151
|
Bertogliat MJ, Morris-Blanco KC, Vemuganti R. Epigenetic mechanisms of neurodegenerative diseases and acute brain injury. Neurochem Int 2020; 133:104642. [PMID: 31838024 PMCID: PMC8074401 DOI: 10.1016/j.neuint.2019.104642] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/25/2019] [Accepted: 12/09/2019] [Indexed: 12/22/2022]
Abstract
Epigenetic modifications are emerging as major players in the pathogenesis of neurodegenerative disorders and susceptibility to acute brain injury. DNA and histone modifications act together with non-coding RNAs to form a complex gene expression machinery that adapts the brain to environmental stressors and injury response. These modifications influence cell-level operations like neurogenesis and DNA repair to large, intricate processes such as brain patterning, memory formation, motor function and cognition. Thus, epigenetic imbalance has been shown to influence the progression of many neurological disorders independent of aberrations in the genetic code. This review aims to highlight ways in which epigenetics applies to several commonly researched neurodegenerative diseases and forms of acute brain injury as well as shed light on the benefits of epigenetics-based treatments.
Collapse
Affiliation(s)
- Mario J Bertogliat
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Kahlilia C Morris-Blanco
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA; William S. Middleton VA Hospital, Madison, WI, USA
| | - Raghu Vemuganti
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA; William S. Middleton VA Hospital, Madison, WI, USA.
| |
Collapse
|
152
|
Jarvis R, Tamashiro-Orrego A, Promes V, Tu L, Shi J, Yang Y. Cocaine Self-administration and Extinction Inversely Alter Neuron to Glia Exosomal Dynamics in the Nucleus Accumbens. Front Cell Neurosci 2020; 13:581. [PMID: 31998080 PMCID: PMC6966328 DOI: 10.3389/fncel.2019.00581] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 12/19/2019] [Indexed: 12/12/2022] Open
Abstract
Alteration of glutamatergic synaptic plasticity in the Nucleus Accumbens (NAc) has been implicated in cocaine-seeking behaviors. Astroglial mechanisms for maintaining extracellular glutamate homeostasis through cysteine/glutamate exchanger (xCT) and glutamate transporter GLT1 are dysregulated following cocaine exposure and contribute to altered glutamatergic synaptic plasticity. However, how these astroglial proteins become dysregulated in cocaine addiction remains unknown. We recently showed that neuron to astroglial exosome signaling is essential to maintain GLT1 protein expression by transferring neuronal miR-124-3p into astrocytes to suppress GLT1-inhibiting microRNAs (miRs) in astrocytes. In the current study, by selectively labeling neuronal exosomes using CD63-GFPf/+ exosome reporter mice, we examined how the self-administration and extinction stages of the mouse cocaine self-administration model alter neuronal exosome signaling to astrocytes and microglia in the NAc. We found that cocaine (but not food) self-administration strongly reduces the internalization of neuronal exosomes, particularly in astrocytes in the NAc (but not in motor cortex), which can be effectively reversed by extinction training. In parallel, cocaine self-administration alone specifically and differentially affects activation of glial cells by decreasing GFAP expression in astrocytes but increasing Iba1 expression in microglia. However, extinction training fully reverses the increased Iba1 expression in microglia but only partially reverses the reduction of GFAP in astrocytes. Taken together, our study reveals altered in vivo dynamics of NAc neuronal exosomes in the cocaine addiction model, providing new insights about how altered neuron to glial exosome signaling may contribute to astroglial dysfunction in cocaine addiction.
Collapse
Affiliation(s)
- Rachel Jarvis
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States
| | | | - Vanessa Promes
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States
| | - Leona Tu
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States
| | - Jinyuan Shi
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States
| | - Yongjie Yang
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States.,Graduate School of Biomedical Sciences, Tufts University, Boston, MA, United States
| |
Collapse
|
153
|
Avila JA, Kiprowska M, Jean-Louis T, Rockwell P, Figueiredo-Pereira ME, Serrano PA. PACAP27 mitigates an age-dependent hippocampal vulnerability to PGJ2-induced spatial learning deficits and neuroinflammation in mice. Brain Behav 2020; 10:e01465. [PMID: 31769222 PMCID: PMC6955932 DOI: 10.1002/brb3.1465] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/20/2019] [Accepted: 10/13/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Inflammation in the brain is mediated by the cyclooxygenase pathway, which leads to the production of prostaglandins. Prostaglandin (PG) D2, the most abundant PG in the brain, increases under pathological conditions and is spontaneously metabolized to PGJ2. PGJ2 is highly neurotoxic, with the potential to transition neuroinflammation into a chronic state and contribute to neurodegeneration as seen in many neurological diseases. Conversely, PACAP27 is a lipophilic peptide that raises intracellular cAMP and is an anti-inflammatory agent. The aim of our study was to investigate the therapeutic potential of PACAP27 to counter the behavioral and neurotoxic effects of PGJ2 observed in aged subjects. METHODS PGJ2 was injected bilaterally into the hippocampal CA1 region of 53-week-old and 12-week-old C57BL/6N male mice, once per week over 3 weeks (three total infusions) and included co-infusions of PACAP27 within respective treatment groups. Our behavioral assessments looked at spatial learning and memory performance on the 8-arm radial maze, followed by histological analyses of fixed hippocampal tissue using Fluoro-Jade C and fluorescent immunohistochemistry focused on IBA-1 microglia. RESULTS Aged mice treated with PGJ2 exhibited spatial learning and long-term memory deficits, as well as neurodegeneration in CA3 pyramidal neurons. Aged mice that received co-infusions of PACAP27 exhibited remediated learning and memory performance and decreased neurodegeneration in CA3 pyramidal neurons. Moreover, microglial activation in the CA3 region was also reduced in aged mice cotreated with PACAP27. CONCLUSIONS Our data show that PGJ2 can produce a retrograde spread of damage not observed in PGJ2-treated young mice, leading to age-dependent neurodegeneration of hippocampal neurons producing learning and memory deficits. PACAP27 can remediate the behavioral and neurodegenerative effects that PGJ2 produces in aged subjects. Targeting specific neurotoxic prostaglandins, such as PGJ2, offers great promise as a new therapeutic strategy downstream of cyclooxygenases, to combat the neuronal deficits induced by chronic inflammation.
Collapse
Affiliation(s)
- Jorge A Avila
- Department of Psychology, Hunter College, City University of New York, New York, NY, USA.,The Graduate Center of CUNY, New York, NY, USA
| | - Magdalena Kiprowska
- The Graduate Center of CUNY, New York, NY, USA.,Department of Biological Sciences, Hunter College, City University of New York, New York, NY, USA
| | - Teneka Jean-Louis
- The Graduate Center of CUNY, New York, NY, USA.,Department of Biological Sciences, Hunter College, City University of New York, New York, NY, USA
| | - Patricia Rockwell
- The Graduate Center of CUNY, New York, NY, USA.,Department of Biological Sciences, Hunter College, City University of New York, New York, NY, USA
| | - Maria E Figueiredo-Pereira
- The Graduate Center of CUNY, New York, NY, USA.,Department of Biological Sciences, Hunter College, City University of New York, New York, NY, USA
| | - Peter A Serrano
- Department of Psychology, Hunter College, City University of New York, New York, NY, USA.,The Graduate Center of CUNY, New York, NY, USA
| |
Collapse
|
154
|
Sosanya NM, Kumar R, Clifford JL, Chavez R, Dimitrov G, Srinivasan S, Gautam A, Trevino AV, Williams M, Hammamieh R, Cheppudira BP, Christy RJ, Crimmins SL. Identifying Plasma Derived Extracellular Vesicle (EV) Contained Biomarkers in the Development of Chronic Neuropathic Pain. THE JOURNAL OF PAIN 2020; 21:82-96. [DOI: 10.1016/j.jpain.2019.05.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 05/09/2019] [Accepted: 05/24/2019] [Indexed: 12/29/2022]
|
155
|
Liu X, Feng Z, Du L, Huang Y, Ge J, Deng Y, Mei Z. The Potential Role of MicroRNA-124 in Cerebral Ischemia Injury. Int J Mol Sci 2019; 21:ijms21010120. [PMID: 31878035 PMCID: PMC6981583 DOI: 10.3390/ijms21010120] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 01/01/2023] Open
Abstract
Cerebral ischemia injury, the leading cause of morbidity and mortality worldwide, initiates sequential molecular and cellular pathologies that underlie ischemic encephalopathy (IE), such as ischemic stroke, Alzheimer disease (AD), Parkinson's disease (PD), epilepsy, etc. Targeted therapeutic treatments are urgently needed to tackle the pathological processes implicated in these neurological diseases. Recently, accumulating studies demonstrate that microRNA-124 (miR-124), the most abundant miRNA in brain tissue, is aberrant in peripheral blood and brain vascular endothelial cells following cerebral ischemia. Importantly, miR-124 regulates a variety of pathophysiological processes that are involved in the pathogenesis of age-related IE. However, the role of miR-124 has not been systematically illustrated. Paradoxically, miR-124 exerts beneficial effects in the age-related IE via regulating autophagy, neuroinflammation, oxidative stress, neuronal excitability, neurodifferentiation, Aβ deposition, and hyperphosphorylation of tau protein, while it may play a dual role via regulating apoptosis and exerts detrimental effects on synaptic plasticity and axonal growth. In the present review, we thus focus on the paradoxical roles of miR-124 in age-related IE, as well as the underlying mechanisms. A great understanding of the effects of miR-124 on the hypoxic-ischemic brain will open new avenues for therapeutic approaches to protect against cerebral ischemia injury.
Collapse
Affiliation(s)
- Xiaolu Liu
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang 443002, China; (X.L.); (Z.F.); (L.D.); (Y.H.)
| | - Zhitao Feng
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang 443002, China; (X.L.); (Z.F.); (L.D.); (Y.H.)
| | - Lipeng Du
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang 443002, China; (X.L.); (Z.F.); (L.D.); (Y.H.)
| | - Yaguang Huang
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang 443002, China; (X.L.); (Z.F.); (L.D.); (Y.H.)
| | - Jinwen Ge
- The Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China (Y.D.)
| | - Yihui Deng
- The Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China (Y.D.)
| | - Zhigang Mei
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang 443002, China; (X.L.); (Z.F.); (L.D.); (Y.H.)
- The Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China (Y.D.)
- Correspondence:
| |
Collapse
|
156
|
Alam MA, Datta PK. Epigenetic Regulation of Excitatory Amino Acid Transporter 2 in Neurological Disorders. Front Pharmacol 2019; 10:1510. [PMID: 31920679 PMCID: PMC6927272 DOI: 10.3389/fphar.2019.01510] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 11/21/2019] [Indexed: 12/14/2022] Open
Abstract
Excitatory amino acid transporter 2 (EAAT2) is the predominant astrocyte glutamate transporter involved in the reuptake of the majority of the synaptic glutamate in the mammalian central nervous system (CNS). Gene expression can be altered without changing DNA sequences through epigenetic mechanisms. Mechanisms of epigenetic regulation, include DNA methylation, post-translational modifications of histones, chromatin remodeling, and small non-coding RNAs. This review is focused on neurological disorders, such as glioblastoma multiforme (GBM), Alzheimer’s disease (AD), amyotrophic lateral sclerosis (ALS), Parkinson’s disease (PD), bipolar disorder (BD), and neuroHIV where there is evidence that epigenetics plays a role in the reduction of EAAT2 expression. The emerging field of pharmaco-epigenetics provides a novel avenue for epigenetics-based drug therapy. This review highlights findings on the role of epigenetics in the regulation of EAAT2 in different neurological disorders and discusses the current pharmacological approaches used and the potential use of novel therapeutic approaches to induce EAAT2 expression in neurological disorders using CRISPR/Cas9 technology.
Collapse
Affiliation(s)
- Mohammad Afaque Alam
- Department of Neuroscience, Center for Comprehensive NeuroAIDS, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Prasun K Datta
- Department of Neuroscience, Center for Comprehensive NeuroAIDS, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| |
Collapse
|
157
|
Wang B, Zhang Y, Ye M, Wu J, Ma L, Chen H. Cisplatin-resistant MDA-MB-231 Cell-derived Exosomes Increase the Resistance of Recipient Cells in an Exosomal miR-423-5p-dependent Manner. Curr Drug Metab 2019; 20:804-814. [PMID: 31424364 DOI: 10.2174/1389200220666190819151946] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/11/2019] [Accepted: 06/12/2019] [Indexed: 02/06/2023]
Abstract
Background:
Chemoresistance blunts the therapeutic effect of cisplatin (DDP) on Triple-Negative Breast
Cancer (TNBC). Researchers have not determined to date whether exosomes confer DDP resistance to other breast
cancer cells or whether exosomal transfer of miRNAs derived from DDP-resistant TNBC cells confer DDP resistance.
