151
|
Prasad R, Kawaguchi S, Ng DTW. A nucleus-based quality control mechanism for cytosolic proteins. Mol Biol Cell 2010; 21:2117-27. [PMID: 20462951 PMCID: PMC2893977 DOI: 10.1091/mbc.e10-02-0111] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Intracellular quality control systems monitor protein conformational states. Irreversibly misfolded proteins are cleared through specialized degradation pathways. Their importance is underscored by numerous pathologies caused by aberrant proteins. In the cytosol, where most proteins are synthesized, quality control remains poorly understood. Stress-inducible chaperones and the 26S proteasome are known mediators but how their activities are linked is unclear. To better understand these mechanisms, a panel of model misfolded substrates was analyzed in detail. Surprisingly, their degradation occurs not in the cytosol but in the nucleus. Degradation is dependent on the E3 ubiquitin ligase San1p, known previously to direct the turnover of damaged nuclear proteins. A second E3 enzyme, Ubr1p, augments this activity but is insufficient by itself. San1p and Ubr1p are not required for nuclear import of substrates. Instead, the Hsp70 chaperone system is needed for efficient import and degradation. These data reveal a new function of the nucleus as a compartment central to the quality control of cytosolic proteins.
Collapse
Affiliation(s)
- Rupali Prasad
- Temasek Life Sciences Laboratory and Department of Biological Sciences, National University of Singapore, Singapore 117604
| | | | | |
Collapse
|
152
|
Francisco AB, Singh R, Li S, Vani AK, Yang L, Munroe RJ, Diaferia G, Cardano M, Biunno I, Qi L, Schimenti JC, Long Q. Deficiency of suppressor enhancer Lin12 1 like (SEL1L) in mice leads to systemic endoplasmic reticulum stress and embryonic lethality. J Biol Chem 2010; 285:13694-703. [PMID: 20197277 PMCID: PMC2859532 DOI: 10.1074/jbc.m109.085340] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Revised: 03/01/2010] [Indexed: 01/08/2023] Open
Abstract
Stress in the endoplasmic reticulum (ER) plays an important causal role in the pathogenesis of several chronic diseases such as Alzheimer, Parkinson, and diabetes mellitus. Insight into the genetic determinants responsible for ER homeostasis will greatly facilitate the development of therapeutic strategies for the treatment of these debilitating diseases. Suppressor enhancer Lin12 1 like (SEL1L) is an ER membrane protein and was thought to be involved in the quality control of secreted proteins. Here we show that the mice homozygous mutant for SEL1L were embryonic lethal. Electron microscopy studies revealed a severely dilated ER in the fetal liver of mutant embryos, indicative of alteration in ER homeostasis. Consistent with this, several ER stress responsive genes were significantly up-regulated in the mutant embryos. Mouse embryonic fibroblast cells deficient in SEL1L exhibited activated unfolded protein response at the basal state, impaired ER-associated protein degradation, and reduced protein secretion. Furthermore, markedly increased apoptosis was observed in the forebrain and dorsal root ganglions of mutant embryos. Taken together, our results demonstrate an essential role for SEL1L in protein quality control during mouse embryonic development.
Collapse
Affiliation(s)
| | | | - Shuai Li
- From the Department of Animal Science and
| | | | - Liu Yang
- Division of Nutritional Sciences, College of Agriculture and Life Sciences, and
| | - Robert J. Munroe
- the Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York 14850
| | | | - Marina Cardano
- BioRep, Via Fantoli 16/15, 20090 Milan, Italy
- the Doctorate School of Molecular Medicine, University of Milan, 20090 Milan, Italy, and
| | - Ida Biunno
- the Institute for Biomedical Technologies, National Research Council, Via Fratelli Cervi, 93, 20090 Segrate, Milan, Italy
| | - Ling Qi
- Division of Nutritional Sciences, College of Agriculture and Life Sciences, and
| | - John C. Schimenti
- the Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York 14850
| | | |
Collapse
|
153
|
Oslowski CM, Urano F. The binary switch between life and death of endoplasmic reticulum-stressed beta cells. Curr Opin Endocrinol Diabetes Obes 2010; 17:107-12. [PMID: 20125004 PMCID: PMC2898716 DOI: 10.1097/med.0b013e3283372843] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
PURPOSE OF REVIEW beta-Cell death is an important pathogenic component of both type 1 and type 2 diabetes. However, the specific molecular pathways and interactions involved in this process are not completely understood. Increasing evidence indicates that a type of cell stress called endoplasmic reticulum stress (ER stress) plays an important role in beta-cell death. In the present article, we discuss a potential paradigm of ER stress-mediated beta-cell death. RECENT FINDINGS Upon ER stress conditions, a signaling network termed the unfolded protein response (UPR) is activated. The UPR regulates adaptive effectors to attenuate ER stress and restore ER homeostasis promoting cell survival. Paradoxically the UPR also regulates apoptotic effectors. When adaptive effectors fail to attenuate ER stress, these apoptotic effectors take into effect leading to cell death. The nature of this switch between life and death is currently under study. SUMMARY Depending on the nature of the stress condition, the UPR either protects beta cells or promotes their death. The mechanisms of this switch are not well understood but involve the balance between adaptive and apoptotic factors regulated by the UPR. In the present article, we review examples of this UPR balancing act between life and death and the potential mechanisms involved.
