151
|
Zhang W, Chen J, Keyhani NO, Zhang Z, Li S, Xia Y. Comparative transcriptomic analysis of immune responses of the migratory locust, Locusta migratoria, to challenge by the fungal insect pathogen, Metarhizium acridum. BMC Genomics 2015; 16:867. [PMID: 26503342 PMCID: PMC4624584 DOI: 10.1186/s12864-015-2089-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 10/15/2015] [Indexed: 01/20/2023] Open
Abstract
Background The migratory locust, Locusta migratoria manilensis, is an immensely destructive agricultural pest that forms a devastating and voracious gregarious phase. The fungal insect pathogen, Metarhizium acridum, is a specialized locust pathogen that has been used as a potent mycoinsecticide for locust control. Little, however, is known about locust immune tissue, i.e. fat body and hemocyte, responses to challenge by this fungus. Methods RNA-seq (RNA sequencing) technology were applied to comparatively examine the different roles of locust fat body and hemocytes, the two major contributors to the insect immune response, in defense against M. acridum. According to the sequence identity to homologies of other species explored immune response genes, immune related unigenes were screened in all transcriptome wide range from locust and the differential expressed genes were identified in these two tissues, respectively. Results Analysis of differentially expressed locust genes revealed 4660 and 138 up-regulated, and 1647 and 23 down-regulated transcripts in the fat body and hemocytes, respectively after inoculation with M. acridum spores. GO (Gene Ontology) enrichment analysis showed membrane biogenesis related proteins and effector proteins significantly differentially expressed in hemocytes, while the expression of energy metabolism and development related transcripts were enriched in the fat body after fungal infection. A total of 470 immune related unigenes were identified, including members of the three major insect immune pathways, i.e. Toll, Imd (immune deficiency) and JAK/STAT (janus kinase/signal transduction and activator of transcription). Of these, 58 and three were differentially expressed in the insect fat body or hemocytes after infection, respectively. Of differential expressed transcripts post challenge, 43 were found in both the fat body and hemocytes, including the LmLys4 lysozyme, representing a microbial cell wall targeting enzyme. Conclusions These data indicate that locust fat body and hemocytes adopt different strategies in response to M. acridum infection. Fat body gene expression after M. acridum challenge appears to function mainly through activation of innate immune related genes, energy metabolism and development related genes. Hemocyte responses attempt to limit fungal infection primarily through regulation of membrane related genes and activation of cellular immune responses and release of humoral immune factors. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2089-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wei Zhang
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, 400045, People's Republic of China.
| | - Jianhong Chen
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, 400045, People's Republic of China.
| | - Nemat O Keyhani
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, 32611, USA.
| | - Zhengyi Zhang
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, 400045, People's Republic of China.
| | - Sai Li
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, 400045, People's Republic of China.
| | - Yuxian Xia
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, 400045, People's Republic of China. .,Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, 400045, People's Republic of China. .,Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, 400045, People's Republic of China.
| |
Collapse
|
152
|
Downregulation of the Musca domestica peptidoglycan recognition protein SC (PGRP-SC) leads to overexpression of antimicrobial peptides and tardy pupation. Mol Immunol 2015; 67:465-74. [DOI: 10.1016/j.molimm.2015.08.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 08/03/2015] [Accepted: 08/06/2015] [Indexed: 02/05/2023]
|
153
|
Koyama H, Kato D, Minakuchi C, Tanaka T, Yokoi K, Miura K. Peptidoglycan recognition protein genes and their roles in the innate immune pathways of the red flour beetle, Tribolium castaneum. J Invertebr Pathol 2015; 132:86-100. [PMID: 26385528 DOI: 10.1016/j.jip.2015.09.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Revised: 08/11/2015] [Accepted: 09/15/2015] [Indexed: 01/09/2023]
Abstract
We have previously demonstrated that the functional Toll and IMD innate immune pathways indeed exist in the model beetle, Tribolium castaneum while the beetle's pathways have broader specificity in terms of microbial activation than that of Drosophila. To elucidate the molecular basis of this broad microbial activation, we here focused on potential upstream sensors of the T. castaneum innate immune pathways, peptidoglycan recognition proteins (PGRPs). Our phenotype analyses utilizing RNA interference-based comprehensive gene knockdown followed by bacterial challenge suggested: PGRP-LA functions as a pivotal sensor of the IMD pathway for both Gram-negative and Gram-positive bacteria; PGRP-LC acts as an IMD pathway-associated sensor mainly for Gram-negative bacteria; PGRP-LE also has some roles in Gram-negative bacterial recognition of the IMD pathway. On the other hand, we did not obtain clear phenotype changes by gene knockdown of short-type PGRP genes, probably because of highly inducible nature of these genes. Our results may collectively account for the promiscuous bacterial activation of the T. castaneum innate immune pathways at least in part.
Collapse
Affiliation(s)
- Hiroaki Koyama
- Applied Entomology Laboratory, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8601, Japan
| | - Daiki Kato
- Applied Entomology Laboratory, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8601, Japan
| | - Chieka Minakuchi
- Applied Entomology Laboratory, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8601, Japan
| | - Toshiharu Tanaka
- Applied Entomology Laboratory, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8601, Japan
| | - Kakeru Yokoi
- Applied Entomology Laboratory, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8601, Japan
| | - Ken Miura
- Applied Entomology Laboratory, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8601, Japan.
| |
Collapse
|
154
|
Meng Q, Yu HY, Zhang H, Zhu W, Wang ML, Zhang JH, Zhou GL, Li X, Qin QL, Hu SN, Zou Z. Transcriptomic insight into the immune defenses in the ghost moth, Hepialus xiaojinensis, during an Ophiocordyceps sinensis fungal infection. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 64:1-15. [PMID: 26165779 DOI: 10.1016/j.ibmb.2015.06.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 06/27/2015] [Accepted: 06/28/2015] [Indexed: 06/04/2023]
Abstract
Hepialus xiaojinensis is an economically important species of Lepidopteran insect. The fungus Ophiocordyceps sinensis can infect its larvae, which leads to mummification after 5-12 months, providing a valuable system with which to study interactions between the insect hosts and pathogenic fungi. However, little sequence information is available for this insect. A time-course analysis of the fat body transcriptome was performed to explore the host immune response to O. sinensis infection. In total, 50,164 unigenes were obtained by assembling the reads from two high-throughput approaches: 454 pyrosequencing and Illumina Hiseq2000. Hierarchical clustering and functional examination revealed four major gene clusters. Clusters 1-3 included transcripts markedly induced by the fungal infection within 72 h. Cluster 4, with a lower number of transcripts, was suppressed during the early phase of infection but returned to normal expression levels sometime before 1 year. Based on sequence similarity to orthologs known to participate in immune defenses, 258 candidate immunity-related transcripts were identified, and their functions were hypothesized. The genes were more primitive than those in other Lepidopteran insects. In addition, lineage-specific family expansion of the clip-domain serine proteases and C-type lectins were apparent and likely caused by selection pressures. Global expression profiles of immunity-related genes indicated that H. xiaojinensis was capable of a rapid response to an O. sinensis challenge; however, the larvae developed tolerance to the fungus after prolonged infection, probably due to immune suppression. Specifically, antimicrobial peptide mRNAs could not be detected after chronic infection, because key components of the Toll pathway (MyD88, Pelle and Cactus) were downregulated. Taken together, this study provides insights into the defense system of H. xiaojinensis, and a basis for understanding the molecular aspects of the interaction between the host and the entomopathogen.
Collapse
Affiliation(s)
- Qian Meng
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hai-Ying Yu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Huan Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Wei Zhu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meng-Long Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Ji-Hong Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Gui-Ling Zhou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Xuan Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Qi-Lian Qin
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing 100101, China.
| | - Song-Nian Hu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing 100101, China.
| |
Collapse
|
155
|
Zhang X, He Y, Cao X, Gunaratna RT, Chen YR, Blissard G, Kanost MR, Jiang H. Phylogenetic analysis and expression profiling of the pattern recognition receptors: Insights into molecular recognition of invading pathogens in Manduca sexta. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 62:38-50. [PMID: 25701384 PMCID: PMC4476941 DOI: 10.1016/j.ibmb.2015.02.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Accepted: 02/02/2015] [Indexed: 05/24/2023]
Abstract
Pattern recognition receptors (PRRs) detect microbial pathogens and trigger innate immune responses. Previous biochemical studies have elucidated the physiological functions of eleven PRRs in Manduca sexta but our understanding of the recognition process is still limited, lacking genomic perspectives. While 34 C-type lectin-domain proteins and 16 Toll-like receptors are reported in the companion papers, we present here 120 other putative PRRs identified through the genome annotation. These include 76 leucine-rich repeat (LRR) proteins, 14 peptidoglycan recognition proteins, 6 EGF/Nim-domain proteins, 5 β-1,3-glucanase-related proteins, 4 galectins, 4 fibrinogen-related proteins, 3 thioester proteins, 5 immunoglobulin-domain proteins, 2 hemocytins, and 1 Reeler. Sequence alignment and phylogenetic analysis reveal the evolution history of a diverse repertoire of proteins for pathogen recognition. While functions of insect LRR proteins are mostly unknown, their structure diversification is phenomenal: In addition to the Toll homologs, 22 LRR proteins with a signal peptide are expected to be secreted; 18 LRR proteins lacking signal peptides may be cytoplasmic; 36 LRRs with a signal peptide and a transmembrane segment may be non-Toll receptors on the surface of cells. Expression profiles of the 120 genes in 52 tissue samples reflect complex regulation in various developmental stages and physiological states, including some likely by Rel family transcription factors via κB motifs in the promoter regions. This collection of information is expected to facilitate future biochemical studies detailing their respective roles in this model insect.
Collapse
Affiliation(s)
- Xiufeng Zhang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Yan He
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Xiaolong Cao
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Ramesh T Gunaratna
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Yun-ru Chen
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA
| | - Gary Blissard
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA
| | - Michael R Kanost
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| | - Haobo Jiang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|
156
|
Hua X, Yuan X, Li Z, Coursey TG, Pflugfelder SC, Li DQ. A Novel Innate Response of Human Corneal Epithelium to Heat-killed Candida albicans by Producing Peptidoglycan Recognition Proteins. PLoS One 2015; 10:e0128039. [PMID: 26039076 PMCID: PMC4454663 DOI: 10.1371/journal.pone.0128039] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 04/21/2015] [Indexed: 11/19/2022] Open
Abstract
Fungal infections of the cornea can be sight-threatening and have a worse prognosis than other types of microbial corneal infections. Peptidoglycan recognition proteins (PGLYRP), which are expressed on the ocular surface, play an important role in the immune response against bacterial corneal infections by activating toll-like receptors (TLRs) or increasing phagocytosis. However, the role of PGLYRPs in innate immune response to fungal pathogens has not been investigated. In this study, we observed a significant induction of three PGLYRPs 2–4 in primary human corneal epithelial cells (HCECs) exposed to live or heat-killed Candida albicans (HKCA). The C-type lectin receptor dectin-1 plays a critical role in controlling Candida albicans infections by promoting phagocytic activity and cytokine production in macrophages and dendritic cells. Here, we demonstrate that dectin-1 is expressed by normal human corneal tissue and primary HCECs. HKCA exposure increased expression of dectin-1 on HCECs at mRNA and protein levels. Interestingly, dectin-1 neutralizing antibody, IκB-α inhibitor BAY11-7082, and NF-κB activation inhibitor quinazoline blocked NF-κB p65 nuclear translocation, as well as the induction of the PGLYRPs by HKCA in HCECs. Furthermore, rhPGLYRP-2 was found to suppress colony-forming units of Candida albicans in vitro. In conclusion, these findings demonstrate that dectin-1 is expressed by human corneal epithelial cells, and dectin-1/NF-κB signaling pathway plays an important role in regulating Candida albicans/HKCA-induced PGLYRP secretion by HCECs.
