151
|
Yeo M, Lin PS, Dahmus ME, Gill GN. A novel RNA polymerase II C-terminal domain phosphatase that preferentially dephosphorylates serine 5. J Biol Chem 2003; 278:26078-85. [PMID: 12721286 DOI: 10.1074/jbc.m301791200] [Citation(s) in RCA: 160] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The transcription and processing of pre-mRNA in eukaryotic cells are regulated in part by reversible phosphorylation of the C-terminal domain of the largest RNA polymerase (RNAP) II subunit. The CTD phosphatase, FCP1, catalyzes the dephosphorylation of RNAP II and is thought to play a major role in polymerase recycling. This study describes a family of small CTD phosphatases (SCPs) that preferentially catalyze the dephosphorylation of Ser5 within the consensus repeat. The preferred substrate for SCP1 is RNAP II phosphorylated by TFIIH. Like FCP1, the activity of SCP1 is enhanced by the RAP74 subunit of TFIIF. Expression of SCP1 inhibits activated transcription from a number of promoters, whereas a phosphatase-inactive mutant of SCP1 enhances transcription. Accordingly, SCP1 may play a role in the regulation of gene expression, possibly by controlling the transition from initiation/capping to processive transcript elongation.
Collapse
Affiliation(s)
- Michele Yeo
- Department of Medicine, University of California San Diego, La Jolla, California 92093-0650, USA
| | | | | | | |
Collapse
|
152
|
Shin DH, Roberts A, Jancarik J, Yokota H, Kim R, Wemmer DE, Kim SH. Crystal structure of a phosphatase with a unique substrate binding domain from Thermotoga maritima. Protein Sci 2003; 12:1464-72. [PMID: 12824492 PMCID: PMC2323937 DOI: 10.1110/ps.0302703] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2003] [Revised: 04/02/2003] [Accepted: 04/03/2003] [Indexed: 10/27/2022]
Abstract
We have determined the crystal structure of a phosphatase with a unique substrate binding domain from Thermotoga maritima, TM0651 (gi 4981173), at 2.2 A resolution by selenomethionine single-wavelength anomalous diffraction (SAD) techniques. TM0651 is a member of the haloacid dehalogenase (HAD) superfamily, with sequence homology to trehalose-6-phosphate phosphatase and sucrose-6(F)-phosphate phosphohydrolase. Selenomethionine labeled TM0651 crystallized in space group C2 with three monomers per asymmetric unit. Each monomer has approximate dimensions of 65 x 40 x 35 A(3), and contains two domains: a domain of known hydrolase fold characteristic of the HAD family, and a domain with a new tertiary fold consisting of a six-stranded beta-sheet surrounded by four alpha-helices. There is one disulfide bond between residues Cys35 and Cys265 in each monomer. One magnesium ion and one sulfate ion are bound in the active site. The superposition of active site residues with other HAD family members indicates that TM0651 is very likely a phosphatase that acts through the formation of a phosphoaspartate intermediate, which is supported by both NMR titration data and a biochemical assay. Structural and functional database searches and the presence of many aromatic residues in the interface of the two domains suggest the substrate of TM0651 is a carbohydrate molecule. From the crystal structure and NMR data, the protein likely undergoes a conformational change upon substrate binding.
Collapse
Affiliation(s)
- Dong Hae Shin
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Anne Roberts
- Department of Chemistry, University of California, Berkeley, California 94720-5230, USA
| | - Jaru Jancarik
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Hisao Yokota
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Rosalind Kim
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - David E. Wemmer
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Department of Chemistry, University of California, Berkeley, California 94720-5230, USA
| | - Sung-Hou Kim
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Department of Chemistry, University of California, Berkeley, California 94720-5230, USA
| |
Collapse
|
153
|
Hausmann S, Shuman S. Defining the active site of Schizosaccharomyces pombe C-terminal domain phosphatase Fcp1. J Biol Chem 2003; 278:13627-32. [PMID: 12556522 DOI: 10.1074/jbc.m213191200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fcp1 is an essential protein serine phosphatase that dephosphorylates the C-terminal domain (CTD) of RNA polymerase II. By testing the effects of serial N- and C-terminal deletions of the 723-amino acid Schizosaccharomyces pombe Fcp1, we defined a minimal phosphatase domain spanning amino acids 156-580. We employed site-directed mutagenesis (introducing 24 mutations at 14 conserved positions) to locate candidate catalytic residues. We found that alanine substitutions for Arg(223), Asp(258), Lys(280), Asp(297), and Asp(298) abrogated the phosphatase activity with either p-nitrophenyl phosphate or CTD-PO(4) as substrates. Structure-activity relationships were determined by introducing conservative substitutions at each essential position. Our results, together with previous mutational studies, highlight a constellation of seven amino acids (Asp(170), Asp(172), Arg(223), Asp(258), Lys(280), Asp(297), and Asp(298)) that are conserved in all Fcp1 orthologs and likely comprise the active site. Five of these residues (Asp(170), Asp(172), Lys(280), Asp(297), and Asp(298)) are conserved at the active site of T4 polynucleotide 3'-phosphatase, suggesting that Fcp1 and T4 phosphatase are structurally and mechanistically related members of the DXD phosphotransferase superfamily.
Collapse
Affiliation(s)
- Stéphane Hausmann
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10021, USA
| | | |
Collapse
|
154
|
Newman JW, Morisseau C, Harris TR, Hammock BD. The soluble epoxide hydrolase encoded by EPXH2 is a bifunctional enzyme with novel lipid phosphate phosphatase activity. Proc Natl Acad Sci U S A 2003; 100:1558-63. [PMID: 12574510 PMCID: PMC149871 DOI: 10.1073/pnas.0437724100] [Citation(s) in RCA: 165] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The gene EPXH2 encodes for the soluble epoxide hydrolase (sEH), an enzyme involved in the regulation of cardiovascular and renal physiology containing two distinct domains connected via a proline-rich linker. The C-terminal domain containing the EH catalytic activity has been well studied. In contrast, a function for the N-terminal domain, which has high homology to the haloacid dehalogenase family of phosphatases, has not been definitively reported. In this study we describe the N-terminal domain as a functional phosphatase unaffected by a number of classic phosphatase inhibitors. Assuming a functional association between these catalytic activities, dihydroxy lipid phosphates were rationalized as potential endogenous substrates. A series of phosphorylated hydroxy lipids were therefore synthesized and found to be excellent substrates for the human sEH. The best substrate tested was the monophosphate of dihydroxy stearic acid (threo-910-phosphonoxy-hydroxy-octadecanoic acid) with K(m) = 21 +/- 0.3 microM, V(Max) = 338 +/- 12 nmol x min(-1) x mg(-1), and k(cat) = 0.35 +/- 0.01 s(-1). Therefore dihydroxy lipid phosphates are possible candidates for the endogenous substrates of the sEH N-terminal domain, which would represent a novel branch of fatty acid metabolism with potential signaling functions.
Collapse
Affiliation(s)
- John W Newman
- Department of Entomology and University of California Davis Cancer Center, University of California, One Shields Avenue, Davis, CA 95616, USA
| | | | | | | |
Collapse
|
155
|
Nguyen BD, Chen HT, Kobor MS, Greenblatt J, Legault P, Omichinski JG. Solution structure of the carboxyl-terminal domain of RAP74 and NMR characterization of the FCP1-binding sites of RAP74 and human TFIIB. Biochemistry 2003; 42:1460-9. [PMID: 12578358 DOI: 10.1021/bi0265473] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
FCP1 (TFIIF-associated CTD phosphatase) is the only known phosphatase specific for the phosphorylated CTD of RNAP II. The phosphatase activity of FCP1 is strongly enhanced by the carboxyl-terminal domain of RAP74 (cterRAP74, residues 436-517), and this stimulatory effect of TFIIF can be blocked by TFIIB. It has been shown that cterRAP74 and the core domain of hTFIIB (TFIIBc, residues 112-316) directly interact with the carboxyl-terminal domain of hFCP1 (cterFCP, residues 879-961), and these interactions may be responsible for the regulatory activities of TFIIF and TFIIB on FCP1. We have determined the NMR solution structure of human cterRAP74, and we have used NMR methods to map the cterFCP-binding sites for both cterRAP74 and human TFIIB. We show that cterFCP binds to a groove of cterRAP74 between alpha-helices H2 and H3, without affecting the secondary structure of cterRAP74. We also show that cterFCP binds to a groove of TFIIBc between alpha-helices D1 and E1 in the first cyclin repeat. We find that the cterFCP-binding site of TFIIBc is very similar to the binding site for the HSV transcriptional activator protein VP16 on the first cyclin repeat of TFIIBc. The cterFCP-binding sites of both RAP74 and TFIIBc form shallow grooves on the protein surface, and they are both rich in hydrophobic and positively charged amino acid residues. These results provide new information about the recognition of acidic-rich activation domains involved in transcriptional regulation, and provide insights into how TFIIF and TFIIB regulate the FCP1 phosphatase activity in vivo.
Collapse
Affiliation(s)
- Bao D Nguyen
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | | | | | |
Collapse
|
156
|
Collet JF, Stroobant V, Van Schaftingen E. Evidence for phosphotransferases phosphorylated on aspartate residue in N-terminal DXDX(T/V) motif. Methods Enzymol 2003; 354:177-88. [PMID: 12418225 DOI: 10.1016/s0076-6879(02)54014-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Jean-François Collet
- Laboratory of Physiological Chemistry, Catholic University of Louvain, Christian de Duve Institute of Cellular Pathology, B-1200 Brussels, Belgium
| | | | | |
Collapse
|
157
|
Affiliation(s)
- Daniel L Purich
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, Florida 32610, USA
| |
Collapse
|
158
|
Abstract
Sucrose-phosphatase (SPP; EC 3.1.3.24) catalyzes the final step in the pathway of sucrose biosynthesis and higher plants contain multiple isoforms of the enzyme encoded by different genes. The genome of the dicotyledonous plant Arabidopsis thaliana (thale cress) contains four SPP-like genes on chromosomes 1 (AtSPP1), 2 (AtSPP2) and 3 (AtSPP3a and AtSPP3b), all of which are expressed. The genome of the monocotyledonous plant rice (Oryza sativa) also contains four SPP-like genes, which have very similar exon-intron structures to those from A. thaliana. Two cDNA clones that encode catalytically active SPP enzymes have been isolated from maize (Zea mays), showing that this species contains at least two functional SPP genes. Multiple SPP-like cDNA clones have also been identified from wheat (Triticum aestivum), barley (Hordeum vulgare) and tomato (Lycopersicon esculentum). The genomes of two cyanobacteria, Synechocystis sp. PCC 6803 and Anabaena sp. PCC 7120, contain single spp genes. The cyanobacterial SPPs and the N-terminal region of the higher plant enzyme share significant similarity with members of the haloacid dehalogenase (HAD) superfamily of hydrolases/phosphatases. In addition to the HAD phosphatase domain, SPP from higher plants also contains a shorter, C-terminal domain of unknown function. An SPP-like sequence from the bryophyte (moss) Physcomitrella patens also contains this C-terminal domain, indicating that its acquisition was an early event in the evolution of higher plants.
