151
|
Pischke MS, Huttlin EL, Hegeman AD, Sussman MR. A transcriptome-based characterization of habituation in plant tissue culture. PLANT PHYSIOLOGY 2006; 140:1255-78. [PMID: 16489130 PMCID: PMC1435795 DOI: 10.1104/pp.105.076059] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
For the last 50 years, scientists have recognized that varying ratios of the plant hormones cytokinin and auxin induce plant cells to form particular tissues: undifferentiated calli, shoot structures, root structures, or a whole plant. Proliferation of undifferentiated callus tissue, greening, and the formation of shoot structures are all cytokinin-dependent processes. Habituation refers to a naturally occurring phenomenon whereby callus cultures, upon continued passage, lose their requirement for cytokinin. Earlier studies of calli with a higher-than-normal cytokinin content indicate that overproduction of cytokinin by the culture tissues is a possible explanation for this acquired cytokinin independence. A transcriptome-based analysis of a well established habituated Arabidopsis (Arabidopsis thaliana) cell culture line was undertaken, to explore genome-wide expression changes underlying the phenomenon of habituation. Increased levels of expression of the cytokinin receptor CRE1, as well as altered levels of expression of several other genes involved in cytokinin signaling, indicated that naturally acquired deregulation of cytokinin-signaling components could play a previously unrecognized role in habituation. Up-regulation of several cytokinin oxidases, down-regulation of several known cytokinin-inducible genes, and a lack of regulation of the cytokinin synthases indicated that increases in hormone concentration may not be required for habituation. In addition, up-regulation of the homeodomain transcription factor FWA, transposon-related elements, and several DNA- and chromatin-modifying enzymes indicated that epigenetic changes contribute to the acquisition of cytokinin habituation.
Collapse
Affiliation(s)
- Melissa S Pischke
- University of Wisconsin Biotechnology Center and Department of Biochemistry, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
152
|
Brenner WG, Romanov GA, Köllmer I, Bürkle L, Schmülling T. Immediate-early and delayed cytokinin response genes of Arabidopsis thaliana identified by genome-wide expression profiling reveal novel cytokinin-sensitive processes and suggest cytokinin action through transcriptional cascades. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 44:314-33. [PMID: 16212609 DOI: 10.1111/j.1365-313x.2005.02530.x] [Citation(s) in RCA: 242] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Cytokinins are hormones that regulate many developmental and physiological processes in plants. Recent work has revealed that the cytokinin signal is transduced by two-component systems to the nucleus where target genes are activated. Most of the rapid transcriptional responses are unknown. We measured immediate-early and delayed cytokinin responses through genome-wide expression profiling with the Affymetrix ATH1 full genome array (Affymetrix Inc., Santa Clara, CA, USA). Fifteen minutes after cytokinin treatment of 5-day-old Arabidopsis seedlings, 71 genes were upregulated and 11 genes were downregulated. Immediate-early cytokinin response genes include a high portion of transcriptional regulators, among them six transcription factors that had previously not been linked to cytokinin. Five plastid transcripts were rapidly regulated as well, indicating a rapid transfer of the signal to plastids or direct perception of the cytokinin signal by plastids. After 2 h of cytokinin treatment genes coding for transcriptional regulators, signaling proteins, developmental and hormonal regulators, primary and secondary metabolism, energy generation and stress reactions were over-represented. A significant number of the responding genes are known to regulate light (PHYA, PSK1, CIP8, PAT1, APRR), auxin (Aux/IAA), ethylene (ETR2, EIN3, ERFs/EREBPs), gibberellin (GAI, RGA1, GA20 oxidase), nitrate (NTR2, NIA) and sugar (STP1, SUS1) dependent processes, indicating intense crosstalk with environmental cues, other hormones and metabolites. Analysis of cytokinin-deficient 35S:AtCKX1 transgenic seedlings has revealed additional, long-lasting cytokinin-sensitive changes of transcript abundance. Comparative overlay-analysis with the software tool mapman identified previously unknown cytokinin-sensitive metabolic genes, for example in the metabolism of trehalose-6-phosphate. Taken together, we present a genome-wide view of changes in cytokinin-responsive transcript abundance of genes that might be functionally relevant for the many biological processes that are governed by cytokinins.
Collapse
Affiliation(s)
- Wolfram G Brenner
- Max Planck-Institute for Molecular Genetics, Ihnestrasse 63-73, D-14195 Berlin, Germany
| | | | | | | | | |
Collapse
|
153
|
Yoshida H, Nagata M, Saito K, Wang KLC, Ecker JR. Arabidopsis ETO1 specifically interacts with and negatively regulates type 2 1-aminocyclopropane-1-carboxylate synthases. BMC PLANT BIOLOGY 2005; 5:14. [PMID: 16091151 PMCID: PMC1199607 DOI: 10.1186/1471-2229-5-14] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2005] [Accepted: 08/10/2005] [Indexed: 05/03/2023]
Abstract
BACKGROUND In Arabidopsis, ETO1 (ETHYLENE-OVERPRODUCER1) is a negative regulator of ethylene evolution by interacting with AtACS5, an isoform of the rate-limiting enzyme, 1-aminocyclopropane-1-carboxylate synthases (ACC synthase or ACS), in ethylene biosynthetic pathway. ETO1 directly inhibits the enzymatic activity of AtACS5. In addition, a specific interaction between ETO1 and AtCUL3, a constituent of a new type of E3 ubiquitin ligase complex, suggests the molecular mechanism in promoting AtACS5 degradation by the proteasome-dependent pathway. Because orthologous sequences to ETO1 are found in many plant species including tomato, we transformed tomato with Arabidopsis ETO1 to evaluate its ability to suppress ethylene production in tomato fruits. RESULTS Transgenic tomato lines that overexpress Arabidopsis ETO1 (ETO1-OE) did not show a significant delay of fruit ripening. So, we performed yeast two-hybrid assays to investigate potential heterologous interaction between ETO1 and three isozymes of ACC synthases from tomato. In the yeast two-hybrid system, ETO1 interacts with LE-ACS3 as well as AtACS5 but not with LE-ACS2 or LE-ACS4, two major isozymes whose gene expression is induced markedly in ripening fruits. According to the classification of ACC synthases, which is based on the C-terminal amino acid sequences, both LE-ACS3 and AtACS5 are categorized as type 2 isozymes and possess a consensus C-terminal sequence. In contrast, LE-ACS2 and LE-ACS4 are type 1 and type 3 isozymes, respectively, both of which do not possess this specific C-terminal sequence. Yeast two-hybrid analysis using chimeric constructs between LE-ACS2 and LE-ACS3 revealed that the type-2-ACS-specific C-terminal tail is required for interaction with ETO1. When treated with auxin to induce LE-ACS3, seedlings of ETO1-OE produced less ethylene than the wild type, despite comparable expression of the LE-ACS3 gene in the wild type. CONCLUSION These results suggest that ETO1 family proteins specifically interact with and negatively regulate type 2 ACC synthases. Our data also show that Arabidopsis ETO1 can regulate type 2 ACS in a heterologous plant, tomato.
Collapse
Affiliation(s)
- Hitoshi Yoshida
- Department of Rice Research, National Agricultural Research Center, Jo-etsu, Niigata 943–0193, Japan
- Department of Low-Temperature Sciences, National Agricultural Research Center for Hokkaido Region, Sapporo, Hokkaido 062–8555, Japan
| | - Masayasu Nagata
- Department of Physiology and Quality Science, National Institute of Vegetable and Tea Science, Ano, Mie 514–2392, Japan
| | - Koji Saito
- Department of Low-Temperature Sciences, National Agricultural Research Center for Hokkaido Region, Sapporo, Hokkaido 062–8555, Japan
| | - Kevin LC Wang
- Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, U.S.A
- Present address: Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei 115, Taiwan
| | - Joseph R Ecker
- Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, U.S.A
| |
Collapse
|
154
|
Yuen CYL, Sedbrook JC, Perrin RM, Carroll KL, Masson PH. Loss-of-function mutations of ROOT HAIR DEFECTIVE3 suppress root waving, skewing, and epidermal cell file rotation in Arabidopsis. PLANT PHYSIOLOGY 2005; 138:701-14. [PMID: 15908600 PMCID: PMC1150390 DOI: 10.1104/pp.105.059774] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Wild-type Arabidopsis (Arabidopsis thaliana L. Heynh.) roots growing on a tilted surface of impenetrable hard-agar media adopt a wave-like pattern and tend to skew to the right of the gravity vector (when viewed from the back of the plate through the medium). Reversible root-tip rotation often accompanies the clockwise and counterclockwise curves that form each wave. These rotations are manifested by epidermal cell file rotation (CFR) along the root. Loss-of-function alleles of ROOT HAIR DEFECTIVE3 (RHD3), a gene previously implicated in the control of vesicle trafficking between the endoplasmic reticulum and the Golgi compartments, resulted in an almost complete suppression of epidermal CFR, root skewing, and waving on hard-agar surfaces. Several other root hair defective mutants (rhd2-1, rhd4-1, and rhd6-1) did not exhibit dramatic alterations in these root growth behaviors, suggesting that a generalized defect in root hair formation is not responsible for the surface-dependent phenotypes of rhd3. However, similar alterations in root growth behavior were observed in a variety of mutants characterized by defects in cell expansion (cob-1, cob-2, eto1-1, eto2-1, erh2-1, and erh3-1). The erh2-1 and rhd3-1 mutants differed from other anisotropic cell expansion mutants, though, by an inability to respond to low doses of the microtubule-binding drug propyzamide, which normally causes enhanced left-handed CFR and right skewing. We hypothesize that RHD3 may control epidermal CFR, root skewing, and waving on hard-agar surfaces by regulating the traffic of wall- or plasma membrane-associated determinants of anisotropic cell expansion.
