151
|
Hao L, Wang JM, Liu BQ, Yan J, Li C, Jiang JY, Zhao FY, Qiao HY, Wang HQ. m6A-YTHDF1-mediated TRIM29 upregulation facilitates the stem cell-like phenotype of cisplatin-resistant ovarian cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118878. [PMID: 33011193 DOI: 10.1016/j.bbamcr.2020.118878] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/05/2020] [Accepted: 09/24/2020] [Indexed: 02/07/2023]
Abstract
Ovarian cancer is the deadliest gynaecologic malignancy, and the five-year survival rate of patients is less than 35% worldwide. Cancer stem cells (CSCs) are a population of cells with stem-like characteristics that are thought to cause chemoresistance and recurrence. TRIM29 is aberrantly expressed in various cancers and associated with cancer development and progression. Previous studies showed that the upregulation of TRIM29 expression in pancreatic cancer is related to stem-like characteristics. However, the role of TRIM29 in ovarian cancer is poorly understood. In this study, we found that TRIM29 expression was increased at the translational level in both the cisplatin-resistant ovarian cancer cells and clinical tissues. Increased TRIM29 expression was associated with a poor prognosis of patients with ovarian cancer. In addition, TRIM29 could enhance the CSC-like characteristics of the cisplatin-resistant ovarian cancer cells. Recruitment of YTHDF1 to m6A-modified TRIM29 was involved in promoting TRIM29 translation in the cisplatin-resistant ovarian cancer cells. Knockdown of YTHDF1 suppressed the CSC-like characteristics of the cisplatin-resistant ovarian cancer cells, which could be rescued by ectopic expression of TRIM29. This study suggests TRIM29 may act as an oncogene to promote the CSC-like features of cisplatin-resistant ovarian cancer in an m6A-YTHDF1-dependent manner. Due to the roles of TRIM29 and YTHDF1 in the promotion of CSC-like features, they may become potential therapeutic targets to combat the recurrence of ovarian cancer.
Collapse
Affiliation(s)
- Liang Hao
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang 110122, China; Key Laboratory of Cell Biology, Ministry of Public Health, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China; Department of Chemistry, China Medical University, Shenyang 110122, China
| | - Jia-Mei Wang
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang 110122, China
| | - Bao-Qin Liu
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang 110122, China
| | - Jing Yan
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang 110122, China
| | - Chao Li
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang 110122, China
| | - Jing-Yi Jiang
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang 110122, China
| | - Fu-Ying Zhao
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang 110122, China
| | - Huai-Yu Qiao
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang 110122, China
| | - Hua-Qin Wang
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang 110122, China; Key Laboratory of Cell Biology, Ministry of Public Health, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China.
| |
Collapse
|
152
|
Accornero F, Ross RL, Alfonzo JD. From canonical to modified nucleotides: balancing translation and metabolism. Crit Rev Biochem Mol Biol 2020; 55:525-540. [PMID: 32933330 DOI: 10.1080/10409238.2020.1818685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Every type of nucleic acid in cells may undergo some kind of post-replicative or post-transcriptional chemical modification. Recent evidence has highlighted their importance in biology and their chemical complexity. In the following pages, we will describe new discoveries of modifications, with a focus on tRNA and mRNA. We will highlight current challenges and advances in modification detection and we will discuss how changes in nucleotide post-transcriptional modifications may affect cell homeostasis leading to malfunction. Although, RNA modifications prevail in all forms of life, the present review will focus on eukaryotic systems, where the great degree of intracellular compartmentalization provides barriers and filters for the level at which a given RNA is modified and will of course affect its fate and function. Additionally, although we will mention rRNA modification and modifications of the mRNA 5'-CAP structure, this will only be discussed in passing, as many substantive reviews have been written on these subjects. Here we will not spend much time describing all the possible modifications that have been observed; truly a daunting task. For reference, Bujnicki and coworkers have created MODOMICS, a useful repository for all types of modifications and their associated enzymes. Instead we will discuss a few examples, which illustrate our arguments on the connection of modifications, metabolism and ultimately translation. The fact remains, a full understanding of the long reach of nucleic acid modifications in cells requires both a global and targeted study of unprecedented scale, which at the moment may well be limited only by technology.
Collapse
Affiliation(s)
- Federica Accornero
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA.,The Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | - Robert L Ross
- Department of Chemistry, Rieveschl Laboratories for Mass Spectrometry, University of Cincinnati, Cincinnati, OH, USA
| | - Juan D Alfonzo
- The Center for RNA Biology, The Ohio State University, Columbus, OH, USA.,Department of Microbiology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
153
|
Govindaraju G, Kadumuri RV, Sethumadhavan DV, Jabeena CA, Chavali S, Rajavelu A. N 6-Adenosine methylation on mRNA is recognized by YTH2 domain protein of human malaria parasite Plasmodium falciparum. Epigenetics Chromatin 2020; 13:33. [PMID: 32867812 PMCID: PMC7457798 DOI: 10.1186/s13072-020-00355-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/18/2020] [Indexed: 12/30/2022] Open
Abstract
Background Plasmodium falciparum exhibits high translational plasticity during its development in RBCs, yet the regulation at the post-transcriptional level is not well understood. The N6-methyl adenosine (m6A) is an important epigenetic modification primarily present on mRNA that controls the levels of transcripts and efficiency of translation in eukaryotes. Recently, the dynamics of m6A on mRNAs at all three developmental stages of P. falciparum in RBCs have been profiled; however, the proteins that regulate the m6A containing mRNAs in the parasites are unknown. Results Using sequence analysis, we computationally identified that the P. falciparum genome encodes two putative YTH (YT521-B Homology) domain-containing proteins, which could potentially bind to m6A containing mRNA. We developed a modified methylated RNA immunoprecipitation (MeRIP) assay using PfYTH2 and find that it binds selectively to m6A containing transcripts. The PfYTH2 has a conserved aromatic amino acid cage that forms the methyl-binding pocket. Through site-directed mutagenesis experiments and molecular dynamics simulations, we show that F98 residue is important for m6A binding on mRNA. Fluorescence depolarization assay confirmed that PfYTH2 binds to methylated RNA oligos with high affinity. Further, MeRIP sequencing data revealed that PfYTH2 has more permissive sequence specificity on target m6A containing mRNA than other known eukaryotic YTH proteins. Taken together, here we identify and characterize PfYTH2 as the major protein that could regulate m6A containing transcripts in P. falciparum. Conclusion Plasmodium spp. lost the canonical m6A-specific demethylases in their genomes, however, the YTH domain-containing proteins seem to be retained. This study presents a possibility that the YTH proteins are involved in post-transcriptional control in P. falciparum, and might orchestrate the translation of mRNA in various developmental stages of P. falciparum. This is perhaps the first characterization of the methyl-reading function of YTH protein in any parasites.
Collapse
Affiliation(s)
- Gayathri Govindaraju
- Pathogen Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thycaud PO, Thiruvananthapuram, Kerala, 695014, India.,Manipal Academy of Higher Education, Tiger Circle Road, Madhav Nagar, Manipal, Karnataka, 576104, India
| | - Rajashekar Varma Kadumuri
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Karakambadi Road, Tirupati, Andhra Pradesh, 517507, India
| | - Devadathan Valiyamangalath Sethumadhavan
- Pathogen Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thycaud PO, Thiruvananthapuram, Kerala, 695014, India.,Manipal Academy of Higher Education, Tiger Circle Road, Madhav Nagar, Manipal, Karnataka, 576104, India
| | - C A Jabeena
- Pathogen Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thycaud PO, Thiruvananthapuram, Kerala, 695014, India.,Manipal Academy of Higher Education, Tiger Circle Road, Madhav Nagar, Manipal, Karnataka, 576104, India
| | - Sreenivas Chavali
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Karakambadi Road, Tirupati, Andhra Pradesh, 517507, India
| | - Arumugam Rajavelu
- Pathogen Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thycaud PO, Thiruvananthapuram, Kerala, 695014, India.
| |
Collapse
|
154
|
Karthiya R, Khandelia P. m6A RNA Methylation: Ramifications for Gene Expression and Human Health. Mol Biotechnol 2020; 62:467-484. [PMID: 32840728 DOI: 10.1007/s12033-020-00269-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2020] [Indexed: 12/12/2022]
Abstract
Cellular transcriptomes are frequently adorned by a variety of chemical modification marks, which in turn have a profound influence on its functioning. Of these modifications, the one which has invited a lot of attention in the recent years is m6A RNA methylation, leading to the development of RNA epigenetics or epitranscriptomics as a frontier research area. m6A RNA methylation is one of the most abundant reversible internal modification seen in cellular RNAs. Studies in the last few years have not only shed light on the molecular machinery involved in m6A RNA methylation but also on the impact of this modification in regulating gene expression and hence biological processes. In this review, we will emphasize the biological impact of this modification in normal organismal development and diseases.
Collapse
Affiliation(s)
- R Karthiya
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani - Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Hyderabad, Telangana, 500078, India
| | - Piyush Khandelia
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani - Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Hyderabad, Telangana, 500078, India.
| |
Collapse
|
155
|
A novel N6-methyladenosine (m6A)-dependent fate decision for the lncRNA THOR. Cell Death Dis 2020; 11:613. [PMID: 32792482 PMCID: PMC7426843 DOI: 10.1038/s41419-020-02833-y] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 12/14/2022]
Abstract
Previous studies have revealed the critical roles of the N6-methyladenosine (m6A) modification of long non-coding RNAs (lncRNAs) in cancers, but the relationship between the oncogenic role of the lncRNA THOR (a representative of cancer/testis lncRNAs) and m6A modification remains unclear. Here, we show that the internal m6A modification of the lncRNA THOR via an m6A-reader-dependent modality regulates the proliferation of cancer cells. Our findings demonstrated that the loss of the lncRNA THOR inhibits the proliferation, migration, and invasion of cancer cells in vitro and in vivo. In addition, m6A is highly enriched on lncRNA THOR transcripts, which contain GA (m6A) CA, GG (m6A) CU, and UG (m6A) CU sequence motifs. RIP-qRT-PCR and RNA pull-down assay results revealed that the specific m6A readers YTHDF1 and YTHDF2 can read the m6A motifs and regulate the stability of the lncRNA THOR (stabilization and decay). These m6A-dependent RNA-protein interactions can maintain the oncogenic role of the lncRNA THOR. Collectively, these findings highlight the critical role of the m6A modification in oncogenic lncRNA THOR and reveal a novel long non-coding RNA regulatory mechanism, providing a new way to explore RNA epigenetic regulatory patterns in the future.