Collapse
Affiliation(s)
- John E Lunn
- CSIRO Plant Industry, GPO Box 1600, Canberra, ACT 2601, Australia.
| |
Collapse
|
159
|
Kim HY, Heo YS, Kim JH, Park MH, Moon J, Kim E, Kwon D, Yoon J, Shin D, Jeong EJ, Park SY, Lee TG, Jeon YH, Ro S, Cho JM, Hwang KY. Molecular basis for the local conformational rearrangement of human phosphoserine phosphatase. J Biol Chem 2002; 277:46651-8. [PMID: 12213811 DOI: 10.1074/jbc.m204866200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human phosphoserine phosphatase (HPSP) regulates the levels of glycine and d-serine, the putative co-agonists for the glycine site of the NMDA receptor in the brain. Here, we describe the first crystal structures of the HPSP in complexes with the competitive inhibitor 2-amino-3-phosphonopropionic acid (AP3) at 2.5 A, and the phosphate ion (Pi) and the product uncompetitive inhibitor l-serine (HPSP.l-Ser.Pi) at 2.8 A. The complex structures reveal that the open-closed environmental change of the active site, generated by local rearrangement of the alpha-helical bundle domain, is important to substrate recognition and hydrolysis. The maximal extent of this structural rearrangement is shown to be about 13 A at the L4 loop and about 25 degrees at the helix alpha3. Both the structural change and mutagenesis data suggest that Arg-65 and Glu-29 play an important role in the binding of the substrate. Interestingly, the AP3 binding mode turns out to be significantly different from that of the natural substrate, phospho-l-serine, and the HPSP.l-Ser.Pi structure provides a structural basis for the feedback control mechanism of serine. These analyses allow us to provide a clear model for the mechanism of HPSP and a framework for structure-based drug development.
Collapse
Affiliation(s)
- Hye-Yeon Kim
- Divison of Drug Discovery, CrystalGenomics Incorporated, Daeduck Biocommunity, Jeonmin-dong, Yuseong-gu, Taejeon City, South Korea 305-600
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Lin PS, Marshall NF, Dahmus ME. CTD phosphatase: role in RNA polymerase II cycling and the regulation of transcript elongation. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2002; 72:333-65. [PMID: 12206456 DOI: 10.1016/s0079-6603(02)72074-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The repetitive C-terminal domain (CTD) of the largest RNA polymerase II subunit plays a critical role in the regulation of gene expression. The activity of the CTD is dependent on its state of phosphorylation. A variety of CTD kinases act on RNA polymerase II at specific steps in the transcription cycle and preferentially phosphorylate distinct positions within the CTD consensus repeat. A single CTD phosphatase has been identified and characterized that in concert with CTD kinases establishes the level of CTD phosphorylation. The involvement of CTD phosphatase in controlling the progression of RNAP II around the transcription cycle, the mobilization of stored RNAP IIO, and the regulation of transcript elongation and RNA processing is discussed.
Collapse
|
161
|
Palancade B, Dubois MF, Bensaude O. FCP1 phosphorylation by casein kinase 2 enhances binding to TFIIF and RNA polymerase II carboxyl-terminal domain phosphatase activity. J Biol Chem 2002; 277:36061-7. [PMID: 12138108 DOI: 10.1074/jbc.m205192200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dephosphorylation of RNA polymerase II carboxyl-terminal domain (CTD) is required to resume sequential transcription cycles. FCP1 (TFIIF-dependent CTD phosphatase 1) is the only known phosphatase targeting RNAP II CTD. Here we show that in Xenopus laevis cells, xFCP1 is a phosphoprotein. On the basis of biochemical fractionation and drug sensitivity, casein kinase 2 (CK2) is shown to be the major kinase involved in xFCP1 phosphorylation in X. laevis egg extracts. CK2 phosphorylates xFCP1 mainly at a cluster of serines centered on Ser(457). CK2-dependent phosphorylation enhances 4-fold the CTD phosphatase activity of FCP1 and its binding to the RAP74 subunit of general transcription factor TFIIF. These findings unravel a new mechanism regulating CTD phosphorylation and hence class II gene transcription.
Collapse
Affiliation(s)
- Benoît Palancade
- UMR 8541 CNRS, Génétique Moléculaire, Ecole Normale Supérieure, 46 rue d'Ulm, 75230 Paris Cedex 05, France
| | | | | |
Collapse
|
162
|
Kobor MS, Greenblatt J. Regulation of transcription elongation by phosphorylation. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1577:261-275. [PMID: 12213657 DOI: 10.1016/s0167-4781(02)00457-8] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The synthesis of mRNA by RNA polymerase II (RNAPII) is a multistep process that is regulated by different mechanisms. One important aspect of transcriptional regulation is phosphorylation of components of the transcription apparatus. The phosphorylation state of RNAPII carboxy-terminal domain (CTD) is controlled by a variety of protein kinases and at least one protein phosphatase. We discuss emerging genetic and biochemical evidence that points to a role of these factors not only in transcription initiation but also in elongation and possibly termination. In addition, we review phosphorylation events involving some of the general transcription factors (GTFs) and other regulatory proteins. As an interesting example, we describe the modulation of transcription associated kinases and phosphatase by the HIV Tat protein. We focus on bringing together recent findings and propose a revised model for the RNAPII phosphorylation cycle.
Collapse
Affiliation(s)
- Michael S Kobor
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | | |
Collapse
|
163
|
Petters J, Göbel C, Scheel D, Rosahl S. A pathogen-responsive cDNA from potato encodes a protein with homology to a phosphate starvation-induced phosphatase. PLANT & CELL PHYSIOLOGY 2002; 43:1049-53. [PMID: 12354923 DOI: 10.1093/pcp/pcf117] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Infiltration of potato leaves with the phytopathogenic bacteria Pseudomonas syringae pv. maculicola induces local and systemic defense gene expression as well as increased resistance against subsequent pathogen attacks. By cDNA-AFLP a gene was identified that is activated locally in potato leaves in response to bacterial infiltration and after infection with Phytophthora infestans, the causal agent of late blight disease. The encoded protein has high homology to a phosphate starvation-induced acid phosphatase from tomato. Possibly, decreased phosphate availability after pathogen infection acts as a signal for the activation of the potato phosphatase gene.
Collapse
Affiliation(s)
- Julia Petters
- Institute of Plant Biochemistry, Department of Stress and Developmental Biology, Weinberg 3, D-06120 Halle / Saale, Germany
| | | | | | | |
Collapse
|
164
|
Jeon SJ, Fujiwara S, Takagi M, Tanaka T, Imanaka T. Tk-PTP, protein tyrosine/serine phosphatase from hyperthermophilic archaeon Thermococcus kodakaraensis KOD1: enzymatic characteristics and identification of its substrate proteins. Biochem Biophys Res Commun 2002; 295:508-14. [PMID: 12150979 DOI: 10.1016/s0006-291x(02)00705-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The Tk-ptp gene encoding a protein tyrosine phosphatase from the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1 was cloned and biochemical characteristics of the recombinant protein (Tk-PTP) were examined. A series of mutants, D63A (replacing Asp-63 with Ala), C93S, C93A, R99K, and R99M, were also constructed and analyzed. Two unique features were found. First, the Tk-PTP showed the phosphatase activity not only toward phosphotyrosine but also toward phosphoserine. Second, the conserved Asp-63, which corresponds to a critical residue among other known PTPs, was not essential for catalysis. Cys-93 and Arg-99 residues played a crucial role in substrate binding and catalysis. To know a specific substrate for Tk-PTP, C93S mutant was used to trap substrate proteins from cell extract of KOD1. Phenylalanyl-tRNA synthetase subunit beta-chain, one of the gene products of RNA terminal phosphate cyclase operon and phosphomannomutase, was identified, suggesting that they functioned for phosphate donation.
Collapse
Affiliation(s)
- Sung-Jong Jeon
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | |
Collapse
|
165
|
Lahiri SD, Zhang G, Dunaway-Mariano D, Allen KN. Caught in the act: the structure of phosphorylated beta-phosphoglucomutase from Lactococcus lactis. Biochemistry 2002; 41:8351-9. [PMID: 12081483 DOI: 10.1021/bi0202373] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Phosphoglucomutases catalyze the interconversion of D-glucose 1-phosphate and D-glucose 6-phosphate, a reaction central to energy metabolism in all cells and to the synthesis of cell wall polysaccharides in bacterial cells. Two classes of phosphoglucomutases (alpha-PGM and beta-PGM) are distinguished on the basis of their specificity for alpha- and beta-glucose-1-phosphate. beta-PGM is a member of the haloacid dehalogenase (HAD) superfamily, which includes the sarcoplasmic Ca(2+)-ATPase, phosphomannomutase, and phosphoserine phosphatase. beta-PGM is unusual among family members in that the common phosphoenzyme intermediate exists as a stable ground-state complex in this enzyme. Herein we report, for the first time, the three-dimensional structure of a beta-PGM and the first view of the true phosphoenzyme intermediate in the HAD superfamily. The crystal structure of the Mg(II) complex of phosphorylated beta-phosphoglucomutase (beta-PGM) from Lactococcus lactis has been determined to 2.3 A resolution by multiwavelength anomalous diffraction (MAD) phasing on selenomethionine, and refined to an R(cryst) = 0.24 and R(free) = 0.28. The active site of beta-PGM is located between the core and the cap domain and is freely solvent accessible. The residues within a 6 A radius of the phosphorylated Asp8 include Asp10, Thr16, Ser114, Lys145, Glu169, and Asp170. The cofactor Mg(2+) is liganded with octahedral coordination geometry by the carboxylate side chains of Asp8, Glu169, Asp170, and the backbone carbonyl oxygen of Asp10 along with one oxygen from the Asp8-phosphoryl group and one water ligand. The phosphate group of the phosphoaspartyl residue, Asp8, interacts with the side chains of Ser114 and Lys145. The absence of a base residue near the aspartyl phosphate group accounts for the persistence of the phosphorylated enzyme under physiological conditions. Substrate docking shows that glucose-6-P can bind to the active site of phosphorylated beta-PGM in such a way as to position the C(1)OH near the phosphoryl group of the phosphorylated Asp8 and the C(6) phosphoryl group near the carboxylate group of Asp10. This result suggests a novel two-base mechanism for phosphoryl group transfer in a phosphorylated sugar.
