151
|
Aicart-Ramos C, Valhondo Falcón M, Ortiz de Montellano PR, Rodriguez-Crespo I. Covalent attachment of heme to the protein moiety in an insect E75 nitric oxide sensor. Biochemistry 2012; 51:7403-16. [PMID: 22946928 DOI: 10.1021/bi300848x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We have recombinantly expressed and purified the ligand binding domains (LBDs) of four insect nuclear receptors of the E75 family. The Drosophila melanogaster and Bombyx mori nuclear receptors were purified as ferric hemoproteins with Soret maxima at 424 nm, whereas their ferrous forms had a Soret maximum at 425 nm that responds to (•)NO and CO binding. In contrast, the purified LBD of Oncopeltus fasciatus displayed a Soret maximum at 415 nm for the ferric protein that shifted to 425 nm in its ferrous state. Binding of (•)NO to the heme moiety of the D. melanogaster and B. mori E75 LBD resulted in the appearance of a peak at 385 nm, whereas this peak appeared at 416 nm in the case of the O. fasciatus hemoprotein, resembling the behavior displayed by its human homologue, Rev-erbβ. High-performance liquid chromatography analysis revealed that, unlike the D. melanogaster and B. mori counterparts, the heme group of O. fasciatus is covalently attached to the protein through the side chains of two amino acids. The high degree of sequence homology with O. fasciatus E75 led us to clone and express the LBD of Blattella germanica, which established that its spectral properties closely resemble those of O. fasciatus and that it also has the heme group covalently bound to the protein. Hence, (•)NO/CO regulation of the transcriptional activity of these nuclear receptors might be differently controlled among various insect species. In addition, covalent heme binding provides strong evidence that at least some of these nuclear receptors function as diatomic gas sensors rather than heme sensors. Finally, our findings expand the classes of hemoproteins in which the heme group is normally covalently attached to the polypeptide chain.
Collapse
Affiliation(s)
- Clara Aicart-Ramos
- Departamento de Bioquímica y Biología Molecular I, Universidad Complutense, 28040 Madrid, Spain
| | | | | | | |
Collapse
|
152
|
McCormick S, Nelson A, Nauseef WM. Proconvertase proteolytic processing of an enzymatically active myeloperoxidase precursor. Arch Biochem Biophys 2012; 527:31-6. [PMID: 22902565 DOI: 10.1016/j.abb.2012.07.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 07/24/2012] [Accepted: 07/25/2012] [Indexed: 11/24/2022]
Abstract
Optimal and efficient killing of ingested microbes by human neutrophils is mediated in large part by the action of hypochlorous acid produced by the myeloperoxidase-H(2)O(2)-chloride system in phagosomes. Myeloperoxidase gene transcription is limited to early myeloid precursors in the bone marrow, when myeloperoxidase is synthesized and stored in azurophilic granules for subsequent release from stimulated neutrophils. Promyeloperoxidase, the 90 kDa myeloperoxidase precursor synthesized in the endoplasmic reticulum (ER), contains a 125-amino acid pro-region whose function and fate during myeloperoxidase biosynthesis are unknown. Promyeloperoxidase has two fates during myeloperoxidase biosynthesis; the majority undergoes proteolytic processing to generate mature myeloperoxidase, while the remainder is constitutively secreted from the cells in bone marrow. We used a promyelocytic cell line that produces endogenous myeloperoxidase as well as human embryonic kidney cells stably expressing normal and mutant forms of myeloperoxidase to examine proteolytic processing of promyeloperoxidase. We demonstrated that CMK-RVKR, an inhibitor of subtilisin-like proteinases, blocked cleavage of the pro-peptide of promyeloperoxidase in a post-ER compartment. Mutants with alanine substitution of basic residues in the predicted proteinase cleavage site failed to undergo maturation to normal myeloperoxidase subunits and were arrested at the promyeloperoxidase stage. Whereas specific mutants varied as to their stability, secreted promyeloperoxidase from the mutants retained the capacity to generate hypochlorous acid. Taken together, these studies demonstrate proconvertase-dependent cleavage of promyeloperoxidase as an essential step in normal proteolytic processing and granule targeting of myeloperoxidase. Furthermore, although mutations in the proteinase cleavage site reduced intracellular stability of the mutants, the integrity of the heme group was not compromised, as chlorinating activity was retained in the secreted promyeloperoxidase.
Collapse
Affiliation(s)
- Sally McCormick
- Iowa Inflammation Program and Department of Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | | | | |
Collapse
|
153
|
Aldib I, Soubhye J, Zouaoui Boudjeltia K, Vanhaeverbeek M, Rousseau A, Furtmüller PG, Obinger C, Dufrasne F, Nève J, Van Antwerpen P, Prévost M. Evaluation of New Scaffolds of Myeloperoxidase Inhibitors by Rational Design Combined with High-Throughput Virtual Screening. J Med Chem 2012; 55:7208-18. [DOI: 10.1021/jm3007245] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Iyas Aldib
- Laboratoire de Chimie Pharmaceutique Organique, Faculté de Pharmacie, Université Libre de Bruxelles, Brussels, Belgium
| | - Jalal Soubhye
- Laboratoire de Chimie Pharmaceutique Organique, Faculté de Pharmacie, Université Libre de Bruxelles, Brussels, Belgium
| | - Karim Zouaoui Boudjeltia
- Laboratory of Experimentral Medicine, CHU Charleroi, A. Vesale Hospital, Université Libre de Bruxelles, Montigny-le-Tilleul, Belgium
| | - Michel Vanhaeverbeek
- Laboratory of Experimentral Medicine, CHU Charleroi, A. Vesale Hospital, Université Libre de Bruxelles, Montigny-le-Tilleul, Belgium
| | - Alexandre Rousseau
- Laboratory of Experimentral Medicine, CHU Charleroi, A. Vesale Hospital, Université Libre de Bruxelles, Montigny-le-Tilleul, Belgium
| | - Paul G. Furtmüller
- Department of Chemistry, Division of Biochemistry at the Vienna Institute of BioTechnology, BOKU—University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna
| | - Christian Obinger
- Department of Chemistry, Division of Biochemistry at the Vienna Institute of BioTechnology, BOKU—University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna
| | - Francois Dufrasne
- Laboratoire de Chimie Pharmaceutique Organique, Faculté de Pharmacie, Université Libre de Bruxelles, Brussels, Belgium
| | - Jean Nève
- Laboratoire de Chimie Pharmaceutique Organique, Faculté de Pharmacie, Université Libre de Bruxelles, Brussels, Belgium
| | - Pierre Van Antwerpen
- Laboratoire de Chimie Pharmaceutique Organique, Faculté de Pharmacie, Université Libre de Bruxelles, Brussels, Belgium
- Analytical Platform of the Faculty of Pharmacy, Université Libre de Bruxelles, Brussels, Belgium
| | - Martine Prévost
- Laboratoire de Structure et Fonction des Membranes Biologiques, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
154
|
Vlasova II, Vakhrusheva TV, Sokolov AV, Kostevich VA, Gusev AA, Gusev SA, Melnikova VI, Lobach AS. PEGylated single-walled carbon nanotubes activate neutrophils to increase production of hypochlorous acid, the oxidant capable of degrading nanotubes. Toxicol Appl Pharmacol 2012; 264:131-42. [PMID: 22884993 DOI: 10.1016/j.taap.2012.07.027] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 07/20/2012] [Accepted: 07/26/2012] [Indexed: 12/28/2022]
Abstract
Perspectives for the use of carbon nanotubes in biomedical applications depend largely on their ability to degrade in the body into products that can be easily cleared out. Carboxylated single-walled carbon nanotubes (c-SWCNTs) were shown to be degraded by oxidants generated by peroxidases in the presence of hydrogen peroxide. In the present study we demonstrated that conjugation of poly(ethylene glycol) (PEG) to c-SWCNTs does not interfere with their degradation by peroxidase/H(2)O(2) system or by hypochlorite. Comparison of different heme-containing proteins for their ability to degrade PEG-SWCNTs has led us to conclude that the myeloperoxidase (MPO) product hypochlorous acid (HOCl) is the major oxidant that may be responsible for biodegradation of PEG-SWCNTs in vivo. MPO is secreted mainly by neutrophils upon activation. We hypothesize that SWCNTs may enhance neutrophil activation and therefore stimulate their own biodegradation due to MPO-generated HOCl. PEG-SWCNTs at concentrations similar to those commonly used in in vivo studies were found to activate isolated human neutrophils to produce HOCl. Both PEG-SWCNTs and c-SWCNTs enhanced HOCl generation from isolated neutrophils upon serum-opsonized zymosan stimulation. Both types of nanotubes were also found to activate neutrophils in whole blood samples. Intraperitoneal injection of a low dose of PEG-SWCNTs into mice induced an increase in percentage of circulating neutrophils and activation of neutrophils and macrophages in the peritoneal cavity, suggesting the evolution of an inflammatory response. Activated neutrophils can produce high local concentrations of HOCl, thereby creating the conditions favorable for degradation of the nanotubes.