Collapse
|
156
|
Pi J, Wang W, Ji M, Wang X, Wei X, Jin J, Liu T, Qiang J, Qi Z, Li F, Liu Y, Ma Y, Si Y, Huo Y, Gao Y, Chen Y, Dong L, Su R, Chen J, Rao S, Yi P, Yu S, Wang F, Yu J. YTHDF1 Promotes Gastric Carcinogenesis by Controlling Translation of FZD7. Cancer Res 2020; 81:2651-2665. [PMID: 32788173 DOI: 10.1158/0008-5472.can-20-0066] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/08/2020] [Accepted: 08/06/2020] [Indexed: 11/16/2022]
Abstract
N6-methyladenosine (m6A) is the most prevalent internal RNA modification in mammals that regulates homeostasis and function of modified RNA transcripts. Here, we aimed to investigate the role of YTH m6A RNA-binding protein 1 (YTHDF1), a key regulator of m6A methylation in gastric cancer tumorigenesis. Multiple bioinformatic analyses of different human cancer databases identified key m6A-associated genetic mutations that regulated gastric tumorigenesis. YTHDF1 was mutated in about 7% of patients with gastric cancer, and high expression of YTHDF1 was associated with more aggressive tumor progression and poor overall survival. Inhibition of YTHDF1 attenuated gastric cancer cell proliferation and tumorigenesis in vitro and in vivo. Mechanistically, YTHDF1 promoted the translation of a key Wnt receptor frizzled7 (FZD7) in an m6A-dependent manner, and mutated YTHDF1 enhanced expression of FZD7, leading to hyperactivation of the Wnt/β-catenin pathway and promotion of gastric carcinogenesis. Our results demonstrate the oncogenic role of YTHDF1 and its m6A-mediated regulation of Wnt/β-catenin signaling in gastric cancer, providing a novel approach of targeting such epigenetic regulators in this disease. SIGNIFICANCE: This study provides a rationale for controlling translation of key oncogenic drivers in cancer by manipulating epigenetic regulators, representing a novel and efficient strategy for anticancer treatment. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/10/2651/F1.large.jpg.
Collapse
Affiliation(s)
- Jingnan Pi
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China.,The Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing, China
| | - Wen Wang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China.,The Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing, China
| | - Ming Ji
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoshuang Wang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China.,The Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing, China
| | - Xueju Wei
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China.,The Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing, China
| | - Jing Jin
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tao Liu
- Department of Obstetrics and Gynecology, Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiaqi Qiang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China.,The Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhihong Qi
- State Key Laboratory of AgroBiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Feng Li
- Department of Molecular Biology, Shanxi Cancer Hospital, Affiliated Cancer Hospital of Shanxi Medical University, Shanxi, China
| | - Yue Liu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China.,The Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing, China
| | - Yanni Ma
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China.,The Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing, China
| | - Yanmin Si
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China.,The Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing, China
| | - Yue Huo
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China.,The Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing, China
| | - Yufeng Gao
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China.,The Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing, China
| | - Yiying Chen
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China.,The Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing, China
| | - Lei Dong
- Department of Systems Biology and Gehr Family Center for Leukemia Research, The Beckman Research Institute of City of Hope, Monrovia, California
| | - Rui Su
- Department of Systems Biology and Gehr Family Center for Leukemia Research, The Beckman Research Institute of City of Hope, Monrovia, California
| | - Jianjun Chen
- Department of Systems Biology and Gehr Family Center for Leukemia Research, The Beckman Research Institute of City of Hope, Monrovia, California
| | - Shuan Rao
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ping Yi
- Department of Obstetrics and Gynecology, Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shuyang Yu
- State Key Laboratory of AgroBiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Fang Wang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China. .,The Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing, China
| | - Jia Yu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China. .,The Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing, China.,Medical Epigenetic Research Center, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
157
|
Bayoumi M, Rohaim MA, Munir M. Structural and Virus Regulatory Insights Into Avian N6-Methyladenosine (m6A) Machinery. Front Cell Dev Biol 2020; 8:543. [PMID: 32760718 PMCID: PMC7373739 DOI: 10.3389/fcell.2020.00543] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 06/09/2020] [Indexed: 12/20/2022] Open
Abstract
The addition of a methyl group to the N6 position of adenosine (m6A) is the most common posttranscriptional RNA modification, and it regulates most steps of RNA metabolism including splicing, stability, translation, nuclear-export, and RNA structures. Besides cellular RNA, m6A modifications have also been detected on viral RNA. A range of recent studies have demonstrated the crucial roles of m6A in the virus–host interactions; however, m6A cellular machineries are only characterized in limited mammalian species. Herein, we aim to present comprehensive evolutionary insights into major m6A writers, erasers, and readers and draw a comparative structural analysis between avian and mammalian m6A-associated machineries. The comparative collinearity on the chromosomal scale revealed that the majority of m6A-related genes were found less syntenic even among avian species. Genetic analysis of avian m6A erasers revealed a distinct phylogenetic clustering compared to mammalian orthologs and shared a weak percent (55%) identity with mammalian species with low identity percentage (55%). The overall comparative three-dimensional (3D) structure analyses among different mammalian species were maintained through synonymous structural mutations. Unlike erasers, the putative 3D structures in the active sites as for the aromatic cage in YTH-domain of YTHDC1 and two pivotal loops in MTD-domains in METTL3 exhibited structural alterations in chicken. In conjunction with in silico investigations, influenza viruses significantly downregulated gene the transcription of m6A writers and erasers, whereas m6A readers were moderately regulated in chicken fibroblasts. In light of these findings, future detailed biochemical and crystallographic studies are warranted to define the roles of m6A machinery in regulating both viral and cellular RNA metabolism in avian species.
Collapse
Affiliation(s)
- Mahmoud Bayoumi
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster, United Kingdom
| | - Mohammed A Rohaim
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster, United Kingdom
| | - Muhammad Munir
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster, United Kingdom
| |
Collapse
|
158
|
Hosford CJ, Adams MC, Niu Y, Chappie JS. The N-terminal domain of Staphylothermus marinus McrB shares structural homology with PUA-like RNA binding proteins. J Struct Biol 2020; 211:107572. [PMID: 32652237 DOI: 10.1016/j.jsb.2020.107572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 12/27/2022]
Abstract
McrBC is a conserved modification-dependent restriction system that in Escherichia coli specifically targets foreign DNA containing methylated cytosines. Crystallographic data show that the N-terminal domain of Escherichia coli McrB binds substrates via a base flipping mechanism. This region is poorly conserved among the plethora of McrB homologs, suggesting that other species may use alternative binding strategies and/or recognize different targets. Here we present the crystal structure of the N-terminal domain from Stayphlothermus marinus McrB (Sm3-180) at 1.92 Å, which adopts a PUA-like EVE fold that is closely related to the YTH and ASCH RNA binding domains. Unlike most PUA-like domains, Sm3-180 binds DNA and can associate with different modified substrates. We find the canonical 'aromatic cage' binding pocket that confers specificity for methylated bases in other EVE/YTH domains is degenerate and occluded in Sm3-180, which may contribute to its promiscuity in target recognition. Further structural comparison between different PUA-like domains identifies motifs and conformational variations that correlate with the preference for binding either DNA or RNA. Together these data have important implications for PUA-like domain specificity and suggest a broader biological versatility for the McrBC family than previously described.
Collapse
Affiliation(s)
| | - Myfanwy C Adams
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Yiming Niu
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Joshua S Chappie
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
159
|
Liu T, Wei Q, Jin J, Luo Q, Liu Y, Yang Y, Cheng C, Li L, Pi J, Si Y, Xiao H, Li L, Rao S, Wang F, Yu J, Yu J, Zou D, Yi P. The m6A reader YTHDF1 promotes ovarian cancer progression via augmenting EIF3C translation. Nucleic Acids Res 2020; 48:3816-3831. [PMID: 31996915 PMCID: PMC7144925 DOI: 10.1093/nar/gkaa048] [Citation(s) in RCA: 430] [Impact Index Per Article: 107.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 01/14/2020] [Accepted: 01/22/2020] [Indexed: 01/17/2023] Open
Abstract
N6-Methyladenosine (m6A) is the most abundant RNA modification in mammal mRNAs and increasing evidence suggests the key roles of m6A in human tumorigenesis. However, whether m6A, especially its ‘reader’ YTHDF1, targets a gene involving in protein translation and thus affects overall protein production in cancer cells is largely unexplored. Here, using multi-omics analysis for ovarian cancer, we identified a novel mechanism involving EIF3C, a subunit of the protein translation initiation factor EIF3, as the direct target of the YTHDF1. YTHDF1 augments the translation of EIF3C in an m6A-dependent manner by binding to m6A-modified EIF3C mRNA and concomitantly promotes the overall translational output, thereby facilitating tumorigenesis and metastasis of ovarian cancer. YTHDF1 is frequently amplified in ovarian cancer and up-regulation of YTHDF1 is associated with the adverse prognosis of ovarian cancer patients. Furthermore, the protein but not the RNA abundance of EIF3C is increased in ovarian cancer and positively correlates with the protein expression of YTHDF1 in ovarian cancer patients, suggesting modification of EIF3C mRNA is more relevant to its role in cancer. Collectively, we identify the novel YTHDF1-EIF3C axis critical for ovarian cancer progression which can serve as a target to develop therapeutics for cancer treatment.
Collapse
Affiliation(s)
- Tao Liu
- Department of Obstetrics and Gynecology, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Qinglv Wei
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Jing Jin
- State Key laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Qingya Luo
- Department of Obstetrics and Gynecology, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Yi Liu
- Department of Obstetrics and Gynecology, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China.,Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Yu Yang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Chunming Cheng
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, Columbus, OH 43210, USA
| | - Lanfang Li
- Department of Obstetrics and Gynecology, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Jingnan Pi
- Department of Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing 100005, China
| | - Yanmin Si
- Department of Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing 100005, China
| | - Hualiang Xiao
- Department of Pathology, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Li Li
- Department of Obstetrics and Gynecology, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Shuan Rao
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Fang Wang
- Department of Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing 100005, China
| | - Jianhua Yu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Jia Yu
- Department of Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing 100005, China
| | - Dongling Zou
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing 400030, China
| | - Ping Yi
- Department of Obstetrics and Gynecology, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China.,Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| |
Collapse
|
160
|
Reversible N6-methyladenosine of RNA: The regulatory mechanisms on gene expression and implications in physiology and pathology. Genes Dis 2020; 7:585-597. [PMID: 33335958 PMCID: PMC7729110 DOI: 10.1016/j.gendis.2020.06.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/21/2020] [Accepted: 06/30/2020] [Indexed: 12/21/2022] Open
Abstract
N6-methyladenosine (m6A) is the most abundant inner RNA modification in eukaryotes. Due to the development of RNA sequencing technology, the distribution pattern of m6A in the transcriptome has been uncovered. Dynamically, the reversible N6-methylation is mediated by two types of proteins, which are classified as "writers" and "erasers". Under the association of specific co-factors, writers show spatiotemporal N6-methyltransferase activity. Mechanically, m6A can be recognized by "reader" proteins or can directly modify RNA conformation, and it widely affects gene expression by mediating RNA stability, translation, splicing and export. m6A is involved in a series of physiology processes. Dysregulation of m6A is gradually defined as the pathogenesis of some diseases, e.g., cancer and cardiovascular disease. Therefore, a good understanding of m6A is essential for molecular biology and pathology research. In this article we systemically present an overview of the functions and mechanisms of identified m6A regulators. The discovered biological and pathological processes affected by m6A are also summarized. We hope that readers with related research interests benefit from our review.