Collapse
Affiliation(s)
- Sushmita D Lahiri
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts 02118-2394, USA
| | | | | | | |
Collapse
|
166
|
Valvano MA, Messner P, Kosma P. Novel pathways for biosynthesis of nucleotide-activated glycero-manno-heptose precursors of bacterial glycoproteins and cell surface polysaccharides. MICROBIOLOGY (READING, ENGLAND) 2002; 148:1979-1989. [PMID: 12101286 DOI: 10.1099/00221287-148-7-1979] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Miguel A Valvano
- Department of Microbiology and Immunology and Medicine, University of Western Ontario, London, Ontario, N6A 5C1, Canada1
| | - Paul Messner
- Zentrum für Ultrastrukturforschung und Ludwig Boltzmann-Institut für Molekulare Nanotechnologie, Universität für Bodenkultur Wien, A-1180 Wien, Austria2
| | - Paul Kosma
- Institut für Chemie, Universität für Bodenkultur Wien, A-1190 Wien, Austria3
| |
Collapse
|
167
|
Ndubuisil MI, Kwok BHB, Vervoort J, Koh BD, Elofsson M, Crews CM. Characterization of a novel mammalian phosphatase having sequence similarity to Schizosaccharomyces pombe PHO2 and Saccharomyces cerevisiae PHO13. Biochemistry 2002; 41:7841-8. [PMID: 12056916 PMCID: PMC2556553 DOI: 10.1021/bi0255064] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
p34, a specific p-nitrophenyl phosphatase (pNPPase) was identified and purified from the murine cell line EL4 in a screen for the intracellular molecular targets of the antiinflammatory natural product parthenolide. A BLAST search analysis revealed that it has a high degree of sequence similarity to two yeast alkaline phosphatases. We have cloned, sequenced, and expressed p34 as a GST-tagged fusion protein in Escherichia coli and an EE-epitope-tagged fusion protein in mammalian cells. Using p-nitrophenyl phosphate (pNPP) as a substrate, p34 is optimally active at pH 7.6 with a K(m) of 1.36 mM and K(cat) of 0.052 min(-1). Addition of 1 mM Mg(2+) to the reaction mixture increases its activity by 14-fold. Other divalent metal ions such as Co(2+) and Mn(2+) also stimulated the activity of the enzyme, while Zn(2+), Fe(2+), and Cu(2+) had no effect. Furthermore, both NaCl and KCl enhanced the activity of the enzyme, having maximal effect at 50 and 75 mM, respectively. The enzyme is inhibited by sodium orthovanadate but not by sodium fluoride or okadaic acid. Mutational analysis data suggest that p34 belongs to the group of phosphatases characterized by the sequence motif DXDX(T/V).
Collapse
Affiliation(s)
- MacKevin I. Ndubuisil
- Department of Molecular, Cellular and Developmental Biology, Yale University, New HaVen, Connecticut 06520-8103
| | - Benjamin H. B. Kwok
- Department of Molecular, Cellular and Developmental Biology, Yale University, New HaVen, Connecticut 06520-8103
| | - Jonathan Vervoort
- Department of Molecular, Cellular and Developmental Biology, Yale University, New HaVen, Connecticut 06520-8103
| | - Brian D. Koh
- Department of Molecular, Cellular and Developmental Biology, Yale University, New HaVen, Connecticut 06520-8103
| | - Mikael Elofsson
- Department of Molecular, Cellular and Developmental Biology, Yale University, New HaVen, Connecticut 06520-8103
| | - Craig M. Crews
- Department of Molecular, Cellular and Developmental Biology, Yale University, New HaVen, Connecticut 06520-8103
- Department of Pharmacology, Yale University, New HaVen, Connecticut 06520-8103
- Department of Chemistry, Yale University, New HaVen, Connecticut 06520-8103
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
168
|
Hausmann S, Shuman S. Characterization of the CTD phosphatase Fcp1 from fission yeast. Preferential dephosphorylation of serine 2 versus serine 5. J Biol Chem 2002; 277:21213-20. [PMID: 11934898 DOI: 10.1074/jbc.m202056200] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The C-terminal domain (CTD) of RNA polymerase II undergoes extensive phosphorylation and dephosphorylation at positions Ser2 and Ser5 during the transcription cycle. A single CTD phosphatase, Fcp1, has been identified in yeast and metazoans. Here we conducted a biochemical characterization of Fcp1 from the fission yeast Schizosaccharomyces pombe. The 723-amino acid Fcp1 protein was expressed at high levels in bacteria. Recombinant Fcp1 catalyzed the metal-dependent hydrolysis of para-nitrophenyl phosphate with a pH optimum of 5.5 (kcat = 2 s(-1); K(m) = 19 mm). Deletion analysis showed that 139- and 143-amino acid segments could be deleted from the N and C termini of Fcp1, respectively, without affecting phosphatase activity. A segment containing amino acids 487-580, deletion of which abolished activity, embraces a BRCT domain present in all known Fcp1 orthologs. Mutations of residues Asp170 and Asp172 abrogated Fcp1 phosphatase activity; the essential aspartates are located within a 170DXDXT172 motif that defines a superfamily of metal-dependent phosphotransferases. We exploited defined synthetic CTD phosphopeptide substrates to show for the first time that: (i) Fcp1 CTD phosphatase activity is not confined to native polymerase II and (ii) Fcp1 displays an inherent preference for a particular CTD phosphorylation array. Using equivalent concentrations (25 microm) of CTD peptides of identical amino acid sequence and phosphoserine content, which differed only in the positions of phosphoserine within the heptad, we found that Fcp1 was 10-fold more active in dephosphorylating Ser2-PO4 than Ser5-PO4.
Collapse
Affiliation(s)
- Stéphane Hausmann
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10021, USA
| | | |
Collapse
|
169
|
Wang W, Cho HS, Kim R, Jancarik J, Yokota H, Nguyen HH, Grigoriev IV, Wemmer DE, Kim SH. Structural characterization of the reaction pathway in phosphoserine phosphatase: crystallographic "snapshots" of intermediate states. J Mol Biol 2002; 319:421-31. [PMID: 12051918 DOI: 10.1016/s0022-2836(02)00324-8] [Citation(s) in RCA: 148] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Phosphoserine phosphatase (PSP) is a member of a large class of enzymes that catalyze phosphoester hydrolysis using a phosphoaspartate-enzyme intermediate. PSP is a likely regulator of the steady-state d-serine level in the brain, which is a critical co-agonist of the N-methyl-d-aspartate type of glutamate receptors. Here, we present high-resolution (1.5-1.9 A) structures of PSP from Methanococcus jannaschii, which define the open state prior to substrate binding, the complex with phosphoserine substrate bound (with a D to N mutation in the active site), and the complex with AlF3, a transition-state analog for the phospho-transfer steps in the reaction. These structures, together with those described for the BeF3- complex (mimicking the phospho-enzyme) and the enzyme with phosphate product in the active site, provide a detailed structural picture of the full reaction cycle. The structure of the apo state indicates partial unfolding of the enzyme to allow substrate binding, with refolding in the presence of substrate to provide specificity. Interdomain and active-site conformational changes are identified. The structure with the transition state analog bound indicates a "tight" intermediate. A striking structure homology, with significant sequence conservation, among PSP, P-type ATPases and response regulators suggests that the knowledge of the PSP reaction mechanism from the structures determined will provide insights into the reaction mechanisms of the other enzymes in this family.
Collapse
Affiliation(s)
- Weiru Wang
- Department of Chemistry, University of California, Berkeley, CA 94720-5230, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
170
|
Lunn JE. Evolution of sucrose synthesis. PLANT PHYSIOLOGY 2002; 128:1490-500. [PMID: 11950997 PMCID: PMC154276 DOI: 10.1104/pp.010898] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2001] [Revised: 12/10/2001] [Accepted: 12/24/2001] [Indexed: 05/18/2023]
Abstract
Cyanobacteria and proteobacteria (purple bacteria) are the only prokaryotes known to synthesize sucrose (Suc). Suc-P synthase, Suc-phosphatase (SPP), and Suc synthase activities have previously been detected in several cyanobacteria, and genes coding for Suc-P synthase (sps) and Suc synthase (sus) have been cloned from Synechocystis sp. PCC 6803 and Anabaena (Nostoc) spp., respectively. An open reading frame in the Synechocystis genome encodes a predicted 27-kD polypeptide that shows homology to the maize (Zea mays) SPP. Heterologous expression of this putative spp gene in Escherichia coli, reported here, confirmed that this open reading frame encodes a functional SPP enzyme. The Synechocystis SPP is highly specific for Suc-6(F)-P (K(m) = 7.5 microM) and is Mg(2+) dependent (K(a) = 70 microM), with a specific activity of 46 micromol min(-1) mg(-1) protein. Like the maize SPP, the Synechocystis SPP belongs to the haloacid dehalogenase superfamily of phosphatases/hydrolases. Searches of sequenced microbial genomes revealed homologs of the Synechocystis sps gene in several other cyanobacteria (Nostoc punctiforme, Prochlorococcus marinus strains MED4 and MIT9313, and Synechococcus sp. WH8012), and in three proteobacteria (Acidithiobacillus ferrooxidans, Magnetococcus sp. MC1, and Nitrosomonas europaea). Homologs of the Synechocystis spp gene were found in Magnetococcus sp. MC1 and N. punctiforme, and of the Anabaena sus gene in N. punctiforme and N. europaea. From analysis of these sequences, it is suggested that Suc synthesis originated in the proteobacteria or a common ancestor of the proteobacteria and cyanobacteria.
