151
|
Johnson EP, Yao S, Helinski DR. Gyrase inhibitors and thymine starvation disrupt the normal pattern of plasmid RK2 localization in Escherichia coli. J Bacteriol 2005; 187:3538-47. [PMID: 15866942 PMCID: PMC1112003 DOI: 10.1128/jb.187.10.3538-3547.2005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2004] [Accepted: 02/14/2005] [Indexed: 11/20/2022] Open
Abstract
Multicopy plasmids in Escherichia coli are not randomly distributed throughout the cell but exist as defined clusters that are localized at the mid-cell, or at the 1/4 and 3/4 cell length positions. To explore the factors that contribute to plasmid clustering and localization, E. coli cells carrying a plasmid RK2 derivative that can be tagged with a green fluorescent protein-LacI fusion protein were subjected to various conditions that interfere with plasmid superhelicity and/or DNA replication. The various treatments included thymine starvation and the addition of the gyrase inhibitors nalidixic acid and novobiocin. In each case, localization of plasmid clusters at the preferred positions was disrupted but the plasmids remained in clusters, suggesting that normal plasmid superhelicity and DNA synthesis in elongating cells are not required for the clustering of individual plasmid molecules. It was also observed that the inhibition of DNA replication by these treatments produced filaments in which the plasmid clusters were confined to one or two nucleoid bodies, which were located near the midline of the filament and were not evenly spaced throughout the filament, as is found in cells treated with cephalexin. Finally, the enhanced yellow fluorescent protein-RarA fusion protein was used to localize the replication complex in individual E. coli cells. Novobiocin and nalidixic acid treatment both resulted in rapid loss of RarA foci. Under these conditions the RK2 plasmid clusters were not disassembled, suggesting that a completely intact replication complex is not required for plasmid clustering.
Collapse
Affiliation(s)
- Erik P Johnson
- Center for Molecular Genetics and Division of Biological Sciences, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0322, USA
| | | | | |
Collapse
|
152
|
Gruger T, Nitiss JL, Maxwell A, Zechiedrich EL, Heisig P, Seeber S, Pommier Y, Strumberg D. A mutation in Escherichia coli DNA gyrase conferring quinolone resistance results in sensitivity to drugs targeting eukaryotic topoisomerase II. Antimicrob Agents Chemother 2005; 48:4495-504. [PMID: 15561817 PMCID: PMC529191 DOI: 10.1128/aac.48.12.4495-4504.2004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fluoroquinolones are broad-spectrum antimicrobial agents that target type II topoisomerases. Many fluoroquinolones are highly specific for bacterial type II topoisomerases and act against both DNA gyrase and topoisomerase IV. In Escherichia coli, mutations causing quinolone resistance are often found in the gene that encodes the A subunit of DNA gyrase. One common site for resistance-conferring mutations alters Ser83, and mutations to Leu or Trp result in high levels of resistance to fluoroquinolones. In the present study we demonstrate that the mutation of Ser83 to Trp in DNA gyrase (Gyr(S83W)) also results in sensitivity to agents that are potent inhibitors of eukaryotic topoisomerase II but that are normally inactive against prokaryotic enzymes. Epipodophyllotoxins, such as etoposide, teniposide and amino-azatoxin, inhibited the DNA supercoiling activity of Gyr(S83W), and the enzyme caused elevated levels of DNA cleavage in the presence of these agents. The DNA sequence preference for Gyr(S83W)-induced cleavage sites in the presence of etoposide was similar to that seen with eukaryotic type II topoisomerases. Introduction of the Gyr(S83W) mutation in E. coli strain RFM443-242 by site-directed mutagenesis sensitized it to epipodophyllotoxins and amino-azatoxin. Our results demonstrate that sensitivity to agents that target topoisomerase II is conserved between prokaryotic and eukaryotic enzymes, suggesting that drug interaction domains are also well conserved and likely occur in domains important for the biochemical activities of the enzymes.
Collapse
Affiliation(s)
- Thomas Gruger
- Department of Pharmaceutical Biology & Microbiology, Institute of Pharmacy, University of Hamburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
153
|
Yu X, Susa M, Knabbe C, Schmid RD, Bachmann TT. Development and validation of a diagnostic DNA microarray to detect quinolone-resistant Escherichia coli among clinical isolates. J Clin Microbiol 2004; 42:4083-91. [PMID: 15364994 PMCID: PMC516282 DOI: 10.1128/jcm.42.9.4083-4091.2004] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The incidence of resistance against fluoroquinolones among pathogenic bacteria has been increasing in accordance with the worldwide use of this drug. Escherichia coli is one of the most relevant species for quinolone resistance. In this study, a diagnostic microarray for single-base-mutation detection was developed, which can readily identify the most prevalent E. coli genotypes leading to quinolone resistance. Based on genomic sequence analysis using public databases and our own DNA sequencing results, two amino acid positions (83 and 87) on the A subunit of the DNA gyrase, encoded by the gyrA gene, have been identified as mutation hot spots and were selected for DNA microarray detection. Oligonucleotide probes directed against these two positions were designed so that they could cover the most important resistance-causing and silent mutations. The performance of the array was validated with 30 clinical isolates of E. coli from four different hospitals in Germany. The microarray results were confirmed by standard DNA sequencing and were in full agreement with phenotypic antimicrobial susceptibility testing.
Collapse
Affiliation(s)
- Xiaolei Yu
- Institute of Technical Biochemistry, University of Stuttgart, Allmandring 31, D-70569 Stuttgart, Germany
| | | | | | | | | |
Collapse
|
154
|
Rochman M, Blot N, Dyachenko M, Glaser G, Travers A, Muskhelishvili G. Buffering of stable RNA promoter activity against DNA relaxation requires a far upstream sequence. Mol Microbiol 2004; 53:143-52. [PMID: 15225310 DOI: 10.1111/j.1365-2958.2004.04126.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The stable RNA promoters of Escherichia coli are exquisitely sensitive to variations in the superhelical density of DNA. Previously, we have shown that binding of the DNA architectural protein FIS at the upstream activating sequences (UASs) of stable RNA promoters prevents the transcription complexes from inactivation induced by changes in the supercoiling level of DNA. Here, we identify a strong FIS binding site 89 bp upstream of the previously described cluster of FIS binding sites located between positions -64 and -150 in the rrnA P1 UAS. Binding of FIS to this 'far upstream sequence' allows the recruitment of additional FIS molecules to the region. We demonstrate that, upon DNA relaxation, the maintenance of promoter activity requires, in addition to UAS, the presence of the far upstream sequence. The far upstream sequence shows no effect in the absence of an intact cluster. This requirement for the integrity of the region encompassing the far upstream sequence and the UAS cluster is correlated with the in vitro modulation of binding of FIS to UAS and interaction of RNA polymerase with the UP element and the region around the transcriptional start point. Our results suggest that, at the rrnA P1 promoter, the entire region comprising the UAS and the far upstream sequence is involved in the assembly of the transcription initiation complex. We propose that the extensive engagement of upstream DNA in this nucleoprotein complex locally compensates for the lack of torsional strain in relaxed DNA, thus increasing the resistance of the promoter to global DNA relaxation.
Collapse
Affiliation(s)
- Mark Rochman
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse, D-35043 Marburg, Germany
| | | | | | | | | | | |
Collapse
|
155
|
Peter BJ, Arsuaga J, Breier AM, Khodursky AB, Brown PO, Cozzarelli NR. Genomic transcriptional response to loss of chromosomal supercoiling in Escherichia coli. Genome Biol 2004; 5:R87. [PMID: 15535863 PMCID: PMC545778 DOI: 10.1186/gb-2004-5-11-r87] [Citation(s) in RCA: 245] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2004] [Revised: 10/01/2004] [Accepted: 10/11/2004] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The chromosome of Escherichia coli is maintained in a negatively supercoiled state, and supercoiling levels are affected by growth phase and a variety of environmental stimuli. In turn, supercoiling influences local DNA structure and can affect gene expression. We used microarrays representing nearly the entire genome of Escherichia coli MG1655 to examine the dynamics of chromosome structure. RESULTS We measured the transcriptional response to a loss of supercoiling caused either by genetic impairment of a topoisomerase or addition of specific topoisomerase inhibitors during log-phase growth and identified genes whose changes are statistically significant. Transcription of 7% of the genome (306 genes) was rapidly and reproducibly affected by changes in the level of supercoiling; the expression of 106 genes increased upon chromosome relaxation and the expression of 200 decreased. These changes are most likely to be direct effects, as the kinetics of their induction or repression closely follow the kinetics of DNA relaxation in the cells. Unexpectedly, the genes induced by relaxation have a significantly enriched AT content in both upstream and coding regions. CONCLUSIONS The 306 supercoiling-sensitive genes are functionally diverse and widely dispersed throughout the chromosome. We propose that supercoiling acts as a second messenger that transmits information about the environment to many regulatory networks in the cell.