Collapse
Affiliation(s)
- Xia Hua
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, United States of America
| | - Xiaoyong Yuan
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, United States of America
- * E-mail: (XYY); (DQL)
| | - Zhijie Li
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States of America
| | - Terry G. Coursey
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, United States of America
| | - Stephen C. Pflugfelder
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, United States of America
| | - De-Quan Li
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, United States of America
- * E-mail: (XYY); (DQL)
| |
Collapse
|
157
|
Wang S, Beerntsen BT. Functional implications of the peptidoglycan recognition proteins in the immunity of the yellow fever mosquito, Aedes aegypti. INSECT MOLECULAR BIOLOGY 2015; 24:293-310. [PMID: 25588548 DOI: 10.1111/imb.12159] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Peptidoglycan recognition proteins (PGRPs) play essential roles in the immune systems of insects and higher animals against certain pathogens, including bacteria. In insects, most studies on the functions of PGRPs have been performed in Drosophila, with only limited studies in mosquitoes, which are important disease vectors. In the present study, we analysed the PGRP sequences of the yellow fever mosquito, Aedes aegypti, acquired from two genome databases, and identified a total of seven PGRP genes; namely, PGRP-S1, -SC2, -LA, -LB, -LC, -LD and -LE. Bacterial injection using the Gram-negative bacteria Escherichia coli and the Gram-positive bacteria Micrococcus luteus showed that three PGRPs responded directly to both bacterial stimuli. Subsequently, the transcriptional expression of six of these PGRPs was knocked down using double-stranded RNA-injection-based RNA interference (RNAi). RNAi of the PGRPs resulted in different impacts on the immune responses of Ae. aegypti to the two bacteria, as evidenced by the changes in mosquito survival rates after bacterial challenges as well as the differential regulation of several antimicrobial peptides and a number of other genes involved in mosquito immune pathways. Our data suggest that PGRP-LC is a significant factor in mediating immune responses to both E. coli and M. luteus, and the other PGRPs play only minor roles against these two bacteria, with PGRP-SC2 and -LB also serving as potential negative regulators for certain immune pathway(s) in Ae. aegypti.
Collapse
Affiliation(s)
- S Wang
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, USA
| | | |
Collapse
|
158
|
Xiong GH, Xing LS, Lin Z, Saha TT, Wang C, Jiang H, Zou Z. High throughput profiling of the cotton bollworm Helicoverpa armigera immunotranscriptome during the fungal and bacterial infections. BMC Genomics 2015; 16:321. [PMID: 26001831 PMCID: PMC4490664 DOI: 10.1186/s12864-015-1509-1] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 03/31/2015] [Indexed: 12/03/2022] Open
Abstract
Background Innate immunity is essential in defending against invading pathogens in invertebrates. The cotton bollworm, Helicoverpa armigera (Hübner) is one of the most destructive lepidopteran pests, which causes enormous economic losses in agricultural production worldwide. The components of the immune system are largely unknown in this insect. The application of entomopathogens is considered as an alternative to the chemical insecticides for its control. However, few studies have focused on the molecular mechanisms of host-pathogen interactions between pest insects and their pathogens. Here, we investigated the immunotranscriptome of H. armigera larvae and examined gene expression changes after pathogen infections. This study provided insights into the potential immunity-related genes and pathways in H. armigera larvae. Results Here, we adopted a high throughput RNA-seq approach to determine the immunotranscriptome of H. armigera larvae injected with buffer, fungal pathogen Beauveria bassiana, or Gram-negative bacterium Enterobacter cloacae. Based on sequence similarity to those homologs known to participate in immune responses in other insects, we identified immunity-related genes encoding pattern recognition receptors, signal modulators, immune effectors, and nearly all members of the Toll, IMD and JAK/STAT pathways. The RNA-seq data indicated that some immunity-related genes were activated in fungus- and bacterium-challenged fat body while others were suppressed in B. bassiana challenged hemocytes, including the putative IMD and JAK-STAT pathway members. Bacterial infection elevated the expression of recognition and modulator genes in the fat body and signal pathway genes in hemocytes. Although fat body and hemocytes both are important organs involved in the immune response, our transcriptome analysis revealed that more immunity-related genes were induced in the fat body than that hemocytes. Furthermore, quantitative real-time PCR analysis confirmed that, consistent with the RNA-seq data, the transcript abundances of putative PGRP-SA1, Serpin1, Toll-14, and Spz2 genes were elevated in fat body upon B. bassiana infection, while the mRNA levels of defensin, moricin1, and gloverin1 were up-regulated in hemocytes. Conclusions In this study, a global survey of the host defense against fungal and bacterial infection was performed on the non-model lepidopteran pest species. The comprehensive sequence resource and expression profiles of the immunity-related genes in H. armigera are acquired. This study provided valuable information for future functional investigations as well as development of specific and effective agents to control this pest. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1509-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guang-Hua Xiong
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Long-Sheng Xing
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Zhe Lin
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Tusar T Saha
- Department of Entomology, University of California Riverside, Riverside, CA, 92521, USA.
| | - Chengshu Wang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Haobo Jiang
- Department of Entomology and Plant Pathology, Oklahoma State University, 127 NRC, Stillwater, OK, 74078, USA.
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
159
|
Huang W, Xu X, Freed S, Zheng Z, Wang S, Ren S, Jin F. Molecular cloning and characterization of a β-1,3-glucan recognition protein from Plutella xylostella (L.). N Biotechnol 2015; 32:290-9. [DOI: 10.1016/j.nbt.2015.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 01/07/2015] [Accepted: 01/13/2015] [Indexed: 11/15/2022]
|
160
|
Buckley KM, Rast JP. Diversity of animal immune receptors and the origins of recognition complexity in the deuterostomes. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 49:179-189. [PMID: 25450907 DOI: 10.1016/j.dci.2014.10.013] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 10/01/2014] [Accepted: 10/20/2014] [Indexed: 06/04/2023]
Abstract
Invertebrate animals are characterized by extraordinary diversity in terms of body plan, life history and life span. The past impression that invertebrate immune responses are controlled by relatively simple innate systems is increasingly contradicted by genomic analyses that reveal significant evolutionary novelty and complexity. One accessible measure of this complexity is the multiplicity of genes encoding homologs of pattern recognition receptors. These multigene families vary significantly in size, and their sequence character suggests that they vary in function. At the same time, certain aspects of downstream signaling appear to be conserved. Here, we analyze five major classes of immune recognition receptors from newly available animal genome sequences. These include the Toll-like receptors (TLR), Nod-like receptors (NLR), SRCR domain scavenger receptors, peptidoglycan recognition proteins (PGRP), and Gram negative binding proteins (GNBP). We discuss innate immune complexity in the invertebrate deuterostomes, which was first recognized in sea urchins, within the wider context of emerging genomic information across animal phyla.
Collapse
MESH Headings
- Animals
- Biodiversity
- Evolution, Molecular
- Genetic Variation
- Genome/genetics
- Immunity, Innate/genetics
- Immunity, Innate/immunology
- Invertebrates/classification
- Invertebrates/genetics
- Invertebrates/immunology
- Multigene Family/genetics
- Multigene Family/immunology
- Phylogeny
- Receptors, Immunologic/classification
- Receptors, Immunologic/genetics
- Receptors, Immunologic/immunology
- Receptors, Pattern Recognition/genetics
- Receptors, Pattern Recognition/immunology
- Receptors, Scavenger/genetics
- Receptors, Scavenger/immunology
- Species Specificity
- Toll-Like Receptors/genetics
- Toll-Like Receptors/immunology
Collapse
Affiliation(s)
- Katherine M Buckley
- Department of Immunology and Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; Sunnybrook Research Institute, Toronto, ON, Canada.
| | - Jonathan P Rast
- Department of Immunology and Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; Sunnybrook Research Institute, Toronto, ON, Canada
| |
Collapse
|
161
|
Molecular characterization of a peptidoglycan recognition protein from the cotton bollworm, Helicoverpa armigera and its role in the prophenoloxidase activation pathway. Mol Immunol 2015; 65:123-32. [PMID: 25659083 DOI: 10.1016/j.molimm.2015.01.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Revised: 01/14/2015] [Accepted: 01/15/2015] [Indexed: 11/27/2022]
Abstract
Peptidoglycan recognition proteins (PGRPs), which are evolutionarily conserved from invertebrates to vertebrates, function as pattern-recognition and effector molecules in innate immunity. In this study, a PGRP (HaPGRP-A) from the cotton bollworm, Helicoverpa armigera was identified and characterized. Sequence analysis indicated that HaPGRP-A is not an amidase-type PGRP. Increased levels of HaPGRP-A mRNA were observed in the fat body and hemocytes of H. armigera larvae following the injection of microbes or Sephadex beads. Analysis using purified recombinant HaPGRP-A showed that it (i) could bind and agglutinate Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus, (ii) enhanced prophenoloxidase activation in the presence of microbes, (iii) promoted the formation of melanotic nodules in vivo, and (iv) enhanced the melanization of Sephadex beads in vivo. RNA interference assays were performed to further confirm the function of HaPGRP-A. When the expression of HaPGRP-A in H. armigera larvae was inhibited by dsHaPGRP-A injection, the phenoloxidase activity in larval hemolymph was significantly decreased and RNAi-treated insects infected with bacteria showed higher bacterial growth in hemolymph compared with infected control larvae. These results indicated that HaPGRP-A acts as a pattern recognition receptor and binds to the invading organism to trigger the prophenoloxidase activation pathway of H. armigera, and the activated phenoloxidase may participate in the melanization process of nodulation and encapsulation responses.
Collapse
|
162
|
Stokes BA, Yadav S, Shokal U, Smith LC, Eleftherianos I. Bacterial and fungal pattern recognition receptors in homologous innate signaling pathways of insects and mammals. Front Microbiol 2015; 6:19. [PMID: 25674081 PMCID: PMC4309185 DOI: 10.3389/fmicb.2015.00019] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 01/07/2015] [Indexed: 12/12/2022] Open
Abstract
In response to bacterial and fungal infections in insects and mammals, distinct families of innate immune pattern recognition receptors (PRRs) initiate highly complex intracellular signaling cascades. Those cascades induce a variety of immune functions that restrain the spread of microbes in the host. Insect and mammalian innate immune receptors include molecules that recognize conserved microbial molecular patterns. Innate immune recognition leads to the recruitment of adaptor molecules forming multi-protein complexes that include kinases, transcription factors, and other regulatory molecules. Innate immune signaling cascades induce the expression of genes encoding antimicrobial peptides and other key factors that mount and regulate the immune response against microbial challenge. In this review, we summarize our current understanding of the bacterial and fungal PRRs for homologous innate signaling pathways of insects and mammals in an effort to provide a framework for future studies.
