base of evidence for inference about the subsequent population dynamics. Studies of engineered mariner elements and induced mutations in the transposase have identified two mechanisms that may be operative in mariner regulation. One mechanism is overproduction inhibition, in which excessive wild-type transposase reduces the rate of excision of a target element. A second mechanism is dominant-negative complementation, in which certain mutant transposase proteins antagonize the activity of the wild-type transposase. The latter process may help explain why the vast majority of MLEs in nature undergo "vertical inactivation" by multiple mutations and, eventually, stochastic loss. There is also evidence that mariner/Tc1 elements can be mobilized in hybrid dysgenesis; in particular, certain dysgenic crosses in Drosophila virilis result in mobilization of a TLE designated Paris as well as the mobilization of other unrelated transposable elements.
Collapse
Affiliation(s)
- D L Hartl
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
| | | | | |
Collapse
|
160
|
Abstract
Transposable elements propagate by inserting into new locations in the genomes of the hosts they inhabit. Their transposition might thus negatively affect the fitness of the host, suggesting the requirement for a tight control in the regulation of transposable element mobilization. The nature of this control depends on the structure of the transposable element. DNA elements encode a transposase that is necessary, and in most cases sufficient, for mobilization. In general, regulation of these elements depends on intrinsic factors with little direct input from the host. Retrotransposons require an RNA intermediate for transposition, and their frequency of mobilization is controlled at multiple steps by the host genome by regulating both their expression levels and their insertional specificity. As a result, a symbiotic relationship has developed between transposable elements and their host. Examples are now emerging showing that transposons can contribute significantly to the well being of the organisms they populate.
Collapse
Affiliation(s)
- M Labrador
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | |
Collapse
|
161
|
Fu R, Voordouw G. ISD1, an insertion element from the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough: structure, transposition, and distribution. Appl Environ Microbiol 1998; 64:53-61. [PMID: 9435062 PMCID: PMC124671 DOI: 10.1128/aem.64.1.53-61.1998] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Insertion element ISD1, discovered when its transposition caused the insertional inactivation of an introduced sacB gene, is present in two copies in the genome of Desulfovibrio vulgaris Hildenborough. Southern blot analysis indicated at least two insertion sites in the sacB gene. Cloning and sequencing of a transposed copy of ISD1 indicated a length of 1,200 bp with a pair of 44-bp imperfect inverted repeats at the ends, flanked by a direct repeat of the 4-bp target sequence. AAGG and AATT were found to function as target sequences. ISD1 encodes a transposase from two overlapping open reading frames by programmed translational frameshifting at an A6G shifty codon motif. Sequence comparison showed that ISD1 belongs to the IS3 family. Isolation and analysis of the chromosomal copies, ISD1-A and ISD1-B, by PCR and sequencing indicated that these are not flanked by direct repeats. ISD1-A is inserted in a region of the chromosome containing the gapdh-pgk genes (encoding glyceraldehyde-3-phosphate dehydrogenase and phosphoglycerate kinase). Active transposition to other loci in the genome was demonstrated, offering the potential of a new tool for gene cloning and mutagenesis. ISD1 is the first transposable element described for the sulfate reducers, a large and environmentally important group of bacteria. The distribution of ISD1 in genomes of sulfate-reducing bacteria is limited. A single copy is present in the genome of D. desulfuricans Norway.
Collapse
Affiliation(s)
- R Fu
- Department of Biological Sciences, University of Calgary, Alberta, Canada
| | | |
Collapse
|
162
|
Ivics Z, Hackett PB, Plasterk RH, Izsvák Z. Molecular reconstruction of Sleeping Beauty, a Tc1-like transposon from fish, and its transposition in human cells. Cell 1997; 91:501-10. [PMID: 9390559 DOI: 10.1016/s0092-8674(00)80436-5] [Citation(s) in RCA: 1023] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Members of the Tc1/mariner superfamily of transposons isolated from fish appear to be transpositionally inactive due to the accumulation of mutations. Molecular phylogenetic data were used to construct a synthetic transposon, Sleeping Beauty, which could be identical or equivalent to an ancient element that dispersed in fish genomes in part by horizontal transmission between species. A consensus sequence of a transposase gene of the salmonid subfamily of elements was engineered by eliminating the inactivating mutations. Sleeping Beauty transposase binds to the inverted repeats of salmonid transposons in a substrate-specific manner, and it mediates precise cut-and-paste transposition in fish as well as in mouse and human cells. Sleeping Beauty is an active DNA-transposon system from vertebrates for genetic transformation and insertional mutagenesis.
Collapse
Affiliation(s)
- Z Ivics
- Department of Genetics and Cell Biology, University of Minnesota, St. Paul 55108-1095, USA
| | | | | | | |
Collapse
|
163
|
van Pouderoyen G, Ketting RF, Perrakis A, Plasterk RH, Sixma TK. Crystal structure of the specific DNA-binding domain of Tc3 transposase of C.elegans in complex with transposon DNA. EMBO J 1997; 16:6044-54. [PMID: 9312061 PMCID: PMC1170234 DOI: 10.1093/emboj/16.19.6044] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The crystal structure of the complex between the N-terminal DNA-binding domain of Tc3 transposase and an oligomer of transposon DNA has been determined. The specific DNA-binding domain contains three alpha-helices, of which two form a helix-turn-helix (HTH) motif. The recognition of transposon DNA by the transposase is mediated through base-specific contacts and complementarity between protein and sequence-dependent deformations of the DNA. The HTH motif makes four base-specific contacts with the major groove, and the N-terminus makes three base-specific contacts with the minor groove. The DNA oligomer adopts a non-linear B-DNA conformation, made possible by a stretch of seven G:C base pairs at one end and a TATA sequence towards the other end. Extensive contacts (seven salt bridges and 16 hydrogen bonds) of the protein with the DNA backbone allow the protein to probe and recognize the sequence-dependent DNA deformation. The DNA-binding domain forms a dimer in the crystals. Each monomer binds a separate transposon end, implying that the dimer plays a role in synapsis, necessary for the simultaneous cleavage of both transposon termini.