Collapse
Affiliation(s)
- Brian J Peter
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3204, USA
- Current address: Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 2QH, UK
| | - Javier Arsuaga
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3204, USA
- Mathematics Department, University of California, Berkeley, CA 94720, USA
| | - Adam M Breier
- Graduate Group in Biophysics, University of California, Berkeley, CA 94720, USA
| | - Arkady B Khodursky
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, St. Paul, MN 55108, USA
| | - Patrick O Brown
- Department of Biochemistry and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305-5307, USA
| | - Nicholas R Cozzarelli
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3204, USA
| |
Collapse
|
156
|
Jeong KS, Ahn J, Khodursky AB. Spatial patterns of transcriptional activity in the chromosome of Escherichia coli. Genome Biol 2004; 5:R86. [PMID: 15535862 PMCID: PMC545777 DOI: 10.1186/gb-2004-5-11-r86] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2004] [Revised: 09/13/2004] [Accepted: 09/29/2004] [Indexed: 12/16/2022] Open
Abstract
Analysis of the transcriptional activity in Escherichia coli K12 revealed an asymmetry in the distribution of transcriptional patterns along the bacterial chromosome and showed that spatial patterns of transcription could be modulated pharmacologically and genetically. Background Although genes on the chromosome are organized in a fixed order, the spatial correlations in transcription have not been systematically evaluated. We used a combination of genomic and signal processing techniques to investigate the properties of transcription in the genome of Escherichia coli K12 as a function of the position of genes on the chromosome. Results Spectral analysis of transcriptional series revealed the existence of statistically significant patterns in the spatial series of transcriptional activity. These patterns could be classified into three categories: short-range, of up to 16 kilobases (kb); medium-range, over 100-125 kb; and long-range, over 600-800 kb. We show that the significant similarities in gene activities extend beyond the length of an operon and that local patterns of coexpression are dependent on DNA supercoiling. Unlike short-range patterns, the formation of medium and long-range transcriptional patterns does not strictly depend on the level of DNA supercoiling. The long-range patterns appear to correlate with the patterns of distribution of DNA gyrase on the bacterial chromosome. Conclusions Localization of structural components in the transcriptional signal revealed an asymmetry in the distribution of transcriptional patterns along the bacterial chromosome. The demonstration that spatial patterns of transcription could be modulated pharmacologically and genetically, along with the identification of molecular correlates of transcriptional patterns, offer for the first time strong evidence of physiologically determined higher-order organization of transcription in the bacterial chromosome.
Collapse
Affiliation(s)
- Kyeong Soo Jeong
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, St. Paul, MN 55108, USA
| | - Jaeyong Ahn
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, St. Paul, MN 55108, USA
| | - Arkady B Khodursky
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, St. Paul, MN 55108, USA
| |
Collapse
|
157
|
Kamau E, Grove A. Fluoroquinolone-dependent DNA supercoiling by Vaccinia topoisomerase I. J Mol Biol 2004; 342:479-87. [PMID: 15327948 DOI: 10.1016/j.jmb.2004.06.082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2004] [Revised: 06/28/2004] [Accepted: 06/29/2004] [Indexed: 11/22/2022]
Abstract
Vaccinia topoisomerase I is a site-specific DNA strand transferase that acts through a DNA-(3'-phosphotyrosyl)-enzyme intermediate, resulting in relaxation of supercoiled DNA. Although Vaccinia topoisomerase I is not an essential enzyme, its role in early transcription makes it a potential antiviral target. We describe the interaction of Vaccinia topoisomerase I with fluoroquinolone antibiotics otherwise known to target DNA gyrase and topoisomerase IV in bacterial cells. The fluoroquinolone enrofloxacin inhibits DNA relaxation by Vaccinia topoisomerase I at concentrations similar to those required for inhibition by the coumarin drugs coumermycin and novobiocin. When Vaccinia topoisomerase I is presented with relaxed DNA in the presence of enrofloxacin, it executes the reverse reaction, supercoiling the DNA. Further characterization indicates that enrofloxacin does not interfere with the initial strand scission by Vaccinia topoisomerase I. The structurally related fluoroquinolones moxifloxacin and lomefloxacin have no effect on the topoisomerase at the concentrations at which enrofloxacin mediates DNA supercoiling. The mechanism with which Vaccinia topoisomerase I supercoils relaxed DNA, an energetically unfavorable, yet ATP-independent process, must entail protein-DNA contacts downstream of the cleavage site, as opposed to the free rotation mechanism proposed for DNA relaxation; as proposed for fluoroquinolone-mediated inhibition of gyrase, the drug may target a preformed topoisomerase I-DNA complex to induce conformational changes in the enzyme that permit such contacts.
Collapse
Affiliation(s)
- Edwin Kamau
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | | |
Collapse
|
158
|
Hsieh TJ, Farh L, Huang WM, Chan NL. Structure of the topoisomerase IV C-terminal domain: a broken beta-propeller implies a role as geometry facilitator in catalysis. J Biol Chem 2004; 279:55587-93. [PMID: 15466871 DOI: 10.1074/jbc.m408934200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacteria possess two closely related yet functionally distinct essential type IIA topoisomerases (Topos). DNA gyrase supports replication and transcription with its unique supercoiling activity, whereas Topo IV preferentially relaxes (+) supercoils and is a decatenating enzyme required for chromosome segregation. Here we report the crystal structure of the C-terminal domain of Topo IV ParC subunit (ParC-CTD) from Bacillus stearothermophilus and provide a structure-based explanation for how Topo IV and DNA gyrase execute distinct activities. Although the topological connectivity of ParC-CTD is similar to the recently determined CTD structure of DNA gyrase GyrA subunit (GyrA-CTD), ParC-CTD surprisingly folds as a previously unseen broken form of a six-bladed beta-propeller. Propeller breakage is due to the absence of a DNA gyrase-specific GyrA box motif, resulting in the reduction of curvature of the proposed DNA binding region, which explains why ParC-CTD is less efficient than GyrA-CTD in mediating DNA bending, a difference that leads to divergent activities of the two homologous enzymes. Moreover, we found that the topology of the propeller blades observed in ParC-CTD and GyrA-CTD can be achieved from a concerted beta-hairpin invasion-induced fold change event of a canonical six-bladed beta-propeller; hence, we proposed to name this new fold as "hairpin-invaded beta-propeller" to highlight the high degree of similarity and a potential evolutionary linkage between them. The possible role of ParC-CTD as a geometry facilitator during various catalytic events and the evolutionary relationships between prokaryotic type IIA Topos have also been discussed according to these new structural insights.
Collapse
Affiliation(s)
- Tung-Ju Hsieh
- Institute of Biochemistry, College of Life Sciences, National Chung Hsing University, Taichung City 402, Taiwan
| | | | | | | |
Collapse
|
159
|
Maeda Y, Kiba A, Ohnishi K, Hikichi Y. Implications of amino acid substitutions in GyrA at position 83 in terms of oxolinic acid resistance in field isolates of Burkholderia glumae, a causal agent of bacterial seedling rot and grain rot of rice. Appl Environ Microbiol 2004; 70:5613-20. [PMID: 15345450 PMCID: PMC520877 DOI: 10.1128/aem.70.9.5613-5620.2004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2004] [Accepted: 04/08/2004] [Indexed: 11/20/2022] Open
Abstract
Oxolinic acid (OA), a quinolone, inhibits the activity of DNA gyrase composed of GyrA and GyrB and shows antibacterial activity against Burkholderia glumae. Since B. glumae causes bacterial seedling rot and grain rot of rice, both of which are devastating diseases, the emergence of OA-resistant bacteria has important implications on rice cultivation in Japan. Based on the MIC of OA, 35 B. glumae field isolates isolated from rice seedlings grown from OA-treated seeds in Japan were divided into sensitive isolates (OSs; 0.5 microg/ml), moderately resistant isolates (MRs; 50 microg/ml), and highly resistant isolates (HRs; > or =100 microg/ml). Recombination with gyrA of an OS, Pg-10, led MRs and HRs to become OA susceptible, suggesting that gyrA mutations are involved in the OA resistance of field isolates. The amino acid at position 83 in the GyrA of all OSs was Ser, but in all MRs and HRs it was Arg and Ile, respectively. Ser83Arg and Ser83Ile substitutions in the GyrA of an OS, Pg-10, resulted in moderate and high OA resistance, respectively. Moreover, Arg83Ser and Ile83Ser substitutions in the GyrA of MRs and HRs, respectively, resulted in susceptibility to OA. These results suggest that Ser83Arg and Ser83Ile substitutions in GyrA are commonly responsible for resistance to OA in B. glumae field isolates.
Collapse
Affiliation(s)
- Yukiko Maeda
- Laboratory of Plant Pathology and Biotechnology, Kochi University, 200 Monobe, Nankoku, Kochi 783-8502, Japan
| | | | | | | |
Collapse
|
160
|
Abstract
Antimicrobial resistance among respiratory tract pathogens represents a significant health care threat. Identifying the antimicrobial agents that remain effective in the presence of resistance, and knowing why, requires a thorough understanding of the mechanisms of action of the various agents as well as the mechanisms of resistance demonstrated among respiratory tract pathogens. The primary goal of antimicrobial therapy is to eradicate the pathogen, via killing or inhibiting bacteria, from the site of infection; the defenses of the body are required for killing any remaining bacteria. Targeting a cellular process or function specific to bacteria and not to the host limits the toxicity to patients. Currently, there are four general cellular targets to which antimicrobials are targeted: cell wall formation and maintenance, protein synthesis, DNA replication, and folic acid metabolism. Resistance mechanisms among respiratory tract pathogens have been demonstrated for all four targets. In general, the mechanisms of resistance used by these pathogens fall into one of three categories: enzymatic inactivation of the antimicrobial, prevention of intracellular accumulation, and modification of the target site to which agents bind to exert an antimicrobial effect. Resistance to some agents can be overcome by modifying the dosage regimens (e.g., using high-dose therapy) or inhibiting the resistance mechanism (e.g., b-lactamase inhibitors), whereas other mechanisms of resistance can only be overcome by using an agent from a different class. Understanding the mechanisms of action of the various agents and the mechanisms of resistance used by respiratory tract pathogens can help clinicians identify the agents that will increase the likelihood of achieving optimal outcomes.