Collapse
|
161
|
Zaccara S, Jaffrey SR. A Unified Model for the Function of YTHDF Proteins in Regulating m 6A-Modified mRNA. Cell 2020; 181:1582-1595.e18. [PMID: 32492408 PMCID: PMC7508256 DOI: 10.1016/j.cell.2020.05.012] [Citation(s) in RCA: 440] [Impact Index Per Article: 110.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 01/14/2020] [Accepted: 05/04/2020] [Indexed: 02/05/2023]
Abstract
N6-methyladenosine (m6A) is the most abundant mRNA nucleotide modification and regulates critical aspects of cellular physiology and differentiation. m6A is thought to mediate its effects through a complex network of interactions between different m6A sites and three functionally distinct cytoplasmic YTHDF m6A-binding proteins (DF1, DF2, and DF3). In contrast to the prevailing model, we show that DF proteins bind the same m6A-modified mRNAs rather than different mRNAs. Furthermore, we find that DF proteins do not induce translation in HeLa cells. Instead, the DF paralogs act redundantly to mediate mRNA degradation and cellular differentiation. The ability of DF proteins to regulate stability and differentiation becomes evident only when all three DF paralogs are depleted simultaneously. Our study reveals a unified model of m6A function in which all m6A-modified mRNAs are subjected to the combined action of YTHDF proteins in proportion to the number of m6A sites.
Collapse
Affiliation(s)
- Sara Zaccara
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - Samie R Jaffrey
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA.
| |
Collapse
|
162
|
Heck AM, Russo J, Wilusz J, Nishimura EO, Wilusz CJ. YTHDF2 destabilizes m 6A-modified neural-specific RNAs to restrain differentiation in induced pluripotent stem cells. RNA (NEW YORK, N.Y.) 2020; 26:739-755. [PMID: 32169943 PMCID: PMC7266156 DOI: 10.1261/rna.073502.119] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 03/12/2020] [Indexed: 06/10/2023]
Abstract
N6-methyladenosine (m6A) is an abundant post-transcriptional modification that can impact RNA fate via interactions with m6A-specific RNA binding proteins. Despite accumulating evidence that m6A plays an important role in modulating pluripotency, the influence of m6A reader proteins in pluripotency is less clear. Here, we report that YTHDF2, an m6A reader associated with mRNA degradation, is highly expressed in induced pluripotent stem cells (iPSCs) and down-regulated during neural differentiation. Through RNA sequencing, we identified a group of m6A-modified transcripts associated with neural development that are directly regulated by YTDHF2. Depletion of YTHDF2 in iPSCs leads to stabilization of these transcripts, loss of pluripotency, and induction of neural-specific gene expression. Collectively, our results suggest YTHDF2 functions to restrain expression of neural-specific mRNAs in iPSCs and facilitate their rapid and coordinated up-regulation during neural induction. These effects are both achieved by destabilization of the targeted transcripts.
Collapse
Affiliation(s)
- Adam M Heck
- Program in Cell & Molecular Biology, Colorado State University, Fort Collins, Colorado 80523, USA
- Department of Microbiology, Immunology & Pathology
| | - Joseph Russo
- Department of Microbiology, Immunology & Pathology
| | - Jeffrey Wilusz
- Program in Cell & Molecular Biology, Colorado State University, Fort Collins, Colorado 80523, USA
- Department of Microbiology, Immunology & Pathology
| | - Erin Osborne Nishimura
- Program in Cell & Molecular Biology, Colorado State University, Fort Collins, Colorado 80523, USA
- Department of Biochemistry & Molecular Biology, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Carol J Wilusz
- Program in Cell & Molecular Biology, Colorado State University, Fort Collins, Colorado 80523, USA
- Department of Microbiology, Immunology & Pathology
| |
Collapse
|
163
|
m 6A-binding YTHDF proteins promote stress granule formation. Nat Chem Biol 2020; 16:955-963. [PMID: 32451507 PMCID: PMC7442727 DOI: 10.1038/s41589-020-0524-y] [Citation(s) in RCA: 188] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 02/25/2020] [Accepted: 03/22/2020] [Indexed: 12/20/2022]
Abstract
Diverse RNAs and RNA-binding proteins form phase-separated, membraneless granules in cells under stress conditions. However, the role of the prevalent mRNA methylation, m6A, and its binding proteins in stress granule (SG) assembly remain unclear. Here, we show that m6A-modified mRNAs are enriched in SGs, and that m6A-binding YTHDF proteins are critical for SG formation. Depletion of YTHDF1/3 inhibits SG formation and recruitment of mRNAs to SGs. Both the N-terminal intrinsically disordered region and the C-terminal m6A-binding YTH domain of YTHDF proteins are important for SG formation. Super-resolution imaging further reveals that YTHDF proteins appear to be in a super-saturated state, forming clusters that often reside in the periphery of and at the junctions between SG core clusters, and potentially promote SG formation by reducing the activation energy barrier and critical size for SG condensate formation. Our results suggest a new function of the m6A-binding YTHDF proteins in regulating SG formation.
Collapse
|
164
|
Scarrow M, Chen N, Sun G. Insights into the N 6-methyladenosine mechanism and its functionality: progress and questions. Crit Rev Biotechnol 2020; 40:639-652. [PMID: 32321323 DOI: 10.1080/07388551.2020.1751059] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
N6-methyladenosine (m6A) RNA methylation has become a progressively popular area of molecular research since the discovery of its potentially essential regulatory role amongst eukaryotes. m6A marks are observed in the 5'UTR, 3'UTR and coding regions of eukaryotes and its mediation has been associated with various human diseases, RNA stability and translational efficiency. To understand the implications of m6A methylation in molecular governance, its functionality and mechanism must be initially understood. m6A regulation through its readers, writers and erasers as well as an insight into the potential "cross-talk" occurring between m6A and previously well documented regulatory molecular mechanisms have been characterized. The majority of research to date has been limited to few species and has yet to explore the species- and tissue specific nature or mechanistic plasticity of m6A regulation. There is still a tremendous gap in our knowledge surrounding the mechanism and functionality of m6A RNA methylation. Here we review the formation, removal, and decoding of m6A amongst animals, yeast, and plants while noting potential "cross-talk" between various mechanisms and highlighting potential areas of future research.
Collapse
Affiliation(s)
| | - Ning Chen
- Biology Department, Saint Mary's University, Halifax, Canada
| | - Genlou Sun
- Biology Department, Saint Mary's University, Halifax, Canada
| |
Collapse
|
165
|
The RNA modification N6-methyladenosine as a novel regulator of the immune system. Nat Immunol 2020; 21:501-512. [DOI: 10.1038/s41590-020-0650-4] [Citation(s) in RCA: 163] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 03/03/2020] [Indexed: 12/30/2022]
|
166
|
Uddin MB, Wang Z, Yang C. Dysregulations of Functional RNA Modifications in Cancer, Cancer Stemness and Cancer Therapeutics. Theranostics 2020; 10:3164-3189. [PMID: 32194861 PMCID: PMC7053189 DOI: 10.7150/thno.41687] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/19/2019] [Indexed: 12/11/2022] Open
Abstract
More than a hundred chemical modifications in coding and non-coding RNAs have been identified so far. Many of the RNA modifications are dynamic and reversible, playing critical roles in gene regulation at the posttranscriptional level. The abundance and functions of RNA modifications are controlled mainly by the modification regulatory proteins: writers, erasers and readers. Modified RNA bases and their regulators form intricate networks which are associated with a vast array of diverse biological functions. RNA modifications are not only essential for maintaining the stability and structural integrity of the RNA molecules themselves, they are also associated with the functional outcomes and phenotypic attributes of cells. In addition to their normal biological roles, many of the RNA modifications also play important roles in various diseases particularly in cancer as evidenced that the modified RNA transcripts and their regulatory proteins are aberrantly expressed in many cancer types. This review will first summarize the most commonly reported RNA modifications and their regulations, followed by discussing recent studies on the roles of RNA modifications in cancer, cancer stemness as wells as functional RNA modification machinery as potential cancer therapeutic targets. It is concluded that, while advanced technologies have uncovered the contributions of many of RNA modifications in cancer, the underlying mechanisms are still poorly understood. Moreover, whether and how environmental pollutants, important cancer etiological factors, trigger abnormal RNA modifications and their roles in environmental carcinogenesis remain largely unknown. Further studies are needed to elucidate the mechanism of how RNA modifications promote cell malignant transformation and generation of cancer stem cells, which will lead to the development of new strategies for cancer prevention and treatment.
Collapse
Affiliation(s)
| | | | - Chengfeng Yang
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536-0305, USA
| |
Collapse
|
167
|
Seo KW, Kleiner RE. YTHDF2 Recognition of N 1-Methyladenosine (m 1A)-Modified RNA Is Associated with Transcript Destabilization. ACS Chem Biol 2020; 15:132-139. [PMID: 31815430 DOI: 10.1021/acschembio.9b00655] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Epitranscriptomic modifications play an important role in RNA function and can impact gene expression. Here, we apply a chemical proteomics approach to investigate readers of N1-methyladenosine (m1A), a poorly characterized modification on mammalian mRNA. We find that YTHDF proteins, known m6A readers, recognize m1A-modified sequences in a methylation-specific manner. We characterize binding of recombinant YTHDF1/2 proteins to m1A-modified oligonucleotides to demonstrate that these interactions can exhibit comparable affinity to m6A-recognition events and occur in diverse sequence contexts. Further, we demonstrate YTHDF2 interacts specifically with endogenously modified m1A transcripts. Finally, we deplete cellular YTHDF2 to show that the abundance of m1A-modified transcripts is increased in its absence. Similarly, increasing m1A levels through depletion of ALKBH3, an m1A eraser protein, destabilizes known m1A-containing RNAs. Our results shed light on the function of m1A on mRNA and provide a mechanistic framework to further evaluate the role of m1A in biological processes.
Collapse
Affiliation(s)
- Kyung W. Seo
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Ralph E. Kleiner
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
168
|
Dai X, Gonzalez G, Li L, Li J, You C, Miao W, Hu J, Fu L, Zhao Y, Li R, Li L, Chen X, Xu Y, Gu W, Wang Y. YTHDF2 Binds to 5-Methylcytosine in RNA and Modulates the Maturation of Ribosomal RNA. Anal Chem 2020; 92:1346-1354. [PMID: 31815440 PMCID: PMC6949395 DOI: 10.1021/acs.analchem.9b04505] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
5-Methylcytosine is found in both DNA and RNA; although its functions in DNA are well established, the exact role of 5-methylcytidine (m5C) in RNA remains poorly defined. Here we identified, by employing a quantitative proteomics method, multiple candidate recognition proteins of m5C in RNA, including several YTH domain-containing family (YTHDF) proteins. We showed that YTHDF2 could bind directly to m5C in RNA, albeit at a lower affinity than that toward N6-methyladenosine (m6A) in RNA, and this binding involves Trp432, a conserved residue located in the hydrophobic pocket of YTHDF2 that is also required for m6A recognition. RNA bisulfite sequencing results revealed that, after CRISPR-Cas9-mediated knockout of the YTHDF2 gene, the majority of m5C sites in rRNA (rRNA) exhibited substantially augmented levels of methylation. Moreover, we found that YTHDF2 is involved in pre-rRNA processing in cells. Together, our data expanded the functions of the YTHDF2 protein in post-transcriptional regulations of RNA and provided novel insights into the functions of m5C in RNA biology.