Collapse
Affiliation(s)
- G van Pouderoyen
- Division of Molecular Carcinogenesis, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
164
|
Hallet B, Sherratt DJ. Transposition and site-specific recombination: adapting DNA cut-and-paste mechanisms to a variety of genetic rearrangements. FEMS Microbiol Rev 1997; 21:157-78. [PMID: 9348666 DOI: 10.1111/j.1574-6976.1997.tb00349.x] [Citation(s) in RCA: 133] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In bacteria, two categories of specialised recombination promote a variety of DNA rearrangements. Transposition is the process by which genetic elements move between different locations of the genome, whereas site-specific recombination is a reaction in which DNA strands are broken and exchanged at precise positions of two target DNA loci to achieve determined biological function. Both types of recombination are represented by diverse genetic systems which generally encode their own recombination enzymes. These enzymes, generically called transposases and site-specific recombinases, can be grouped into several families on the basis of amino acid sequence similarities, which, in some cases, are limited to a signature of a few residues involved in catalysis. The well characterised site-specific recombinases are found to belong to two distinct groups whereas the transposases form a large super-family of enzymes encompassing recombinases from both prokaryotes and eukaryotes. In spite of important differences in the catalytic mechanisms used by these three classes of enzymes to cut and rejoin DNA molecules, similar strategies are used to coordinate the biochemical steps of the recombination reaction and to control its outcome. This review summarises our current understanding of transposition and site-specific recombination, attempting to illustrate how relatively conserved DNA cut-and-paste mechanisms can be used to bring about a variety of complex DNA rearrangements.
Collapse
Affiliation(s)
- B Hallet
- Department of Biochemistry, University of Oxford, UK.
| | | |
Collapse
|
165
|
Cassier-Chauvat C, Poncelet M, Chauvat F. Three insertion sequences from the cyanobacterium Synechocystis PCC6803 support the occurrence of horizontal DNA transfer among bacteria. Gene 1997; 195:257-66. [PMID: 9305771 DOI: 10.1016/s0378-1119(97)00165-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Three insertion sequences were characterized from the widely-used cyanobacterium Synechocystis PCC6803. They all harbored a putative transposase sequence flanked by two imperfect inverted repeats, seemed to have duplicated their target insertion site and occurred as multiple copies in the host genome. They exhibited no obvious homology with any other cyanobacterial ISs and were termed IS5S (871 bp), IS4S (1299 bp) and ISS1987 (949 bp) because they were, respectively, homologous to IS5- and IS4-bacterial elements, and to several members of the IS630-Tc1-mariner superfamily of IS elements occurring in a wide range of hosts. This suggests that these IS-elements were spread through horizontal transfer between evolutionary distant organisms. Three IS5S-copies were isolated as a rescue insertion into a replicating plasmid (IS5Sa), or subsequently cloned from a Synechocystis DNA-library probed with IS5Sa (IS5Sb and IS5Sc), and appeared to be almost identical. In the vicinity of IS5Sb, we found the ISS1987 element inserted into the IS4S element. This indicates that the ISS1987 element has been, and could still be, mobile since its transposase sequence is not interrupted with stop codons or translational frameshifts, unlike that which is found in most members of the IS630-Tc1-mariner superfamily of transposable elements.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- Cloning, Molecular
- Codon, Terminator
- Cyanobacteria/genetics
- DNA Probes
- DNA Transposable Elements/genetics
- DNA, Bacterial/genetics
- Frameshifting, Ribosomal
- Gene Transfer, Horizontal
- Genome, Bacterial
- Molecular Sequence Data
- Mutagenesis, Insertional
- Nucleic Acid Hybridization
- Phylogeny
- Plasmids
- Repetitive Sequences, Nucleic Acid
- Sequence Alignment
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
- Transposases/genetics
Collapse
Affiliation(s)
- C Cassier-Chauvat
- Service de Biochimie et Génétique Moléculaire, CEA Saclay, URA 2096 CNRS, Gif sur Yvette, France.
| | | | | |
Collapse
|
166
|
Noma K, Nakajima R, Ohtsubo H, Ohtsubo E. RIRE1, a retrotransposon from wild rice Oryza australiensis. Genes Genet Syst 1997; 72:131-40. [PMID: 9339541 DOI: 10.1266/ggs.72.131] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
RIRE1 is a retrotransposon present in wild rice Oryza australiensis in an extraordinary number of copies, and only a portion of the LTR sequence has been determined previously. Here, we isolated and sequenced DNA segments of various portions of RIRE1, revealing that the sequences of LTR and the internal region were 1523 and 5277 bp in length, respectively. The internal region shows homology with the pol region in copia, a Drosophila retrotransposon, indicating that RIRE1 is a copia-like retrotransposon. The internal region of RIRE1 contained an open reading frame coding for genes, gag, pro, int, rt and rh, like copia and retroelements related to it. A clone screened from a library of the O. australiensis genomic DNA contained solo LTR, which was flanked by direct repeats of a 5-bp sequence. This suggests that RIRE1 generates a duplication of the target sequence of 5 bp upon retroposition. We observed that many RIRE1 members were nested by another RIRE1 member. This indicates that these RIRE1 members have received another RIRE1 to make an extraordinary number of copies in the O. australiensis genome without giving a deleterious effect on the growth of rice cells.