Objective:
The aim of this study was to investigate the role of exosomes in chemoresistance in breast cancer.
Methods:
MDA-MB-231 cells resistant to DDP (231/DDP) were established. Exosomes were isolated from 231/DDP
cells (DDP/EXO) and characterized by measuring the levels of protein markers, nanoparticle tracking analysis and
transmission electron microscopy. MDA-MB-231, MCF-7 and SKBR-3 cell lines were treated with the isolated
DDP/EXOs and cell proliferation and cytotoxicity to DDP were evaluated using MTT assays and apoptosis analyses.
Western blotting was used to examine P-glycoprotein (P-gp) expression. Additionally, a microarray was used to
analyse microRNA (miRNA) expression profiles in MDA-MB-231 and 231/DDP exosomes. The effects on miRNAs
were determined using RT-PCR. Exosomal miR-423-5p was extracted, and differential expression was verified. The
MTT cell viability assay, flow cytometry, and Transwell and immunofluorescence assays were performed to determine
if differential expression of miR-423-5p sensitized cells to DDP in vitro.
Results:
Under a transmission electron microscope, the isolated exosomes exhibited a round or oval shape with a
diameter ranging between 40 and 100 nm. DDP/EXOs labelled with PKH67 were taken up by MDA-MB-231 cells.
After an incubation with DDP/EXOs, the cell lines exhibited a higher IC50 value for cisplatin, P-gp expression, migration
and invasion capabilities and a lower apoptosis rate. Furthermore, 60 miRNAs from exosomes derived from
231/DDP cells were significantly up-regulated compared to exosomes from MDA-MB-231 cells. Notably, compared
to the corresponding sensitive exosomes, miR-370-3p, miR-423-5p and miR-373 were the most differentially expressed
miRNAs in DDP-resistant exosomes. We chose miR-423-5p, and up-regulation and down-regulation of
exosomal miR-423-5p expression significantly affected DDP resistance.
Conclusions:
Exosomes from DDP-resistant TNBC cells (231/DDP) altered the sensitivity of other breast cancer
cells to DDP in an exosomal miR-423-5p dependent manner. Our research helps to elucidate the mechanism of DDP
resistance in breast cancer.
Collapse
Affiliation(s)
- Bing Wang
- Department of Breast, Longhua Hospital Affiliated with Shanghai University of TCM, Shanghai 200032, China
| | - Yuzhu Zhang
- Department of Breast, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510006, China
| | - Meina Ye
- Department of Breast, Longhua Hospital Affiliated with Shanghai University of TCM, Shanghai 200032, China
| | - Jingjing Wu
- Department of Breast, Longhua Hospital Affiliated with Shanghai University of TCM, Shanghai 200032, China
| | - Lina Ma
- Department of Breast, Longhua Hospital Affiliated with Shanghai University of TCM, Shanghai 200032, China
| | - Hongfeng Chen
- Department of Breast, Longhua Hospital Affiliated with Shanghai University of TCM, Shanghai 200032, China
| |
Collapse
|
158
|
Abstract
Motor neuron disorders are highly debilitating and mostly fatal conditions for which only limited therapeutic options are available. To overcome this limitation and develop more effective therapeutic strategies, it is critical to discover the pathogenic mechanisms that trigger and sustain motor neuron degeneration with the greatest accuracy and detail. In the case of Amyotrophic Lateral Sclerosis (ALS), several genes have been associated with familial forms of the disease, whilst the vast majority of cases develop sporadically and no defined cause can be held responsible. On the contrary, the huge majority of Spinal Muscular Atrophy (SMA) occurrences are caused by loss-of-function mutations in a single gene, SMN1. Although the typical hallmark of both diseases is the loss of motor neurons, there is increasing awareness that pathological lesions are also present in the neighbouring glia, whose dysfunction clearly contributes to generating a toxic environment in the central nervous system. Here, ALS and SMA are sequentially presented, each disease section having a brief introduction, followed by a focussed discussion on the role of the astrocytes in the disease pathogenesis. Such a dissertation is substantiated by the findings that built awareness on the glial involvement and how the glial-neuronal interplay is perturbed, along with the appraisal of this new cellular site for possible therapeutic intervention.
Collapse
|
159
|
Men Y, Yelick J, Jin S, Tian Y, Chiang MSR, Higashimori H, Brown E, Jarvis R, Yang Y. Exosome reporter mice reveal the involvement of exosomes in mediating neuron to astroglia communication in the CNS. Nat Commun 2019; 10:4136. [PMID: 31515491 PMCID: PMC6742670 DOI: 10.1038/s41467-019-11534-w] [Citation(s) in RCA: 215] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 07/10/2019] [Indexed: 12/20/2022] Open
Abstract
Astroglia play active and diverse roles in modulating neuronal/synaptic functions in the CNS. How these astroglial functions are regulated, especially by neuronal signals, remains largely unknown. Exosomes, a major type of extracellular vesicles (EVs) that originate from endosomal intraluminal vesicles (ILVs), have emerged as a new intercellular communication process. By generating cell-type-specific ILVs/exosome reporter (CD63-GFPf/f) mice and immuno-EM/confocal image analysis, we found that neuronal CD63-GFP+ ILVs are primarily localized in soma and dendrites, but not in axonal terminals in vitro and in vivo. Secreted neuronal exosomes contain a subset of microRNAs (miRs) that is distinct from the miR profile of neurons. These miRs, especially the neuron-specific miR-124-3p, are potentially internalized into astrocytes. MiR-124-3p further up-regulates the predominant glutamate transporter GLT1 by suppressing GLT1-inhibiting miRs. Our findings suggest a previously undescribed neuronal exosomal miR-mediated genetic regulation of astrocyte functions, potentially opening a new frontier in understanding CNS intercellular communication. Our current understanding of exosome signaling among CNS cells is mostly limited to culture models. In this study, authors generated a new cell-type specific exosome reporter mouse line which allows the first in vivo investigation of the localization of neuronal exosomes in the CNS, and also potentially highlights the role of exosomally transferred miR-124-3p in mediating astroglial glutamate uptake function
Collapse
Affiliation(s)
- Yuqin Men
- Tufts University School of Medicine, Department of Neuroscience, 136 Harrison Avenue, Boston, MA, 02111, USA.,Tufts University, Sackler School of Biomedical Sciences, 136 Harrison Avenue, Boston, MA, 02111, USA
| | - Julia Yelick
- Tufts University School of Medicine, Department of Neuroscience, 136 Harrison Avenue, Boston, MA, 02111, USA
| | - Shijie Jin
- Tufts University School of Medicine, Department of Neuroscience, 136 Harrison Avenue, Boston, MA, 02111, USA
| | - Yang Tian
- Tufts University School of Medicine, Department of Neuroscience, 136 Harrison Avenue, Boston, MA, 02111, USA.,Dongfang Hospital of University of Chinese Medicine, No.6, District 1, Fangxingyuan, Fangzhuang, Fengtai District, 100078, Beijing, People's Republic of China
| | - Ming Sum R Chiang
- Tufts University School of Medicine, Department of Neuroscience, 136 Harrison Avenue, Boston, MA, 02111, USA
| | - Haruki Higashimori
- Tufts University School of Medicine, Department of Neuroscience, 136 Harrison Avenue, Boston, MA, 02111, USA
| | - Eoin Brown
- Tufts University School of Medicine, Department of Neuroscience, 136 Harrison Avenue, Boston, MA, 02111, USA
| | - Rachel Jarvis
- Tufts University School of Medicine, Department of Neuroscience, 136 Harrison Avenue, Boston, MA, 02111, USA
| | - Yongjie Yang
- Tufts University School of Medicine, Department of Neuroscience, 136 Harrison Avenue, Boston, MA, 02111, USA. .,Tufts University, Sackler School of Biomedical Sciences, 136 Harrison Avenue, Boston, MA, 02111, USA.
| |
Collapse
|
160
|
The Effect of Glutamatergic Modulators on Extracellular Glutamate: How Does this Information Contribute to the Discovery of Novel Antidepressants? Curr Ther Res Clin Exp 2019; 91:25-32. [PMID: 31871505 PMCID: PMC6911922 DOI: 10.1016/j.curtheres.2019.100566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 08/29/2019] [Indexed: 01/19/2023] Open
Abstract
The complexity of glutamatergic signaling challenges glutamate modulator usage. Functional biomarkers are needed to understand the MOA of glutamate modulators. Evaluating drug effect on EAATs' kinetics may add to antidepressant discovery.
Background In the search for new antidepressants, clinical researchers have been using drugs that simultaneously modulate multiple targets. During preclinical and clinical trials, the glutamatergic modulators riluzole and ketamine have received particular attention. Glutamatergic agents have a modulatory effect on synaptic transmission, so they can act on both neurons and astrocytes. In addition to influencing the quantity of glutamate released, these modulators can also affect the expression, localization, and functionality of glutamate-binding sites. Objective This review discusses the complexity of the glutamatergic system, the ambiguity of data regarding glutamate levels in patients with depression, as well as the mechanisms of action for riluzole and ketamine, which includes their relation to the physiology of glutamatergic transmission. The principal aim is to contribute to the development of novel glutamatergic antidepressant medications whilst emphasizing the need for innovative approaches that evaluate their effects on extracellular glutamate. Methods Literature was obtained via PubMed by searching the term depression in combination with each of the following terms: riluzole, ketamine, and glutamate. The search was restricted to full-text articles published in English between 1985 and 2018 relating to both the modulatory mechanisms of glutamatergic-binding proteins and the antidepressant actions of these medicines. Articles about mechanisms associated with synaptic plasticity and antidepressant effects were excluded. Results Although experimental data relates glutamatergic signaling to the pathophysiology of major depression and bipolar disorder, the role of glutamate—as well as its extracellular concentration in patients with said disorders—is still unclear. Riluzole's antidepressant action is ascribed to its capacity to reduce glutamate levels in the synaptic cleft, and ketamine's effect has been associated with increased extracellular glutamate levels. Conclusions The strategy of using glutamatergic modulators as therapeutic agents requires a better understanding of the role of glutamate in the pathophysiology of depression. Gaining such understanding is a challenge because it entails evaluating different targets as well as the effects of these modulators on the kinetics of glutamate uptake. Essentially, glutamate transport is a dynamic process and, currently, it is still necessary to develop new approaches to assay glutamate in the synaptic cleft. ORCID: 0000-0002-3358-6939.
Collapse
|
161
|
Datta Chaudhuri A, Dasgheyb RM, DeVine LR, Bi H, Cole RN, Haughey NJ. Stimulus‐dependent modifications in astrocyte‐derived extracellular vesicle cargo regulate neuronal excitability. Glia 2019; 68:128-144. [DOI: 10.1002/glia.23708] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Amrita Datta Chaudhuri
- Department of Neurology, Richard T Johnson Division of Neuroimmunology and Neurological InfectionsJohns Hopkins University School of Medicine Baltimore Maryland
| | - Raha M. Dasgheyb
- Department of Neurology, Richard T Johnson Division of Neuroimmunology and Neurological InfectionsJohns Hopkins University School of Medicine Baltimore Maryland
| | - Lauren R. DeVine
- Department of Biological Chemistry, Mass Spectrometry and Proteomics FacilityJohns Hopkins University School of Medicine Baltimore Maryland
| | - Honghao Bi
- Department of Neurology, Richard T Johnson Division of Neuroimmunology and Neurological InfectionsJohns Hopkins University School of Medicine Baltimore Maryland
| | - Robert N. Cole
- Department of Biological Chemistry, Mass Spectrometry and Proteomics FacilityJohns Hopkins University School of Medicine Baltimore Maryland
| | - Norman J. Haughey
- Department of Neurology, Richard T Johnson Division of Neuroimmunology and Neurological InfectionsJohns Hopkins University School of Medicine Baltimore Maryland
| |
Collapse
|
162
|
Deng F, Miller J. A review on protein markers of exosome from different bio-resources and the antibodies used for characterization. J Histotechnol 2019; 42:226-239. [PMID: 31432761 DOI: 10.1080/01478885.2019.1646984] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Exosomes are small membrane vesicles (ranging from 30 nm to 150 nm), secreted by different cell types upon fusion of multivesicular bodies (MVB) to the cell plasma membrane under a variety of normal and pathological conditions. Through transferring their cargos such as proteins, lipids and nucleic acids from donor cells to recipient cells, exosomes play a crucial role in cell-to-cell communication. Due to their presence in most body fluids (such as blood, breast milk, saliva, urine, bile, pancreatic juice, cerebrospinal and peritoneal fluids), and their role in carrying bioactive molecules from the cells of origin, exosomes have attracted great interest in their diagnostic and prognostic value for various diseases and therapeutic approaches. Although a large body of literature has documented the importance of exosomes over the past decade, there is no article systematically summarizing protein markers of exosome from different resources and the antibodies that are suited to characterize exosomes. In this review, we briefly summarize the exosome marker proteins, exosomal biomarkers for different diseases, and the antibodies suitable for different bio-resources exosomes characterization.