Collapse
Affiliation(s)
- Xiaoxia Dai
- Department of Chemistry, University of California, Riverside, California 92521-0403, United States
- State Key Laboratory of Chemo/Bio-sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Gwendolyn Gonzalez
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92521-0403, United States
| | - Lin Li
- Department of Chemistry, University of California, Riverside, California 92521-0403, United States
| | - Jie Li
- Fudan University Shanghai Cancer Center, Department of Oncology; and Institutes of Biomedical Sciences and School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Changjun You
- Department of Chemistry, University of California, Riverside, California 92521-0403, United States
- State Key Laboratory of Chemo/Bio-sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Weili Miao
- Department of Chemistry, University of California, Riverside, California 92521-0403, United States
| | - Junchi Hu
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Lijuan Fu
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92521-0403, United States
| | - Yonghui Zhao
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, California 92521-0403, United States
| | - Ruidong Li
- Department of Cell Biology and Neuroscience, University of California, Riverside, California 92521-0403, United States
| | - Lichao Li
- Department of Cell Biology and Neuroscience, University of California, Riverside, California 92521-0403, United States
| | - Xuemei Chen
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, California 92521-0403, United States
| | - Yanhui Xu
- Fudan University Shanghai Cancer Center, Department of Oncology; and Institutes of Biomedical Sciences and School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Weifeng Gu
- Department of Cell Biology and Neuroscience, University of California, Riverside, California 92521-0403, United States
| | - Yinsheng Wang
- Department of Chemistry, University of California, Riverside, California 92521-0403, United States
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92521-0403, United States
| |
Collapse
|
169
|
Hosford CJ, Bui AQ, Chappie JS. The structure of the Thermococcus gammatolerans McrB N-terminal domain reveals a new mode of substrate recognition and specificity among McrB homologs. J Biol Chem 2020. [DOI: 10.1016/s0021-9258(17)49932-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
170
|
Miao Z, Zhang T, Qi Y, Song J, Han Z, Ma C. Evolution of the RNA N 6-Methyladenosine Methylome Mediated by Genomic Duplication. PLANT PHYSIOLOGY 2020; 182:345-360. [PMID: 31409695 PMCID: PMC6945827 DOI: 10.1104/pp.19.00323] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 08/03/2019] [Indexed: 05/19/2023]
Abstract
RNA N 6-methyladenosine (m6A) modification is the most abundant form of RNA epigenetic modification in eukaryotes. Given that m6A evolution is associated with the selective constraints of nucleotide sequences in mammalian genomes, we hypothesize that m6A evolution can be linked, at least in part, to genomic duplication events in complex polyploid plant genomes. To test this hypothesis, we presented the maize (Zea mays) m6A modification landscape in a transcriptome-wide manner and identified 11,968 m6A peaks carried by 5,893 and 3,811 genes from two subgenomes (maize1 and maize2, respectively). Each of these subgenomes covered over 2,200 duplicate genes. Within these duplicate genes, those carrying m6A peaks exhibited significant differences in retention rate. This biased subgenome fractionation of m6A-methylated genes is associated with multiple sequence features and is influenced by asymmetric evolutionary rates. We also characterized the coevolutionary patterns of m6A-methylated genes and transposable elements, which can be mediated by whole genome duplication and tandem duplication. We revealed the evolutionary conservation and divergence of duplicated m6A functional factors and the potential role of m6A modification in maize responses to drought stress. This study highlights complex interplays between m6A modification and gene duplication, providing a reference for understanding the mechanisms underlying m6A evolution mediated by genome duplication events.
Collapse
Affiliation(s)
- Zhenyan Miao
- State Key Laboratory of Crop Stress Biology for Arid Areas, Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Shaanxi, Yangling 712100, China
- Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Shaanxi, Yangling 712100, China
| | - Ting Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Shaanxi, Yangling 712100, China
| | - Yuhong Qi
- State Key Laboratory of Crop Stress Biology for Arid Areas, Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Shaanxi, Yangling 712100, China
| | - Jie Song
- State Key Laboratory of Crop Stress Biology for Arid Areas, Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Shaanxi, Yangling 712100, China
| | - Zhaoxue Han
- State Key Laboratory of Crop Stress Biology for Arid Areas, Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Shaanxi, Yangling 712100, China
- Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Shaanxi, Yangling 712100, China
| | - Chuang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Shaanxi, Yangling 712100, China
- Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Shaanxi, Yangling 712100, China
| |
Collapse
|
171
|
Arribas-Hernández L, Brodersen P. Occurrence and Functions of m 6A and Other Covalent Modifications in Plant mRNA. PLANT PHYSIOLOGY 2020; 182:79-96. [PMID: 31748418 PMCID: PMC6945878 DOI: 10.1104/pp.19.01156] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 11/13/2019] [Indexed: 05/07/2023]
Abstract
Posttranscriptional control of gene expression is indispensable for the execution of developmental programs and environmental adaptation. Among the many cellular mechanisms that regulate mRNA fate, covalent nucleotide modification has emerged as a major way of controlling the processing, localization, stability, and translatability of mRNAs. This powerful mechanism is conserved across eukaryotes and controls the cellular events that lead to development and growth. As in other eukaryotes, N 6-methylation of adenosine is the most abundant and best studied mRNA modification in flowering plants. It is essential for embryonic and postembryonic plant development and it affects growth rate and stress responses, including susceptibility to plant RNA viruses. Although the mRNA modification field is young, the intense interest triggered by its involvement in stem cell differentiation and cancer has led to rapid advances in understanding how mRNA modifications control gene expression in mammalian systems. An equivalent effort from plant molecular biologists has been lagging behind, but recent work in Arabidopsis (Arabidopsis thaliana) and other plant species is starting to give insights into how this essential layer of posttranscriptional regulation works in plants, and both similarities and differences with other eukaryotes are emerging. In this Update, we summarize, connect, and evaluate the experimental work that supports our current knowledge of the biochemistry, molecular mechanisms, and biological functions of mRNA modifications in plants. We devote particular attention to N 6-methylation of adenosine and attempt to place the knowledge gained from plant studies within the context of a more general framework derived from studies in other eukaryotes.
Collapse
Affiliation(s)
| | - Peter Brodersen
- University of Copenhagen, Department of Biology, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
172
|
Hosford CJ, Bui AQ, Chappie JS. The structure of the Thermococcus gammatolerans McrB N-terminal domain reveals a new mode of substrate recognition and specificity among McrB homologs. J Biol Chem 2019; 295:743-756. [PMID: 31822563 DOI: 10.1074/jbc.ra119.010188] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 12/07/2019] [Indexed: 01/12/2023] Open
Abstract
McrBC is a two-component, modification-dependent restriction system that cleaves foreign DNA-containing methylated cytosines. Previous crystallographic studies have shown that Escherichia coli McrB uses a base-flipping mechanism to recognize these modified substrates with high affinity. The side chains stabilizing both the flipped base and the distorted duplex are poorly conserved among McrB homologs, suggesting that other mechanisms may exist for binding modified DNA. Here we present the structures of the Thermococcus gammatolerans McrB DNA-binding domain (TgΔ185) both alone and in complex with a methylated DNA substrate at 1.68 and 2.27 Å resolution, respectively. The structures reveal that TgΔ185 consists of a YT521-B homology (YTH) domain, which is commonly found in eukaryotic proteins that bind methylated RNA and is structurally unrelated to the E. coli McrB DNA-binding domain. Structural superposition and co-crystallization further show that TgΔ185 shares a conserved aromatic cage with other YTH domains, which forms the binding pocket for a flipped-out base. Mutational analysis of this aromatic cage supports its role in conferring specificity for the methylated adenines, whereas an extended basic surface present in TgΔ185 facilitates its preferential binding to duplex DNA rather than RNA. Together, these findings establish a new binding mode and specificity among McrB homologs and expand the biological roles of YTH domains.
Collapse
Affiliation(s)
| | - Anthony Q Bui
- Department of Molecular Medicine, Cornell University, Ithaca, New York 14853
| | - Joshua S Chappie
- Department of Molecular Medicine, Cornell University, Ithaca, New York 14853
| |
Collapse
|
173
|
Li Y, Bedi RK, Wiedmer L, Huang D, Śledź P, Caflisch A. Flexible Binding of m 6A Reader Protein YTHDC1 to Its Preferred RNA Motif. J Chem Theory Comput 2019; 15:7004-7014. [PMID: 31670957 DOI: 10.1021/acs.jctc.9b00987] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
N6-Methyladenosine (m6A) is the most prevalent chemical modification in human mRNAs. Its recognition by reader proteins enables many cellular functions, including splicing and translation of mRNAs. However, the binding mechanisms of m6A-containing RNAs to their readers are still elusive due to the unclear roles of m6A-flanking ribonucleotides. Here, we use a model system, YTHDC1 with its RNA motif 5'-G-2G-1(m6A)C+1U+2-3', to investigate the binding mechanisms by atomistic simulations, X-ray crystallography, and isothermal titration calorimetry. The experimental data and simulation results show that m6A is captured by an aromatic cage of YTHDC1 and the 3' terminus nucleotides are stabilized by cation-π-π interactions, while the 5' terminus remains flexible. Notably, simulations of unbound RNA motifs reveal that the methyl group of m6A and the 5' terminus shift the conformational preferences of the oligoribonucleotide to the bound-like conformation, thereby facilitating the association process. The binding mechanisms may help in the discovery of chemical probes against m6A reader proteins.
Collapse
Affiliation(s)
- Yaozong Li
- Department of Biochemistry , University of Zurich , Winterthurerstrasse 190 , CH-8057 Zurich , Switzerland
| | - Rajiv Kumar Bedi
- Department of Biochemistry , University of Zurich , Winterthurerstrasse 190 , CH-8057 Zurich , Switzerland
| | - Lars Wiedmer
- Department of Biochemistry , University of Zurich , Winterthurerstrasse 190 , CH-8057 Zurich , Switzerland
| | - Danzhi Huang
- Department of Biochemistry , University of Zurich , Winterthurerstrasse 190 , CH-8057 Zurich , Switzerland
| | - Paweł Śledź
- Department of Biochemistry , University of Zurich , Winterthurerstrasse 190 , CH-8057 Zurich , Switzerland
| | - Amedeo Caflisch
- Department of Biochemistry , University of Zurich , Winterthurerstrasse 190 , CH-8057 Zurich , Switzerland
| |
Collapse
|
174
|
Baquero-Perez B, Antanaviciute A, Yonchev ID, Carr IM, Wilson SA, Whitehouse A. The Tudor SND1 protein is an m 6A RNA reader essential for replication of Kaposi's sarcoma-associated herpesvirus. eLife 2019; 8:e47261. [PMID: 31647415 PMCID: PMC6812964 DOI: 10.7554/elife.47261] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 09/19/2019] [Indexed: 02/06/2023] Open
Abstract
N6-methyladenosine (m6A) is the most abundant internal RNA modification of cellular mRNAs. m6A is recognised by YTH domain-containing proteins, which selectively bind to m6A-decorated RNAs regulating their turnover and translation. Using an m6A-modified hairpin present in the Kaposi's sarcoma associated herpesvirus (KSHV) ORF50 RNA, we identified seven members from the 'Royal family' as putative m6A readers, including SND1. RIP-seq and eCLIP analysis characterised the SND1 binding profile transcriptome-wide, revealing SND1 as an m6A reader. We further demonstrate that the m6A modification of the ORF50 RNA is critical for SND1 binding, which in turn stabilises the ORF50 transcript. Importantly, SND1 depletion leads to inhibition of KSHV early gene expression showing that SND1 is essential for KSHV lytic replication. This work demonstrates that members of the 'Royal family' have m6A-reading ability, greatly increasing their epigenetic functions beyond protein methylation.