Collapse
Affiliation(s)
- John Edward Lunn
- Commonwealth Scientific and Industrial Research Organization, Plant Industry, GPO Box 1600, Canberra, Australian Capital Territory 2601, Australia.
| |
Collapse
|
171
|
Parsons JF, Lim K, Tempczyk A, Krajewski W, Eisenstein E, Herzberg O. From structure to function: YrbI from Haemophilus influenzae (HI1679) is a phosphatase. Proteins 2002; 46:393-404. [PMID: 11835514 PMCID: PMC3762886 DOI: 10.1002/prot.10057] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The crystal structure of the YrbI protein from Haemophilus influenzae (HI1679) was determined at a 1.67-A resolution. The function of the protein had not been assigned previously, and it is annotated as hypothetical in sequence databases. The protein exhibits the alpha/beta-hydrolase fold (also termed the Rossmann fold) and resembles most closely the fold of the L-2-haloacid dehalogenase (HAD) superfamily. Following this observation, a detailed sequence analysis revealed remote homology to two members of the HAD superfamily, the P-domain of Ca(2+) ATPase and phosphoserine phosphatase. The 19-kDa chains of HI1679 form a tetramer both in solution and in the crystalline form. The four monomers are arranged in a ring such that four beta-hairpin loops, each inserted after the first beta-strand of the core alpha/beta-fold, form an eight-stranded barrel at the center of the assembly. Four active sites are located at the subunit interfaces. Each active site is occupied by a cobalt ion, a metal used for crystallization. The cobalt is octahedrally coordinated to two aspartate side-chains, a backbone oxygen, and three solvent molecules, indicating that the physiological metal may be magnesium. HI1679 hydrolyzes a number of phosphates, including 6-phosphogluconate and phosphotyrosine, suggesting that it functions as a phosphatase in vivo. The physiological substrate is yet to be identified; however the location of the gene on the yrb operon suggests involvement in sugar metabolism.
Collapse
Affiliation(s)
- James F. Parsons
- Center for Advanced Research in Biotechnology, University of Maryland Biotechnology Institute, Rockville, Maryland
| | - Kap Lim
- Center for Advanced Research in Biotechnology, University of Maryland Biotechnology Institute, Rockville, Maryland
| | - Aleksandra Tempczyk
- Center for Advanced Research in Biotechnology, University of Maryland Biotechnology Institute, Rockville, Maryland
| | - Wojiech Krajewski
- Center for Advanced Research in Biotechnology, University of Maryland Biotechnology Institute, Rockville, Maryland
| | - Edward Eisenstein
- National Institute of Standards and Technology, Gaithersburg, Maryland
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore, Maryland
| | - Osnat Herzberg
- Center for Advanced Research in Biotechnology, University of Maryland Biotechnology Institute, Rockville, Maryland
- Correspondence to: Osnat Herzberg, Center for Advanced Research in Biotechnology, 9600 Gudelsky Drive, Rockville, MD 20850.
| |
Collapse
|
172
|
Kimura M, Suzuki H, Ishihama A. Formation of a carboxy-terminal domain phosphatase (Fcp1)/TFIIF/RNA polymerase II (pol II) complex in Schizosaccharomyces pombe involves direct interaction between Fcp1 and the Rpb4 subunit of pol II. Mol Cell Biol 2002; 22:1577-88. [PMID: 11839823 PMCID: PMC134712 DOI: 10.1128/mcb.22.5.1577-1588.2002] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2001] [Revised: 11/13/2001] [Accepted: 11/30/2001] [Indexed: 11/20/2022] Open
Abstract
In transcriptional regulation, RNA polymerase II (pol II) interacts and forms complexes with a number of protein factors. To isolate and identify the pol II-associated proteins, we constructed a Schizosaccharomyces pombe strain carrying a FLAG tag sequence fused to the rpb3 gene encoding the pol II subunit Rpb3. By immunoaffinity purification with anti-FLAG antibody-resin, a pol II complex containing the Rpb1 subunit with a nonphosphorylated carboxyl-terminal domain (CTD) was isolated. In addition to the pol II subunits, the complex was found to contain three subunits of a transcription factor TFIIF (TFIIF alpha, TFIIF beta, and Tfg3) and TFIIF-interacting CTD-phosphatase Fcp1. The same type of pol II complex could also be purified from an Fcp1-tagged strain. The isolated Fcp1 showed CTD-phosphatase activity in vitro. The fcp1 gene is essential for cell viability. Fcp1 and pol II interacted directly in vitro. Furthermore, by chemical cross-linking, glutathione S-transferase pulldown, and affinity chromatography, the Fcp1-interacting subunit of pol II was identified as Rpb4, which plays regulatory roles in transcription. We also constructed an S. pombe thiamine-dependent rpb4 shut-off system. On repression of rpb4 expression, the cell produced more of the nonphosphorylated form of Rpb1, but the pol II complex isolated with the anti-FLAG antibody contained less Fcp1 and more of the phosphorylated form of Rpb1 with a concomitant reduction in Rpb4. This result indicates the importance of Fcp1-Rpb4 interaction for formation of the Fcp1/TFIIF/pol II complex in vivo.
Collapse
Affiliation(s)
- Makoto Kimura
- Department of Molecular Genetics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan.
| | | | | |
Collapse
|
173
|
Wang LK, Shuman S. Mutational analysis defines the 5'-kinase and 3'-phosphatase active sites of T4 polynucleotide kinase. Nucleic Acids Res 2002; 30:1073-80. [PMID: 11842120 PMCID: PMC100346 DOI: 10.1093/nar/30.4.1073] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
T4 polynucleotide kinase (Pnk) is a bifunctional 5'-kinase/3'-phosphatase that aids in the repair of broken termini in RNA by converting 3'-PO4/5'-OH ends into 3'-OH/5'-PO4 ends, which are then sealed by RNA ligase. Here we have employed site-directed mutagenesis (introducing 31 mutations at 16 positions) to locate candidate catalytic residues within the 301 amino acid Pnk polypeptide. We found that alanine substitutions for Arg38 and Arg126 inactivated the 5'-kinase, but spared the 3'-phosphatase activity. Conservative substitutions of lysine or glutamine for Arg38 and Arg126 did not restore 5'-kinase activity. These results, together with previous mutational studies, highlight a constellation of five amino acids (Lys15, Ser16, Asp35, Arg38 and Arg126) that likely comprise the 5'-kinase active site. Four of these residues are conserved at the active sites of adenylate kinases (Adk), suggesting that Pnk and Adk are structurally and mechanistically related. We found that alanine substitutions for Asp165, Asp167, Arg176, Arg213, Asp254 and Asp278 inactivated the 3'-phosphatase, but spared the 5'-kinase. Conservative substitutions of asparagine or glutamate for Asp165, Asp167 and Asp254 did not revive the 3'-phosphatase activity, nor did lysine substitutions for Arg176 and Arg213. Glutamate in lieu of Asp278 partially restored activity, whereas asparagine had no salutary effect. Alanine substitutions for Arg246 and Arg279 partially inactivated the 3'-phosphatase; the conservative R246K change restored activity, whereas R279K had no benefit. The essential phosphatase residues Asp165 and Asp167 are located within a 165DxDxT169 motif that defines a superfamily of phosphotransferases. Our data suggest that the 3'-phosphatase active site incorporates multiple additional functional groups.
Collapse
Affiliation(s)
- Li Kai Wang
- Molecular Biology Program, Sloan-Kettering Institute, 1275 York Avenue, New York, NY 10021, USA
| | | |
Collapse
|
174
|
Abstract
Congenital disorders of glycosylation (CDG) are a rapidly growing group of genetic diseases that are due to defects in the synthesis of glycans and in the attachment of glycans to other compounds. Most CDG are multisystem diseases that include severe brain involvement. The CDG causing sialic acid deficiency of N-glycans can be diagnosed by isoelectrofocusing of serum sialotransferrins. An efficient treatment, namely oral D-mannose, is available for only one CDG (CDG-Ib). In many patients with CDG, the basic defect is unknown (CDG-x). Glycan structural analysis, yeast genetics, and knockout animal models are essential tools in the elucidation of novel CDG. Eleven primary genetic glycosylation diseases have been discovered and their basic defects identified: six in the N-glycan assembly, three in the N-glycan processing, and two in the O-glycan (glycosaminoglycan) assembly. This review summarizes their clinical, biochemical, and genetic characteristics and speculates on further developments in this field.
Collapse
Affiliation(s)
- J Jaeken
- Department of Paediatrics, Centre for Metabolic Disease, University of Leuven, Leuven, Belgium.
| | | |
Collapse
|
175
|
Garami A, Mehlert A, Ilg T. Glycosylation defects and virulence phenotypes of Leishmania mexicana phosphomannomutase and dolicholphosphate-mannose synthase gene deletion mutants. Mol Cell Biol 2001; 21:8168-83. [PMID: 11689705 PMCID: PMC99981 DOI: 10.1128/mcb.21.23.8168-8183.2001] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Leishmania parasites synthesize an abundance of mannose (Man)-containing glycoconjugates thought to be essential for virulence to the mammalian host and for viability. These glycoconjugates include lipophosphoglycan (LPG), proteophosphoglycans (PPGs), glycosylphosphatidylinositol (GPI)-anchored proteins, glycoinositolphospholipids (GIPLs), and N-glycans. A prerequisite for their biosynthesis is an ample supply of the Man donors GDP-Man and dolicholphosphate-Man. We have cloned from Leishmania mexicana the gene encoding the enzyme phosphomannomutase (PMM) and the previously described dolicholphosphate-Man synthase gene (DPMS) that are involved in Man activation. Surprisingly, gene deletion experiments resulted in viable parasite lines lacking the respective open reading frames (DeltaPMM and DeltaDPMS), a result against expectation and in contrast to the lethal phenotype observed in gene deletion experiments with fungi. L. mexicana DeltaDPMS exhibits a selective defect in LPG, protein GPI anchor, and GIPL biosynthesis, but despite the absence of these structures, which have been implicated in parasite virulence and viability, the mutant remains infectious to macrophages and mice. By contrast, L. mexicana DeltaPMM are largely devoid of all known Man-containing glycoconjugates and are unable to establish an infection in mouse macrophages or the living animal. Our results define Man activation leading to GDP-Man as a virulence pathway in Leishmania.
Collapse
Affiliation(s)
- A Garami
- Max-Planck-Institut für Biologie, Abteilung Membranbiochemie, 72076 Tübingen, Federal Republic of Germany
| | | | | |
Collapse
|
176
|
Unciuleac M, Boll M. Mechanism of ATP-driven electron transfer catalyzed by the benzene ring-reducing enzyme benzoyl-CoA reductase. Proc Natl Acad Sci U S A 2001; 98:13619-24. [PMID: 11698658 PMCID: PMC61090 DOI: 10.1073/pnas.241375598] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2001] [Indexed: 11/18/2022] Open
Abstract
Benzoyl-CoA reductase (BCR) from the bacterium Thauera aromatica catalyzes the two-electron reduction of benzoyl-CoA (BCoA) to a nonaromatic cyclic diene. In a process analogous to enzymatic nitrogen reduction, BCR couples the electron transfer to the aromatic ring to a stoichiometric hydrolysis of 2 ATP/2e(-). Reduced but not oxidized BCR hydrolyzes ATP to ADP. In this work, purified BCR was shown to catalyze an isotope exchange from [(14)C]ADP to [(14)C]ATP, which was approximately 15% of the ATPase activity in the presence of equimolar amounts of ADP and ATP. In accordance, BCR (alpha beta gamma delta-composition) autophosphorylated its gamma-subunit when incubated with [gamma-(32)P]ATP. Formation of the enzyme-phosphate was independent of the redox state, whereas only dithionite-reduced BCR catalyzed a dephosphorylation associated with the ATPase activity. This finding suggests that the ATPase- and autophosphatase-partial activities of BCR exhibit identical redox dependencies. BCoA or the nonphysiological electron-accepting substrate hydroxylamine stimulated the redox-dependent effects; the rates of both the overall ATPase and the autophosphatase activities of reduced BCR were increased 6-fold. In contrast, BCoA and hydroxylamine had no effect on oxidized and phosphorylated BCR. The reactivity of the phosphoamino acid fits best with a phosphoamidate or acylphosphate linkage. The results obtained suggest a mechanism of ATP hydrolysis-driven electron transfer, which differs from that of nitrogenase by the transient formation of a phosphorylated enzyme.