Collapse
Affiliation(s)
- Irina I Vlasova
- Research Institute for Physico-Chemical Medicine, Federal Medico-Biological Agency, Moscow, Russia.
| | | | | | | | | | | | | | | |
Collapse
|
155
|
Wu MC, Ho HI, Lee TW, Wu HL, Lo JM. In vivo examination of 111In-bis-5HT-DTPA to target myeloperoxidase in atherosclerotic ApoE knockout mice. J Drug Target 2012; 20:605-14. [PMID: 22738345 DOI: 10.3109/1061186x.2012.702768] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE The aim of the study is to assess the feasibility of imaging specific activity of myeloperoxidase (MPO), a leukocyte-derived enzyme with important role in atherosclerosis, by SPECT/CT using a novel radiotracer, (111)In-bis-5-hydroxytryptamide-diethylenetriamine-pentaacetate ((111)In-bis-5HT-DTPA). METHODS Bis-5HT-DTPA was synthesized. Oligomerization of bis-5HT-DTPA in the presence of MPO/H(2)O(2) was studied and confirmed using MALDI-TOF. Apolipoprotein E knockout (ApoE KO) mice was used as an atherosclerosis-prone rodent model. Biodistribution assay and micro SPECT/CT imaging were carried out to prove the atherosclerosis targeting of (111)In-bis-5HT-DTPA in the ApoE KO mice. RESULTS MALDI-TOF spectrum showed that the 5HT base agent can self oligomerize after activating by MPO. From the biodistribution study, (111)In-bis-5HT-DTPA was quantified to be retained markedly higher while eliminated much slower in the aortas of the ApoE KO mice than that of the wild type (WT) mice within 1 h post-injection. The nuclear imaging showed significantly higher uptake in the aorta of the ApoE KO mice than that of the WT mice at least within 2 h post-injection. CONCLUSION This study described the pharmacokinetics and biodistribution of (111)In-bis-5HT-DTPA in ApoE KO mice and validated its utilization for early detection of atherosclerotic marker, MPO, in the aortic wall of atherosclerosis-prone rodent model.
Collapse
Affiliation(s)
- Ming-Che Wu
- Department of Nuclear Medicine, Mackay Memorial Hospital, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
156
|
Affiliation(s)
- Usha Anand
- Department of Biochemistry, PSG Institute of Medical Sciences and Research, Peelamedu, Coimbatore, 641004 Tamil Nadu India
| | | |
Collapse
|
157
|
Liu K, Chen HL, Huang H, Jing H, Dong GH, Wu HW, You QS. Curcumin attenuates cardiopulmonary bypass-induced lung oxidative damage in rats. J Cardiovasc Pharmacol Ther 2012; 17:395-402. [PMID: 22492920 DOI: 10.1177/1074248412442002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Acute lung injury is a common complication after cardiopulmonary bypass (CPB). Oxidative damage greatly impacts CPB-induced lung ischemic pathogenesis and may represent a target for treatment. We aimed to investigate whether curcumin upregulates heme oxygenase 1 (HO-1) expression and ameliorates lung injury in a rat CPB model. METHODS A total of 80 male Sprague-Dawley rats were divided into 2 sets of 5 groups (n = 8 per group): sham; control (CPB); vehicle; low-dose curcumin (L-Cur); and high-dose curcumin (H-Cur). Animals were pretreated with a single intraperitoneal injection of vehicle, L-Cur (50 mg/kg), or H-Cur (200 mg/kg) 2 hours prior to CPB. Lung tissue, serum, and bronchoalveolar lavage fluid was harvested 2 or 24 hours postoperatively. In the control group, CPB-induced lung injury was confirmed by histopathologic examination and a significantly increased wet-to-dry lung weight ratio and pulmonary permeability index value was observed (P < .05 vs sham group). Cardiopulmonary bypass was associated with a marked rise in the level of malondialdehyde and myeloperoxidase and a fall in superoxide dismutase 2 and 24 hours after surgery (P < .05 vs sham group). Administration of curcumin ameliorated lung damage and reversed the oxidative stress markers in a partially dose-dependent manner (P < .05 vs vehicle group). Furthermore, HO-1 gene transcription and protein expression were elevated to a greater extent in the lungs after curcumin pretreatment compared with the vehicle pretreatment. CONCLUSIONS Curcumin has the potential to provide protection from CPB-induced lung damage reflected in the expression of oxidative stress markers. The antioxidant effect of curcumin may be partly related to upregulation of HO-1.
Collapse
Affiliation(s)
- Kun Liu
- Department of Cardiothoracic Surgery, The Affiliated Hospital of Nantong University, Nantong City, Jiangsu Province, China
| | | | | | | | | | | | | |
Collapse
|
158
|
Geoghegan KF, Varghese AH, Feng X, Bessire AJ, Conboy JJ, Ruggeri RB, Ahn K, Spath SN, Filippov SV, Conrad SJ, Carpino PA, Guimarães CRW, Vajdos FF. Deconstruction of Activity-Dependent Covalent Modification of Heme in Human Neutrophil Myeloperoxidase by Multistage Mass Spectrometry (MS4). Biochemistry 2012; 51:2065-77. [DOI: 10.1021/bi201872j] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | | | - Xidong Feng
- Pfizer Worldwide Research, Groton, Connecticut
06340, United States
| | | | - James J. Conboy
- Pfizer Worldwide Research, Groton, Connecticut
06340, United States
| | - Roger B. Ruggeri
- Pfizer Worldwide Research, Groton, Connecticut
06340, United States
| | - Kay Ahn
- Pfizer Worldwide Research, Groton, Connecticut
06340, United States
| | | | | | - Steven J. Conrad
- Pfizer Worldwide Research, Groton, Connecticut
06340, United States
| | | | | | - Felix F. Vajdos
- Pfizer Worldwide Research, Groton, Connecticut
06340, United States
| |
Collapse
|
159
|
Xu PC, Hao J, Chen M, Cui Z, Zhao MH. Influence of myeloperoxidase-catalyzing reaction on the binding between myeloperoxidase and anti-myeloperoxidase antibodies. Hum Immunol 2012; 73:364-9. [PMID: 22374326 DOI: 10.1016/j.humimm.2012.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 01/01/2012] [Accepted: 02/01/2012] [Indexed: 11/17/2022]
Abstract
In the current study, whether myeloperoxidase (MPO)-catalyzing reaction could influence the antigenicity of MPO was investigated. Hypochlorite acid, the main product of the catalytic reaction, could lower the binding between MPO-antineutrophil cytoplasmic antibodies (ANCA) and MPO when the available chlorine was higher than 0.031×10(-3) g/l. After MPO-catalyzing reaction with H(2)O(2) lower than 0.469 g/l, the binding level between MPO-ANCAcontaining plasma and MPO increased slightly. The peak binding level was 1.135 ± 0.205 (expressed by the absorbance value at 405 nm). However, with the existence of hydrogen donor (o-phenylenediamine) in the reaction system, the peak binding level between MPO-ANCA-containing plasma and post-catalyzing MPO was significantly higher (1.367 ± 0.321 vs 1.135 ± 0.205, p = 0.023). Moreover, at the approximately physical concentration of H(2)O(2) (0.02 g/l), MPO-ANCA exhibited higher titer to post-catalyzing MPO than to pre-catalyzing MPO (3.91 ± 0.84 vs 3.57 ± 0.84, p < 0.001, expressed as the lgT). These data demonstrated that MPO-catalyzing reaction could potentially increase the antigenicity of MPO.
Collapse
Affiliation(s)
- Peng-Cheng Xu
- Renal Division, Department of Medicine, Peking University First Hospital, Institute of Nephrology, Peking University, Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
| | | | | | | | | |
Collapse
|
160
|
Manipulating the proximal triad His–Asn–Arg in human myeloperoxidase. Arch Biochem Biophys 2011; 516:21-8. [DOI: 10.1016/j.abb.2011.09.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2011] [Revised: 09/01/2011] [Accepted: 09/13/2011] [Indexed: 12/31/2022]
|
161
|
Souza CEA, Maitra D, Saed GM, Diamond MP, Moura AA, Pennathur S, Abu-Soud HM. Hypochlorous acid-induced heme degradation from lactoperoxidase as a novel mechanism of free iron release and tissue injury in inflammatory diseases. PLoS One 2011; 6:e27641. [PMID: 22132121 PMCID: PMC3222650 DOI: 10.1371/journal.pone.0027641] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 10/21/2011] [Indexed: 12/02/2022] Open
Abstract
Lactoperoxidase (LPO) is the major consumer of hydrogen peroxide (H2O2) in the airways through its ability to oxidize thiocyanate (SCN−) to produce hypothiocyanous acid, an antimicrobial agent. In nasal inflammatory diseases, such as cystic fibrosis, both LPO and myeloperoxidase (MPO), another mammalian peroxidase secreted by neutrophils, are known to co-localize. The aim of this study was to assess the interaction of LPO and hypochlorous acid (HOCl), the final product of MPO. Our rapid kinetic measurements revealed that HOCl binds rapidly and reversibly to LPO-Fe(III) to form the LPO-Fe(III)-OCl complex, which in turn decayed irreversibly to LPO Compound II through the formation of Compound I. The decay rate constant of Compound II decreased with increasing HOCl concentration with an inflection point at 100 µM HOCl, after which the decay rate increased. This point of inflection is the critical concentration of HOCl beyond which HOCl switches its role, from mediating destabilization of LPO Compound II to LPO heme destruction. Lactoperoxidase heme destruction was associated with protein aggregation, free iron release, and formation of a number of fluorescent heme degradation products. Similar results were obtained when LPO-Fe(II)-O2, Compound III, was exposed to HOCl. Heme destruction can be partially or completely prevented in the presence of SCN−. On the basis of the present results we concluded that a complex bi-directional relationship exists between LPO activity and HOCl levels at sites of inflammation; LPO serve as a catalytic sink for HOCl, while HOCl serves to modulate LPO catalytic activity, bioavailability, and function.