Collapse
Affiliation(s)
- K Noma
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Japan
| | | | | | | |
Collapse
|
167
|
Walker SL, Wonderling RS, Owens RA. Mutational analysis of the adeno-associated virus Rep68 protein: identification of critical residues necessary for site-specific endonuclease activity. J Virol 1997; 71:2722-30. [PMID: 9060625 PMCID: PMC191394 DOI: 10.1128/jvi.71.4.2722-2730.1997] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The Rep68 and Rep78 proteins of adeno-associated virus type 2 (AAV) are multifunctional proteins which contain overlapping amino acid sequences. They are required for viral replication and preferential integration of the AAV genome into a region of human chromosome 19. During the terminal resolution process of AAV DNA replication, these proteins make a site-specific and strand-specific endonuclease cut within the AAV inverted terminal repeat DNA. The Rep68 and Rep78 proteins also have helicase and DNA-binding activities. The endonuclease activity is believed to involve the covalent attachment of Rep68 or Rep78 at the cut site via a phosphotyrosine linkage. In an attempt to identify the active-site tyrosine residue of Rep78 and Rep68, tyrosine residues were site specifically mutated to phenylalanines by overlap extension PCR, and the resulting PCR fragments were cloned into a maltose binding protein-Rep68 fusion (MBP-Rep68delta) expression vector. The mutant MBP-Rep68delta proteins were expressed in Escherichia coli cells, purified with amylose resin, and assayed in vitro for Rep68-specific activities. Although several of the mutations disrupted the endonuclease activity, only the mutation of tyrosine 152 abrogated the endonuclease activity with no discernible effect on the helicase or DNA-binding activities. Our data therefore suggest that there are distinct active sites for the helicase and endonuclease activities.
Collapse
Affiliation(s)
- S L Walker
- Laboratory of Molecular and Cellular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
168
|
Lohe AR, De Aguiar D, Hartl DL. Mutations in the mariner transposase: the D,D(35)E consensus sequence is nonfunctional. Proc Natl Acad Sci U S A 1997; 94:1293-7. [PMID: 9037046 PMCID: PMC19784 DOI: 10.1073/pnas.94.4.1293] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Genetic analysis of eukaryote transposases and comparison with their prokaryote counterparts have been greatly hindered by difficulty in isolating mutations. We describe a simple eye-color screen that facilitates isolation and analysis of mutations in the mariner transposase in Drosophila melanogaster. Use of ethyl methanesulfonate and site-directed mutagenesis has identified 18 residues that are critical for in vivo excision of a target mariner element. When the mutations were examined in heterozygous mutant/nonmutant genotypes, more than half of the mutant transposase proteins were found to reduce the activity of the wild-type transposase, as assayed by the frequency of germline excision of a target element. Remarkably, transposase function is obliterated when the D,D(34)D acidic, ion-binding domain is replaced with the consensus sequence D,D(34)E found in the nematode Tc1 transposase and in many other transposases in the superfamily. A number of mutations strongly complement wild-type transposase in a dominant-negative manner, suggestive of subunit interactions in the excision reaction; these mutations are located in a small region that includes part of the D,D(34)D motif. Transposase function also is eliminated by a mutation in the inferred initiation codon and by a mutation in a putative nuclear localization signal.
Collapse
Affiliation(s)
- A R Lohe
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | | | | |
Collapse
|
169
|
Halverson D, Baum M, Stryker J, Carbon J, Clarke L. A centromere DNA-binding protein from fission yeast affects chromosome segregation and has homology to human CENP-B. J Cell Biol 1997; 136:487-500. [PMID: 9024682 PMCID: PMC2134285 DOI: 10.1083/jcb.136.3.487] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/1996] [Revised: 12/09/1996] [Indexed: 02/03/2023] Open
Abstract
Genetic and biochemical strategies have been used to identify Schizosaccharomyces pombe proteins with roles in centromere function. One protein, identified by both approaches, shows significant homology to the human centromere DNA-binding protein, CENP-B, and is identical to Abp1p (autonomously replicating sequence-binding protein 1) (Murakami, Y., J.A. Huberman, and J. Hurwitz. 1996. Proc. Natl. Acad. Sci. USA. 93:502-507). Abp1p binds in vitro specifically to at least three sites in centromeric central core DNA of S. pombe chromosome II (cc2). Overexpression of abp1 affects mitotic chromosome stability in S. pombe. Although inactivation of the abp1 gene is not lethal, the abp1 null strain displays marked mitotic chromosome instability and a pronounced meiotic defect. The identification of a CENP-B-related centromere DNA-binding protein in S. pombe strongly supports the hypothesis that fission yeast centromeres are structurally and functionally related to the centromeres of higher eukaryotes.
Collapse
Affiliation(s)
- D Halverson
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara 93106, USA
| | | | | | | | | |
Collapse
|
170
|
Arcà B, Zabalou S, Loukeris TG, Savakis C. Mobilization of a Minos transposon in Drosophila melanogaster chromosomes and chromatid repair by heteroduplex formation. Genetics 1997; 145:267-79. [PMID: 9071583 PMCID: PMC1207794 DOI: 10.1093/genetics/145.2.267] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Transposase-mediated mobilization of the element Minos has been studied in the Drosophila melanogaster genome. Excision and transposition of a nonautonomous Minos transposon in the presence of a Minos transposase gene was detected with a dominant eye color marker carried by the transposon. Frequencies of excision in somatic tissues and in the germ line were higher in flies heterozygous for the transposon than in homozygotes or hemizygotes. Transposition of a X chromosome-linked insertion of Minos into new autosomal sites occurred in 1-12% of males expressing transposase, suggesting that this system is usable for gene tagging and enhancer trapping in Drosophila. Sequence analysis of PCR-amplified donor sites after excision showed precise restoration of the original target sequence in approximately 75% of events in heterozygotes and the presence of footprints or partially deleted elements in the remaining events. Most footprints consisted of the four terminal bases of the transposon, flanked by the TA target duplication. Sequencing of a chromosomal donor site that was directly cloned after excision showed a characteristic two-base mismatch heteroduplex in the center of the 6-bp footprint. Circular extrachromosomal forms of the transposon, presumably representing excised Minos elements, could be detected only in the presence of transposase. A model for chromatid repair after Minos excision is discussed in which staggered cuts are first produced at the ends of the inverted repeats, the broken chromatid ends are joined, and the resulting heteroduplex is subsequently repaired. The model also suggests a simple mechanism for the production of the target site duplication and for regeneration of the transposon ends during reintegration.