Collapse
Affiliation(s)
- Fengyan Deng
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, MO, USA
| | - Josh Miller
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, MO, USA
| |
Collapse
|
163
|
Ferraiuolo L, Shaw PJ. Lost in translation: microRNAs mediate pathological cross-talk between motor neurons and astrocytes. Brain 2019; 141:2534-2536. [PMID: 30169589 DOI: 10.1093/brain/awy213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Laura Ferraiuolo
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, 385 Glossop Road, Sheffield, UK
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, 385 Glossop Road, Sheffield, UK
| |
Collapse
|
164
|
Extracellular RNAs as Biomarkers of Sporadic Amyotrophic Lateral Sclerosis and Other Neurodegenerative Diseases. Int J Mol Sci 2019; 20:ijms20133148. [PMID: 31252669 PMCID: PMC6651127 DOI: 10.3390/ijms20133148] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/21/2019] [Accepted: 06/26/2019] [Indexed: 12/13/2022] Open
Abstract
Recent progress in the research for underlying mechanisms in neurodegenerative diseases, including Alzheimer disease (AD), Parkinson disease (PD), and amyotrophic lateral sclerosis (ALS) has led to the development of potentially effective treatment, and hence increased the need for useful biomarkers that may enable early diagnosis and therapeutic monitoring. The deposition of abnormal proteins is a pathological hallmark of neurodegenerative diseases, including β-amyloid in AD, α-synuclein in PD, and the transactive response DNA/RNA binding protein of 43kDa (TDP-43) in ALS. Furthermore, progression of the disease process accompanies the spreading of abnormal proteins. Extracellular proteins and RNAs, including mRNA, micro RNA, and circular RNA, which are present as a composite of exosomes or other forms, play a role in cell–cell communication, and the role of extracellular molecules in the cell-to-cell spreading of pathological processes in neurodegenerative diseases is now in the spotlight. Therefore, extracellular proteins and RNAs are considered potential biomarkers of neurodegenerative diseases, in particular ALS, in which RNA dysregulation has been shown to be involved in the pathogenesis. Here, we review extracellular proteins and RNAs that have been scrutinized as potential biomarkers of neurodegenerative diseases, and discuss the possibility of extracellular RNAs as diagnostic and therapeutic monitoring biomarkers of sporadic ALS.
Collapse
|
165
|
Marangon D, Raffaele S, Fumagalli M, Lecca D. MicroRNAs change the games in central nervous system pharmacology. Biochem Pharmacol 2019; 168:162-172. [PMID: 31251938 DOI: 10.1016/j.bcp.2019.06.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 06/20/2019] [Indexed: 01/01/2023]
Abstract
MicroRNAs (miRNAs) represent a class of important post-transcriptional regulators of gene expression, enabling cells to follow their intrinsic developmental program. By directly binding to their targets, miRNAs can both promote transcriptional patterns in crucial steps of cell growth, and act as powerful buffering system that titrate protein content in case of aberrant gene expression. The literature of the last decade showed that the presence of tissue-enriched miRNAs in body fluids could be reminiscent of disease state. This is particularly relevant in neurodegenerative disorders, in which peripheral biomarkers could be helpful means to detect disease onset. However, dysregulation of miRNAs is not merely a consequence of disease, but directly contributes to pathological outcomes. On this basis, increasing interest is growing in the development of pharmacological agents targeting specific miRNAs. Actually, this apparently futuristic approach is already part of the current therapies. In fact, several drugs approved for CNS disorders, such as L-Dopa or valproic acid, were also demonstrated to restore some miRNAs. Moreover, ongoing clinical trials demonstrated that miRNA-based drugs are effective against tumors, suggesting that miRNAs also represent a promising class of therapeutic molecules. However, several issues still need to be addressed, particularly in case of CNS diseases, in which stability and delivery are crucial aspects of the therapy. In this commentary, we highlighted potential advantages and limitations of miRNAs as next generation targets in CNS pharmacology, focusing on multiple sclerosis, a chronic demyelinating disease lacking specific therapeutic targets and bona-fide biomarkers.
Collapse
Affiliation(s)
- Davide Marangon
- Laboratorio di Farmacologia Molecolare e Cellulare della Trasmissione Purinergica, Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Via Balzaretti, 9, 20133 Milano, Italy
| | - Stefano Raffaele
- Laboratorio di Farmacologia Molecolare e Cellulare della Trasmissione Purinergica, Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Via Balzaretti, 9, 20133 Milano, Italy
| | - Marta Fumagalli
- Laboratorio di Farmacologia Molecolare e Cellulare della Trasmissione Purinergica, Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Via Balzaretti, 9, 20133 Milano, Italy
| | - Davide Lecca
- Laboratorio di Farmacologia Molecolare e Cellulare della Trasmissione Purinergica, Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Via Balzaretti, 9, 20133 Milano, Italy.
| |
Collapse
|
166
|
Zumkehr J, Rodriguez-Ortiz CJ, Medeiros R, Kitazawa M. Inflammatory Cytokine, IL-1β, Regulates Glial Glutamate Transporter via microRNA-181a in vitro. J Alzheimers Dis 2019; 63:965-975. [PMID: 29710703 DOI: 10.3233/jad-170828] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Glutamate overload triggers synaptic and neuronal loss that potentially contributes to neurodegenerative diseases including Alzheimer's disease (AD). Glutamate clearance and regulation at synaptic clefts is primarily mediated by glial glutamate transporter 1 (GLT-1). We determined that inflammatory cytokines significantly upregulated GLT-1 through microRNA-181a-mediated post-transcriptional modifications. Unveiling the key underlying mechanisms modulating GLT-1 helps better understand its physiological and pathological interactions with cytokines. Primary murine astrocyte and neuron co-culture received 20 ng/mL IL-1β, TNF-α, or IL-6 for 48 h. Soluble proteins or total RNA were extracted after treatment for further analyses. Treatment with inflammatory cytokines, IL-1β and TNF-α, but not IL-6, significantly increased GLT-1 steady-state levels (p≤0.05) without affecting mRNA levels, suggesting the cytokine-induced GLT-1 was regulated through post-transcriptional modifications. Among the candidate microRNAs predicted to modulate GLT-1, only microRNA-181a was significantly decreased following the IL-1β treatment (p≤0.05). Co-treatment of microRNA-181a mimic in IL-1β-treated primary astrocytes and neurons effectively blocked the IL-1β-induced upregulation of GLT-1. Lastly, we attempted to determine the link between GLT-1 and microRNA-181a in human AD brains. A significant reduction of GLT-1 was found in AD hippocampus tissues, and the ratio of mature microRNA-181a over primary microRNA-181a had an increasing tendency in AD. MicroRNA-181a controls rapid modifications of GLT-1 levels in astrocytes. Cytokine-induced inhibition of microRNA-181a and subsequent upregulation of GLT-1 may have physiological implications in synaptic plasticity while aberrant maturation of microRNA-181a may be involved in pathological consequences in AD.
Collapse
Affiliation(s)
- Joannee Zumkehr
- School of Natural Sciences, University of California, Merced, CA, USA.,Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Carlos J Rodriguez-Ortiz
- Department of Medicine, Center for Occupational and Environmental Health, University of California, Irvine, CA, USA
| | - Rodrigo Medeiros
- Queensland Brain Institute, The University of Queensland, St Lucia QLD, Australia
| | - Masashi Kitazawa
- Department of Medicine, Center for Occupational and Environmental Health, University of California, Irvine, CA, USA
| |
Collapse
|
167
|
Tseng AM, Chung DD, Pinson MR, Salem NA, Eaves SE, Miranda RC. Ethanol Exposure Increases miR-140 in Extracellular Vesicles: Implications for Fetal Neural Stem Cell Proliferation and Maturation. Alcohol Clin Exp Res 2019; 43:1414-1426. [PMID: 31009095 DOI: 10.1111/acer.14066] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 04/12/2019] [Indexed: 12/23/2022]
Abstract
BACKGROUND Neural stem cells (NSCs) generate most of the neurons of the adult brain in humans, during the mid-first through second-trimester period. This critical neurogenic window is particularly vulnerable to prenatal alcohol exposure, which can result in diminished brain growth. Previous studies showed that ethanol (EtOH) exposure does not kill NSCs, but, rather, results in their depletion by influencing cell cycle kinetics and promoting aberrant maturation, in part, by altering NSC expression of key neurogenic miRNAs. NSCs reside in a complex microenvironment rich in extracellular vesicles, shown to traffic miRNA cargo between cells. METHODS We profiled the miRNA content of extracellular vesicles from control and EtOH-exposed ex vivo neurosphere cultures of fetal NSCs. We subsequently examined the effects of one EtOH-sensitive miRNA, miR-140-3p, on NSC growth, survival, and maturation. RESULTS EtOH exposure significantly elevates levels of a subset of miRNAs in secreted extracellular vesicles. Overexpression of one of these elevated miRNAs, miR-140-3p, and its passenger strand relative, miR-140-5p, significantly increased the proportion of S-phase cells while decreasing the proportion of G0 /G1 cells compared to controls. In contrast, while miR-140-3p knockdown had minimal effects on the proportion of cells in each phase of the cell cycle, knockdown of miR-140-5p significantly decreased the proportion of cells in G2 /M phase. Furthermore, miR-140-3p overexpression, during mitogen-withdrawal-induced NSC differentiation, favors astroglial maturation at the expense of neural and oligodendrocyte differentiation. CONCLUSIONS Collectively, the dysregulated miRNA content of extracellular vesicles following EtOH exposure may result in aberrant neural progenitor cell growth and maturation, explaining brain growth deficits associated with prenatal alcohol exposure.
Collapse
Affiliation(s)
- Alexander M Tseng
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, Texas
| | - Dae D Chung
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, Texas
| | - Marisa R Pinson
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, Texas
| | - Nihal A Salem
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, Texas
| | - Sarah E Eaves
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, Texas
| | - Rajesh C Miranda
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, Texas
| |
Collapse
|
168
|
Jiang L, Dong H, Cao H, Ji X, Luan S, Liu J. Exosomes in Pathogenesis, Diagnosis, and Treatment of Alzheimer's Disease. Med Sci Monit 2019; 25:3329-3335. [PMID: 31056537 PMCID: PMC6515980 DOI: 10.12659/msm.914027] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by the accumulation of β-amyloid peptide 1-42 and phosphorylation of tau protein in the brain. Thus far, the transfer mechanism of these cytotoxic proteins between nerve cells remains unclear. Recent studies have shown that nanoscale extracellular vesicles (exosomes) originating from cells may play important roles in this transfer process. In addition, several genetic materials and proteins are also involved in intercellular communication by the secretion of the exosomes. That proposes novel avenues for early diagnosis and biological treatment in AD, based on exosome detection and intervention. In this review, exosome-related pathways of cytotoxic protein intercellular transfer in AD, and the effect of membrane proteins on exosomes targeting cells are first introduced. The advances in exosome-related biomarker detection in AD are summarized. Finally, the advantages and challenges of reducing cytotoxic protein accumulation via exosomal intervention for AD treatment are discussed. It is envisaged that future research in exosomes may well provide new insights into the pathogenesis, diagnosis, and treatment of AD.
Collapse
Affiliation(s)
- Liqun Jiang
- Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China (mainland)
| | - Huijie Dong
- Department of Cardiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China (mainland)
| | - Hua Cao
- Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China (mainland)
| | - Xiaofei Ji
- Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China (mainland)
| | - Siyu Luan
- Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China (mainland)
| | - Jing Liu
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China (mainland)
| |
Collapse
|
169
|
Huang WY, Jiang C, Ye HB, Jiao JT, Cheng C, Huang J, Liu J, Zhang R, Shao JF. miR-124 upregulates astrocytic glutamate transporter-1 via the Akt and mTOR signaling pathway post ischemic stroke. Brain Res Bull 2019; 149:231-239. [PMID: 31004734 DOI: 10.1016/j.brainresbull.2019.04.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 03/29/2019] [Accepted: 04/15/2019] [Indexed: 10/27/2022]
Abstract
High-concentration glutamic acid (Glu) induced by ischemic stroke can be inhibited by glutamate transporter-1 (GLT-1), which is the main mechanism for preventing excessive extracellular glutamate accumulation in the central nervous system. Upregulation of miR-124 could reduce the infarct area and promote the recovery of neurological function after ischemic stroke. A previous study investigated whether miR-124 could regulate GLT-1 expression in normal culture conditions. However, the role of miR-124 in the regulation of GLT-1 expression and further mechanisms after ischemic stroke remain unclear. In this study, the effects of miR-124 on GLT-1 expression in astrocytes after ischemic stroke were explored using an in vitro model of ischemic stroke (oxygen-glucose deprivation/reperfusion, OGD/reperfusion). The expression of GLT-1 was significantly decreased with lower expression of miR-124 in astrocytes injured by OGD/reperfusion. When miR-124 expression was improved, the expression of GLT-1 was notably increased in astrocytes injured by OGD/reperfusion. The results revealed that GLT-1 expression in astrocytes had a relationship with miR-124 after OGD/reperfusion. However, a direct interaction could not be confirmed with a luciferase reporter assay. Further results demonstrated that an inhibitor of Akt could decrease the increased protein expression of GLT-1 induced by miR-124 mimics, and an inhibitor of mTOR could increase the reduced protein expression of GLT-1 caused by a miR-124 inhibitor in astrocytes injured by different OGD/reperfusion conditions. These results indicated that miR-124 could regulate GLT-1 expression in astrocytes after OGD/reperfusion through the Akt and mTOR pathway.