Collapse
Affiliation(s)
- Christen Y L Yuen
- Laboratory of Genetics, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|
155
|
Chae HS, Kieber JJ. Eto Brute? Role of ACS turnover in regulating ethylene biosynthesis. TRENDS IN PLANT SCIENCE 2005; 10:291-6. [PMID: 15949763 DOI: 10.1016/j.tplants.2005.04.006] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2004] [Revised: 02/18/2005] [Accepted: 04/25/2005] [Indexed: 05/02/2023]
Abstract
Ethylene influences many plant growth and developmental processes. To achieve this diversity of function, the biosynthesis of this gaseous hormone is tightly regulated by a diverse array of factors, including developmental cues, wounding, biotic and abiotic stresses, and other phytohormones. Many studies have demonstrated that differential transcription of 1-aminocyclopropane-1-carboxylate synthase (ACS) gene family members is an important factor regulating ethylene production in response to different stimuli. Recently, several studies, focusing primarily on the Arabidopsis eto mutants, have indicated that the regulation of ACS protein stability also plays a significant role in the control of ethylene biosynthesis. Here, we review this post-transcriptional control of ethylene biosynthesis and discuss the mechanisms that underlie it.
Collapse
Affiliation(s)
- Hyun Sook Chae
- University of North Carolina, Department of Biology, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
156
|
Mason MG, Schaller GE. Histidine kinase activity and the regulation of ethylene signal transduction. ACTA ACUST UNITED AC 2005. [DOI: 10.1139/b05-053] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ethylene is a gaseous hormone that regulates many aspects of plant growth and development. Although the effect of ethylene on plant growth was discovered a century ago, the key players in the ethylene response pathway were only identified over the last 15 years. In Arabidopsis, ethylene is perceived by a family of five receptors (ETR1, ETR2, ERS1, ERS2, and EIN4) that resemble two-component histidine kinases. Of these, only ETR1 and ERS1 contain all the conserved residues required for histidine kinase activity. The ethylene receptors appear to function primarily through CTR1, a serine/threonine kinase that actively suppresses ethylene responses in air (absence of ethylene). Despite recent progress toward understanding ethylene signal transduction, the role of the ethylene-receptor histidine-kinase activity remains unclear. This review considers the significance of histidine kinase activity in ethylene signaling and possible mechanisms by which it may modulate ethylene responses.Key words: ethylene receptor, ETR1, histidine kinase, two-component, phosphorylation, Arabidopsis.
Collapse
|
157
|
Smets R, Le J, Prinsen E, Verbelen JP, Van Onckelen HA. Cytokinin-induced hypocotyl elongation in light-grown Arabidopsis plants with inhibited ethylene action or indole-3-acetic acid transport. PLANTA 2005; 221:39-47. [PMID: 15843964 DOI: 10.1007/s00425-004-1421-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2004] [Accepted: 09/24/2004] [Indexed: 05/22/2023]
Abstract
Cytokinins inhibit hypocotyl elongation in darkness but have no obvious effect on hypocotyl length in the light. However, we found that cytokinins do promote hypocotyl elongation in the light when ethylene action is blocked. A 50% increase in Arabidopsis thaliana (L.) Heynh. hypocotyl length was observed in response to N6-benzyladenine (BA) treatment in the presence of Ag+. The level of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid was strongly increased, indicating that ethylene biosynthesis was up-regulated by treatment with cytokinin. Furthermore, the effects of cytokinins on hypocotyl elongation were also tested using a series of mutants in the cascade of the ethylene-signal pathway. In the ethylene-insensitive mutants etr1-3 and ein2-1, cytokinin treatment resulted in hypocotyl lengths comparable to those of wild-type seedlings treated with both Ag+ and BA. A similar phenotypical response to cytokinin was observed when auxin transport was blocked by alpha-naphthylphthalamic acid (NPA). Applied cytokinin largely restored cell elongation in the basal and middle parts of the hypocotyls of NPA-treated seedlings and at the same time abolished the NPA-induced decrease in indole-3-acetic acid levels. Our data support the hypothesis that, in the light, cytokinins interact with the ethylene-signalling pathway and conditionally up-regulate ethylene and auxin synthesis.
Collapse
Affiliation(s)
- Rafaël Smets
- Department of Biology, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | | | | | | | | |
Collapse
|
158
|
Abstract
Hormones are key regulators of plant growth and development. Genetic and biochemical studies have identified major factors that mediate ethylene biosynthesis and signal transduction. Substantial progress in the elucidation of the ethylene signal transduction pathway has been made, mainly by research on Arabidopsis thaliana. Research on ethylene biosynthesis and its regulation provided new insights, particularly on the posttranslational regulation of ethylene synthesis and the feedback from ethylene signal transduction. The identification of new components in the ethylene-response pathway and the elucidation of their mode of action provide a framework for understanding not only how plants sense and respond to this hormone but also how the signal is integrated with other inputs, ultimately determining the plant phenotype.
Collapse
Affiliation(s)
- Annelies De Paepe
- Unit Plant Hormone Signaling and Bio-imaging, Department of Molecular Genetics Ghent University, K.L. Ledeganckstraat 35, B-9000 Gent, Belgium
| | | |
Collapse
|
159
|
Young TE, Meeley RB, Gallie DR. ACC synthase expression regulates leaf performance and drought tolerance in maize. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 40:813-25. [PMID: 15546363 DOI: 10.1111/j.1365-313x.2004.02255.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Ethylene regulates entry into several types of plant developmental cell death and senescence programs besides mediating plant responses to biotic and abiotic stress. The response of cereals to conditions of drought includes loss of leaf function and premature onset of senescence in older leaves. In this study, ACC synthase (ACS) mutants, affecting the first step in ethylene biosynthesis, were isolated in maize and their effect on leaf function examined. Loss of ZmACS6 expression resulted in delayed leaf senescence under normal growth conditions and inhibited drought-induced senescence. Zmacs6 leaves continued to be photosynthetically active under both conditions indicating that leaf function was maintained. The delayed senescence phenotype associated with loss of ZmACS6 expression was complemented by exogenous ACC. Surprisingly, elevated levels of foliar chlorophyll, Rubisco, and soluble protein as well as improved leaf performance was observed for all Zmasc6 leaves, including young and fully expanded leaves which were far from initiating senescence. These observations suggest that ethylene may serve to regulate leaf performance throughout its lifespan as well as to determine the onset of natural senescence and mediate drought-induced senescence.
Collapse
Affiliation(s)
- Todd E Young
- Department of Biochemistry, University of California, Riverside, CA 92521-0129, USA
| | | | | |
Collapse
|
160
|
Liu Y, Zhang S. Phosphorylation of 1-aminocyclopropane-1-carboxylic acid synthase by MPK6, a stress-responsive mitogen-activated protein kinase, induces ethylene biosynthesis in Arabidopsis. THE PLANT CELL 2004; 16:3386-99. [PMID: 15539472 PMCID: PMC535880 DOI: 10.1105/tpc.104.026609] [Citation(s) in RCA: 589] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2004] [Accepted: 10/04/2004] [Indexed: 05/18/2023]
Abstract
Mitogen-activated protein kinases (MAPKs) are implicated in regulating plant growth, development, and response to the environment. However, the underlying mechanisms are unknown because of the lack of information about their substrates. Using a conditional gain-of-function transgenic system, we demonstrated that the activation of SIPK, a tobacco (Nicotiana tabacum) stress-responsive MAPK, induces the biosynthesis of ethylene. Here, we report that MPK6, the Arabidopsis thaliana ortholog of tobacco SIPK, is required for ethylene induction in this transgenic system. Furthermore, we found that selected isoforms of 1-aminocyclopropane-1-carboxylic acid synthase (ACS), the rate-limiting enzyme of ethylene biosynthesis, are substrates of MPK6. Phosphorylation of ACS2 and ACS6 by MPK6 leads to the accumulation of ACS protein and, thus, elevated levels of cellular ACS activity and ethylene production. Expression of ACS6(DDD), a gain-of-function ACS6 mutant that mimics the phosphorylated form of ACS6, confers constitutive ethylene production and ethylene-induced phenotypes. Increasing numbers of stress stimuli have been shown to activate Arabidopsis MPK6 or its orthologs in other plant species. The identification of the first plant MAPK substrate in this report reveals one mechanism by which MPK6/SIPK regulates plant stress responses. Equally important, this study uncovers a signaling pathway that modulates the biosynthesis of ethylene, an important plant hormone, in plants under stress.
Collapse
Affiliation(s)
- Yidong Liu
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, USA
| | | |
Collapse
|
161
|
Thain SC, Vandenbussche F, Laarhoven LJJ, Dowson-Day MJ, Wang ZY, Tobin EM, Harren FJM, Millar AJ, Van Der Straeten D. Circadian rhythms of ethylene emission in Arabidopsis. PLANT PHYSIOLOGY 2004; 136:3751-61. [PMID: 15516515 PMCID: PMC527172 DOI: 10.1104/pp.104.042523] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2004] [Revised: 07/29/2004] [Accepted: 08/13/2004] [Indexed: 05/18/2023]
Abstract
Ethylene controls multiple physiological processes in plants, including cell elongation. Consequently, ethylene synthesis is regulated by internal and external signals. We show that a light-entrained circadian clock regulates ethylene release from unstressed, wild-type Arabidopsis (Arabidopsis thaliana) seedlings, with a peak in the mid-subjective day. The circadian clock drives the expression of multiple ACC SYNTHASE genes, resulting in peak RNA levels at the phase of maximal ethylene synthesis. Ethylene production levels are tightly correlated with ACC SYNTHASE 8 steady-state transcript levels. The expression of this gene is controlled by light, by the circadian clock, and by negative feedback regulation through ethylene signaling. In addition, ethylene production is controlled by the TIMING OF CAB EXPRESSION 1 and CIRCADIAN CLOCK ASSOCIATED 1 genes, which are critical for all circadian rhythms yet tested in Arabidopsis. Mutation of ethylene signaling pathways did not alter the phase or period of circadian rhythms. Mutants with altered ethylene production or signaling also retained normal rhythmicity of leaf movement. We conclude that circadian rhythms of ethylene production are not critical for rhythmic growth.