Collapse
Affiliation(s)
- Carlos Eduardo A. Souza
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Dhiman Maitra
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Ghassan M. Saed
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Michael P. Diamond
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | | | - Subramaniam Pennathur
- Division of Nephrology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Husam M. Abu-Soud
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- * E-mail:
| |
Collapse
|
162
|
Kühl T, Sahoo N, Nikolajski M, Schlott B, Heinemann SH, Imhof D. Determination of hemin-binding characteristics of proteins by a combinatorial peptide library approach. Chembiochem 2011; 12:2846-55. [PMID: 22045633 DOI: 10.1002/cbic.201100556] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Indexed: 12/28/2022]
Abstract
Studies of the binding of heme/hemin to proteins or peptides have recently intensified as it became evident that heme serves not only as a prosthetic group, but also as a regulator and effector molecule interacting with transmembrane and cytoplasmic proteins. The iron-ion-containing heme group can associate with these proteins in different ways, with the amino acids Cys, His, and Tyr allowing individual modes of binding. Strong coordinate-covalent binding, such as in cytochrome c, is known, and reversible attachment is also discussed. Ligands for both types of binding have been reported independently, though sometimes with different affinities for similar sequences. We applied a combinatorial approach using the library (X)(4) (C/H/Y)(X)(4) to characterize peptide ligands with considerable hemin binding capacities. Some of the library-selected peptides were comparable in terms of hemin association independently of whether or not a cysteine residue was present in the sequence. Indeed, a preference for His-based (≈39 %) and Tyr-based (≈40 %) sequences over Cys-based ones (≈21 %) was detected. The binding affinities for the library-selected peptides, as determined by UV/Vis spectroscopy, were in the nanomolar range. Moreover, selected representatives efficiently competed for hemin binding with the human BK channel hSlo1, which is known to be regulated by heme through binding to its heme-binding domain.
Collapse
Affiliation(s)
- Toni Kühl
- Department of Biochemistry and Biophysics, Friedrich Schiller University of Jena, Hans-Knöll-Strasse 2, 07745 Jena, Germany
| | | | | | | | | | | |
Collapse
|
163
|
Tidén AK, Sjögren T, Svensson M, Bernlind A, Senthilmohan R, Auchère F, Norman H, Markgren PO, Gustavsson S, Schmidt S, Lundquist S, Forbes LV, Magon NJ, Paton LN, Jameson GNL, Eriksson H, Kettle AJ. 2-thioxanthines are mechanism-based inactivators of myeloperoxidase that block oxidative stress during inflammation. J Biol Chem 2011; 286:37578-89. [PMID: 21880720 PMCID: PMC3199503 DOI: 10.1074/jbc.m111.266981] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 08/10/2011] [Indexed: 11/06/2022] Open
Abstract
Myeloperoxidase (MPO) is a prime candidate for promoting oxidative stress during inflammation. This abundant enzyme of neutrophils uses hydrogen peroxide to oxidize chloride to highly reactive and toxic chlorine bleach. We have identified 2-thioxanthines as potent mechanism-based inactivators of MPO. Mass spectrometry and x-ray crystal structures revealed that these inhibitors become covalently attached to the heme prosthetic groups of the enzyme. We propose a mechanism whereby 2-thioxanthines are oxidized, and their incipient free radicals react with the heme groups of the enzyme before they can exit the active site. 2-Thioxanthines inhibited MPO in plasma and decreased protein chlorination in a mouse model of peritonitis. They slowed but did not prevent neutrophils from killing bacteria and were poor inhibitors of thyroid peroxidase. Our study shows that MPO is susceptible to the free radicals it generates, and this Achilles' heel of the enzyme can be exploited to block oxidative stress during inflammation.
Collapse
Affiliation(s)
| | | | | | | | - Revathy Senthilmohan
- the Free Radical Research Group, Department of Pathology, University of Otago Christchurch, Christchurch 8140, New Zealand
| | - Francoise Auchère
- the Free Radical Research Group, Department of Pathology, University of Otago Christchurch, Christchurch 8140, New Zealand
| | | | | | | | | | | | - Louisa V. Forbes
- the Free Radical Research Group, Department of Pathology, University of Otago Christchurch, Christchurch 8140, New Zealand
| | - Nicholas J. Magon
- the Free Radical Research Group, Department of Pathology, University of Otago Christchurch, Christchurch 8140, New Zealand
| | - Louise N. Paton
- the Free Radical Research Group, Department of Pathology, University of Otago Christchurch, Christchurch 8140, New Zealand
| | - Guy N. L. Jameson
- the Department of Chemistry, University of Otago, Dunedin 9054, New Zealand, and
| | | | - Anthony J. Kettle
- the Free Radical Research Group, Department of Pathology, University of Otago Christchurch, Christchurch 8140, New Zealand
| |
Collapse
|
164
|
Cheng G, Li H, Cao Z, Qiu X, McCormick S, Thannickal VJ, Nauseef WM. Vascular peroxidase-1 is rapidly secreted, circulates in plasma, and supports dityrosine cross-linking reactions. Free Radic Biol Med 2011; 51:1445-53. [PMID: 21798344 PMCID: PMC3439998 DOI: 10.1016/j.freeradbiomed.2011.07.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 06/10/2011] [Accepted: 07/04/2011] [Indexed: 02/07/2023]
Abstract
Members of the peroxidase-cyclooxygenase superfamily catalyze biochemical reactions essential to a broad spectrum of biological processes, including host defense, thyroid hormone biosynthesis, and modification of extracellular matrix, as well as contributing to the pathogenesis of chronic inflammatory diseases. We recently identified a novel member of this family, vascular peroxidase-1 (VPO1), that is highly expressed in the human cardiovascular system. Its biosynthesis and enzymatic properties are largely unknown. Here, we report that VPO1 was rapidly and efficiently secreted into the extracellular space when the gene was stably expressed in human embryonic kidney (HEK) cells. Secreted VPO1 is a monomer with complex N-linked oligosaccharides and exhibits peroxidase activity. Biosynthesis of endogenous VPO1 by cultured human umbilical vein endothelial cells (HUVECs) shares features exhibited by heterologous expression of recombinant VPO1 (rVPO1) in HEK cells. The proinflammatory agents lipopolysaccharide and tumor necrosis factor-α induce expression of VPO1 mRNA and protein in HUVECs. Furthermore, murine and bovine sera and human plasma contain enzymatically active VPO1. rVPO1 exhibits spectral and enzymatic properties characteristic of the peroxidase-cyclooxygenase family, except with regard to its heat stability. rVPO1 catalyzes tyrosyl radical formation and promotes dityrosine cross-linking. Taken together, these data demonstrate that VPO1 is a glycosylated heme peroxidase that is actively secreted into circulating plasma by vascular endothelial cells and shares several features with other members of the peroxidase-cyclooxygenase family, including the catalysis of dityrosine formation.
Collapse
Affiliation(s)
- Guangjie Cheng
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama School of Medicine, Birmingham, AL, USA
- Correspondence: Guangjie Cheng, Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama School of Medicine, BMR2, Room 410, 1530 3rd Avenue South, Birmingham, AL, 35294 USA; Phone 205-975-8919; Fax 205-975-3043, ; or William M. Nauseef, Inflammation Program, Department of Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa and Veterans Affairs Medical Center, Coralville, Iowa City, IA, USA; Phone 319-335-4278; Fax 319-335-4194;
| | - Hong Li
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama School of Medicine, Birmingham, AL, USA
| | - Zehong Cao
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama School of Medicine, Birmingham, AL, USA
| | - Xiaoyun Qiu
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama School of Medicine, Birmingham, AL, USA
| | - Sally McCormick
- Inflammation Program, Department of Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa and Veterans Affairs Medical Center, Coralville, Iowa City, IA, USA
| | - Victor J. Thannickal
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama School of Medicine, Birmingham, AL, USA
| | - William M. Nauseef
- Inflammation Program, Department of Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa and Veterans Affairs Medical Center, Coralville, Iowa City, IA, USA
- Correspondence: Guangjie Cheng, Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama School of Medicine, BMR2, Room 410, 1530 3rd Avenue South, Birmingham, AL, 35294 USA; Phone 205-975-8919; Fax 205-975-3043, ; or William M. Nauseef, Inflammation Program, Department of Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa and Veterans Affairs Medical Center, Coralville, Iowa City, IA, USA; Phone 319-335-4278; Fax 319-335-4194;
| |
Collapse
|
165
|
Cong Z, Kurahashi T, Fujii H. Oxidation of chloride and subsequent chlorination of organic compounds by oxoiron(IV) porphyrin π-cation radicals. Angew Chem Int Ed Engl 2011; 50:9935-9. [PMID: 21913293 DOI: 10.1002/anie.201104461] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Indexed: 11/11/2022]
Abstract
Ironing it out: oxoiron(IV) porphyrin π-cation radical complexes serve as models for the oxidation of Cl(-) into an active chlorinating reagent that chlorinates various organic compounds. Evidence suggests that Cl(-) is oxidized to Cl(2) via Cl·. The mechanism involving either direct electron transfer or iron(III) hypochlorite formation, and then homolysis of the Cl-O bond is discussed.