Collapse
Affiliation(s)
- Michael R Jacobs
- Department of Pathology, Case Western Reserve University School of Medicine, University Hospitals of Cleveland, 11100 Euclid Avenue, Cleveland, OH 44106, USA. mrj6Qcwru.edu
| | | | | |
Collapse
|
161
|
Bellon S, Parsons JD, Wei Y, Hayakawa K, Swenson LL, Charifson PS, Lippke JA, Aldape R, Gross CH. Crystal structures of Escherichia coli topoisomerase IV ParE subunit (24 and 43 kilodaltons): a single residue dictates differences in novobiocin potency against topoisomerase IV and DNA gyrase. Antimicrob Agents Chemother 2004; 48:1856-64. [PMID: 15105144 PMCID: PMC400558 DOI: 10.1128/aac.48.5.1856-1864.2004] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Topoisomerase IV and DNA gyrase are related bacterial type II topoisomerases that utilize the free energy from ATP hydrolysis to catalyze topological changes in the bacterial genome. The essential function of DNA gyrase is the introduction of negative DNA supercoils into the genome, whereas the essential function of topoisomerase IV is to decatenate daughter chromosomes following replication. Here, we report the crystal structures of a 43-kDa N-terminal fragment of Escherichia coli topoisomerase IV ParE subunit complexed with adenylyl-imidodiphosphate at 2.0-A resolution and a 24-kDa N-terminal fragment of the ParE subunit complexed with novobiocin at 2.1-A resolution. The solved ParE structures are strikingly similar to the known gyrase B (GyrB) subunit structures. We also identified single-position equivalent amino acid residues in ParE (M74) and in GyrB (I78) that, when exchanged, increased the potency of novobiocin against topoisomerase IV by nearly 20-fold (to 12 nM). The corresponding exchange in gyrase (I78 M) yielded a 20-fold decrease in the potency of novobiocin (to 1.0 micro M). These data offer an explanation for the observation that novobiocin is significantly less potent against topoisomerase IV than against DNA gyrase. Additionally, the enzyme kinetic parameters were affected. In gyrase, the ATP K(m) increased approximately 5-fold and the V(max) decreased approximately 30%. In contrast, the topoisomerase IV ATP K(m) decreased by a factor of 6, and the V(max) increased approximately 2-fold from the wild-type values. These data demonstrate that the ParE M74 and GyrB I78 side chains impart opposite effects on the enzyme's substrate affinity and catalytic efficiency.
Collapse
Affiliation(s)
- Steven Bellon
- Vertex Pharmaceuticals Incorporated, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
162
|
Abstract
In vitro studies have demonstrated that Hin-catalysed site-specific DNA inversion occurs within a tripartite invertasome complex assembled at a branch on a supercoiled DNA molecule. Multiple DNA exchanges within a recombination complex (processive recombination) have been found to occur with particular substrates or reaction conditions. To investigate the mechanistic properties of the Hin recombination reaction in vivo, we have analysed the topology of recombination products generated by Hin catalysis in growing cells. Recombination between wild-type recombination sites in vivo is primarily limited to one exchange. However, processive recombination leading to knotted DNA products is efficient on substrates containing recombination sites with non-identical core nucleotides. Multiple exchanges are limited by a short DNA segment between the Fis-bound enhancer and closest recombination site and by the strength of Fis-Hin interactions, implying that the enhancer normally remains associated with the recombining complex throughout a single exchange reaction, but that release of the enhancer leads to multiple exchanges. This work confirms salient mechanistic aspects of the reaction in vivo and provides strong evidence for the propensity of plectonemically branched DNA in prokaryotic cells. We also demonstrated that a single DNA exchange resulting in inversion in vitro is accompanied by a loss of four negative supercoils.
Collapse
Affiliation(s)
- Stacy K Merickel
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, University of California, Los Angeles 90095-1737, USA
| | | |
Collapse
|
163
|
Blondeau JM. Fluoroquinolones: mechanism of action, classification, and development of resistance. Surv Ophthalmol 2004; 49 Suppl 2:S73-8. [PMID: 15028482 DOI: 10.1016/j.survophthal.2004.01.005] [Citation(s) in RCA: 214] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The fluoroquinolones represent an evolving class of broad-spectrum antimicrobial agents used in the prevention and treatment of a variety of ocular infections; however, resistance to currently available agents in the class has been emerging among ocular pathogens. This article reviews the mechanism of action of existing and new fluoroquinolones and discusses the structure-activity relationship of the fluoroquinolones as it relates to the classification of these compounds. This article also highlights the mechanism of resistance among common ocular pathogens and discusses the potential need for newer fluoroquinolones in ophthalmology.
Collapse
Affiliation(s)
- Joseph M Blondeau
- Department of Clinical Microbiology, Royal University Hospital, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
164
|
|
165
|
Pfeiffer ES, Hiasa H. Replacement of ParC alpha4 helix with that of GyrA increases the stability and cytotoxicity of topoisomerase IV-quinolone-DNA ternary complexes. Antimicrob Agents Chemother 2004; 48:608-11. [PMID: 14742217 PMCID: PMC321561 DOI: 10.1128/aac.48.2.608-611.2004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Replacement of the alpha4 helix of ParC with that of GyrA increased the stability of topoisomerase IV-quinolone-DNA ternary complexes. This mutant topoisomerase IV-mediated cell killing was more efficient than topoisomerase IV-mediated cell killing in Escherichia coli. Thus, the alpha4 helix plays critical roles in determining the stability and the cytotoxicity of ternary complexes.
Collapse
Affiliation(s)
- Emily S Pfeiffer
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | | |
Collapse
|
166
|
Shea ME, Hiasa H. The RuvAB Branch Migration Complex Can Displace Topoisomerase IV·Quinolone·DNA Ternary Complexes. J Biol Chem 2003; 278:48485-90. [PMID: 13679378 DOI: 10.1074/jbc.m304217200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Quinolone antimicrobial drugs target both DNA gyrase and topoisomerase IV (Topo IV) and convert these essential enzymes into cellular poisons. Topoisomerase poisoning results in the inhibition of DNA replication and the generation of double-strand breaks. Double-strand breaks are repaired by homologous recombination. Here, we have investigated the interaction between the RuvAB branch migration complex and the Topo IV.quinolone.DNA ternary complex. A strand-displacement assay is employed to assess the helicase activity of the RuvAB complex in vitro. RuvAB-catalyzed strand displacement requires both RuvA and RuvB proteins, and it is stimulated by a 3'-non-hybridized tail. Interestingly, Topo IV.quinolone.DNA ternary complexes do not inhibit the translocation of the RuvAB complex. In fact, Topo IV.quinolone.DNA ternary complexes are reversed and displaced from the DNA upon their collisions with the RuvAB complex. These results suggest that the RuvAB branch migration complex can actively remove quinolone-induced covalent topoisomerase.DNA complexes from DNA and complete the homologous recombination process in vivo.
Collapse
Affiliation(s)
- Molly E Shea
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | | |
Collapse
|
167
|
Hansen H, Heisig P. Topoisomerase IV mutations in quinolone-resistant salmonellae selected in vitro. Microb Drug Resist 2003; 9:25-32. [PMID: 12705680 DOI: 10.1089/107662903764736319] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The development of high-level fluoroquinolone resistance has rarely been observed in salmonellae and, in contrast to other Gram-negative bacteria mutations affecting topoisomerase IV, a known secondary target of quinolones in Escherichia coli has not been described except for one recent report. The present study used quinolone-susceptible field isolates representing epidemiologically relevant serovars and phage types Salmonella Hadar and Salmonella Typhimurium DT104 and DT204c to select fluoroquinolone-resistant mutants in vitro. Three selection steps were necessary to obtain high-level fluoroquinolone-resistant mutants (MICCip > or = 8 microg/ml). All first-step mutants examined had a single gyrA mutation (affecting either Ser83 or Asp87). Additional topoisomerase mutations affecting gyrA (Asp87), gyrB (Ser464), and parC (Gly78) were detected in second- and third-step mutants. Introducing into the respective mutants the corresponding plasmid-coded quinolone-susceptible allele of either gyrA, gyrB, or parC resulted in reduction of quinolone resistance, indicating a role for these mutations in quinolone resistance. In the presence of an inhibitor of RND-type efflux pumps, the susceptibilities to ciprofloxacin and chloramphenicol of second- and third-step mutants increased by two to four serial dilution steps, providing evidence that an efflux-mediated resistance mechanism contributes to the development of high-level fluoroquinolone resistance in salmonellae.
Collapse
Affiliation(s)
- Heike Hansen
- Department of Pharmaceutical Biology and Microbiology, Institute of Pharmacy, University of Hamburg, 20146 Hamburg, Germany
| | | |
Collapse
|
168
|
Chen FJ, Lauderdale TL, Ho M, Lo HJ. The roles of mutations in gyrA, parC, and ompK35 in fluoroquinolone resistance in Klebsiella pneumoniae. Microb Drug Resist 2003; 9:265-71. [PMID: 12959405 DOI: 10.1089/107662903322286472] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In a survey of 541 Klebsiella pneumoniae isolates from 44 hospitals in Taiwan, three distinct populations were identified by the disk diffusion method according to the disribution of zone diameters of ciprofloxacin. Isolates with resistant, reduced-susceptible, and susceptible to fluoroquinolone were defined as CIP zone diameters of < or = 15 mm, 16-26 mm, and > or = 27 mm, respectively. Thus, in addition to 38 (7%) resistant isolates, there were 30 (5.5%) reduced-susceptible isolates and 473 (87.5%) susceptible isolates. A total of 34 isolates consisting of nine resistant, 13 reduced-susceptible, and 12 susceptible isolates were assessed for point mutations in gyrA and parC and the outer membrane profiles. The susceptibility to fluoroquinolone of 13 reduced-susceptible isolates was not altered in the presence of carbonyl cyanide m-chlorophenylhydrazone, an efflux inhibitor, showing that efflux is not a major contributor to reduced susceptibility. In addition to single mutation in gyrA, OmpK35 porin loss can also be the first step for developing fluoroquinolone resistance. No strain possesses a parC mutation without the simultaneous presence of a gyrA mutation, suggesting that mutations in parC play a complementary role for higher-level of fluoroquinolone resistance and fluoroquinolone resistance is a multistep process.