Collapse
Affiliation(s)
- M Unciuleac
- Mikrobiologie, Fakultät für Biologie, Universität Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany
| | | |
Collapse
|
177
|
Zohn IE, Brivanlou AH. Expression cloning of Xenopus Os4, an evolutionarily conserved gene, which induces mesoderm and dorsal axis. Dev Biol 2001; 239:118-31. [PMID: 11784023 DOI: 10.1006/dbio.2001.0420] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Multiple factors, including members of the FGF, TGF beta, and Wnt family of proteins, are important mediators in the regulation of dorsal-ventral pattern formation during vertebrate development. By using an expression cloning approach to identify novel factors that could regulate dorsal-ventral patterning in the Xenopus embryo, we isolated the Xenopus homologue of the human Os4 gene by virtue of its ability to induce a secondary dorsal axis. While Os4 homologues have been identified in a variety of species, and human Os4 is overexpressed in human tumors, the biological function of Os4 is unknown. To explore the mechanism by which Xenopus Os4 (XOs4) induces a secondary dorsal axis, we used Xenopus explant and whole-embryo assays. The secondary axis induced by XOs4 is distinct from that induced by activation of Wnt or FGF pathways but similar to that induced by inhibition of BMP signaling or activation of an Activin pathway. However, XOs4 did not inhibit BMP signaling in dissociated animal cap explants, indicating that XOs4 does not inhibit BMP signaling. Similar to activation of an Activin-like pathway, expression of XOs4 induces molecular markers for mesoderm in animal cap explants, although expression of gastrula-stage mesodermal markers was very weak and substantially delayed. Yet, XOs4 does not require activity of the Activin signal-transduction pathway for mesoderm induction as dominant-negative components of the Activin/Nodal/Vg1 pathway did not prevent XOs4-mediated induction of mesodermal derivatives. Finally, like Activin/Nodal/Vg1 pathways, XOs4 requires FGF signaling for expression of mesoderm markers. Results presented in this study demonstrate that XOs4 can induce mesoderm and dorsalize ventral mesoderm resulting in ectopic dorsal axis formation, suggesting a role for this large evolutionarily conserved gene family in early development.
Collapse
Affiliation(s)
- I E Zohn
- Laboratory of Molecular Embryology, The Rockefeller University, 1230 York Avenue, New York, New York 10021-6399, USA
| | | |
Collapse
|
178
|
Collet JF, Stroobant V, Van Schaftingen E. The 2,3-bisphosphoglycerate-independent phosphoglycerate mutase from Trypanosoma brucei: metal-ion dependency and phosphoenzyme formation. FEMS Microbiol Lett 2001; 204:39-44. [PMID: 11682175 DOI: 10.1111/j.1574-6968.2001.tb10859.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Recombinant cofactor-independent phosphoglycerate mutase from Trypanosoma brucei was inactivated by EDTA, and reactivated by Co(2+) much more than by Mn(2+) or Fe(2+). It displayed a minor phosphoglycerate phosphatase activity, which was stimulated by Mn(2+) more than by Co(2+). Upon incubation with [(32)P]phosphoglycerate, radioactivity was incorporated into the enzyme, most particularly in the presence of Mn(2+) or Fe(2+). The phosphorylated residue was identified by tandem mass spectrometry as Ser74, a residue homologous to the phosphorylated serine in alkaline phosphatase. However, the rates of formation and of disappearance of this phosphoenzyme were quite low compared to the mutase reaction. This and other properties indicated that the observed phosphoenzyme is an intermediate in the minor phosphatase activity rather than in the phosphomutase reaction.
Collapse
Affiliation(s)
- J F Collet
- Laboratoire de Chimie Physiologique, Christian de Duve Institute of Cellular Pathology and Université Catholique de Louvain, UCL 75-39, B-1200 Brussels, Belgium
| | | | | |
Collapse
|
179
|
Clausen JD, McIntosh DB, Woolley DG, Andersen JP. Importance of Thr-353 of the conserved phosphorylation loop of the sarcoplasmic reticulum Ca2+-ATPase in MgATP binding and catalytic activity. J Biol Chem 2001; 276:35741-50. [PMID: 11438551 DOI: 10.1074/jbc.m105434200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mutants in which Thr-353 of the Ca(2+)-ATPase of sarcoplasmic reticulum had been replaced with alanine, serine, glutamine, cysteine, valine, aspartate, or tyrosine were analyzed functionally. All the mutations severely affected MgATP binding, whereas ATP binding was close to normal in the alanine, serine, glutamine, and valine mutants. In the serine and valine mutants, the maximum rate of phosphorylation from MgATP was 8- and 600-fold lower, respectively, compared with wild type. Replacement of Mg(2+) with Mn(2+) led to a 1.5-fold enhancement of the maximum phosphorylation rate in the valine mutant and a 5-fold reduction in the wild type. The turnover of the phosphoenzyme formed from MgATP was slowed 1-2 orders of magnitude relative to wild type in the alanine, serine, and valine mutants, but was close to normal in the aspartate and cysteine mutants. Only the serine mutant formed a phosphoenzyme in the backward reaction with P(i), and the hydrolysis of this intermediate was greatly enhanced. Analysis of the functional changes in the mutants in the light of the recent high resolution structure of the Ca(2+)-ATPase crystallized without the MgATP substrate suggests that, in the native activated state of the enzyme, the side chain hydroxyl of Thr-353 participates in important interactions with nucleotide and phosphate, possibly in catalysis, whereas the main chain carbonyl of Thr-353, but not the side chain, may coordinate the catalytic Mg(2+).
Collapse
Affiliation(s)
- J D Clausen
- Department of Physiology, University of Aarhus, DK-8000 Aarhus C, Denmark
| | | | | | | |
Collapse
|
180
|
Allegrini S, Scaloni A, Ferrara L, Pesi R, Pinna P, Sgarrella F, Camici M, Eriksson S, Tozzi MG. Bovine cytosolic 5'-nucleotidase acts through the formation of an aspartate 52-phosphoenzyme intermediate. J Biol Chem 2001; 276:33526-32. [PMID: 11432867 DOI: 10.1074/jbc.m104088200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cytosolic 5'-nucleotidase/phosphotransferase (cN-II), specific for purine monophosphates and their deoxyderivatives, acts through the formation of a phosphoenzyme intermediate. Phosphate may either be released leading to 5'-mononucleotide hydrolysis or be transferred to an appropriate nucleoside acceptor, giving rise to a mononucleotide interconversion. Chemical reagents specifically modifying aspartate and glutamate residues inhibit the enzyme, and this inhibition is partially prevented by cN-II substrates and physiological inhibitors. Peptide mapping experiments with the phosphoenzyme previously treated with tritiated borohydride allowed isolation of a radiolabeled peptide. Sequence analysis demonstrated that radioactivity was associated with a hydroxymethyl derivative that resulted from reduction of the Asp-52-phosphate intermediate. Site-directed mutagenesis experiments confirmed the essential role of Asp-52 in the catalytic machinery of the enzyme and suggested also that Asp-54 assists in the formation of the acyl phosphate species. From sequence alignments we conclude that cytosolic 5'-nucleotidase, along with other nucleotidases, belong to a large superfamily of hydrolases with different substrate specificities and functional roles.
Collapse
Affiliation(s)
- S Allegrini
- Dipartimento di Scienze del Farmaco, Università di Sassari, via Muroni 23/A, 07100 Sassari Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
181
|
Thompson PR, Cole PA. Probing the mechanism of enzymatic phosphoryl transfer with a chemical trick. Proc Natl Acad Sci U S A 2001; 98:8170-1. [PMID: 11459948 PMCID: PMC37416 DOI: 10.1073/pnas.161273998] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- P R Thompson
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | | |
Collapse
|
182
|
Cho H, Wang W, Kim R, Yokota H, Damo S, Kim SH, Wemmer D, Kustu S, Yan D. BeF(3)(-) acts as a phosphate analog in proteins phosphorylated on aspartate: structure of a BeF(3)(-) complex with phosphoserine phosphatase. Proc Natl Acad Sci U S A 2001; 98:8525-30. [PMID: 11438683 PMCID: PMC37469 DOI: 10.1073/pnas.131213698] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protein phosphoaspartate bonds play a variety of roles. In response regulator proteins of two-component signal transduction systems, phosphorylation of an aspartate residue is coupled to a change from an inactive to an active conformation. In phosphatases and mutases of the haloacid dehalogenase (HAD) superfamily, phosphoaspartate serves as an intermediate in phosphotransfer reactions, and in P-type ATPases, also members of the HAD family, it serves in the conversion of chemical energy to ion gradients. In each case, lability of the phosphoaspartate linkage has hampered a detailed study of the phosphorylated form. For response regulators, this difficulty was recently overcome with a phosphate analog, BeF(3)(-), which yields persistent complexes with the active site aspartate of their receiver domains. We now extend the application of this analog to a HAD superfamily member by solving at 1.5-A resolution the x-ray crystal structure of the complex of BeF(3)(-) with phosphoserine phosphatase (PSP) from Methanococcus jannaschii. The structure is comparable to that of a phosphoenzyme intermediate: BeF(3)(-) is bound to Asp-11 with the tetrahedral geometry of a phosphoryl group, is coordinated to Mg(2+), and is bound to residues surrounding the active site that are conserved in the HAD superfamily. Comparison of the active sites of BeF(3)(-) x PSP and BeF(3)(-) x CeY, a receiver domain/response regulator, reveals striking similarities that provide insights into the function not only of PSP but also of P-type ATPases. Our results indicate that use of BeF(3)(-) for structural studies of proteins that form phosphoaspartate linkages will extend well beyond response regulators.