Collapse
Affiliation(s)
- Wei-Yi Huang
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, People's Republic of China
| | - Chen Jiang
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, People's Republic of China
| | - Han-Bin Ye
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, People's Republic of China
| | - Jian-Tong Jiao
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, People's Republic of China
| | - Chao Cheng
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, People's Republic of China
| | - Jin Huang
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, People's Republic of China
| | - Jin Liu
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, People's Republic of China
| | - Rui Zhang
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, People's Republic of China
| | - Jun-Fei Shao
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, People's Republic of China.
| |
Collapse
|
170
|
Xu L, Cao H, Xie Y, Zhang Y, Du M, Xu X, Ye R, Liu X. Exosome-shuttled miR-92b-3p from ischemic preconditioned astrocytes protects neurons against oxygen and glucose deprivation. Brain Res 2019; 1717:66-73. [PMID: 30986407 DOI: 10.1016/j.brainres.2019.04.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/10/2019] [Accepted: 04/11/2019] [Indexed: 12/15/2022]
Abstract
Ischemic preconditioning (IPC) exerts protective effects against ischemic cerebral injury. In the present study, an in vitro model of cerebral ischemia (oxygen and glucose deprivation, OGD) was established to investigate the neuroprotective mechanism of IPC. We found that conditioned medium (C.M.) from astrocytes rather than neurons nor microglia cell line BV2 exerted neuroprotection. Moreover, exosomes derived from OGD preconditioned astrocytes can be taken up by neurons and attenuated OGD-induced neuron death and apoptosis. High-throughput microRNA (miRNA) sequencing revealed that miR-92b-3p levels in exosomes released from preconditioned astrocytes were increased. Overexpression of miR-92b-3p in neurons with miR-92b-3p mimic achieved the same protective effects as C.M. from astrocytes. Thus, we propose that the mechanism of IPC may associate with astrocytes, and that exosome-mediated miR-92b-3p shuttle from preconditioned astrocytes to neurons participate in these process.
Collapse
Affiliation(s)
- Lili Xu
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, China; Cerebrovascular Disease Center, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Hui Cao
- Cerebrovascular Disease Center, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yi Xie
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, China
| | - Yao Zhang
- Cerebrovascular Disease Center, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Mingyang Du
- Cerebrovascular Disease Center, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xiaohui Xu
- Cerebrovascular Disease Center, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Ruidong Ye
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, China.
| | - Xinfeng Liu
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
171
|
Lee S, Mankhong S, Kang JH. Extracellular Vesicle as a Source of Alzheimer's Biomarkers: Opportunities and Challenges. Int J Mol Sci 2019; 20:ijms20071728. [PMID: 30965555 PMCID: PMC6479979 DOI: 10.3390/ijms20071728] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 04/01/2019] [Accepted: 04/01/2019] [Indexed: 12/16/2022] Open
Abstract
Alzheimer’s disease (AD) is a chronic progressive neurodegenerative disease characterized by memory decline and cognitive dysfunction. Although the primary causes of AD are not clear, it is widely accepted that the accumulation of amyloid beta (Aβ) and consecutive hyper-phosphorylation of tau, synaptic loss, oxidative stress and neuronal death might play a vital role in AD pathogenesis. Recently, it has been widely suggested that extracellular vesicles (EVs), which are released from virtually all cell types, are a mediator in regulating AD pathogenesis. Clinical evidence for the diagnostic performance of EV-associated biomarkers, particularly exosome biomarkers in the blood, is also emerging. In this review, we briefly introduce the biological function of EVs in the central nervous system and discuss the roles of EVs in AD pathogenesis. In particular, the roles of EVs associated with autophagy and lysosomal degradation systems in AD proteinopathy and in disease propagation are discussed. Next, we summarize candidates for biochemical AD biomarkers in EVs, including proteins and miRNAs. The accumulating data brings hope that the application of EVs will be helpful for early diagnostics and the identification of new therapeutic targets for AD. However, at the same time, there are several challenges in developing valid EV biomarkers. We highlight considerations for the development of AD biomarkers from circulating EVs, which includes the standardization of pre-analytical sources of variability, yield and purity of isolated EVs and quantification of EV biomarkers. The development of valid EV AD biomarkers may be facilitated by collaboration between investigators and the industry.
Collapse
Affiliation(s)
- Seongju Lee
- Department of Anatomy, College of Medicine, Inha University, Incheon 22212, Korea.
- Hypoxia-related Disease Research Center, College of Medicine, Inha University, Incheon 22212, Korea.
| | - Sakulrat Mankhong
- Hypoxia-related Disease Research Center, College of Medicine, Inha University, Incheon 22212, Korea.
- Department of Pharmacology, College of Medicine, Inha University, Incheon 22212, Korea.
| | - Ju-Hee Kang
- Hypoxia-related Disease Research Center, College of Medicine, Inha University, Incheon 22212, Korea.
- Department of Pharmacology, College of Medicine, Inha University, Incheon 22212, Korea.
| |
Collapse
|
172
|
Zhang Y, Cai H, Chen S, Sun D, Zhang D, He Y. Exosomal transfer of miR-124 inhibits normal fibroblasts to cancer-associated fibroblasts transition by targeting sphingosine kinase 1 in ovarian cancer. J Cell Biochem 2019; 120:13187-13201. [PMID: 30957275 DOI: 10.1002/jcb.28593] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/21/2019] [Accepted: 01/24/2019] [Indexed: 01/22/2023]
Abstract
OBJECTIVE The interaction between tumor microenvironment and tumor cells plays a key role in tumor progression. However, the mechanisms by which this interaction promotes the transdifferentiation of normal fibroblasts (NFs) to cancer-associated fibroblasts (CAFs) are still unclear. The aim of this study was to investigate whether ovarian cancer (OvCa) cells-derived microRNAs were involved in the transition of resident fibroblasts to CAFs, and in promoting tumorigenesis. METHODS CAFs and NFs were isolated from the same ovarian site in OvCa and noncancerous prophylactic oophorectomy specimens. The effect of exosomes on the motility of CAFs or NFs was analyzed by wound healing and Transwell assays. The expression of CAFs marker α-smooth muscle actin (α-SMA) and fibroblast activated protein (FAP) were determined by quantitative real-time PCR and Western blotting. A luciferase reporter assay was used to test the interaction between miR-124 and sphingosine kinase 1 (SPHK1). RESULTS NFs with downregulated miR-124 displayed the characteristics of CAFs, including overexpression of α-SMA and FAP and increased migratory and invasive ability. Overexpression of miR-124 in CAFs reversed some traits of NFs. Human ovarian surface epithelial cells-secreted miR-124 could be transferred via exosomes to CAFs and resulted in decreased α-SMA and FAP expression and attenuated cell motility. Moreover, our finding showed that the expression of SPHK1, a potential target of miR-124, was significantly elevated in CAFs. CONCLUSIONS The present study provides important and novel perspective into OvCa CAF differentiation and extracellular matrix remodeling, which trigger the tumor progression.
Collapse
Affiliation(s)
- Yuyang Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Huihua Cai
- Department of Obstetrics and Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Siping Chen
- Department of Obstetrics and Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Donghua Sun
- Department of Obstetrics and Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Dongmei Zhang
- Department of Obstetrics and Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yuanli He
- Department of Obstetrics and Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
173
|
Delpech JC, Herron S, Botros MB, Ikezu T. Neuroimmune Crosstalk through Extracellular Vesicles in Health and Disease. Trends Neurosci 2019; 42:361-372. [PMID: 30926143 DOI: 10.1016/j.tins.2019.02.007] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 02/21/2019] [Accepted: 02/28/2019] [Indexed: 12/11/2022]
Abstract
The dynamics of CNS function rely upon omnidirectional communication among CNS cell types. Extracellular vesicles (EVs) have emerged as key mediators of this communication and are actively involved in response to CNS injury, mediating inflammatory response and inflammation-related neuroprotection as they display dual beneficial and detrimental roles. Neuroimmune interactions include communication between neurons and microglia, the resident macrophages within the CNS, and these interactions are a critical mediator of healthy brain functions, mounting an inflammatory response, and disease pathogenesis. This review aims to organize recent research highlighting the role of EVs in health and neurodegenerative disorders, with a specific focus on neuroimmune interactions between neurons and glia in Alzheimer's disease.
Collapse
Affiliation(s)
- Jean-Christophe Delpech
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA
| | - Shawn Herron
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA
| | - Mina B Botros
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA
| | - Tsuneya Ikezu
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA; Neurology, Boston University School of Medicine, Boston, MA 02118, USA.
| |
Collapse
|
174
|
Zheng M, Huang M, Ma X, Chen H, Gao X. Harnessing Exosomes for the Development of Brain Drug Delivery Systems. Bioconjug Chem 2019; 30:994-1005. [PMID: 30855944 DOI: 10.1021/acs.bioconjchem.9b00085] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Brain drug delivery is one of the most important bottlenecks in the development of drugs for the central nervous system. Cumulative evidence has emerged that extracellular vesicles (EVs) play a key role in intercellular communication. Exosomes, a subgroup of EVs, have received the most attention due to their capability in mediating the horizontal transfer of their bioactive inclusions to neighboring and distant cells, and thus specifically regulating the physiological and pathological functions of the recipient cells. This native and unique signaling mechanism confers exosomes with great potential to be developed into an effective, precise, and safe drug delivery system. Here, we provide an overview into the challenges of brain drug delivery and the function of exosomes in the brain under physiological and pathological conditions, and discuss how these natural vesicles could be harnessed for brain drug delivery and for the therapy of brain diseases.
Collapse
Affiliation(s)
- Mengna Zheng
- Department of Pharmacology and Chemical Biology , Shanghai Jiao Tong University School of Medicine , Shanghai 200025 , China
| | - Meng Huang
- Department of Pharmacology and Chemical Biology , Shanghai Jiao Tong University School of Medicine , Shanghai 200025 , China
| | - Xinyi Ma
- Department of Pharmacology and Chemical Biology , Shanghai Jiao Tong University School of Medicine , Shanghai 200025 , China
| | - Hongzhuan Chen
- Department of Pharmacology and Chemical Biology , Shanghai Jiao Tong University School of Medicine , Shanghai 200025 , China.,Shanghai Universities Collaborative Innovation Center for Translational Medicine , Shanghai 200025 , China
| | - Xiaoling Gao
- Department of Pharmacology and Chemical Biology , Shanghai Jiao Tong University School of Medicine , Shanghai 200025 , China.,Shanghai Universities Collaborative Innovation Center for Translational Medicine , Shanghai 200025 , China
| |
Collapse
|
175
|
Wu X, Meng X, Tan F, Jiao Z, Zhang X, Tong H, He X, Luo X, Xu P, Qu S. Regulatory Mechanism of miR-543-3p on GLT-1 in a Mouse Model of Parkinson's Disease. ACS Chem Neurosci 2019; 10:1791-1800. [PMID: 30676715 DOI: 10.1021/acschemneuro.8b00683] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Parkinson's disease (PD) features the degeneration and death of dopamine neurons in the substantia nigra pars compacta and the formation of Lewy bodies that contain α-synuclein. Among the numerous PD etiologies, glutamate excitotoxicity is a research hot spot, and glutamate transporters play key roles in this theory. It has been shown that the expression of the glutamate transporter is regulated by microRNAs. In this study, we found that the levels of expression and function of glutamate transporter type 1 (GLT-1) were significantly reduced and miR-543-3p was upregulated during the development of PD. Furthermore, our results indicated that GLT-1 plays an important role in the pathomechanism of PD. We found that miR-543-3p can suppress the expression and function of GLT-1 in MPP+-treated astrocytes and MPTP-treated mice. Inhibition of miR-543-3p can rescue the expression and function of GLT-1 and relieve dyskinesia in the PD model, which suggests that inhibition of miR-543-3p could serve as a potential therapeutic target for PD.
