151
|
Yin Y, Lin C, Veith GM, Chen H, Dhandha M, Ma L. Neonatal diethylstilbestrol exposure alters the metabolic profile of uterine epithelial cells. Dis Model Mech 2012; 5:870-80. [PMID: 22679223 PMCID: PMC3484869 DOI: 10.1242/dmm.009076] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Developmental exposure to diethylstilbestrol (DES) causes reproductive tract malformations, affects fertility and increases the risk of clear cell carcinoma of the vagina and cervix in humans. Previous studies on a well-established mouse DES model demonstrated that it recapitulates many features of the human syndrome, yet the underlying molecular mechanism is far from clear. Using the neonatal DES mouse model, the present study uses global transcript profiling to systematically explore early gene expression changes in individual epithelial and mesenchymal compartments of the neonatal uterus. Over 900 genes show differential expression upon DES treatment in either one or both tissue layers. Interestingly, multiple components of peroxisome proliferator-activated receptor-γ (PPARγ)-mediated adipogenesis and lipid metabolism, including PPARγ itself, are targets of DES in the neonatal uterus. Transmission electron microscopy and Oil-Red O staining further demonstrate a dramatic increase in lipid deposition in uterine epithelial cells upon DES exposure. Neonatal DES exposure also perturbs glucose homeostasis in the uterine epithelium. Some of these neonatal DES-induced metabolic changes appear to last into adulthood, suggesting a permanent effect of DES on energy metabolism in uterine epithelial cells. This study extends the list of biological processes that can be regulated by estrogen or DES, and provides a novel perspective for endocrine disruptor-induced reproductive abnormalities.
Collapse
Affiliation(s)
- Yan Yin
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
152
|
Ovary-specific novel peroxisome proliferator activated receptors-gamma transcripts in buffalo. Gene 2012; 504:245-52. [PMID: 22609729 DOI: 10.1016/j.gene.2012.04.090] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 04/21/2012] [Accepted: 04/30/2012] [Indexed: 11/23/2022]
Abstract
In the present study, we describe the isolation and characterization of the transcripts encoding peroxisome proliferator-activated receptor gamma (PPARγ1 and PPARγ2) in buffalo ovary. 5' RACE experiments and sequence analysis showed that these transcripts (PPARγ1a, PPARγ1b and PPARγ2) were transcribed by the different promoter usage and alternative splicing of terminal 5'-exon. The distribution of these isoforms of PPARγ transcripts in different tissues (ovary, mammary gland, spleen, liver, lung, adipose tissue) was investigated using quantitative real time analysis. Tissue- and transcript-specific expression analyses showed that a transcript, transcribed from distal promoter, not only expressed preferentially in ovary but contributes predominantly to PPAR gamma expression in ovary. Western blot analysis of both, in vivo and in vitro, experiments also supported that PPARγ1 predominantly expressed in ovary. In buffalo granulosa cells culture, the isolated transcripts were found to be up-regulated by both natural (CLA) and synthetic (Rosiglitazone) ligands and effect was reversed by PPARγ antagonist GW9662. In conclusion, the present study identified an ovary-specific novel transcript, transcribed by distal promoter, predominantly expressed in ovary which could have functional relevance in buffalo ovary.
Collapse
|
153
|
Okamura M, Inagaki T, Tanaka T, Sakai J. Role of histone methylation and demethylation in adipogenesis and obesity. Organogenesis 2012; 6:24-32. [PMID: 20592862 DOI: 10.4161/org.6.1.11121] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Revised: 01/04/2010] [Accepted: 01/04/2010] [Indexed: 01/17/2023] Open
Abstract
Adipocyte differentiation is a complex developmental process that involves the coordinated interplay of numerous transcription factors. PPARγ has emerged as a master regulator of adipogenesis and recent global target gene analysis demonstrated that PPARγ targets many genes encoding chromatin modification enzymes as well as genes of lipid metabolism and storage. Among such modification enzymes are histone lysine methyltransferases, which play important roles in transcriptional regulation. Histone methyltransferases are involved in PPARγ gene expression and subsequent adipogenesis. In addition, recent studies revealed that demethylation of histone H3 at lys9 is associated with resistance to obesity. We here review the role of histone methylation and demethylation in adipogenesis, metabolism and obesity.
Collapse
Affiliation(s)
- Masashi Okamura
- Division of metabolic medicine, Research Center for Advanced Science and Technology, University of Tokyo, Tokyo, Japan
| | | | | | | |
Collapse
|
154
|
Nguyen MTA, Chen A, Lu WJ, Fan W, Li PP, Oh DY, Patsouris D. Regulation of chemokine and chemokine receptor expression by PPARγ in adipocytes and macrophages. PLoS One 2012; 7:e34976. [PMID: 22529965 PMCID: PMC3328487 DOI: 10.1371/journal.pone.0034976] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 03/12/2012] [Indexed: 01/22/2023] Open
Abstract
Background PPARγ plays a key role in adipocyte biology, and Rosiglitazone (Rosi), a thiazolidinedione (TZD)/PPARγ agonist, is a potent insulin-sensitizing agent. Recent evidences demonstrate that adipose tissue inflammation links obesity with insulin resistance and that the insulin-sensitizing effects of TZDs result, in part, from their anti-inflammatory properties. However the underlying mechanisms are unclear. Methodology and Principal Findings In this study, we establish a link between free fatty acids (FFAs) and PPARγ in the context of obesity-associated inflammation. We show that treatment of adipocytes with FFAs, in particular Arachidonic Acid (ARA), downregulates PPARγ protein and mRNA levels. Furthermore, we demonstrate that the downregulation of PPARγ by ARA requires the activation the of Endoplamsic Reticulum (ER) stress by the TLR4 pathway. Knockdown of adipocyte PPARγ resulted in upregulation of MCP1 gene expression and secretion, leading to enhanced macrophage chemotaxis. Rosi inhibited these effects. In a high fat feeding mouse model, we show that Rosi treatment decreases recruitment of proinflammatory macrophages to epididymal fat. This correlates with decreased chemokine and decreased chemokine receptor expression in adipocytes and macrophages, respectively. Conclusions and Significance In summary, we describe a novel link between FAs, the TLR4/ER stress pathway and PPARγ, and adipocyte-driven recruitment of macrophages. We thus both describe an additional potential mechanism for the anti-inflammatory and insulin-sensitizing actions of TZDs and an additional detrimental property associated with the activation of the TLR4 pathway by FA.
Collapse
Affiliation(s)
| | | | | | | | | | | | - David Patsouris
- Department of Medicine (0673), University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
155
|
Putra ABN, Morishige H, Nishimoto S, Nishi K, Shiraishi R, Doi M, Sugahara T. Effect of collagens from jellyfish and bovine Achilles tendon on the activity of J774.1 and mouse peritoneal macrophage cells. J Funct Foods 2012. [DOI: 10.1016/j.jff.2012.02.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
156
|
Abstract
Excessive caloric intake without a rise in energy expenditure promotes adipocyte hyperplasia and adiposity. The rise in adipocyte number is triggered by signaling factors that induce conversion of mesenchymal stem cells (MSCs) to preadipocytes that differentiate into adipocytes. MSCs, which are recruited from the vascular stroma of adipose tissue, provide an unlimited supply of adipocyte precursors. Members of the BMP and Wnt families are key mediators of stem cell commitment to produce preadipocytes. Following commitment, exposure of growth-arrested preadipocytes to differentiation inducers [insulin-like growth factor 1 (IGF1), glucocorticoid, and cyclic AMP (cAMP)] triggers DNA replication and reentry into the cell cycle (mitotic clonal expansion). Mitotic clonal expansion involves a transcription factor cascade, followed by the expression of adipocyte genes. Critical to these events are phosphorylations of the transcription factor CCATT enhancer-binding protein β (C/EBPβ) by MAP kinase and GSK3β to produce a conformational change that gives rise to DNA-binding activity. "Activated" C/EBPβ then triggers transcription of peroxisome proliferator-activated receptor-γ (PPARγ) and C/EBPα, which in turn coordinately activate genes whose expression produces the adipocyte phenotype.
Collapse
Affiliation(s)
- Qi Qun Tang
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
157
|
Peroxisome proliferator-activated receptor gamma (PPAR-γ) and neurodegenerative disorders. Mol Neurobiol 2012; 46:114-24. [PMID: 22434581 DOI: 10.1007/s12035-012-8259-8] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 03/06/2012] [Indexed: 10/28/2022]
Abstract
As the growth of the aging population continues to accelerate globally, increased prevalence of neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), and stroke, has generated substantial public concern. Unfortunately, despite of discoveries of common factors underlying these diseases, few drugs are available to effectively treat these diseases. Peroxisome proliferator-activated receptor gamma (PPAR-γ) is a ligand-activated transcriptional factor that belongs to the nuclear hormone receptor superfamily. PPAR-γ has been shown to influence the expression or activity of a large number of genes in a variety of signaling networks, including regulation of insulin sensitivity, glucose homeostasis, fatty acid oxidation, immune responses, redox balance, cardiovascular integrity, and cell fates. Recent epidemiological, preclinical animal, and clinical studies also show that PPAR-γ agonists can lower the incidence of a number of neurological disorders, despite of multiple etiological factors involved in the development of these disorders. In this manuscript, we review current knowledge on mechanisms underlying the beneficial effect of PPAR-γ in different neurodegenerative diseases, in particular, AD, PD, and stroke, and attempt to analyze common and overlapping features among these diseases. Our investigation unveiled information suggesting the ability for PPAR-γ to inhibit NF-κB-mediated inflammatory signaling at multiple sites, and conclude that PPAR-γ agonists represent a novel class of drugs for treating neuroinflammatory diseases.
Collapse
|
158
|
Heun R, Kölsch H, Ibrahim-Verbaas CA, Combarros O, Aulchenko YS, Breteler M, Schuur M, van Duijn CM, Hammond N, Belbin O, Cortina-Borja M, Wilcock GK, Brown K, Barber R, Kehoe PG, Coto E, Alvarez V, Lehmann MG, Deloukas P, Mateo I, Morgan K, Warden DR, Smith AD, Lehmann DJ. Interactions between PPAR-α and inflammation-related cytokine genes on the development of Alzheimer's disease, observed by the Epistasis Project. INTERNATIONAL JOURNAL OF MOLECULAR EPIDEMIOLOGY AND GENETICS 2012; 3:39-47. [PMID: 22493750 PMCID: PMC3316448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 12/24/2011] [Accepted: 02/22/2012] [Indexed: 05/31/2023]
Abstract
OBJECTIVE Neuroinflammation contributes to the pathogenesis of sporadic Alzheimer's disease (AD). Variations in genes relevant to inflammation may be candidate genes for AD risk. Whole-genome association studies have identified relevant new and known genes. Their combined effects do not explain 100% of the risk, genetic interactions may contribute. We investigated whether genes involved in inflammation, i.e. PPAR-α, interleukins (IL) IL- 1α, IL-1β, IL-6, and IL-10 may interact to increase AD risk. METHODS The Epistasis Project identifies interactions that affect the risk of AD. Genotyping of single nucleotide polymorphisms (SNPs) in PPARA, IL1A, IL1B, IL6 and IL10 was performed. Possible associations were analyzed by fitting logistic regression models with AD as outcome, controlling for centre, age, sex and presence of apolipoprotein ε4 allele (APOEε4). Adjusted synergy factors were derived from interaction terms (p<0.05 two-sided). RESULTS We observed four significant interactions between different SNPs in PPARA and in interleukins IL1A, IL1B, IL10 that may affect AD risk. There were no significant interactions between PPARA and IL6. CONCLUSIONS In addition to an association of the PPARA L162V polymorphism with the AD risk, we observed four significant interactions between SNPs in PPARA and SNPs in IL1A, IL1B and IL10 affecting AD risk. We prove that gene-gene interactions explain part of the heritability of AD and are to be considered when assessing the genetic risk. Necessary replications will require between 1450 and 2950 of both cases and controls, depending on the prevalence of the SNP, to have 80% power to detect the observed synergy factors.