Collapse
Affiliation(s)
- Simon C Thain
- Unit Plant Hormone Signaling and Bio-Imaging, Department of Molecular Genetics, University of Ghent, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
162
|
Tsuchisaka A, Theologis A. Unique and overlapping expression patterns among the Arabidopsis 1-amino-cyclopropane-1-carboxylate synthase gene family members. PLANT PHYSIOLOGY 2004; 136:2982-3000. [PMID: 15466221 PMCID: PMC523360 DOI: 10.1104/pp.104.049999] [Citation(s) in RCA: 230] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2004] [Revised: 08/31/2004] [Accepted: 09/09/2004] [Indexed: 05/18/2023]
Abstract
1-Aminocyclopropane-1-carboxylate synthase (ACS) catalyzes the rate-limiting step in the ethylene biosynthetic pathway in plants. The Arabidopsis genome encodes nine ACS polypeptides that form eight functional (ACS2, ACS4-9, and ACS11) homodimers and one nonfunctional (ACS1) homodimer. Transgenic Arabidopsis lines were constructed expressing the beta-glucuronidase (GUS) and green fluorescence protein (GFP) reporter genes from the promoter of each of the gene family members to determine their patterns of expression during plant development. All genes, except ACS9, are expressed in 5-d-old etiolated or light-grown seedlings yielding distinct patterns of GUS staining. ACS9 expression is detected later in development. Unique and overlapping expression patterns were detected for all the family members in various organs of adult plants. ACS11 is uniquely expressed in the trichomes of sepals and ACS1 in the replum. Overlapping expression was observed in hypocotyl, roots, various parts of the flower (sepals, pedicle, style, etc.) and in the stigmatic and abscission zones of the silique. Exogenous indole-3-acetic acid (IAA) enhances the constitutive expression of ACS2, 4, 5, 6, 7, 8, and 11 in the root. Wounding of hypocotyl tissue inhibits the constitutive expression of ACS1 and ACS5 and induces the expression of ACS2, 4, 6, 7, 8, and 11. Inducers of ethylene production such as cold, heat, anaerobiosis, and Li(+) ions enhance or suppress the expression of various members of the gene family in the root of light-grown seedlings. Examination of GUS expression in transverse sections of cotyledons reveals that all ACS genes, except ACS9, are expressed in the epidermis cell layer, guard cells, and vascular tissue. Similar analysis with root tip tissue treated with IAA reveals unique and overlapping expression patterns in the various cell types of the lateral root cap, cell division, and cell expansion zones. IAA inducibility is gene-specific and cell type-dependent across the root tip zone. This limited comparative exploration of ACS gene family expression reveals constitutive spatial and temporal expression patterns of all gene family members throughout the growth period examined. The unique and overlapping gene activity pattern detected reveals a combinatorial code of spatio-temporal coexpression among the various gene family members during plant development. This raises the prospect that functional ACS heterodimers may be formed in planta.
Collapse
|
163
|
Souter MA, Pullen ML, Topping JF, Zhang X, Lindsey K. Rescue of defective auxin-mediated gene expression and root meristem function by inhibition of ethylene signalling in sterol biosynthesis mutants of Arabidopsis. PLANTA 2004; 219:773-783. [PMID: 15138822 DOI: 10.1007/s00425-004-1280-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2003] [Accepted: 03/22/2004] [Indexed: 05/24/2023]
Abstract
The roles of sterols in plant development are not well understood, but evidence is emerging that they are required for cell division, polarity and patterning by mechanisms that are independent of brassinosteroids, of which they are precursors. Previous evidence shows that two sterol-defective mutants of Arabidopsis thaliana (L.) Heynh., hyd1 and fk(hyd2), are defective in root development. Here we show that the HYD1 gene, like the FK gene, is transcriptionally active in both primary and lateral root meristems, though not in the shoot apical meristem. The patterns of cell division during early stages of lateral root initiation in the hyd1 and fk(hyd2) mutants appear normal. Previous evidence also suggests that auxin and ethylene signalling is defective in the mutants. Here we show that the cytokinin- and ethylene-responsive ACS1::GUS reporter in the fk(hyd2) mutant responds to exogenous cytokinins but not to the ethylene precursor 1-aminocyclopropane-1-carboxylic acid, indicative of normal cytokinin signalling but supporting the hypothesis that ethylene signalling is defective. The defective root meristem cell division activity and expression patterns of the auxin-regulated DR5::GUS and IAA2::GUS reporters can be rescued to a significant extent by the pharmacological or genetic inhibition of ethylene signalling, but not by treatment with aminoethoxyvinylglycine, an inhibitor of ethylene synthesis. This supports the emerging view that the hyd1 and fk(hyd2) mutants exhibit an enhanced and unregulated ethylene signalling activity, which accounts for at least part of the observed mutant phenotypes, including disrupted auxin signalling. The possible relationship between ethylene signalling, membrane sterols and meristem function is discussed.
Collapse
Affiliation(s)
- Martin A Souter
- The Integrative Cell Biology Laboratory, School of Biological and Biomedical Sciences, University of Durham, South Road, DH1 3LE, Durham, UK
| | | | | | | | | |
Collapse
|
164
|
Nemhauser JL, Mockler TC, Chory J. Interdependency of brassinosteroid and auxin signaling in Arabidopsis. PLoS Biol 2004; 2:E258. [PMID: 15328536 PMCID: PMC509407 DOI: 10.1371/journal.pbio.0020258] [Citation(s) in RCA: 383] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2003] [Accepted: 06/09/2004] [Indexed: 11/18/2022] Open
Abstract
How growth regulators provoke context-specific signals is a fundamental question in developmental biology. In plants, both auxin and brassinosteroids (BRs) promote cell expansion, and it was thought that they activated this process through independent mechanisms. In this work, we describe a shared auxin:BR pathway required for seedling growth. Genetic, physiological, and genomic analyses demonstrate that response from one pathway requires the function of the other, and that this interdependence does not act at the level of hormone biosynthetic control. Increased auxin levels saturate the BR-stimulated growth response and greatly reduce BR effects on gene expression. Integration of these two pathways is downstream from BES1 and Aux/IAA proteins, the last known regulatory factors acting downstream of each hormone, and is likely to occur directly on the promoters of auxin:BR target genes. We have developed a new approach to identify potential regulatory elements acting in each hormone pathway, as well as in the shared auxin:BR pathway. We show that one element highly overrepresented in the promoters of auxin- and BR-induced genes is responsive to both hormones and requires BR biosynthesis for normal expression. This work fundamentally alters our view of BR and auxin signaling and describes a powerful new approach to identify regulatory elements required for response to specific stimuli. Although distinct sets of growth regulators - auxin and brassinosteroids - are required for cell expansion; rather than being independent signals, the response from each pathway requires the other
Collapse
Affiliation(s)
- Jennifer L Nemhauser
- 1Plant Biology Laboratory, Salk Institute for Biological StudiesLa Jolla, California, United States of America
| | - Todd C Mockler
- 1Plant Biology Laboratory, Salk Institute for Biological StudiesLa Jolla, California, United States of America
| | - Joanne Chory
- 1Plant Biology Laboratory, Salk Institute for Biological StudiesLa Jolla, California, United States of America
- 2Howard Hughes Medical Institute, La JollaCaliforniaUnited States of America
| |
Collapse
|
165
|
De Paepe A, Vuylsteke M, Van Hummelen P, Zabeau M, Van Der Straeten D. Transcriptional profiling by cDNA-AFLP and microarray analysis reveals novel insights into the early response to ethylene in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 39:537-59. [PMID: 15272873 DOI: 10.1111/j.1365-313x.2004.02156.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A comprehensive transcriptome analysis by means of cDNA-amplified fragment length polymorphism (AFLP) and cDNA-microarray technology was performed in order to gain further understanding of the molecular mechanisms of immediate transcriptional response to ethylene. Col-0 plants were treated with exogenous ethylene and sampled at six different time-points ranging from 10 min until 6 h. In order to isolate truly ethylene-responsive genes, both the ethylene-insensitive mutant ein2-1 and the constitutive mutant (ctr1-1) were analysed in parallel by cDNA-AFLP while ein2-1 was included for the microarray experiment. Out of the cDNA-transcript profiling covering about 5% of the Arabidopsis transcriptome, 46 ethylene-responsive genes were isolated, falling in different classes of expression pattern and including a number of novel genes. Out of the 6008 genes present on the chip, 214 genes were significantly (alpha = 0.001) differentially expressed between Col-0 and ein2-1 over time. Cluster analysis and functional grouping of co-regulated genes allowed to determine the major ethylene-regulated classes of genes. In particular, a large number of genes involved in cell rescue, disease and defence mechanisms were identified as early ethylene-regulated genes. Furthermore, the data provide insight into the role of protein degradation in ethylene signalling and ethylene-regulated transcription and protein fate. Novel interactions between ethylene response and responses to several other signals have been identified by this study. Of particular interest is the overlap between ethylene response and responses to abscisic acid, sugar and auxin. In conclusion, the data provide unique insight into early regulatory steps of ethylene response.
Collapse
Affiliation(s)
- Annelies De Paepe
- Unit Plant Hormone Signalling and Bio-imaging, Department of Molecular Genetics, Ghent University, K.L. Ledeganckstraat 35, B-9000 Gent, Belgium
| | | | | | | | | |
Collapse
|
166
|
Wang KLC, Yoshida H, Lurin C, Ecker JR. Regulation of ethylene gas biosynthesis by the Arabidopsis ETO1 protein. Nature 2004; 428:945-50. [PMID: 15118728 DOI: 10.1038/nature02516] [Citation(s) in RCA: 230] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2003] [Accepted: 03/23/2003] [Indexed: 11/10/2022]
Abstract
Ethylene gas is used as a hormone by plants, in which it acts as a critical growth regulator. Its synthesis is also rapidly evoked in response to a variety of biotic and abiotic stresses. The Arabidopsis ethylene-overproducer mutants eto2 and eto3 have previously been identified as having mutations in two genes, ACS5 and ACS9, respectively; these encode isozymes of 1-aminocyclopropane-1-carboxylic acid synthase (ACS), which catalyse the rate-limiting step in ethylene biosynthesis. Here we report that another ethylene-overproducer mutation, eto1, is in a gene that negatively regulates ACS activity and ethylene production. The ETO1 protein directly interacts with and inhibits the enzyme activity of full-length ACS5 but not of a truncated form of the enzyme, resulting in a marked accumulation of ACS5 protein and ethylene. Overexpression of ETO1 inhibited induction of ethylene production by the plant growth regulator cytokinin, and promoted ACS5 degradation by a proteasome-dependent pathway. ETO1 also interacts with CUL3, a constituent of ubiquitin ligase complexes in which we propose that ETO1 serves as a substrate-specific adaptor protein. ETO1 thus has a dual mechanism, inhibiting ACS enzyme activity and targeting it for protein degradation. This permits rapid modulation of the concentration of ethylene.