Collapse
Affiliation(s)
- B Arcà
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Greece
| | | | | | | |
Collapse
|
171
|
Klobutcher LA, Herrick G. Developmental genome reorganization in ciliated protozoa: the transposon link. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1997; 56:1-62. [PMID: 9187050 DOI: 10.1016/s0079-6603(08)61001-6] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- L A Klobutcher
- Department of Biochemistry, University of Connecticut Health Center, Farmington 06030, USA
| | | |
Collapse
|
172
|
|
173
|
|
174
|
Coyne RS, Chalker DL, Yao MC. Genome downsizing during ciliate development: nuclear division of labor through chromosome restructuring. Annu Rev Genet 1996; 30:557-78. [PMID: 8982465 DOI: 10.1146/annurev.genet.30.1.557] [Citation(s) in RCA: 113] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The ciliated protozoa divide the labor of germline and somatic genetic functions between two distinct nuclei. The development of the somatic (macro-) nucleus from the germinal (micro-) nucleus occurs during sexual reproduction and involves large-scale, genetic reorganization including site-specific chromosome breakage and DNA deletion. This intriguing process has been extensively studied in Tetrahymena thermophila. Characterization of cis-acting sequences, putative protein factors, and possible reaction intermediates has begun to shed light on the underlying mechanisms of genome rearrangement. This article summarizes the current understanding of this phenomenon and discusses its origin and biological function. We postulate that ciliate nuclear restructuring serves to segregate the two essential functions of chromosomes: the transmission and expression of genetic information.
Collapse
Affiliation(s)
- R S Coyne
- Fred Hutchinson Cancer Research Center, Seattle, Washington 98104, USA
| | | | | |
Collapse
|
175
|
Giraud T, Capy P. Somatic activity of the mariner transposable element in natural populations of Drosophila simulans. Proc Biol Sci 1996; 263:1481-6. [PMID: 8952091 DOI: 10.1098/rspb.1996.0216] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The characteristics of the mariner transposable element in natural populations of Drosophila simulans from different parts of the world were analysed. The somatic excision rate (estimated from a test-cross with a reference strain), the average number of copies (determined by Southern blots), and the presence of deleted copies (detected by polymerase chain reaction amplification) were estimated for each population. There was a great variability in the somatic excision rate, measured as the percentage of mosaic males, both within and between populations. The population effect was highly significant. The average copy number also varied widely and was correlated with the excision rate. Rare deleted elements were detected by polymerase chain reaction and Southern blots. Percentage of mosaic males increased in strains kept for a long time at low temperature, and the somatic excision rate increased with the latitude of origin of populations. Therefore, these results strongly suggest that temperature could be involved in the regulation of mariner somatic excision in D. simulans.
Collapse
Affiliation(s)
- T Giraud
- Laboratoire Populations, Génétique et Evolution, CNRS, Gif/Yvette, France
| | | |
Collapse
|
176
|
Wen J, Maercker C, Lipps HJ. Sequential excision of internal eliminated DNA sequences in the differentiating macronucleus of the hypotrichous ciliate Stylonychia lemnae. Nucleic Acids Res 1996; 24:4415-9. [PMID: 8948632 PMCID: PMC146267 DOI: 10.1093/nar/24.22.4415] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Elimination of internal eliminated sequences (IES) during macronuclear development of the hypotrichous ciliate Stylonychia lemnae was analyzed in one cluster of macronuclear precursor DNA sequences. The results indicate that IES elimination is a highly ordered process, it starts very early during macronuclear development and has only finished immediately before DNA fragmentation takes place. It occurs in distinct steps and the IES are eliminated in a specific order, where a defined IES is only removed after complete elimination of other IES. Transfection experiments clearly demonstrate that the structure of the IES itself is not sufficient for its correct excision but other cis-acting sequences or additional structural requirements are needed for IES elimination.
Collapse
Affiliation(s)
- J Wen
- Institut für Zellbiologie, Universität Witten/Herdecke, Germany
| | | | | |
Collapse
|
177
|
Abstract
We have studied the Mos1 transposase encoded by the transposable element mariner. This-transposase is a member of the "D,D(35)E" superfamily of proteins exhibiting the motif D,D(34)D. It is not known whether this transposase, or other eukaryote transposases manifesting the D,D(35)E domain, functions in a multimeric form. Evidence for oligomerization was found in the negative complementation of Mos1 by an EMS-induced transposase mutation in the catalytic domain. The transposase produced by this mutation has a glycine-to-arginine replacement at position 292. The G292R mutation strongly interferes with the ability of wild-type transposase to catalyze excision of a target element. Negative complementation was also observed for two other EMS mutations, although the effect was weaker than observed with G292R. Results from the yeast two-hybrid system also imply that Mos1 subunits interact, suggesting the possibility of subunit oligomerization in the transposition reaction. Overproduction of Mos1 subunits through an hsp70 promoter also inhibits excision of the target element, possibly through autoregulatory feedback on transcription or through formation of inactive or less active oligomers. The effects of both negative complementation and overproduction may contribute to the regulation of mariner transposition.