Collapse
Affiliation(s)
- Reinhard Heun
- Department of Psychiatry, University of BonnBonn, Germany
- Department of Psychiatry, Royal Derby HospitalUttoxeter Road, Derby DE22 3WQ, UK
| | - Heike Kölsch
- Department of Psychiatry, University of BonnBonn, Germany
| | - Carla A Ibrahim-Verbaas
- Department of Neurology, Erasmus MC University Medical CenterRotterdam, the Netherlands
- Department of Epidemiology, Erasmus MC University Medical CenterRotterdam, the Netherlands
| | - Onofre Combarros
- Neurology Service and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Marqués de Valdecilla University Hospital (University of Cantabria)39008 Santander, Spain
| | - Yurii S Aulchenko
- Department of Epidemiology, Erasmus MC University Medical CenterRotterdam, the Netherlands
| | - Monique Breteler
- Department of Epidemiology, Erasmus MC University Medical CenterRotterdam, the Netherlands
| | - Maaike Schuur
- Department of Neurology, Erasmus MC University Medical CenterRotterdam, the Netherlands
- Department of Epidemiology, Erasmus MC University Medical CenterRotterdam, the Netherlands
| | - Cornelia M van Duijn
- Department of Epidemiology, Erasmus MC University Medical CenterRotterdam, the Netherlands
| | - Naomi Hammond
- The Wellcome Trust Sanger InstituteHinxton, Cambridge CB10 1SA, UK
| | - Olivia Belbin
- School of Molecular Medical Sciences, Institute of Genetics, University of Nottingham, Queens Medical CentreNottingham NG7 2UH, UK
| | - Mario Cortina-Borja
- MRC Centre of Epidemiology for Child Health, Institute of Child Health, University College London30 Guilford Street, London WC1N 1EH, UK
| | - Gordon K Wilcock
- Nuffield Department of Medicine, University of Oxford, Level 4, John Radcliffe HospitalOxford OX3 9DU, UK
| | - Kristelle Brown
- School of Molecular Medical Sciences, Institute of Genetics, University of Nottingham, Queens Medical CentreNottingham NG7 2UH, UK
| | - Rachel Barber
- Dementia Research Group, Institute of Clinical Neurosciences, University of Bristol, Frenchay HospitalFrenchay Bristol, BS16 1LE, UK
| | - Patrick G Kehoe
- Dementia Research Group, Institute of Clinical Neurosciences, University of Bristol, Frenchay HospitalFrenchay Bristol, BS16 1LE, UK
| | - Eliecer Coto
- Genética Molecular, Hospital Central de AsturiasOviedo, Spain
| | | | - Michael G Lehmann
- Oxford Project to Investigate Memory and Ageing (OPTIMA), University Department of PharmacologyMansfield Road, Oxford OX1 3QT, UK
| | - Panos Deloukas
- The Wellcome Trust Sanger InstituteHinxton, Cambridge CB10 1SA, UK
| | - Ignacio Mateo
- Neurology Service and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Marqués de Valdecilla University Hospital (University of Cantabria)39008 Santander, Spain
| | - Kevin Morgan
- School of Molecular Medical Sciences, Institute of Genetics, University of Nottingham, Queens Medical CentreNottingham NG7 2UH, UK
| | - Donald R Warden
- Oxford Project to Investigate Memory and Ageing (OPTIMA), University Department of PharmacologyMansfield Road, Oxford OX1 3QT, UK
| | - A David Smith
- Oxford Project to Investigate Memory and Ageing (OPTIMA), University Department of PharmacologyMansfield Road, Oxford OX1 3QT, UK
| | - Donald J Lehmann
- Oxford Project to Investigate Memory and Ageing (OPTIMA), University Department of PharmacologyMansfield Road, Oxford OX1 3QT, UK
| |
Collapse
|
159
|
Peters JM, Shah YM, Gonzalez FJ. The role of peroxisome proliferator-activated receptors in carcinogenesis and chemoprevention. Nat Rev Cancer 2012; 12:181-95. [PMID: 22318237 PMCID: PMC3322353 DOI: 10.1038/nrc3214] [Citation(s) in RCA: 375] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors that are involved in regulating glucose and lipid homeostasis, inflammation, proliferation and differentiation. Although all of these functions might contribute to the influence of PPARs in carcinogenesis, there is a distinct need for a review of the literature and additional experimentation to determine the potential for targeting PPARs for cancer therapy and cancer chemoprevention. As PPAR agonists include drugs that are used for the treatment of metabolic diseases, a more complete understanding of the roles of PPARs in cancer will aid in determining any increased cancer risk for patients undergoing therapy with PPAR agonists.
Collapse
Affiliation(s)
- Jeffrey M Peters
- Department of Veterinary and Biomedical Sciences and The Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
| | | | | |
Collapse
|
160
|
Lachinani L, Ghaedi K, Tanhaei S, Salamian A, Karamali F, Kiani-Esfahani A, Rabiee F, Yaghmaei P, Baharvand H, Nasr-Esfahani MH. Characterization and Functional Assessment of Mouse PPARγ1 Promoter. Avicenna J Med Biotechnol 2012; 4:160-9. [PMID: 23407790 PMCID: PMC3558222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 07/03/2012] [Indexed: 10/29/2022] Open
Abstract
BACKGROUND Peroxisome Proliferator Activated Receptor gamma (PPARγ), a member of nuclear receptor superfamily, comprises two isoforms in mouse. These two isoforms are encoded by different mRNAs, which are arisen by alternative promoter usage. There are two promoter regions upstream of PPARγ gene. A 3 kb fragment, containing several transcription factor binding sites, acts as PPARγ1 promoter region. Thus, expression pattern of PPARγ1 isoform is due to the potential transcription factors that could influence its promoter activity. PPARγ, Retinoid X Receptor (RXR) and Vitamin D Receptor (VDR), as nuclear receptors could influence PPARγ gene expression pattern during several differentiation processes. During neural differentiation, PPARγ1 isoform expression reaches to maximal level at neural precursor cell formation. METHODS A vast computational analysis was carried out to reveal the PPARγ1 promoter region. The putative promoter region was then subcloned upstream of an EGFP reporter gene. Then the functionality of PPARγ1 promoter was assessed in different cell lines. RESULTS Results indicated that Rosiglitazone increased PPARγ1 promoter regulated EGFP expression of neural precursor cells during Embryoid Body (EB) formation. Furthermore vitamin D reduced PPARγ1 promoter regulated EGFP expression of neural precursor cells during EB formation through binding to its receptor. CONCLUSION This study suggests that there are potential response elements for PPAR/RXR and VDR/RXR heterodimers in PPARγ1 isoform promoter. Also VDR/RXR heterodimers may decrease PPARγ expression through binding to its promoter.
Collapse
Affiliation(s)
- Liana Lachinani
- Department of Cell and Molecular Biology, Cell Science Research Center, Royan Institute for Animal Biotechnology, ACECR, Isfahan, Iran
| | - Kamran Ghaedi
- Department of Cell and Molecular Biology, Cell Science Research Center, Royan Institute for Animal Biotechnology, ACECR, Isfahan, Iran,Department of Biology, School of Sciences, University of Isfahan, Isfahan, Iran,Corresponding author: Kamran Ghaedi, Ph.D., Department of Cell and Molecular Biology, Cell Science Research Center, Royan Institute for Animal Biotechnology, ACECR, Isfahan, Iran. Tel: +98 311 2612900. Fax: +98 311 2605525. E-mail:
| | - Somayeh Tanhaei
- Department of Cell and Molecular Biology, Cell Science Research Center, Royan Institute for Animal Biotechnology, ACECR, Isfahan, Iran
| | - Ahmad Salamian
- Department of Cell and Molecular Biology, Cell Science Research Center, Royan Institute for Animal Biotechnology, ACECR, Isfahan, Iran
| | - Fereshteh Karamali
- Department of Cell and Molecular Biology, Cell Science Research Center, Royan Institute for Animal Biotechnology, ACECR, Isfahan, Iran
| | - Abbas Kiani-Esfahani
- Department of Cell and Molecular Biology, Cell Science Research Center, Royan Institute for Animal Biotechnology, ACECR, Isfahan, Iran
| | - Farzaneh Rabiee
- Department of Cell and Molecular Biology, Cell Science Research Center, Royan Institute for Animal Biotechnology, ACECR, Isfahan, Iran
| | - Parichehreh Yaghmaei
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hossein Baharvand
- Department of Developmental Biology, University of Science and Culture, ACECR, Tehran, Iran,Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Cell and Molecular Biology, Cell Science Research Center, Royan Institute for Animal Biotechnology, ACECR, Isfahan, Iran,Corresponding author: Mohammad Hossein Nasr- Esfahani, Ph.D., Department of Cell and Molecular Biology, Cell Science Research Center, Royan Institute for Animal Biotechnology, ACECR, Isfahan, Iran. Tel: +98 311 2612900. Fax: +98 311 2605525. E-mail:
| |
Collapse
|
161
|
Pizarro TT, Pastorelli L, Bamias G, Garg RR, Reuter BK, Mercado JR, Chieppa M, Arseneau KO, Ley K, Cominelli F. SAMP1/YitFc mouse strain: a spontaneous model of Crohn's disease-like ileitis. Inflamm Bowel Dis 2011; 17:2566-84. [PMID: 21557393 PMCID: PMC3154989 DOI: 10.1002/ibd.21638] [Citation(s) in RCA: 147] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Accepted: 01/03/2011] [Indexed: 12/18/2022]
Abstract
The SAMP1/YitFc mouse strain represents a model of Crohn's disease (CD)-like ileitis that is ideal for investigating the pathogenesis of chronic intestinal inflammation. Different from the vast majority of animal models of colitis, the ileal-specific phenotype characteristic of SAMP1/YitFc mice occurs spontaneously, without genetic, chemical, or immunological manipulation. In addition, SAMP1/YitFc mice possess remarkable similarities to the human condition with regard to disease location, histologic features, incidence of extraintestinal manifestations, and response to conventional therapies. SAMP1/YitFc mice also display a well-defined time course of a predisease state and phases of acute and chronic ileitis. As such, the SAMP1/YitFc model is particularly suitable for elucidating pathways that precede the clinical phenotype that may lead to preventive, and therefore more efficacious, intervention with the natural course of disease, or alternatively, for the development of therapeutic strategies directed against chronic, established ileitis. In this review we summarize important contributions made by our group and others that uncover potential mechanisms in the pathogenesis of CD using this unique murine model of chronic intestinal inflammation.