Collapse
Affiliation(s)
- Zhiqi Cong
- Institute for Molecular Science, Myodaiji, Okazaki, Japan
| | | | | |
Collapse
|
166
|
Cong Z, Kurahashi T, Fujii H. Oxidation of Chloride and Subsequent Chlorination of Organic Compounds by Oxoiron(IV) Porphyrin π-Cation Radicals. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201104461] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
167
|
Battistuzzi G, Stampler J, Bellei M, Vlasits J, Soudi M, Furtmüller PG, Obinger C. Influence of the Covalent Heme–Protein Bonds on the Redox Thermodynamics of Human Myeloperoxidase. Biochemistry 2011; 50:7987-94. [DOI: 10.1021/bi2008432] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Gianantonio Battistuzzi
- Department of Chemistry, University of Modena and Reggio Emilia, via Campi 183,
41100 Modena, Italy
| | - Johanna Stampler
- Vienna
Institute of BioTechnology,
Department of Chemistry, Division of Biochemistry, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18,
A-1190 Vienna, Austria
| | - Marzia Bellei
- Department of Chemistry, University of Modena and Reggio Emilia, via Campi 183,
41100 Modena, Italy
| | - Jutta Vlasits
- Vienna
Institute of BioTechnology,
Department of Chemistry, Division of Biochemistry, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18,
A-1190 Vienna, Austria
| | - Monika Soudi
- Vienna
Institute of BioTechnology,
Department of Chemistry, Division of Biochemistry, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18,
A-1190 Vienna, Austria
| | - Paul G. Furtmüller
- Vienna
Institute of BioTechnology,
Department of Chemistry, Division of Biochemistry, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18,
A-1190 Vienna, Austria
| | - Christian Obinger
- Vienna
Institute of BioTechnology,
Department of Chemistry, Division of Biochemistry, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18,
A-1190 Vienna, Austria
| |
Collapse
|
168
|
Malvezzi A, Queiroz RF, de Rezende L, Augusto O, Amaral ATD. MPO Inhibitors Selected by Virtual Screening. Mol Inform 2011; 30:605-13. [DOI: 10.1002/minf.201100016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Accepted: 05/16/2011] [Indexed: 11/06/2022]
|
169
|
Bruner BF, Vista ES, Wynn DM, James JA. Epitope specificity of myeloperoxidase antibodies: identification of candidate human immunodominant epitopes. Clin Exp Immunol 2011; 164:330-6. [PMID: 21401576 DOI: 10.1111/j.1365-2249.2011.04372.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Anti-neutrophil cytoplasmic autoantibodies (ANCA) are a common feature of systemic vasculitides and have been classified as autoimmune conditions based, in part, on these autoantibodies. ANCA are subdivided further based on their primary target: cytoplasm (c-ANCA) or perinuclear region (p-ANCA). p-ANCAs commonly target myeloperoxidase (MPO), an enzyme with microbicidal and degradative activity. MPO antibodies are non-specific for any single disease and found in a variety of vasculitides, most commonly microscopic polyangiitis. Despite their prevalence, their role in human disease pathogenesis remains undefined. We sought to characterize the sequential antigenic determinants of MPO in vasculitis patients with p-ANCA. Of 68 patients with significant levels of p-ANCA, 12 have significant levels of MPO antibodies and were selected for fine specificity epitope mapping. Sequential antigenic targets, including those containing amino acids (aa) 213-222 (WTPGVKRNGF) and aa 511-522 (RLDNRYQPMEPN), were commonly targeted with a prevalence ranging from 33% to 58%. Subsequent analysis of autoantibody binding to the RLDNRYQPMEPN peptide was assessed using a confirmatory enzyme-linked immunosorbent assay format, with six patients displaying significant binding using this method. Antibodies against this epitope, along with four others (aa 393-402, aa 437-446, aa 479-488 and aa 717-726), were reactive to the heavy chain structure of the MPO protein. One epitope, GSASPMELLS (aa 91-100), was within the pro-peptide structure of MPO. B cell epitope prediction algorithms identified all or part of the seven epitopes defined. These results provide major common human anti-MPO immunodominant antigenic targets which can be used to examine further the potential pathogenic mechanisms for these autoantibodies.
Collapse
Affiliation(s)
- B F Bruner
- Department of Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | | | | | | |
Collapse
|
170
|
Davies MJ. Myeloperoxidase-derived oxidation: mechanisms of biological damage and its prevention. J Clin Biochem Nutr 2010; 48:8-19. [PMID: 21297906 PMCID: PMC3022070 DOI: 10.3164/jcbn.11-006fr] [Citation(s) in RCA: 281] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 09/10/2010] [Indexed: 12/21/2022] Open
Abstract
There is considerable interest in the role that mammalian heme peroxidase enzymes, primarily myeloperoxidase, eosinophil peroxidase and lactoperoxidase, may play in a wide range of human pathologies. This has been sparked by rapid developments in our understanding of the basic biochemistry of these enzymes, a greater understanding of the basic chemistry and biochemistry of the oxidants formed by these species, the development of biomarkers that can be used damage induced by these oxidants in vivo, and the recent identification of a number of compounds that show promise as inhibitors of these enzymes. Such compounds offer the possibility of modulating damage in a number of human pathologies. This reviews recent developments in our understanding of the biochemistry of myeloperoxidase, the oxidants that this enzyme generates, and the use of inhibitors to inhibit such damage.
Collapse
Affiliation(s)
- Michael J Davies
- The Heart Research Institute, Newtown, Sydney, NSW 2042, Australia
| |
Collapse
|
171
|
Fen D, Lingyan P, Chunyan H, Hong Y, Jia C, Junzhu W. Involvement of HNP-1 in different oxidation mechanisms in human endothelial cells. EUR J LIPID SCI TECH 2010. [DOI: 10.1002/ejlt.201000069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
172
|
Collier DM, Snyder PM. Identification of epithelial Na+ channel (ENaC) intersubunit Cl- inhibitory residues suggests a trimeric alpha gamma beta channel architecture. J Biol Chem 2010; 286:6027-32. [PMID: 21149458 DOI: 10.1074/jbc.m110.198127] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The extracellular domain of the epithelial Na(+) channel (ENaC) is exposed to a wide range of anion concentrations in the kidney. We have previously demonstrated that extracellular Cl(-) inhibits ENaC activity. To identify sites involved in Cl(-) inhibition, we mutated residues in the extracellular domain of α-, β-, and γENaC that are homologous to the Cl(-) binding site in acid-sensing ion channel 1a and tested the effect of Cl(-) on the activity of ENaC expressed in Xenopus oocytes. We identified two Cl(-) inhibitory sites in ENaC. One is formed by residues in the thumb domain of αENaC and the palm domain of βENaC. Mutation of residues at this interface decreased Cl(-) inhibition and decreased Na(+) self-inhibition. The second site is formed by residues at the interface of the thumb domain of βENaC and the palm domain of γENaC. Mutation of these residues also decreased Cl(-) inhibition yet had no effect on Na(+) self-inhibition. In contrast, mutations in the thumb domain of γENaC and palm of αENaC had little or no effect on Cl(-) inhibition or Na(+) self-inhibition. The data demonstrate that Cl(-) inhibits ENaC activity by two distinct Na(+)-dependent and Na(+)-independent mechanisms that correspond to the two functional Cl(-) inhibitory sites. Furthermore, based on the effects of mutagenesis on Cl(-) inhibition, the additive nature of mutations, and on differences in the mechanisms of Cl(-) inhibition, the data support a model in which ENaC subunits assemble in an αγβ orientation (listed clockwise when viewed from the top).
Collapse
Affiliation(s)
- Daniel M Collier
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242, USA
| | | |
Collapse
|
173
|
Zhou P, Tian F, Zou J, Ren Y, Liu X, Shang Z. Do Halide Motifs Stabilize Protein Architecture? J Phys Chem B 2010; 114:15673-86. [DOI: 10.1021/jp105259d] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Peng Zhou
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China, College of Bioengineering, Chongqing University, Chongqing 400044, China, Key Laboratory for Molecular Design and Nutrition Engineering, Ningbo Institute of Technology, Zhejiang University, Ningbo 315100, China, Department of Biological and Chemical Engineering, Chongqing Education College, Chongqing 400067, China, and Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United
| | - Feifei Tian
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China, College of Bioengineering, Chongqing University, Chongqing 400044, China, Key Laboratory for Molecular Design and Nutrition Engineering, Ningbo Institute of Technology, Zhejiang University, Ningbo 315100, China, Department of Biological and Chemical Engineering, Chongqing Education College, Chongqing 400067, China, and Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United
| | - Jianwei Zou
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China, College of Bioengineering, Chongqing University, Chongqing 400044, China, Key Laboratory for Molecular Design and Nutrition Engineering, Ningbo Institute of Technology, Zhejiang University, Ningbo 315100, China, Department of Biological and Chemical Engineering, Chongqing Education College, Chongqing 400067, China, and Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United
| | - Yanrong Ren
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China, College of Bioengineering, Chongqing University, Chongqing 400044, China, Key Laboratory for Molecular Design and Nutrition Engineering, Ningbo Institute of Technology, Zhejiang University, Ningbo 315100, China, Department of Biological and Chemical Engineering, Chongqing Education College, Chongqing 400067, China, and Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United
| | - Xiuhong Liu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China, College of Bioengineering, Chongqing University, Chongqing 400044, China, Key Laboratory for Molecular Design and Nutrition Engineering, Ningbo Institute of Technology, Zhejiang University, Ningbo 315100, China, Department of Biological and Chemical Engineering, Chongqing Education College, Chongqing 400067, China, and Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United
| | - Zhicai Shang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China, College of Bioengineering, Chongqing University, Chongqing 400044, China, Key Laboratory for Molecular Design and Nutrition Engineering, Ningbo Institute of Technology, Zhejiang University, Ningbo 315100, China, Department of Biological and Chemical Engineering, Chongqing Education College, Chongqing 400067, China, and Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United
| |
Collapse
|
174
|
Banerjee S, Stampler J, Furtmüller PG, Obinger C. Conformational and thermal stability of mature dimeric human myeloperoxidase and a recombinant monomeric form from CHO cells. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1814:375-87. [PMID: 20933108 DOI: 10.1016/j.bbapap.2010.09.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 09/23/2010] [Accepted: 09/29/2010] [Indexed: 11/29/2022]
Abstract
Myeloperoxidase (MPO) is a lysosomal heme enzyme present in the azurophilic granules of human neutrophils and monocytes. It is a critical element of the human innate immune system by exerting antimicrobial effects. It is a disulfide bridged dimer with each monomer containing a light and a heavy polypeptide and its biosynthesis and intracellular transport includes several posttranslational processing steps. By contrast, MPO recombinantly produced in Chinese hamster ovary cell lines is monomeric, partially unprocessed and contains a N-terminal propeptide (proMPO). It mirrors a second form of MPO constitutively secreted from normal bone marrow myeloid precursors. In order to clarify the impact of posttranslational modifications on the structural integrity and enzymology of these two forms of human myeloperoxidase, we have undertaken an investigation on the conformational and thermal stability of leukocyte MPO and recombinant proMPO by using complementary biophysical techniques including UV-Vis, circular dichroism and fluorescence spectroscopy as well as differential scanning calorimetry. Mature leucocyte MPO exhibits a peculiar high chemical and thermal stability under oxidizing conditions but is significantly destabilized by addition of dithiothreitol. Unfolding of secondary and tertiary structure occurs concomitantly with denaturation of the heme cavity, reflecting the role of three MPO-typical heme to protein linkages and of six intra-chain disulfides for structural integrity by bridging N- and C-terminal regions of the protein. Recombinant monomeric proMPO follows a similar unfolding pattern but has a lower conformational and thermal stability. Spectroscopic and thermodynamic data of unfolding are discussed with respect to the known three-dimensional structure of leukocyte MPO as well as to known physiological roles.