Collapse
Affiliation(s)
- Bethany A Stokes
- Insect Infection and Immunity Laboratory, Department of Biological Sciences, The George Washington University Washington, DC, USA
| | - Shruti Yadav
- Insect Infection and Immunity Laboratory, Department of Biological Sciences, The George Washington University Washington, DC, USA
| | - Upasana Shokal
- Insect Infection and Immunity Laboratory, Department of Biological Sciences, The George Washington University Washington, DC, USA
| | - L C Smith
- Insect Infection and Immunity Laboratory, Department of Biological Sciences, The George Washington University Washington, DC, USA
| | - Ioannis Eleftherianos
- Insect Infection and Immunity Laboratory, Department of Biological Sciences, The George Washington University Washington, DC, USA
| |
Collapse
|
163
|
Yu ZL, Li JH, Xue NN, Nie P, Chang MX. Expression and functional characterization of PGRP6 splice variants in grass carp Ctenopharyngodon idella. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 47:264-274. [PMID: 25149135 DOI: 10.1016/j.dci.2014.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 08/13/2014] [Accepted: 08/14/2014] [Indexed: 06/03/2023]
Abstract
Peptidoglycan recognition proteins (PGRPs), which are evolutionarily conserved pattern recognition receptors from insects to mammals, recognize bacterial PGN and function in antibacterial innate immunity. The existence of alternative splicing is a common feature for PGRP family. Here the splicing pattern from the splicing at the 5' end of PGRP6 gene was identified in a teleost fish, the grass carp (Ctenopharyngodon idella). Four splice variants of grass carp PGRP6 were designated as gcPGRP6a, gcPGRP6b, gcPGRP6c and gcPGRP6d, respectively. Real-time PCR revealed the different expression of these variants in fish individuals and CIK cell line in response to stimulation with different microbial ligands. Immunofluorescence microscopy and Western blotting showed that the splice variants are intracellular protein. Cell lysates from Epithelioma papulosum cyprini (EPC) cells transfected with gcPGRP6 splice variants are able to bind microbial PAMPs including Lys-type PGN from Staphylococcus aureus, DAP-type PGN from Bacillus subtilis, glucan, mannan, and microorganisms including Streptococcus dysgalactiae, Flavobacterium columnare and Saccharomyces cerevisiae. Moreover, overexpression of gcPGRP6 variants inhibited earlier stage growth of intracellular bacteria. The data also identified a specific role for gcPGRP6c variant in the positive regulation of cytolytic molecule perforin, and for gcPGRP6a, gcPGRP6b and gcPGRP6c variants in positive regulation of antimicrobial peptides (AMPs). However, the gcPGRP6d variant, which encoded basically only the PGRP domain, failed to induce the expression of perforin and AMPs. It is suggested that fish PGRP6 splice variants have common and variant-specific function in innate immune response.
Collapse
Affiliation(s)
- Zhang Long Yu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China; Graduate University of Chinese Academy of Sciences, Beijing 100039, China
| | - Jun Hua Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Na Na Xue
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Pin Nie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Ming Xian Chang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China.
| |
Collapse
|
164
|
André A, Ruivo R, Gesto M, Castro LFC, Santos MM. Retinoid metabolism in invertebrates: when evolution meets endocrine disruption. Gen Comp Endocrinol 2014; 208:134-45. [PMID: 25132059 DOI: 10.1016/j.ygcen.2014.08.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 07/20/2014] [Accepted: 08/07/2014] [Indexed: 02/07/2023]
Abstract
Recent genomic and biochemical evidence in invertebrate species pushes back the origin of the retinoid metabolic and signaling modules to the last common ancestor of all bilaterians. However, the evolution of retinoid pathways are far from fully understood. In the majority of non-chordate invertebrate lineages, the ongoing functional characterization of retinoid-related genes (metabolism and signaling pathways), as well as the characterization of the endogenous retinoid content (precursors and active retinoids), is still incomplete. Despite limited, the available data supports the presence of biologically active retinoid pathways in invertebrates. Yet, the mechanisms controlling the spatial and temporal distribution of retinoids as well as their physiological significance share similarities and differences with vertebrates. For instance, retinol storage in the form of retinyl esters, a key feature for the maintenance of retinoid homeostatic balance in vertebrates, was only recently demonstrated in some mollusk species, suggesting that such ability is older than previously anticipated. In contrast, the enzymatic repertoire involved in this process is probably unlike that of vertebrates. The suggested ancestry of active retinoid pathways implies that many more metazoan species might be potential targets for endocrine disrupting chemicals. Here, we review the current knowledge about the occurrence and functionality of retinoid metabolic and signaling pathways in invertebrate lineages, paying special attention to the evolutionary origin of retinoid storage mechanisms. Additionally, we summarize existing information on the endocrine disruption of invertebrate retinoid modules by environmental chemicals. Research priorities in the field are highlighted.
Collapse
Affiliation(s)
- A André
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal; ICBAS - Institute of Biomedical Sciences Abel Salazar, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - R Ruivo
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal.
| | - M Gesto
- Laboratorio de Fisioloxía Animal, Facultade de Bioloxía, Universidade de Vigo, 36310 Vigo, Spain.
| | - L Filipe C Castro
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal.
| | - M M Santos
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal.
| |
Collapse
|
165
|
Quantitative profiling of Drosophila melanogaster Dscam1 isoforms reveals no changes in splicing after bacterial exposure. PLoS One 2014; 9:e108660. [PMID: 25310676 PMCID: PMC4195611 DOI: 10.1371/journal.pone.0108660] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 08/25/2014] [Indexed: 01/01/2023] Open
Abstract
The hypervariable Dscam1 (Down syndrome cell adhesion molecule 1) gene can produce thousands of different ectodomain isoforms via mutually exclusive alternative splicing. Dscam1 appears to be involved in the immune response of some insects and crustaceans. It has been proposed that the diverse isoforms may be involved in the recognition of, or the defence against, diverse parasite epitopes, although evidence to support this is sparse. A prediction that can be generated from this hypothesis is that the gene expression of specific exons and/or isoforms is influenced by exposure to an immune elicitor. To test this hypothesis, we for the first time, use a long read RNA sequencing method to directly investigate the Dscam1 splicing pattern after exposing adult Drosophila melanogaster and a S2 cell line to live Escherichia coli. After bacterial exposure both models showed increased expression of immune-related genes, indicating that the immune system had been activated. However there were no changes in total Dscam1 mRNA expression. RNA sequencing further showed that there were no significant changes in individual exon expression and no changes in isoform splicing patterns in response to bacterial exposure. Therefore our studies do not support a change of D. melanogaster Dscam1 isoform diversity in response to live E. coli. Nevertheless, in future this approach could be used to identify potentially immune-related Dscam1 splicing regulation in other host species or in response to other pathogens.
Collapse
|
166
|
Sun L, Liu S, Wang R, Li C, Zhang J, Liu Z. Pathogen recognition receptors in channel catfish: IV. Identification, phylogeny and expression analysis of peptidoglycan recognition proteins. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 46:291-299. [PMID: 24814805 DOI: 10.1016/j.dci.2014.04.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Revised: 04/28/2014] [Accepted: 04/29/2014] [Indexed: 06/03/2023]
Abstract
Peptidoglycan recognition proteins (PGRPs) can recognize bacterial cell wall (peptidoglycan) and activate innate immune system. In addition to its function as pathogen recognition receptors (PRRs), PGRPs are also involved in directly killing bacteria, and regulating multiple signaling pathways. Recently, we have reported catfish PRRs including nucleotide-binding domain, leucine-rich repeat containing receptors (NLRs), retinoic acid inducible gene I (RIG-I) like receptors (RLRs), and Toll-like receptors (TLRs). In this study, we identified and characterized the PGRP gene family in channel catfish which included two members, PGLYRP-5 and PGLYRP-6. Phylogenetic analysis, syntenic analysis and protein structural analysis were conducted to determine their identities and evolutionary relationships. In order to gain insight into the roles of PGRPs in catfish innate immune responses, quantitative real-time PCR was used to investigate the expression profiles in catfish healthy tissues and after bacterial infection. Both PGLYRP-5 and PGLYRP-6 were ubiquitously expressed in all 12 healthy tissues, and most highly expressed in gill and spleen, respectively. Distinct expression patterns were observed for PGRPs after infection with Edwardsiella ictaluri and Flavobacterium columnare, both Gram-negative bacteria. After infection with E. ictaluri, both PGLYRP-5 and PGLYRP-6 were significantly down-regulated at a certain time-point, while both genes were generally up-regulated in the gill after infection with F. columnare. Collectively, these findings suggested that PGRPs may play complex roles in the host immune response to bacterial pathogens in catfish.
Collapse
Affiliation(s)
- Luyang Sun
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, 203 Swingle Hall, Auburn, AL 36849, USA
| | - Shikai Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, 203 Swingle Hall, Auburn, AL 36849, USA
| | - Ruijia Wang
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, 203 Swingle Hall, Auburn, AL 36849, USA
| | - Chao Li
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, 203 Swingle Hall, Auburn, AL 36849, USA
| | - Jiaren Zhang
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, 203 Swingle Hall, Auburn, AL 36849, USA
| | - Zhanjiang Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, 203 Swingle Hall, Auburn, AL 36849, USA.
| |
Collapse
|
167
|
Tao Y, Yang ZY, Zhang X, Wu HJ. Molecular cloning and mRNA expression of the peptidoglycan recognition protein gene HcPGRP1 and its isoform HcPGRP1a from the freshwater mussel Hyriopsis cumingi. Genet Mol Biol 2014; 37:508-17. [PMID: 25249773 PMCID: PMC4171769 DOI: 10.1590/s1415-47572014000400006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 04/10/2014] [Indexed: 12/02/2022] Open
Abstract
Peptidoglycan recognition proteins (PGRPs) are innate immune molecules that have been structurally conserved throughout evolution in invertebrates and vertebrates. In this study, peptidoglycan recognition protein HcPGRP1 and its isoform HcPGRP1a were identified in the freshwater mussel Hyriopsis cumingii. The full-length cDNAs of HcPGRP1 (973 bp) and HcPGRP1a (537 bp) encoded polypeptides with 218 and 151 amino acids, respectively. Sequence analysis showed that HcPGRP1 had one C-terminal PGRP domain that was conserved throughout evolution. Phylogenetic analysis showed that HcPGRP1 clustered closely with EsPGRP4 of Euprymna scolopes. Real-time PCR showed that the mRNA transcripts of HcPGRP1 and HcPGRP1a were constitutively expressed in various tissues, with the highest level in hepatopancreas. Stimulation with lipopolysaccharide (LPS) and peptidoglycan (PGN) significantly up-regulated HcPGRP1 mRNA expression in hepatopancreas and foot, but not in gill, whereas HcPGRP1a expression was significantly up-regulated in all three tissues. Our results indicate that HcPGRP1 is both a constitutive and inducible protein that may be involved in immune responses (recognition and defense) against invaders.