Collapse
Affiliation(s)
- Theresa T Pizarro
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
162
|
Kölsch H, Lehmann DJ, Ibrahim-Verbaas CA, Combarros O, van Duijn CM, Hammond N, Belbin O, Cortina-Borja M, Lehmann MG, Aulchenko YS, Schuur M, Breteler M, Wilcock GK, Brown K, Kehoe PG, Barber R, Coto E, Alvarez V, Deloukas P, Mateo I, Maier W, Morgan K, Warden DR, Smith AD, Heun R. Interaction of insulin and PPAR-α genes in Alzheimer's disease: the Epistasis Project. J Neural Transm (Vienna) 2011; 119:473-9. [PMID: 22065208 DOI: 10.1007/s00702-011-0732-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 10/26/2011] [Indexed: 11/25/2022]
Abstract
Altered glucose metabolism has been described in Alzheimer's disease (AD). We re-investigated the interaction of the insulin (INS) and the peroxisome proliferator-activated receptor alpha (PPARA) genes in AD risk in the Epistasis Project, including 1,757 AD cases and 6,294 controls. Allele frequencies of both SNPs (PPARA L162V, INS intron 0 A/T) differed between Northern Europeans and Northern Spanish. The PPARA 162LL genotype increased AD risk in Northern Europeans (p = 0.04), but not in Northern Spanish (p = 0.2). There was no association of the INS intron 0 TT genotype with AD. We observed an interaction on AD risk between PPARA 162LL and INS intron 0 TT genotypes in Northern Europeans (Synergy factor 2.5, p = 0.016), but not in Northern Spanish. We suggest that dysregulation of glucose metabolism contributes to the development of AD and might be due in part to genetic variations in INS and PPARA and their interaction especially in Northern Europeans.
Collapse
Affiliation(s)
- Heike Kölsch
- Department of Psychiatry, University of Bonn, Bonn, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
163
|
Abstract
DLK (dual leucine zipper-bearing kinase) is a key regulator of development, cell differentiation and apoptosis. Interestingly, recent studies have shown that DLK expression is up-regulated in 3T3-L1 cells induced to differentiate into adipocytes and that DLK knockdown impairs the expression of PPARγ (peroxisome-proliferator-activated receptor γ), a master regulator of adipogenesis. Because the PPARγ agonist rosiglitazone was found to increase DLK expression in 3T3-L1 cells, we hypothesized that PPARγ is required for the transcriptional activation of the DLK gene. To test this hypothesis, we first examined the effects of pharmacological inhibition or shRNA (small-hairpin RNA)-mediated depletion of PPARγ on DLK accumulation in 3T3-L1 cells undergoing differentiation. In addition to blocking adipocyte conversion of 3T3-L1 cells, inhibition of PPARγ suppressed DLK expression at both the mRNA and protein levels. Moreover, supporting a role for PPARγ in DLK regulation, two potential PPARγ-binding sites identified by bioinformatic tools at positions -611 and -767 upstream of the DLK gene transcriptional start site were shown by electrophoretic mobility-shift assay and chromatin immunoprecipitation to bind PPARγ and its essential heterodimer partner retinoid X receptor as differentiation proceeds. Collectively, these results show that DLK is a novel transcriptional target of PPARγ with functional PPARγ-binding sites in its promoter.
Collapse
|
164
|
Dubuisson O, Dhurandhar EJ, Krishnapuram R, Kirk-Ballard H, Gupta AK, Hegde V, Floyd E, Gimble JM, Dhurandhar NV. PPARgamma-independent increase in glucose uptake and adiponectin abundance in fat cells. Endocrinology 2011; 152:3648-60. [PMID: 21791563 PMCID: PMC3176641 DOI: 10.1210/en.2011-0225] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Although thiazolidinediones (TZD) effectively improve hyperglycemia and increase adiponectin, a proinsulin-sensitizing adipokine, they also increase adipogenesis via peroxisome proliferator-activated receptor (PPAR)γ induction, which may be undesirable. Recent safety concerns about some TZD have prompted the search for next generation agents that can enhance glycemic control and adiponectin independent of PPARγ or adipogenesis. Reminiscent of TZD action, a human adenovirus, adenovirus 36 (Ad36), up-regulates PPARγ, induces adipogenesis, and improves systemic glycemic control in vivo. We determined whether this effect of Ad36 requires PPARγ and/or adipogenesis. Glucose uptake and relevant cell signaling were determined in mock-infected or human adenoviruses Ad36 or Ad2-infected cell types under the following conditions: 1) undifferentiated human-adipose-tissue-derived stem cells (hASC), 2) hASC differentiated as adipocytes, 3) hASC in presence or absence of a PPARγ inhibitor, 4) NIH/3T3 that have impaired PPARγ expression, and 5) PPARγ-knockout mouse embryonic fibroblasts. Mouse embryonic fibroblasts with intact PPARγ served as a positive control. Additionally, to determine natural Ad36 infection, human sera were screened for Ad36 antibodies. In undifferentiated or differentiated hASC, or despite the inhibition, down-regulation, or the absence of PPARγ, Ad36 significantly enhanced glucose uptake and PPARγ, adiponectin, glucose transporter 4, and glucose transporter 1 protein abundance, compared with mock or Ad2-infected cells. This indicated that Ad36 up-regulates glucose uptake and adiponectin secretion independent of adipogenesis or without recruiting PPARγ. In humans, natural Ad36 infection predicted greater adiponectin levels, suggesting a human relevance of these effects. In conclusion, Ad36 provides a novel template to metabolically remodel human adipose tissue to enhance glycemic control without the concomitant increase in adiposity or PPARγ induction associated with TZD actions.
Collapse
Affiliation(s)
- Olga Dubuisson
- Pennington Biomedical Research Center, Baton Rouge, Louisiana 70808, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
165
|
Peroxisome Proliferator-Activated Receptor-gamma in Amyotrophic Lateral Sclerosis and Huntington's Disease. PPAR Res 2011; 2008:418765. [PMID: 18464922 PMCID: PMC2366134 DOI: 10.1155/2008/418765] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Accepted: 02/19/2008] [Indexed: 01/26/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a debilitating and one of the most common adult-onset neurodegenerative diseases with the prevalence of about 5 per 100 000 individuals. It results in the progressive loss of upper and lower motor neurons and leads to gradual muscle weakening ultimately causing paralysis and death. ALS has an obscure cause and currently no effective treatment exists. In this review, a potentially important pathway is described that can be activated by peroxisome proliferator-activated receptor-gamma (PPAR-gamma) agonists and has the ability to block the neuropathological damage caused by inflammation in ALS and possibly in other neudegenerative diseases like Huntington's disease (HD). Neuroinflammation is a common pathological feature in neurodegenerative diseases. Therefore, PPAR-gamma agonists are thought to be neuroprotective in ALS and HD. We and others have tested the neuroprotective effect of pioglitazone (Actos), a PPAR-gamma agonist, in G93A SOD1 transgenic mouse model of ALS and found significant increase in survival of G93A SOD1 mice. These findings suggest that PPAR-gamma may be an important regulator of neuroinflammation and possibly a new target for the development of therapeutic strategies for ALS. The involvement of PPAR-gamma in HD is currently under investigation, one study finds that the treatment with rosiglitazone had no protection in R6/2 transgenic mouse model of HD. PPAR-gamma coactivator-1alpha (PGC-1alpha) is a transcriptional coactivator that works together with combination of other transcription factors like PPAR-gamma in the regulation of mitochondrial biogenesis. Therefore, PPAR-gamma is a possible target for ALS and HD as it functions as transcription factor that interacts with PGC-1alpha. In this review, the role of PPAR-gamma in ALS and HD is discussed based on the current literature and hypotheses.
Collapse
|
166
|
Masternak MM, Bartke A. PPARs in Calorie Restricted and Genetically Long-Lived Mice. PPAR Res 2011; 2007:28436. [PMID: 17389764 PMCID: PMC1779582 DOI: 10.1155/2007/28436] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2006] [Revised: 10/18/2006] [Accepted: 10/18/2006] [Indexed: 01/29/2023] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear receptors superfamily. The three subtypes, PPARα, PPARγ, and PPARβ/δ, are expressed in multiple organs. These transcription factors regulate different physiological
functions such as energy metabolism (including lipid and carbohydrate metabolism), insulin action, and immunity and inflammation, and apparently also act as important mediators of longevity and aging. Calorie restriction (CR) is the most effective intervention known to delay aging and increase lifespan.
Calorie restriction affects the same physiological functions as PPARs. This review summarizes recent
findings on the effects of CR and aging on the expression of PPARγ, α, and β/δ in mice and discusses possible involvement of PPARs in mediating the effects of murine longevity genes. The levels of PPARs change with age and CR appears to prevent these alterations which make “PPARs-CR-AGING” dependence of considerable interest.
Collapse
Affiliation(s)
- Michal M. Masternak
- Departments of Internal Medicine, Geriatrics Research, School of Medicine, Southern Illinois University, Springfield, IL 62794, USA
- *Michal M. Masternak:
| | - Andrzej Bartke
- Departments of Internal Medicine, Geriatrics Research, School of Medicine, Southern Illinois University, Springfield, IL 62794, USA
- Departments of Physiology, Geriatrics Research, School of Medicine, Southern Illinois University, Springfield, IL 62794, USA
| |
Collapse
|
167
|
The PPAR-Platelet Connection: Modulators of Inflammation and Potential Cardiovascular Effects. PPAR Res 2011; 2008:328172. [PMID: 18288284 PMCID: PMC2233896 DOI: 10.1155/2008/328172] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Accepted: 11/06/2007] [Indexed: 01/08/2023] Open
Abstract
Historically, platelets were viewed as simple anucleate cells responsible for initiating thrombosis and maintaining
hemostasis, but clearly they are also key mediators of inflammation and immune cell activation. An emerging body of
evidence links platelet function and thrombosis to vascular inflammation. peroxisome proliferator-activated receptors
(PPARs) play a major role in modulating inflammation and, interestingly, PPARs (PPARβ/δ and PPARγ) were recently
identified in platelets. Additionally, PPAR agonists attenuate platelet activation; an important discovery for two reasons.
First, activated platelets are formidable antagonists that initiate and prolong a cascade of events that contribute to
cardiovascular disease (CVD) progression. Dampening platelet release of proinflammatory mediators, including
CD40 ligand (CD40L, CD154), is essential to hinder this cascade. Second, understanding the biologic importance
of platelet PPARs and the mechanism(s) by which PPARs regulate platelet activation will be imperative in designing
therapeutic strategies lacking the deleterious or unwanted side effects of current treatment options.