Collapse
Affiliation(s)
- Feng-Jui Chen
- Division of Clinical Research, National Health Research Institutes, Taipei, Taiwan
| | | | | | | |
Collapse
|
169
|
Kang S, Han JS, Park JH, Skarstad K, Hwang DS. SeqA protein stimulates the relaxing and decatenating activities of topoisomerase IV. J Biol Chem 2003; 278:48779-85. [PMID: 14512422 DOI: 10.1074/jbc.m308843200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The SeqA protein, which prevents overinitiation of chromosome replication, has been suggested to also participate in the segregation of chromosomes in Escherichia coli. Using a bacterial two-hybrid system, we found that SeqA interacts with the ParC subunit of topoisomerase IV (topo IV), a type II topoisomerase involved in decatenation of daughter chromosomes and relief of topological constraints generated by replication and transcription. We demonstrated that purified SeqA protein stimulates the activities of topo IV, both in relaxing supercoiled plasmid DNA and converting catenanes to monomers. The same moderate levels of SeqA protein did not affect the activities of DNA gyrase or topoisomerase I. At higher levels of SeqA, topo IV favored the formation of catenanes, caused by intermolecular strand exchange among plasmid DNA aggregates formed by SeqA. Excess SeqA inhibited the activity of all topoisomerases. We also found that stimulation of topo IV was dependent upon the affinity of SeqA for DNA. Our results suggest that this stimulation is mediated by the specific interaction of topo IV with SeqA. Some of the known phenotypes of mutant cells lacking SeqA, such as deficient chromosome segregation and increased negative superhelicity, support that the SeqA protein is required for topo IV-mediated relaxation and decatenation of chromosomes and plasmids, during and after their replication.
Collapse
Affiliation(s)
- Sukhyun Kang
- Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | |
Collapse
|
170
|
Auner H, Buckle M, Deufel A, Kutateladze T, Lazarus L, Mavathur R, Muskhelishvili G, Pemberton I, Schneider R, Travers A. Mechanism of transcriptional activation by FIS: role of core promoter structure and DNA topology. J Mol Biol 2003; 331:331-44. [PMID: 12888342 DOI: 10.1016/s0022-2836(03)00727-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The Escherichia coli DNA architectural protein FIS activates transcription from stable RNA promoters on entry into exponential growth and also reduces the level of negative supercoiling. Here we show that such a reduction decreases the activity of the tyrT promoter but that activation by FIS rescues tyrT transcription at non-optimal superhelical densities. Additionally we show that three different "up" mutations in the tyrT core promoter either abolish or reduce the dependence of tyrT transcription on both high negative superhelicity and FIS in vivo and infer that the specific sequence organisation of the core promoter couples the control of transcription initiation by negative superhelicity and FIS. In vitro all the mutations potentiate FIS-independent untwisting of the -10 region while at the wild-type promoter FIS facilitates this step. We propose that this untwisting is a crucial limiting step in the initiation of tyrT RNA synthesis. The tyrT core promoter structure is thus optimised to combine high transcriptional activity with acute sensitivity to at least three major independent regulatory inputs: negative superhelicity, FIS and ppGpp.
Collapse
Affiliation(s)
- Helge Auner
- Institut für Genetik und Mikrobiologie, LMU, München, Maria-Ward-Str 1a, 80638, München, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
171
|
Allen KJ, Poppe C. Phenotypic and genotypic characterization of food animal isolates of Salmonella with reduced sensitivity to ciprofloxacin. Microb Drug Resist 2003; 8:375-83. [PMID: 12523636 DOI: 10.1089/10766290260469651] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Reports of nontyphoidal Salmonella enterica subsp. enterica showing reduced sensitivity to ciprofloxacin (RSC) have increased rapidly during the past decade. Infection in humans with Salmonella possessing RSC may compromise the effectiveness of ciprofloxacin therapy. Nineteen among 4,357 Salmonella strains isolated from food animals in Canada from 1998 to 1999 showed RSC; 17 were from turkeys and 2 from chickens. All were resistant to nalidixic acid and sulfisoxazole and possessed RSC at a level of 0.125-0.5 microg/ml. PCR-RFLP of the gyrA quinolone resistance-determining region (QRDR) with Hinfl revealed that S. Bredeney and S. Heidelberg isolates possessed a mutation in this region. Single-strand conformational polymorphism (SSCP) analysis showed that S. Schwarzengrund and S. Senftenberg isolates also possessed a point mutation in the QRDR. DNA sequencing confirmed the findings and showed that all isolates possessed a base substitution in the gyrA QRDR. Sequencing revealed no mutations in the gyrB and silent wobble mutations in the parC QRDR. Reserpine, a known efflux pump inhibitor, did not effect the MICs for ciprofloxacin, nalidixic acid, and tetracycline. The mar operon could be induced in all isolates at 37 degrees C and in 18 of 19 at 30 degrees C; induction resulted in a two- to four-fold increase in the MIC of ciprofloxacin. In 14 of the 19 isolates, the mutation rate was two-fold or higher than in a ciprofloxacin sensitive S. Bredeney and S. Typhimurium LT2 control strain. Examination of clonal relatedness using pulsed-field gel electrophoresis (PFGE) and plasmid profiles indicated that some degree of clonal dispersion may have occurred, but the majority of isolates may have arisen from de novo mutations.
Collapse
Affiliation(s)
- Kevin J Allen
- Health Canada, Population and Public Health, Laboratory for Foodborne Zoonoses, OlE Reference Laboratory for Foodborne Zoonoses, Guelph, ON NIG 3W4, Canada
| | | |
Collapse
|
172
|
Barnes MH, LaMarr WA, Foster KA. DNA gyrase and DNA topoisomerase of Bacillus subtilis: expression and characterization of recombinant enzymes encoded by the gyrA, gyrB and parC, parE genes. Protein Expr Purif 2003; 29:259-64. [PMID: 12767818 DOI: 10.1016/s1046-5928(03)00068-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Bacillus subtilis Bs gyrA and gyrB genes specifying the DNA gyrase subunits, and parC and parE genes specifying the DNA topoisomerase IV subunits, have been separately cloned and expressed in Escherichia coli as hexahistidine (his6)-tagged recombinant proteins. Purification of the gyrA and gyrB subunits together resulted in predominantly two bands at molecular weights of 94 and 73kDa; purification of the parC and parE subunits together resulted in predominantly two bands at molecular weights of 93 and 75kDa, as predicted by their respective sequences. The ability of the subunits to complement their partner was tested in an ATP-dependent decatenation/supercoiling assay system. The results demonstrated that the DNA gyrase and the topoisomerase IV subunits produce the expected supercoiled DNA and relaxed DNA products, respectively. Additionally, inhibition of these two enzymes by fluoroquinolones has been shown to be comparable to those of the DNA gyrases and topoisomerases of other bacterial strains. In sum, the biological and enzymatic properties of these products are consistent with their authenticity as DNA gyrase and DNA topoisomerase IV enzymes from B. subtilis.
Collapse
|
173
|
Hiasa H, Shea ME, Richardson CM, Gwynn MN. Staphylococcus aureus gyrase-quinolone-DNA ternary complexes fail to arrest replication fork progression in vitro. Effects of salt on the DNA binding mode and the catalytic activity of S. aureus gyrase. J Biol Chem 2003; 278:8861-8. [PMID: 12511566 DOI: 10.1074/jbc.m209207200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Type II topoisomerases bind to DNA at the catalytic domain across the DNA gate. DNA gyrases also bind to DNA at the non-homologous C-terminal domain of the GyrA subunit, which causes the wrapping of DNA about itself. This unique mode of DNA binding allows gyrases to introduce the negative supercoils into DNA molecules. We have investigated the biochemical characteristics of Staphylococcus aureus (S. aureus) gyrase. S. aureus gyrase is known to require high concentrations of potassium glutamate (K-Glu) for its supercoiling activity. However, high concentrations of K-Glu are not required for its relaxation and decatenation activities. This is due to the requirement of high concentrations of K-Glu for S. aureus gyrase-mediated wrapping of DNA. These results suggest that S. aureus gyrase can bind to DNA at the catalytic domain independent of K-Glu concentration, but high concentrations of K-Glu are required for the binding of the C-terminal domain of GyrA to DNA and the wrapping of DNA. Thus, salt modulates the DNA binding mode and the catalytic activity of S. aureus gyrase. Quinolone drugs can stimulate the formation of covalent S. aureus gyrase-DNA complexes, but high concentrations of K-Glu inhibit the formation of S. aureus gyrase-quinolone-DNA ternary complexes. In the absence of K-Glu, ternary complexes formed with S. aureus gyrase cannot arrest replication fork progression in vitro, demonstrating that the formation of a wrapped ternary complex is required for replication fork arrest by a S. aureus gyrase-quinolone-DNA ternary complex.