Collapse
Affiliation(s)
- A R Lohe
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | | |
Collapse
|
178
|
Jacobs ME, Klobutcher LA. The long and the short of developmental DNA deletion in Euplotes crassus. J Eukaryot Microbiol 1996; 43:442-52. [PMID: 8976602 DOI: 10.1111/j.1550-7408.1996.tb04503.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- M E Jacobs
- Department of Biochemistry, University of Connecticut Health Center, Farmington 06030, USA
| | | |
Collapse
|
179
|
Robertson HM. Members of the pogo superfamily of DNA-mediated transposons in the human genome. MOLECULAR & GENERAL GENETICS : MGG 1996; 252:761-6. [PMID: 8917322 DOI: 10.1007/bf02173985] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A new superfamily of transposons from fungi, nematodes, and flies related to the pogo element of Drosophila melanogaster was recognized that represents a branch of the extended superfamily of transposase and integrase proteins sharing a common D.D35E catalytic domain. Searches of human sequences in the public databases for similarity to this domain revealed at least two members of this new superfamily, with many highly mutated copies, in the human genome. A full-length consensus was constructed for one of them, which includes the MER37 medium reiteration frequency sequence recognized previously, from 343 human sequence accessions (261 of which are unique). Most of these were Expressed Sequence Tags, some were Sequence-Tagged Sites, and a few are from long genomic sequences. The 2417 bp consensus has the hallmarks of a pogo superfamily transposon, including 12 bp inverted terminal repeats, and encodes two long open reading frames. The first ORF encodes a polypeptide with 42% amino acid sequence identity to pogo in the D.D35E region. The second element shows 49% amino acid sequence identity with the first, and 40% with pogo in this region. These elements coincide with those described recently as Tigger1 and Tigger2, respectively. These transposons appear to have been active 80-90 Myr ago in the genome of an early primate or primate ancestor.
Collapse
Affiliation(s)
- H M Robertson
- Department of Entomology, University of Illinois at Urbana-Champaign 61801, USA
| |
Collapse
|
180
|
Avancini RM, Walden KK, Robertson HM. The genomes of most animals have multiple members of the Tc1 family of transposable elements. Genetica 1996; 98:131-40. [PMID: 8976061 DOI: 10.1007/bf00121361] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A PCR assay was employed to detect sequence homologous to the transposase gene of the Tc1 family of transposable elements in a wide variety of animals. Amplification products of the appropriate size were obtained from most insects (92 of 108 examined; 85%), most other invertebrates (33 of 43; 77%), and many vertebrates (18 of 36; 50%). Sequencing a sample of cloned PCR products from eight insects, one hydra, and two frogs revealed that each had multiple distinct members of the family in their genomes. In the most extreme case, the horn fly Haematobia irritans yielded evidence of seventeen distinct types of Tc1 family elements. Most of the sequences obtained indicate that the elements are within the range of variation already known from fungi, nematodes, flies, fish and frogs. Some, however, had novel length variants or divergent sequences, indicating that they represent new subfamilies of these transposons. These results indicate that this family of transposons is extremely common in animal genomes, with multiple representatives in most genomes.
Collapse
Affiliation(s)
- R M Avancini
- Department of Entomology, University of Illinois, Urbana 61801, USA
| | | | | |
Collapse
|
181
|
Ke Z, Grossman GL, Cornel AJ, Collins FH. Quetzal: a transposon of the Tc1 family in the mosquito Anopheles albimanus. Genetica 1996; 98:141-7. [PMID: 8976062 DOI: 10.1007/bf00121362] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A member of the Tc1 family of transposable elements has been identified in the Central and South American mosquito Anopheles albimanus. The full-length Quetzal element is 1680 base pairs (bp) in length, possesses 236 bp inverted terminal repeats (ITRs), and has a single open reading frame (ORF) with the potential of encoding a 341-amino-acid (aa) protein that is similar to the transposases of other members of the Tc1 family, particularly elements described from three different Drosophila species. The approximately 10-12 copies per genome of Quetzal are found in the euchromatin of all three chromosomes of A. albimanus. One full-length clone, Que27, appears capable of encoding a complete transposase and may represent a functional copy of this element.
Collapse
Affiliation(s)
- Z Ke
- Division of Parasitic Diseases, Centers for Disease Control and Prevention, Chamblee, GA 30341, USA
| | | | | | | |
Collapse
|
182
|
Lampe DJ, Churchill ME, Robertson HM. A purified mariner transposase is sufficient to mediate transposition in vitro. EMBO J 1996; 15:5470-9. [PMID: 8895590 PMCID: PMC452289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Mariners are a widespread and diverse family of animal transposons. Extremely similar mariners of the irritans subfamily are present in the genomes of three divergent insect host species, which strongly suggests that species-specific host factors are unnecessary for mobility. We tested this hypothesis by examining the activity of a purified transposase from one of these elements (Himar1) present in the horn fly, Haematobia irritans. Himar1 transposase was sufficient to reproduce transposition faithfully in an in vitro inter-plasmid transposition reaction. Further analyses showed that Himar1 transposase binds to the inverted terminal repeat sequences of its cognate transposon and mediates 5' and 3' cleavage of the element termini. Independence of species-specific host factors helps to explain why mariners have such a broad distribution and why they are capable of horizontal transfer between species.
Collapse
Affiliation(s)
- D J Lampe
- Department of Entomology, University of Illinois at Urbana-Champaign, 61801, USA
| | | | | |
Collapse
|
183
|
Goldberg IG, Sawhney H, Pluta AF, Warburton PE, Earnshaw WC. Surprising deficiency of CENP-B binding sites in African green monkey alpha-satellite DNA: implications for CENP-B function at centromeres. Mol Cell Biol 1996; 16:5156-68. [PMID: 8756673 PMCID: PMC231516 DOI: 10.1128/mcb.16.9.5156] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Centromeres of mammalian chromosomes are rich in repetitive DNAs that are packaged into specialized nucleoprotein structures called heterochromatin. In humans, the major centromeric repetitive DNA, alpha-satellite DNA, has been extensively sequenced and shown to contain binding sites for CENP-B, an 80-kDa centromeric autoantigen. The present report reveals that African green monkey (AGM) cells, which contain extensive alpha-satellite arrays at centromeres, appear to lack the well-characterized CENP-B binding site (the CENP-B box). We show that AGM cells express a functional CENP-B homolog that binds to the CENP-B box and is recognized by several independent anti-CENP-B antibodies. However, three independent assays fail to reveal CENP-B binding sites in AGM DNA. Methods used include a gel mobility shift competition assay using purified AGM alpha-satellite, a novel kinetic electrophoretic mobility shift assay competition protocol using bulk genomic DNA, and bulk sequencing of 76 AGM alpha-satellite monomers. Immunofluorescence studies reveal the presence of significant levels of CENP-B antigen dispersed diffusely throughout the nuclei of interphase cells. These experiments reveal a paradox. CENP-B is highly conserved among mammals, yet its DNA binding site is conserved in human and mouse genomes but not in the AGM genome. One interpretation of these findings is that the role of CENP-B may be in the maintenance and/or organization of centromeric satellite DNA arrays rather than a more direct involvement in centromere structure.