Collapse
|
168
|
PPARgamma2 Regulates a Molecular Signature of Marrow Mesenchymal Stem Cells. PPAR Res 2011; 2007:81219. [PMID: 18288266 PMCID: PMC2234088 DOI: 10.1155/2007/81219] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Accepted: 04/25/2007] [Indexed: 12/25/2022] Open
Abstract
Bone formation and hematopoiesis are anatomically juxtaposed and share common regulatory mechanisms. Bone marrow mesenchymal stromal/stem cells (MSC) contain a compartment that provides progeny with bone forming osteoblasts and fat laden adipocytes as well as fibroblasts, chondrocytes, and muscle cells. In addition, marrow MSC provide an environment for support of hematopoiesis, including the development of bone resorbing osteoclasts. The PPARgamma2 nuclear receptor is an adipocyte-specific transcription factor that controls marrow MSC lineage allocation toward adipocytes and osteoblasts. Increased expression of PPARgamma2 with aging correlates with changes in the MSC status in respect to both their intrinsic differentiation potential and production of signaling molecules that contribute to the formation of a specific marrow micro-environment. Here, we investigated the effect of PPARgamma2 on MSC molecular signature in respect to the expression of gene markers associated exclusively with stem cell phenotype, as well as genes involved in the formation of a stem cell supporting marrow environment. We found that PPARgamma2 is a powerful modulator of stem cell-related gene expression. In general, PPARgamma2 affects the expression of genes specific for the maintenance of stem cell phenotype, including LIF, LIF receptor, Kit ligand, SDF-1, Rex-1/Zfp42, and Oct-4. Moreover, the antidiabetic PPARgamma agonist TZD rosiglitazone specifically affects the expression of "stemness" genes, including ABCG2, Egfr, and CD44. Our data indicate that aging and anti-diabetic TZD therapy may affect mesenchymal stem cell phenotype through modulation of PPARgamma2 activity. These observations may have important therapeutic consequences and indicate a need for more detailed studies of PPARgamma2 role in stem cell biology.
Collapse
|
169
|
Energy Balance, Myostatin, and GILZ: Factors Regulating Adipocyte Differentiation in Belly and Bone. PPAR Res 2011; 2007:92501. [PMID: 18309369 PMCID: PMC2246068 DOI: 10.1155/2007/92501] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Accepted: 08/16/2007] [Indexed: 11/18/2022] Open
Abstract
Peroxisome proliferator-activated receptor gamma (PPAR-gamma) belongs to the nuclear hormone receptor subfamily of transcription factors. PPARs are expressed in key target tissues such as liver, fat, and muscle and thus they play a major role in the regulation of energy balance. Because of PPAR-gamma's role in energy balance, signals originating from the gut (e.g., GIP), fat (e.g., leptin), muscle (e.g., myostatin), or bone (e.g., GILZ) can in turn modulate PPAR expression and/or function. Of the two PPAR-gamma isoforms, PPAR-gamma2 is the key regulator of adipogenesis and also plays a role in bone development. Activation of this receptor favors adipocyte differentiation of mesenchymal stem cells, while inhibition of PPAR-gamma2 expression shifts the commitment towards the osteoblastogenic pathway. Clinically, activation of this receptor by antidiabetic agents of the thiazolidinedione class results in lower bone mass and increased fracture rates. We propose that inhibition of PPAR-gamma2 expression in mesenchymal stem cells by use of some of the hormones/factors mentioned above may be a useful therapeutic strategy to favor bone formation.
Collapse
|
170
|
Activation of Penile Proadipogenic Peroxisome Proliferator-Activated Receptor gamma with an Estrogen: Interaction with Estrogen Receptor Alpha during Postnatal Development. PPAR Res 2011; 2008:651419. [PMID: 18769493 PMCID: PMC2519140 DOI: 10.1155/2008/651419] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Accepted: 07/14/2008] [Indexed: 01/17/2023] Open
Abstract
Exposure to the estrogen receptor alpha (ERα) ligand diethylstilbesterol (DES) between neonatal days 2 to 12 induces penile adipogenesis and adult infertility in rats. The objective of this study was to investigate the in vivo interaction between DES-activated ERα and the proadipogenic transcription factor peroxisome proliferator-activated receptor gamma (PPARγ). Transcripts for PPARs α, β, and γ and γ1a splice variant were detected in Sprague-Dawley normal rat penis with PPARγ predominating. In addition, PPARγ1b and PPARγ2 were newly induced by DES. The PPARγ transcripts were significantly upregulated with DES and reduced by antiestrogen ICI 182, 780. At the cellular level, PPARγ protein was detected in urethral transitional epithelium and stromal, endothelial, neuronal, and smooth muscular cells. Treatment with DES activated ERα and induced adipocyte differentiation in corpus cavernosum penis. Those adipocytes exhibited strong nuclear PPARγ expression. These results suggest a biological overlap between PPARγ and ERα and highlight a mechanism for endocrine disruption.
Collapse
|
171
|
Yamada H, Ueda T, Yano A. Water-soluble extract of Pacific Krill prevents triglyceride accumulation in adipocytes by suppressing PPARγ and C/EBPα expression. PLoS One 2011; 6:e21952. [PMID: 21760932 PMCID: PMC3131400 DOI: 10.1371/journal.pone.0021952] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2011] [Accepted: 06/15/2011] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Pacific Krill (Euphausia pacifica) are small, red crustaceans, similar to shrimp, that flourish in the North Pacific and are eaten in Japan. METHODS AND FINDINGS We investigated the effect of a water-soluble extract of Pacific Krill on adipocytes and discovered that this extract suppressed triglyceride accumulation in adipocytes. Furthermore, the water-soluble extract of Pacific Krill suppressed the expression of two master regulators of adipocyte differentiation, peroxisome proliferator-activated receptor gamma (PPARγ) and CCAAT enhancer binding protein alpha (C/EBPα). C/EBPβ promotes PPARγ and C/EBPα expression, but the water-soluble extract of Pacific Krill did not inhibit the expression of C/EBPβ or C/EBPβ-mediated transcriptional activation. The Pacific Krill extract was more effective than a PPARγ antagonist in suppressing PPARγ and C/EBPα expression. CONCLUSIONS These results indicated that the water-soluble extract of Pacific Krill was not simply a PPARγ antagonist, but that it prevented triglyceride accumulation in adipocytes by suppression of PPARγ and C/EBPα via a pathway that is independent of C/EBPβ.
Collapse
|
172
|
Sugii S, Evans RM. Epigenetic codes of PPARγ in metabolic disease. FEBS Lett 2011; 585:2121-8. [PMID: 21605560 PMCID: PMC3129683 DOI: 10.1016/j.febslet.2011.05.007] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 04/29/2011] [Accepted: 05/02/2011] [Indexed: 01/03/2023]
Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ), a ligand-regulated nuclear hormone receptor, plays critical roles in metabolism and adipogenesis. PPARγ ligands such as thiazolidinediones (TZDs) exert insulin sensitizing and anti-inflammatory effects primarily through action on adipocytes, and are thus widely used to treat metabolic syndrome, especially type II diabetes. A number of PPARγ interacting partners have been identified, many of which are known epigenetic regulators, including enzymes for histone acetylation/deacetylation and histone methylation/demethylation. However, their functional roles in the PPARγ transcriptional pathway are not well defined. Recent advances in ChIP-based and deep sequencing technology are revealing previously underappreciated epigenomic mechanisms and therapeutic potentials of this nuclear receptor pathway.
Collapse
Affiliation(s)
- Shigeki Sugii
- Howard Hughes Medical Institute and Gene Expression Laboratory, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd, La Jolla, CA 92037, USA
- Singapore Bioimaging Consortium and Duke-NUS Graduate Medical School, 11 Biopolis Way #02-02, Singapore 138667
| | - Ronald M. Evans
- Howard Hughes Medical Institute and Gene Expression Laboratory, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd, La Jolla, CA 92037, USA
| |
Collapse
|
173
|
Stanton LA, Li JR, Beier F. PPARgamma2 expression in growth plate chondrocytes is regulated by p38 and GSK-3. J Cell Mol Med 2011; 14:242-56. [PMID: 20414969 PMCID: PMC3837598 DOI: 10.1111/j.1582-4934.2008.00396.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Although peroxisome proliferator activated receptor (PPAR)γ remains a critical regulator of preadipocyte differentiation, new roles have been discovered in inflammation, bone morphogenesis, endothelial function, cancer, longevity and atherosclerosis. Despite the demonstration of PPARγ expression in chondrocytes, its role and the pathways affecting its expression and activity in chondrocytes remain largely unknown. We investigated the effects of PPARγ activation on chondrocyte differentiation and its participation in chondrocyte lipid metabolism. PPARγ2 expression is highly regulated during chondrocyte differentiation in vivo and in vitro PPARγ activation with troglitazone resulted in increased Indian hedgehog expression and reduced collagen X expression, confirming previously described roles in the inhibition of differentiation. However, the major effect of PPARγ2 in chondrocytes appears to be on lipid metabolism. During differentiation chondrocytes increase expression of the lipid-associated metabolizing protein, Lpl, which is accompanied by increased gene expression of PPARγ. PPARγ expression is suppressed by p38 activity, but requires GSK-3 activity. Furthermore, Lpl expression is regulated by p38 and GSK-3 signalling. This is the first study demonstrating a relationship between PPARγ2 expression and chondrocyte lipid metabolism and its regulation by p38 and GSK-3 signalling.
Collapse
Affiliation(s)
- Lee-Anne Stanton
- CIHR Group in Skeletal Development and Remodelling, Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | | | | |
Collapse
|
174
|
Munekata K, Sakamoto K. Forkhead transcription factor Foxo1 is essential for adipocyte differentiation. In Vitro Cell Dev Biol Anim 2011; 45:642-51. [PMID: 19585174 DOI: 10.1007/s11626-009-9230-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Accepted: 06/26/2009] [Indexed: 01/04/2023]
Abstract
We analyzed the physiological role of forkhead box class O 1 (Foxo1) in adipocyte differentiation by suppressing Foxo1 mRNAwith siRNA specific for Foxo1.Mouse 3T3-L1 preadipocytes infected with an adenovirus expressing Foxo1-siRNA showed a marked decrease in lipid droplet formation when induced to differentiate into adipocytes. Adipocyte differentiation was most severely inhibited by exposing cells to Foxo1-siRNA before induction of differentiation. The incorporation of fluorescent-labeled glucose and fatty acid was significantly inhibited in cells deficient in Foxo1. RTPCR revealed that downregulation of Foxo1 decreased the expression of the transcription factors, PPAR-γ and C/EBP-α. By comparison, Foxo1-siRNA did not affect the expression of C/EBP-β or C/EBP-δ during the early period of adipocyte differentiation. These results indicate that Foxo1 plays an essential role in adipocyte differentiation, especially at the very early stage of terminal adipocyte differentiation.