Collapse
Affiliation(s)
- H Cho
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
183
|
Vance JR, Wilson TE. Uncoupling of 3'-phosphatase and 5'-kinase functions in budding yeast. Characterization of Saccharomyces cerevisiae DNA 3'-phosphatase (TPP1). J Biol Chem 2001; 276:15073-81. [PMID: 11278831 DOI: 10.1074/jbc.m011075200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Polynucleotide kinase is a bifunctional enzyme containing both DNA 3'-phosphatase and 5'-kinase activities seemingly suited to the coupled repair of single-strand nicks in which the phosphate has remained with the 3'-base. We show that the yeast Saccharomyces cerevisiae is able to repair transformed dephosphorylated linear plasmids by non-homologous end joining with considerable efficiency independently of the end-processing polymerase Pol4p. Homology searches and biochemical assays did not reveal a 5'-kinase that would account for this repair, however. Instead, open reading frame YMR156C (here named TPP1) is shown to encode only a polynucleotide kinase-type 3'-phosphatase. Tpp1p bears extensive similarity to the ancient L-2-halo-acid dehalogenase and DDDD phosphohydrolase superfamilies, but is specific for double-stranded DNA. It is present at high levels in cell extracts in a functional form and so does not represent a pseudogene. Moreover, the phosphatase-only nature of this gene is shared by Saccharomyces mikatae YMR156C and Arabidopsis thaliana K15M2.3. Repair of 3'-phosphate and 5'-hydroxyl lesions is thus uncoupled in budding yeast as compared with metazoans. Repair of transformed dephosphorylated plasmids, and 5'-hydroxyl blocking lesions more generally, likely proceeds by a cycle of base removal and resynthesis.
Collapse
Affiliation(s)
- J R Vance
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109-0602, USA
| | | |
Collapse
|
184
|
Reilly TJ, Green BA, Zlotnick GW, Smith AL. Contribution of the DDDD motif of H. influenzae e (P4) to phosphomonoesterase activity and heme transport. FEBS Lett 2001; 494:19-23. [PMID: 11297727 DOI: 10.1016/s0014-5793(01)02294-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Haemophilus influenzae lipoprotein e (P4) is a member of the DDDD phosphohydrolase superfamily and mediates heme transport. Each of the aspartate residues of the signature motif is required for phosphomonoesterase activity, as none of the e (P4) single D mutants (D64A, D66A, D181N, and D185A) possessed detectable phosphomonoesterase activity. These results suggest that the signature motif is essential to the phosphomonoesterase activity of lipoprotein e (P4). When assessed for phosphomonoesterase-dependent heme transport activity in Escherichia coli hemA strains, plasmids containing D181N and D185A retained heme transport as indicated by aerobic growth while D64A and D66A did not. We conclude that phosphomonoesterase activity is not required for heme transport.
Collapse
Affiliation(s)
- T J Reilly
- Department of Molecular Microbiology and Imunology, University of Missouri Medical School, Columbia, MO 65212, USA
| | | | | | | |
Collapse
|
185
|
Grünewald S, Schollen E, Van Schaftingen E, Jaeken J, Matthijs G. High residual activity of PMM2 in patients' fibroblasts: possible pitfall in the diagnosis of CDG-Ia (phosphomannomutase deficiency). Am J Hum Genet 2001; 68:347-54. [PMID: 11156536 PMCID: PMC1235268 DOI: 10.1086/318199] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2000] [Accepted: 12/13/2000] [Indexed: 11/03/2022] Open
Abstract
Congenital disorders of glycosylation (CDGs) are a rapidly enlarging group of inherited diseases with abnormal N-glycosylation of glycoconjugates. Most patients have CDG-Ia, which is due to a phosphomannomutase (PMM) deficiency. In this article, we report that a significant portion (9 of 54) of patients with CDG-Ia had a rather high residual PMM activity in fibroblasts included in the normal range (means of the controls +/- 2 SD) and amounting to 35%-70% of the mean control value. The clinical diagnosis of CDG-Ia was made difficult by the fact that most (6 of 9) of these patients belong to a subgroup characterized by a phenotype that is milder than classical CDG-Ia. These patients lack some of the symptoms that are suggestive for the diagnosis, such as inverted nipples and abnormal fat deposition, and, as a mean, had higher residual PMM activities in fibroblasts (2.05+/-0.61 mU/mg protein, n=9; vs. controls 5.34+/-1.74 mU/mg protein, n=22), compared with patients with moderate (1.32+/-0.86 mU/mg protein, n=18) or severe (0.63+/-0.56 mU/mg protein, n=27, P<.001) cases. Yet they all showed mild mental retardation, hypotonia, cerebellar hypoplasia, and strabismus. All of them had an abnormal serum transferrin pattern and a significantly reduced PMM activity in leukocytes. Six of the nine patients with mild presentations were compound heterozygotes for the C241S mutation, which is known to reduce PMM activity by only approximately 2-fold. Our results indicate that intermediate PMM values in fibroblasts may mask the diagnosis of CDG-Ia, which is better accomplished by measurement of PMM activity in leukocytes and mutation search in the PMM2 gene. They also indicate that there is some degree of correlation between the residual activity in fibroblasts and the clinical phenotype.
Collapse
Affiliation(s)
- Stephanie Grünewald
- Centres for Human Genetics and Metabolic Disease, University of Leuven, Leuven; and Laboratory of Physiological Chemistry, Institute of Cellular Pathology and University of Louvain, Brussels
| | - Els Schollen
- Centres for Human Genetics and Metabolic Disease, University of Leuven, Leuven; and Laboratory of Physiological Chemistry, Institute of Cellular Pathology and University of Louvain, Brussels
| | - Emile Van Schaftingen
- Centres for Human Genetics and Metabolic Disease, University of Leuven, Leuven; and Laboratory of Physiological Chemistry, Institute of Cellular Pathology and University of Louvain, Brussels
| | - Jaak Jaeken
- Centres for Human Genetics and Metabolic Disease, University of Leuven, Leuven; and Laboratory of Physiological Chemistry, Institute of Cellular Pathology and University of Louvain, Brussels
| | - Gert Matthijs
- Centres for Human Genetics and Metabolic Disease, University of Leuven, Leuven; and Laboratory of Physiological Chemistry, Institute of Cellular Pathology and University of Louvain, Brussels
| |
Collapse
|
186
|
Baldwin JC, Karthikeyan AS, Raghothama KG. LEPS2, a phosphorus starvation-induced novel acid phosphatase from tomato. PLANT PHYSIOLOGY 2001; 125:728-37. [PMID: 11161030 PMCID: PMC64874 DOI: 10.1104/pp.125.2.728] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2000] [Revised: 08/23/2000] [Accepted: 10/01/2000] [Indexed: 05/22/2023]
Abstract
Phosphate (Pi) is one of the least available plant nutrients found in the soil. A significant amount of phosphate is bound in organic forms in the rhizosphere. Phosphatases produced by plants and microbes are presumed to convert organic phosphorus into available Pi, which is absorbed by plants. In this study we describe the isolation and characterization of a novel tomato (Lycopersicon esculentum) phosphate starvation-induced gene (LePS2) representing an acid phosphatase. LePS2 is a member of a small gene family in tomato. The cDNA is 942 bp long and contains an open reading frame encoding a 269-amino acid polypeptide. The amino acid sequence of LePS2 has a significant similarity with a phosphatase from chicken. Distinct regions of the peptide also share significant identity with the members of HAD and DDDD super families of phosphohydrolases. Many plant homologs of LePS2 are found in the databases. The LePS2 transcripts are induced rapidly in tomato plant and cell culture in the absence of Pi. However, the induction is repressible in the presence of Pi. Divided root studies indicate that internal Pi levels regulate the expression of LePS2. The enhanced expression of LePS2 is a specific response to Pi starvation, and it is not affected by starvation of other nutrients or abiotic stresses. The bacterially (Escherichia coli) expressed protein exhibits phosphatase activity against the synthetic substrate p-nitrophenyl phosphate. The pH optimum of the enzyme activity suggests that LePS2 is an acid phosphatase.
Collapse
Affiliation(s)
- J C Baldwin
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907-1165, USA
| | | | | |
Collapse
|
187
|
Fuchs T, Wiget P, Osterås M, Jenal U. Precise amounts of a novel member of a phosphotransferase superfamily are essential for growth and normal morphology in Caulobacter crescentus. Mol Microbiol 2001; 39:679-92. [PMID: 11169108 DOI: 10.1046/j.1365-2958.2001.02238.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Caulobacter crescentus chromosomal clp locus contains the genes encoding the components of ClpXP, a multisubunit protease required for cell cycle progression in this organism. Here, we report the identification and characterization of cicA, a gene located between the clpX and clpP genes on the Caulobacter chromosome. cicA is a novel morphogene in C. crescentus and, like clpX and clpP, is essential for growth. A conditional cicA mutant stopped growth, but retained viability under restrictive conditions. In contrast, an increased concentration of CicA led to an immediate loss of the normal rod shape, an almost 10-fold increase of the cell's volume and a cell division block. In parallel with this drastic morphological change, cells rapidly lost viability. Primary sequence analysis suggested that the cicA gene encodes a member of a large superfamily of phosphotransferases, that include phosphoserine phosphatases, the ATPase domain of P-type ATPases and receiver domains of response regulators. Four conserved motifs of this protein family that have been implicated in the catalysis of phosphotransfer reactions were investigated by site-directed mutagenesis and were found to be critical for in vivo function of CicA. Based on our observations, we postulate that CicA is involved in essential phosphotransferase reactions in Caulobacter and that increased activity of CicA has a deleterious effect on cell wall biosynthesis, morphogenesis and cell division.
Collapse
Affiliation(s)
- T Fuchs
- Division of Molecular Microbiology, Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | | | | | | |
Collapse
|
188
|
Wang W, Kim R, Jancarik J, Yokota H, Kim SH. Crystal structure of phosphoserine phosphatase from Methanococcus jannaschii, a hyperthermophile, at 1.8 A resolution. Structure 2001; 9:65-71. [PMID: 11342136 DOI: 10.1016/s0969-2126(00)00558-x] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND D-Serine is a co-agonist of the N-methyl-D-aspartate subtype of glutamate receptors, a major neurotransmitter receptor family in mammalian nervous systems. D-Serine is converted from L-serine, 90% of which is the product of the enzyme phosphoserine phosphatase (PSP). PSP from M. jannaschii (MJ) shares significant sequence homology with human PSP. PSPs and P-type ATPases are members of the haloacid dehalogenase (HAD)-like hydrolase family, and all members share three conserved sequence motifs. PSP and P-type ATPases utilize a common mechanism that involves Mg(2+)-dependent phosphorylation and autodephosphorylation at an aspartyl side chain in the active site. The strong resemblance in sequence and mechanism implies structural similarity among these enzymes. RESULTS The PSP crystal structure resembles the NAD(P) binding Rossmann fold with a large insertion of a four-helix-bundle domain and a beta hairpin. Three known conserved sequence motifs are arranged next to each other in space and outline the active site. A phosphate and a magnesium ion are bound to the active site. The active site is within a closed environment between the core alpha/beta domain and the four-helix-bundle domain. CONCLUSIONS The crystal structure of MJ PSP was determined at 1.8 A resolution. Critical residues were assigned based on the active site structure and ligand binding geometry. The PSP structure is in a closed conformation that may resemble the phosphoserine bound state or the state after autodephosphorylation. Compared to a P-type ATPase (Ca(2+)-ATPase) structure, which is in an open state, this PSP structure appears also to be a good model for the closed conformation of P-type ATPase.