Collapse
Affiliation(s)
- Hiroshi Hiasa
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis 55455, USA.
| | | | | | | |
Collapse
|
174
|
Hardy CD, Cozzarelli NR. Alteration of Escherichia coli topoisomerase IV to novobiocin resistance. Antimicrob Agents Chemother 2003; 47:941-7. [PMID: 12604525 PMCID: PMC149342 DOI: 10.1128/aac.47.3.941-947.2003] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
DNA gyrase and topoisomerase IV (topo IV) are the two essential type II topoisomerases of Escherichia coli. Gyrase is responsible for maintaining negative supercoiling of the bacterial chromosome, whereas topo IV's primary role is in disentangling daughter chromosomes following DNA replication. Coumarins, such as novobiocin, are wide-spectrum antimicrobial agents that primarily interfere with DNA gyrase. In this work we designed an alteration in the ParE subunit of topo IV at a site homologous to that which confers coumarin resistance in gyrase. This parE mutation renders the encoded topo IV approximately 40-fold resistant to inhibition by novobiocin in vitro and imparts a similar resistance to inhibition of topo IV-mediated relaxation of supercoiled DNA in vivo. We conclude that topo IV is a secondary target of novobiocin and that it is very likely to be inhibited by the same mechanism as DNA gyrase.
Collapse
Affiliation(s)
- Christine D Hardy
- Department of Molecular and Cell Biology, University of California, Berkeley 94720-3204, USA
| | | |
Collapse
|
175
|
Abstract
We isolated a mutant allele of dnaX, encoding the tau and gamma subunits of the DNA polymerase III holoenzyme, that causes extreme cell filamentation but does not affect either cell growth or DNA replication. This phenotype results from a defect in daughter chromosome decatenation during rapid growth. In these cells, ParC, one subunit of topoisomerase IV, no longer associated with the replication factory, as occurs in wild-type cells, and was instead distributed uniformly on the nucleoid; the distribution of ParE, the other subunit of topoisomerase IV, was unaffected. In addition, the majority of topoisomerase IV activity in synchronized cell populations was restricted to late in the cell cycle, when replication was essentially complete. These observations suggest that topoisomerase IV activity in vivo might be dependent on release of ParC from the replication factory.
Collapse
Affiliation(s)
- Olivier Espeli
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | | | | |
Collapse
|
176
|
Abstract
The MuA transposase mediates transposition of bacteriophage Mu through two distinct mechanisms. The first integration event following infection occurs through a non-replicative mechanism. In contrast, during lytic growth, multiple rounds of replicative transposition amplify the phage genome. We have examined the influence of gyrase and DNA supercoiling on these two transposition pathways using both a gyrase-inhibiting drug and several distinct gyrase mutants. These experiments reveal that gyrase activity is not essential for integration; both lysogens and recombination intermediates are detected when gyrase is inhibited during Mu infection. In contrast, gyrase inhibition causes severe defects in replicative transposition. In two of the mutants, as well as in drug-treated cells, replicative transposition is almost completely blocked. Experiments probing for formation of MuA-DNA complexes in vivo reveal that this block occurs very early, during assembly of the transposase complex required for the catalytic steps of recombination. The findings establish that DNA structure-based signals are used differently for integrative and replicative transposition. We propose that transposase assembly, the committed step for recombination, has evolved to depend on different DNA /architectural signals to control the reaction outcome during these two distinct phases of the phage life cycle.
Collapse
Affiliation(s)
- Tanya D Sokolsky
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
177
|
Helling RB, Janes BK, Kimball H, Tran T, Bundesmann M, Check P, Phelan D, Miller C. Toxic waste disposal in Escherichia coli. J Bacteriol 2002; 184:3699-703. [PMID: 12057966 PMCID: PMC135154 DOI: 10.1128/jb.184.13.3699-3703.2002] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
About 10% of the nalidixic acid-resistant (Nal(r)) mutants in a transposition-induced library exhibited a growth factor requirement as the result of cysH, icdA, metE, or purB mutation. Resistance in all of these mutants required a functional AcrAB-TolC efflux pump, but the EmrAB-TolC pump played no obvious role. Transcription of acrAB was increased in each type of Nal(r) mutant. In the icdA and purB mutants, each of the known signaling pathways appeared to be used in activating the AcrAB-TolC pump. The metabolites that accumulate upstream of the blocks caused by the mutations are hypothesized to increase the levels of the AcrAB-TolC pump, thereby removing nalidixic acid from the organism.
Collapse
Affiliation(s)
- Robert B Helling
- Department of Biology, University of Michigan, Ann Arbor, Michigan 48109-1048, USA.
| | | | | | | | | | | | | | | |
Collapse
|
178
|
Manjunatha UH, Dalal M, Chatterji M, Radha DR, Visweswariah SS, Nagaraja V. Functional characterisation of mycobacterial DNA gyrase: an efficient decatenase. Nucleic Acids Res 2002; 30:2144-53. [PMID: 12000834 PMCID: PMC115291 DOI: 10.1093/nar/30.10.2144] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A rapid single step immunoaffinity purification procedure is described for Mycobacterium smegmatis DNA gyrase. The mycobacterial enzyme is a 340 kDa heterotetrameric protein comprising two subunits each of GyrA and GyrB, exhibiting subtle differences and similarities to the well-characterised Escherichia coli gyrase. In contrast to E.coli gyrase, the M.smegmatis enzyme exhibits strong decatenase activity at physiological Mg2+ concentrations. Further, the enzymes exhibited marked differences in ATPase activity, DNA binding characteristics and susceptibility to fluoroquinolones. The holoenzyme showed very low intrinsic ATPase activity and was stimulated 20-fold in the presence of DNA. The DNA-stimulated ATPase kinetics revealed apparent K0.5 and kcat of 0.68 mM and 0.39 s(-1), respectively. The dissociation constant for DNA was found to be 9.2 nM, which is 20 times weaker than that of E.coli DNA gyrase. The differences between the enzymes were further substantiated as they exhibited varied sensitivity to moxifloxacin and ciprofloxacin. In spite of these differences, mycobacterial DNA gyrase is a functionally and mechanistically conserved enzyme and the variations in activity seem to reflect functional optimisation for its physiological role during mycobacterial genome replication.
Collapse
Affiliation(s)
- U H Manjunatha
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560 012, India
| | | | | | | | | | | |
Collapse
|
179
|
Rochman M, Aviv M, Glaser G, Muskhelishvili G. Promoter protection by a transcription factor acting as a local topological homeostat. EMBO Rep 2002; 3:355-60. [PMID: 11897661 PMCID: PMC1084055 DOI: 10.1093/embo-reports/kvf067] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Binding of the Escherichia coli global transcription factor FIS to the upstream activating sequence (UAS) of stable RNA promoters activates transcription on the outgrowth of cells from stationary phase. Paradoxically, while these promoters require negative supercoiling of DNA for optimal activity, FIS counteracts the increase of negative superhelical density by DNA gyrase. We demonstrate that binding of FIS at the UAS protects the rrnA P1 promoter from inactivation at suboptimal superhelical densities. This effect is correlated with FIS-dependent constraint of writhe and facilitated untwisting of promoter DNA. We infer that FIS maintains stable RNA transcription by stabilizing local writhe in the UAS. These results suggest a novel mechanism of transcriptional regulation by a transcription factor acting as a local topological homeostat.
Collapse
Affiliation(s)
- Mark Rochman
- Max Planck Institute for terrestrial Microbiology, Karl-von-Frisch-Strasse, D-35043 Marburg, Germany
| | | | | | | |
Collapse
|
180
|
Goñi-Urriza M, Arpin C, Capdepuy M, Dubois V, Caumette P, Quentin C. Type II topoisomerase quinolone resistance-determining regions of Aeromonas caviae, A. hydrophila, and A. sobria complexes and mutations associated with quinolone resistance. Antimicrob Agents Chemother 2002; 46:350-9. [PMID: 11796341 PMCID: PMC127024 DOI: 10.1128/aac.46.2.350-359.2002] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Most Aeromonas strains isolated from two European rivers were previously found to be resistant to nalidixic acid. In order to elucidate the mechanism of this resistance, 20 strains of Aeromonas caviae (n = 10), A. hydrophila (n = 5), and A. sobria (n = 5) complexes, including 3 reference strains and 17 environmental isolates, were investigated. Fragments of the gyrA, gyrB, parC, and parE genes encompassing the quinolone resistance-determining regions (QRDRs) were amplified by PCR and sequenced. Results obtained for the six sensitive strains showed that the GyrA, GyrB, ParC, and ParE QRDR fragments of Aeromonas spp. were highly conserved (> or =96.1% identity), despite some genetic polymorphism; they were most closely related to those of Vibrio spp., Pseudomonas spp., and members of the family Enterobacteriaceae (72.4 to 97.1% homology). All 14 environmental resistant strains carried a point mutation in the GyrA QRDR at codon 83, leading to the substitution Ser-83-->Ile (10 strains) or Ser-83-->Arg. In addition, seven strains harbored a mutation in the ParC QRDR either at position 80 (five strains), generating a Ser-80-->Ile (three strains) or Ser-80-->Arg change, or at position 84, yielding a Glu-84-->Lys modification. No amino acid alterations were discovered in the GyrB and ParE QRDRs. Double gyrA-parC missense mutations were associated with higher levels of quinolone resistance compared with the levels associated with single gyrA mutations. The most resistant strains probably had an additional mechanism(s) of resistance, such as decreased accumulation of the drugs. Our data suggest that, in mesophilic Aeromonas spp., as in other gram-negative bacteria, gyrase and topoisomerase IV are the primary and secondary targets for quinolones, respectively.