Collapse
Affiliation(s)
- Keisuke Munekata
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, Japan
| | | |
Collapse
|
175
|
Zhang YY, Li X, Qian SW, Guo L, Huang HY, He Q, Liu Y, Ma CG, Tang QQ. Transcriptional activation of histone H4 by C/EBPβ during the mitotic clonal expansion of 3T3-L1 adipocyte differentiation. Mol Biol Cell 2011; 22:2165-74. [PMID: 21562223 PMCID: PMC3128520 DOI: 10.1091/mbc.e10-11-0912] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Histone H4 is activated by C/EBPβ in mitotic clonal expansion during adipogenesis. C/EBP-binding sites are identified in histone H4 promoters, and H4 expression is suppressed when C/EBPβ is knocked down or its DNA-binding activity is inhibited by A-C/EBP. These results help in our understanding of how C/EBPβ plays important roles in the proliferation of other cells. CCAAT enhancer binding protein β (C/EBPβ) is required for both mitotic clonal expansion (MCE) and terminal differentiation during the 3T3-L1 adipocyte differentiation program. Whereas the mechanism of C/EBPβ during terminal differentiation is well understood, the mechanism of C/EBPβ in MCE is not. We provide evidence that histone H4, the most conserved cell cycle–related histone, the change of which is strictly correlated with DNA content change during the cell cycle, is transcriptionally activated by C/EBPβ during MCE. Expression of histone H4 is increased at 16 h after induction when 3T3-L1 preadipocytes synchronously reenter S phase, which is correlated with the sequential phosphorylation and activation of C/EBPβ, and expression was partially suppressed when A-C/EBP (dominant negative for C/EBP protein) was overexpressed. One C/EBP-binding site was identified in one of the histone H4 gene promoters (hist4h4), confirmed by both electrophoretic mobility shift assay and chromatin immunoprecipitation assay. C/EBP-binding sites were also found in 9 of 11 other histone H4 promoters, which can also be transactivated by C/EBPβ. Knockdown of C/EBPβ by stealth small interfering RNA partially decreased H4 gene expression and arrested cells in G1 phase as indicated by bromodeoxyuridine incorporation and fluorescence-activated cell sorting analysis of DNA content. This study provides new insights into why C/EBPβ is required for MCE during 3T3-L1 adipocyte differentiation and why C/EBPβ plays important roles in the proliferation of other cell types.
Collapse
Affiliation(s)
- You-You Zhang
- The Key Laboratory of Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai 200032, China
| | | | | | | | | | | | | | | | | |
Collapse
|
176
|
Ding N, Gao Y, Wang N, Li H. Functional analysis of the chicken PPARγ gene 5′-flanking region and C/EBPα-mediated gene regulation. Comp Biochem Physiol B Biochem Mol Biol 2011; 158:297-303. [DOI: 10.1016/j.cbpb.2011.01.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 01/03/2011] [Accepted: 01/04/2011] [Indexed: 12/21/2022]
|
177
|
Bai L, Jia Y, Viswakarma N, Huang J, Vluggens A, Wolins NE, Jafari N, Rao MS, Borensztajn J, Yang G, Reddy JK. Transcription coactivator mediator subunit MED1 is required for the development of fatty liver in the mouse. Hepatology 2011; 53:1164-74. [PMID: 21480322 PMCID: PMC3076129 DOI: 10.1002/hep.24155] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
UNLABELLED Peroxisome proliferator-activated receptor-γ (PPARγ), a nuclear receptor, when overexpressed in liver stimulates the induction of adipocyte-specific and lipogenesis-related genes and causes hepatic steatosis. We report here that Mediator 1 (MED1; also known as PBP or TRAP220), a key subunit of the Mediator complex, is required for high-fat diet-induced hepatic steatosis as well as PPARγ-stimulated adipogenic hepatic steatosis. Mediator forms the bridge between transcriptional activators and RNA polymerase II. MED1 interacts with nuclear receptors such as PPARγ and other transcriptional activators. Liver-specific MED1 knockout (MED1(ΔLiv) ) mice, when fed a high-fat (60% kcal fat) diet for up to 4 months failed to develop fatty liver. Similarly, MED1(ΔLiv) mice injected with adenovirus-PPARγ (Ad/PPARγ) by tail vein also did not develop fatty liver, whereas mice with MED1 (MED1(fl/fl) ) fed a high-fat diet or injected with Ad/PPARγ developed severe hepatic steatosis. Gene expression profiling and northern blot analyses of Ad/PPARγ-injected mouse livers showed impaired induction in MED1(ΔLiv) mouse liver of adipogenic markers, such as aP2, adipsin, adiponectin, and lipid droplet-associated genes, including caveolin-1, CideA, S3-12, and others. These adipocyte-specific and lipogenesis-related genes are strongly induced in MED1(fl/fl) mouse liver in response to Ad/PPARγ. Re-expression of MED1 using adenovirally-driven MED1 (Ad/MED1) in MED1(ΔLiv) mouse liver restored PPARγ-stimulated hepatic adipogenic response. These studies also demonstrate that disruption of genes encoding other coactivators such as SRC-1, PRIC285, PRIP, and PIMT had no effect on hepatic adipogenesis induced by PPARγ overexpression. CONCLUSION We conclude that transcription coactivator MED1 is required for high-fat diet-induced and PPARγ-stimulated fatty liver development, which suggests that MED1 may be considered a potential therapeutic target for hepatic steatosis. (HEPATOLOGY 2011;).
Collapse
Affiliation(s)
- Liang Bai
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A & F University, Shaanxi 712100, China
| | - Yuzhi Jia
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Navin Viswakarma
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jiansheng Huang
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Aurore Vluggens
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Nathan E. Wolins
- Center for Human Nutrition, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Nadereh Jafari
- Genomics Core Facility Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - M. Sambasiva Rao
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jayme Borensztajn
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Gongshe Yang
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A & F University, Shaanxi 712100, China
| | - Janardan K. Reddy
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
178
|
Takahashi T. Overexpression of Runx2 and MKP-1 stimulates transdifferentiation of 3T3-L1 preadipocytes into bone-forming osteoblasts in vitro. Calcif Tissue Int 2011; 88:336-47. [PMID: 21258786 DOI: 10.1007/s00223-011-9461-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 01/06/2011] [Indexed: 10/18/2022]
Abstract
Runx2, a transcription factor, is essential for osteoblastic differentiation, bone formation, and maintenance. We examined the effect of Runx2 on transdifferentiation of 3T3-L1 preadipocytes into functional, mature osteoblasts. Forced expression of exogenous Runx2 using a retroviral gene-delivery system showed increases of alkaline phosphatase (ALP) activity and expression of the osteoblastic marker genes osteocalcin (OC), bone sialoprotein (BSP), and osterix (Osx), accompanied by low-level matrix mineralization. In contrast, adipocytic differentiation was completely blocked with downregulation of adipogenic transcription factors PPARγ2, C/EBPα, and C/EBPδ. Treatment of dexamethasone (Dex), a synthetic glucocorticoid, stimulated the formation of mineralized nodules in Runx2-overexpressing 3T3-L1 cells with increases of ALP, OC, BSP, and Osx expression. Here, we focused on a dual specific phosphatase, mitogen-activated protein kinase (MKP-1), since Dex significantly increased MKP-1 expression in Runx2-overexpressing 3T3-L1 cells. Forced expression of exogenous MKP-1 resulted in accumulation of robust matrix mineralization in parallel with induction of ALP activity and expression of OC, BSP, and Osx in Runx2-overexpressing 3T3-L1 cells. These results suggest that simultaneous overexpression of Runx2 and MKP-1 is effective for transdifferentiation of preadipocytes into fully differentiated bone-forming osteoblasts and provide a novel strategy for cell-based therapeutic applications requiring significant numbers of osteogenic cells to synthesize mineralized constructs for the treatment of large bone defects.
Collapse
Affiliation(s)
- Tomihisa Takahashi
- Department of Anatomy, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan.
| |
Collapse
|
179
|
PPARs are a unique set of fatty acid regulated transcription factors controlling both lipid metabolism and inflammation. Biochim Biophys Acta Mol Basis Dis 2011; 1812:1007-22. [PMID: 21382489 PMCID: PMC3117990 DOI: 10.1016/j.bbadis.2011.02.014] [Citation(s) in RCA: 649] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 02/25/2011] [Accepted: 02/28/2011] [Indexed: 01/03/2023]
Abstract
Cells are constantly exposed to a large variety of lipids. Traditionally, these molecules were thought to serve as simple energy storing molecules. More recently it has been realized that they can also initiate and regulate signaling events that will decisively influence development, cellular differentiation, metabolism and related functions through the regulation of gene expression. Multicellular organisms dedicate a large family of nuclear receptors to these tasks. These proteins combine the defining features of both transcription factors and receptor molecules, and therefore have the unique ability of being able to bind lipid signaling molecules and transduce the appropriate signals derived from lipid environment to the level of gene expression. Intriguingly, the members of a subfamily of the nuclear receptors, the peroxisome proliferator-activated receptors (PPARs) are able to sense and interpret fatty acid signals derived from dietary lipids, pathogenic lipoproteins or essential fatty acid metabolites. Not surprisingly, Peroxisome proliferator-activated receptors were found to be key regulators of lipid and carbohydrate metabolism. Unexpectedly, later studies revealed that Peroxisome proliferator-activated receptors are also able to modulate inflammatory responses. Here we summarize our understanding on how these transcription factors/receptors connect lipid metabolism to inflammation and some of the novel regulatory mechanisms by which they contribute to homeostasis and certain pathological conditions. This article is part of a Special Issue entitled: Translating nuclear receptors from health to disease.
Collapse
|
180
|
Omiecinski CJ, Vanden Heuvel JP, Perdew GH, Peters JM. Xenobiotic metabolism, disposition, and regulation by receptors: from biochemical phenomenon to predictors of major toxicities. Toxicol Sci 2011; 120 Suppl 1:S49-75. [PMID: 21059794 PMCID: PMC3145385 DOI: 10.1093/toxsci/kfq338] [Citation(s) in RCA: 243] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 11/01/2010] [Indexed: 02/07/2023] Open
Abstract
To commemorate the 50th anniversary of the Society of Toxicology, this special edition article reviews the history and current scope of xenobiotic metabolism and transport, with special emphasis on the discoveries and impact of selected "xenobiotic receptors." This overall research realm has witnessed dynamic development in the past 50 years, and several of the key milestone events that mark the impressive progress in these areas of toxicological sciences are highlighted. From the initial observations regarding aspects of drug metabolism dating from the mid- to late 1800's, the area of biotransformation research witnessed seminal discoveries in the mid-1900's and onward that are remarkable in retrospect, including the discovery and characterization of the phase I monooxygenases, the cytochrome P450s. Further research uncovered many aspects of the biochemistry of xenobiotic metabolism, expanding to phase II conjugation and phase III xenobiotic transport. This led to hallmark developments involving integration of genomic technologies to elucidate the basis for interindividual differences in response to xenobiotic exposures and discovery of nuclear and soluble receptor families that selectively "sense" the chemical milieu of the mammalian cell and orchestrate compensatory changes in gene expression programming to accommodate complex xenobiotic exposures. This review will briefly summarize these developments and investigate the expanding roles of xenobiotic receptor biology in the underlying basis of toxicological response to chemical agents.