Collapse
Affiliation(s)
- I G Goldberg
- Department of Cell Biology and Anatomy, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | |
Collapse
|
184
|
Dreyfus DH, Kelleher CA, Jones JF, Gelfand EW. Epstein-Barr virus infection of T cells: implications for altered T-lymphocyte activation, repertoire development and autoimmunity. Immunol Rev 1996; 152:89-110. [PMID: 8930669 DOI: 10.1111/j.1600-065x.1996.tb00912.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- D H Dreyfus
- Department of Pediatrics, National Jewish Center for Immunology and Respiratory Medicine, Denver, CO 80206, USA
| | | | | | | |
Collapse
|
185
|
Saveliev SV, Cox MM. Developmentally programmed DNA deletion in Tetrahymena thermophila by a transposition-like reaction pathway. EMBO J 1996; 15:2858-69. [PMID: 8654384 PMCID: PMC450224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We provide a molecular description of key intermediates in the deletion of two internal eliminated sequences (IES elements), the M and R regions, during macronuclear development in Tetrahymena thermophila. Using a variety of PCR-based methods in vivo, double-strand breaks are detected that are generated by hydrolytic cleavage and correspond closely to the observed chromosomal junctions left behind in the macronuclei. The breaks exhibit a temporal and structural relationship to the deletion reaction that provides strong evidence that they are intermediates in the deletion pathway. Breaks in the individual strands are staggered by 4 bp, producing a four nucleotide 5' extension. Evidence is presented that breaks do not occur simultaneously at both ends. The results are most consistent with a deletion mechanism featuring initiation by double-strand cleavage at one end of the deleted element, followed by transesterification to generate the macronuclear junction on one DNA strand. An adenosine residue is found at all the nucleophilic 3' ends used in the postulated transesterification step. Evidence for the transesterification step is provided by detection of a 3' hydroxyl that would be liberated by such a step at a deletion boundary where no other DNA strand ends are detected.
Collapse
Affiliation(s)
- S V Saveliev
- Department of Biochemistry, College of Agriculture and Life Sciences, University of Wisconsin, Madison 53706, USA
| | | |
Collapse
|
186
|
Brunet F, Godin F, Bazin C, David JR, Capy P. The mariner transposable element in natural populations of Drosophila teissieri. J Mol Evol 1996; 42:669-75. [PMID: 8662019 DOI: 10.1007/bf02338800] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The mariner transposable elements of several natural populations of Drosophila teissieri, a rainforest species endemic to tropical Africa, were studied. Natural populations trapped along a transect from Zimbabwe to the Ivory Coast were analyzed by Southern blotting, in situ hybridization, cloning, and sequencing of PCR products. The Brazzaville population had some full-length elements, while the remaining populations had mainly deleted elements. The main class of deleted elements lacked a 500-bp segment. A mechanism is proposed that could generate such elements rapidly. In situ hybridizations showed that there are no mariner elements in pericentromeric heterochromatin. Finally, the phylogeny of the Mos1-like mariner full-length elements is consistent with vertical transmission from the ancestor of the melanogaster subgroup.
Collapse
Affiliation(s)
- F Brunet
- Laboratoire Populations, Génétique et Evolution, CNRS, 91198 Gif sur Yvette, Cedex, France
| | | | | | | | | |
Collapse
|
187
|
Ivics Z, Izsvak Z, Minter A, Hackett PB. Identification of functional domains and evolution of Tc1-like transposable elements. Proc Natl Acad Sci U S A 1996; 93:5008-13. [PMID: 8643520 PMCID: PMC39397 DOI: 10.1073/pnas.93.10.5008] [Citation(s) in RCA: 109] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Tc1-like transposable elements from teleost fish have been phylogenetically examined to determine the mechanisms involved in their evolution and conserved domains of function. We identified two new functional domains in these elements. The first is a bipartite nuclear localization signal, indicating that transposons can take advantage of the transport machinery of host cells for nuclear uptake of their transposases. The second is a novel combination of a paired domain-related protein motif juxtaposed to a leucine zipper-like domain located in the putative DNA-binding regions of the transposases. This domain coexists with a special inverted repeat structure in certain transposons in such phylogenetically distant hosts as fish and insects. Our data indicate that reassortment of functional domains and horizontal transmission between species are involved in the formation and spread of new types of transposable elements.
Collapse
Affiliation(s)
- Z Ivics
- Department of Genetics and Cell Biology, University of Minnesota, St. Paul, 55108-1095, USA
| | | | | | | |
Collapse
|
188
|
Aldaz H, Schuster E, Baker TA. The interwoven architecture of the Mu transposase couples DNA synapsis to catalysis. Cell 1996; 85:257-69. [PMID: 8612278 DOI: 10.1016/s0092-8674(00)81102-2] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Mu transposition occurs exclusively using a pair of recombination sites found at the ends of the phage genome. To address the mechanistic basis of this specificity, we have determined both where the individual subunits of the tetrameric transposase bind on the DNA and where they catalyze DNA joining. We demonstrate that subunits do not catalyze recombination at the site adjacent to where they are bound, but rather on the opposite end of the phage genome. Furthermore, subunits bound to two different sites contribute to catalysis of one reaction step. This interwoven subunit arrangement suggests a molecular explanation for the precision with which recombination occurs using a pair of DNA signals and provides an example of the way in which the architecture of a protein-DNA complex can define the reaction products.