Collapse
Affiliation(s)
- Marisol Goñi-Urriza
- Laboratoire de Microbiologie, Université de Bordeaux 2, Bordeaux. Laboratoire d'Ecologie Moléculaire, Université de Pau, Pau, France
| | | | | | | | | | | |
Collapse
|
181
|
Rahmati S, Yang S, Davidson AL, Zechiedrich EL. Control of the AcrAB multidrug efflux pump by quorum-sensing regulator SdiA. Mol Microbiol 2002; 43:677-85. [PMID: 11929524 DOI: 10.1046/j.1365-2958.2002.02773.x] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SdiA is an Escherichia coli protein that regulates cell division in a cell density-dependent, or quorum-sensing, manner. We report that SdiA also controls multidrug resistance by positively regulating the multidrug resistance pump AcrAB. Overproduction of SdiA confers multidrug resistance and increased levels of AcrAB. Conversely, sdiA null mutants are hypersensitive to drugs and have decreased levels of AcrB protein. Our findings provide a link between quorum sensing and multidrug efflux. Combined with previously published reports, our data support a model in which a role of drug efflux pumps is to mediate cell-cell communication in response to cell density. Xenobiotics expelled by pumps may resemble the communication molecules that they normally efflux.
Collapse
Affiliation(s)
- Sonia Rahmati
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030-3411, USA
| | | | | | | |
Collapse
|
182
|
Pan XS, Yague G, Fisher LM. Quinolone resistance mutations in Streptococcus pneumoniae GyrA and ParC proteins: mechanistic insights into quinolone action from enzymatic analysis, intracellular levels, and phenotypes of wild-type and mutant proteins. Antimicrob Agents Chemother 2001; 45:3140-7. [PMID: 11600369 PMCID: PMC90795 DOI: 10.1128/aac.45.11.3140-3147.2001] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Mutations in DNA gyrase and/or topoisomerase IV genes are frequently encountered in quinolone-resistant mutants of Streptococcus pneumoniae. To investigate the mechanism of their effects at the molecular and cellular levels, we have used an Escherichia coli system to overexpress S. pneumoniae gyrase gyrA and topoisomerase IV parC genes encoding respective Ser81Phe and Ser79Phe mutations, two changes widely associated with quinolone resistance. Nickel chelate chromatography yielded highly purified mutant His-tagged proteins that, in the presence of the corresponding GyrB and ParE subunits, reconstituted gyrase and topoisomerase IV complexes with wild-type specific activities. In enzyme inhibition or DNA cleavage assays, these mutant enzyme complexes were at least 8- to 16-fold less responsive to both sparfloxacin and ciprofloxacin. The ciprofloxacin-resistant (Cip(r)) phenotype was silent in a sparfloxacin-resistant (Spx(r)) S. pneumoniae gyrA (Ser81Phe) strain expressing a demonstrably wild-type topoisomerase IV, whereas Spx(r) was silent in a Cip(r) parC (Ser79Phe) strain. These epistatic effects provide strong support for a model in which quinolones kill S. pneumoniae by acting not as enzyme inhibitors but as cellular poisons, with sparfloxacin killing preferentially through gyrase and ciprofloxacin through topoisomerase IV. By immunoblotting using subunit-specific antisera, intracellular GyrA/GyrB levels were a modest threefold higher than those of ParC/ParE, most likely insufficient to allow selective drug action by counterbalancing the 20- to 40-fold preference for cleavable-complex formation through topoisomerase IV observed in vitro. To reconcile these results, we suggest that drug-dependent differences in the efficiency by which ternary complexes are formed, processed, or repaired in S. pneumoniae may be key factors determining the killing pathway.
Collapse
Affiliation(s)
- X S Pan
- Molecular Genetics Group, Department of Biochemistry and Immunology, St. George's Hospital Medical School, University of London, London SW17 0RE, United Kingdom
| | | | | |
Collapse
|
183
|
Abstract
A topoisomerase was identified as the bacterial target site for quinolone action in the late 1970s. Since that time, further study identified two bacterial topoisomerases, DNA gyrase and topoisomerase IV, as sites of antibacterial activity DNA gyrase appears to be the primary quinolone target for gram-negative bacteria. Topoisomerase IV appears to be the preferential target in gram-positive organisms, but this varies with the drug. Three mechanisms of resistance against quinolones are mutations of topoisomerases, decreased membrane permeability, and active drug efflux. Although these mechanisms occur singly, several resistance factors are often required to produce clinically applicable increases in minimum inhibitory concentrations. Appropriate drug selection and dosage and prudent human and veterinary interventions are important factors in controlling the emergence of resistance.
Collapse
Affiliation(s)
- D T Bearden
- College of Pharmacy, Oregon State University, Portland, USA
| | | |
Collapse
|
184
|
Sissi C, Perdonà E, Domenici E, Feriani A, Howells AJ, Maxwell A, Palumbo M. Ciprofloxacin affects conformational equilibria of DNA gyrase A in the presence of magnesium ions. J Mol Biol 2001; 311:195-203. [PMID: 11469868 DOI: 10.1006/jmbi.2001.4838] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The conformational equilibria of the A subunit of DNA gyrase (GyrA), of its 59 kDa N-terminal fragment (GyrA59) and of the quinolone-resistant Ser-Trp83 mutant (GyrATrp83), were investigated in the presence of mono- and divalent metal ions and ciprofloxacin, a clinically useful antibacterial quinolone. The stability of the proteins was estimated from temperature denaturation, monitoring unfolding with circular dichroism spectroscopy. Two transitions were observed in GyrA and GyrATrp83, which likely reflect unfolding of the N and C-terminal protein domains. Accordingly, one thermal transition is observed for GyrA59. The melting profile of the GyrA subunit is dramatically affected by monovalent and divalent metal ions, both transitions being shifted to lower temperature upon increasing salt concentration. This effect is much more pronounced with divalent ions (Mg(2+)) and cannot be accounted for by changes in ionic strength only. The presence of ciprofloxacin shifts the melting transitions of the wild-type subunit to higher temperatures when physiological concentrations of Mg(2+) are present. In contrast, both the mutant protein and the 59 kDa fragment do not show evidence for quinolone-driven changes. These data suggest that ciprofloxacin binds to the wild-type subunit in an interaction that involves Ser83 of GyrA and that both C and N-terminal domains may be required for effective drug-protein interactions. The bell-shaped dependence of the binding process upon Mg(2+) concentration, with a maximum centred at 3-4 mM [Mg(2+)], is consistent with a metal-ion mediated GyrA-quinolone-interaction. Affinity chromatography data fully support these findings and additionally confirm the requirement for a free carboxylate to elicit binding of the quinolone to GyrA. We infer that the Mg(2+)-GyrA interaction at physiological metal ion concentration could bear biological relevance, conferring more conformational flexibility to the active enzyme. The results obtained in the presence of ciprofloxacin additionally suggest that the Mg(2+)-mediated quinolone binding to the enzyme might be involved in the mechanism of action of this family of drugs.
Collapse
Affiliation(s)
- C Sissi
- Department of Pharmaceutical Sciences, University of Padova, via Marzolo 5, Padova, 35100, Italy
| | | | | | | | | | | | | |
Collapse
|
185
|
Ruiz J, Sierra JM, De Anta MT, Vila J. Characterization of sparfloxacin-resistant mutants of Staphylococcus aureus obtained in vitro. Int J Antimicrob Agents 2001; 18:107-12. [PMID: 11516932 DOI: 10.1016/s0924-8579(01)00366-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A sparfloxacin-susceptible clinical isolate of Staphylococcus aureus was grown in increased concentrations of sparfoxacin. The presence of mutations in gyrA, gyrB, grlA and grlB genes was analyzed. The primary point mutation was located in the gyrA gene (Glu-88 to Lys). Two further mutation steps appeared in the amino acid change Ser-80 to Tyr in GrlA. No mutations occurred in the gyrB or grlB genes. Efflux pumps involved in the increase of resistance were also found to affect norfloxacin and ciprofloxacin. This effect may be related to NorA. An overexpression of NorA, may be associated with the increase of the MIC of norfloxacin from 32 mg/l to >200 mg/l in the final mutant. The MICs levels of sparfloxacin were affected by unknown mechanism.
Collapse
Affiliation(s)
- J Ruiz
- Laboratori de Microbiologia, Instituto de Infecciones e Inmunologia, IDIBAPS, Hospital Clinic, School of Medicine, University of Barcelona, Villarroel 170, 08036, Barcelona, Spain
| | | | | | | |
Collapse
|
186
|
Postow L, Crisona NJ, Peter BJ, Hardy CD, Cozzarelli NR. Topological challenges to DNA replication: conformations at the fork. Proc Natl Acad Sci U S A 2001; 98:8219-26. [PMID: 11459956 PMCID: PMC37424 DOI: 10.1073/pnas.111006998] [Citation(s) in RCA: 194] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The unwinding of the parental DNA duplex during replication causes a positive linking number difference, or superhelical strain, to build up around the elongating replication fork. The branching at the fork and this strain bring about different conformations from that of (-) supercoiled DNA that is not being replicated. The replicating DNA can form (+) precatenanes, in which the daughter DNAs are intertwined, and (+) supercoils. Topoisomerases have the essential role of relieving the superhelical strain by removing these structures. Stalled replication forks of molecules with a (+) superhelical strain have the additional option of regressing, forming a four-way junction at the replication fork. This four-way junction can be acted on by recombination enzymes to restart replication. Replication and chromosome folding are made easier by topological domain barriers, which sequester the substrates for topoisomerases into defined and concentrated regions. Domain barriers also allow replicated DNA to be (-) supercoiled. We discuss the importance of replicating DNA conformations and the roles of topoisomerases, focusing on recent work from our laboratory.