Collapse
Affiliation(s)
- Curtis J Omiecinski
- Department of Veterinary and Biomedical Sciences, Center for Molecular Toxicology and Carcinogenesis, Penn State University, University Park, Pennsylvania 16802, USA.
| | | | | | | |
Collapse
|
181
|
Green DE, Sutliff RL, Hart CM. Is peroxisome proliferator-activated receptor gamma (PPARγ) a therapeutic target for the treatment of pulmonary hypertension? Pulm Circ 2011; 1:33-47. [PMID: 21547012 PMCID: PMC3085428 DOI: 10.4103/2045-8932.78101] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Pulmonary hypertension (PH), a progressive disorder associated with significant morbidity and mortality, is caused by complex pathways that culminate in structural and functional alterations of the pulmonary circulation and increases in pulmonary vascular resistance and pressure. Diverse genetic, pathological, or environmental triggers stimulate PH pathogenesis culminating in vasoconstriction, cell proliferation, vascular remodeling, and thrombosis. We conducted a thorough literature review by performing MEDLINE searches via PubMed to identify articles pertaining to PPARγ as a therapeutic target for the treatment of PH. This review examines basic and preclinical studies that explore PPARγ and its ability to regulate PH pathogenesis. Despite the current therapies that target specific pathways in PH pathogenesis, including prostacyclin derivatives, endothelin-receptor antagonists, and phosphodiesterase type 5 inhibitors, morbidity and mortality related to PH remain unacceptably high, indicating the need for novel therapeutic approaches. Consequently, therapeutic targets that simultaneously regulate multiple pathways involved in PH pathogenesis have gained attention. This review focuses on peroxisome proliferator-activated receptor gamma (PPARγ), a member of the nuclear hormone receptor superfamily of ligand-activated transcription factors. While the PPARγ receptor is best known as a master regulator of lipid and glucose metabolism, a growing body of literature demonstrates that activation of PPARγ exerts antiproliferative, antithrombotic, and vasodilatory effects on the vasculature, suggesting its potential efficacy as a PH therapeutic target.
Collapse
Affiliation(s)
- David E. Green
- Department of Medicine, Emory University, Atlanta Veterans Affairs Medical Center, Decatur, Georgia, USA
| | - Roy L. Sutliff
- Department of Medicine, Emory University, Atlanta Veterans Affairs Medical Center, Decatur, Georgia, USA
| | - C. Micheal Hart
- Department of Medicine, Emory University, Atlanta Veterans Affairs Medical Center, Decatur, Georgia, USA
| |
Collapse
|
182
|
Bi X, Pohl NM, Yin Z, Yang W. Loss of JNK2 increases intestinal tumor susceptibility in Apc1638+/- mice with dietary modulation. Carcinogenesis 2010; 32:584-8. [PMID: 21183606 DOI: 10.1093/carcin/bgq275] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A recent study has shown that c-Jun NH2-terminal kinases (JNKs) 2 interacts with and inhibits β-catenin signaling in vitro. To determine the role of genetic interaction between JNK2 and β-catenin in vivo and to elucidate JNK2-mediated intestinal carcinogenesis, we crossed the JNK2-/- mice with Apc1638+/- mice that carry inactivated Apc allele and develop intestinal tumor due to β-catenin activation. We found that the introduction of mutant JNK2 into Apc1638+/- mice did not increase intestinal tumorigenesis when the mice were fed a defined AIN-76A control diet. However, loss of JNK2 significantly increased animal body weight in the Apc/JNK2+/- and Apc/JNK2-/- mice. Surprisingly, JNK2 loss was synergistic with a Western-style high-risk diet (high fat and phosphate and low calcium and vitamin D) to accelerate intestinal tumorigenesis. Tumor number increased to 3.56 from 1.89 (on AIN-76A diet) in the Apc/JNK2+/- mice (P<0.01) and increased to 4.14 from 1.92 (on AIN-76A diet) in the Apc/JNK2-/- mice (P<0.01) although there was a slight increase of tumor formation in Apc/JNK2+/+ mice. Intestinal tumorigenesis in Apc/JNK2 double-mutant mice with high-risk diet modulation was associated with β-catenin signaling, peroxisome proliferator-activated receptor-γ and inflammation pathway. Collectively, we concluded that JNK2 may function in controlling fat metabolism and loss of JNK2 increases the risk of obesity, the latter synergizes with high-fat diet to increase intestinal tumor susceptibility. This data strongly suggests the importance of JNK2 in intestinal carcinogenesis and the importance of dietary manipulation for cancer prevention in the population whose JNK2 is inactivated.
Collapse
Affiliation(s)
- Xiuli Bi
- Department of Pathology, University of Illinois at Chicago, Illinois 60612, USA
| | | | | | | |
Collapse
|
183
|
Rey JW, Noetel A, Hardt A, Canbay A, Alakus H, Hausen AZ, Dienes HP, Drebber U, Odenthal M. Pro12Ala polymorphism of the peroxisome proliferator-activated receptor γ2 in patients with fatty liver diseases. World J Gastroenterol 2010; 16:5830-7. [PMID: 21155004 PMCID: PMC3001974 DOI: 10.3748/wjg.v16.i46.5830] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To test the occurrence of the Pro12Ala mutation of the peroxisome proliferator-activated receptor-γ (PPARγ)2-gene in patients with non-alcoholic fatty liver disease (NAFLD) or alcoholic fatty liver disease (AFLD).
METHODS: DNA from a total of 622 specimens including 259 blood samples of healthy blood donors and 363 histologically categorized liver biopsies of patients with NAFLD (n = 263) and AFLD (n = 100) were analyzed by Real-time polymerase chain reaction using allele-specific probes.
RESULTS: In the NAFLD and the AFLD collective, 3% of the patients showed homozygous occurrence of the Ala12 PPARγ2-allele, differing from only 1.5% cases in the healthy population. In NAFLD patients, a high incidence of the Ala12 mutant was not associated with the progression of fatty liver disease. However, we observed a significantly higher risk (odds ratio = 2.50, CI: 1.05-5.90, P = 0.028) in AFLD patients carrying the mutated Ala12 allele to develop inflammatory alterations. The linkage of the malfunctioning Ala12-positive PPARγ2 isoform to an increased risk in patients with AFLD to develop severe steatohepatitis and fibrosis indicates a more prominent anti-inflammatory impact of PPARγ2 in progression of AFLD than of NAFLD.
CONCLUSION: In AFLD patients, the Pro12Ala single nuclear polymorphism should be studied more extensively in order to serve as a novel candidate in biomarker screening for improved prognosis.
Collapse
|
184
|
Joss-Moore LA, Wang Y, Baack ML, Yao J, Norris AW, Yu X, Callaway CW, McKnight RA, Albertine KH, Lane RH. IUGR decreases PPARγ and SETD8 Expression in neonatal rat lung and these effects are ameliorated by maternal DHA supplementation. Early Hum Dev 2010; 86:785-91. [PMID: 20869820 PMCID: PMC3138525 DOI: 10.1016/j.earlhumdev.2010.08.026] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2010] [Revised: 08/22/2010] [Accepted: 08/31/2010] [Indexed: 12/28/2022]
Abstract
Intrauterine growth restriction (IUGR) is associated with altered lung development in human and rat. The transcription factor PPARγ, is thought to contribute to lung development. PPARγ is activated by docosahexanoic acid (DHA). One contribution of PPARγ to lung development may be its direct regulation of chromatin modifying enzymes, such as Setd8. In this study, we hypothesized that IUGR would result in a gender-specific reduction in PPARγ, Setd8 and associated H4K20Me levels in the neonatal rat lung. Because DHA activates PPARγ, we also hypothesized that maternal DHA supplementation would normalize PPARγ, Setd8, and H4K20Me levels in the IUGR rat lung. We found that IUGR decreased PPARγ levels, with an associated decrease in Setd8 levels in both male and female rat lungs. Levels of the Setd8-dependent histone modification, H4K20Me, were reduced on the PPARγ gene in both males and females while whole lung H4K20Me was only reduced in male lung. Maternal DHA supplementation ameliorated these effects in offspring. We conclude that IUGR decreases lung PPARγ, Setd8 and PPARγ H4K20Me independent of gender, while decreasing whole lung H4K20Me in males only. These outcomes are offset by maternal DHA. We speculate that maintenance of the epigenetic milieu may be one role of PPARγ in the lung and suggests a novel benefit of maternal DHA supplementation in IUGR.
Collapse
Affiliation(s)
- Lisa A Joss-Moore
- University of Utah, Division of Neonatology, Salt Lake City, UT 84108, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
185
|
Costa V, Gallo MA, Letizia F, Aprile M, Casamassimi A, Ciccodicola A. PPARG: Gene Expression Regulation and Next-Generation Sequencing for Unsolved Issues. PPAR Res 2010; 2010:409168. [PMID: 20871817 PMCID: PMC2943117 DOI: 10.1155/2010/409168] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Accepted: 07/08/2010] [Indexed: 01/01/2023] Open
Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ) is one of the most extensively studied ligand-inducible transcription factors (TFs), able to modulate its transcriptional activity through conformational changes. It is of particular interest because of its pleiotropic functions: it plays a crucial role in the expression of key genes involved in adipogenesis, lipid and glucid metabolism, atherosclerosis, inflammation, and cancer. Its protein isoforms, the wide number of PPARγ target genes, ligands, and coregulators contribute to determine the complexity of its function. In addition, the presence of genetic variants is likely to affect expression levels of target genes although the impact of PPARG gene variations on the expression of target genes is not fully understood. The introduction of massively parallel sequencing platforms-in the Next Generation Sequencing (NGS) era-has revolutionized the way of investigating the genetic causes of inherited diseases. In this context, DNA-Seq for identifying-within both coding and regulatory regions of PPARG gene-novel nucleotide variations and haplotypes associated to human diseases, ChIP-Seq for defining a PPARγ binding map, and RNA-Seq for unraveling the wide and intricate gene pathways regulated by PPARG, represent incredible steps toward the understanding of PPARγ in health and disease.
Collapse
Affiliation(s)
- Valerio Costa
- Institute of Genetics and Biophysics “Adriano Buzzati-Traverso” (IGB), CNR, 80131 Naples, Italy
| | | | - Francesca Letizia
- Institute of Genetics and Biophysics “Adriano Buzzati-Traverso” (IGB), CNR, 80131 Naples, Italy
| | - Marianna Aprile
- Institute of Genetics and Biophysics “Adriano Buzzati-Traverso” (IGB), CNR, 80131 Naples, Italy
| | - Amelia Casamassimi
- Institute of Genetics and Biophysics “Adriano Buzzati-Traverso” (IGB), CNR, 80131 Naples, Italy
- Department of General Pathology, 1st School of Medicine, Second University of Naples, 80138 Naples, Italy
| | - Alfredo Ciccodicola
- Institute of Genetics and Biophysics “Adriano Buzzati-Traverso” (IGB), CNR, 80131 Naples, Italy
| |
Collapse
|
186
|
Peroxisome proliferator-activated receptor gamma in osteoarthritis. Mod Rheumatol 2010; 21:1-9. [PMID: 20820843 DOI: 10.1007/s10165-010-0347-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Accepted: 07/30/2010] [Indexed: 10/19/2022]
Abstract
Osteoarthritis (OA) is among the most prevalent chronic human health disorders and the most common form of arthritis. It is a leading cause of disability in developed countries. This disease is characterized by cartilage deterioration, synovitis, and remodeling of the subchondral bone. There is not yet a satisfactory treatment to stop or arrest this disease process. Although several candidates for therapeutic approaches have been put forward, recent studies suggest that activation of the transcription factor peroxisome proliferator-activated receptor gamma (PPARγ) is an interesting target for this disease. PPARγ is a ligand-activated transcription factor and member of the nuclear receptor superfamily. Agonists of PPARγ inhibit inflammation and reduce synthesis of cartilage degradation products both in vitro and in vivo, and reduce the development/progression of cartilage lesions in OA animal models. This review will highlight the recent experimental studies on the presence of PPARγ in articular tissues and its effect on inflammatory and catabolic responses in chondrocytes and synovial fibroblasts, as well as the protective effects of PPARγ ligands in arthritis experimental models. Finally, the role of PPARγ polymorphism in the pathogenesis of OA and related musculoskeletal diseases will also be discussed.