Collapse
Affiliation(s)
- Kevin L-C Wang
- Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
167
|
Larsen PB, Cancel JD. A recessive mutation in the RUB1-conjugating enzyme, RCE1, reveals a requirement for RUB modification for control of ethylene biosynthesis and proper induction of basic chitinase and PDF1.2 in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 38:626-38. [PMID: 15125769 DOI: 10.1111/j.1365-313x.2004.02068.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
By screening etiolated Arabidopsis seedlings for mutants with aberrant ethylene-related phenotypes, we identified a mutant that displays features of the ethylene-mediated triple response even in the absence of ethylene. Further characterization showed that the phenotype observed for the dark-grown seedlings of this mutant is reversible by prevention of ethylene perception and is dependent on a modest increase in ethylene production correlated with an increase in 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase (ACO) activity in the hypocotyl. Molecular characterization of leaves of the mutant revealed severely impaired induction of basic chitinase (chiB) and plant defensin (PDF)1.2 following treatment with jasmonic acid and/or ethylene. Positional cloning of the mutation resulted in identification of a 49-bp deletion in RCE1 (related to ubiquitin 1 (RUB1)-conjugating enzyme), which has been demonstrated to be responsible for covalent attachment of RUB1 to the SCF (Skpl Cdc 53 F-box) ubiquitin ligase complex to modify its activity. Our analyses with rce1-2 demonstrate a previously unknown requirement for RUB1 modification for regulation of ethylene biosynthesis and proper induction of defense-related genes in Arabidopsis.
Collapse
Affiliation(s)
- Paul B Larsen
- Department of Biochemistry, University of California-Riverside, Riverside, CA 92521, USA.
| | | |
Collapse
|
168
|
Joo S, Park KY, Kim WT. Light differentially regulates the expression of two members of the auxin-induced 1-aminocyclopropane-1-carboxylate synthase gene family in mung bean (Vigna radiata L.) seedlings. PLANTA 2004; 218:976-988. [PMID: 14727113 DOI: 10.1007/s00425-003-1183-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2003] [Accepted: 12/01/2003] [Indexed: 05/24/2023]
Abstract
Auxin induces the expression of the two ethylene-biosynthetic genes VR-ACS6 and VR-ACS7 in etiolated mung bean hypocotyls. However, while it also enhances VR-ACS6 expression in light-grown tissues, it does not up-regulate VR-ACS7 expression in these tissues. Here we show that transfer of 3-day-old etiolated seedlings into light quickly reduced the auxin-induced expression of both genes. However, while auxin-induced VR-ACS6 expression recovered after 24 h of light, VR-ACS7 transcription continued to reduce and was almost completely absent at 36 h. Thus, light differentially modulates the expression of the auxin-inducible VR-ACS genes. In hormone-treated etiolated seedlings, VR-ACS7 was primarily induced in the rapidly elongating zones of hypocotyl and epicotyl tissues, while auxin-induced VR-ACS6 mRNA was evenly distributed throughout the whole seedling. VR-ACS7 promoter-driven beta-glucuronidase (GUS) activity in auxin-treated etiolated transgenic Arabidopsis seedlings was observed in the highly elongating zones of the hypocotyl. During de-etiolation, the GUS activity gradually declined to become confined to the uppermost region of hypocotyls. In situ mRNA localization studies showed that in etiolated mung bean hypocotyls, the auxin-dependent VR-ACS7 transcript was predominantly present in the epidermis, which is the driving site for auxin-mediated elongation. Thus, it appears that the modulation by light of auxin-induced VR-ACS7 expression may correlate closely with the elongation growth response in early seedling development.
Collapse
Affiliation(s)
- Sunjoo Joo
- Department of Biology, College of Science, Yonsei University, 120-749 Seoul, Korea
| | | | | |
Collapse
|
169
|
Gallie DR, Young TE. The ethylene biosynthetic and perception machinery is differentially expressed during endosperm and embryo development in maize. Mol Genet Genomics 2004; 271:267-81. [PMID: 14760521 DOI: 10.1007/s00438-004-0977-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2003] [Accepted: 12/31/2003] [Indexed: 01/22/2023]
Abstract
The maize endosperm undergoes programmed cell death late in its development so that, with the exception of the aleurone layer, the tissue is dead by the time the kernel matures. Although ethylene is known to regulate the onset of endosperm cell death, the temporal and spatial control of the ethylene biosynthetic and perception machinery during maize endosperm development has not been examined. In this study, we report the isolation of the maize gene families for ACC synthase, ACC oxidase, the ethylene receptor, and EIN2 and EIL, which act downstream of the receptor. We show that ACC oxidase is expressed primarily in the endosperm, and only at low levels in the developing embryo late in its development. ACC synthase is expressed throughout endosperm development but, in contrast to ACC oxidase, it is transiently expressed to a significantly higher level in the developing embryo at a time that corresponds with the onset of endosperm cell death. Only two ethylene receptor gene families were identified in maize, in contrast to the five types previously identified in Arabidopsis. Members of both ethylene receptor families were expressed to substantially higher levels in the developing embryo than in the endosperm, as were members of the EIN2 and EIL gene families. These results suggest that the endosperm and embryo both contribute to the synthesis of ethylene, and they provide a basis for understanding why the developing endosperm is especially sensitive to ethylene-induced cell death while the embryo is protected.
Collapse
Affiliation(s)
- D R Gallie
- Department of Biochemistry, University of California, Riverside, CA 92521-0129, USA.
| | | |
Collapse
|
170
|
Grémillon L, Helfer A, Clément B, Otten L. New plant growth-modifying properties of the Agrobacterium T-6b oncogene revealed by the use of a dexamethasone-inducible promoter. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 37:218-28. [PMID: 14690506 DOI: 10.1046/j.1365-313x.2003.01956.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Agrobacterium 6b oncogenes induce tumours on Nicotiana glauca and enations and associated modifications in transgenic N. tabacum plants. 2x35S-AB-6b tobacco rootstocks produced a graft-transmissible factor that induced enations in wild-type scions; the nature of this enation factor remains to be identified. Here, we report on the properties of tobacco plants carrying a dexamethasone-inducible T-6b gene (dex-T-6b). Induction with dex led to complex growth modifications, many of which have not been reported previously. Modifications were only found in growing tissues; mature tissues remained unaffected. Growth could be either stimulated or inhibited. Dex induction of young plants led to morphogenetic gradients that included enations, tubular leaves and fragmented leaf primordia. Root elongation was increased or slowed down, while radial root growth was strongly enhanced. Additional cell divisions were found in the root pericycle and vasculature. Enation factor import from mature tissues did not have the same effects on growing tissues as local T-6b synthesis: normal scions grafted on induced dex-T-6b rootstocks formed enations, whereas local dex-T-6b induction at the shoot apex led to numerous dark-green spots on the abaxial side of the leaves. In leaf patch assays, the 23-kDa T-6b protein was found to move through leaves and to enter the vascular system. This and the fact that rootstocks of spontaneous tobacco enation mutants did not modify wild-type scions contrary to 6b plants indicate that the 6b protein might be the enation factor.
Collapse
Affiliation(s)
- Louis Grémillon
- Institut de Biologie Moléculaire des Plantes, CNRS UPR2357, Rue du Général Zimmer 12, 67084 Strasbourg, France
| | | | | | | |
Collapse
|
171
|
Langebartels C, Kangasjärvi J. Ethylene and Jasmonate as Regulators of Cell Death in Disease Resistance. ECOLOGICAL STUDIES 2004. [DOI: 10.1007/978-3-662-08818-0_4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
172
|
|
173
|
Bohman S, Staal J, Thomma BPHJ, Wang M, Dixelius C. Characterisation of an Arabidopsis-Leptosphaeria maculans pathosystem: resistance partially requires camalexin biosynthesis and is independent of salicylic acid, ethylene and jasmonic acid signalling. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 37:9-20. [PMID: 14675428 DOI: 10.1046/j.1365-313x.2003.01927.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Out of 168 Arabidopsis accessions screened with isolates of Leptosphaeria maculans, one (An-1) showed clear disease symptoms. In order to identify additional components involved in containment of L. maculans in Arabidopsis, a screen for L. maculans-susceptible (lms) mutants was performed. Eleven lms mutants were isolated, which displayed differential susceptibility responses to L. maculans. lms1 was crossed with Columbia (Col-0) and Ws-0, and mapping data for both populations showed the highest linkage to a region on chromosome 2. Reduced levels of PR-1 and PDF1.2 expression were found in lms1 compared to wild-type plants 48 h after pathogen inoculation. In contrast, the lms1 mutant displayed upregulation of either marker gene upon chemical treatment, possibly as an effect of an altered ethylene (ET) response. To assess the contribution of different defence pathways, genotypes implicated in salicylic acid (SA) signalling plants expressing the bacterial salicylate hydroxylase (nahG) gene, non-expressor of PR1 (npr1)-1 and phytoalexin-deficient (pad4-1), jasmonic acid (JA) signalling (coronatine insensitive (coi)1-16, enhanced disease susceptibility (eds)8-1 and jasmonic acid resistant (jar)1-1) and ET signalling (eds4-1, ethylene insensitive (ein)2, ein3-1 and ethylene resistant (etr)1-1) were screened. All the genotypes screened were as resistant as wild-type plants, demonstrating the dispensability of the pathways in L. maculans resistance. When mutants implicated in cell death responses were assayed, responsive to antagonist 1 (ran1)-1 exhibited a weak susceptible phenotype, whereas accelerated cell death (acd)1-20 showed a rapid lesion development. Camalexin is only partially responsible for L. maculans containment in Arabidopsis, as pad3-1 and enhanced susceptibility to Alternaria (esa)1 clearly showed a susceptible response while wild-type levels of camalexin were present in An-1 and lms1. The data presented point to the existence of multiple defence mechanisms controlling the containment of L. maculans in Arabidopsis.