Collapse
Affiliation(s)
- Srijib Banerjee
- Division of Biochemistry, Department of Chemistry, Vienna Institute of BioTechnology, BOKU-University of Natural Resources and Life Sciences, Vienna, Austria
| | | | | | | |
Collapse
|
175
|
Smith LJ, Kahraman A, Thornton JM. Heme proteins--diversity in structural characteristics, function, and folding. Proteins 2010; 78:2349-68. [PMID: 20544970 DOI: 10.1002/prot.22747] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The characteristics of heme prosthetic groups and their binding sites have been analyzed in detail in a data set of nonhomologous heme proteins. Variations in the shape, volume, and chemical composition of the binding site, in the mode of heme binding and in the number and nature of heme-protein interactions are found to result in significantly different heme environments in proteins with different functions in biology. Differences are also seen in the properties of the apo states of the proteins. The apo states of proteins that bind heme permanently in their functional form show some disorder, ranging from local unfolding in the heme binding pocket to complete unfolding to give a random coil. In contrast, proteins that bind heme transiently are fully folded in their apo and holo states, presumably allowing both apo and holo forms to remain biologically active resisting aggregation or proteolysis. The principles identified here provide a framework for the design of de novo proteins that will exhibit tight heme ligand binding and for the identification of the function of structural genomic target proteins with heme ligands.
Collapse
Affiliation(s)
- Lorna J Smith
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, Oxford OX1 3QR, United Kingdom.
| | | | | |
Collapse
|
176
|
Bhabak KP, Mugesh G. Inhibition of peroxidase-catalyzed protein tyrosine nitration by antithyroid drugs and their analogues. Inorganica Chim Acta 2010. [DOI: 10.1016/j.ica.2010.03.048] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
177
|
Ravnsborg T, Houen G, Højrup P. The glycosylation of myeloperoxidase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1804:2046-53. [DOI: 10.1016/j.bbapap.2010.07.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Revised: 06/29/2010] [Accepted: 07/01/2010] [Indexed: 10/19/2022]
|
178
|
Human myeloperoxidase in innate and acquired immunity. Arch Biochem Biophys 2010; 500:92-106. [DOI: 10.1016/j.abb.2010.04.008] [Citation(s) in RCA: 187] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 04/07/2010] [Accepted: 04/12/2010] [Indexed: 12/12/2022]
|
179
|
Gumiero A, Murphy EJ, Metcalfe CL, Moody PC, Raven EL. An analysis of substrate binding interactions in the heme peroxidase enzymes: A structural perspective. Arch Biochem Biophys 2010; 500:13-20. [DOI: 10.1016/j.abb.2010.02.015] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Revised: 02/23/2010] [Accepted: 02/27/2010] [Indexed: 11/29/2022]
|
180
|
Murphy EJ, Maréchal A, Segal AW, Rich PR. CO binding and ligand discrimination in human myeloperoxidase. Biochemistry 2010; 49:2150-8. [PMID: 20146436 DOI: 10.1021/bi9021507] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Despite the fact that ferrous myeloperoxidase (MPO) can bind both O(2) and NO, its ability to bind CO has been questioned. UV/visible spectroscopy was used to confirm that CO induces small spectral shifts in ferrous MPO, and Fourier transform infrared difference spectroscopy showed definitively that these arose from formation of a heme ferrous-CO compound. Recombination rates after CO photolysis were monitored at 618 and 645 nm as a function of CO concentration and pH. At pH 6.3, k(on) and k(off) were 0.14 mM(-1) x s(-1) and 0.23 s(-1), respectively, yielding an unusually high K(D) of 1.6 mM. This affinity of MPO for CO is 10 times weaker than its affinity for O(2). The observed rate constant for CO binding increased with increasing pH and was governed by a single protonatable group with a pK(a) of 7.8. Fourier transform infrared spectroscopy revealed two different conformations of bound CO with frequencies at 1927 and 1942 cm(-1). Their recombination rate constants were identical, indicative of two forms of bound CO that are in rapid thermal equilibrium rather than two distinct protein populations with different binding sites. The ratio of bound states was pH-dependent (pK(a) approximately 7.4) with the 1927 cm(-1) form favored at high pH. Structural factors that account for the ligand-binding properties of MPO are identified by comparisons with published data on a range of other ligand-binding heme proteins, and support is given to the recent suggestion that the proximal His336 in MPO is in a true imidazolate state.
Collapse
Affiliation(s)
- Emma J Murphy
- Centre for Molecular Medicine, Division of Medicine, University College London, 5 University Street, London WC1E 6JJ, UK
| | | | | | | |
Collapse
|
181
|
Van Antwerpen P, Slomianny MC, Boudjeltia KZ, Delporte C, Faid V, Calay D, Rousseau A, Moguilevsky N, Raes M, Vanhamme L, Furtmüller PG, Obinger C, Vanhaeverbeek M, Nève J, Michalski JC. Glycosylation pattern of mature dimeric leukocyte and recombinant monomeric myeloperoxidase: glycosylation is required for optimal enzymatic activity. J Biol Chem 2010; 285:16351-9. [PMID: 20332087 DOI: 10.1074/jbc.m109.089748] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The involvement of myeloperoxidase (MPO) in various inflammatory conditions has been the scope of many recent studies. Besides its well studied catalytic activity, the role of its overall structure and glycosylation pattern in biological function is barely known. Here, the N-glycan composition of native dimeric human MPO purified from neutrophils and of monomeric MPO recombinantly expressed in Chinese hamster ovary cells has been investigated. Analyses showed the presence of five N-glycans at positions 323, 355, 391, 483, 729 in both proteins. Site by site analysis demonstrated a well conserved micro- and macro-heterogeneity and more complex-type N-glycans for the recombinant form. Comparison of biological functionality of glycosylated and deglycosylated recombinant MPO suggests that glycosylation is required for optimal enzymatic activity. Data are discussed with regard to biosynthesis and the three-dimensional structure of MPO.
Collapse
Affiliation(s)
- Pierre Van Antwerpen
- Laboratory of Pharmaceutical Chemistry and the Analytical Platform of Institute of Pharmacy, UniversitéLibre de Bruxelles, Brussels, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
182
|
Battistuzzi G, Bellei M, Bortolotti CA, Sola M. Redox properties of heme peroxidases. Arch Biochem Biophys 2010; 500:21-36. [PMID: 20211593 DOI: 10.1016/j.abb.2010.03.002] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 03/01/2010] [Accepted: 03/02/2010] [Indexed: 10/19/2022]
Abstract
Peroxidases are heme enzymes found in bacteria, fungi, plants and animals, which exploit the reduction of hydrogen peroxide to catalyze a number of oxidative reactions, involving a wide variety of organic and inorganic substrates. The catalytic cycle of heme peroxidases is based on three consecutive redox steps, involving two high-valent intermediates (Compound I and Compound II), which perform the oxidation of the substrates. Therefore, the thermodynamics and the kinetics of the catalytic cycle are influenced by the reduction potentials of three redox couples, namely Compound I/Fe3+, Compound I/Compound II and Compound II/Fe3+. In particular, the oxidative power of heme peroxidases is controlled by the (high) reduction potential of the latter two couples. Moreover, the rapid H2O2-mediated two-electron oxidation of peroxidases to Compound I requires a stable ferric state in physiological conditions, which depends on the reduction potential of the Fe3+/Fe2+ couple. The understanding of the molecular determinants of the reduction potentials of the above redox couples is crucial for the comprehension of the molecular determinants of the catalytic properties of heme peroxidases. This review provides an overview of the data available on the redox properties of Fe3+/Fe2+, Compound I/Fe3+, Compound I/Compound II and Compound II/Fe3+ couples in native and mutated heme peroxidases. The influence of the electron donor properties of the axial histidine and of the polarity of the heme environment is analyzed and the correlation between the redox properties of the heme group with the catalytic activity of this important class of metallo-enzymes is discussed.