Collapse
Affiliation(s)
- Ye Tao
- School of Environmental Science and Engineering , Huazhong University of Science and Technology , Wuhan , China . ; Department of Environmental Protection of Henan Province , Zhengzhou , China
| | - Zi-Yan Yang
- School of Environmental Science and Engineering , Huazhong University of Science and Technology , Wuhan , China . ; School of Environment and Municipal Engineering , North China University of Water Resources and Electric Power , Zhengzhou , China
| | - Xin Zhang
- Henan Rural Energy & Environment Agency , Henan Provincial Department of Agriculture , Zhengzhou , China
| | - Hong-Juan Wu
- School of Environmental Science and Engineering , Huazhong University of Science and Technology , Wuhan , China
| |
Collapse
|
168
|
Sahoo BR, Dubey PK, Goyal S, Bhoi GK, Lenka SK, Maharana J, Pradhan SK, Kataria RS. Exploration of the binding modes of buffalo PGRP1 receptor complexed with meso-diaminopimelic acid and lysine-type peptidoglycans by molecular dynamics simulation and free energy calculation. Chem Biol Interact 2014; 220:255-68. [PMID: 25014416 DOI: 10.1016/j.cbi.2014.06.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Revised: 05/28/2014] [Accepted: 06/30/2014] [Indexed: 12/20/2022]
Abstract
The peptidoglycan recognition proteins (PGRPs) are the key components of innate-immunity, and are highly specific for the recognition of bacterial peptidoglycans (PGN). Among different mammalian PGRPs, the PGRP1 binds to murein PGN of Gram-positive bacteria (lysine-type) and also have bactericidal activity towards Gram-negative bacteria (diaminopimelic acid or Dap-type). Buffaloes are the major sources of milk and meat in Asian sub-continents and are highly exposed to bacterial infections. The PGRP activates the innate-immune signaling, but their studies has been confined to limited species due to lack of structural and functional information. So, to understand the structural constituents, 3D model of buffalo PGRP1 (bfPGRP1) was constructed and conformational and dynamics properties of bfPGRP1 was studied. The bfPGRP1 model highly resembled human and camel PGRP structure, and shared a highly flexible N-terminus and centrally placed L-shaped cleft. Docking simulation of muramyl-tripeptide, tetrapeptide, pentapeptide-Dap-(MTP-Dap, MTrP-Dap and MPP-Dap) and lysine-type (MTP-Lys, MTrP-Lys and MPP-Lys) in AutoDock 4.2 and ArgusLab 4.0.1 anticipated β1, α2, α4, β4, and loops connecting β1-α2, α2-β2, β3-β4 and α4-α5 as the key interacting domains. The bfPGRP1-ligand complex molecular dynamics simulation followed by free binding energy (BE) computation conceded BE values of -18.30, -35.53, -41.80, -25.03, -24.62 and -22.30 kJ mol(-1) for MTP-Dap, MTrP-Dap, MPP-Dap, MTP-Lys, MTrP-Lys and MPP-Lys, respectively. The groove-surface and key binding residues involved in PGN-Dap and Lys-type interaction intended by the molecular docking, and were also accompanied by significant BE values directed their importance in pharmacogenomics, and warrants further in vivo studies for drug targeting and immune signaling pathways exploration.
Collapse
Affiliation(s)
- Bikash Ranjan Sahoo
- Department of Bioinformatics, Orissa University of Agriculture and Technology, Bhubaneswar 751001, India; Laboratory of Molecular Biophysics, Institute for Protein Research, Osaka University, Osaka Prefecture 5650871, Japan.
| | - Praveen Kumar Dubey
- Immunology Frontier Research Centre, Osaka University, Osaka Prefecture 5650871, Japan.
| | - Shubham Goyal
- RIKEN Center for Life Science Technologies, Yokohama 2300045, Japan
| | - Gopal Krushna Bhoi
- Department of Bioinformatics, Orissa University of Agriculture and Technology, Bhubaneswar 751001, India
| | - Santosh Kumar Lenka
- Department of Bioinformatics, Orissa University of Agriculture and Technology, Bhubaneswar 751001, India
| | - Jitendra Maharana
- Department of Bioinformatics, Orissa University of Agriculture and Technology, Bhubaneswar 751001, India; Biotechnology Laboratory, Central Inland Fisheries Research Institute, Kolkata, West Bengal 700120, India
| | - Sukanta Kumar Pradhan
- Department of Bioinformatics, Orissa University of Agriculture and Technology, Bhubaneswar 751001, India
| | - Ranjit Singh Kataria
- Division of Animal Biotechnology, National Bureau of Animal Genetic Resources, Karnal 132001, Haryana, India
| |
Collapse
|
169
|
Chen K, Liu C, He Y, Jiang H, Lu Z. A short-type peptidoglycan recognition protein from the silkworm: expression, characterization and involvement in the prophenoloxidase activation pathway. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 45:1-9. [PMID: 24508981 PMCID: PMC9301656 DOI: 10.1016/j.dci.2014.01.017] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 01/18/2014] [Accepted: 01/18/2014] [Indexed: 05/16/2023]
Abstract
Recognition of invading microbes as non-self is the first step of immune responses. In insects, peptidoglycan recognition proteins (PGRPs) detect peptidoglycans (PGs) of bacterial cell wall, leading to the activation of defense responses. Twelve PGRPs have been identified in the silkworm, Bombyx mori, through bioinformatics analysis. However, their biochemical functions are mostly uncharacterized. In this study, we found PGRP-S5 transcript levels were up-regulated in fat body and midgut after bacterial infection. Using recombinant protein isolated from Escherichia coli, we showed that PGRP-S5 binds to PGs from certain bacterial strains and induces bacteria agglutination. Enzyme activity assay confirmed PGRP-S5 is an amidase; we also showed it is an antibacterial protein effective against both Gram-positive and -negative bacteria. Additionally, we demonstrated that specific recognition of PGs by PGRP-S5 is involved in the prophenoloxidase activation pathway. Together, these data suggest the silkworm PGRP-S5 functions as a pattern recognition receptor for the prophenoloxidase pathway initiation and as an effecter to inhibit bacterial growth as well. We finally discussed possible roles of PGRP-S5 as a receptor for antimicrobial peptide gene induction and as an immune modulator in the midgut.
Collapse
Affiliation(s)
- Kangkang Chen
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chen Liu
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yan He
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Haobo Jiang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Zhiqiang Lu
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
170
|
Premachandra HKA, Elvitigala DAS, Whang I, Lee J. Identification of a novel molluscan short-type peptidoglycan recognition protein in disk abalone (Haliotis discus discus) involved in host antibacterial defense. FISH & SHELLFISH IMMUNOLOGY 2014; 39:99-107. [PMID: 24811007 DOI: 10.1016/j.fsi.2014.04.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 04/02/2014] [Accepted: 04/23/2014] [Indexed: 06/03/2023]
Abstract
Peptidoglycan recognition proteins (PGRPs) are a widely studied group of pattern recognition receptors found in invertebrate as well as vertebrate lineages, and are involved in bacterial pathogen sensing. However, in addition to this principal role, they can also function in multiple host defense processes, including cell phagocytosis and hydrolysis of peptidoglycans (PGNs). In this study, a novel invertebrate short-type PGRP was identified in disk abalone (Haliotis discus discus) designated as AbPGRP. The complete coding sequence of AbPGRP was 534 bp, encoding a 178-amino acid protein with a predicted molecular mass of 20 kDa. The AbPGRP gene had a bipartite arrangement consisting of two exons separated by a single intron. Homology analysis revealed that AbPGRP shares conserved features, including amino acid residues critical for substrate and ion binding as well as for its amidase activity, with homologs of other species. Phylogenetic analysis of AbPGRP revealed that it likely evolved from a common ancestor of invertebrates, having significant homology with other molluscan PGRPs. Recombinant AbPGRP exhibited detectable, dose-dependent PGN-hydrolyzing activity with the presence of Zn(2+), and strong antibacterial activity against Vibrio tapetis, consistent with the functional properties previously reported for PGRPs in other mollusks. Moreover, AbPGRP transcription was induced upon treatment of healthy abalones with bacterial peptidoglycan and lipopolysaccharide, although the expression profiles differed with treatment, suggesting a capacity for discriminating between bacterial pathogens through molecular pattern recognition. Collectively, the findings of this study indicate that AbPGRP is a true homolog of invertebrate PGRPs and likely plays an indispensable role in host immunity.
Collapse
Affiliation(s)
- H K A Premachandra
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Special Self-Governing Province 690-756, Republic of Korea
| | - Don Anushka Sandaruwan Elvitigala
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Special Self-Governing Province 690-756, Republic of Korea
| | - Ilson Whang
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Special Self-Governing Province 690-756, Republic of Korea.
| | - Jehee Lee
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Special Self-Governing Province 690-756, Republic of Korea.
| |
Collapse
|
171
|
Yang WJ, Yuan GR, Cong L, Xie YF, Wang JJ. De novo cloning and annotation of genes associated with immunity, detoxification and energy metabolism from the fat body of the oriental fruit fly, Bactrocera dorsalis. PLoS One 2014; 9:e94470. [PMID: 24710118 PMCID: PMC3978049 DOI: 10.1371/journal.pone.0094470] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Accepted: 03/16/2014] [Indexed: 12/13/2022] Open
Abstract
The oriental fruit fly, Bactrocera dorsalis, is a destructive pest in tropical and subtropical areas. In this study, we performed transcriptome-wide analysis of the fat body of B. dorsalis and obtained more than 59 million sequencing reads, which were assembled into 27,787 unigenes with an average length of 591 bp. Among them, 17,442 (62.8%) unigenes matched known proteins in the NCBI database. The assembled sequences were further annotated with gene ontology, cluster of orthologous group terms, and Kyoto encyclopedia of genes and genomes. In depth analysis was performed to identify genes putatively involved in immunity, detoxification, and energy metabolism. Many new genes were identified including serpins, peptidoglycan recognition proteins and defensins, which were potentially linked to immune defense. Many detoxification genes were identified, including cytochrome P450s, glutathione S-transferases and ATP-binding cassette (ABC) transporters. Many new transcripts possibly involved in energy metabolism, including fatty acid desaturases, lipases, alpha amylases, and trehalose-6-phosphate synthases, were identified. Moreover, we randomly selected some genes to examine their expression patterns in different tissues by quantitative real-time PCR, which indicated that some genes exhibited fat body-specific expression in B. dorsalis. The identification of a numerous transcripts in the fat body of B. dorsalis laid the foundation for future studies on the functions of these genes.