Collapse
Affiliation(s)
- Svante Bohman
- Department of Plant Biology and Forest Genetics, Swedish University of Agricultural Sciences, Box 7080, 75007 Uppsala, Sweden
| | | | | | | | | |
Collapse
|
174
|
Yamagami T, Tsuchisaka A, Yamada K, Haddon WF, Harden LA, Theologis A. Biochemical diversity among the 1-amino-cyclopropane-1-carboxylate synthase isozymes encoded by the Arabidopsis gene family. J Biol Chem 2003; 278:49102-12. [PMID: 12968022 DOI: 10.1074/jbc.m308297200] [Citation(s) in RCA: 200] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
1-Amino-cyclopropane-1-carboxylate synthase (ACS, EC 4.4.1.14) is the key enzyme in the ethylene biosynthetic pathway in plants. The completion of the Arabidopsis genome sequence revealed the presence of twelve putative ACS genes, ACS1-12, dispersed among five chromosomes. ACS1-5 have been previously characterized. However, ACS1 is enzymatically inactive whereas ACS3 is a pseudogene. Complementation analysis with the Escherichia coli aminotransferase mutant DL39 shows that ACS10 and 12 encode aminotransferases. The remaining eight genes are authentic ACS genes and together with ACS1 constitute the Arabidopsis ACS gene family. All genes, except ACS3, are transcriptionally active and differentially expressed during Arabidopsis growth and development. IAA induces all ACS genes, except ACS7 and ACS9; CHX enhances the expression of all functional ACS genes. The ACS genes were expressed in E. coli, purified to homogeneity by affinity chromatography, and biochemically characterized. The quality of the recombinant proteins was verified by N-terminal amino acid sequence and MALDI-TOF mass spectrometry. The analysis shows that all ACS isozymes function as dimers and have an optimum pH, ranging between 7.3 and 8.2. Their Km values for AdoMet range from 8.3 to 45 microm, whereas their kcat values vary from 0.19 to 4.82 s-1 per monomer. Their Ki values for AVG and sinefungin vary from 0.019 to 0.80 microm and 0.15 to 12 microm, respectively. The results indicate that the Arabidopsis ACS isozymes are biochemically distinct. It is proposed that biochemically diverse ACS isozymes function in unique cellular environments for the biosynthesis of C2H4, permitting the signaling molecule to exert its unique effects in a tissue- or cell-specific fashion.
Collapse
Affiliation(s)
- Takeshi Yamagami
- Plant Gene Expression Center, United States Department of Agriculture, Albany, California 94710, USA
| | | | | | | | | | | |
Collapse
|
175
|
Kim CY, Liu Y, Thorne ET, Yang H, Fukushige H, Gassmann W, Hildebrand D, Sharp RE, Zhang S. Activation of a stress-responsive mitogen-activated protein kinase cascade induces the biosynthesis of ethylene in plants. THE PLANT CELL 2003; 15:2707-18. [PMID: 14555690 PMCID: PMC280573 DOI: 10.1105/tpc.011411] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2003] [Accepted: 09/03/2003] [Indexed: 05/18/2023]
Abstract
Plants under stress from both biotic and abiotic sources produce increased levels of ethylene, which is perceived by ethylene receptors and triggers cellular responses further downstream. Protein phosphorylation and dephosphorylation were implicated in the regulation of ethylene induction by stresses based on studies using protein kinase and phosphatase inhibitors. However, the kinase(s) involved remains to be determined. Using a conditional gain-of-function transgenic system, we demonstrate that the activation of SIPK, a tobacco mitogen-activated protein kinase (MAPK), by NtMEK2DD, an active mutant of the upstream kinase of SIPK, resulted in a dramatic increase in ethylene production. The increase in ethylene after the activation of SIPK coincided with a dramatic increase in 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (ACS) activity, which was followed by the activation of a subgroup of ACS and ACC oxidase (ACO) genes, suggesting that either the activation of unidentified ACS(s) or post-transcriptional regulation is involved. Infection with Tobacco mosaic virus (TMV), which is known to activate the SIPK cascade and induce ethylene biosynthesis, also induced the same ACSs and ACOs. After ethylene production in NtMEK2DD plants, strong activation of ETHYLENE-RESPONSE FACTOR (ERF) genes was observed, similar to the effect in NN tobacco plants infected with TMV. In contrast to previous reports, no major increase in jasmonic acid (JA) and methyl jasmonate (MJ) was detected after the activation of SIPK/WIPK in NtMEK2DD transgenic plants. These results suggest that the induction of ethylene but not JA/MJ is involved in plant defense responses mediated by the NtMEK2-SIPK/WIPK pathway.
Collapse
Affiliation(s)
- Cha Young Kim
- Department of Biochemistry, University of Missouri-Columbia, Columbia, Missouri 65211, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
176
|
Vandenbussche F, Vriezen WH, Smalle J, Laarhoven LJJ, Harren FJM, Van Der Straeten D. Ethylene and auxin control the Arabidopsis response to decreased light intensity. PLANT PHYSIOLOGY 2003; 133:517-27. [PMID: 12972669 PMCID: PMC219028 DOI: 10.1104/pp.103.022665] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2003] [Revised: 04/14/2003] [Accepted: 06/30/2003] [Indexed: 05/18/2023]
Abstract
Morphological responses of plants to shading have long been studied as a function of light quality, in particular the ratio of red to far red light that affects phytochrome activity. However, changes in light quantity are also expected to be important for the shading response because plants have to adapt to the reduction in overall energy input. Here, we present data on the involvement of auxin and ethylene in the response to low light intensities. Decreased light intensities coincided with increased ethylene production in Arabidopsis rosettes. This response was rapid because the plants reacted within minutes. In addition, ethylene- and auxin-insensitive mutants are impaired in their reaction to shading, which is reflected by a defect in leaf elevation and an aberrant leaf biomass allocation. On the molecular level, several auxin-inducible genes are up-regulated in wild-type Arabidopsis in response to a reduction in light intensity, including the primary auxin response gene IAA3 and a protein with similarity to AUX22 and the 1-aminocyclopropane-1-carboxylic acid synthase genes ACS6, ACS8, and ACS9 that are involved in ethylene biosynthesis. Taken together, the data show that ethylene and auxin signaling are required for the response to low light intensities.
Collapse
|
177
|
Abstract
Biochemical and genetic studies have identified peptides that play crucial roles in plant defense, growth, and development. The number of known, functionally active, peptides is currently small, but genome sequencing has revealed many potential peptide-encoding genus. A major challenge of the post-genomic era is to determine the function of these molecules.
Collapse
Affiliation(s)
- Paul Chilley
- Integrative Cell Biology Laboratory, School of Biological and Biomedical Sciences, University of Durham, South Road, Durham DH1 3LE, UK
| |
Collapse
|
178
|
Chang H, Jones ML, Banowetz GM, Clark DG. Overproduction of cytokinins in petunia flowers transformed with P(SAG12)-IPT delays corolla senescence and decreases sensitivity to ethylene. PLANT PHYSIOLOGY 2003; 132:2174-83. [PMID: 12913172 PMCID: PMC181301 DOI: 10.1104/pp.103.023945] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2003] [Revised: 04/11/2003] [Accepted: 05/13/2003] [Indexed: 05/18/2023]
Abstract
Plant senescence is regulated by a coordinated genetic program mediated in part by changes in ethylene, abscisic acid (ABA), and cytokinin content. Transgenic plants with delayed senescence are useful for studying interactions between these signaling mechanisms. Expression of ipt, a cytokinin biosynthetic gene from Agrobacterium tumefaciens, under the control of the promoter from a senescence-associated gene (SAG12) has been one approach used to delay senescence. We transformed petunia (Petunia x hybrida cv V26) with P(SAG12)-IPT. Two independently transformed lines with extended flower longevity (I-1-7-22 and I-3-18-34) were used to study the effects of elevated cytokinin content on ethylene synthesis and sensitivity and ABA accumulation in petunia corollas. Floral senescence in these lines was delayed 6 to 10 d relative to wild-type (WT) flowers. Ipt transcripts increased in abundance after pollination and were accompanied by increased cytokinin accumulation. Endogenous ethylene production was induced by pollination in both WT and IPT corollas, but this increase was delayed in IPT flowers. Flowers from IPT plants were less sensitive to exogenous ethylene and required longer treatment times to induce endogenous ethylene production, corolla senescence, and up-regulation of the senescence-related Cys protease phcp1. Accumulation of ABA, another hormone regulating flower senescence, was significantly greater in WT corollas, confirming that floral senescence was delayed in IPT plants. These results extend our understanding of the hormone interactions that regulate flower senescence and provide a means of increasing flower longevity.
Collapse
Affiliation(s)
- Hsiang Chang
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, Colorado 80523, USA
| | | | | | | |
Collapse
|
179
|
|
180
|
Gazzarrini S, McCourt P. Cross-talk in plant hormone signalling: what Arabidopsis mutants are telling us. ANNALS OF BOTANY 2003; 91:605-12. [PMID: 12714359 PMCID: PMC4242347 DOI: 10.1093/aob/mcg064] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Genetic screens have been extremely useful in identifying genes involved in hormone signal transduction. However, although these screens were originally designed to identify specific components involved in early hormone signalling, mutations in these genes often confer changes in sensitivity to more than one hormone at the whole-plant level. Moreover, a variety of hormone response genes has been identified through screens that were originally designed to uncover regulators of sugar metabolism. Together, these facts indicate that the linear representation of the hormone signalling pathways controlling a specific aspect of plant growth and development is not sufficient, and that hormones interact with each other and with a variety of developmental and metabolic signals. Following the advent of arabidopsis molecular genetics we are beginning to understand some of the mechanisms by which a hormone is transduced into a cellular response. In this Botanical Briefing we review a subset of genes in arabidopsis that influence hormonal cross-talk, with emphasis on the gibberellin, abscisic acid and ethylene pathways. In some cases it appears that modulation of hormone sensitivity can cause changes in the synthesis of an unrelated hormone, while in other cases a hormone response gene defines a node of interaction between two response pathways. It also appears that a variety of hormones may converge to regulate the turnover of important regulators involved in growth and development. Examples are cited of the recent use of suppressor and enhancer analysis to identify new nodes of interaction between these pathways.