Collapse
Affiliation(s)
- Belinda Baquero-Perez
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, Astbury Centre of Structural Molecular BiologyUniversity of LeedsLeedsUnited Kingdom
- Astbury Centre of Structural Molecular BiologyUniversity of LeedsLeedsUnited Kingdom
| | - Agne Antanaviciute
- Leeds Institute of Medical Research, School of MedicineUniversity of Leeds, St James's University HospitalLeedsUnited Kingdom
| | - Ivaylo D Yonchev
- Department of Molecular Biology and BiotechnologyUniversity of SheffieldSheffieldUnited Kingdom
- Sheffield Institute For Nucleic AcidsUniversity of SheffieldSheffieldUnited Kingdom
| | - Ian M Carr
- Leeds Institute of Medical Research, School of MedicineUniversity of Leeds, St James's University HospitalLeedsUnited Kingdom
| | - Stuart A Wilson
- Department of Molecular Biology and BiotechnologyUniversity of SheffieldSheffieldUnited Kingdom
- Sheffield Institute For Nucleic AcidsUniversity of SheffieldSheffieldUnited Kingdom
| | - Adrian Whitehouse
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, Astbury Centre of Structural Molecular BiologyUniversity of LeedsLeedsUnited Kingdom
- Astbury Centre of Structural Molecular BiologyUniversity of LeedsLeedsUnited Kingdom
- Department of Biochemistry and MicrobiologyRhodes UniversityGrahamstownSouth Africa
| |
Collapse
|
175
|
Zaccara S, Ries RJ, Jaffrey SR. Reading, writing and erasing mRNA methylation. Nat Rev Mol Cell Biol 2019; 20:608-624. [PMID: 31520073 DOI: 10.1038/s41580-019-0168-5] [Citation(s) in RCA: 1356] [Impact Index Per Article: 271.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2019] [Indexed: 02/07/2023]
Abstract
RNA methylation to form N6-methyladenosine (m6A) in mRNA accounts for the most abundant mRNA internal modification and has emerged as a widespread regulatory mechanism that controls gene expression in diverse physiological processes. Transcriptome-wide m6A mapping has revealed the distribution and pattern of m6A in cellular RNAs, referred to as the epitranscriptome. These maps have revealed the specific mRNAs that are regulated by m6A, providing mechanistic links connecting m6A to cellular differentiation, cancer progression and other processes. The effects of m6A on mRNA are mediated by an expanding list of m6A readers and m6A writer-complex components, as well as potential erasers that currently have unclear relevance to m6A prevalence in the transcriptome. Here we review new and emerging methods to characterize and quantify the epitranscriptome, and we discuss new concepts - in some cases, controversies - regarding our understanding of the mechanisms and functions of m6A readers, writers and erasers.
Collapse
Affiliation(s)
- Sara Zaccara
- Department of Pharmacology, Weill Medical College, Cornell University, New York, NY, USA
| | - Ryan J Ries
- Department of Pharmacology, Weill Medical College, Cornell University, New York, NY, USA
| | - Samie R Jaffrey
- Department of Pharmacology, Weill Medical College, Cornell University, New York, NY, USA.
| |
Collapse
|
176
|
Shi Y, Wang H, Wang J, Liu X, Lin F, Lu J. N6-methyladenosine RNA methylation is involved in virulence of the rice blast fungus Pyricularia oryzae (syn. Magnaporthe oryzae). FEMS Microbiol Lett 2019; 366:5238720. [PMID: 30535195 DOI: 10.1093/femsle/fny286] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 12/10/2018] [Indexed: 12/13/2022] Open
Abstract
N6-methyladenosine (m6A) RNA methylation is a conserved modification of RNA in eukaryotes. Pyricularia oryzae, a filamentous phytopathogenic fungus, is the cause of a destructive rice blast disease that can lead to significant declines in rice production. Here, we characterized the function of m6A RNA methylation in the development and virulence of P. oryzae by studying four genes with functional genomics. We found that PoIme4 is an N6-adenosine-methyltransferase, and deletion of PoIME4 led to decreased levels of m6A RNA methylation. PoYth1 and PoYth2 are two m6A-binding proteins, and deletion of PoYTH2 led to reduced conidiation. Co-localization experiments showed that PoAlkb1 (an mRNA:m6A demethylase) and PoYth1 were co-localized with PoDcp1 in the processing bodies involved in mRNA decay. Virulence tests showed that PoIME4, PoALKB1, PoYTH1 and PoYTH2 were involved in virulence on rice in P. oryzae. Therefore, these experimental evidences provide new and important information about the roles of m6A RNA methylation in fungal asexual reproduction and pathogenicity.
Collapse
Affiliation(s)
- Yongkai Shi
- State Key Laboratory for Rice Biology, College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Huan Wang
- State Key Laboratory for Rice Biology, College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Jing Wang
- State Key Laboratory for Rice Biology, College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Xiaohong Liu
- State Key Laboratory for Rice Biology, Biotechnology Institute, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Fucheng Lin
- State Key Laboratory for Rice Biology, Biotechnology Institute, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Jianping Lu
- State Key Laboratory for Rice Biology, College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| |
Collapse
|
177
|
Heck AM, Wilusz CJ. Small changes, big implications: The impact of m 6A RNA methylation on gene expression in pluripotency and development. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2019; 1862:194402. [PMID: 31325527 PMCID: PMC6742438 DOI: 10.1016/j.bbagrm.2019.07.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/21/2019] [Accepted: 07/12/2019] [Indexed: 12/20/2022]
Abstract
In order to maintain a state of self-renewal, yet retain the ability to rapidly differentiate in response to external signals, pluripotent cells exert tight control over gene expression at many levels. Recent studies have suggested that N6-methyladenosine (m6A) RNA methylation, one of the most abundant post-transcriptional modifications, is important for both pluripotency and differentiation. In this review, we summarize the current state of the m6A field, with emphasis on the impact of writers, erasers and readers of m6A on RNA metabolism and stem cell biology.
Collapse
Affiliation(s)
- Adam M Heck
- Program in Cell & Molecular Biology, and Department of Microbiology, Immunology & Pathology, Colorado State University, Fort Collins, CO 80525, United States of America
| | - Carol J Wilusz
- Program in Cell & Molecular Biology, and Department of Microbiology, Immunology & Pathology, Colorado State University, Fort Collins, CO 80525, United States of America.
| |
Collapse
|
178
|
Crystal structure of human YTHDC2 YTH domain. Biochem Biophys Res Commun 2019; 518:678-684. [PMID: 31472957 DOI: 10.1016/j.bbrc.2019.08.107] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 08/19/2019] [Indexed: 01/04/2023]
Abstract
N6-methyladenosine (m6A) "readers" play an important role in mRNA functions and metabolism. YTHDC2, as one of the m6A readers, controls fertileness through decreasing associated mRNA abundance and enhancing the translation efficiency of related mRNA via binding the targeted m6A RNA. However, how YTH domain of YTHDC2 recognize m6A RNA is still unknown. In this study, we determined the crystal structure of human YTHDC2 YTH domain, which adopts similar architecture to other solved YTH domain structures. YTHDC2 contains a conserved m6A binding pocket, and similar RNA binding surface shared by YTHDC1.
Collapse
|
179
|
Arguello AE, Leach RW, Kleiner RE. In Vitro Selection with a Site-Specifically Modified RNA Library Reveals the Binding Preferences of N 6-Methyladenosine Reader Proteins. Biochemistry 2019; 58:3386-3395. [PMID: 31287290 PMCID: PMC6684389 DOI: 10.1021/acs.biochem.9b00485] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Epitranscriptomic RNA modifications can serve as recognition elements for the recruitment of effector proteins (i.e., "readers") to modified transcripts. While these interactions play an important role in mRNA regulation, there is a major gap in our understanding of the sequence determinants critical for the binding of readers to modified sequence motifs. Here, we develop a high-throughput platform, relying upon in vitro selection with a site-specifically modified random sequence RNA library and next-generation sequencing, to profile the binding specificity of RNA modification reader proteins. We apply our approach to interrogate the effect of sequence context on the interactions of YTH-domain proteins with N6-methyladenosine (m6A)-modified RNA. We find that while the in vitro binding preferences of YTHDC1 strongly overlap with the well-characterized DR(m6A)CH motif, the related YTH-domain proteins YTHDF1 and YTHDF2 can bind tightly to noncanonical m6A-containing sequences. Our results reveal the principles underlying substrate selection by m6A reader proteins and provide a powerful approach for investigating protein-modified RNA interactions in an unbiased manner.
Collapse
Affiliation(s)
| | - Robert W. Leach
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Ralph E. Kleiner
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
180
|
Huang T, Guo J, Lv Y, Zheng Y, Feng T, Gao Q, Zeng W. Meclofenamic acid represses spermatogonial proliferation through modulating m 6A RNA modification. J Anim Sci Biotechnol 2019; 10:63. [PMID: 31333841 PMCID: PMC6621992 DOI: 10.1186/s40104-019-0361-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 05/10/2019] [Indexed: 12/12/2022] Open
Abstract
Background N6-Methyladenosine (m6A), the most prevalent modification in mammalian mRNA, plays important roles in numerous biological processes. Several m6A associated proteins such as methyltransferase like 3 (METTL3), methyltransferase like 14 (METTL14), α-ketoglutarate-dependent dioxygenase AlkB homolog 5 (ALKBH5) and YTH domain containing 2 (YTHDC2) are involved in the regulation of spermatogenesis and oogenesis. However, the role of the first detected m6A demethylase, fat mass and obesity associate protein (FTO), in germ cells remains elusive. Elucidation of FTO roles in the regulation of germ cell fate will provide novel insights into the mammalian reproduction. Methods Mouse GC-1 spg cells were treated with the ester form of meclofenamic acid (MA2) to inhibit the demethylase activity of FTO. The cellular m6A and m6Am level were analyzed through high performance liquid chromatography combined with tandem mass spectrometry (HPLC/MS-MS). The cell apoptosis was detected via TUNEL and flow cytometry. The cell proliferation was detected through EdU and western blot. The mRNA level of core cyclin dependent kinases (CDKs) was quantified via q-PCR. RNA decay assay were performed to detect RNA stability. Dual fluorescence assay was conducted to study whether MA2 affects the expression of CDK2 dependent on the m6A modification at 3’UTR. Results MA2 significantly increased the cellular m6A level and down-regulated the expression of CDK1, CDK2, CDK6 and CdC25a, resulting in arrest of G1/S transition and decrease of cell proliferation. MA2 downregulated CDK2 mRNA stability. Additionally, mutation of the predicted m6A sites in the Cdk2–3’UTR could mitigated the degradation of CDK2 mRNA after MA2 treatment. Conclusion MA2 affected CDKs expression through the m6A-dependent mRNA degradation pathway, and thus repressed spermatogonial proliferation. Electronic supplementary material The online version of this article (10.1186/s40104-019-0361-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tao Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Jiayin Guo
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Yinghua Lv
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Yi Zheng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Tongying Feng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Qiang Gao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Wenxian Zeng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi China
| |
Collapse
|
181
|
Ries RJ, Zaccara S, Klein P, Olarerin-George A, Namkoong S, Pickering BF, Patil DP, Kwak H, Lee JH, Jaffrey SR. m 6A enhances the phase separation potential of mRNA. Nature 2019; 571:424-428. [PMID: 31292544 PMCID: PMC6662915 DOI: 10.1038/s41586-019-1374-1] [Citation(s) in RCA: 449] [Impact Index Per Article: 89.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 06/13/2019] [Indexed: 12/11/2022]
Abstract
N6-methyladenosine (m6A) is the most prevalent modified nucleotide in mRNA1,2, with ~25% of mRNAs containing at least one m6A. Methylation of mRNA to form m6A is required for diverse cellular and physiological processes3. Although the presence of m6A in an mRNA can affect its fate in different ways, it is unclear how m6A directs this process and why the effects of m6A can vary in different cellular contexts. Here we show that the cytosolic m6A-binding proteins, YTHDF1–3, undergo liquid-liquid phase separation (LLPS) in vitro and in cells. This LLPS is markedly enhanced by mRNAs that contain multiple, but not single, m6A residues. Polymethylated mRNAs act as a multivalent scaffold for binding YTHDF proteins, juxtaposing their low-complexity domains, leading to phase separation. The resulting mRNA-YTHDF complexes then partition into different endogenous phase-separated compartments, such as P-bodies, stress granules, or neuronal RNA granules. m6A-mRNA is subject to compartment-specific regulation, including reduced mRNA stability and translation. These studies reveal that the number and distribution of m6A sites in cellular mRNAs can regulate and influence the composition of the phase-separated transcriptome. Additionally, these findings indicate that the cellular properties of m6A-modified mRNAs are governed by liquid-liquid phase separation principles.