Collapse
Affiliation(s)
- Wen-Jia Yang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Guo-Rui Yuan
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Lin Cong
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Yi-Fei Xie
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- * E-mail:
| |
Collapse
|
172
|
Myllymäki H, Valanne S, Rämet M. The Drosophila Imd Signaling Pathway. THE JOURNAL OF IMMUNOLOGY 2014; 192:3455-62. [DOI: 10.4049/jimmunol.1303309] [Citation(s) in RCA: 309] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
173
|
Li JH, Yu ZL, Xue NN, Zou PF, Hu JY, Nie P, Chang MX. Molecular cloning and functional characterization of peptidoglycan recognition protein 6 in grass carp Ctenopharyngodon idella. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 42:244-255. [PMID: 24099967 DOI: 10.1016/j.dci.2013.09.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 09/23/2013] [Accepted: 09/23/2013] [Indexed: 06/02/2023]
Abstract
Peptidoglycan recognition proteins (PGRPs) are pattern recognition molecules of innate immunity. In this study, a long-form PGRP, designated as gcPGRP6, was identified from grass carp Ctenopharyngodon idella. The deduced amino acid sequence of gcPGRP6 is composed of 464 residues with a conserved PGRP domain at the C-terminus. The gcPGRP6 gene consists of four exons and three introns, spacing approximately 2.7 kb of genomic sequence. Phylogenetic analysis demonstrated that gcPGRP6 is clustered closely with zebrafish PGLYRP6, and formed a long-type PGRP subfamily together with PGLYRP2 members identified in teleosts and mammals. Real-time PCR and Western blotting analyses revealed that gcPGRP6 is constitutively expressed in organs/tissues examined, and its expression was significantly induced in liver and intestine of grass carp in response to PGN stimulation and in CIK cells treated with lipoteichoic acid (LTA), polyinosinic polycytidylic acid (Poly I:C) and peptidoglycan (PGN). Immunofluorescence microscopy and Western blotting analyses revealed that gcPGRP6 is effectively secreted to the exterior of CIK cells. The over-expression of gcPGRP6 in CIK cells leads to the activation of NF-κB and the inhibition of intracellular bacterial growth. Moreover, cell lysates from CIK cells transfected with pTurbo-gcPGRP6-GFP plasmid display the binding activity towards Lys-type PGN from Staphylococcus aureus and DAP-type PGN from Bacillus subtilis. Furthermore, proinflammatory cytokine IL-2 and intracellular PGN receptor NOD2 had a significantly increased expression in CIK cells overexpressed with gcPGRP6. It is demonstrated that the PGRP6 in grass carp has a role in binding PGN, in inhibiting the growth of intracellular bacteria, and in activating NF-κB, as well as in regulating innate immune genes.
Collapse
Affiliation(s)
- Jun Hua Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province 430072, China; Graduate University of Chinese Academy of Sciences, Beijing 100039, China
| | | | | | | | | | | | | |
Collapse
|
174
|
Wang S, Beerntsen BT. Identification and functional analysis of the peptidoglycan recognition protein LD gene in the mosquito, Armigeres subalbatus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 42:148-158. [PMID: 24016699 DOI: 10.1016/j.dci.2013.08.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 08/30/2013] [Accepted: 08/31/2013] [Indexed: 06/02/2023]
Abstract
Peptidoglycan recognition proteins are important recognition proteins in many organisms ranging from echinoderms to humans. In an attempt to characterize all the PGRPs in the mosquito Armigeres subalbatus, two PGRP-LD isoforms, AsPGRP-LDa and AsPGRP-LDb, which are orthologs of the PGRP-LDs in several other insect species, were identified from this mosquito using homologous cloning. To date the functions of this PGRP gene have not yet been described in detail in other organisms with a known PGRP-LD gene. In the current study, we analyzed the sequences of these AsPGRP-LDs, their evolutionary relationships with their orthologs, their transcriptional expression in various developmental stages and different tissue samples, and their transcriptional responses to different bacterial stimuli. We then knocked down the expression of both AsPGRP-LDs by injection of double-stranded RNAs, and assessed the impact of AsPGRP-LD RNAi on mosquito survival after bacterial challenges and on the transcriptional expression of a number of antimicrobial peptides.
Collapse
Affiliation(s)
- Songjie Wang
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, United States.
| | | |
Collapse
|
175
|
Liu Y, Shen D, Zhou F, Wang G, An C. Identification of immunity-related genes in Ostrinia furnacalis against entomopathogenic fungi by RNA-seq analysis. PLoS One 2014; 9:e86436. [PMID: 24466095 PMCID: PMC3895045 DOI: 10.1371/journal.pone.0086436] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Accepted: 12/10/2013] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The Asian corn borer (Ostrinia furnacalis (Guenée)) is one of the most serious corn pests in Asia. Control of this pest with entomopathogenic fungus Beauveria bassiana has been proposed. However, the molecular mechanisms involved in the interactions between O. furnacalis and B. bassiana are unclear, especially under the conditions that the genomic information of O. furnacalis is currently unavailable. So we sequenced and characterized the transcriptome of O. furnacalis larvae infected by B. bassiana with special emphasis on immunity-related genes. METHODOLOGY/PRINCIPAL FINDINGS Illumina Hiseq2000 was used to sequence 4.64 and 4.72 Gb of the transcriptome from water-injected and B. bassiana-injected O. furnacalis larvae, respectively. De novo assembly generated 62,382 unigenes with mean length of 729 nt. All unigenes were searched against Nt, Nr, Swiss-Prot, COG, and KEGG databases for annotations using BLASTN or BLASTX algorithm with an E-value cut-off of 10(-5). A total of 35,700 (57.2%) unigenes were annotated to at least one database. Pairwise comparisons resulted in 13,890 differentially expressed genes, with 5,843 up-regulated and 8,047 down-regulated. Based on sequence similarity to homologs known to participate in immune responses, we totally identified 190 potential immunity-related unigenes. They encode 45 pattern recognition proteins, 33 modulation proteins involved in the prophenoloxidase activation cascade, 46 signal transduction molecules, and 66 immune responsive effectors, respectively. The obtained transcriptome contains putative orthologs for nearly all components of the Toll, Imd, and JAK/STAT pathways. We randomly selected 24 immunity-related unigenes and investigated their expression profiles using quantitative RT-PCR assay. The results revealed variant expression patterns in response to the infection of B. bassiana. CONCLUSIONS/SIGNIFICANCE This study provides the comprehensive sequence resource and expression profiles of the immunity-related genes of O. furnacalis. The obtained data gives an insight into better understanding the molecular mechanisms of innate immune processes in O. furnacalis larvae against B. bassiana.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dongxu Shen
- Department of Entomology, College of Agriculture and Biotechnology, China Agricultural University, Beijing, China
| | - Fan Zhou
- Department of Entomology, College of Agriculture and Biotechnology, China Agricultural University, Beijing, China
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chunju An
- Department of Entomology, College of Agriculture and Biotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
176
|
Péan CB, Dionne MS. Intracellular infections in Drosophila melanogaster: host defense and mechanisms of pathogenesis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 42:57-66. [PMID: 23648644 DOI: 10.1016/j.dci.2013.04.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 04/12/2013] [Accepted: 04/19/2013] [Indexed: 06/02/2023]
Abstract
The fruit-fly Drosophila melanogaster has emerged as a powerful model to study innate immunity against intracellular pathogens. To combat infection, the fly relies on multiple lines of defense, many of which are shared with mammals and arthropod vectors of human diseases. In addition to conserved immune pathways, the ease of performing sophisticated genetic screens has allowed the identification of novel host immune factors and novel pathogen virulence factors. Recently, some groups have exploited this to simultaneously analyze the host and pathogen genetics of intracellular infection. This review aims to unravel the Drosophila immune response against intracellular pathogens, highlighting recent discoveries.
Collapse
Affiliation(s)
- Claire B Péan
- Centre for Molecular and Cellular Biology of Inflammation and Peter Gorer Department of Immunobiology, King's College London School of Medicine, London SE1 1UL, UK
| | | |
Collapse
|
177
|
Kleino A, Silverman N. The Drosophila IMD pathway in the activation of the humoral immune response. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 42:25-35. [PMID: 23721820 PMCID: PMC3808521 DOI: 10.1016/j.dci.2013.05.014] [Citation(s) in RCA: 249] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Revised: 05/17/2013] [Accepted: 05/17/2013] [Indexed: 05/08/2023]
Abstract
The IMD pathway signaling plays a pivotal role in the Drosophila defense against bacteria. During the last two decades, significant progress has been made in identifying the components and deciphering the molecular mechanisms underlying this pathway, including the means of bacterial sensing and signal transduction. While these findings have contributed to the understanding of the immune signaling in insects, they have also provided new insights in studying the mammalian NF-κB signaling pathways. Here, we summarize the current view of the IMD pathway focusing on how it regulates the humoral immune response of Drosophila.
Collapse
Affiliation(s)
- Anni Kleino
- Division of Infectious Diseases, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | | |
Collapse
|
178
|
Imler JL. Overview of Drosophila immunity: a historical perspective. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 42:3-15. [PMID: 24012863 DOI: 10.1016/j.dci.2013.08.018] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 05/01/2013] [Accepted: 05/01/2013] [Indexed: 05/24/2023]
Abstract
The functional analysis of genes from the model organism Drosophila melanogaster has provided invaluable information for many cellular and developmental or physiological processes, including immunity. The best-understood aspect of Drosophila immunity is the inducible humoral response, first recognized in 1972. This pioneering work led to a remarkable series of findings over the next 30 years, ranging from the identification and characterization of the antimicrobial peptides produced, to the deciphering of the signalling pathways activating the genes that encode them and, ultimately, to the discovery of the receptors sensing infection. These studies on an insect model coincided with a revival of the field of innate immunity, and had an unanticipated impact on the biomedical field.
Collapse
Affiliation(s)
- Jean-Luc Imler
- Faculté des Sciences de la Vie, Université de Strasbourg, Strasbourg, France; UPR9022 du CNRS, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France.
| |
Collapse
|
179
|
Kurata S. Peptidoglycan recognition proteins in Drosophila immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 42:36-41. [PMID: 23796791 PMCID: PMC3808481 DOI: 10.1016/j.dci.2013.06.006] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 06/11/2013] [Accepted: 06/11/2013] [Indexed: 05/13/2023]
Abstract
Innate immunity is the front line of self-defense against infectious non-self in vertebrates and invertebrates. The innate immune system is mediated by germ-line encoding pattern recognition molecules (pathogen sensors) that recognize conserved molecular patterns present in the pathogens but absent in the host. Peptidoglycans (PGN) are essential cell wall components of almost all bacteria, except mycoplasma lacking a cell wall, which provides the host immune system an advantage for detecting invading bacteria. Several families of pattern recognition molecules that detect PGN and PGN-derived compounds have been indentified, and the role of PGRP family members in host defense is relatively well-characterized in Drosophila. This review focuses on the role of PGRP family members in the recognition of invading bacteria and the activation and modulation of immune responses in Drosophila.