Collapse
Affiliation(s)
- Xiaojuan Wu
- Central Laboratory and Department of Neurology, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde Foshan), Foshan, 528300, Guangdong, China
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Xingjun Meng
- Central Laboratory and Department of Neurology, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde Foshan), Foshan, 528300, Guangdong, China
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Feng Tan
- Department of Neurology, Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, 528000, Guangdong, China
| | - Zhigang Jiao
- Central Laboratory and Department of Neurology, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde Foshan), Foshan, 528300, Guangdong, China
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Xiuping Zhang
- Teaching Center of Experimental Medicine, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Huichun Tong
- Central Laboratory and Department of Neurology, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde Foshan), Foshan, 528300, Guangdong, China
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Xiaoliang He
- Central Laboratory and Department of Neurology, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde Foshan), Foshan, 528300, Guangdong, China
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Xiaodong Luo
- Department of Encephalopathy, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Pingyi Xu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510030, Guangdong, China
| | - Shaogang Qu
- Central Laboratory and Department of Neurology, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde Foshan), Foshan, 528300, Guangdong, China
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, 510515, Guangdong, China
| |
Collapse
|
176
|
Atif H, Hicks SD. A Review of MicroRNA Biomarkers in Traumatic Brain Injury. J Exp Neurosci 2019; 13:1179069519832286. [PMID: 30886525 PMCID: PMC6410383 DOI: 10.1177/1179069519832286] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 01/29/2019] [Indexed: 12/13/2022] Open
Abstract
There is growing public concern surrounding traumatic brain injury (TBI). TBI can cause significant morbidity, and the long-term sequelae are poorly understood. TBI diagnosis and management rely on patient-reported symptoms and subjective clinical assessment. There are no biologic tools to detect mild TBI or to track brain recovery. Emerging evidence suggests that microRNAs (miRNAs) may provide information about the injured brain. These tiny epigenetic molecules are expressed throughout the body. However, they are particularly important in neurons, can cross the blood-brain barrier, and are securely transported from cell to cell, where they regulate gene expression. miRNA levels may identify patients with TBI and predict symptom duration. This review synthesizes miRNA findings from 14 human studies. We distill more than 291 miRNAs to 17 biomarker candidates that overlap across multiple studies and multiple biofluids. The goal of this review is to establish a collective understanding of miRNA biology in TBI and identify clinical priorities for future investigations of this promising biomarker.
Collapse
Affiliation(s)
| | - Steven D Hicks
- Department of Pediatrics, Penn State College of Medicine, Hershey, PA, USA
| |
Collapse
|
177
|
Zhou Y, Hu Y, Sun Q, Xie N. Non-coding RNA in Fragile X Syndrome and Converging Mechanisms Shared by Related Disorders. Front Genet 2019; 10:139. [PMID: 30881383 PMCID: PMC6405884 DOI: 10.3389/fgene.2019.00139] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 02/11/2019] [Indexed: 12/12/2022] Open
Abstract
Fragile X syndrome (FXS) is one of the most common forms of hereditary intellectual disability. It is also a well-known monogenic cause of autism spectrum disorders (ASD). Repetitive trinucleotide expansion of CGG repeats in the 5'-UTR of FMR1 is the pathological mutation. Full mutation CGG repeats epigenetically silence FMR1 and thus lead to the absence of its product, fragile mental retardation protein (FMRP), which is an indispensable translational regulator at synapsis. Loss of FMRP causes abnormal neural morphology, dysregulated protein translation, and distorted synaptic plasticity, giving rise to FXS phenotypes. Non-coding RNAs, including siRNA, miRNA, and lncRNA, are transcribed from DNA but not meant for protein translation. They are not junk sequence but play indispensable roles in diverse cellular processes. FXS is the first neurological disorder being linked to miRNA pathway dysfunction. Since then, insightful knowledge has been gained in this field. In this review, we mainly focus on how non-coding RNAs, especially the siRNAs, miRNAs, and lncRNAs, are involved in FXS pathogenesis. We would also like to discuss several potential mechanisms mediated by non-coding RNAs that may be shared by FXS and other related disorders.
Collapse
Affiliation(s)
- Yafang Zhou
- Department of Geriatric Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
| | - Yacen Hu
- Department of Geriatric Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
| | - Qiying Sun
- Department of Geriatric Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
| | - Nina Xie
- Department of Geriatric Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
| |
Collapse
|
178
|
Mathis S, Goizet C, Soulages A, Vallat JM, Masson GL. Genetics of amyotrophic lateral sclerosis: A review. J Neurol Sci 2019; 399:217-226. [PMID: 30870681 DOI: 10.1016/j.jns.2019.02.030] [Citation(s) in RCA: 162] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 02/01/2019] [Accepted: 02/20/2019] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder of the motor pathways, invariably leading to death within a few years of onset. Most cases of ALS are sporadic, but familial forms of the disease (FALS) constitute 10% of the cases. Since the first identification of a causative gene in the 1990s and with recent advances in genetics, more than twenty genes have now been linked to FALS. This increased number of genes led to a tremendous amount of research, clearly contributed to a better understanding of the pathophysiology of this disorder, and paved the way for the development of new therapeutics and new hope for this fatal disease.
Collapse
Affiliation(s)
- Stéphane Mathis
- Department of Neurology, Nerve-Muscle Unit, CHU Bordeaux, (Pellegrin Hospital), University of Bordeaux, F-33000 Bordeaux, France; ALS Center, Nerve-Muscle Unit, CHU Bordeaux, (Pellegrin Hospital), University of Bordeaux, F-33000 Bordeaux, France.
| | - Cyril Goizet
- Department of Medical Genetics, 'Centre de Référence Maladies Rares Neurogénétique', CHU Bordeaux (Pellegrin Hospital), University of Bordeaux, 33000 Bordeaux, France; Laboratoire MRGM, INSERM U1211, F-33000 Bordeaux, France
| | - Antoine Soulages
- Department of Neurology, Nerve-Muscle Unit, CHU Bordeaux, (Pellegrin Hospital), University of Bordeaux, F-33000 Bordeaux, France
| | - Jean-Michel Vallat
- Department of Neurology, 'Centre de référence neuropathies rares', 2 avenue Martin Luther King, F-87000 Limoges, France
| | - Gwendal Le Masson
- Department of Neurology, Nerve-Muscle Unit, CHU Bordeaux, (Pellegrin Hospital), University of Bordeaux, F-33000 Bordeaux, France; Neurocentre Magendie, 'Physiopathologie de la Plasticité Neuronale', University of Bordeaux, U862, F-33000 Bordeaux, France; INSERM, Neurocentre Magendie, 'Physiopathologie de la Plasticité Neuronale', U862, F-33000 Bordeaux, France
| |
Collapse
|
179
|
Malloci M, Perdomo L, Veerasamy M, Andriantsitohaina R, Simard G, Martínez MC. Extracellular Vesicles: Mechanisms in Human Health and Disease. Antioxid Redox Signal 2019; 30:813-856. [PMID: 29634347 DOI: 10.1089/ars.2017.7265] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SIGNIFICANCE Secreted extracellular vesicles (EVs) are now considered veritable entities for diagnosis, prognosis, and therapeutics. These structures are able to interact with target cells and modify their phenotype and function. Recent Advances: Since composition of EVs depends on the cell type of origin and the stimulation that leads to their release, the analysis of EV content remains an important input to understand the potential effects of EVs on target cells. CRITICAL ISSUES Here, we review recent data related to the mechanisms involved in the formation of EVs and the methods allowing specific EV isolation and identification. Also, we analyze the potential use of EVs as biomarkers in different pathologies such as diabetes, obesity, atherosclerosis, neurodegenerative diseases, and cancer. Besides, their role in these diseases is discussed. Finally, we consider EVs enriched in microRNA or drugs as potential therapeutic cargo able to deliver desirable information to target cells/tissues. FUTURE DIRECTIONS We underline the importance of the homogenization of the parameters of isolation of EVs and their characterization, which allow considering EVs as excellent biomarkers for diagnosis and prognosis.
Collapse
Affiliation(s)
- Marine Malloci
- 1 INSERM UMR 1063, Stress Oxydant et Pathologies Métaboliques, UNIV Angers, Université Bretagne Loire, Angers, France
| | - Liliana Perdomo
- 1 INSERM UMR 1063, Stress Oxydant et Pathologies Métaboliques, UNIV Angers, Université Bretagne Loire, Angers, France
| | - Maëva Veerasamy
- 1 INSERM UMR 1063, Stress Oxydant et Pathologies Métaboliques, UNIV Angers, Université Bretagne Loire, Angers, France
| | - Ramaroson Andriantsitohaina
- 1 INSERM UMR 1063, Stress Oxydant et Pathologies Métaboliques, UNIV Angers, Université Bretagne Loire, Angers, France.,2 Centre Hospitalo-Universitaire d'Angers, Angers, France
| | - Gilles Simard
- 1 INSERM UMR 1063, Stress Oxydant et Pathologies Métaboliques, UNIV Angers, Université Bretagne Loire, Angers, France.,2 Centre Hospitalo-Universitaire d'Angers, Angers, France
| | - M Carmen Martínez
- 1 INSERM UMR 1063, Stress Oxydant et Pathologies Métaboliques, UNIV Angers, Université Bretagne Loire, Angers, France.,2 Centre Hospitalo-Universitaire d'Angers, Angers, France
| |
Collapse
|
180
|
Ponnusamy V, Yip PK. The role of microRNAs in newborn brain development and hypoxic ischaemic encephalopathy. Neuropharmacology 2019; 149:55-65. [PMID: 30716413 DOI: 10.1016/j.neuropharm.2018.11.041] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 11/28/2018] [Accepted: 11/30/2018] [Indexed: 02/08/2023]
Abstract
Neonates can develop hypoxic-ischaemic encephalopathy (HIE) due to lack of blood supply or oxygen, resulting in a major cause of death and disability among term newborns. However, current definitive treatment of therapeutic hypothermia, will only benefit one out of nine babies. Furthermore, the mechanisms of HIE and therapeutic hypothermia are not fully understood. Recently, microRNAs (miRNAs) have become of interest to many researchers due to their important role in post-transcriptional control and deep evolutionary history. Despite this, role of miRNAs in newborns with HIE remains largely unknown due to limited research in this field. Therefore, this review aims to understand the role of miRNAs in normal brain development and HIE pathophysiology with reliance on extrapolated data from other diseases, ages and species due to current limited data. This will provide us with an overview of how miRNAs in normal brain development changes after HIE. Furthermore, it will indicate how miRNAs are affected specifically or globally by the various pathophysiological events. In addition, we discuss about how drugs and commercially available agents can specifically target certain miRNAs as a mechanism of action and potential safety issue with off-target effects. Improving our understanding of the role of miRNAs on the cellular response after HIE would enhance the success of effective diagnosis, prognosis, and treatment of newborns with HIE.
Collapse
Affiliation(s)
- Vennila Ponnusamy
- Centre of Genomics and Child Health, Blizard Institute, Barts and London School of Medicine and Dentistry, Queen Mary University of London, UK; Neonatal Intensive Care Unit, Ashford and St. Peter's Hospitals NHS Trust, Chertsey, UK.
| | - Ping K Yip
- Center of Neuroscience, Surgery and Trauma, Blizard Institute, Barts and London School of Medicine and Dentistry, Queen Mary University of London, UK.
| |
Collapse
|
181
|
The Role of miRNAs in Drosophila melanogaster Male Courtship Behavior. Genetics 2019; 211:925-942. [PMID: 30683757 DOI: 10.1534/genetics.118.301901] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 01/19/2019] [Indexed: 11/18/2022] Open
Abstract
Drosophila melanogaster courtship, although stereotypical, continually changes based on cues received from the courtship subject. Such adaptive responses are mediated via rapid and widespread transcriptomic reprogramming, a characteristic now widely attributed to microRNAs (miRNAs), along with other players. Here, we conducted a large-scale miRNA knockout screen to identify miRNAs that affect various parameters of male courtship behavior. Apart from identifying miRNAs that impact male-female courtship, we observed that miR-957 mutants performed significantly increased male-male courtship and "chaining" behavior, whereby groups of males court one another. We tested the effect of miR-957 reduction in specific neuronal cell clusters, identifying miR-957 activity in Doublesex (DSX)-expressing and mushroom body clusters as an important regulator of male-male courtship interactions. We further characterized the behavior of miR-957 mutants and found that these males court male subjects vigorously, but do not elicit courtship. Moreover, they fail to lower courtship efforts toward females with higher levels of antiaphrodisiac pheromones. At the level of individual pheromones, miR-957 males show a reduced inhibitory response to both 7-Tricosene (7-T) and cis-vaccenyl acetate, with the effect being more pronounced in the case of 7-T. Overall, our results indicate that a single miRNA can contribute to the regulation of complex behaviors, including detection or processing of chemicals that control important survival strategies such as chemical mate-guarding, and the maintenance of sex- and species-specific courtship barriers.