Collapse
Affiliation(s)
- Gianantonio Battistuzzi
- Department of Chemistry, University of Modena and Reggio Emilia, via Campi 183, 41100 Modena, Italy.
| | | | | | | |
Collapse
|
183
|
Panizzi P, Nahrendorf M, Wildgruber M, Waterman P, Figueiredo JL, Aikawa E, McCarthy J, Weissleder R, Hilderbrand SA. Oxazine conjugated nanoparticle detects in vivo hypochlorous acid and peroxynitrite generation. J Am Chem Soc 2010; 131:15739-44. [PMID: 19817443 DOI: 10.1021/ja903922u] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The current lack of suitable probes has limited the in vivo imaging of reactive oxygen/nitrogen species (ROS/RNS). ROS/RNS are often generated by ischemia-induced inflammation; defining the extent of tissue involvement or ROS/RNS-related damage would have a significant clinical impact. We present the preparation and demonstration of a fluorogenic sensor for monitoring peroxynitrite (ONOO(-)) and myeloperoxidase (MPO) mediated hypochlorous acid (HOCl/OCl(-)) production. The sensor consists of a long circulating biocompatible nanoparticle that targets phagocytic cells in vivo and is coated with approximately 400 quenched oxazine fluorophores that are released by reaction with HOCl or ONOO(-) but are stable toward oxidants such as hydroxyl radical, hydrogen peroxide, and superoxide. MPO-dependent probe activation is chloride ion dependent and is negated in flow cytometry studies of MPO inhibitor treated neutrophils. Fluorescence reflectance imaging and microscopic fluorescence imaging in mouse hearts after myocardial infarction showed probe release into neutrophil-rich ischemic areas, making this ROS/RNS sensor a novel prognostic indicator.
Collapse
Affiliation(s)
- Peter Panizzi
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Simches Research Building, 185 Cambridge St., Boston, Massachusetts 02114, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
184
|
Toyama A, Tominaga A, Inoue T, Takeuchi H. Activation of lactoperoxidase by heme-linked protonation and heme-independent iodide binding. Biopolymers 2010; 93:113-20. [DOI: 10.1002/bip.21308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
185
|
Battistuzzi G, Bellei M, Vlasits J, Banerjee S, Furtmüller PG, Sola M, Obinger C. Redox thermodynamics of lactoperoxidase and eosinophil peroxidase. Arch Biochem Biophys 2009; 494:72-7. [PMID: 19944669 DOI: 10.1016/j.abb.2009.11.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Revised: 11/10/2009] [Accepted: 11/13/2009] [Indexed: 10/20/2022]
Abstract
Eosinophil peroxidase (EPO) and lactoperoxidase (LPO) are important constituents of the innate immune system of mammals. These heme enzymes belong to the peroxidase-cyclooxygenase superfamily and catalyze the oxidation of thiocyanate, bromide and nitrite to hypothiocyanate, hypobromous acid and nitrogen dioxide that are toxic for invading pathogens. In order to gain a better understanding of the observed differences in substrate specificity and oxidation capacity in relation to heme and protein structure, a comprehensive spectro-electrochemical investigation was performed. The reduction potential (E degrees ') of the Fe(III)/Fe(II) couple of EPO and LPO was determined to be -126mV and -176mV, respectively (25 degrees C, pH 7.0). Variable temperature experiments show that EPO and LPO feature different reduction thermodynamics. In particular, reduction of ferric EPO is enthalpically and entropically disfavored, whereas in LPO the entropic term, which selectively stabilizes the oxidized form, prevails on the enthalpic term that favors reduction of Fe(III). The data are discussed with respect to the architecture of the heme cavity and the substrate channel. Comparison with published data for myeloperoxidase demonstrates the effect of heme to protein linkages and heme distortion on the redox chemistry of mammalian peroxidases and in consequence on the enzymatic properties of these physiologically important oxidoreductases.
Collapse
Affiliation(s)
- Gianantonio Battistuzzi
- Department of Chemistry, University of Modena and Reggio Emilia, via Campi 183, Modena, Italy.
| | | | | | | | | | | | | |
Collapse
|
186
|
van der Veen BS, de Winther MPJ, Heeringa P. Myeloperoxidase: molecular mechanisms of action and their relevance to human health and disease. Antioxid Redox Signal 2009; 11:2899-937. [PMID: 19622015 DOI: 10.1089/ars.2009.2538] [Citation(s) in RCA: 372] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Myeloperoxidase (MPO) is a heme-containing peroxidase abundantly expressed in neutrophils and to a lesser extent in monocytes. Enzymatically active MPO, together with hydrogen peroxide and chloride, produces the powerful oxidant hypochlorous acid and is a key contributor to the oxygen-dependent microbicidal activity of phagocytes. In addition, excessive generation of MPO-derived oxidants has been linked to tissue damage in many diseases, especially those characterized by acute or chronic inflammation. It has become increasingly clear that MPO exerts effects that are beyond its oxidative properties. These properties of MPO are, in many cases, independent of its catalytic activity and affect various processes involved in cell signaling and cell-cell interactions and are, as such, capable of modulating inflammatory responses. Given these diverse effects, an increased interest has emerged in the role of MPO and its downstream products in a wide range of inflammatory diseases. In this article, our knowledge pertaining to the biologic role of MPO and its downstream effects and mechanisms of action in health and disease is reviewed and discussed.
Collapse
Affiliation(s)
- Betty S van der Veen
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen , Groningen, the Netherlands
| | | | | |
Collapse
|
187
|
Galijasevic S, Maitra D, Lu T, Sliskovic I, Abdulhamid I, Abu-Soud HM. Myeloperoxidase interaction with peroxynitrite: chloride deficiency and heme depletion. Free Radic Biol Med 2009; 47:431-9. [PMID: 19464362 PMCID: PMC3416043 DOI: 10.1016/j.freeradbiomed.2009.05.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Revised: 03/28/2009] [Accepted: 05/13/2009] [Indexed: 12/16/2022]
Abstract
Myeloperoxidase (MPO) is a hemoprotein involved in the leukocyte-mediated defense mechanism and uses hydrogen peroxide (H2O2) and chloride (Cl(-)) to produce hypochlorous acid. In human saliva and in hypochloremic alkalosis syndrome occurring in breast-fed infants, the MPO-H2O2 system functions in a lower Cl(-) concentration (10-70 mM) compared to plasma levels (100 mM) as part of the antibacterial defense system. The impact of low Cl(-) concentration and exposure to high peroxynitrite (ONOO(-)) synthesized from cigarette smoke or oxidative stress on MPO function is still unexplored. Rapid mixing of ONOO(-) and MPO caused immediate formation of a transient intermediate MPO Compound II, which then decayed to MPO-Fe(III). Double mixing of MPO with ONOO(-) followed by H2O2 caused immediate formation of Compound II, followed by MPO heme depletion, a process that occurred independent of ONOO(-) concentration. Peroxynitrite/H2O2-mediated MPO heme depletion was confirmed by HPLC analysis, and in-gel heme staining showing 60-70% less heme content compared to the control. A nonreducing denaturing SDS-PAGE showed no fragmentation or degradation of protein. Myeloperoxidase heme loss was completely prevented by preincubation of MPO with saturating amounts of Cl(-). Chloride binding to the active site of MPO constrains ONOO(-) binding by filling the space directly above the heme moiety or by causing a protein conformational change that constricts the distal heme pocket, thus preventing ONOO(-) from binding to MPO heme iron. Peroxynitrite interaction with MPO may serve as a novel mechanism for modulating MPO catalytic activity, influencing the regulation of local inflammatory and infectious events in vivo.
Collapse
Affiliation(s)
- Semira Galijasevic
- Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, USA
| | - Dhiman Maitra
- Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, USA
| | - Tun Lu
- Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, USA
| | - Inga Sliskovic
- Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, USA
| | - Ibrahim Abdulhamid
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University School of Medicine, Detroit, MI, USA
| | - Husam M. Abu-Soud
- Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, USA
- Biochemistry and Molecular Biology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, USA
- Address correspondence to: Husam Abu-Soud, Ph.D., Wayne State University School of Medicine, Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, 275 E. Hancock, Detroit, Michigan 48201, USA, Tel. 313 577-6178; Fax. 313 577-8554;
| |
Collapse
|
188
|
McDonald DO, Pearce SHS. Thyroid peroxidase forms thionamide-sensitive homodimers: relevance for immunomodulation of thyroid autoimmunity. J Mol Med (Berl) 2009; 87:971-80. [PMID: 19669106 PMCID: PMC2757584 DOI: 10.1007/s00109-009-0511-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Revised: 07/01/2009] [Accepted: 07/14/2009] [Indexed: 11/29/2022]
Abstract
Thyroid peroxidase (TPO) is the key enzyme in thyroid hormone production and a universal autoantigen in Graves’ and other autoimmune thyroid diseases. We wished to explore the expression of TPO and whether it was affected by thionamide antithyroid drugs. We studied recombinant TPO, stably expressed by a Chinese hamster ovary cell line (CHO-TPO) and transiently expressed TPO-enhanced green fluorescent protein (eGFP) and -FLAG fusion proteins. Immunoblotting of CHO-TPO cell extracts showed high-molecular weight (HMW) TPO isoforms that were resistant to reduction, as well as 110 kDa monomeric TPO. Co-immunoprecipitation and enzyme-linked-immunosorbent assay (ELISA) binding studies of FLAG- and eGFP-tagged TPO demonstrated TPO dimerisation. CHO-TPO cells cultured in methimazole (MMI) for 10 days showed a significant reduction in HMW-TPO isoforms at MMI concentrations of 1 µM and above (p < 0.01), whereas monomeric TPO expression was unchanged. We observed a similar reduction in HMW-TPO in CHO-TPO cells cultured in propylthiouracil (10 µM and above). Binding of Graves’ disease patient sera and TPO-Fabs to enzymatically active TPO that was captured onto solid phase was not abrogated by MMI. The cellular localisation of TPO in CHO-TPO cells was unchanged by MMI treatment. Our demonstration of homodimeric TPO and the reduction in HMW-TPO isoforms during thionamide treatment of CHO-TPO cells shows, for the first time, an effect of thionamides on TPO structure. This suggests a structural correlate to the effect of thionamides on TPO enzymatic activity and opens up a novel potential mechanism for thionamide immunomodulation of autoimmune thyroid disease.