Collapse
Affiliation(s)
- Shoichiro Kurata
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan.
| |
Collapse
|
180
|
Jiang W, Yin Y, Zhou Y, He G, Qi Y. Isolation and characterization of peptidoglycan recognition protein 1 from antler base of sika deer (Cervus nippon). Int J Biol Macromol 2013; 64:313-8. [PMID: 24360898 DOI: 10.1016/j.ijbiomac.2013.12.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 12/10/2013] [Accepted: 12/11/2013] [Indexed: 11/29/2022]
Abstract
Peptidoglycan recognition proteins (PGRPs) are secreted innate immunity pattern recognition molecules. In this study, a new peptidoglycan recognition protein 1 named cnPGRP1 was isolated from an antler base of sika deer Cervus nippon. The antler base antimicrobial proteins (AAP) were subjected to consecutive chromatographic methods connected to Sephadex G-25 gel filtration column (CM) anion-exchange column, and RP-HPLC. The molecular weight of cnPGRP1 was 17.2 kDa under SDS-PAGE, and peptide mass fingerprint analysis by MALDI-TOF-MS as peptidoglycan recognition protein 1 matched to Dasypus novemcinctus. The matched amino acids sequences were RLYEIIQKWPHYRA. Both Gram-positive and Gram-negative bacteria can be killed by cnPGRP1 in the 50-250 μg/mL range through in vitro. Furthermore, cnPGRP1 has been found to bind Gram-positive bacteria, Gram-negative bacteria, and even fungus.
Collapse
Affiliation(s)
- Wei Jiang
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, PR China
| | - Yongguang Yin
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, PR China.
| | - Yajun Zhou
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, PR China
| | - Guidan He
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, PR China
| | - Yue Qi
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, PR China
| |
Collapse
|
181
|
Jang JH, Kim H, Cho JH. Rainbow trout peptidoglycan recognition protein has an anti-inflammatory function in liver cells. FISH & SHELLFISH IMMUNOLOGY 2013; 35:1838-1847. [PMID: 24056276 DOI: 10.1016/j.fsi.2013.09.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 09/06/2013] [Accepted: 09/06/2013] [Indexed: 06/02/2023]
Abstract
Peptidoglycan recognition proteins (PGRPs) are innate immune molecules that are structurally conserved through evolution in both invertebrate and vertebrate animals. PGRPs exert diverse host-defense functions both through direct antibacterial activity and through indirect effects, including the induction of antimicrobial peptides and the modulation of inflammation and immune responses. In this study, we identified the gene encoding a long form of PGRP (OmPGRP-L1) from the rainbow trout, Oncorhynchus mykiss, and investigated whether it has immunomodulating activity in a rainbow trout hepatoma cell line RTH-149 challenged with fish pathogenic bacteria. OmPGRP-L1 contains the conserved PGRP domain and the four Zn(2+)-binding amino acid residues required for amidase activity. In RTH-149 cells, OmPGRP-L1 expression was increased by bacterial stimulation. Loss-of-function and gain-of-function experiments indicated that OmPGRP-L1 is involved in the expression of pro-inflammatory cytokines. Silencing of OmPGRP-L1 in RTH-149 cells challenged with Edwardsiella tarda dramatically increased the expression of IL-1β and TNF-α. In contrast, overexpression of OmPGRP-L1 or its amidase-inactive mutant OmPGRP-L1(C472S) resulted in down-regulation of IL-1β and TNF-α expression. When overexpressed in RTH-149 cells, OmPGRP-L1 inhibited NF-κB activity with or without bacterial stimulation. Collectively, these findings suggest that OmPGRP-L1 has an anti-inflammatory function, independent of its amidase activity, possibly via NF-κB inhibition in liver cells.
Collapse
Affiliation(s)
- Ju Hye Jang
- Department of Biology, Research Institute of Life Science, Gyeongsang National University, 501 Jinju Dae-ro, Jinju 660-701, South Korea
| | | | | |
Collapse
|
182
|
Molecular cloning and functional characterization of a short peptidoglycan recognition protein (HcPGRPS1) from the freshwater mussel, Hyriopsis cumingi. Mol Immunol 2013; 56:729-38. [DOI: 10.1016/j.molimm.2013.06.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 06/23/2013] [Accepted: 06/27/2013] [Indexed: 11/23/2022]
|
183
|
Tindwa H, Patnaik BB, Kim DH, Mun S, Jo YH, Lee BL, Lee YS, Kim NJ, Han YS. Cloning, characterization and effect of TmPGRP-LE gene silencing on survival of Tenebrio molitor against Listeria monocytogenes infection. Int J Mol Sci 2013; 14:22462-82. [PMID: 24240808 PMCID: PMC3856074 DOI: 10.3390/ijms141122462] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 10/16/2013] [Accepted: 10/30/2013] [Indexed: 11/24/2022] Open
Abstract
Peptidoglycan recognition proteins (PGRPs) are a family of innate immune molecules that recognize bacterial peptidoglycan. PGRP-LE, a member of the PGRP family, selectively binds to diaminopimelic acid (DAP)-type peptidoglycan to activate both the immune deficiency (Imd) and proPhenoloxidase (proPO) pathways in insects. A PGRP-LE-dependent induction of autophagy to control Listeria monocytogenes has also been reported. We identified and partially characterized a novel PGRP-LE homologue, from Tenebrio molitor and analyzed its functional role in the survival of the insect against infection by a DAP-type PGN containing intracellular pathogen, L. monocytogenes. The cDNA is comprised of an open reading frame (ORF) of 990 bp and encodes a polypeptide of 329 residues. TmPGRP-LE contains one PGRP domain, but lacks critical residues for amidase activity. Quantitative RT-PCR analysis showed a broad constitutive expression of the transcript at various stages of development spanning from larva to adult. RNAi mediated knockdown of the transcripts, followed by a challenge with L. monocytogenes, showed a significant reduction in survival rate of the larvae, suggesting a putative role of TmPGRP-LE in sensing and control of L. monocytogenes infection in T. molitor. These results implicate PGRP-LE as a defense protein necessary for survival of T. molitor against infection by L. monocytogenes.
Collapse
Affiliation(s)
- Hamisi Tindwa
- Division of Plant Biotechnology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Korea; E-Mails: (H.T.); (B.B.P.); (D.H.K.); (S.M.); (Y.H.J.)
| | - Bharat Bhusan Patnaik
- Division of Plant Biotechnology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Korea; E-Mails: (H.T.); (B.B.P.); (D.H.K.); (S.M.); (Y.H.J.)
| | - Dong Hyun Kim
- Division of Plant Biotechnology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Korea; E-Mails: (H.T.); (B.B.P.); (D.H.K.); (S.M.); (Y.H.J.)
| | - Seulgi Mun
- Division of Plant Biotechnology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Korea; E-Mails: (H.T.); (B.B.P.); (D.H.K.); (S.M.); (Y.H.J.)
| | - Yong Hun Jo
- Division of Plant Biotechnology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Korea; E-Mails: (H.T.); (B.B.P.); (D.H.K.); (S.M.); (Y.H.J.)
| | - Bok Luel Lee
- National Research Laboratory of Defense Proteins, College of Pharmacy, Pusan National University, Jangjeon Dong, Kumjeong Ku, Busan 609-735, Korea; E-Mail:
| | - Yong Seok Lee
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, Asan City 336-745, Korea; E-Mail:
| | - Nam Jung Kim
- Division of Applied Entomology, National Academy of Agricultural Science, Rural Development Administration, 61th, Seodun-dong, Gwonseon-gu, Suwon, Gyeonggi-do 441-853, Korea; E-Mail:
| | - Yeon Soo Han
- Division of Plant Biotechnology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Korea; E-Mails: (H.T.); (B.B.P.); (D.H.K.); (S.M.); (Y.H.J.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +82-62-530-2072; Fax: +82-62-530-2069
| |
Collapse
|
184
|
Innate immune recognition of the microbiota promotes host-microbial symbiosis. Nat Immunol 2013; 14:668-75. [PMID: 23778794 DOI: 10.1038/ni.2635] [Citation(s) in RCA: 408] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 05/02/2013] [Indexed: 02/07/2023]
Abstract
Pattern-recognition receptors (PRRs) are traditionally known to sense microbial molecules during infection to initiate inflammatory responses. However, ligands for PRRs are not exclusive to pathogens and are abundantly produced by the resident microbiota during normal colonization. Mechanism(s) that underlie this paradox have remained unclear. Recent studies reveal that gut bacterial ligands from the microbiota signal through PRRs to promote development of host tissue and the immune system, and protection from disease. Evidence from both invertebrate and vertebrate models reveals that innate immune receptors are required to promote long-term colonization by the microbiota. This emerging perspective challenges current models in immunology and suggests that PRRs may have evolved, in part, to mediate the bidirectional cross-talk between microbial symbionts and their hosts.
Collapse
|
185
|
Li J, Lee DSW, Madrenas J. Evolving Bacterial Envelopes and Plasticity of TLR2-Dependent Responses: Basic Research and Translational Opportunities. Front Immunol 2013; 4:347. [PMID: 24191155 PMCID: PMC3808894 DOI: 10.3389/fimmu.2013.00347] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 10/08/2013] [Indexed: 12/17/2022] Open
Abstract
Innate immune mechanisms that follow early recognition of microbes influence the nature and magnitude of subsequent adaptive immune responses. Early detection of microbes depends on pattern recognition receptors that sense pathogen-associated molecular patterns or microbial-associated molecular patterns (PAMPS or MAMPs, respectively). The bacterial envelope contains MAMPs that include membrane proteins, lipopeptides, glycopolymers, and other pro-inflammatory molecules. Bacteria are selected by environmental pressures resulting in quantitative or qualitative changes in their envelope structures that often promote evasion of host immune responses and therefore, infection. However, recent studies have shown that slight, adaptive changes in MAMPs on the bacterial cell wall may result in their ability to induce the secretion not only of pro-inflammatory cytokines but also of anti-inflammatory cytokines. This effect can fine-tune the subsequent response to microbes expressing these MAMPs and lead to the establishment of a commensal state within the host rather than infectious disease. In this review, we will examine the plasticity of Toll-like receptor (TLR) 2 signaling as evidence of evolving MAMPs, using the better-characterized TLR4 as a template. We will review the role of differential dimerization of TLR2 and the arrangement of signaling complexes and co-receptors in determining the capacity of the host to recognize an array of TLR2 ligands and generate different immune responses to these ligands. Last, we will assess briefly how this plasticity may expand the array of interactions between microbes and immune systems beyond the traditional disease-causing paradigm.