Collapse
|
182
|
Extracellular Vesicle-Mediated Cell⁻Cell Communication in the Nervous System: Focus on Neurological Diseases. Int J Mol Sci 2019; 20:ijms20020434. [PMID: 30669512 PMCID: PMC6359416 DOI: 10.3390/ijms20020434] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/12/2019] [Accepted: 01/17/2019] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs), including exosomes, are membranous particles released by cells into the extracellular space. They are involved in cell differentiation, tissue homeostasis, and organ remodelling in virtually all tissues, including the central nervous system (CNS). They are secreted by a range of cell types and via blood reaching other cells whose functioning they can modify because they transport and deliver active molecules, such as proteins of various types and functions, lipids, DNA, and miRNAs. Since they are relatively easy to isolate, exosomes can be characterized, and their composition elucidated and manipulated by bioengineering techniques. Consequently, exosomes appear as promising theranostics elements, applicable to accurately diagnosing pathological conditions, and assessing prognosis and response to treatment in a variety of disorders. Likewise, the characteristics and manageability of exosomes make them potential candidates for delivering selected molecules, e.g., therapeutic drugs, to specific target tissues. All these possible applications are pertinent to research in neurophysiology, as well as to the study of neurological disorders, including CNS tumors, and autoimmune and neurodegenerative diseases. In this brief review, we discuss what is known about the role and potential future applications of exosomes in the nervous system and its diseases, focusing on cell–cell communication in physiology and pathology.
Collapse
|
183
|
Abstract
Extracellular vesicles (EVs) have gained increasing attention as underexplored intercellular communication mechanisms in basic science and as potential diagnostic tools in translational studies, particularly those related to cancers and neurological disorders. This article summarizes accumulated findings in the basic biology of EVs, EV research methodology, and the roles of EVs in brain cell function and dysfunction, as well as emerging EV studies in human brain disorders. Further research on EVs in neurobiology and psychiatry may open the door to a better understanding of intercellular communications in healthy and diseased brains, and the discovery of novel biomarkers and new therapeutic strategies in psychiatric disorders.
Collapse
Affiliation(s)
- Shin-ichi Kano
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD,To whom correspondence should be addressed; Department of Psychiatry and Behavioral Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, US; tel: 410-955-6871, e-mail:
| | - Eisuke Dohi
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD
| | - Indigo V L Rose
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD
| |
Collapse
|
184
|
Jordan K, Murphy J, Singh A, Mitchell CS. Astrocyte-Mediated Neuromodulatory Regulation in Preclinical ALS: A Metadata Analysis. Front Cell Neurosci 2018; 12:491. [PMID: 30618638 PMCID: PMC6305074 DOI: 10.3389/fncel.2018.00491] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 11/29/2018] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease characterized by progressive degradation of motoneurons in the central nervous system (CNS). Astrocytes are key regulators for inflammation and neuromodulatory signaling, both of which contribute to ALS. The study goal was to ascertain potential temporal changes in astrocyte-mediated neuromodulatory regulation with transgenic ALS model progression: glutamate, GTL-1, GluR1, GluR2, GABA, ChAT activity, VGF, TNFα, aspartate, and IGF-1. We examine neuromodulatory changes in data aggregates from 42 peer-reviewed studies derived from transgenic ALS mixed cell cultures (neurons + astrocytes). For each corresponding experimental time point, the ratio of transgenic to wild type (WT) was found for each compound. ANOVA and a student's t-test were performed to compare disease stages (early, post-onset, and end stage). Glutamate in transgenic SOD1-G93A mixed cell cultures does not change over time (p > 0.05). GLT-1 levels were found to be decreased 23% over WT but only at end-stage (p < 0.05). Glutamate receptors (GluR1, GluR2) in SOD1-G93A were not substantially different from WT, although SOD1-G93A GluR1 decreased by 21% from post-onset to end-stage (p < 0.05). ChAT activity was insignificantly decreased. VGF is decreased throughout ALS (p < 0.05). Aspartate is elevated by 25% in SOD1-G93A but only during end-stage (p < 0.05). TNFα is increased by a dramatic 362% (p < 0.05). Furthermore, principal component analysis identified TNFα as contributing to 55% of the data variance in the first component. Thus, TNFα, which modulates astrocyte regulation via multiple pathways, could be a strategic treatment target. Overall results suggest changes in neuromodulator levels are subtle in SOD1-G93A ALS mixed cell cultures. If excitotoxicity is present as is often presumed, it could be due to ALS cells being more sensitive to small changes in neuromodulation. Hence, seemingly unsubstantial or oscillatory changes in neuromodulators could wreak havoc in ALS cells, resulting in failed microenvironment homeostasis whereby both hyperexcitability and hypoexcitability can coexist. Future work is needed to examine local, spatiotemporal neuromodulatory homeostasis and assess its functional impact in ALS.
Collapse
Affiliation(s)
- Kathleen Jordan
- Laboratory for Pathology Dynamics, Department of Biomedical Engineering, Georgia Institute of Technology, Emory University School of Medicine, Atlanta, GA, United States
| | - Joseph Murphy
- Laboratory for Pathology Dynamics, Department of Biomedical Engineering, Georgia Institute of Technology, Emory University School of Medicine, Atlanta, GA, United States
| | - Anjanya Singh
- Laboratory for Pathology Dynamics, Department of Biomedical Engineering, Georgia Institute of Technology, Emory University School of Medicine, Atlanta, GA, United States
- School of Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Cassie S. Mitchell
- Laboratory for Pathology Dynamics, Department of Biomedical Engineering, Georgia Institute of Technology, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
185
|
Vogel A, Upadhya R, Shetty AK. Neural stem cell derived extracellular vesicles: Attributes and prospects for treating neurodegenerative disorders. EBioMedicine 2018; 38:273-282. [PMID: 30472088 PMCID: PMC6306394 DOI: 10.1016/j.ebiom.2018.11.026] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/04/2018] [Accepted: 11/14/2018] [Indexed: 02/06/2023] Open
Abstract
Neural stem cell (NSC) grafting in conditions such as aging, brain injury, and neurodegenerative diseases promotes regeneration, plasticity and functional recovery. Recent studies have revealed that administration of NSC-derived extracellular vesicles (NSC-EVs) via non-invasive approaches can also afford therapeutic benefits. This review confers the properties and therapeutic promise of EVs secreted by NSCs. NSC-EVs enriched with specific miRNAs mediate multiple functions in physiological and pathological conditions, which include modulation of the proximate microenvironment, facilitating the entry of viruses into cells, functioning as independent metabolic units, operating as a microglial morphogen and influencing the diverse aspects of brain function in adulthood including the process of aging. Due to their anti-inflammatory, neurogenic and neurotrophic effects, NSC-EVs are also useful for treating multiple neurodegenerative diseases. Although only a few studies have demonstrated the efficacy of NSC-EVs to treat brain impairments, the promise is enormous. Moving forward, the use of well-characterized NSC-EVs generated in specific culture conditions and NSC-EVs that are engineered to carry the desired miRNAs, mRNAs and proteins have great promise for treating brain injury and neurogenerative diseases. Notably, the possibility of targeting NSC-EVs to specific neuronal types or brain regions would enable managing of diverse neurodegenerative conditions with minimal side effects.
Collapse
Affiliation(s)
- Andrew Vogel
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center College of Medicine, 1114 TAMU, 206 Olsen Boulevard, College Station, Texas, United States
| | - Raghavendra Upadhya
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center College of Medicine, 1114 TAMU, 206 Olsen Boulevard, College Station, Texas, United States; Olin E. Teague Veterans' Medical Center, Central Texas Veterans Health Care System, Temple, TX, United States
| | - Ashok K Shetty
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center College of Medicine, 1114 TAMU, 206 Olsen Boulevard, College Station, Texas, United States; Olin E. Teague Veterans' Medical Center, Central Texas Veterans Health Care System, Temple, TX, United States.
| |
Collapse
|
186
|
Exosomes: natural nanoparticles as bio shuttles for RNAi delivery. J Control Release 2018; 289:158-170. [DOI: 10.1016/j.jconrel.2018.10.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/30/2018] [Accepted: 10/01/2018] [Indexed: 12/18/2022]
|
187
|
Yousafzai NA, Wang H, Wang Z, Zhu Y, Zhu L, Jin H, Wang X. Exosome mediated multidrug resistance in cancer. Am J Cancer Res 2018; 8:2210-2226. [PMID: 30555739 PMCID: PMC6291647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 10/08/2018] [Indexed: 06/09/2023] Open
Abstract
Extracellular vesicles (EVs), named as exosomes, were recently found to play important roles in cell-cell communication by transducing various biochemical and genetic information. Exosomes, secreted from either tumor cells or stromal cells including immune cells, can eventually remodel tumor environment to promote tumor progression such as metastasis and multidrug resistance (MDR). Therefore, the detection or targeting of biochemical and genetic cargos like proteins, lipids, metabolites and various types of RNAs or DNAs are believed to be valuable for the diagnosis and treatment of human cancer. In this review, we will summarize recent progresses in the research of exosomes especially its biological and clinical relevance to MDR. By doing so, we hope it could be valuable for the prevention, detection and intervention of MDR which is one of the major challenges for the clinical management of human cancers.
Collapse
Affiliation(s)
- Neelum Aziz Yousafzai
- Department of Medical Oncology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang UniversityHangzhou, China
| | - Hanying Wang
- Department of Medical Oncology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang UniversityHangzhou, China
| | - Zhuo Wang
- Department of Medical Oncology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang UniversityHangzhou, China
| | - Yiran Zhu
- Labortory of Cancer Biology, Sir Run Run Shaw Hospital, Medical School of Zhejiang UniversityHangzhou, China
| | - Liyuan Zhu
- Labortory of Cancer Biology, Sir Run Run Shaw Hospital, Medical School of Zhejiang UniversityHangzhou, China
| | - Hongchuan Jin
- Labortory of Cancer Biology, Sir Run Run Shaw Hospital, Medical School of Zhejiang UniversityHangzhou, China
| | - Xian Wang
- Department of Medical Oncology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang UniversityHangzhou, China
| |
Collapse
|
188
|
Izadpanah M, Seddigh A, Ebrahimi Barough S, Fazeli SAS, Ai J. Potential of Extracellular Vesicles in Neurodegenerative Diseases: Diagnostic and Therapeutic Indications. J Mol Neurosci 2018; 66:172-179. [PMID: 30140997 DOI: 10.1007/s12031-018-1135-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 07/20/2018] [Indexed: 01/09/2023]
Abstract
Extracellular vesicles (EVs) are membrane-bound vesicles, including exosomes and microvesicles. EVs are nanometer sized, found in physiological fluids such as urine, blood, cerebro-spinal fluid (CSF), with a capacity of transferring various biological materials such as microRNAs, proteins, and lipids among cells without direct cell-to-cell contact. Many cells in the nervous system have been shown to release EVs. These vesicles are involved in intercellular communication and a variety of biological processes such as modulation of immune response, signal transduction, and transport of genetic materials with low immunogenicity; therefore, they have also been recently investigated for the delivery of therapeutic molecules such as siRNAs and drugs in the treatment of diseases. In addition, since EV components reflect the physiological status of the cells and tissues producing them, they can be utilized as biomarkers for early detection of various diseases. In this review, we summarize EV application, in diagnosis as biomarker sources and as a carrier tool for drug delivery in EV-based therapies in neurodegenerative diseases.
Collapse
Affiliation(s)
- Mehrnaz Izadpanah
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, P. O. Box: 1417755469, Tehran, Iran.,Human and Animal Cell Bank, Iranian Biological Resource Center (IBRC), ACECR, Tehran, Iran
| | - Arshia Seddigh
- Department of Neurology, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Trust, London, UK
| | - Somayeh Ebrahimi Barough
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, P. O. Box: 1417755469, Tehran, Iran
| | - Seyed Abolhassan Shahzadeh Fazeli
- Human and Animal Cell Bank, Iranian Biological Resource Center (IBRC), ACECR, Tehran, Iran.,Department of Molecular and Cellular Biology, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
| | - Jafar Ai
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, P. O. Box: 1417755469, Tehran, Iran.
| |
Collapse
|
189
|
Kaidonis G, Rao AN, Ouyang YB, Stary CM. Elucidating sex differences in response to cerebral ischemia: immunoregulatory mechanisms and the role of microRNAs. Prog Neurobiol 2018; 176:73-85. [PMID: 30121237 DOI: 10.1016/j.pneurobio.2018.08.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 06/04/2018] [Accepted: 08/05/2018] [Indexed: 12/17/2022]
Abstract
Cerebral ischemia remains a major cause of death and disability worldwide, yet therapeutic options remain limited. Differences in sex and age play an important role in the final outcome in response to cerebral ischemia in both experimental and clinical studies: males have a higher risk and worse outcome than females at younger ages and this trend reverses in older ages. Although the molecular mechanisms underlying sex dimorphism are complex and are still not well understood, studies suggest steroid hormones, sex chromosomes, differential cell death and immune pathways, and sex-specific microRNAs may contribute to the outcome following cerebral ischemia. This review focuses on differential effects between males and females on cell death and immunological pathways in response to cerebral ischemia, the central role of innate sex differences in steroid hormone signaling, and upstreamregulation of sexually dimorphic gene expression by microRNAs.