Collapse
|
187
|
Yamazaki T, Shiraishi S, Kishimoto K, Miura S, Ezaki O. An increase in liver PPARγ2 is an initial event to induce fatty liver in response to a diet high in butter: PPARγ2 knockdown improves fatty liver induced by high-saturated fat. J Nutr Biochem 2010; 22:543-53. [PMID: 20801631 DOI: 10.1016/j.jnutbio.2010.04.009] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2009] [Revised: 04/08/2010] [Accepted: 04/21/2010] [Indexed: 12/15/2022]
Abstract
The effects of a diet rich in saturated fat on fatty liver formation and the related mechanisms that induce fatty liver were examined. C57BL/6J mice were fed butter or safflower oil as a high-fat (HF) diet (40% fat calories) for 2, 4, 10, or 17 weeks. Although both HF diets induced similar levels of obesity, HF butter-fed mice showed a two to threefold increase in liver triacylglycerol (TG) concentration compared to HF safflower oil-fed mice at 4 or 10 weeks without hyperinsulinemia. At 4 weeks, increases in peroxisome proliferator-activated receptor γ2 (PPARγ2), CD36, and adipose differentiation-related protein (ADRP) mRNAs were observed in HF butter-fed mice; at 10 weeks, an increase in sterol regulatory element-binding protein-1c (SREBP-1c) was observed; at 17 weeks, these increases were attenuated. At 4 weeks, a single injection of adenoviral vector-based short hairpin interfering RNA against PPARγ2 in HF butter-fed mice reduced PPARγ protein and mRNA of its target genes (CD36 and ADRP) by 43%, 43%, and 39%, respectively, with a reduction in liver TG concentration by 38% in 5 days. PPARγ2 knockdown also reduced mRNAs in lipogenic genes (fatty-acid-synthase, stearoyl-CoA desaturase 1, acetyl-CoA carboxylase 1) without alteration of SREBP-1c mRNA. PPARγ2 knockdown reduced mRNAs in genes related to inflammation (CD68, interleukin-1β, tumor necrosis factor-α, and monocyte chemoattractant protein-1). In conclusion, saturated fatty acid-rich oil induced fatty liver in mice, and this was triggered initially by an increase in PPARγ2 protein in the liver, which led to increased expression of lipogenic genes. Inactivation of PPARγ2 may improve fatty liver induced by HF saturated fat.
Collapse
Affiliation(s)
- Tomomi Yamazaki
- Nutritional Science Program, National Institute of Health and Nutrition, Tokyo 162-8636, Japan.
| | | | | | | | | |
Collapse
|
188
|
Itoigawa Y, Kishimoto KN, Okuno H, Sano H, Kaneko K, Itoi E. Hypoxia induces adipogenic differentitation of myoblastic cell lines. Biochem Biophys Res Commun 2010; 399:721-6. [PMID: 20692234 DOI: 10.1016/j.bbrc.2010.08.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Accepted: 08/03/2010] [Indexed: 02/02/2023]
Abstract
Muscle atrophy usually accompanies fat accumulation in the muscle. In such atrophic conditions as back muscles of kyphotic spine and the rotator cuff muscles with torn tendons, blood flow might be diminished. It is known that hypoxia causes trans-differentiation of mesenchymal stem cells derived from bone marrow into adipocytes. However, it has not been elucidated yet if hypoxia turned myoblasts into adipocytes. We investigated adipogenesis in C2C12 and G8 murine myogenic cell line treated by hypoxia. Cells were also treated with the cocktail of insulin, dexamethasone and IBMX (MDI), which has been known to inhibit Wnt signaling and promote adipogenesis. Adipogenic differentiation was seen in both hypoxia and MDI. Adipogenic marker gene expression was assessed in C2C12. CCAAT/enhancer-binding protein (C/EBP) beta, alpha and peroxisome proliferator activating receptor (PPAR) gamma were increased by both hypoxia and MDI. The expression profile of Wnt10b was different between hypoxia and MDI. The mechanism for adipogenesis of myoblasts in hypoxia might be regulated by different mechanism than the modification of Wnt signaling.
Collapse
|
189
|
Abstract
Peroxisome proliferator-activated receptor (PPAR)alpha, beta (also known as delta), and gamma function as sensors for fatty acids and fatty acid derivatives and control important metabolic pathways involved in the maintenance of energy balance. PPARs also regulate other diverse biological processes such as development, differentiation, inflammation, and neoplasia. In the nucleus, PPARs exist as heterodimers with retinoid X receptor-alpha bound to DNA with corepressor molecules. Upon ligand activation, PPARs undergo conformational changes that facilitate the dissociation of corepressor molecules and invoke a spatiotemporally orchestrated recruitment of transcription cofactors including coactivators and coactivator-associated proteins. While a given nuclear receptor regulates the expression of a prescribed set of target genes, coactivators are likely to influence the functioning of many regulators and thus affect the transcription of many genes. Evidence suggests that some of the coactivators such as PPAR-binding protein (PBP/PPARBP), thyroid hormone receptor-associated protein 220 (TRAP220), and mediator complex subunit 1 (MED1) may exert a broader influence on the functions of several nuclear receptors and their target genes. Investigations into the role of coactivators in the function of PPARs should strengthen our understanding of the complexities of metabolic diseases associated with energy metabolism.
Collapse
|
190
|
Virtue S, Dale M, Sethi JK, Vidal-Puig A. LEM-PCR: a method for determining relative transcript isoform proportions using real-time PCR without a standard curve. Genome 2010; 53:637-42. [PMID: 20725151 PMCID: PMC4289856 DOI: 10.1139/g10-036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Many genes express multiple transcript isoforms generated by alternative splicing of mRNA. Using real-time PCR, it is straightforward to determine the relative expression level of each isoform independently. However, it is less trivial to determine the relative proportions of different isoforms in a cDNA sample. The relative proportions of different isoforms can be important, as a small change in a highly abundant transcript may be more relevant than a large change in a minimally expressed transcript. Currently, determining the relative proportions of isoforms requires the construction of a standard curve using recombinant plasmid DNA or genomic DNA. As recombinant or genomic DNA standards often amplify with different efficiencies to cDNA samples, they may give under- or overestimations of isoform abundances. The method described in this article uses a titration curve generated from the same cDNA samples measured in the experiment. By using samples with different levels of separate isoforms, it is possible to derive linear equations which, when solved, allow the determination of the proportion of each isoform within the samples under study.
Collapse
Affiliation(s)
- S Virtue
- Institute of Metabolic Science, Metabolic Research Laboratories, University of Cambridge, Box 289, Level 4, Addenbrooke's Hospital, Cambridge, UK.
| | | | | | | |
Collapse
|
191
|
Abstract
Peroxisome proliferator-activated receptor-gamma (PPARgamma) is a nuclear receptor that functions as a master transcriptional regulator of adipocyte conversion. During PPARgamma transactivation, multiple signaling pathways interact with one another, leading to the differentiation of both white and brown adipose tissue. Ligand activation of the PPARgamma-RXR heterodimer complex also enhances insulin sensitivity, and this property has been heavily exploited to develop effective pharmacotherapies for the treatment of type 2 diabetes mellitus. PPARgamma is also expressed in stem cells and plays a critical role in mesenchymal stromal cell differentiation and lineage determination events. The many facets of PPARgamma activity within the bone marrow niche where adipocytes, osteoblasts, and hematopoietic cells reside make this molecule an attractive target for pharmacological investigation. Additional findings that osteoblasts can alter energy metabolism by influencing adiposity and insulin sensitivity, and observations of decreased bone turnover in diabetic subjects, underscore the contribution of the skeleton to systemic energy requirements. Studies into the role of PPARgamma in skeletal acquisition and maintenance may lead to a better understanding of the molecular mechanisms governing stromal cell differentiation in the mesenchyme compartment and whether PPARgamma activity can be manipulated to benefit skeletal remodeling events and energy metabolism.
Collapse
Affiliation(s)
- Masanobu Kawai
- Maine Medical Center Research Institute, Scarborough, ME 04074, USA
| | | | | | | |
Collapse
|
192
|
Koppen A, Kalkhoven E. Brown vs white adipocytes: The PPARγ coregulator story. FEBS Lett 2010; 584:3250-9. [DOI: 10.1016/j.febslet.2010.06.035] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 06/21/2010] [Accepted: 06/22/2010] [Indexed: 11/30/2022]
|
193
|
Arck P, Toth B, Pestka A, Jeschke U. Nuclear receptors of the peroxisome proliferator-activated receptor (PPAR) family in gestational diabetes: from animal models to clinical trials. Biol Reprod 2010; 83:168-76. [PMID: 20427759 DOI: 10.1095/biolreprod.110.083550] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Gestational diabetes mellitus (GDM) is defined as impaired glucose tolerance and affects 2%-8% of all pregnancies. Among other complications, GDM can lead to the development of type 2 diabetes mellitus (DM 2) in both mother and child. Peroxisome proliferator-activated receptors (PPARs) are major regulators of glucose and lipid metabolism. Furthermore, PPARs are mediators of inflammation and angiogenesis and are involved in the maternal adaptational dynamics during pregnancy to serve the requirements of the growing fetus. PPARs were originally named for their ability to induce hepatic peroxisome proliferation in mice in response to xenobiotic stimuli. The expression of three PPAR isoforms, alpha, beta/delta, and gamma, have been described. Each of them is encoded by different genes; however, they share 60%-80% homology in their ligand-binding and DNA-binding domains. PPARs are involved in trophoblast differentiation, invasion, metabolism, and parturition and are expressed in invasive extravillous trophoblast and villous trophoblast cells. Nuclear receptors, to which PPARs belong, are promising targets for disease-specific treatment strategies because they act as transcription factors controlling cellular processes at the level of gene expression and may produce selective alterations in downstream gene expression. To date, PPAR agonists are therapeutically used in patients with DM 2 and in patients with reproductive disorders such as polycystic ovary syndrome. Because of safety concerns and limited data, PPAR agonists are not yet included in GDM-related treatment strategies. Our objective herein is to review newly emerging generations of selective PPAR modulators and panagonists, which may have potent therapeutic implications in the context of GDM.
Collapse
Affiliation(s)
- Petra Arck
- Center for Internal Medicine, Charité University Medicine Berlin, Berlin, Germany
| | | | | | | |
Collapse
|
194
|
Majdalawieh A, Ro HS. PPARgamma1 and LXRalpha face a new regulator of macrophage cholesterol homeostasis and inflammatory responsiveness, AEBP1. NUCLEAR RECEPTOR SIGNALING 2010; 8:e004. [PMID: 20419060 PMCID: PMC2858268 DOI: 10.1621/nrs.08004] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Accepted: 03/09/2010] [Indexed: 12/26/2022]
Abstract
Peroxisome proliferator-activated receptor γ1 (PPARγ1) and liver X receptor α (LXRα) are nuclear receptors that play pivotal roles in macrophage cholesterol homeostasis and inflammation; key biological processes in atherogenesis. The activation of PPARγ1 and LXRα by natural or synthetic ligands results in the transactivation of ABCA1, ABCG1, and ApoE; integral players in cholesterol efflux and reverse cholesterol transport. In this review, we describe the structure, isoforms, expression pattern, and functional specificity of PPARs and LXRs. Control of PPARs and LXRs transcriptional activity by coactivators and corepressors is also highlighted. The specific roles that PPARγ1 and LXRα play in inducing macrophage cholesterol efflux mediators and antagonizing macrophage inflammatory responsiveness are summarized. Finally, this review focuses on the recently reported regulatory functions that adipocyte enhancer-binding protein 1 (AEBP1) exerts on PPARγ1 and LXRα transcriptional activity in the context of macrophage cholesterol homeostasis and inflammation.