Collapse
Affiliation(s)
- W Wang
- Department of Chemistry, University of California, Berkeley, 94720, USA
| | | | | | | | | |
Collapse
|
189
|
Metzler DE, Metzler CM, Sauke DJ. Transferring Groups by Displacement Reactions. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50015-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
190
|
Zhou T, Daugherty M, Grishin NV, Osterman AL, Zhang H. Structure and mechanism of homoserine kinase: prototype for the GHMP kinase superfamily. Structure 2000; 8:1247-57. [PMID: 11188689 DOI: 10.1016/s0969-2126(00)00533-5] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Homoserine kinase (HSK) catalyzes an important step in the threonine biosynthesis pathway. It belongs to a large yet unique class of small metabolite kinases, the GHMP kinase superfamily. Members in the GHMP superfamily participate in several essential metabolic pathways, such as amino acid biosynthesis, galactose metabolism, and the mevalonate pathway. RESULTS The crystal structure of HSK and its complex with ADP reveal a novel nucleotide binding fold. The N-terminal domain contains an unusual left-handed betaalphabeta unit, while the C-terminal domain has a central alpha-beta plait fold with an insertion of four helices. The phosphate binding loop in HSK is distinct from the classical P loops found in many ATP/GTP binding proteins. The bound ADP molecule adopts a rare syn conformation and is in the opposite orientation from those bound to the P loop-containing proteins. Inspection of the substrate binding cavity indicates several amino acid residues that are likely to be involved in substrate binding and catalysis. CONCLUSIONS The crystal structure of HSK is the first representative in the GHMP superfamily to have determined structure. It provides insight into the structure and nucleotide binding mechanism of not only the HSK family but also a variety of enzymes in the GHMP superfamily. Such enzymes include galactokinases, mevalonate kinases, phosphomevalonate kinases, mevalonate pyrophosphate decarboxylases, and several proteins of yet unknown functions.
Collapse
Affiliation(s)
- T Zhou
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas 75390, USA
| | | | | | | | | |
Collapse
|
191
|
Prokopenko SN, He Y, Lu Y, Bellen HJ. Mutations affecting the development of the peripheral nervous system in Drosophila: a molecular screen for novel proteins. Genetics 2000; 156:1691-715. [PMID: 11102367 PMCID: PMC1461357 DOI: 10.1093/genetics/156.4.1691] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
In our quest for novel genes required for the development of the embryonic peripheral nervous system (PNS), we have performed three genetic screens using MAb 22C10 as a marker of terminally differentiated neurons. A total of 66 essential genes required for normal PNS development were identified, including 49 novel genes. To obtain information about the molecular nature of these genes, we decided to complement our genetic screens with a molecular screen. From transposon-tagged mutations identified on the basis of their phenotype in the PNS we selected 31 P-element strains representing 26 complementation groups on the second and third chromosomes to clone and sequence the corresponding genes. We used plasmid rescue to isolate and sequence 51 genomic fragments flanking the sites of these P-element insertions. Database searches using sequences derived from the ends of plasmid rescues allowed us to assign genes to one of four classes: (1) previously characterized genes (11), (2) first mutations in cloned genes (1), (3) P-element insertions in genes that were identified, but not characterized molecularly (1), and (4) novel genes (13). Here, we report the cloning, sequence, Northern analysis, and the embryonic expression pattern of candidate cDNAs for 10 genes: astray, chrowded, dalmatian, gluon, hoi-polloi, melted, pebble, skittles, sticky ch1, and vegetable. This study allows us to draw conclusions about the identity of proteins required for the development of the nervous system in Drosophila and provides an example of a molecular approach to characterize en masse transposon-tagged mutations identified in genetic screens.
Collapse
Affiliation(s)
- S N Prokopenko
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | | | | | |
Collapse
|
192
|
Lunn JE, Ashton AR, Hatch MD, Heldt HW. Purification, molecular cloning, and sequence analysis of sucrose-6F-phosphate phosphohydrolase from plants. Proc Natl Acad Sci U S A 2000; 97:12914-9. [PMID: 11050182 PMCID: PMC18864 DOI: 10.1073/pnas.230430197] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sucrose-6(F)-phosphate phosphohydrolase (SPP; EC ) catalyzes the final step in the pathway of sucrose biosynthesis and is the only enzyme of photosynthetic carbon assimilation for which the gene has not been identified. The enzyme was purified to homogeneity from rice (Oryza sativa L.) leaves and partially sequenced. The rice leaf enzyme is a dimer with a native molecular mass of 100 kDa and a subunit molecular mass of 50 kDa. The enzyme is highly specific for sucrose 6(F)-phosphate with a K(m) of 65 microM and a specific activity of 1250 micromol min(-1) mg(-1) protein. The activity is dependent on Mg(2+) with a remarkably low K(a) of 8-9 microM and is weakly inhibited by sucrose. Three peptides from cleavage of the purified rice SPP with endoproteinase Lys-C showed similarity to the deduced amino acid sequences of three predicted open reading frames (ORF) in the Arabidopsis thaliana genome and one in the genome of the cyanobacterium Synechocystis sp. PCC6803, as well as cDNA clones from Arabidopsis, maize, and other species in the GenBank database of expressed sequence tags. The putative maize SPP cDNA clone contained an ORF encoding a 420-amino acid polypeptide. Heterologous expression in Escherichia coli showed that this cDNA clone encoded a functional SPP enzyme. The 260-amino acid N-terminal catalytic domain of the maize SPP is homologous to the C-terminal region of sucrose-phosphate synthase. A PSI-BLAST search of the GenBank database indicated that the maize SPP is a member of the haloacid dehalogenase hydrolase/phosphatase superfamily.
Collapse
Affiliation(s)
- J E Lunn
- Commonwealth Scientific and Industrial Research Organization Plant Industry, GPO Box 1600, Canberra, ACT 2601, Australia.
| | | | | | | |
Collapse
|
193
|
Kobor MS, Simon LD, Omichinski J, Zhong G, Archambault J, Greenblatt J. A motif shared by TFIIF and TFIIB mediates their interaction with the RNA polymerase II carboxy-terminal domain phosphatase Fcp1p in Saccharomyces cerevisiae. Mol Cell Biol 2000; 20:7438-49. [PMID: 11003641 PMCID: PMC86297 DOI: 10.1128/mcb.20.20.7438-7449.2000] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcription by RNA polymerase II is accompanied by cyclic phosphorylation and dephosphorylation of the carboxy-terminal heptapeptide repeat domain (CTD) of its largest subunit. We have used deletion and point mutations in Fcp1p, a TFIIF-interacting CTD phosphatase, to show that the integrity of its BRCT domain, like that of its catalytic domain, is important for cell viability, mRNA synthesis, and CTD dephosphorylation in vivo. Although regions of Fcp1p carboxy terminal to its BRCT domain and at its amino terminus were not essential for viability, deletion of either of these regions affected the phosphorylation state of the CTD. Two portions of this carboxy-terminal region of Fcp1p bound directly to the first cyclin-like repeat in the core domain of the general transcription factor TFIIB, as well as to the RAP74 subunit of TFIIF. These regulatory interactions with Fcp1p involved closely related amino acid sequence motifs in TFIIB and RAP74. Mutating the Fcp1p-binding motif KEFGK in the RAP74 (Tfg1p) subunit of TFIIF to EEFGE led to both synthetic phenotypes in certain fcp1 tfg1 double mutants and a reduced ability of Fcp1p to activate transcription when it is artificially tethered to a promoter. These results suggest strongly that this KEFGK motif in RAP74 mediates its interaction with Fcp1p in vivo.
Collapse
Affiliation(s)
- M S Kobor
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario M5G 1L6, Canada
| | | | | | | | | | | |
Collapse
|
194
|
Siniossoglou S, Hurt EC, Pelham HR. Psr1p/Psr2p, two plasma membrane phosphatases with an essential DXDX(T/V) motif required for sodium stress response in yeast. J Biol Chem 2000; 275:19352-60. [PMID: 10777497 DOI: 10.1074/jbc.m001314200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Regulation of intracellular ion concentration is an essential function of all cells. In this study, we report the identification of two previously uncharacterized genes, PSR1 and PSR2, that perform an essential function under conditions of sodium ion stress in the yeast Saccharomyces cerevisiae. Psr1p and Psr2p are highly homologous and were identified through their homology with the endoplasmic reticulum membrane protein Nem1p. Localization and biochemical fractionation studies show that Psr1p is associated with the plasma membrane via a short amino-terminal sequence also present in Psr2p. Growth of the psr1psr2 mutant is severely inhibited under conditions of sodium but not potassium ion or sorbitol stress. This growth defect is due to the inability of the psr1psr2 mutant to properly induce transcription of ENA1/PMR2, the major sodium extrusion pump of yeast cells. We provide genetic evidence that this regulation is independent of the phosphatase calcineurin, previously implicated in the sodium stress response in yeast. We show that Psr1p contains a DXDX(T/V) phosphatase motif essential for its function in vivo and that a Psr1p-PtA fusion purified from yeast extracts exhibits phosphatase activity. Based on these data, we suggest that Psr1p/Psr2p, members of an emerging class of eukaryotic phosphatases, are novel regulators of salt stress response in yeast.