Collapse
Affiliation(s)
- Sonia Gazzarrini
- Department of Botany, University of Toronto, Toronto, Ontario, Canada M5S 3B2
| | | |
Collapse
|
181
|
Coenen C, Christian M, Lüthen H, Lomax TL. Cytokinin inhibits a subset of diageotropica-dependent primary auxin responses in tomato. PLANT PHYSIOLOGY 2003; 131:1692-704. [PMID: 12692328 PMCID: PMC166925 DOI: 10.1104/pp.102.016196] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2002] [Revised: 11/04/2002] [Accepted: 12/17/2002] [Indexed: 05/20/2023]
Abstract
Many aspects of plant development are regulated by antagonistic interactions between the plant hormones auxin and cytokinin, but the molecular mechanisms of this interaction are not understood. To test whether cytokinin controls plant development through inhibiting an early step in the auxin response pathway, we compared the effects of cytokinin with those of the dgt (diageotropica) mutation, which is known to block rapid auxin reactions of tomato (Lycopersicon esculentum) hypocotyls. Long-term cytokinin treatment of wild-type seedlings phenocopied morphological traits of dgt plants such as stunting of root and shoot growth, reduced elongation of internodes, reduced apical dominance, and reduced leaf size and complexity. Cytokinin treatment also inhibited rapid auxin responses in hypocotyl segments: auxin-stimulated elongation, H(+) secretion, and ethylene synthesis were all inhibited by cytokinin in wild-type hypocotyl segments, and thus mimicked the impaired auxin responsiveness found in dgt hypocotyls. However, cytokinin failed to inhibit auxin-induced LeSAUR gene expression, an auxin response that is affected by the dgt mutation. In addition, cytokinin treatment inhibited the auxin induction of only one of two 1-aminocyclopropane-1-carboxylic acid synthase genes that exhibited impaired auxin inducibility in dgt hypocotyls. Thus, cytokinin inhibited a subset of the auxin responses impaired in dgt hypocotyls, suggesting that cytokinin blocks at least one branch of the DGT-dependent auxin response pathway.
Collapse
Affiliation(s)
- Catharina Coenen
- Department of Biology, Alleghany College, Meadville, Pennsylvania 16335, USA.
| | | | | | | |
Collapse
|
182
|
Chae HS, Faure F, Kieber JJ. The eto1, eto2, and eto3 mutations and cytokinin treatment increase ethylene biosynthesis in Arabidopsis by increasing the stability of ACS protein. THE PLANT CELL 2003; 15:545-59. [PMID: 12566591 PMCID: PMC141220 DOI: 10.1105/tpc.006882] [Citation(s) in RCA: 240] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The Arabidopsis ethylene-overproducing mutants eto1, eto2, and eto3 have been suggested to affect the post-transcriptional regulation of 1-aminocyclopropane-1-carboxylic acid synthase (ACS). Here, we present the positional cloning of the gene corresponding to the dominant eto3 mutation and show that the eto3 phenotype is the result of a missense mutation within the C-terminal domain of ACS9, which encodes one isoform of the Arabidopsis ACS gene family. This mutation is analogous to the dominant eto2 mutation that affects the C-terminal domain of the highly similar ACS5. Analysis of purified recombinant ACS5 and epitope-tagged ACS5 in transgenic Arabidopsis revealed that eto2 does not increase the specific activity of the enzyme either in vitro or in vivo; rather, it increases the half-life of the protein. In a similar manner, cytokinin treatment increased the stability of ACS5 by a mechanism that is at least partially independent of the eto2 mutation. The eto1 mutation was found to act by increasing the function of ACS5 by stabilizing this protein. These results suggest that an important mechanism by which ethylene biosynthesis is controlled is the regulation of the stability of ACS, mediated at least in part through the C-terminal domain.
Collapse
Affiliation(s)
- Hyun Sook Chae
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3280, USA
| | | | | |
Collapse
|
183
|
Huang Y, Li H, Hutchison CE, Laskey J, Kieber JJ. Biochemical and functional analysis of CTR1, a protein kinase that negatively regulates ethylene signaling in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 33:221-33. [PMID: 12535337 DOI: 10.1046/j.1365-313x.2003.01620.x] [Citation(s) in RCA: 210] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
CTR1 encodes a negative regulator of the ethylene response pathway in Arabidopsis thaliana. The C-terminal domain of CTR1 is similar to the Raf family of protein kinases, but its first two-thirds encodes a novel protein domain. We used a variety of approaches to investigate the function of these two CTR1 domains. Recombinant CTR1 protein was purified from a baculoviral expression system, and shown to possess intrinsic Ser/Thr protein kinase activity with enzymatic properties similar to Raf-1. Deletion of the N-terminal domain did not elevate the kinase activity of CTR1, indicating that, at least in vitro, this domain does not autoinhibit kinase function. Molecular analysis of loss-of-function ctr1 alleles indicated that several mutations disrupt the kinase catalytic domain, and in vitro studies confirmed that at least one of these eliminates kinase activity, which indicates that kinase activity is required for CTR1 function. One missense mutation, ctr1-8, was found to result from an amino acid substitution within a new conserved motif within the N-terminal domain. Ctr1-8 has no detectable effect on the kinase activity of CTR1 in vitro, but rather disrupts the interaction with the ethylene receptor ETR1. This mutation also disrupts the dominant negative effect that results from overexpression of the CTR1 amino-terminal domain in transgenic Arabidopsis. These results suggest that CTR1 interacts with ETR1 in vivo, and that this association is required to turn off the ethylene-signaling pathway.
Collapse
Affiliation(s)
- Yafan Huang
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | | | | | | | | |
Collapse
|
184
|
Balbi V, Lomax TL. Regulation of early tomato fruit development by the diageotropica gene. PLANT PHYSIOLOGY 2003; 131:186-97. [PMID: 12529527 PMCID: PMC166799 DOI: 10.1104/pp.010132] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2002] [Revised: 07/27/2002] [Accepted: 10/10/2002] [Indexed: 05/18/2023]
Abstract
The vegetative phenotype of the auxin-resistant diageotropica (dgt) mutant of tomato (Lycopersicon esculentum Mill.) includes reduced gravitropic response, shortened internodes, lack of lateral roots, and retarded vascular development. Here, we report that early fruit development is also dramatically altered by the single-gene dgt lesion. Fruit weight, fruit set, and numbers of locules and seeds are reduced in dgt. In addition, time to flowering and time from anthesis to the onset of fruit ripening are increased by the dgt lesion, whereas ripening is normal. The dgt mutation appears to affect only the early stages of fruit development, irrespective of allele or genetic background. Expression of members of the LeACS (1-aminocyclopropane-1-carboxylic acid synthase, a key regulatory enzyme of ethylene biosynthesis) and LeIAA (Aux/IAA, auxin-responsive) gene families were quantified via real-time reverse transcriptase-polymerase chain reaction in both dgt and wild-type fruits, providing the first analysis of Aux/IAA gene expression in fruit. The dgt lesion affects the expression of only certain members of both the LeACS and LeIAA multigene families. Different subsets of LeIAA gene family members are affected by the dgt mutation in fruits and hypocotyls, indicating that the DGT gene product functions in a developmentally specific manner. The differential expression of subsets of LeIAA and LeACS gene family members as well as the alterations in dgt fruit morphology and growth suggest that the early stages of fruit development in tomato are regulated, at least in part, by auxin- and ethylene-mediated gene expression.
Collapse
Affiliation(s)
- Virginia Balbi
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331-2902, USA
| | | |
Collapse
|
185
|
Nakano R, Ogura E, Kubo Y, Inaba A. Ethylene biosynthesis in detached young persimmon fruit is initiated in calyx and modulated by water loss from the fruit. PLANT PHYSIOLOGY 2003; 131:276-86. [PMID: 12529535 PMCID: PMC166807 DOI: 10.1104/pp.010462] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2002] [Revised: 08/13/2002] [Accepted: 10/10/2002] [Indexed: 05/18/2023]
Abstract
Persimmon (Diospyros kaki Thunb.) fruit are usually classified as climacteric fruit; however, unlike typical climacteric fruits, persimmon fruit exhibit a unique characteristic in that the younger the stage of fruit detached, the greater the level of ethylene produced. To investigate ethylene induction mechanisms in detached young persimmon fruit, we cloned three cDNAs encoding 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (DK-ACS1, 2, and -3) and two encoding ACC oxidase (DK-ACO1 and -2) genes involved in ethylene biosynthesis, and we analyzed their expression in various fruit tissues. Ethylene production was induced within a few days of detachment in all fruit tissues tested, accompanied by temporally and spatially coordinated expression of all the DK-ACS and DK-ACO genes. In all tissues except the calyx, treatment with 1-methylcyclopropene, an inhibitor of ethylene action, suppressed ethylene production and ethylene biosynthesis-related gene expression. In the calyx, one ACC synthase gene (DK-ACS2) exhibited increased mRNA accumulation accompanied by a large quantity of ethylene production, and treatment of the fruit with 1-methylcyclopropene did not prevent either the accumulation of DK-ACS2 transcripts or ethylene induction. Furthermore, the alleviation of water loss from the fruit significantly delayed the onset of ethylene production and the expression of DK-ACS2 in the calyx. These results indicate that ethylene biosynthesis in detached young persimmon fruit is initially induced in calyx and is modulated by water loss through transcriptional activation of DK-ACS2. The ethylene produced in the calyx subsequently diffuses to other fruit tissues and acts as a secondary signal that stimulates autocatalytic ethylene biosynthesis in these tissues, leading to a burst of ethylene production.
Collapse
Affiliation(s)
- Ryohei Nakano
- Laboratory of Postharvest Agriculture, Faculty of Agriculture, Okayama University, Tsushima, Okayama 700-8530, Japan.
| | | | | | | |
Collapse
|
186
|
Hirsch J, Deslandes L, Feng DX, Balagué C, Marco Y. Delayed Symptom Development in ein2-1, an Arabidopsis Ethylene-Insensitive Mutant, in Response to Bacterial Wilt Caused by Ralstonia solanacearum. PHYTOPATHOLOGY 2002; 92:1142-1148. [PMID: 18944225 DOI: 10.1094/phyto.2002.92.10.1142] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
ABSTRACT Wilt disease caused by the phytopathogenic bacterium Ralstonia solanacearum is poorly understood at the molecular level. The possible roles of salicylic acid, jasmonic acid, and ethylene, compounds commonly associated with the plant response to pathogens, in wilt symptom development were investigated using various Arabidopsis thaliana mutants in a Col-0 background, an ecotype that develops wilt symptoms in response to the virulent GMI1000 strain. Following root inoculation, wilt symptoms were delayed in ein2-1, an ethylene-insensitive mutant, in response to several virulent strains of the pathogen. In ein2-1, bacteria invade the plant and multiply, reaching concentrations slightly lower than those detected in susceptible plants but 1 to 2 logs higher than in Nd-1, an A. thaliana ecotype resistant to strain GMI1000. This delay in disease symptom development of ein2-1 plants suggests that ethylene signaling plays a critical role in wilt disease development. Furthermore, a strong accumulation of transcripts corresponding to PR-3 and PR-4, two ethylene-responsive genes, was observed in susceptible Col-0 plants, but not in ein2-1 and Nd-1 plants, providing additional evidence for a role of ethylene in wilt symptom production. However, this hormone is probably not involved in the establishment of resistance to R. solanacearum, because homozygous ein2-1 plants in a resistant background remain fully resistant to strain GMI1000.