Collapse
|
195
|
Pyper SR, Viswakarma N, Yu S, Reddy JK. PPARalpha: energy combustion, hypolipidemia, inflammation and cancer. NUCLEAR RECEPTOR SIGNALING 2010; 8:e002. [PMID: 20414453 PMCID: PMC2858266 DOI: 10.1621/nrs.08002] [Citation(s) in RCA: 305] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Accepted: 03/04/2010] [Indexed: 12/11/2022]
Abstract
The peroxisome proliferator-activated receptor alpha (PPARalpha, or NR1C1) is a nuclear hormone receptor activated by a structurally diverse array of synthetic chemicals known as peroxisome proliferators. Endogenous activation of PPARalpha in liver has also been observed in certain gene knockout mouse models of lipid metabolism, implying the existence of enzymes that either generate (synthesize) or degrade endogenous PPARalpha agonists. For example, substrates involved in fatty acid oxidation can function as PPARalpha ligands. PPARalpha serves as a xenobiotic and lipid sensor to regulate energy combustion, hepatic steatosis, lipoprotein synthesis, inflammation and liver cancer. Mainly, PPARalpha modulates the activities of all three fatty acid oxidation systems, namely mitochondrial and peroxisomal beta-oxidation and microsomal omega-oxidation, and thus plays a key role in energy expenditure. Sustained activation of PPARalpha by either exogenous or endogenous agonists leads to the development of hepatocellular carcinoma resulting from sustained oxidative and possibly endoplasmic reticulum stress and liver cell proliferation. PPARalpha requires transcription coactivator PPAR-binding protein (PBP)/mediator subunit 1(MED1) for its transcriptional activity.
Collapse
Affiliation(s)
| | | | | | - Janardan K. Reddy
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
196
|
Sanghera DK, Demirci FY, Been L, Ortega L, Ralhan S, Wander GS, Mehra NK, Singh J, Aston CE, Mulvihill JJ, Kamboh IM. PPARG and ADIPOQ gene polymorphisms increase type 2 diabetes mellitus risk in Asian Indian Sikhs: Pro12Ala still remains as the strongest predictor. Metabolism 2010; 59:492-501. [PMID: 19846176 PMCID: PMC2843807 DOI: 10.1016/j.metabol.2009.07.043] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2008] [Accepted: 07/29/2009] [Indexed: 01/22/2023]
Abstract
We have examined the association of 14 tagging single nucleotide polymorphisms (tagSNPs) in peroxisome proliferator activated receptor-gamma transcripts 1 and 2 (PPARG1 and 2) and 5 tagSNPs in adiponectin (ADIPOQ) genes for their effect on type 2 diabetes mellitus (T2D) risk in Asian Indian Sikhs. A total of 554 T2D cases and 527 normoglycemic controls were examined for association with T2D and other subphenotypes of T2D. With the exception of a strong association of PPARG2/Pro12Ala with T2D (odds ratio, 0.13; 95% confidence interval, 0.03-0.56; P = .0007), no other tagSNP in the PPARG locus revealed any significant association with T2D in this population. Similarly, none of the tagSNPs in the ADIPOQ gene was associated with T2D susceptibility in single-site analysis. However, haplotype analysis provided strong evidence of association of these loci with T2D. Three-site haplotype analysis in the PPARG locus using the 2 marginally associated SNPs (P/rs11715073 and P/rs3892175) in combination with Pro12 Ala (P/rs1801282) revealed a strong association of 1 "risk" (CGC) (P = .003, permutation P = .015) and 1 "protective" (CAC) (P = .001, permutation P = .005) haplotype associated with T2D. However, the major effect still appears to be driven by Pro12Ala, as the association of these haplotypes did not remain significant when analyzed conditional upon Pro12Ala (P = .262). In addition, 2-site haplotype analysis in the ADIPOQ locus using only 2 marginally associated SNPs (AD/rs182052 and AD/rs7649121) revealed a significant protective association of the GA haplotype with T2D (P = .009, permutation P = .026). Multiple linear regression analysis also revealed significant association of an ADIPOQ variant (AD/rs12495941) with total body weight (P = .010), waist (P = .024), and hip (P = .021), although these associations were not significant after adjusting for multiple testing. Our new findings strongly suggest that the genetic variation in PPARG and ADIPOQ loci could contribute to the risk for the development of T2D in Indian Sikhs. Identification of causal SNPs in these important biological and positional candidate genes would help determine the true physiologic significance of these loci in T2D and obesity.
Collapse
Affiliation(s)
- Dharambir Kaur Sanghera
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
197
|
Joss-Moore LA, Wang Y, Campbell MS, Moore B, Yu X, Callaway CW, McKnight RA, Desai M, Moyer-Mileur LJ, Lane RH. Uteroplacental insufficiency increases visceral adiposity and visceral adipose PPARgamma2 expression in male rat offspring prior to the onset of obesity. Early Hum Dev 2010; 86:179-85. [PMID: 20227202 PMCID: PMC2857740 DOI: 10.1016/j.earlhumdev.2010.02.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 02/16/2010] [Accepted: 02/17/2010] [Indexed: 12/15/2022]
Abstract
Uteroplacental insufficiency (UPI) induced intrauterine growth restriction (IUGR) predisposes individuals to adult onset metabolic morbidities, including insulin resistance and cardiovascular disease. An underlying component of the development of these morbidities is adipose dysfunction; specifically a disproportionately abundant visceral adipose tissue. We hypothesize that IUGR will increase rats visceral adiposity and visceral expression of PPARgamma, a key regulator of adipogenesis. To test this hypothesis we employed a well described UPI induced IUGR rat model. Subcutaneous and visceral adipose levels were measured in adolescent control and IUGR rats using MRI. Expression of PPARgamma mRNA and protein, as well as PPARgamma target genes, was measured in neonatal, adolescent and adult rats. UPI induced IUGR increases the relative amount of visceral adipose tissue in male, but not female, adolescent rats in conjunction with an increase in PPARgamma2mRNA and protein in male visceral adipose. Importantly, these effects are seen prior to the onset of overt obesity. We conclude that increased PPARgamma2 expression in VAT of IUGR males is associated with increased visceral adiposity. We speculate that the increase in visceral adiposity may contribute to the metabolic morbidities experienced by this population.
Collapse
Affiliation(s)
- Lisa A Joss-Moore
- Division of Neonatology, University of Utah, 295 Chepeta Way, Salt Lake City, UT 84108, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
198
|
Chan MM, Evans KW, Moore AR, Fong D. Peroxisome proliferator-activated receptor (PPAR): balance for survival in parasitic infections. J Biomed Biotechnol 2010; 2010:828951. [PMID: 20169106 PMCID: PMC2821783 DOI: 10.1155/2010/828951] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Accepted: 11/10/2009] [Indexed: 01/04/2023] Open
Abstract
Parasitic infections induce a magnitude of host responses. At the opposite ends of the spectrum are those that ensure the host's needs to eliminate the invaders and to minimize damage to its own tissues. This review analyzes how parasites would manipulate immunity by activating the immunosuppressive nuclear factor, peroxisome proliferator-activated receptors (PPARs) with type 2 cytokines and free fatty acids from arachidonic acid metabolism. PPARs limit the action of type 1 immunity, in which classically activated macrophages act through the production of proinflammatory signals, to spare the parasites. They also favor the development of alternately activated macrophages which control inflammation so the host would not be destroyed. Possibly, the nuclear factors hold a pivotal role in the establishment of chronic infection by delicately balancing the pro- and anti-inflammatory signaling mechanisms and their ligands may be used as combination therapeutics to limit host pathology.
Collapse
Affiliation(s)
- Marion M. Chan
- Department of Microbiology and Immunology, School of Medicine, Temple University, 3400 North Broad Street, Philadelphia, PA 19140, USA
| | - Kyle W. Evans
- Department of Microbiology and Immunology, School of Medicine, Temple University, 3400 North Broad Street, Philadelphia, PA 19140, USA
| | - Andrea R. Moore
- Department of Microbiology and Immunology, School of Medicine, Temple University, 3400 North Broad Street, Philadelphia, PA 19140, USA
| | - Dunne Fong
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
199
|
Anti-apoptotic Actions of PPAR-γ Against Ischemic Stroke. Mol Neurobiol 2010; 41:180-6. [DOI: 10.1007/s12035-010-8103-y] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Accepted: 01/14/2010] [Indexed: 12/25/2022]
|
200
|
Shrestha UK, Karimi O, Crusius JBA, Zhou F, Wang Z, Chen Z, van Bodegraven AA, Xiao J, Morré SA, Wang H, Li J, Xia B. Distribution of peroxisome proliferator-activated receptor-gamma polymorphisms in Chinese and Dutch patients with inflammatory bowel disease. Inflamm Bowel Dis 2010; 16:312-9. [PMID: 19714744 DOI: 10.1002/ibd.21059] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND As peroxisome proliferator-activated receptor-gamma (PPAR-gamma) is frequently expressed in colon, its genetic polymorphism may play a role in the etiology of inflammatory bowel disease (IBD). The aims of the present study were to determine the distribution of PPAR-gamma polymorphisms Pro12Ala and C161T and to explore the association between the PPAR-gamma genotypes and phenotypes of IBD patients. METHODS A total of 244 IBD patients [212 ulcerative colitis (UC) and 32 Crohn's disease (CD)] and 220 controls in the Chinese population and 603 IBD patients (302 UC and 301 CD) and 180 controls in the white Dutch population were enrolled in the study. The phenotypes of Chinese IBD patients were grouped according to disease location. The PPAR-gamma polymorphisms Pro12Ala and C161T were genotyped by PCR-based methods. RESULTS In the Chinese population, T carriers of the PPAR-gamma C161T polymorphism were more common in UC patients than in the controls [37.7% vs. 25.5%, odds ratio 1.77, 95% confidence interval 1.18-2.68, P = 0.007], whereas Ala carriers of the Pro12Ala polymorphism showed no significant association in UC patients, but there was a significant association of Ala carriers with more extensive disease among the UC patients (P = 0.002); Pro12Ala and C161T genotypes did not show any associations with CD patients. No associations were found for the PPAR-gamma C161T SNP studied in the Dutch IBD population. CONCLUSIONS Our study showed the potential association between the PPAR-gamma C161T polymorphism and UC patients in the central Chinese population. This finding was not replicated in the Dutch population. Further studies are necessary to explore the functional implication of the PPAR-gamma C161T polymorphism in Chinese UC patients.
Collapse
Affiliation(s)
- Umid Kumar Shrestha
- Department of Gastroenterology, Wuhan University, Zhongnan Hospital, Wuhan, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|