Collapse
Affiliation(s)
- L Postow
- University of California, Berkeley, CA 94720, USA
| | | | | | | | | |
Collapse
|
187
|
Abstract
The changes in quinolone research have been fast and exciting over the past 5-7 years with the discovery and development of several new 8-methoxy quinolones. An additional factor is the design of the so-called 4th-generation quinolones that lack the C-6 fluorine, which might impact the development of quinolone resistance. The science behind the quinolone susceptibility and resistance patterns is fascinating, but has not yet been clearly delineated in discussions of the advantages of quinolone usage in the clinic.
Collapse
Affiliation(s)
- T J. Dougherty
- Department of Microbiology, Bristol-Myers Squibb Pharmaceutical Research Institute, 5 Research Parkway, 06492, Wallingford, CT, USA
| | | | | |
Collapse
|
188
|
Wang H, Dzink-Fox JL, Chen M, Levy SB. Genetic characterization of highly fluoroquinolone-resistant clinical Escherichia coli strains from China: role of acrR mutations. Antimicrob Agents Chemother 2001; 45:1515-21. [PMID: 11302820 PMCID: PMC90498 DOI: 10.1128/aac.45.5.1515-1521.2001] [Citation(s) in RCA: 216] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genetic basis for fluoroquinolone resistance was examined in 30 high-level fluoroquinolone-resistant Escherichia coli clinical isolates from Beijing, China. Each strain also demonstrated resistance to a variety of other antibiotics. PCR sequence analysis of the quinolone resistance-determining region of the topoisomerase genes (gyrA/B, parC) revealed three to five mutations known to be associated with fluoroquinolone resistance. Western blot analysis failed to demonstrate overexpression of MarA, and Northern blot analysis did not detect overexpression of soxS RNA in any of the clinical strains. The AcrA protein of the AcrAB multidrug efflux pump was overexpressed in 19 of 30 strains of E. coli tested, and all 19 strains were tolerant to organic solvents. PCR amplification of the complete acrR (regulator/repressor) gene of eight isolates revealed amino acid changes in four isolates, a 9-bp deletion in another, and a 22-bp duplication in a sixth strain. Complementation with a plasmid-borne wild-type acrR gene reduced the level of AcrA in the mutants and partially restored antibiotic susceptibility 1.5- to 6-fold. This study shows that mutations in acrR are an additional genetic basis for fluoroquinolone resistance.
Collapse
Affiliation(s)
- H Wang
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, People's Republic of China
| | | | | | | |
Collapse
|
189
|
Hooper DC. Mechanisms of action of antimicrobials: focus on fluoroquinolones. Clin Infect Dis 2001; 32 Suppl 1:S9-S15. [PMID: 11249823 DOI: 10.1086/319370] [Citation(s) in RCA: 306] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Five bacterial targets have been exploited in the development of antimicrobial drugs: cell wall synthesis, protein synthesis, ribonucleic acid synthesis, deoxyribonucleic acid (DNA) synthesis, and intermediary metabolism. Because resistance to drugs that interact with these targets is widespread, new antimicrobials and an understanding of their mechanisms of action are vital. The fluoroquinolones are the only direct inhibitors of DNA synthesis; by binding to the enzyme-DNA complex, they stabilize DNA strand breaks created by DNA gyrase and topoisomerase IV. Ternary complexes of drug, enzyme, and DNA block progress of the replication fork. Cytotoxicity of fluoroquinolones is likely a 2-step process involving (1) conversion of the topoisomerase-quinolone-DNA complex to an irreversible form and (2) generation of a double-strand break by denaturation of the topoisomerase. The molecular factors necessary for the transition from step 1 to step 2 remain unclear, but downstream pathways for cell death may overlap with those used by other bactericidal antimicrobials. Studies of fluoroquinolone-resistant mutants and purified topoisomerases indicate that many quinolones have differing activities against the two targets. Drugs with similar activities against both targets may prove less likely to select de novo resistance.
Collapse
Affiliation(s)
- D C Hooper
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114-2696, USA.
| |
Collapse
|
190
|
Abstract
Knotted DNA has potentially devastating effects on cells. By using two site-specific recombination systems, we tied all biologically significant simple DNA knots in Escherichia coli. When topoisomerase IV activity was blocked, either with a drug or in a temperature-sensitive mutant, the knotted recombination intermediates accumulated whether or not gyrase was active. In contrast to its decatenation activity, which is strongly affected by DNA supercoiling, topoisomerase IV unknotted DNA independently of supercoiling. This differential supercoiling effect held true regardless of the relative sizes of the catenanes and knots. Finally, topoisomerase IV unknotted DNA equally well when DNA replication was blocked with hydroxyurea. We conclude that topoisomerase IV, not gyrase, unknots DNA and that it is able to access DNA in the cell freely. With these results, it is now possible to assign completely the topological roles of the topoisomerases in E. coli. It is clear that the topoisomerases in the cell have distinct and nonoverlapping roles. Consequently, our results suggest limitations in assigning a physiological function to a protein based upon sequence similarity or even upon in vitro biochemical activity.
Collapse
Affiliation(s)
- R W Deibler
- Program in Cell and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030-3411, USA
| | | | | |
Collapse
|
191
|
Mazzariol A, Tokue Y, Kanegawa TM, Cornaglia G, Nikaido H. High-level fluoroquinolone-resistant clinical isolates of Escherichia coli overproduce multidrug efflux protein AcrA. Antimicrob Agents Chemother 2000; 44:3441-3. [PMID: 11083655 PMCID: PMC90220 DOI: 10.1128/aac.44.12.3441-3443.2000] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Immunoblotting with antibody against AcrA, an obligatory component of the AcrAB multidrug efflux system, showed that this protein was overexpressed by >/=170% in 9 of 10 clinical isolates of Esherichia coli with high-level ciprofloxacin resistance (MICs, >/=32 microg/ml) but not in any of the 15 isolates for which the MIC was </=1 microg/ml.
Collapse
Affiliation(s)
- A Mazzariol
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3206, USA
| | | | | | | | | |
Collapse
|
192
|
Crisona NJ, Strick TR, Bensimon D, Croquette V, Cozzarelli NR. Preferential relaxation of positively supercoiled DNA by E. coli topoisomerase IV in single-molecule and ensemble measurements. Genes Dev 2000; 14:2881-92. [PMID: 11090135 PMCID: PMC317058 DOI: 10.1101/gad.838900] [Citation(s) in RCA: 165] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We show that positively supercoiled [(+) SC] DNA is the preferred substrate for Escherichia coli topoisomerase IV (topo IV). We measured topo IV relaxation of (-) and (+) supercoils in real time on single, tethered DNA molecules to complement ensemble experiments. We find that the preference for (+) SC DNA is complete at low enzyme concentration. Otherwise, topo IV relaxed (+) supercoils at a 20-fold faster rate than (-) supercoils, due primarily to about a 10-fold increase in processivity with (+) SC DNA. The preferential cleavage of (+) SC DNA in a competition experiment showed that substrate discrimination can take place prior to strand passage in the presence or absence of ATP. We propose that topo IV discriminates between (-) and (+) supercoiled DNA by recognition of the geometry of (+) SC DNA. Our results explain how topo IV can rapidly remove (+) supercoils to support DNA replication without relaxing the essential (-) supercoils of the chromosome. They also show that the rate of supercoil relaxation by topo IV is several orders of magnitude faster than hitherto appreciated, so that a single enzyme may suffice at each replication fork.
Collapse
Affiliation(s)
- N J Crisona
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | | | | | | | | |
Collapse
|
193
|
Schneider R, Travers A, Muskhelishvili G. The expression of the Escherichia coli fis gene is strongly dependent on the superhelical density of DNA. Mol Microbiol 2000; 38:167-75. [PMID: 11029698 DOI: 10.1046/j.1365-2958.2000.02129.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Escherichia coli DNA architectural protein FIS is a pleiotropic regulator, which couples the cellular physiology with transitions in the superhelical density of bacterial DNA. Recently, we have shown that this effect is in part mediated via DNA gyrase, the major cellular topoisomerase responsible for the elevation of negative supercoiling. Here, we demonstrate that, in turn, the expression of the fis gene strongly responds to alterations in the topology of DNA in vivo, being maximal at high levels of negative supercoiling. Any deviations from these optimal levels decrease fis promoter activity. This strict dependence of fis expression on the superhelical density suggests that fis may be involved in 'fine-tuning' the homeostatic control mechanism of DNA supercoiling in E. coli.
Collapse
Affiliation(s)
- R Schneider
- Institut für Genetik und Mikrobiologie, LMU München, Maria-Ward-Str. 1a, 80638 München, Germany
| | | | | |
Collapse
|
194
|
Khodursky AB, Peter BJ, Schmid MB, DeRisi J, Botstein D, Brown PO, Cozzarelli NR. Analysis of topoisomerase function in bacterial replication fork movement: use of DNA microarrays. Proc Natl Acad Sci U S A 2000; 97:9419-24. [PMID: 10944214 PMCID: PMC16879 DOI: 10.1073/pnas.97.17.9419] [Citation(s) in RCA: 158] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We used DNA microarrays of the Escherichia coli genome to trace the progression of chromosomal replication forks in synchronized cells. We found that both DNA gyrase and topoisomerase IV (topo IV) promote replication fork progression. When both enzymes were inhibited, the replication fork stopped rapidly. The elongation rate with topo IV alone was 1/3 of normal. Genetic data confirmed and extended these results. Inactivation of gyrase alone caused a slow stop of replication. Topo IV activity was sufficient to prevent accumulation of (+) supercoils in plasmid DNA in vivo, suggesting that topo IV can promote replication by removing (+) supercoils in front of the chromosomal fork.