Collapse
Affiliation(s)
- Georgia Kaidonis
- Stanford University School of Medicine, Department of Anesthesiology, Perioperative & Pain Medicine, United States; Stanford University School of Medicine, Department of Ophthalmology, United States
| | - Anand N Rao
- Stanford University School of Medicine, Department of Anesthesiology, Perioperative & Pain Medicine, United States
| | - Yi-Bing Ouyang
- Stanford University School of Medicine, Department of Anesthesiology, Perioperative & Pain Medicine, United States
| | - Creed M Stary
- Stanford University School of Medicine, Department of Anesthesiology, Perioperative & Pain Medicine, United States.
| |
Collapse
|
190
|
Chen WX, Cheng L, Pan M, Qian Q, Zhu YL, Xu LY, Ding Q. D Rhamnose β-Hederin against human breast cancer by reducing tumor-derived exosomes. Oncol Lett 2018; 16:5172-5178. [PMID: 30250584 PMCID: PMC6144302 DOI: 10.3892/ol.2018.9254] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 07/05/2018] [Indexed: 12/17/2022] Open
Abstract
D Rhamnose β-hederin (DRβ-H), a novel oleanane-type triterpenoid saponin isolated from the traditional Chinese medicinal plant Clematis ganpiniana, has been demonstrated to be effective against various types of tumor. However, the exact role of DRβ-H on breast cancer remains largely unresolved. In the present study, it was observed that DRβ-H exhibited anti-proliferative and pro-apoptotic activity in human breast cancer cells (MCF-7/S). DRβ-H was able to inhibit exosome secretion, and the level of exosomes was positively associated with cell growth after absorption and internalization by target breast cancer cells. By analyzing the miRNA profiles of exosomes and MCF-7/S, it was identified that several miRNAs were detected exclusively in exosomes. Knockdown of the top five exosomal miRNAs and an MCF-7/S proliferation assay indicated that exosomal miR-130a and miR-425 may enhance MCF-7/S cell viability. Target gene prediction and pathway analysis revealed the involvement of miR-130a and miR-425 in pathways associated with malignant cell proliferation. These results demonstrated that DRβ-H inhibited MCF-7/S cell growth through reducing exosome release.
Collapse
Affiliation(s)
- Wei-Xian Chen
- Department of Breast Surgery, The Affiliated Changzhou No. 2 People's Hospital with Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China.,Department of Post-doctoral Working Station, Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Lin Cheng
- Department of Breast Surgery, The Affiliated Changzhou No. 2 People's Hospital with Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
| | - Meng Pan
- Department of Pediatrics, The Affiliated Changzhou No. 1 People's Hospital with Suzhou University, Changzhou, Jiangsu 213000, P.R. China
| | - Qi Qian
- Department of Breast Surgery, The Affiliated Changzhou No. 2 People's Hospital with Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
| | - Yu-Lan Zhu
- Department of Breast Surgery, The Affiliated Changzhou No. 2 People's Hospital with Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
| | - Ling-Yun Xu
- Department of Breast Surgery, The Affiliated Changzhou No. 2 People's Hospital with Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
| | - Qiang Ding
- Department of Breast Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| |
Collapse
|
191
|
Schneider R, McKeever P, Kim T, Graff C, van Swieten JC, Karydas A, Boxer A, Rosen H, Miller BL, Laforce R, Galimberti D, Masellis M, Borroni B, Zhang Z, Zinman L, Rohrer JD, Tartaglia MC, Robertson J. Downregulation of exosomal miR-204-5p and miR-632 as a biomarker for FTD: a GENFI study. J Neurol Neurosurg Psychiatry 2018; 89:851-858. [PMID: 29434051 PMCID: PMC6045452 DOI: 10.1136/jnnp-2017-317492] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 12/20/2017] [Accepted: 01/14/2018] [Indexed: 01/01/2023]
Abstract
OBJECTIVE To determine whether exosomal microRNAs (miRNAs) in cerebrospinal fluid (CSF) of patients with frontotemporal dementia (FTD) can serve as diagnostic biomarkers, we assessed miRNA expression in the Genetic Frontotemporal Dementia Initiative (GENFI) cohort and in sporadic FTD. METHODS GENFI participants were either carriers of a pathogenic mutation in progranulin, chromosome 9 open reading frame 72 or microtubule-associated protein tau or were at risk of carrying a mutation because a first-degree relative was a known symptomatic mutation carrier. Exosomes were isolated from CSF of 23 presymptomatic and 15 symptomatic mutation carriers and 11 healthy non-mutation carriers. Expression of 752 miRNAs was measured using quantitative PCR (qPCR) arrays and validated by qPCR using individual primers. MiRNAs found differentially expressed in symptomatic compared with presymptomatic mutation carriers were further evaluated in a cohort of 17 patients with sporadic FTD, 13 patients with sporadic Alzheimer's disease (AD) and 10 healthy controls (HCs) of similar age. RESULTS In the GENFI cohort, miR-204-5p and miR-632 were significantly decreased in symptomatic compared with presymptomatic mutation carriers. Decrease of miR-204-5p and miR-632 revealed receiver operator characteristics with an area of 0.89 (90% CI 0.79 to 0.98) and 0.81 (90% CI 0.68 to 0.93), respectively, and when combined an area of 0.93 (90% CI 0.87 to 0.99). In sporadic FTD, only miR-632 was significantly decreased compared with AD and HCs. Decrease of miR-632 revealed an area of 0.90 (90% CI 0.81 to 0.98). CONCLUSIONS Exosomal miR-204-5p and miR-632 have potential as diagnostic biomarkers for genetic FTD and miR-632 also for sporadic FTD.
Collapse
Affiliation(s)
- Raphael Schneider
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Paul McKeever
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - TaeHyung Kim
- Department of Computer Science, University of Toronto, Toronto, Ontario, Canada.,The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Caroline Graff
- Department of Neurobiology, Karolinska Institute, Stockholm, Sweden
| | | | - Anna Karydas
- Department of Neurology, University of California, San Francisco, California, USA
| | - Adam Boxer
- Department of Neurology, University of California, San Francisco, California, USA
| | - Howie Rosen
- Department of Neurology, University of California, San Francisco, California, USA
| | - Bruce L Miller
- Department of Neurology, University of California, San Francisco, California, USA
| | - Robert Laforce
- Département des Sciences Neurologiques, Université Laval, Quebec, Canada
| | - Daniela Galimberti
- Centro Dino Ferrari, Fondazione Ca' Granda IRCCS Ospedale Policlinico, University of Milan, Milan, Italy
| | - Mario Masellis
- LC Campbell Cognitive Neurology Research Unit, University of Toronto, Toronto, Ontario, Canada.,Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Barbara Borroni
- Neurology Unit, Centre for Ageing Brain and Neurodegenerative Disorders, University of Brescia, Brescia, Italy
| | - Zhaolei Zhang
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Lorne Zinman
- Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | | | - Maria Carmela Tartaglia
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada.,Memory Clinic, University Health Network, Toronto, Ontario, Canada
| | - Janice Robertson
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
192
|
Nooshabadi VT, Mardpour S, Yousefi-Ahmadipour A, Allahverdi A, Izadpanah M, Daneshimehr F, Ai J, Banafshe HR, Ebrahimi-Barough S. The extracellular vesicles-derived from mesenchymal stromal cells: A new therapeutic option in regenerative medicine. J Cell Biochem 2018; 119:8048-8073. [PMID: 29377241 DOI: 10.1002/jcb.26726] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 01/24/2018] [Indexed: 12/12/2022]
Abstract
Mesenchymal stem cells (MSCs) are adult multipotent cells that due to their ability to homing to damaged tissues and differentiate into specialized cells, are remarkable cells in the field of regenerative medicine. It's suggested that the predominant mechanism of MSCs in tissue repair might be related to their paracrine activity. The utilization of MSCs for tissue repair is initially based on the differentiation ability of these cells; however now it has been revealed that only a small fraction of the transplanted MSCs actually fuse and survive in host tissues. Indeed, MSCs supply the microenvironment with the secretion of soluble trophic factors, survival signals and the release of extracellular vesicles (EVs) such as exosome. Also, the paracrine activity of EVs could mediate the cellular communication to induce cell-differentiation/self-renewal. Recent findings suggest that EVs released by MSCs may also be critical in the physiological function of these cells. This review provides an overview of MSC-derived extracellular vesicles as a hopeful opportunity to advance novel cell-free therapy strategies that might prevail over the obstacles and risks associated with the use of native or engineered stem cells. EVs are very stable; they can pass the biological barriers without rejection and can shuttle bioactive molecules from one cell to another, causing the exchange of genetic information and reprogramming of the recipient cells. Moreover, extracellular vesicles may provide therapeutic cargo for a wide range of diseases and cancer therapy.
Collapse
Affiliation(s)
| | - Soura Mardpour
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Aliakbar Yousefi-Ahmadipour
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Allahverdi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrnaz Izadpanah
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Daneshimehr
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Jafar Ai
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid R Banafshe
- Department of Applied Cell Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Somayeh Ebrahimi-Barough
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
193
|
Leighton LJ, Bredy TW. Functional Interplay between Small Non-Coding RNAs and RNA Modification in the Brain. Noncoding RNA 2018; 4:E15. [PMID: 29880782 PMCID: PMC6027130 DOI: 10.3390/ncrna4020015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/23/2018] [Accepted: 05/30/2018] [Indexed: 12/11/2022] Open
Abstract
Small non-coding RNAs are essential for transcription, translation and gene regulation in all cell types, but are particularly important in neurons, with known roles in neurodevelopment, neuroplasticity and neurological disease. Many small non-coding RNAs are directly involved in the post-transcriptional modification of other RNA species, while others are themselves substrates for modification, or are functionally modulated by modification of their target RNAs. In this review, we explore the known and potential functions of several distinct classes of small non-coding RNAs in the mammalian brain, focusing on the newly recognised interplay between the epitranscriptome and the activity of small RNAs. We discuss the potential for this relationship to influence the spatial and temporal dynamics of gene activation in the brain, and predict that further research in the field of epitranscriptomics will identify interactions between small RNAs and RNA modifications which are essential for higher order brain functions such as learning and memory.
Collapse
Affiliation(s)
- Laura J Leighton
- Cognitive Neuroepigenetics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Timothy W Bredy
- Cognitive Neuroepigenetics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
194
|
Blandford SN, Galloway DA, Moore CS. The roles of extracellular vesicle microRNAs in the central nervous system. Glia 2018; 66:2267-2278. [PMID: 29726599 DOI: 10.1002/glia.23445] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 04/06/2018] [Accepted: 04/06/2018] [Indexed: 01/08/2023]
Abstract
MicroRNAs (miRNAs) are small, highly conserved non-coding RNA molecules that post-transcriptionally regulate protein expression and most biological processes. Mature miRNAs are recruited to the RNA-induced silencing complex (RISC) and target mRNAs via complementary base-pairing, thus resulting in translational inhibition and/or transcript degradation. Here, we present evidence implicating miRNAs within extracellular vesicles (EVs), including microvesicles and exosomes, as mediators of central nervous system (CNS) development, homeostasis, and injury. EVs are extracellular vesicles that are secreted by all cells and represent a novel method of intercellular communication. In glial cells, the transfer of miRNAs via EVs can alter the function of recipient cells and significantly impacts cellular mechanisms involved in both injury and repair. This review discusses the value of information to be gained by studying miRNAs within EVs in the context of CNS diseases and their potential use in the development of novel disease biomarkers and therapeutic strategies.