Collapse
Affiliation(s)
- Ryan J Ries
- Department of Pharmacology, Weill-Cornell Medical College, Cornell University, New York, NY, USA
| | - Sara Zaccara
- Department of Pharmacology, Weill-Cornell Medical College, Cornell University, New York, NY, USA
| | - Pierre Klein
- Department of Pharmacology, Weill-Cornell Medical College, Cornell University, New York, NY, USA
| | - Anthony Olarerin-George
- Department of Pharmacology, Weill-Cornell Medical College, Cornell University, New York, NY, USA
| | - Sim Namkoong
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Brian F Pickering
- Department of Pharmacology, Weill-Cornell Medical College, Cornell University, New York, NY, USA
| | - Deepak P Patil
- Department of Pharmacology, Weill-Cornell Medical College, Cornell University, New York, NY, USA
| | - Hojoong Kwak
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Jun Hee Lee
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Samie R Jaffrey
- Department of Pharmacology, Weill-Cornell Medical College, Cornell University, New York, NY, USA.
| |
Collapse
|
182
|
Williams GD, Gokhale NS, Horner SM. Regulation of Viral Infection by the RNA Modification N6-Methyladenosine. Annu Rev Virol 2019; 6:235-253. [PMID: 31283446 DOI: 10.1146/annurev-virology-092818-015559] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In recent years, the RNA modification N6-methyladenosine (m6A) has been found to play a role in the life cycles of numerous viruses and also in the cellular response to viral infection. m6A has emerged as a regulator of many fundamental aspects of RNA biology. Here, we highlight recent advances in techniques for the study of m6A, as well as advances in our understanding of the cellular machinery that controls the addition, removal, recognition, and functions of m6A. We then summarize the many newly discovered roles of m6A during viral infection, including how it regulates innate and adaptive immune responses to infection. Overall, the goals of this review are to summarize the roles of m6A on both cellular and viral RNAs and to describe future directions for uncovering new functions of m6A during infection.
Collapse
Affiliation(s)
- Graham D Williams
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA; , ,
| | - Nandan S Gokhale
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA; , ,
| | - Stacy M Horner
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA; , , .,Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA
| |
Collapse
|
183
|
Chen XY, Zhang J, Zhu JS. The role of m 6A RNA methylation in human cancer. Mol Cancer 2019; 18:103. [PMID: 31142332 PMCID: PMC6540575 DOI: 10.1186/s12943-019-1033-z] [Citation(s) in RCA: 699] [Impact Index Per Article: 139.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/22/2019] [Indexed: 12/13/2022] Open
Abstract
N6-methyladenosine (m6A) is identified as the most common, abundant and conserved internal transcriptional modification, especially within eukaryotic messenger RNAs (mRNAs). M6A modification is installed by the m6A methyltransferases (METTL3/14, WTAP, RBM15/15B and KIAA1429, termed as "writers"), reverted by the demethylases (FTO and ALKBH5, termed as "erasers") and recognized by m6A binding proteins (YTHDF1/2/3, IGF2BP1 and HNRNPA2B1, termed as "readers"). Acumulating evidence shows that, m6A RNA methylation has an outsize effect on RNA production/metabolism and participates in the pathogenesis of multiple diseases including cancers. Until now, the molecular mechanisms underlying m6A RNA methylation in various tumors have not been comprehensively clarified. In this review, we mainly summarize the recent advances in biological function of m6A modifications in human cancer and discuss the potential therapeutic strategies.
Collapse
Affiliation(s)
- Xiao-Yu Chen
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Yishan Road 600, Shanghai, 200233, China
| | - Jing Zhang
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Yishan Road 600, Shanghai, 200233, China.
| | - Jin-Shui Zhu
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Yishan Road 600, Shanghai, 200233, China.
| |
Collapse
|
184
|
Notarangelo M, Zucal C, Modelska A, Pesce I, Scarduelli G, Potrich C, Lunelli L, Pederzolli C, Pavan P, la Marca G, Pasini L, Ulivi P, Beltran H, Demichelis F, Provenzani A, Quattrone A, D'Agostino VG. Ultrasensitive detection of cancer biomarkers by nickel-based isolation of polydisperse extracellular vesicles from blood. EBioMedicine 2019; 43:114-126. [PMID: 31047861 PMCID: PMC6558028 DOI: 10.1016/j.ebiom.2019.04.039] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/06/2019] [Accepted: 04/18/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Extracellular vesicles (EVs) are secreted membranous particles intensively studied for their potential cargo of diagnostic markers. Efficient and cost-effective isolation methods need to be established for the reproducible and high-throughput study of EVs in the clinical practice. METHODS We designed the nickel-based isolation (NBI) to rapidly isolate EVs and combined it with newly-designed amplified luminescent proximity homogeneous assay or digital PCR to detect biomarkers of clinical utility. FINDINGS From plasma of 46 healthy donors, we systematically recovered small EV (~250 nm of mean diameter; ~3 × 1010/ml) and large EV (~560 nm of mean diameter; ~5 × 108/ml) lineages ranging from 50 to 700 nm, which displayed hematopoietic/endothelial cell markers that were also used in spike-in experiments using EVs from tumor cell lines. In retrospective studies, we detected picomolar concentrations of prostate-specific membrane antigen (PSMA) in fractions of EVs isolated from the plasma of prostate cancer patients, discriminating them from control subjects. Directly from oil-encapsulated EVs for digital PCR, we identified somatic BRAF and KRAS mutations circulating in the plasma of metastatic colorectal cancer (CRC) patients, matching 100% of concordance with tissue diagnostics. Importantly, with higher sensitivity and specificity compared with immuno-isolated EVs, we revealed additional somatic alterations in 7% of wild-type CRC cases that were subsequently validated by further inspections in the matched tissue biopsies. INTERPRETATION We propose NBI-combined approaches as simple, fast, and robust strategies to probe the tumor heterogeneity and contribute to the development of EV-based liquid biopsy studies. FUND: Associazione Italiana per la Ricerca sul Cancro (AIRC), Fondazione Cassa di Risparmio Trento e Rovereto (CARITRO), and the Italian Ministero Istruzione, Università e Ricerca (Miur).
Collapse
Affiliation(s)
- Michela Notarangelo
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, Trento 38123, Italy
| | - Chiara Zucal
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, Trento 38123, Italy
| | - Angelika Modelska
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, Trento 38123, Italy
| | - Isabella Pesce
- Cell Analysis and Separation Core Facility (CIBIO), University of Trento, Via Sommarive 9, Trento 38123, Italy
| | - Giorgina Scarduelli
- Advanced Imaging Core Facility (CIBIO), University of Trento, Via Sommarive 9, Trento 38123, Italy
| | - Cristina Potrich
- Fondazione Bruno Kessler (FBK), Laboratory of Biomolecular Sequence and Structure Analysis for Health, Trento, Via Sommarive 14, Trento 38123, Italy
| | - Lorenzo Lunelli
- Fondazione Bruno Kessler (FBK), Laboratory of Biomolecular Sequence and Structure Analysis for Health, Trento, Via Sommarive 14, Trento 38123, Italy
| | - Cecilia Pederzolli
- Fondazione Bruno Kessler (FBK), Laboratory of Biomolecular Sequence and Structure Analysis for Health, Trento, Via Sommarive 14, Trento 38123, Italy
| | - Paola Pavan
- Immunohematology and Cell Factory Unit, Meyer Children's University Hospital, Viale Pieraccini 24, Florence 50139, Italy
| | - Giancarlo la Marca
- Department of Experimental and Clinical Biomedical Sciences, Centro di Eccellenza Denothe, Aou Meyer University of Florence, Viale Pieraccini 6, 50139, Italy
| | - Luigi Pasini
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via Piero Maroncelli 40, Meldola 47014, Italy
| | - Paola Ulivi
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via Piero Maroncelli 40, Meldola 47014, Italy
| | - Himisha Beltran
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA.
| | - Francesca Demichelis
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, Trento 38123, Italy
| | - Alessandro Provenzani
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, Trento 38123, Italy
| | - Alessandro Quattrone
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, Trento 38123, Italy
| | - Vito G D'Agostino
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, Trento 38123, Italy.
| |
Collapse
|
185
|
Functions of RNA N6-methyladenosine modification in cancer progression. Mol Biol Rep 2019; 46:2567-2575. [PMID: 30911972 DOI: 10.1007/s11033-019-04655-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 11/07/2018] [Indexed: 01/05/2023]
Abstract
N6-methyladenosine (m6A) serves as a major RNA methylation modification and impacts the initiation and progression of various human cancers through diverse mechanisms. It has been reported that m6A RNA methylation is involved in different physiological and pathological processes, including stem cell differentiation and motility, immune response, cellular stress, tissue renewal and viral infection. In this review, the m6A modification and its regulatory functions in a few major cancers is introduced. The detection approaches for the m6A sites identification are discussed. Additionally, the potential of the RNA m6A modification in clinical application is discussed.
Collapse
|
186
|
Abstract
Posttranscriptional regulation of RNA has emerged as an important regulator of genetic information flow in eukaryotic systems. In particular, chemical modifications of RNA have recently been established as key regulatory marks that affect the lifetime, location, trafficking, and function of messenger RNA (mRNA). In mammalian systems, N6-methyladenosine (m6A) is the most prevalent mRNA modification, and the writer, eraser, and reader proteins that install, remove, or recognize m6A have been rapidly uncovered and studied at the whole cell level. Understanding the effects of specific m6A modifications and their regulation at the single transcript level is the key next step to understanding the mechanism and consequences of epitranscriptomic regulation. We recently developed programmable m6A reader proteins to study the effects of epitranscriptomic regulatory factors at individual RNA transcripts. In this chapter, we discuss the application of targeted m6A readers to study RNA regulation at single endogenous sites. We briefly introduce what is currently known about the N6-methyltranscriptome and the Cas13 RNA-targeting family of proteins before detailing our protocol to study RNA modifications with targeted reader proteins.