Collapse
Affiliation(s)
- H Aldaz
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | | | |
Collapse
|
189
|
Weitzman MD, Kyöstiö SR, Carter BJ, Owens RA. Interaction of wild-type and mutant adeno-associated virus (AAV) Rep proteins on AAV hairpin DNA. J Virol 1996; 70:2440-8. [PMID: 8642672 PMCID: PMC190087 DOI: 10.1128/jvi.70.4.2440-2448.1996] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Both the Rep68 and Rep78 proteins of adeno-associated virus type 2 (AAV) bind to AAV terminal repeat hairpin DNA and can mediate site-specific nicking in vitro at the terminal resolution site (trs) within the terminal repeats. To define the regions of the Rep proteins required for these functions, a series of truncated Rep78 derivatives was created. Wild-type and mutant proteins were synthesized by in vitro translation and analyzed for AAV hairpin DNA binding, trs endonuclease activity, and interaction on hairpin DNA. Amino-terminal deletion mutants which lacked the first 29 or 79 amino acid residues of Rep78 did not bind hairpin DNA, which is consistent with our previous identification of a DNA-binding domain in this region. Progressive truncation of the carboxyl-terminal region of Rep78 did not eliminate hairpin DNA binding until the deletion reached amino acid 443. The electrophoretic mobility of the Rep-specific protein-DNA complexes was inversely related to the molecular weight of the Rep derivative. Analysis of the C-terminal deletion mutants by the trs endonuclease assay identified a region (amino acids 467 to 476) that is essential for nicking but is not necessary for DNA binding. When endonuclease-positive, truncated Rep proteins that bound hairpin DNA were mixed with full-length Rep78 or Rep68 protein in electrophoretic mobility shift assays, a smear of protein-DNA complexes was observed. This smear migrated at an intermediate position with respect to the bands generated by the proteins individually. An antibody recognizing only the full-length protein produced a novel supershift band when included in a mixed binding assay containing Rep68 and a truncated Rep mutant. These experiments suggest that the Rep proteins can form hetero-oligomers on the AAV hairpin DNA.
Collapse
Affiliation(s)
- M D Weitzman
- Laboratory of Molecular and Cellular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
190
|
Vos JC, De Baere I, Plasterk RH. Transposase is the only nematode protein required for in vitro transposition of Tc1. Genes Dev 1996; 10:755-61. [PMID: 8598301 DOI: 10.1101/gad.10.6.755] [Citation(s) in RCA: 143] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The Tc1 element of Caenorhabditis elegans is a member of the most widespread class of DNA transposons known in nature. Here, we describe efficient and precise transposition of Tc1 in a cell-free system. Tc1 appears to jump by a cut-and-paste mechanism of transposition. The terminal 26 bp of the Tc1 terminal repeats together with the flanking TA sequence are sufficient for transposition. The target site choice in vitro is similar to that in vivo. Transposition is achieved with an extract prepared from nuclei of transgenic nematodes that overexpress Tc1 transposase but also by recombinant transposase purified from Escherichia coli. The simple reaction requirements explain why horizontal spread of Tc1/mariner transposons can occur. They also suggest that Tcl may be a good vector for transgenesis of diverse animal species.
Collapse
Affiliation(s)
- J C Vos
- The Netherlands Cancer Institute, Division of Molecular Biology, Amsterdam
| | | | | |
Collapse
|
191
|
Capy P, Vitalis R, Langin T, Higuet D, Bazin C. Relationships between transposable elements based upon the integrase-transposase domains: is there a common ancestor? J Mol Evol 1996; 42:359-68. [PMID: 8661997 DOI: 10.1007/bf02337546] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The integrase domain of RNA-mediated elements (class I) and the transposase domain of DNA-mediated transposable elements (class II) were compared. A number of elements contain the DDE signature, which plays an important role in their integration. The possible relationships between mariner-Tc1 and IS elements, retrotransposons, and retroviruses were analyzed from an alignment of this region. The mariner-Tc1 superfamily, and LTR retrotransposons and retroviruses were found to be monophyletic groups. However, the IS elements of bacteria were found in several groups. These results were used to propose an evolutionary history that suggests a common ancestor for some integrases and transposases.
Collapse
Affiliation(s)
- P Capy
- Laboratoire Populations, Génétique et Evolution, CNRS, 91198 Gif/Yvette Cedex, France
| | | | | | | | | |
Collapse
|
192
|
Elick TA, Bauser CA, Principe NM, Fraser MJ. PCR analysis of insertion site specificity, transcription, and structural uniformity of the Lepidopteran transposable element IFP2 in the TN-368 cell genome. Genetica 1996; 97:127-39. [PMID: 8901134 DOI: 10.1007/bf00054620] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The IFP2 element is a unique Lepidopteran transposon that has been associated with spontaneous Baculovirus mutants isolated following passage of the virus in the TN-368 cell line. Independent genomic representatives of IFP2 from TN-368 cells show little sequence divergence, suggesting that IFP2 was recently introduced into this genome and is highly stable. IFP2 is inserted within AT-rich regions of the TN-368 genome and targets TTAA sites. The specificity for TTAA target sites during transposition is not limited to the movement of IFP2 during an active Baculovirus infection, but is a property of its movement in uninfected cells as well. The exact origin of IFP2 remains obscure since it is found in two independently established Trichoplusia ni cell lines but not in three others, and we have not yet identified any IFP2 sequences in either field collected larvae or laboratory colonies.