Collapse
Affiliation(s)
- David O. McDonald
- Institute of Human Genetics, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne, NE1 3BZ UK
| | - Simon H. S. Pearce
- Institute of Human Genetics, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne, NE1 3BZ UK
| |
Collapse
|
189
|
Singh AK, Singh N, Sinha M, Bhushan A, Kaur P, Srinivasan A, Sharma S, Singh TP. Binding modes of aromatic ligands to mammalian heme peroxidases with associated functional implications: crystal structures of lactoperoxidase complexes with acetylsalicylic acid, salicylhydroxamic acid, and benzylhydroxamic acid. J Biol Chem 2009; 284:20311-8. [PMID: 19465478 PMCID: PMC2740456 DOI: 10.1074/jbc.m109.010280] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Indexed: 11/06/2022] Open
Abstract
The binding and structural studies of bovine lactoperoxidase with three aromatic ligands, acetylsalicylic acid (ASA), salicylhydoxamic acid (SHA), and benzylhydroxamic acid (BHA) show that all the three compounds bind to lactoperoxidase at the substrate binding site on the distal heme side. The binding of ASA occurs without perturbing the position of conserved heme water molecule W-1, whereas both SHA and BHA displace it by the hydroxyl group of their hydroxamic acid moieties. The acetyl group carbonyl oxygen atom of ASA forms a hydrogen bond with W-1, which in turn makes three other hydrogen-bonds, one each with heme iron, His-109 N(epsilon2), and Gln-105 N(epsilon2). In contrast, in the complexes of SHA and BHA, the OH group of hydroxamic acid moiety in both complexes interacts with heme iron directly with Fe-OH distances of 3.0 and 3.2A respectively. The OH is also hydrogen bonded to His-109 N(epsilon2) and Gln-105N(epsilon2). The plane of benzene ring of ASA is inclined at 70.7 degrees from the plane of heme moiety, whereas the aromatic planes of SHA and BHA are nearly parallel to the heme plane with inclinations of 15.7 and 6.2 degrees , respectively. The mode of ASA binding provides the information about the mechanism of action of aromatic substrates, whereas the binding characteristics of SHA and BHA indicate the mode of inhibitor binding.
Collapse
Affiliation(s)
- Amit K. Singh
- From the Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110 029, India
| | - Nagendra Singh
- From the Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110 029, India
| | - Mau Sinha
- From the Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110 029, India
| | - Asha Bhushan
- From the Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110 029, India
| | - Punit Kaur
- From the Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110 029, India
| | - Alagiri Srinivasan
- From the Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110 029, India
| | - Sujata Sharma
- From the Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110 029, India
| | - Tej P. Singh
- From the Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110 029, India
| |
Collapse
|
190
|
Carpena X, Vidossich P, Schroettner K, Calisto BM, Banerjee S, Stampler J, Soudi M, Furtmüller PG, Rovira C, Fita I, Obinger C. Essential role of proximal histidine-asparagine interaction in mammalian peroxidases. J Biol Chem 2009; 284:25929-37. [PMID: 19608745 DOI: 10.1074/jbc.m109.002154] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In heme enzymes belonging to the peroxidase-cyclooxygenase superfamily the proximal histidine is in close interaction with a fully conserved asparagine. The crystal structure of a mixture of glycoforms of myeloperoxidase (MPO) purified from granules of human leukocytes prompted us to revise the orientation of this asparagine and the protonation status of the proximal histidine. The data we present contrast with previous MPO structures, but are strongly supported by molecular dynamics simulations. Moreover, comprehensive analysis of published lactoperoxidase structures suggest that the described proximal heme architecture is a general structural feature of animal heme peroxidases. Its importance is underlined by the fact that the MPO variant N421D, recombinantly expressed in mammalian cell lines, exhibited modified spectral properties and diminished catalytic activity compared with wild-type recombinant MPO. It completely lost its ability to oxidize chloride to hypochlorous acid, which is a characteristic feature of MPO and essential for its role in host defense. The presented crystal structure of MPO revealed further important differences compared with the published structures including the extent of glycosylation, interaction between light and heavy polypeptides, as well as heme to protein covalent bonds. These data are discussed with respect to biosynthesis and post-translational maturation of MPO as well as to its peculiar biochemical and biophysical properties.
Collapse
Affiliation(s)
- Xavier Carpena
- Institute of Research in Biomedicine (IRB-Barcelona), Parc Científic, Baldiri i Reixac 10, 08028 Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
191
|
Sheikh IA, Singh AK, Singh N, Sinha M, Singh SB, Bhushan A, Kaur P, Srinivasan A, Sharma S, Singh TP. Structural evidence of substrate specificity in mammalian peroxidases: structure of the thiocyanate complex with lactoperoxidase and its interactions at 2.4 A resolution. J Biol Chem 2009; 284:14849-56. [PMID: 19339248 PMCID: PMC2685666 DOI: 10.1074/jbc.m807644200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Revised: 03/18/2009] [Indexed: 11/06/2022] Open
Abstract
The crystal structure of the complex of lactoperoxidase (LPO) with its physiological substrate thiocyanate (SCN(-)) has been determined at 2.4A resolution. It revealed that the SCN(-) ion is bound to LPO in the distal heme cavity. The observed orientation of the SCN(-) ion shows that the sulfur atom is closer to the heme iron than the nitrogen atom. The nitrogen atom of SCN(-) forms a hydrogen bond with a water (Wat) molecule at position 6'. This water molecule is stabilized by two hydrogen bonds with Gln(423) N(epsilon2) and Phe(422) oxygen. In contrast, the placement of the SCN(-) ion in the structure of myeloperoxidase (MPO) occurs with an opposite orientation, in which the nitrogen atom is closer to the heme iron than the sulfur atom. The site corresponding to the positions of Gln(423), Phe(422) oxygen, and Wat(6)' in LPO is occupied primarily by the side chain of Phe(407) in MPO due to an entirely different conformation of the loop corresponding to the segment Arg(418)-Phe(431) of LPO. This arrangement in MPO does not favor a similar orientation of the SCN(-) ion. The orientation of the catalytic product OSCN(-) as reported in the structure of LPO.OSCN(-) is similar to the orientation of SCN(-) in the structure of LPO.SCN(-). Similarly, in the structure of LPO.SCN(-).CN(-), in which CN(-) binds at Wat(1), the position and orientation of the SCN(-) ion are also identical to that observed in the structure of LPO.SCN.
Collapse
Affiliation(s)
- Ishfaq Ahmed Sheikh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110 029, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
192
|
Meitzler JL, Ortiz de Montellano PR. Caenorhabditis elegans and human dual oxidase 1 (DUOX1) "peroxidase" domains: insights into heme binding and catalytic activity. J Biol Chem 2009; 284:18634-43. [PMID: 19460756 DOI: 10.1074/jbc.m109.013581] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The seven members of the NOX/DUOX family are responsible for generation of the superoxide and H(2)O(2) required for a variety of host defense and cell signaling functions in nonphagocytic cells. Two members, the dual oxidase isozymes DUOX1 and DUOX2, share a structurally unique feature: an N-terminal peroxidase-like domain. Despite sequence similarity to the mammalian peroxidases, the absence of key active site residues makes their binding of heme and their catalytic function uncertain. To explore this domain we have expressed in a baculovirus system and purified the Caenorhabditis elegans (CeDUOX1(1-589)) and human (hDUOX1(1-593)) DUOX1 "peroxidase" domains. Evaluation of these proteins demonstrated that the isolated hDUOX1(1-593) does not bind heme and has no intrinsic peroxidase activity. In contrast, CeDUOX1(1-589) binds heme covalently, exhibits a modest peroxidase activity, but does not oxidize bromide ion. Surprisingly, the heme appears to have two covalent links to the protein despite the absence of a second conserved carboxyl group in the active site. Although the N-terminal dual oxidase motif has been proposed to directly convert superoxide to H(2)O(2), neither DUOX1 domain demonstrated significant superoxide dismutase activity. These results strengthen the in vivo conclusion that the CeDUOX1 protein supports controlled peroxidative polymerization of tyrosine residues and indicate that the hDUOX1 protein either has a unique function or must interact with other protein factors to express its catalytic activity.
Collapse
Affiliation(s)
- Jennifer L Meitzler
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158, USA
| | | |
Collapse
|
193
|
Abstract
Simple halogen substituents frequently afford key structural features that account for the potency and selectivity of natural products, including antibiotics and hormones. For example, when a single chlorine atom on the antibiotic vancomycin is replaced by hydrogen, the resulting antibacterial activity decreases by up to 70% (HarrisC. M.; KannanR.; KopeckaH.; HarrisT. M.1985, 107, 6652−6658). This Account analyzes how structure underlies mechanism in halogenases, the molecular machines designed by nature to incorporate halogens into diverse substrates.