Collapse
Affiliation(s)
- Simone Rauch
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, United States; Department of Chemistry, The University of Chicago, Chicago, IL, United States
| | - Bryan C Dickinson
- Department of Chemistry, The University of Chicago, Chicago, IL, United States.
| |
Collapse
|
187
|
Lesbirel S, Wilson SA. The m 6A‑methylase complex and mRNA export. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2019; 1862:319-328. [PMID: 30290229 PMCID: PMC6414750 DOI: 10.1016/j.bbagrm.2018.09.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/26/2018] [Accepted: 09/28/2018] [Indexed: 11/21/2022]
Abstract
During synthesis, mRNA undergoes a number of modifications such as capping, splicing and polyadenylation. These processes are coupled with the orderly deposition of the TREX complex on the mRNA and subsequent recruitment of the NXF1-P15 heterodimer which stimulates the nuclear export of mature mRNAs. mRNAs also undergo a number of internal modifications, the most common of which is the N6‑methyladenosine (m6A) modification. In this review we discuss the recent evidence of coupling between the m6A modification, RNA processing and export.
Collapse
Affiliation(s)
- Simon Lesbirel
- Sheffield Institute For Nucleic Acids (SInFoNiA), Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court Western Bank, Sheffield S10 2TN, UK
| | - Stuart A Wilson
- Sheffield Institute For Nucleic Acids (SInFoNiA), Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court Western Bank, Sheffield S10 2TN, UK.
| |
Collapse
|
188
|
Functions of RNA N6-methyladenosine modification in cancer progression. Mol Biol Rep 2019; 46:1383-1391. [PMID: 30788764 DOI: 10.1007/s11033-018-4471-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 11/07/2018] [Indexed: 10/27/2022]
Abstract
N6-methyladenosine (m6A) serves as a major RNA methylation modification and impacts the initiation and progression of various human cancers through diverse mechanisms. It has been reported that m6A RNA methylation is involved in different physiological and pathological processes, including stem cell differentiation and motility, immune response, cellular stress, tissue renewal and viral infection. In this review, the m6A modification and its regulatory functions in a few major cancers is introduced. The detection approaches for the m6A sites identification are discussed. Additionally, the potential of the RNA m6A modification in clinical application is discussed.
Collapse
|
189
|
Wiedmer L, Eberle SA, Bedi RK, Śledź P, Caflisch A. A Reader-Based Assay for m6A Writers and Erasers. Anal Chem 2019; 91:3078-3084. [DOI: 10.1021/acs.analchem.8b05500] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lars Wiedmer
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Stefanie Alexandra Eberle
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Rajiv Kumar Bedi
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Paweł Śledź
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Amedeo Caflisch
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
190
|
Berlivet S, Scutenaire J, Deragon JM, Bousquet-Antonelli C. Readers of the m 6A epitranscriptomic code. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:329-342. [PMID: 30660758 DOI: 10.1016/j.bbagrm.2018.12.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 12/20/2018] [Accepted: 12/28/2018] [Indexed: 12/21/2022]
Abstract
N6-methyl adenosine (m6A) is the most prevalent and evolutionarily conserved, modification of polymerase II transcribed RNAs. By post-transcriptionally controlling patterns of gene expression, m6A deposition is crucial for organism reproduction, development and likely stress responses. m6A mostly mediates its effect by recruiting reader proteins that either directly accommodate the modified residue in a hydrophobic pocket formed by their YTH domain, or otherwise have their affinity positively influenced by the presence of m6A. We firstly describe here the evolutionary history, and review known molecular and physiological roles of eukaryote YTH readers. In the second part, we present non YTH-proteins whose roles as m6A readers largely remain to be explored. The diversity and multiplicity of m6A readers together with the possibility to regulate their expression and function in response to various cues, offers a multitude of possible combinations to rapidly and finely tune gene expression patterns and hence cellular plasticity. This article is part of a Special Issue entitled: mRNA modifications in gene expression control edited by Dr. Soller Matthias and Dr. Fray Rupert.
Collapse
Affiliation(s)
- Soizik Berlivet
- LGDP-UMR5096 CNRS, 58 Av Paul Alduy, 66860 Perpignan, France; LGDP-UMR5096, Université de Perpignan, Via Domitia, 58 Av Paul Alduy, 66860 Perpignan, France
| | - Jérémy Scutenaire
- LGDP-UMR5096 CNRS, 58 Av Paul Alduy, 66860 Perpignan, France; LGDP-UMR5096, Université de Perpignan, Via Domitia, 58 Av Paul Alduy, 66860 Perpignan, France
| | - Jean-Marc Deragon
- LGDP-UMR5096 CNRS, 58 Av Paul Alduy, 66860 Perpignan, France; LGDP-UMR5096, Université de Perpignan, Via Domitia, 58 Av Paul Alduy, 66860 Perpignan, France; Institut Universitaire de France (IUF), 1 rue Descartes, 75231 Paris Cedex 05, France
| | - Cécile Bousquet-Antonelli
- LGDP-UMR5096 CNRS, 58 Av Paul Alduy, 66860 Perpignan, France; LGDP-UMR5096, Université de Perpignan, Via Domitia, 58 Av Paul Alduy, 66860 Perpignan, France.
| |
Collapse
|
191
|
m⁶A mRNA Destiny: Chained to the rhYTHm by the YTH-Containing Proteins. Genes (Basel) 2019; 10:genes10010049. [PMID: 30650668 PMCID: PMC6356822 DOI: 10.3390/genes10010049] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/08/2019] [Accepted: 01/10/2019] [Indexed: 01/04/2023] Open
Abstract
The control of gene expression is a multi-layered process occurring at the level of DNA, RNA, and proteins. With the emergence of highly sensitive techniques, new aspects of RNA regulation have been uncovered leading to the emerging field of epitranscriptomics dealing with RNA modifications. Among those post-transcriptional modifications, N6-methyladenosine (m6A) is the most prevalent in messenger RNAs (mRNAs). This mark can either prevent or stimulate the formation of RNA-protein complexes, thereby influencing mRNA-related mechanisms and cellular processes. This review focuses on proteins containing a YTH domain (for YT521-B Homology), a small building block, that selectively detects the m6A nucleotide embedded within a consensus motif. Thereby, it contributes to the recruitment of various effectors involved in the control of mRNA fates through adjacent regions present in the different YTH-containing proteins.
Collapse
|
192
|
Bi Z, Liu Y, Zhao Y, Yao Y, Wu R, Liu Q, Wang Y, Wang X. A dynamic reversible RNA N 6 -methyladenosine modification: current status and perspectives. J Cell Physiol 2019; 234:7948-7956. [PMID: 30644095 DOI: 10.1002/jcp.28014] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/05/2018] [Indexed: 12/25/2022]
Abstract
N6 -methyladenosine (m6 A), as the most abundant RNA epigenetic modifications, has been shown to play critical roles in various biological functions. Research about enzymes that can catalyze and remove m6 A have revealed its comprehensive roles in messenger RNA (mRNA) metabolism and other physiological processes. The "readers" including YTH domain-containing proteins, hnRNPC, hnRNPG, hnRNPA2B1, IGF2BP1, IGF2BP2, and IGF2BP3, which can affect the fates of mRNA in an m6 A-dependent manner. In this review, we focus on recent advances in the research of the m6 A modifications, especially about the latest functions of its writers, erasers, readers in RNA metabolism, cancer, and lipid metabolism. In the end, we provide insights into the underlying molecular mechanisms of m6 A modifications.
Collapse
Affiliation(s)
- Zhen Bi
- College of Animal Sciences, Zhejiang University, Key Laboratory of Animal Nutrition & Feed Sciences, Ministry of Agriculture, Zhejiang Provincial Laboratory of Feed and Animal Nutrition, No. 866 Yuhangtang Road, Hangzhou, Zhejiang, China
| | - Youhua Liu
- College of Animal Sciences, Zhejiang University, Key Laboratory of Animal Nutrition & Feed Sciences, Ministry of Agriculture, Zhejiang Provincial Laboratory of Feed and Animal Nutrition, No. 866 Yuhangtang Road, Hangzhou, Zhejiang, China
| | - Yuanling Zhao
- College of Animal Sciences, Zhejiang University, Key Laboratory of Animal Nutrition & Feed Sciences, Ministry of Agriculture, Zhejiang Provincial Laboratory of Feed and Animal Nutrition, No. 866 Yuhangtang Road, Hangzhou, Zhejiang, China
| | - Yongxi Yao
- College of Animal Sciences, Zhejiang University, Key Laboratory of Animal Nutrition & Feed Sciences, Ministry of Agriculture, Zhejiang Provincial Laboratory of Feed and Animal Nutrition, No. 866 Yuhangtang Road, Hangzhou, Zhejiang, China
| | - Ruifan Wu
- College of Animal Sciences, Zhejiang University, Key Laboratory of Animal Nutrition & Feed Sciences, Ministry of Agriculture, Zhejiang Provincial Laboratory of Feed and Animal Nutrition, No. 866 Yuhangtang Road, Hangzhou, Zhejiang, China
| | - Qing Liu
- College of Animal Sciences, Zhejiang University, Key Laboratory of Animal Nutrition & Feed Sciences, Ministry of Agriculture, Zhejiang Provincial Laboratory of Feed and Animal Nutrition, No. 866 Yuhangtang Road, Hangzhou, Zhejiang, China
| | - Yizhen Wang
- College of Animal Sciences, Zhejiang University, Key Laboratory of Animal Nutrition & Feed Sciences, Ministry of Agriculture, Zhejiang Provincial Laboratory of Feed and Animal Nutrition, No. 866 Yuhangtang Road, Hangzhou, Zhejiang, China
| | - Xinxia Wang
- College of Animal Sciences, Zhejiang University, Key Laboratory of Animal Nutrition & Feed Sciences, Ministry of Agriculture, Zhejiang Provincial Laboratory of Feed and Animal Nutrition, No. 866 Yuhangtang Road, Hangzhou, Zhejiang, China
| |
Collapse
|
193
|
Abstract
The central dogma of molecular biology introduced by Crick describes a linear flow of information from DNA to mRNA to protein. Since then it has become evident that RNA undergoes several maturation steps such as capping, splicing, 3'-end processing, and editing. Likewise, nucleotide modifications are common in mRNA and are present in all organisms impacting on the regulation of gene expression. The most abundant modification found in mRNA is N6-methyladenosine (m6A). Deposition of m6A is a nuclear process and is performed by a megadalton writer complex primarily on mRNAs, but also on microRNAs and lncRNAs. The m6A methylosome is composed of the enzymatic core components METTL3 and METTL14, and several auxiliary proteins necessary for its correct positioning and functioning, which are WTAP, VIRMA, FLACC, RBM15, and HAKAI. The m6A epimark is decoded by YTH domain-containing reader proteins YTHDC and YTHDF, but METTLs can act as "readers" as well. Eraser proteins, such as FTO and ALKBH5, can remove the methyl group. Here we review recent progress on the role of m6A in regulating gene expression in light of Crick's central dogma of molecular biology. In particular, we address the complexity of the writer complex from an evolutionary perspective to obtain insights into the mechanism of ancient m6A methylation and its regulation.