Collapse
|
187
|
Hamant O, Nogué F, Belles-Boix E, Jublot D, Grandjean O, Traas J, Pautot V. The KNAT2 homeodomain protein interacts with ethylene and cytokinin signaling. PLANT PHYSIOLOGY 2002; 130:657-65. [PMID: 12376633 PMCID: PMC166595 DOI: 10.1104/pp.004564] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2002] [Revised: 03/22/2002] [Accepted: 06/10/2002] [Indexed: 05/18/2023]
Abstract
Using a transgenic line that overexpresses a fusion of the KNAT2 (KNOTTED-like Arabidopsis) homeodomain protein and the hormone-binding domain of the glucocorticoid receptor (GR), we have investigated the possible relations between KNAT2 and various hormones. Upon activation of the KNAT2-GR fusion, we observed a delayed senescence of the leaves and a higher rate of shoot initiation, two processes that are also induced by cytokinins and inhibited by ethylene. Furthermore, the activation of the KNAT2-GR fusion induced lobing of the leaves. This feature was partially suppressed by treatment with the ethylene precursor 1-aminocyclopropane-1-carboxylic acid, or by the constitutive ethylene response ctr1 mutation. Conversely, some phenotypic traits of the ctr1 mutant were suppressed by the activation of the KNAT2-GR fusion. These data suggest that KNAT2 acts synergistically with cytokinins and antagonistically with ethylene. In the shoot apical meristem, the KNAT2 gene is expressed in the L3 layer and the rib zone. 1-Aminocyclopropane-1-carboxylic acid treatment restricted the KNAT2 expression domain in the shoot apical meristem and reduced the number of cells in the L3. The latter effect was suppressed by the activation of the KNAT2-GR construct. Conversely, the KNAT2 gene expression domain was enlarged in the ethylene-resistant etr1-1 mutant or in response to cytokinin treatment. These data suggest that ethylene and cytokinins act antagonistically in the meristem via KNAT2 to regulate the meristem activity.
Collapse
Affiliation(s)
- Olivier Hamant
- Laboratoire de Biologie Cellulaire, Institut National de la Recherche Agronomique, Route de St. Cyr, 78026 Versailles cedex, France
| | | | | | | | | | | | | |
Collapse
|
188
|
Casson SA, Chilley PM, Topping JF, Evans IM, Souter MA, Lindsey K. The POLARIS gene of Arabidopsis encodes a predicted peptide required for correct root growth and leaf vascular patterning. THE PLANT CELL 2002; 14:1705-21. [PMID: 12172017 PMCID: PMC151460 DOI: 10.1105/tpc.002618] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2002] [Accepted: 04/28/2002] [Indexed: 05/18/2023]
Abstract
The POLARIS (PLS) gene of Arabidopsis was identified as a promoter trap transgenic line, showing beta-glucuronidase fusion gene expression predominantly in the embryonic and seedling root, with low expression in aerial parts. Cloning of the PLS locus revealed that the promoter trap T-DNA had inserted into a short open reading frame (ORF). Rapid amplification of cDNA ends PCR, RNA gel blot analysis, and RNase protection assays showed that the PLS ORF is located within a short ( approximately 500 nucleotides) auxin-inducible transcript and encodes a predicted polypeptide of 36 amino acid residues. pls mutants exhibit a short-root phenotype and reduced vascularization of leaves. pls roots are hyperresponsive to exogenous cytokinins and show increased expression of the cytokinin-inducible gene ARR5/IBC6 compared with the wild type. pls seedlings also are less responsive to the growth-inhibitory effects of exogenous auxin and show reduced expression of the auxin-inducible gene IAA1 compared with the wild type. The PLS peptide-encoding region of the cDNA partially complements the pls mutation and requires the PLS ORF ATG for activity, demonstrating the functionality of the peptide-encoding ORF. Ectopic expression of the PLS ORF reduces root growth inhibition by exogenous cytokinins and increases leaf vascularization. We propose that PLS is required for correct auxin-cytokinin homeostasis to modulate root growth and leaf vascular patterning.
Collapse
Affiliation(s)
- Stuart A Casson
- Integrative Cell Biology Laboratory, School of Biological and Biomedical Sciences, University of Durham, South Road, Durham DH1 3LE, United Kingdom
| | | | | | | | | | | |
Collapse
|
189
|
Guinel FC, Geil RD. A model for the development of the rhizobial and arbuscular mycorrhizal symbioses in legumes and its use to understand the roles of ethylene in the establishment of these two symbioses. ACTA ACUST UNITED AC 2002. [DOI: 10.1139/b02-066] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We propose a model depicting the development of nodulation and arbuscular mycorrhizae. Both processes are dissected into many steps, using Pisum sativum L. nodulation mutants as a guideline. For nodulation, we distinguish two main developmental programs, one epidermal and one cortical. Whereas Nod factors alone affect the cortical program, bacteria are required to trigger the epidermal events. We propose that the two programs of the rhizobial symbiosis evolved separately and that, over time, they came to function together. The distinction between these two programs does not exist for arbuscular mycorrhizae development despite events occurring in both root tissues. Mutations that affect both symbioses are restricted to the epidermal program. We propose here sites of action and potential roles for ethylene during the formation of the two symbioses with a specific hypothesis for nodule organogenesis. Assuming the epidermis does not make ethylene, the microsymbionts probably first encounter a regulatory level of ethylene at the epidermis outermost cortical cell layer interface. Depending on the hormone concentrations there, infection will either progress or be blocked. In the former case, ethylene affects the cortex cytoskeleton, allowing reorganization that facilitates infection; in the latter case, ethylene acts on several enzymes that interfere with infection thread growth, causing it to abort. Throughout this review, the difficulty of generalizing the roles of ethylene is emphasized and numerous examples are given to demonstrate the diversity that exists in plants.Key words: AM, epidermis, evolution, pea, rhizobia, sym mutant.
Collapse
|
190
|
Affiliation(s)
- Joseph J Kieber
- University of North Carolina, Biology Department, CB# 3280 Chapel Hill, NC 27599-3280; phone: (919) 962-2144; fax: (919) 962-1625;
| |
Collapse
|
191
|
Peeters AJM, Cox MCH, Benschop JJ, Vreeburg RAM, Bou J, Voesenek LACJ. Submergence research using Rumex palustris as a model; looking back and going forward. JOURNAL OF EXPERIMENTAL BOTANY 2002; 53:391-398. [PMID: 11847236 DOI: 10.1093/jexbot/53.368.391] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Flooding is a phenomenon that destroys many crops worldwide. During evolution several plant species evolved specialized mechanisms to survive short- or long-term waterlogging and even complete submergence. One of the plant species that evolved such a mechanism is Rumex palustris. When flooded, this plant species is capable to elongate its petioles to reach the surface of the water. Thereby it restores normal gas exchange which leads to a better survival rate. Enhanced levels of ethylene, due to physical entrapment, is the key signal for the plant that its environment has changed from air to water. Subsequently, a signal transduction cascade involving at least four (classical) plant hormones, ethylene, auxin, abscisic acid, and gibberellic acid, is activated. This results in hyponastic growth of the leaves accompanied by a strongly enhanced elongation rate of the petioles enabling them to reach the surface. Other factors, among them cell wall loosening enzymes have been shown to play a role as well.
Collapse
Affiliation(s)
- Anton J M Peeters
- Department of Plant Ecophysiology, University Utrecht, Sorbonnelaan 16, 3584 CA Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
192
|
Affiliation(s)
- G. Eric Schaller
- Department of Biochemistry and Molecular Biology, University of New Hampshire, Durham, NH 03824
- Corresponding author: phone: 603-862-0565; fax: 603-862-4013;
| | - Joseph J. Kieber
- Biology Department, University of North Carolina, Chapel Hill, NC 27599
| |
Collapse
|
193
|
Suzuki T, Ishikawa K, Yamashino T, Mizuno T. An Arabidopsis histidine-containing phosphotransfer (HPt) factor implicated in phosphorelay signal transduction: overexpression of AHP2 in plants results in hypersensitiveness to cytokinin. PLANT & CELL PHYSIOLOGY 2002; 43:123-9. [PMID: 11828030 DOI: 10.1093/pcp/pcf007] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Histidine-containing phosphotransfer (HPt) factors from Arabidopsis thaliana, designated as AHPs, function most likely in concert with histidine (His)-kinases (HKs) and response regulators (RRs) in certain multistep histidine (His)-->aspartate (Asp) phosphorelays that are involved in the signal transduction mechanisms, by which plant cells appear to respond to certain hormonal stimuli, including cytokinin. Although some previous in vitro results from studies on Arabidopsis AHPs (AHP1 to AHP5) supported this hypothesis, it has not yet been proven. To this end, here we constructed transgenic plants that contained the AHP2 protein in a considerably higher amount than in wild-type plants. Such AHP2-overexpressing young seedlings were examined in comparison with wild-type plants, with special reference to hormone responses; particularly, their inhibitory effects on root elongation of plants grown on agar-plates, and also hypocotyl elongation of etiolated seedlings grown in the dark. The results of this study suggested that AHP2-overexpressing plants showed a characteristic phenotype of cytokinin-hypersensitive. These in vivo observations were best interpreted by assuming that the AHP factor(s) is somehow implicated, if not directly, in a cytokinin-mediated His-->Asp phosphorelay signaling in Arabidopsis.