Traditional synthetic methods of integrating halogens into complex molecules are often complicated by a lack of specificity and regioselectivity. Nature, however, has developed a variety of elegant mechanisms for halogenating specific substrates with both regio- and stereoselectivity. An improved understanding of the biological routes toward halogenation could lead to the development of novel synthetic methods for the creation of new compounds with enhanced functions. Already, researchers have co-opted a fluorinase from the microorganism Streptomyces cattleya to produce 18F-labeled molecules for use in positron emission tomography (PET) (DengH.; CobbS. L.; GeeA. D.; LockhartA.; MartarelloL.; McGlincheyR. P.; O’HaganD.; OnegaM.2006, 652−654). Therefore, the discovery and characterization of naturally occurring enzymatic halogenation mechanisms has become an active area of research. The catalogue of known halogenating enzymes has expanded from the familiar haloperoxidases to include oxygen-dependent enzymes and fluorinases. Recently, the discovery of a nucleophilic halogenase that catalyzes chlorinations has expanded the repertoire of biological halogenation chemistry (DongC.; HuangF.; DengH.; SchaffrathC.; SpencerJ. B.; O’HaganD.; NaismithJ. H.2004, 427, 561−56514765200). Structural characterization has provided a basis toward a mechanistic understanding of the specificity and chemistry of these enzymes. In particular, the latest crystallographic snapshots of active site architecture and halide binding sites have provided key insights into enzyme catalysis. Herein is a summary of the five classes of halogenases, focusing on the three most recently discovered: flavin-dependent halogenases, non-heme iron-dependent halogenases, and nucleophilic halogenases. Further, the potential roles of halide-binding sites in determining halide selectivity are discussed, as well as whether or not binding-site composition is always a seminal factor for selectivity. Expanding our understanding of the basic chemical principles that dictate the activity of the halogenases will advance both biology and chemistry. A thorough mechanistic analysis will elucidate the biological principles that dictate specificity, and the application of those principles to new synthetic techniques will expand the utility of halogenations in small-molecule development.
Collapse
|
194
|
Singh A, Singh N, Sharma S, Shin K, Takase M, Kaur P, Srinivasan A, Singh T. Inhibition of lactoperoxidase by its own catalytic product: crystal structure of the hypothiocyanate-inhibited bovine lactoperoxidase at 2.3-A resolution. Biophys J 2009; 96:646-54. [PMID: 19167310 PMCID: PMC2716474 DOI: 10.1016/j.bpj.2008.09.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Accepted: 09/29/2008] [Indexed: 10/21/2022] Open
Abstract
To the best of our knowledge, this is the first report on the structure of product-inhibited mammalian peroxidase. Lactoperoxidase is a heme containing an enzyme that catalyzes the inactivation of a wide range of microorganisms. In the presence of hydrogen peroxide, it preferentially converts thiocyanate ion into a toxic hypothiocyanate ion. Samples of bovine lactoperoxidase containing thiocyanate (SCN(-)) and hypothiocyanate (OSCN(-)) ions were purified and crystallized. The structure was determined at 2.3-A resolution and refined to R(cryst) and R(free) factors of 0.184 and 0.221, respectively. The determination of structure revealed the presence of an OSCN(-) ion at the distal heme cavity. The presence of OSCN(-) ions in crystal samples was also confirmed by chemical and spectroscopic analysis. The OSCN(-) ion interacts with the heme iron, Gln-105 N(epsilon1), His-109 N(epsilon2), and a water molecule W96. The sulfur atom of the OSCN(-) ion forms a hypervalent bond with a nitrogen atom of the pyrrole ring D of the heme moiety at an S-N distance of 2.8 A. The heme group is covalently bound to the protein through two ester linkages involving carboxylic groups of Glu-258 and Asp-108 and the modified methyl groups of pyrrole rings A and C, respectively. The heme moiety is significantly distorted from planarity, whereas pyrrole rings A, B, C, and D are essentially planar. The iron atom is displaced by approximately 0.2 A from the plane of the heme group toward the proximal site. The substrate channel resembles a long tunnel whose inner walls contain predominantly aromatic residues such as Phe-113, Phe-239, Phe-254, Phe-380, Phe-381, Phe-422, and Pro-424. A phosphorylated Ser-198 was evident at the surface, in the proximity of the calcium-binding channel.
Collapse
Affiliation(s)
- A.K. Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Nagendra Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Sujata Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Kouichirou Shin
- Nutritional Science Laboratory, Morinaga Milk Industry, Zama, Kanagawa, Japan
| | - Mitsunori Takase
- Nutritional Science Laboratory, Morinaga Milk Industry, Zama, Kanagawa, Japan
| | - Punit Kaur
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - A. Srinivasan
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - T.P. Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
195
|
Pathuri P, Nguyen ET, Ozorowski G, Svärd SG, Luecke H. Apo and Calcium-Bound Crystal Structures of Cytoskeletal Protein Alpha-14 Giardin (Annexin E1) from the Intestinal Protozoan Parasite Giardia lamblia. J Mol Biol 2009; 385:1098-112. [DOI: 10.1016/j.jmb.2008.11.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Revised: 11/10/2008] [Accepted: 11/11/2008] [Indexed: 01/22/2023]
|
196
|
Cheng G, Salerno JC, Cao Z, Pagano PJ, Lambeth JD. Identification and characterization of VPO1, a new animal heme-containing peroxidase. Free Radic Biol Med 2008; 45:1682-94. [PMID: 18929642 PMCID: PMC2659527 DOI: 10.1016/j.freeradbiomed.2008.09.009] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Revised: 08/14/2008] [Accepted: 09/02/2008] [Indexed: 11/22/2022]
Abstract
Animal heme-containing peroxidases play roles in innate immunity, hormone biosynthesis, and the pathogenesis of inflammatory diseases. Using the peroxidase-like domain of Duox1 as a query, we carried out homology searching of the National Center for Biotechnology Information database. Two novel heme-containing peroxidases were identified in humans and mice. One, termed VPO1 for vascular peroxidase 1, exhibits its highest tissue expression in heart and vascular wall. A second, VPO2, present in humans but not in mice, is 63% identical to VPO1 and is highly expressed in heart. The peroxidase homology region of VPO1 shows 42% identity to myeloperoxidase and 57% identity to the insect peroxidase peroxidasin. A molecular model of the VPO1 peroxidase region reveals a structure very similar to that of known peroxidases, including a conserved heme binding cavity, critical catalytic residues, and a calcium binding site. The absorbance spectra of VPO1 are similar to those of lactoperoxidase, and covalent attachment of the heme to VPO1 protein was demonstrated by chemiluminescent heme staining. VPO1 purified from heart or expressed in HEK cells is catalytically active, with a K(m) for H(2)O(2) of 1.5 mM. When co-expressed in cells, VPO1 can use H(2)O(2) produced by NADPH oxidase enzymes. VPO1 is likely to carry out peroxidative reactions previously attributed exclusively to myeloperoxidase in the vascular system.
Collapse
Affiliation(s)
- Guangjie Cheng
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | | | | | | | | |
Collapse
|
197
|
Silaghi-Dumitrescu R. Halide Activation by Heme Peroxidases: Theoretical Predictions on Putative Adducts of Halides with Compound I. Eur J Inorg Chem 2008. [DOI: 10.1002/ejic.200800732] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
198
|
Ulrich M, Petre A, Youhnovski N, Prömm F, Schirle M, Schumm M, Pero RS, Doyle A, Checkel J, Kita H, Thiyagarajan N, Acharya KR, Schmid-Grendelmeier P, Simon HU, Schwarz H, Tsutsui M, Shimokawa H, Bellon G, Lee JJ, Przybylski M, Döring G. Post-translational tyrosine nitration of eosinophil granule toxins mediated by eosinophil peroxidase. J Biol Chem 2008; 283:28629-40. [PMID: 18694936 PMCID: PMC2661412 DOI: 10.1074/jbc.m801196200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Revised: 07/14/2008] [Indexed: 11/06/2022] Open
Abstract
Nitration of tyrosine residues has been observed during various acute and chronic inflammatory diseases. However, the mechanism of tyrosine nitration and the nature of the proteins that become tyrosine nitrated during inflammation remain unclear. Here we show that eosinophils but not other cell types including neutrophils contain nitrotyrosine-positive proteins in specific granules. Furthermore, we demonstrate that the human eosinophil toxins, eosinophil peroxidase (EPO), major basic protein, eosinophil-derived neurotoxin (EDN) and eosinophil cationic protein (ECP), and the respective murine toxins, are post-translationally modified by nitration at tyrosine residues during cell maturation. High resolution affinity-mass spectrometry identified specific single nitration sites at Tyr349 in EPO and Tyr33 in both ECP and EDN. ECP and EDN crystal structures revealed and EPO structure modeling suggested that the nitrated tyrosine residues in the toxins are surface exposed. Studies in EPO(-/-), gp91phox(-/-), and NOS(-/-) mice revealed that tyrosine nitration of these toxins is mediated by EPO in the presence of hydrogen peroxide and minute amounts of NOx. Tyrosine nitration of eosinophil granule toxins occurs during maturation of eosinophils, independent of inflammation. These results provide evidence that post-translational tyrosine nitration is unique to eosinophils.
Collapse
Affiliation(s)
- Martina Ulrich
- Institute of Medical Microbiology and Hygiene, Universitätsklinikum Tübingen, Tübingen 72074, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
199
|
Ortiz de Montellano PR. Mechanism and Role of Covalent Heme Binding in the CYP4 Family of P450 Enzymes and the Mammalian Peroxidases. Drug Metab Rev 2008; 40:405-26. [DOI: 10.1080/03602530802186439] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
200
|
Effect of covalent links on the structure, spectra, and redox properties of myeloperoxidase – A density functional study. J Inorg Biochem 2008; 102:1549-57. [DOI: 10.1016/j.jinorgbio.2008.01.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Revised: 01/22/2008] [Accepted: 01/23/2008] [Indexed: 11/19/2022]
|