Collapse
Affiliation(s)
- T A Elick
- Department of Biological Sciences, University of Notre Dame, IN 46556, USA
| | | | | | | |
Collapse
|
193
|
Affiliation(s)
- D L Hartl
- Department of Organismic & Evolutionary Biology, Harvard University, C ambridge, Massachusetts 02138, USA
| |
Collapse
|
194
|
Abstract
We report several classes of human interspersed repeats that resemble fossils of DNA transposons, elements that move by excision and reintegration in the genome, whereas previously characterized mammalian repeats all appear to have accumulated by retrotransposition, which involves an RNA intermediate. The human genome contains at least 14 families and > 100,000 degenerate copies of short (180-1200 bp) elements that have 14- to 25-bp terminal inverted repeats and are flanked by either 8 bp or TA target site duplications. We describe two ancient 2.5-kb elements with coding capacity, Tigger1 and -2, that closely resemble pogo, a DNA transposon in Drosophila, and probably were responsible for the distribution of some of the short elements. The deduced pogo and Tigger proteins are related to products of five DNA transposons found in fungi and nematodes, and more distantly, to the Tc1 and mariner transposases. They also are very similar to the major mammalian centromere protein CENP-B, suggesting that this may have a transposase origin. We further identified relatively low-copy-number mariner elements in both human and sheep DNA. These belong to two subfamilies previously identified in insect genomes, suggesting lateral transfer between diverse species.
Collapse
Affiliation(s)
- A F Smit
- Department of Biology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | | |
Collapse
|
195
|
Affiliation(s)
- R H Plasterk
- Netherlands Cancer Institute, Division of Molecular Biology, Amsterdam, The Netherlands
| |
Collapse
|
196
|
DeVault JD, Hughes KJ, Johnson OA, Narang SK. Biotechnology and new integrated pest management approaches. BIO/TECHNOLOGY (NATURE PUBLISHING COMPANY) 1996; 14:46-9. [PMID: 9636311 DOI: 10.1038/nbt0196-46] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Area-wide pest management technologies will take on new appearances as the drive to eliminate and/or greatly reduce the use of chemical pesticides increases. The use of genetically altered insects has the most potential for successfully displacing certain pesticides, although the development of genetic engineering technologies for agricultural pest species is still in its infancy. Transformation vectors need to be developed as do transformation methodologies. Here we report the possibility of developing an interspecies vector and discuss ways in which such a vector could be used successfully in an integrated pest management system. If such an approach were developed, it could be utilized with other alternative methods, thereby providing a safe, ecologically sound means of controlling insect pests without damaging the agricultural economy.
Collapse
Affiliation(s)
- J D DeVault
- USDA/ARS, Bioscience Research Laboratory, Fargo, ND 58105, USA.
| | | | | | | |
Collapse
|
197
|
Kleckner N, Chalmers RM, Kwon D, Sakai J, Bolland S. Tn10 and IS10 transposition and chromosome rearrangements: mechanism and regulation in vivo and in vitro. Curr Top Microbiol Immunol 1996; 204:49-82. [PMID: 8556869 DOI: 10.1007/978-3-642-79795-8_3] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- N Kleckner
- Department of Biochemistry and Molecular Biology, Harvard University, Cambridge, MA 02138, USA
| | | | | | | | | |
Collapse
|
198
|
Affiliation(s)
- F Ohtsubo
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Japan
| | | |
Collapse
|
199
|
Glayzer DC, Roberts IN, Archer DB, Oliver RP. The isolation of Ant1, a transposable element from Aspergillus niger. MOLECULAR & GENERAL GENETICS : MGG 1995; 249:432-8. [PMID: 8552048 DOI: 10.1007/bf00287105] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A transposable element has been isolated from the industrially important fungus Aspergillus niger (strain N402). The element was identified as an insertion sequence within the coding region of the nitrate reductase gene. It had inserted at a TA site and appeared to have duplicated the target site upon insertion. The isolated element was found to be 4798 bp in length and contained 37-bp inverted, imperfect, terminal repeats (ITRs). The sequence of the central region of the element revealed an open reading frame (designated ORF1) which showed similarity, at the amino acid level, to the transposase of the Tc1/mariner class of DNA transposons. Another sequence within the central region of the element showed similarity to the 3' coding and downstream untranslated region of the amyA gene of A. niger. Sequence homology and structural features indicate that this element, which has been named Ant1 (A. niger transposon 1), is related to the Tc1/mariner group of DNA transposons. Ant1 is apparently present as a single copy in strain N402 of A. niger.
Collapse
Affiliation(s)
- D C Glayzer
- Norwich Molecular Plant Pathology Group, School of Biological Sciences, University of East Anglia, Norwich Research Park, UK
| | | | | | | |
Collapse
|
200
|
Frels JS, Jahn CL. DNA rearrangements in Euplotes crassus coincide with discrete periods of DNA replication during the polytene chromosome stage of macronuclear development. Mol Cell Biol 1995; 15:6488-95. [PMID: 8524213 PMCID: PMC230901 DOI: 10.1128/mcb.15.12.6488] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Macronuclear development in Euplotes crassus begins with polytenization of micronuclear chromosomes and is accompanied by highly precise excision of DNA sequences known as internal eliminated sequences and transposon-like elements (Tecs). Quantitation of radiolabeled-precursor incorporation into DNA indicates that DNA synthesis during formation of polytene chromosomes is not continuous and occurs during two distinct periods. We demonstrate that the timing of Tec excision coincides with these replication periods and that excision can occur during both periods even at a single locus. We also show that Tec and internal eliminated sequence excisions are coincident in the second replication period, thus providing further evidence for similarity in their excision mechanism. Inhibition of DNA synthesis with hydroxyurea diminishes Tec element excision, indicating that replication is an important aspect of the excision process.
Collapse
Affiliation(s)
- J S Frels
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | |
Collapse
|