Collapse
Affiliation(s)
- Tomomi Suzuki
- Laboratory of Molecular Microbiology, School of Agriculture, Nagoya University, Chikusa-ku, Nagoya, 464-8601 Japan
| | | | | | | |
Collapse
|
194
|
Wang KLC, Li H, Ecker JR. Ethylene biosynthesis and signaling networks. THE PLANT CELL 2002; 14 Suppl:S131-51. [PMID: 12045274 PMCID: PMC151252 DOI: 10.1105/tpc.001768] [Citation(s) in RCA: 961] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2002] [Accepted: 03/18/2002] [Indexed: 05/18/2023]
Affiliation(s)
| | | | - Joseph R. Ecker
- To whom correspondence should be addressed. E-mail ; fax 858-558-6379
| |
Collapse
|
195
|
Lorteau MA, Ferguson BJ, Guinel FC. Effects of cytokinin on ethylene production and nodulation in pea (Pisum sativum) cv. Sparkle. PHYSIOLOGIA PLANTARUM 2001; 112:421-428. [PMID: 11473700 DOI: 10.1034/j.1399-3054.2001.1120316.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In this study, we were interested in learning if cytokinins play a role in the developmental process that leads to nodulation in the pea cv. Sparkle. We demonstrate that the application of the synthetic cytokinin BAP (6-benzyl-amino-purine) results in a number of nodulation-related changes. BAP stimulates the production of ethylene, a known inhibitor of nodulation. At low levels (up to 1 &mgr;M), BAP also stimulates nodulation but as its concentration is increased (up to 25 &mgr;M), nodule number decreases. In BAP-treated roots, the infection threads are abnormal; they are twisted, very knotty, and generally grow in a direction parallel to the root surface. In addition, the centers of cell division in the inner cortex are very few. Thus, BAP-treated Sparkle appears to phenocopy the low-nodulating pea mutant R50 [Guinel FC, Sloetjes LL (2000) Ethylene is involved in the nodulation phenotype of Pisum sativum R50 (sym 16), a pleiotropic mutant that nodulates poorly and has pale green leaves. J Exp Bot 51: 885-894]. However, it appears doubtful that there is a direct correlation between the actions of cytokinin and ethylene in causing a reduction in nodule organogenesis because nodulation is not restored by treating BAP-treated Sparkle with ethylene inhibitors.
Collapse
Affiliation(s)
- Marie-Agathe Lorteau
- Department of Biology, Wilfrid Laurier University, Waterloo, Ontario, N2L 3C5, Canada
| | | | | |
Collapse
|
196
|
Tatsuki M, Mori H. Phosphorylation of Tomato 1-Aminocyclopropane-1-carboxylic Acid Synthase, LE-ACS2, at the C-terminal Region. J Biol Chem 2001; 276:28051-7. [PMID: 11375393 DOI: 10.1074/jbc.m101543200] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
1-aminocyclopropane-1-carboxylic acid synthase is a key enzyme in the ethylene biosynthesis pathway. Recent studies raise the possibility that 1-aminocyclopropane-1-carboxylic acid synthase (ACS) is regulated not only transcriptionally but also post-translationally. To elucidate post-translational ACS regulation, we analyzed the modification of LE-ACS2 protein, a wound-inducible isozyme in the ACS family, in tomato fruit (Lycopersicon esculentum L.) using an anti-LE-ACS2 antibody. We detected phosphorylated LE-ACS2 at 55-kDa using immunoprecipitation from an extract of wounded fruit fed with [32P]inorganic phosphate. Analysis of LE-ACS2 phosphoamino acids indicated that serine residue(s) were phosphorylated. In vitro phosphorylation analyses using site-directed mutagenesis of recombinant LE-ACS2 as a substrate demonstrate that serine 460 located at the C-terminal region of ACS is phosphorylated. During tomato ripening stages, expression of both LE-ACS2 and LE-ACS4 mRNA increased. LE-ACS4, however, was not phosphorylated in vitro. These results suggest that ACS isozymes have different post-translational regulatory mechanisms, such as phosphorylation.
Collapse
MESH Headings
- Amino Acid Sequence
- Amino Acids, Cyclic/chemistry
- Amino Acids, Cyclic/metabolism
- Blotting, Western
- Coenzyme A Ligases/chemistry
- Coenzyme A Ligases/metabolism
- DNA, Complementary/metabolism
- Electrophoresis, Polyacrylamide Gel
- Solanum lycopersicum/enzymology
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Phosphorylation
- Precipitin Tests
- Protein Binding
- Protein Structure, Tertiary
- RNA Processing, Post-Transcriptional
- RNA, Messenger/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/metabolism
- Sequence Homology, Amino Acid
- Serine/chemistry
- Stereoisomerism
- Time Factors
- Transcription, Genetic
Collapse
Affiliation(s)
- M Tatsuki
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | | |
Collapse
|
197
|
Seyedi M, Selstam E, Timko MP, Sundqvist C. The cytokinin 2-isopentenyladenine causes partial reversion to skotomorphogenesis and induces formation of prolamellar bodies and protochlorophyllide657 in the lip1 mutant of pea. PHYSIOLOGIA PLANTARUM 2001; 112:261-272. [PMID: 11454232 DOI: 10.1034/j.1399-3054.2001.1120215.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
When grown in darkness the photomorphogenic lip1 mutant of pea (Pisum sativum L.) has a slender stem, expanded leaves, prolamellar body (PLB) lacking plastids with the size of chloroplasts and a low level of phytochrome A. The lack of PLBs in a dark-grown material (lip1) created a possibility to further study the regulation of their formation in relation to plant development. Inclusion of a cytokinin, 2-isopentenyladenine (2iP), in a medium supporting growth of the pea seedlings in darkness was found to reduce epicotyl length in the wild type. In lip1 the formation of a slender stem was inhibited and a short epicotyl developed. Furthermore, leaf expansion was inhibited, the plastid size reduced and the formation of PLBs induced. The PLB formation in lip1 was not accompanied by an increase in the amount of protochlorophyllide (Pchlide) or Pchilde oxidoreductase (POR). In the presence of 2iP the level of phytochrome A protein was increased in lip1 and the POR mRNA levels decreased in both lip1 and wild-type plants. The chloroplast characteristic trans-3-hexadecenoate acyl group of phosphatidylglycerol, present in the plastids of dark-grown lip1, was not influenced by 2iP. Thus, not all photomorphogenic processes reacted similarly in the lip1 mutant, but leaf expansion and plastid differentiation, including PLB formation, seemed to be regulated by the same signal transduction chain. Exogenously applied brassinolide could rescue neither dark- nor light-grown defects of the lip1 mutant. Thus, cytokinins but not brassinolides seem to be involved in the regulation of certain characteristic traits of skotomorphogenesis in pea, including plastid development and PLB formation.
Collapse
Affiliation(s)
- Mahdi Seyedi
- Botanical Institute, Department of Plant Physiology, Box 461, SE-40530 Göteborg, Sweden Department of Plant Physiology, University of Umeå, SE-901 87 Umeå, Sweden Department of Biology, University of Virginia, Charlottesville, VA 22901, USA
| | | | | | | |
Collapse
|
198
|
Abstract
Ethylene regulates a multitude of plant processes, ranging from seed germination to organ senescence. Of particular economic importance is the role of ethylene as an inducer of fruit ripening. Ethylene is synthesized from S-adenosyl-L-methionine via 1-aminocyclopropane-1-carboxylic acid (ACC). The enzymes catalyzing the two reactions in this pathway are ACC synthase and ACC oxidase. Environmental and endogenous signals regulate ethylene biosynthesis primarily through differential expression of ACC synthase genes. Components of the ethylene signal transduction pathway have been identified by characterization of ethylene-response mutants in Arabidopsis thaliana. One class of mutations, exemplified by etr1, led to the identification of the ethylene receptors, which turned out to be related to bacterial two-component signaling systems. Mutations that eliminate ethylene binding to the receptor yield a dominant, ethylene-insensitive phenotype. CTR1 encodes a Raf-like Ser/Thr protein kinase that acts downstream from the ethylene receptor and may be part of a MAP kinase cascade. Mutants in CTR1 exhibit a constitutive ethylene-response phenotype. Both the ethylene receptors and CTR1 are negative regulators of ethylene responses. EIN2 and EIN3 are epistatic to CTR1, and mutations in either gene lead to ethylene insensitivity. Whereas the function of EIN2 in ethylene transduction is not known, EIN3 is a putative transcription factor involved in regulating expression of ethylene-responsive genes. Biotechnological modifications of ethylene synthesis and of sensitivity to ethylene are promising methods to prevent spoilage of agricultural products such as fruits, whose ripening is induced by ethylene.
Collapse
Affiliation(s)
- A B Bleecker
- Departments of Botany and Genetics, University of Wisconsin, Madison, Wisconsin 53706-1381, USA.
| | | |
Collapse
|
199
|
Alonso JM, Ecker JR. The Ethylene Pathway: A Paradigm for Plant Hormone Signaling and Interaction. Sci Signal 2001. [DOI: 10.1126/scisignal.702001re1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
200
|
Alonso JM, Ecker JR. The ethylene pathway: a paradigm for plant hormone signaling and interaction. SCIENCE'S STKE : SIGNAL TRANSDUCTION KNOWLEDGE ENVIRONMENT 2001; 2001:re1. [PMID: 11752640 DOI: 10.1126/stke.2001.70.re1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
To dissect the web of signals that control plant growth, it is important to understand how the individual components of the pathway are modulated. Ethylene is a plant hormone involved in a large number of developmental processes. Biochemical and genetic approaches have provided a detailed view of the biosynthetic and signal transduction pathways of this hormone in the reference plant Arabidopsis thaliana. The effects of several hormones and of developmental changes on the regulation of the key enzymes of ethylene biosynthesis, ACC synthase and ACC oxidase, serve as a clear example of interaction between signals in the generation of complex responses. We now have a picture of how ethylene is sensed by the ethylene receptors and how the signal is further transduced to the nucleus. Although some of the ethylene receptors show a tissue-specific pattern of expression, little is known about the regulation of the components of the ethylene transduction cascade by other hormones or developmental factors. Once the ethylene signal reaches the nucleus, it activates a transcriptional cascade that results in changes in the expression of a number of genes. We describe some of the results that suggest an interaction at the transcriptional level between ethylene, other hormones, and stress signals.
Collapse
Affiliation(s)
- J M Alonso
- the Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA.
| | | |
Collapse
|