Collapse
Affiliation(s)
- Junbin Li
- Microbiome and Disease Tolerance Centre, Department of Microbiology and Immunology, McGill University , Montreal, QC , Canada
| | | | | |
Collapse
|
186
|
Molecular characterization of a short peptidoglycan recognition protein (PGRP-S) from Asian corn borer (Ostrinia furnacalis) and its role in triggering proPO activity. World J Microbiol Biotechnol 2013; 30:263-70. [DOI: 10.1007/s11274-013-1449-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 07/25/2013] [Indexed: 10/26/2022]
|
187
|
Li JH, Chang MX, Xue NN, Nie P. Functional characterization of a short peptidoglycan recognition protein, PGRP5 in grass carp Ctenopharyngodon idella. FISH & SHELLFISH IMMUNOLOGY 2013; 35:221-230. [PMID: 23659995 DOI: 10.1016/j.fsi.2013.04.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 02/27/2013] [Accepted: 04/15/2013] [Indexed: 06/02/2023]
Abstract
Peptidoglycan recognition proteins (PGRPs), which are evolutionarily conserved from insects to mammals, recognize bacterial peptidoglycan (PGN) and function in antibacterial innate immunity. In this study, a short-form PGRP, designated as gcPGRP5 was identified from grass carp Ctenopharyngodon idella. The deduced amino acid sequence of gcPGRP5 is composed of 180 residues with a conserved PGRP domain at the C-terminus. The gcPGRP5 gene consists of four exons and three introns, spacing approximately 2.3 kb in genomic sequence. Phylogenetic analysis demonstrated that the gcPGRP5 is clustered with other PGRP-S identified in teleost fish. The gcPGRP5 is constitutively expressed in all organs/tissues examined, and its expression was significantly induced in CIK cells treated with lipoteichoic acid (LTA), polyinosinic polycytidylic acid (Poly I:C) and PGN. Fluorescence analysis showed that gcPGRP5 is distributed in cytoplasm of CIK cells, and cell lysates from CIK cells transfected with pTurbo-gcPGRP5-GFP and ptGFP1-gcPGRP5 plasmids display the binding activity and peptidoglycan-lytic amidase activity toward Lys-PGN from Staphylococcus aureus and Dap-PGN from Bacillus subtilis. Furthermore, heat-shock protein70 (Hsp70), and MyD88, an adaptor molecule in Toll-like receptor pathway, had an increased expression in CIK cells overexpressed with gcPGRP5. It is thus indicated that gcPGRP5 exhibits amidase activity, and also possesses roles in anti-stress, and in Toll-like receptor signaling pathway.
Collapse
Affiliation(s)
- Jun Hua Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province 430072, China
| | | | | | | |
Collapse
|
188
|
Abstract
PeptidoGlycan Recognition Proteins (PGRPs) are key regulators of the insect innate antibacterial response. Even if they have been intensively studied, some of them have yet unknown functions. Here, we present a functional analysis of PGRP-LA, an as yet uncharacterized Drosophila PGRP. The PGRP-LA gene is located in cluster with PGRP-LC and PGRP-LF, which encode a receptor and a negative regulator of the Imd pathway, respectively. Structure predictions indicate that PGRP-LA would not bind to peptidoglycan, pointing to a regulatory role of this PGRP. PGRP-LA expression was enriched in barrier epithelia, but low in the fat body. Use of a newly generated PGRP-LA deficient mutant indicates that PGRP-LA is not required for the production of antimicrobial peptides by the fat body in response to a systemic infection. Focusing on the respiratory tract, where PGRP-LA is strongly expressed, we conducted a genome-wide microarray analysis of the tracheal immune response of wild-type, Relish, and PGRP-LA mutant larvae. Comparing our data to previous microarray studies, we report that a majority of genes regulated in the trachea upon infection differ from those induced in the gut or the fat body. Importantly, antimicrobial peptide gene expression was reduced in the tracheae of larvae and in the adult gut of PGRP-LA-deficient Drosophila upon oral bacterial infection. Together, our results suggest that PGRP-LA positively regulates the Imd pathway in barrier epithelia.
Collapse
|
189
|
Kounatidis I, Ligoxygakis P. Drosophila as a model system to unravel the layers of innate immunity to infection. Open Biol 2013; 2:120075. [PMID: 22724070 PMCID: PMC3376734 DOI: 10.1098/rsob.120075] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 04/25/2012] [Indexed: 12/11/2022] Open
Abstract
Innate immunity relies entirely upon germ-line encoded receptors, signalling components and effector molecules for the recognition and elimination of invading pathogens. The fruit fly Drosophila melanogaster with its powerful collection of genetic and genomic tools has been the model of choice to develop ideas about innate immunity and host–pathogen interactions. Here, we review current research in the field, encompassing all layers of defence from the role of the microbiota to systemic immune activation, and attempt to speculate on future directions and open questions.
Collapse
Affiliation(s)
- Ilias Kounatidis
- Laboratory of Genes and Development, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | | |
Collapse
|
190
|
Garcia-Garcia E, Galindo-Villegas J, Mulero V. Mucosal immunity in the gut: the non-vertebrate perspective. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 40:278-288. [PMID: 23537860 DOI: 10.1016/j.dci.2013.03.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 03/07/2013] [Accepted: 03/14/2013] [Indexed: 06/02/2023]
Abstract
Much is now known about the vertebrate mechanisms involved in mucosal immunity, and the requirement of commensal microbiota at mucosal surfaces for the proper functioning of the immune system. In comparison, very little is known about the mechanisms of immunity at the barrier epithelia of non-vertebrate organisms. The purpose of this review is to summarize key experimental evidence illustrating how non-vertebrate immune mechanisms at barrier epithelia compare to those of higher vertebrates, using the gut as a model organ. Not only effector mechanisms of gut immunity are similar between vertebrates and non-vertebrates, but it also seems that the proper functioning of non-vertebrate gut defense mechanisms requires the presence of a resident microbiota. As more information becomes available, it will be possible to obtain a more accurate picture of how mucosal immunity has evolved, and how it adapts to the organisms' life styles.
Collapse
Affiliation(s)
- Erick Garcia-Garcia
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Campus Universitario de Espinardo, 30100 Murcia, Spain.
| | | | | |
Collapse
|
191
|
Wang HL, Li ZX, Wang LJ, He H, Yang J, Chen L, Niu FB, Liu Y, Guo JZ, Liu XL. Polymorphism in PGLYRP-1 gene by PCR-RFLP and its association with somatic cell score in Chinese Holstein. Res Vet Sci 2013; 95:508-14. [PMID: 23820447 DOI: 10.1016/j.rvsc.2013.06.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 05/30/2013] [Accepted: 06/05/2013] [Indexed: 10/26/2022]
Abstract
Bovine peptidoglycan recognition protein 1 (PGLYRP-1), an important pattern recognition molecule (PRM) of the innate immune system, is an effector molecule in killing different microorganisms directly. To investigate whether the PGLYRP-1 gene was associated with mastitis and milk production traits in dairy cattle, the polymorphism of this gene was analyzed by PCR-RFLP in a population of 524 Chinese Holstein. A total of ten single nucleotide polymorphism (SNP) loci were identified. The association analysis of single SNP locus showed that T-35A, T-12G and G+102C were significantly associated (P<0.05) with somatic cell score (SCS), while G+102C and G+649C were significantly associated (P<0.05) with 305-day milk yield. Association analysis between combined haplotypes and SCS, milk production traits indicated that H3H3 was associated with the lower SCS (P<0.01), and H2H2 was associated with the lower 305-day milk yield (P<0.01). These findings demonstrated that polymorphisms in PGLYRP-1 gene associated with mastitis resistance and 305-day milk yield, and the H3H3 would provide a useful genetic marker of combined haplotypes for mastitis resistance selection and breeding in Chinese Holstein.
Collapse
Affiliation(s)
- H L Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
192
|
Ratzka C, Gross R, Feldhaar H. Gene expression analysis of the endosymbiont-bearing midgut tissue during ontogeny of the carpenter ant Camponotus floridanus. JOURNAL OF INSECT PHYSIOLOGY 2013; 59:611-623. [PMID: 23570961 DOI: 10.1016/j.jinsphys.2013.03.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 03/27/2013] [Accepted: 03/29/2013] [Indexed: 06/02/2023]
Abstract
Insects have frequently evolved mutualistic relationships with extracellular and/or intracellular bacterial endosymbionts. Infection with endosymbionts seems to affect several cellular functions of the host such as immune pathways, oxidative stress regulation and autophagy. Our current knowledge about specific host factors leading to endosymbiont tolerance and/or control is still scarce and is based on very few associations between insect hosts and bacteria only. Camponotus floridanus ants harbour the obligate intracellular bacterium Blochmannia floridanus within specialized midgut cells called bacteriocytes. The number of Blochmannia endosymbionts within the midgut tissue increases strongly during host development and reaches a maximum at the late pupal stage, where the entire midgut is transformed into a symbiotic organ. After eclosion of workers the number of Blochmannia strongly decreases again. We chose 15 candidate genes from C. floridanus likely to be involved in host-symbiont interactions based on their significant homology to previously investigated symbiosis-relevant genes from other insects. We determined the expression of these genes in the endosymbiont-bearing midgut tissue in comparison to the residual body tissue at different developmental stages of C. floridanus in order to reveal changes in gene expression correlating with changes in endosymbiont number per host. Strikingly, two pattern recognition receptors (amidase PGRP-LB and PGRP-SC2) were highly expressed in the midgut tissue at the pupal stage, potentially down-modulating the IMD pathway to enable endosymbiont tolerance. Moreover, we investigated the immune gene expression in response to bacterial challenge at the pupal stage. Results showed that the midgut tissue differs in expression pattern in contrast to the residual body. Our results support a key role for amidase PGRPs, especially PGRP-LB, in regulation of the immune response towards endosymbionts in C. floridanus and suggest an involvement of the lysosomal system in control of Blochmannia endosymbionts.
Collapse
Affiliation(s)
- Carolin Ratzka
- Lehrstuhl für Mikrobiologie, Biozentrum, Universität Würzburg, Germany.
| | | | | |
Collapse
|
193
|
Wang S, Beerntsen BT. Insights into the different functions of multiple peptidoglycan recognition proteins in the immune response against bacteria in the mosquito, Armigeres subalbatus. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2013; 43:533-543. [PMID: 23541606 DOI: 10.1016/j.ibmb.2013.03.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 03/06/2013] [Accepted: 03/08/2013] [Indexed: 06/02/2023]
Abstract
Peptidoglycan recognition proteins (PGRPs) are a group of proteins that recognize and/or bind to peptidoglycan on the surface of a number of pathogens. To understand the roles of multiple PGRPs in the mosquito Armigeres subalbatus (AsPGRPs), we studied the effects of infection of two bacteria, the gram negative Escherichia coli and the gram positive Micrococcus luteus, on the transcriptional expression of AsPGRPs and RNA interference (RNAi) of AsPGRPs on the immune responses of mosquitoes against the two bacteria. Injection of E. coli or M. luteus into adult mosquitoes both significantly increased the transcription of AsPGRP-S1, but not the other AsPGRPs. A mosquito survival assay using injection of E. coli or M. luteus into AsPGRP double-stranded RNA (dsRNA) injected mosquitoes showed that RNAi of AsPGRPs had different impacts on the survival abilities of mosquitoes, and that AsPGRP-LCs seem to be the most critical ones. Real-time Polymerase Chain Reaction (real-time PCR) analysis indicated that the expression of four antimicrobial peptides (AMPs) was dramatically changed after AsPGRP-LB and AsPGRP-LC RNAi, although AsPGRP-S1 and AsPGRP-LE had slight, but significant, effects, suggesting that the changes in survival abilities were potentially due to the changes in AMP expression after AsPGRP RNAi. In addition, bacterial challenges following AsPGRP-LC RNAi did not induce the expression of AMPs to their normal level as in control experiments. An in vivo assay indicated that AsPGRP-LC RNAi had no significant effects on the phagocytic ability of the hemocytes, suggesting that AsPGRP-LC is not a key factor mediating phagocytosis of bacteria in this mosquito.