Collapse
Affiliation(s)
- Dario L Balacco
- School of Biosciences, College of Life and Environmental Sciences , University of Birmingham , Edgbaston, Birmingham B15 2TT , United Kingdom
| | - Matthias Soller
- School of Biosciences, College of Life and Environmental Sciences , University of Birmingham , Edgbaston, Birmingham B15 2TT , United Kingdom
| |
Collapse
|
194
|
Abstract
RNA modifications have generated much interest in the virology field, as recent works have shown that many viruses harbor these marks and modify cellular marks. The most abundant mRNA modification in eukaryotic cells, N6-methyladenosine (m6A), has been examined extensively at the genome-wide scale in both cellular and viral contexts. This Gem discusses the role of m6A in gene regulation and describes recent advancements in Kaposi's sarcoma-associated herpesvirus (KSHV) and simian virus 40 (SV40) research. We provide insights into future research related to m6A in DNA viruses.
Collapse
Affiliation(s)
- Brandon Tan
- Department of Systems Biology, City of Hope, Monrovia, California, USA
| | - Shou-Jiang Gao
- UPMC Hillman Cancer Center, Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Laboratory of Human Virology and Oncology, Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| |
Collapse
|
195
|
Purslow JA, Venditti V. 1H, 15N, 13C backbone resonance assignment of human Alkbh5. BIOMOLECULAR NMR ASSIGNMENTS 2018; 12:297-301. [PMID: 29858729 DOI: 10.1007/s12104-018-9826-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 05/31/2018] [Indexed: 06/08/2023]
Abstract
N6-methyladenosine (m6A) is the most abundant and reversible post-transcriptional modification in eukaryotic mRNA and long non-coding RNA (lncRNA). The central role of m6A in various physiological processes has generated considerable biological and pharmacological interest. Alkbh5 (AlkB homologue 5) belongs to the AlkB family and is a non-heme Fe(II)/α-ketoglutarate-dependent dioxygenase that selectively catalyzes the oxidative demethylation of m6A. Herein, we report the backbone 1H, 15N, 13C chemical shift assignment of a fully active, 26 kDa construct of human Alkbh5. Experiments were acquired at 25 °C by heteronuclear multidimensional NMR spectroscopy. Collectively, 92% of all backbone resonances were assigned, with 195 out of a possible 212 residues assigned in the 1H-15N TROSY spectrum. Using the program TALOS+, a secondary structure prediction was generated from the assigned backbone resonance that is consistent with the previously reported X-ray structure of the enzyme. The reported assignment will permit investigations of the protein structural dynamics anticipated to provide crucial insight regarding fundamental aspects in the recognition and enzyme regulation processes.
Collapse
Affiliation(s)
- Jeffrey A Purslow
- Department of Chemistry, Iowa State University, Hach Hall, 2438 Pammel Drive, Ames, IA, 50011, USA
| | - Vincenzo Venditti
- Department of Chemistry, Iowa State University, Hach Hall, 2438 Pammel Drive, Ames, IA, 50011, USA.
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
196
|
Kretschmer J, Rao H, Hackert P, Sloan KE, Höbartner C, Bohnsack MT. The m 6A reader protein YTHDC2 interacts with the small ribosomal subunit and the 5'-3' exoribonuclease XRN1. RNA (NEW YORK, N.Y.) 2018; 24:1339-1350. [PMID: 29970596 PMCID: PMC6140455 DOI: 10.1261/rna.064238.117] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 06/26/2018] [Indexed: 05/20/2023]
Abstract
N6-methyladenosine (m6A) modifications in RNAs play important roles in regulating many different aspects of gene expression. While m6As can have direct effects on the structure, maturation, or translation of mRNAs, such modifications can also influence the fate of RNAs via proteins termed "readers" that specifically recognize and bind modified nucleotides. Several YTH domain-containing proteins have been identified as m6A readers that regulate the splicing, translation, or stability of specific mRNAs. In contrast to the other YTH domain-containing proteins, YTHDC2 has several defined domains and here, we have analyzed the contribution of these domains to the RNA and protein interactions of YTHDC2. The YTH domain of YTHDC2 preferentially binds m6A-containing RNAs via a conserved hydrophobic pocket, whereas the ankyrin repeats mediate an RNA-independent interaction with the 5'-3' exoribonuclease XRN1. We show that the YTH and R3H domains contribute to the binding of YTHDC2 to cellular RNAs, and using crosslinking and analysis of cDNA (CRAC), we reveal that YTHDC2 interacts with the small ribosomal subunit in close proximity to the mRNA entry/exit sites. YTHDC2 was recently found to promote a "fast-track" expression program for specific mRNAs, and our data suggest that YTHDC2 accomplishes this by recruitment of the RNA degradation machinery to regulate the stability of m6A-containing mRNAs and by utilizing its distinct RNA-binding domains to bridge interactions between m6A-containing mRNAs and the ribosomes to facilitate their efficient translation.
Collapse
Affiliation(s)
- Jens Kretschmer
- Department of Molecular Biology, University Medical Centre Göttingen, 37073 Göttingen, Germany
| | - Harita Rao
- Institute for Organic and Biomolecular Chemistry, Georg-August-University, 37077 Göttingen, Germany
| | - Philipp Hackert
- Department of Molecular Biology, University Medical Centre Göttingen, 37073 Göttingen, Germany
| | - Katherine E Sloan
- Department of Molecular Biology, University Medical Centre Göttingen, 37073 Göttingen, Germany
| | - Claudia Höbartner
- Institute for Organic and Biomolecular Chemistry, Georg-August-University, 37077 Göttingen, Germany
- Institute for Organic Chemistry, University Würzburg, 97074 Würzburg, Germany
| | - Markus T Bohnsack
- Department of Molecular Biology, University Medical Centre Göttingen, 37073 Göttingen, Germany
- Göttingen Center for Molecular Biosciences, Georg-August-University, 37073 Göttingen, Germany
| |
Collapse
|
197
|
Wu X, Sang L, Gong Y. N6-methyladenine RNA modification and cancers. Am J Cancer Res 2018; 8:1957-1966. [PMID: 30416848 PMCID: PMC6220143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 09/28/2018] [Indexed: 06/09/2023] Open
Abstract
Similar to DNA methylation modifications, N6-methyladenine (m6A) has been identified as a dynamic and reversible modification in messenger RNA (mRNA), regulated by m6A methyltransferases and demethylases. m6A modifications regulate gene expressions and play vital roles in many life processes. Some proteins serve as m6A-binding proteins to perform the m6A-modified biological functions. Recently, m6A modifications have been reported to play critical roles in human cancers, including lung cancer, brain tumor, leukemia, and many others. In this comprehensive review, we have described the roles played by m6A modifications of mRNA in the development of cancers. These modifications appear to have an oncogenic role in some cancers while a tumor-suppressor role in others. Therefore, it would be of great significance to study the biological functions of genes regulated by m6A in different cancers and identify the key m6A target genes to understand the potential mechanism underlying the pathogenesis of cancer.
Collapse
Affiliation(s)
- Xia Wu
- Department of Hematology, West China Hospital, Sichuan University Chengdu, Sichuan Province, China
| | - Lina Sang
- Department of Hematology, West China Hospital, Sichuan University Chengdu, Sichuan Province, China
| | - Yuping Gong
- Department of Hematology, West China Hospital, Sichuan University Chengdu, Sichuan Province, China
| |
Collapse
|
198
|
Lesbirel S, Viphakone N, Parker M, Parker J, Heath C, Sudbery I, Wilson SA. The m 6A-methylase complex recruits TREX and regulates mRNA export. Sci Rep 2018; 8:13827. [PMID: 30218090 PMCID: PMC6138711 DOI: 10.1038/s41598-018-32310-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 09/04/2018] [Indexed: 11/09/2022] Open
Abstract
N6-methyladenosine (m6A) is the most abundant internal modification of eukaryotic mRNA. This modification has previously been shown to alter the export kinetics for mRNAs though the molecular details surrounding this phenomenon remain poorly understood. Recruitment of the TREX mRNA export complex to mRNA is driven by transcription, 5' capping and pre-mRNA splicing. Here we identify a fourth mechanism in human cells driving the association of TREX with mRNA involving the m6A methylase complex. We show that the m6A complex recruits TREX to m6A modified mRNAs and this process is essential for their efficient export. TREX also stimulates recruitment of the m6A reader protein YTHDC1 to the mRNA and the m6A complex influences the interaction of TREX with YTHDC1. Together our studies reveal a key role for TREX in the export of m6A modified mRNAs.
Collapse
Affiliation(s)
- Simon Lesbirel
- Sheffield Institute For Nucleic Acids (SInFoNiA), Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court Western Bank, Sheffield, S10 2TN, UK
| | - Nicolas Viphakone
- Sheffield Institute For Nucleic Acids (SInFoNiA), Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court Western Bank, Sheffield, S10 2TN, UK
| | - Matthew Parker
- Sheffield Institute For Nucleic Acids (SInFoNiA), Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court Western Bank, Sheffield, S10 2TN, UK
| | - Jacob Parker
- Sheffield Institute For Nucleic Acids (SInFoNiA), Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court Western Bank, Sheffield, S10 2TN, UK
| | - Catherine Heath
- Sheffield Institute For Nucleic Acids (SInFoNiA), Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court Western Bank, Sheffield, S10 2TN, UK
| | - Ian Sudbery
- Sheffield Institute For Nucleic Acids (SInFoNiA), Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court Western Bank, Sheffield, S10 2TN, UK
| | - Stuart A Wilson
- Sheffield Institute For Nucleic Acids (SInFoNiA), Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court Western Bank, Sheffield, S10 2TN, UK.
| |
Collapse
|
199
|
Knuckles P, Bühler M. Adenosine methylation as a molecular imprint defining the fate of RNA. FEBS Lett 2018; 592:2845-2859. [PMID: 29782652 PMCID: PMC6175371 DOI: 10.1002/1873-3468.13107] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 05/14/2018] [Accepted: 05/17/2018] [Indexed: 11/12/2022]
Abstract
Multiple lines of evidence suggest the RNA modification N6‐methyladonsine (m6A), which is installed in the nucleus cotranscriptionally and, thereafter, serves as a reversible chemical imprint that influences several steps of mRNA metabolism. This includes but is not limited to RNA folding, splicing, stability, transport and translation. In this Review we focus on the current view of the nuclear installation of m6A as well as the molecular players involved, the so called m6A writers. We also explore the effector proteins, or m6A readers, that decode the imprint in different cellular contexts and compartments, and ultimately, the way the modification influences the lifecycle of an RNA molecule. The wide evolutionary conservation of m6A and its critical role in physiology and disease warrants further studies into this burgeoning and exciting field.
Collapse
Affiliation(s)
- Philip Knuckles
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Marc Bühler
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.,University of Basel, Switzerland
| |
Collapse
|
200
|
Mauer J, Jaffrey SR. FTO, m6Am, and the hypothesis of reversible epitranscriptomic mRNA modifications. FEBS Lett 2018; 592:2012-2022. [DOI: 10.1002/1873-3468.13092] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 04/27/2018] [Accepted: 05/02/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Jan Mauer
- BioMed X Innovation Center; Im Neuenheimer Feld; Heidelberg Germany
- Department of Pharmacology; Weill Medical College; Cornell University; New York NY USA
| | - Samie R. Jaffrey
- Department of Pharmacology; Weill Medical College; Cornell University; New York NY USA
| |
Collapse
|