Collapse
Affiliation(s)
- S Siniossoglou
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, United Kingdom
| | | | | |
Collapse
|
195
|
Stokes DL, Green NM. Modeling a dehalogenase fold into the 8-A density map for Ca(2+)-ATPase defines a new domain structure. Biophys J 2000; 78:1765-76. [PMID: 10733958 PMCID: PMC1300772 DOI: 10.1016/s0006-3495(00)76727-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Members of the large family of P-type pumps use active transport to maintain gradients of a wide variety of cations across cellular membranes. Recent structures of two P-type pumps at 8-A resolution have revealed the arrangement of transmembrane helices but were insufficient to reveal the architecture of the cytoplasmic domains. However, recent proposals of a structural homology with a superfamily of hydrolases offer a new basis for modeling these domains. In the current work, we have extended the sequence comparison for the superfamily and delineated domains in the 8-A density map of Ca(2+)-ATPase. The homology suggests a new domain structure for Ca(2+)-ATPase and, specifically, that the phosphorylation domain adopts a Rossman fold. Accordingly, the atomic structure of L-2 haloacid dehalogenase has been fitted into the relevant domain of Ca(2+)-ATPase. The resulting model suggests the existence of two ATP sites at the interface between two domains. Based on this new model, we are able to reconcile numerous results of mutagenesis and chemical cross-linking within the catalytic domains. Furthermore, we have used the model to predict the configuration of Mg.ATP at its binding site. Based on this prediction, we propose a mechanism, involving a change in Mg(2+) liganding, for initiating the domain movements that couple sites of ion transport to ATP hydrolysis.
Collapse
Affiliation(s)
- D L Stokes
- Skirball Institute of Biomolecular Research, Department of Cell Biology, New York University School of Medicine, New York, New York 10016, USA.
| | | |
Collapse
|
196
|
Collet JF, Stroobant V, Van Schaftingen E. Mechanistic studies of phosphoserine phosphatase, an enzyme related to P-type ATPases. J Biol Chem 1999; 274:33985-90. [PMID: 10567362 DOI: 10.1074/jbc.274.48.33985] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphoserine phosphatase belongs to a new class of phosphotransferases forming an acylphosphate during catalysis and sharing three motifs with P-type ATPases and haloacid dehalogenases. The phosphorylated residue was identified as the first aspartate in the first motif (DXDXT) by mass spectrometry analysis of peptides derived from the phosphorylated enzyme treated with NaBH(4) or alkaline [(18)O]H(2)O. Incubation of native phosphoserine phosphatase with phosphoserine in [(18)O]H(2)O did not result in (18)O incorporation in residue Asp-20, indicating that the phosphoaspartate is hydrolyzed, as in P-type ATPases, by attack of the phosphorus atom. Mutagenesis studies bearing on conserved residues indicated that four conservative changes either did not affect (S109T) or caused a moderate decrease in activity (G178A, D179E, and D183E). Other mutations inactivated the enzyme by >80% (S109A and G180A) or even by >/=99% (D179N, D183N, K158A, and K158R). Mutations G178A and D179N decreased the affinity for phosphoserine, suggesting that these residues participate in the binding of the substrate. Mutations of Asp-179 decreased the affinity for Mg(2+), indicating that this residue interacts with the cation. Thus, investigated residues appear to play an important role in the reaction mechanism of phosphoserine phosphatase, as is known for equivalent residues in P-type ATPases and haloacid dehalogenases.
Collapse
Affiliation(s)
- J F Collet
- Laboratoire de Chimie Physiologique, Christian de Duve Institute of Cellular Pathology, B 1200 Brussels, Belgium
| | | | | |
Collapse
|
197
|
Jia Y, Lu Z, Huang K, Herzberg O, Dunaway-Mariano D. Insight into the mechanism of phosphoenolpyruvate mutase catalysis derived from site-directed mutagenesis studies of active site residues. Biochemistry 1999; 38:14165-73. [PMID: 10571990 DOI: 10.1021/bi990771j] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PEP mutase catalyzes the conversion of phosphoenolpyruvate (PEP) to phosphonopyruvate in biosynthetic pathways leading to phosphonate secondary metabolites. A recent X-ray structure [Huang, K., Li, Z., Jia, Y., Dunaway-Mariano, D., and Herzberg, O. (1999) Structure (in press)] of the Mytilus edulis enzyme complexed with the Mg(II) cofactor and oxalate inhibitor reveals an alpha/beta-barrel backbone-fold housing an active site in which Mg(II) is bound by the two carboxylate groups of the oxalate ligand and the side chain of D85 and, via bridging water molecules, by the side chains of D58, D85, D87, and E114. The oxalate ligand, in turn, interacts with the side chains of R159, W44, and S46 and the backbone amide NHs of G47 and L48. Modeling studies identified two feasible PEP binding modes: model A in which PEP replaces oxalate with its carboxylate group interacting with R159 and its phosphoryl group positioned close to D58 and Mg(II) shifting slightly from its original position in the crystal structure, and model B in which PEP replaces oxalate with its phosphoryl group interacting with R159 and Mg(II) retaining its original position. Site-directed mutagenesis studies of the key mutase active site residues (R159, D58, D85, D87, and E114) were carried out in order to evaluate the catalytic roles predicted by the two models. The observed retention of low catalytic activity in the mutants R159A, D85A, D87A, and E114A, coupled with the absence of detectable catalytic activity in D58A, was interpreted as evidence for model A in which D58 functions in nucleophilic catalysis (phosphoryl transfer), R159 functions in PEP carboxylate group binding, and the carboxylates of D85, D87 and E114 function in Mg(II) binding. These results also provide evidence against model B in which R159 serves to mediate the phosphoryl transfer. A catalytic motif, which could serve both the phosphoryl transfer and the C-C cleavage enzymes of the PEP mutase superfamily, is proposed.
Collapse
Affiliation(s)
- Y Jia
- Department of Chemistry, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | | | | | | | | |
Collapse
|
198
|
Karimi-Busheri F, Daly G, Robins P, Canas B, Pappin DJ, Sgouros J, Miller GG, Fakhrai H, Davis EM, Le Beau MM, Weinfeld M. Molecular characterization of a human DNA kinase. J Biol Chem 1999; 274:24187-94. [PMID: 10446193 DOI: 10.1074/jbc.274.34.24187] [Citation(s) in RCA: 181] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human polydeoxyribonucleotide kinase is an enzyme that has the capacity to phosphorylate DNA at 5'-hydroxyl termini and dephosphorylate 3'-phosphate termini and, therefore, can be considered a putative DNA repair enzyme. The enzyme was purified from HeLa cells. Amino acid sequence was obtained for several tryptic fragments by mass spectrometry. The sequences were matched through the dbEST data base with an incomplete human cDNA clone, which was used as a probe to retrieve the 5'-end of the cDNA sequence from a separate cDNA library. The complete cDNA, which codes for a 521-amino acid protein (57.1 kDa), was expressed in Escherichia coli, and the recombinant protein was shown to possess the kinase and phosphatase activities. Comparison with other sequenced proteins identified a P-loop motif, indicative of an ATP-binding domain, and a second motif associated with several different phosphatases. There is reasonable sequence similarity to putative open reading frames in the genomes of Caenorhabditis elegans and Schizosaccharomyces pombe, but similarity to bacteriophage T4 polynucleotide kinase is limited to the kinase and phosphatase domains noted above. Northern hybridization revealed a major transcript of approximately 2.3 kilobases and a minor transcript of approximately 7 kilobases. Pancreas, heart, and kidney appear to have higher levels of mRNA than brain, lung, or liver. Confocal microscopy of human A549 cells indicated that the kinase resides predominantly in the nucleus. The gene encoding the enzyme was mapped to chromosome band 19q13.4.
Collapse
Affiliation(s)
- F Karimi-Busheri
- Experimental Oncology, Cross Cancer Institute, Department of Oncology, University of Alberta, Edmonton, Alberta T6G 1Z2, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
199
|
Jilani A, Ramotar D, Slack C, Ong C, Yang XM, Scherer SW, Lasko DD. Molecular cloning of the human gene, PNKP, encoding a polynucleotide kinase 3'-phosphatase and evidence for its role in repair of DNA strand breaks caused by oxidative damage. J Biol Chem 1999; 274:24176-86. [PMID: 10446192 DOI: 10.1074/jbc.274.34.24176] [Citation(s) in RCA: 215] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mammalian polynucleotide kinases catalyze the 5'-phosphorylation of nucleic acids and can have associated 3'-phosphatase activity, predictive of an important function in DNA repair following ionizing radiation or oxidative damage. The sequences of three tryptic peptides from a bovine 60-kDa polypeptide that correlated with 5'-DNA kinase and 3'-phosphatase activities identified human and murine dbEST clones. The 57.1-kDa conceptual translation product of this gene, polynucleotide kinase 3'-phosphatase (PNKP), contained a putative ATP binding site and a potential 3'-phosphatase domain with similarity to L-2-haloacid dehalogenases. BLAST searches identified possible homologs in Caenorhabditis elegans, Schizosaccharomyces pombe, and Drosophila melanogaster. The gene was localized to chromosome 19q13.3-13.4. Northern analysis indicated a 2-kilobase mRNA in eight human tissues. A glutathione S-transferase-PNKP fusion protein displayed 5'-DNA kinase and 3'-phosphatase activities. PNKP is the first gene for a DNA-specific kinase from any organism. PNKP expression partially rescued the sensitivity to oxidative damaging agents of the Escherichia coli DNA repair-deficient xth nfo double mutant. PNKP gene function restored termini suitable for DNA polymerase, consistent with in vivo removal of 3'-phosphate groups, facilitating DNA repair.
Collapse
Affiliation(s)
- A Jilani
- Molecular Oncology Group, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, Quebec H3T 1E2
| | | | | | | | | | | | | |
Collapse
|
200
|
Kobor MS, Archambault J, Lester W, Holstege FC, Gileadi O, Jansma DB, Jennings EG, Kouyoumdjian F, Davidson AR, Young RA, Greenblatt J. An unusual eukaryotic protein phosphatase required for transcription by RNA polymerase II and CTD dephosphorylation in S. cerevisiae. Mol Cell 1999; 4:55-62. [PMID: 10445027 DOI: 10.1016/s1097-2765(00)80187-2] [Citation(s) in RCA: 170] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The carboxy-terminal domain (CTD) of the largest subunit of RNA polymerase II is phosphorylated soon after transcriptional initiation. We show here that the essential FCP1 gene of S. cerevisiae is linked genetically to RNA polymerase II and encodes a CTD phosphatase essential for dephosphorylation of RNA polymerase II in vivo. Fcp1p contains a phosphatase motif, psi psi psi DXDX(T/V)psi psi, which is novel for eukaryotic protein phosphatases and essential for Fcp1p to function in vivo. This motif is also required for recombinant Fcp1p to dephosphorylate the RNA polymerase II CTD or the artificial substrate p-nitrophenylphosphate in vitro. The effects of fcp1 mutations in global run-on and genome-wide expression studies show that transcription by RNA polymerase II in S. cerevisiae generally requires CTD phosphatase.
Collapse
Affiliation(s)
- M S Kobor
- Banting and Best Department of Medical Research, University of Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|