Collapse
Affiliation(s)
- Songjie Wang
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | | |
Collapse
|
194
|
Imler JL. WITHDRAWN: Overview of Drosophila immunity: A historical perspective. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013:S0145-305X(13)00128-6. [PMID: 23665509 DOI: 10.1016/j.dci.2013.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 05/01/2013] [Accepted: 05/01/2013] [Indexed: 06/02/2023]
Abstract
This article has been withdrawn at the request of the author. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
Affiliation(s)
- Jean-Luc Imler
- Faculté des Sciences de la Vie, Université de Strasbourg, Strasbourg, France; UPR9022 du CNRS, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France.
| |
Collapse
|
195
|
Abrudan J, Ramalho-Ortigão M, O'Neil S, Stayback G, Wadsworth M, Bernard M, Shoue D, Emrich S, Lawyer P, Kamhawi S, Rowton ED, Lehane MJ, Bates PA, Valenzeula JG, Tomlinson C, Appelbaum E, Moeller D, Thiesing B, Dillon R, Clifton S, Lobo NF, Wilson RK, Collins FH, McDowell MA. The characterization of the Phlebotomus papatasi transcriptome. INSECT MOLECULAR BIOLOGY 2013; 22:211-232. [PMID: 23398403 PMCID: PMC3594503 DOI: 10.1111/imb.12015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
As important vectors of human disease, phlebotomine sand flies are of global significance to human health, transmitting several emerging and re-emerging infectious diseases. The most devastating of the sand fly transmitted infections are the leishmaniases, causing significant mortality and morbidity in both the Old and New World. Here we present the first global transcriptome analysis of the Old World vector of cutaneous leishmaniasis, Phlebotomus papatasi (Scopoli) and compare this transcriptome to that of the New World vector of visceral leishmaniasis, Lutzomyia longipalpis. A normalized cDNA library was constructed using pooled mRNA from Phlebotomus papatasi larvae, pupae, adult males and females fed sugar, blood, or blood infected with Leishmania major. A total of 47 615 generated sequences was cleaned and assembled into 17 120 unique transcripts. Of the assembled sequences, 50% (8837 sequences) were classified using Gene Ontology (GO) terms. This collection of transcripts is comprehensive, as demonstrated by the high number of different GO categories. An in-depth analysis revealed 245 sequences with putative homology to proteins involved in blood and sugar digestion, immune response and peritrophic matrix formation. Twelve of the novel genes, including one trypsin, two peptidoglycan recognition proteins (PGRP) and nine chymotrypsins, have a higher expression level during larval stages. Two novel chymotrypsins and one novel PGRP are abundantly expressed upon blood feeding. This study will greatly improve the available genomic resources for P. papatasi and will provide essential information for annotation of the full genome.
Collapse
Affiliation(s)
- Jenica Abrudan
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Marcelo Ramalho-Ortigão
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA
| | | | | | | | | | | | | | - Phillip Lawyer
- Intracellular Parasite Biology Section, Laboratory of Parasitic Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, 20852, USA
| | - Shaden Kamhawi
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, 20852, USA
| | - Edgar D. Rowton
- Entomology Program, Walter Reed Army Institute of Research, 530 Robert Grant Ave., Silver Spring, MD 20910, USA
| | | | - Paul A. Bates
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, LA1 4YQ, UK
| | - Jesus G. Valenzeula
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, 20852, USA
| | - Chad Tomlinson
- The Genome Institute at Washington University, St. Louis, Missouri, 63108, USA
| | - Elizabeth Appelbaum
- The Genome Institute at Washington University, St. Louis, Missouri, 63108, USA
| | - Deborah Moeller
- The Genome Institute at Washington University, St. Louis, Missouri, 63108, USA
| | - Brenda Thiesing
- The Genome Institute at Washington University, St. Louis, Missouri, 63108, USA
| | - Rod Dillon
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, LA1 4YQ, UK
| | - Sandra Clifton
- The Genome Institute at Washington University, St. Louis, Missouri, 63108, USA
| | - Neil F. Lobo
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Richard K. Wilson
- The Genome Institute at Washington University, St. Louis, Missouri, 63108, USA
| | - Frank H. Collins
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Mary Ann McDowell
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
196
|
Yang DQ, Su ZL, Qiao C, Zhang Z, Wang JL, Li F, Liu XS. Identification and characterization of two peptidoglycan recognition proteins with zinc-dependent antibacterial activity from the cotton bollworm, Helicoverpa armigera. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 39:343-351. [PMID: 23295246 DOI: 10.1016/j.dci.2012.12.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 12/13/2012] [Accepted: 12/15/2012] [Indexed: 06/01/2023]
Abstract
Peptidoglycan recognition proteins (PGRPs) specifically bind to peptidoglycan and play an important role in the innate immune responses as pattern recognition receptors (PRRs). Here we identified and characterized two PGRPs (HaPGRP-B and HaPGRP-C) from the cotton bollworm, Helicoverpa armigera. The comparative analysis indicated that five amino acids which are required for T7 lysozyme Zn(2+) binding and amidase activity are conserved in HaPGRP-B and HaPGRP-C, suggesting that the two PGRPs are members of the amidase-type PGRPs. HaPGRP-B and HaPGRP-C mRNA increased in both the fat bodies and the hemocytes after an injection of Gram-negative Escherichia coli or Gram-positive Staphylococcus aureus. Recombinant HaPGRP-B and HaPGRP-C could agglutinate E. coli and S. aureus in a zinc-dependent manner. More importantly, both rHaPGRP-B and rHaPGRP strongly inhibited the growth of E. coli and S. aureus in the presence of Zn(2+). Moreover, the HaPGRP-B mRNA showed up-regulation post hormones (20E and methoprene) injection. Our results indicate that the two PGRPs of H. armigera may play an important role in defending against bacteria as amidase-type PGRPs and the hormones can function in regulating the expressions of PGRPs.
Collapse
Affiliation(s)
- Dai-Qun Yang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan 430079, China
| | | | | | | | | | | | | |
Collapse
|
197
|
Bao YY, Qu LY, Zhao D, Chen LB, Jin HY, Xu LM, Cheng JA, Zhang CX. The genome- and transcriptome-wide analysis of innate immunity in the brown planthopper, Nilaparvata lugens. BMC Genomics 2013; 14:160. [PMID: 23497397 PMCID: PMC3616906 DOI: 10.1186/1471-2164-14-160] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 02/28/2013] [Indexed: 12/04/2022] Open
Abstract
Background The brown planthopper (Nilaparvata lugens) is one of the most serious rice plant pests in Asia. N. lugens causes extensive rice damage by sucking rice phloem sap, which results in stunted plant growth and the transmission of plant viruses. Despite the importance of this insect pest, little is known about the immunological mechanisms occurring in this hemimetabolous insect species. Results In this study, we performed a genome- and transcriptome-wide analysis aiming at the immune-related genes. The transcriptome datasets include the N. lugens intestine, the developmental stage, wing formation, and sex-specific expression information that provided useful gene expression sequence data for the genome-wide analysis. As a result, we identified a large number of genes encoding N. lugens pattern recognition proteins, modulation proteins in the prophenoloxidase (proPO) activating cascade, immune effectors, and the signal transduction molecules involved in the immune pathways, including the Toll, Immune deficiency (Imd) and Janus kinase signal transducers and activators of transcription (JAK-STAT) pathways. The genome scale analysis revealed detailed information of the gene structure, distribution and transcription orientations in scaffolds. A comparison of the genome-available hemimetabolous and metabolous insect species indicate the differences in the immune-related gene constitution. We investigated the gene expression profiles with regards to how they responded to bacterial infections and tissue, as well as development and sex expression specificity. Conclusions The genome- and transcriptome-wide analysis of immune-related genes including pattern recognition and modulation molecules, immune effectors, and the signal transduction molecules involved in the immune pathways is an important step in determining the overall architecture and functional network of the immune components in N. lugens. Our findings provide the comprehensive gene sequence resource and expression profiles of the immune-related genes of N. lugens, which could facilitate the understanding of the innate immune mechanisms in the hemimetabolous insect species. These data give insight into clarifying the potential functional roles of the immune-related genes involved in the biological processes of development, reproduction, and virus transmission in N. lugens.
Collapse
Affiliation(s)
- Yan-Yuan Bao
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | | | | | | | | | | | | | | |
Collapse
|
198
|
Liu W, Yao Y, Zhou L, Ni Q, Xu H. Evolutionary analysis of the short-type peptidoglycan-recognition protein gene (PGLYRP1) in primates. GENETICS AND MOLECULAR RESEARCH 2013; 12:453-62. [DOI: 10.4238/2013.february.8.10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
199
|
Ligoxygakis P. Genetics of Immune Recognition and Response in Drosophila host defense. ADVANCES IN GENETICS 2013; 83:71-97. [DOI: 10.1016/b978-0-12-407675-4.00002-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
200
|
Sharma P, Yamini S, Dube D, Singh A, Mal G, Pandey N, Sinha M, Singh AK, Dey S, Kaur P, Mitra DK, Sharma S, Singh TP. Structural basis of the binding of fatty acids to peptidoglycan recognition protein, PGRP-S through second binding site. Arch Biochem Biophys 2013; 529:1-10. [PMID: 23149273 DOI: 10.1016/j.abb.2012.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Revised: 10/31/2012] [Accepted: 11/03/2012] [Indexed: 11/24/2022]
Abstract
Short peptidoglycan recognition protein (PGRP-S) is a member of the mammalian innate immune system. PGRP-S from Camelus dromedarius (CPGRP-S) has been shown to bind to lipopolysaccharide (LPS), lipoteichoic acid (LTA) and peptidoglycan (PGN). Its structure consists of four molecules A, B, C and D with ligand binding clefts situated at A-B and C-D contacts. It has been shown that LPS, LTA and PGN bind to CPGRP-S at C-D contact. The cleft at the A-B contact indicated features that suggested a possible binding of fatty acids including mycolic acid of Mycobacterium tuberculosis. Therefore, binding studies of CPGRP-S were carried out with fatty acids, butyric acid, lauric acid, myristic acid, stearic acid and mycolic acid which showed affinities in the range of 10(-5) to 10(-8) M. Structure determinations of the complexes of CPGRP-S with above fatty acids showed that they bound to CPGRP-S in the cleft at the A-B contact. The flow cytometric studies showed that mycolic acid induced the production of pro-inflammatory cytokines, TNF-α and IFN-γ by CD3+ T cells. The concentrations of cytokines increased considerably with increasing concentrations of mycolic acid. However, their levels decreased substantially on adding CPGRP-S.
Collapse
Affiliation(s)
- Pradeep Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|