Collapse
Affiliation(s)
- A B Khodursky
- Department of Molecular and Cell Biology, University of California, Berkeley 94720, USA
| | | | | | | | | | | | | |
Collapse
|
195
|
Fournier B, Zhao X, Lu T, Drlica K, Hooper DC. Selective targeting of topoisomerase IV and DNA gyrase in Staphylococcus aureus: different patterns of quinolone-induced inhibition of DNA synthesis. Antimicrob Agents Chemother 2000; 44:2160-5. [PMID: 10898691 PMCID: PMC90029 DOI: 10.1128/aac.44.8.2160-2165.2000] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/1999] [Accepted: 05/15/2000] [Indexed: 11/20/2022] Open
Abstract
The effect of quinolones on the inhibition of DNA synthesis in Staphylococcus aureus was examined by using single resistance mutations in parC or gyrA to distinguish action against gyrase or topoisomerase IV, respectively. Norfloxacin preferentially attacked topoisomerase IV and blocked DNA synthesis slowly, while nalidixic acid targeted gyrase and inhibited replication rapidly. Ciprofloxacin exhibited an intermediate response, consistent with both enzymes being targeted. The absence of RecA had little influence on target choice by this assay, indicating that differences in rebound (repair) DNA synthesis were not responsible for the results. At saturating drug concentrations, norfloxacin and a gyrA mutant were used to show that topoisomerase IV-norfloxacin-cleaved DNA complexes are distributed on the S. aureus chromosome at intervals of about 30 kbp. If cleaved complexes block DNA replication, as indicated by previous work, such close spacing of topoisomerase-quinolone-DNA complexes should block replication rapidly (replication forks are likely to encounter a cleaved complex within a minute). Thus, the slow inhibition of DNA synthesis at growth-inhibitory concentrations suggests that a subset of more distantly distributed complexes is physiologically relevant for drug action and is unlikely to be located immediately in front of the DNA replication fork.
Collapse
Affiliation(s)
- B Fournier
- Infectious Disease Division and Medical Services, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114-2696, USA
| | | | | | | | | |
Collapse
|
196
|
Heddle JG, Barnard FM, Wentzell LM, Maxwell A. The interaction of drugs with DNA gyrase: a model for the molecular basis of quinolone action. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2000; 19:1249-64. [PMID: 11097055 DOI: 10.1080/15257770008033048] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
DNA gyrase supercoils DNA in bacteria. The fact that it is essential in all bacteria and absent from eukaryotes makes it an ideal drug target. We discuss the action of coumarin and quinolone drugs on gyrase. In the case of coumarins, the drugs are known to be competitive inhibitors of the gyrase ATPase reaction. From a combination of structural and biochemical studies, the molecular details of the gyrase-coumarin complex are well established. In the case of quinolones, the drugs are thought to act by stabilising a cleavage complex between gyrase and DNA that arrests polymerases in vivo. The exact nature of the gyrase-quinolone-DNA complex is not known; we propose a model for this complex based on structural and biochemical data.
Collapse
Affiliation(s)
- J G Heddle
- Department of Biochemistry, University of Leicester, UK
| | | | | | | |
Collapse
|
197
|
Hooper DC. Mechanisms of action and resistance of older and newer fluoroquinolones. Clin Infect Dis 2000; 31 Suppl 2:S24-8. [PMID: 10984324 DOI: 10.1086/314056] [Citation(s) in RCA: 229] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The fluoroquinolones interact with 2 bacterial targets, the related enzymes DNA gyrase and topoisomerase IV, both of which are involved in DNA replication. Quinolones form complexes of these enzymes with DNA, complexes that block movement of the DNA-replication fork and thereby inhibit DNA replication. Many older quinolones differ in their relative activities against gyrase and topoisomerase IV in a bacterial cell, having greater potency against gyrase than against topoisomerase IV in many gram-negative bacteria and greater potency against topoisomerase IV than against gyrase in many gram-positive bacteria. Several newer quinolones appear to have more closely balanced activity against these enzymes. Resistance to fluoroquinolones occurs as a result of mutational amino acid substitutions in the subunits of the more sensitive (or primary-target) enzyme within the cell. If, however, both enzymes are similarly susceptible to a fluoroquinolone, then the level of resistance caused by a primary-target mutation may be low and may be limited by the sensitivity of the secondary target. Fluoroquinolones also differ in the extent to which common bacterial multidrug efflux pumps affect their activity, with some compounds being unaffected by resistance mechanisms because of overexpression of such pumps. Newer fluoroquinolone interaction with dual targets and avoidance of efflux-resistance mechanisms may each contribute to the lower frequencies of selection of resistant mutants in the laboratory.
Collapse
Affiliation(s)
- D C Hooper
- Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114-2696, USA.
| |
Collapse
|
198
|
Abstract
Many attempts have been made to prepare analogs of 4-quinolone antibacterial agents bearing novel ring systems, which might retain the favorable properties of these widely used antibacterial agents and at the same time increase activity against multidrug-resistant bacteria, streptococci, and anaerobic microorganisms. One such attempt involved bioisosteric exchange of the 1-N atom and 4a-C atom of naphthyridones, quinolones, and benzoxazines to produce a family of highly active pyridopyrimidines, quinolizines, and ofloxacin bioisosteres. These new antibacterial agents have been named collectively as the 2-pyridones. Many hundreds of 2-pyridones have been synthesized and evaluated in vitro and in vivo, and selected members are advancing toward human clinical trials. Preparation of these bioisosteres required the development of enabling chemistry, as previous methods were unsuccessful in producing the needed core structures. This review compares the structure-activity relationships of these agents with known trends among 4-quinolones, from which it is seen that there are many parallels, but also some significant departures as well. Generally, 2-pyridones are more highly active in vitro and in vivo and more water soluble than comparable 4-quinolones. These properties are posited to arise from electronic and conformational alternations in these new substances. Selected members show excellent pharmacodynamic properties, justifying the view that this is a very promising new class of totally synthetic antibacterial agents.
Collapse
Affiliation(s)
- Q Li
- Pharmaceutical Products Division, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, IL 60064-6101, USA.
| | | | | |
Collapse
|
199
|
Shea ME, Hiasa H. Distinct effects of the UvrD helicase on topoisomerase-quinolone-DNA ternary complexes. J Biol Chem 2000; 275:14649-58. [PMID: 10799552 DOI: 10.1074/jbc.275.19.14649] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Quinolone antibacterial drugs target both DNA gyrase (Gyr) and topoisomerase IV (Topo IV) and form topoisomerase-quinolone-DNA ternary complexes. The formation of ternary complexes results in the inhibition of DNA replication and leads to the generation of double-strand breaks and subsequent cell death. Here, we have studied the consequences of collisions between the UvrD helicase and the ternary complexes formed with either Gyr, Topo IV, or a mutant Gyr, Gyr (A59), which does not wrap the DNA strand around itself. We show (i) that Gyr-norfloxacin (Norf)-DNA and Topo IV-Norf-DNA, but not Gyr (A59)-Norf-DNA, ternary complexes inhibit the UvrD-catalyzed strand-displacement activity, (ii) that a single-strand break is generated at small portions of the ternary complexes upon their collisions with UvrD, and (iii) that the majority of Topo IV-Norf-DNA ternary complexes become nonreversible when UvrD collides with the Topo IV-Norf-DNA ternary complexes, whereas the majority of Gyr-Norf-DNA ternary complexes remain reversible after their collision with the UvrD helicase. These results indicated that different DNA repair mechanisms might be involved in the repair of Gyr-Norf-DNA and Topo IV-Norf-DNA ternary complexes.
Collapse
Affiliation(s)
- M E Shea
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | | |
Collapse
|
200
|
Kern WV, Oethinger M, Jellen-Ritter AS, Levy SB. Non-target gene mutations in the development of fluoroquinolone resistance in Escherichia coli. Antimicrob Agents Chemother 2000; 44:814-20. [PMID: 10722475 PMCID: PMC89776 DOI: 10.1128/aac.44.4.814-820.2000] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mutations in loci other than genes for the target topoisomerases of fluoroquinolones, gyrA and parC, may play a role in the development of fluoroquinolone resistance in Escherichia coli. A series of mutants with increasing resistance to ofloxacin was obtained from an E. coli K-12 strain and five clinical isolates. First-step mutants acquired a gyrA mutation. Second-step mutants reproducibly acquired a phenotype of multiple antibiotic resistance (Mar) and organic solvent tolerance and showed enhanced fluoroquinolone efflux. None of the second-step mutants showed additional topoisomerase mutations. All second-step mutants showed constitutive expression of marA and/or overexpressed soxS. In some third-step mutants, fluoroquinolone efflux was further enhanced compared to that for second-step mutants, even when the mutant had acquired additional topoisomerase mutations. Attempts to circumvent the second-step Mar mutation by induction of the mar locus with sodium salicylate and thus to select for pure topoisomerase mutants at the second step were not successful. At least in vitro, non-target gene mutations accumulate in second- and third-step mutants upon exposure to a fluoroquinolone and typically include, but do not appear to be limited to, mutations in the mar or sox regulons with consequent increased drug efflux.
Collapse
Affiliation(s)
- W V Kern
- Section of Infectious Diseases and Clinical Immunology, Department of Medicine, University Hospital and Medical Center, D-89070 Ulm,
| | | | | | | |
Collapse
|