Collapse
Affiliation(s)
| | - Dylan A Galloway
- Memorial University of Newfoundland, St John's, Newfoundland, Canada
| | - Craig S Moore
- Memorial University of Newfoundland, St John's, Newfoundland, Canada
| |
Collapse
|
195
|
Kinoshita C, Aoyama K, Nakaki T. Neuroprotection afforded by circadian regulation of intracellular glutathione levels: A key role for miRNAs. Free Radic Biol Med 2018; 119:17-33. [PMID: 29198727 DOI: 10.1016/j.freeradbiomed.2017.11.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 11/21/2017] [Accepted: 11/27/2017] [Indexed: 01/17/2023]
Abstract
Circadian rhythms are approximately 24-h oscillations of physiological and behavioral processes that allow us to adapt to daily environmental cycles. Like many other biological functions, cellular redox status and antioxidative defense systems display circadian rhythmicity. In the central nervous system (CNS), glutathione (GSH) is a critical antioxidant because the CNS is extremely vulnerable to oxidative stress; oxidative stress, in turn, causes several fatal diseases, including neurodegenerative diseases. It has long been known that GSH level shows circadian rhythm, although the mechanism underlying GSH rhythm production has not been well-studied. Several lines of recent evidence indicate that the expression of antioxidant genes involved in GSH homeostasis as well as circadian clock genes are regulated by post-transcriptional regulator microRNA (miRNA), indicating that miRNA plays a key role in generating GSH rhythm. Interestingly, several reports have shown that alterations of miRNA expression as well as circadian rhythm have been known to link with various diseases related to oxidative stress. A growing body of evidence implicates a strong correlation between antioxidative defense, circadian rhythm and miRNA function, therefore, their dysfunctions could cause numerous diseases. It is hoped that continued elucidation of the antioxidative defense systems controlled by novel miRNA regulation under circadian control will advance the development of therapeutics for the diseases caused by oxidative stress.
Collapse
Affiliation(s)
- Chisato Kinoshita
- Department of Pharmacology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Koji Aoyama
- Department of Pharmacology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Toshio Nakaki
- Department of Pharmacology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan.
| |
Collapse
|
196
|
Vrabec K, Boštjančič E, Koritnik B, Leonardis L, Dolenc Grošelj L, Zidar J, Rogelj B, Glavač D, Ravnik-Glavač M. Differential Expression of Several miRNAs and the Host Genes AATK and DNM2 in Leukocytes of Sporadic ALS Patients. Front Mol Neurosci 2018; 11:106. [PMID: 29670510 PMCID: PMC5893848 DOI: 10.3389/fnmol.2018.00106] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 03/19/2018] [Indexed: 12/12/2022] Open
Abstract
Genetic studies have managed to explain many cases of familial amyotrophic lateral sclerosis (ALS) through mutations in several genes. However, the cause of a majority of sporadic cases remains unknown. Recently, epigenetics, especially miRNA studies, show some promising aspects. We aimed to evaluate the differential expression of 10 miRNAs, including miR-9, miR-338, miR-638, miR-663a, miR-124a, miR-143, miR-451a, miR-132, miR-206, and let-7b, for which some connection to ALS was shown previously in ALS culture cells, animal models or patients, and in three miRNA host genes, including C1orf61 (miR-9), AATK (miR-338), and DNM2 (miR-638), in leukocyte samples of 84 patients with sporadic ALS. We observed significant aberrant dysregulation across our patient cohort for miR-124a, miR-206, miR-9, let-7b, and miR-638. Since we did not use neurological controls we cannot rule out that the revealed differences in expression of investigated miRNAs are specific for ALS. Nevertheless, the group of these five miRNAs is worth of additional research in leukocytes of larger cohorts from different populations in order to verify their potential association to ALS disease. We also detected a significant up-regulation of the AAKT gene and down-regulation of the DNM2 gene, and thus, for the first time, we connected these with sporadic ALS cases. These findings open up new research toward miRNAs as diagnostic biomarkers and epigenetic processes involved in ALS. The detected significant deregulation of AAKT and DNM2 in sporadic ALS also represents an interesting finding. The DNM2 gene was previously found to be mutated in Charcot-Marie-Tooth neuropathy-type CMT2M and centronuclear myopathy (CNM). In addition, as recent studies connected AATK and frontotemporal dementia (FTD) and DNM2 and hereditary spastic paraplegia (HSP), these two genes together with our results genetically connect, at least in part, five diseases, including FTD, HSP, Charcot-Marie-Tooth (type CMT2M), CNM, and ALS, thus opening future research toward a better understanding of the cell biology involved in these partly overlapping pathologies.
Collapse
Affiliation(s)
- Katarina Vrabec
- Department of Molecular Genetics, Faculty of Medicine, Institute of Pathology, University of Ljubljana, Ljubljana, Slovenia
| | - Emanuela Boštjančič
- Department of Molecular Genetics, Faculty of Medicine, Institute of Pathology, University of Ljubljana, Ljubljana, Slovenia
| | - Blaž Koritnik
- Division of Neurology, Institute of Clinical Neurophysiology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Lea Leonardis
- Division of Neurology, Institute of Clinical Neurophysiology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Leja Dolenc Grošelj
- Division of Neurology, Institute of Clinical Neurophysiology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Janez Zidar
- Division of Neurology, Institute of Clinical Neurophysiology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Boris Rogelj
- Department of Biotechnology, Jožef Štefan Institute, Ljubljana, Slovenia.,Biomedical Research Institute, Ljubljana, Slovenia
| | - Damjan Glavač
- Department of Molecular Genetics, Faculty of Medicine, Institute of Pathology, University of Ljubljana, Ljubljana, Slovenia
| | - Metka Ravnik-Glavač
- Department of Molecular Genetics, Faculty of Medicine, Institute of Pathology, University of Ljubljana, Ljubljana, Slovenia.,Faculty of Medicine, Institute of Biochemistry, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
197
|
Li G, Morris-Blanco KC, Lopez MS, Yang T, Zhao H, Vemuganti R, Luo Y. Impact of microRNAs on ischemic stroke: From pre- to post-disease. Prog Neurobiol 2018; 163-164:59-78. [DOI: 10.1016/j.pneurobio.2017.08.002] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 06/12/2017] [Accepted: 08/16/2017] [Indexed: 12/21/2022]
|
198
|
Holm MM, Kaiser J, Schwab ME. Extracellular Vesicles: Multimodal Envoys in Neural Maintenance and Repair. Trends Neurosci 2018; 41:360-372. [PMID: 29605090 DOI: 10.1016/j.tins.2018.03.006] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/23/2018] [Accepted: 03/07/2018] [Indexed: 12/16/2022]
Abstract
The physiology of the central nervous system (CNS) is built on a foundation of connection, integration, and the exchange of complex information among brain cells. Emerging evidence indicates that extracellular vesicles (EVs) are key players in the intercellular communication that underlies physiological processes such as synaptic plasticity and the maintenance of myelination. Furthermore, upon injury to the CNS, EVs may propagate inflammation across the blood-brain barrier and beyond, and also appear to mediate neuroprotection and modulate regenerative processes. In neurodegenerative diseases, EVs may play roles in the formation, spreading, and clearance of toxic protein aggregates. Here, we discuss the physiological roles of EVs in the healthy and the diseased CNS, with a focus on recent findings and emerging concepts.
Collapse
Affiliation(s)
- Mea M Holm
- Brain Research Institute, University of Zurich, Zurich, Switzerland; Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.
| | - Julia Kaiser
- Brain Research Institute, University of Zurich, Zurich, Switzerland; Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Martin E Schwab
- Brain Research Institute, University of Zurich, Zurich, Switzerland; Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
199
|
Hobor F, Dallmann A, Ball NJ, Cicchini C, Battistelli C, Ogrodowicz RW, Christodoulou E, Martin SR, Castello A, Tripodi M, Taylor IA, Ramos A. A cryptic RNA-binding domain mediates Syncrip recognition and exosomal partitioning of miRNA targets. Nat Commun 2018; 9:831. [PMID: 29483512 PMCID: PMC5827114 DOI: 10.1038/s41467-018-03182-3] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 01/25/2018] [Indexed: 01/18/2023] Open
Abstract
Exosomal miRNA transfer is a mechanism for cell-cell communication that is important in the immune response, in the functioning of the nervous system and in cancer. Syncrip/hnRNPQ is a highly conserved RNA-binding protein that mediates the exosomal partition of a set of miRNAs. Here, we report that Syncrip's amino-terminal domain, which was previously thought to mediate protein-protein interactions, is a cryptic, conserved and sequence-specific RNA-binding domain, designated NURR (N-terminal unit for RNA recognition). The NURR domain mediates the specific recognition of a short hEXO sequence defining Syncrip exosomal miRNA targets, and is coupled by a non-canonical structural element to Syncrip's RRM domains to achieve high-affinity miRNA binding. As a consequence, Syncrip-mediated selection of the target miRNAs implies both recognition of the hEXO sequence by the NURR domain and binding of the RRM domains 5' to this sequence. This structural arrangement enables Syncrip-mediated selection of miRNAs with different seed sequences.
Collapse
Affiliation(s)
- Fruzsina Hobor
- Research Department of Structural and Molecular Biology, University College London, Darwin Building, Gower Street, London, WC1E 6XA, UK
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Andre Dallmann
- Research Department of Structural and Molecular Biology, University College London, Darwin Building, Gower Street, London, WC1E 6XA, UK
- Department of Chemistry, Humboldt Universität zu Berlin, Brook-Taylor-Street 2, 12489, Berlin, Germany
| | - Neil J Ball
- Macromolecular Structure Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Carla Cicchini
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Cellular Biotechnologies and Haematology, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Cecilia Battistelli
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Cellular Biotechnologies and Haematology, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Roksana W Ogrodowicz
- Structural Biology Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Evangelos Christodoulou
- Structural Biology Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Stephen R Martin
- Structural Biology Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Alfredo Castello
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Marco Tripodi
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Cellular Biotechnologies and Haematology, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Ian A Taylor
- Macromolecular Structure Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
| | - Andres Ramos
- Research Department of Structural and Molecular Biology, University College London, Darwin Building, Gower Street, London, WC1E 6XA, UK.
| |
Collapse
|
200
|
Yoshimura A, Adachi N, Matsuno H, Kawamata M, Yoshioka Y, Kikuchi H, Odaka H, Numakawa T, Kunugi H, Ochiya T, Tamai Y. The Sox2 promoter-driven CD63-GFP transgenic rat model allows tracking of neural stem cell-derived extracellular vesicles. Dis Model Mech 2018; 11:dmm.028779. [PMID: 29208635 PMCID: PMC5818070 DOI: 10.1242/dmm.028779] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 11/15/2017] [Indexed: 12/19/2022] Open
Abstract
Extracellular vesicles (EVs) can modulate microenvironments by transferring biomolecules, including RNAs and proteins derived from releasing cells, to target cells. To understand the molecular mechanisms maintaining the neural stem cell (NSC) niche through EVs, a new transgenic (Tg) rat strain that can release human CD63-GFP-expressing EVs from the NSCs was established. Human CD63-GFP expression was controlled under the rat Sox2 promoter (Sox2/human CD63-GFP), and it was expressed in undifferentiated fetal brains. GFP signals were specifically observed in in vitro cultured NSCs obtained from embryonic brains of the Tg rats. We also demonstrated that embryonic NSC (eNSC)-derived EVs were labelled by human CD63-GFP. Furthermore, when we examined the transfer of EVs, eNSC-derived EVs were found to be incorporated into astrocytes and eNSCs, thus implying an EV-mediated communication between different cell types around NSCs. This new Sox2/human CD63-GFP Tg rat strain should provide resources to analyse the cell-to-cell communication via EVs in NSC microenvironments.
Collapse
Affiliation(s)
- Aya Yoshimura
- Division of Laboratory Animals Resources, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan.,Department of Mental Disorder Research, National Institute of Neuroscience, NCNP, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan.,Education and Research Facility of Animal Models for Human Diseases, Center for Research Promotion and Support, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Naoki Adachi
- Department of Mental Disorder Research, National Institute of Neuroscience, NCNP, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan.,Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Hitomi Matsuno
- Department of Mental Disorder Research, National Institute of Neuroscience, NCNP, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan
| | - Masaki Kawamata
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute (NCC), 1-1 Tsukiji 5-chome, Chuo-ku, Tokyo 104-0045, Japan
| | - Yusuke Yoshioka
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute (NCC), 1-1 Tsukiji 5-chome, Chuo-ku, Tokyo 104-0045, Japan
| | - Hisae Kikuchi
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, NCNP, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan
| | - Haruki Odaka
- Department of Mental Disorder Research, National Institute of Neuroscience, NCNP, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan.,Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan.,Department of Cell Modulation, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Tadahiro Numakawa
- Department of Mental Disorder Research, National Institute of Neuroscience, NCNP, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan.,Department of Cell Modulation, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Hiroshi Kunugi
- Department of Mental Disorder Research, National Institute of Neuroscience, NCNP, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute (NCC), 1-1 Tsukiji 5-chome, Chuo-ku, Tokyo 104-0045, Japan
| | - Yoshitaka Tamai
- Division of Laboratory Animals Resources, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan.,Chromocenter Inc., 6-7-4 Minatojima-minami, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|