Collapse
Affiliation(s)
- Christine M. Oslowski
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, MA 01605, U.S.A
| | - Fumihiko Urano
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, MA 01605, U.S.A
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, U.S.A
| |
Collapse
|
154
|
Kanehara K, Xie W, Ng DTW. Modularity of the Hrd1 ERAD complex underlies its diverse client range. ACTA ACUST UNITED AC 2010; 188:707-16. [PMID: 20212318 PMCID: PMC2835937 DOI: 10.1083/jcb.200907055] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Additional factors combine with the core Hrd1 complex in a modular fashion, enabling it to recognize a variety of substrates. Secretory protein folding is monitored by endoplasmic reticulum (ER) quality control mechanisms. Misfolded proteins are retained and targeted to ER-associated degradation (ERAD) pathways. At their core are E3 ubiquitin ligases, which organize factors that recognize, ubiquitinate, and translocate substrates. Of these, we report that the Hrd1 complex manages three distinct substrate classes. A core complex is required for all classes and is sufficient for some membrane proteins. The accessory factors Usa1p and Der1p adapt the complex to process luminal substrates. Their integration is sufficient to process molecules bearing glycan-independent degradation signals. The presence of Yos9p extends the substrate range by mediating the recognition of glycan-based degradation signals. This modular organization enables the Hrd1 complex to recognize topologically diverse substrates. The Hrd1 system does not directly evaluate the folding state of polypeptides. Instead, it does so indirectly, by recognizing specific embedded signals displayed upon misfolding.
Collapse
Affiliation(s)
- Kazue Kanehara
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore
| | | | | |
Collapse
|
155
|
Xie W, Ng DTW. ERAD substrate recognition in budding yeast. Semin Cell Dev Biol 2010; 21:533-9. [PMID: 20178855 DOI: 10.1016/j.semcdb.2010.02.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Accepted: 02/15/2010] [Indexed: 11/17/2022]
Abstract
During protein synthesis, the orderly progression of folding, modification, and assembly is paramount to function and vis-à-vis cellular viability. Accordingly, sophisticated quality control mechanisms have evolved to monitor protein maturation throughout the cell. Proteins failing at any step are segregated and degraded as a preventative measure against potential toxicity. Although protein quality control is generally poorly understood, recent research advances in endoplasmic reticulum-associated degradation (ERAD) pathways have provided the most detailed view so far. The discovery of distinct substrate processing sites established a biochemical basis for genetic profiles of model misfolded proteins. Detailed mechanisms for substrate recognition were recently uncovered. For some proteins, sequential glycan trimming steps set a time window for folding. Proteins still unfolded at the final stage expose a specific degradation signal recognized by the ERAD machinery. Through this mechanism, the system does not in fact know that a molecule is "misfolded". Instead, it goes by the premise that proteins past due have veered off their normal folding pathways and therefore aberrant.
Collapse
Affiliation(s)
- Wei Xie
- Temasek Life Sciences Laboratory and Department of Biological Sciences, National University of Singapore, 1 Research Link, Singapore 117604, Singapore
| | | |
Collapse
|
156
|
Liu C, van Dyk D, Xu P, Choe V, Pan H, Peng J, Andrews B, Rao H. Ubiquitin chain elongation enzyme Ufd2 regulates a subset of Doa10 substrates. J Biol Chem 2010; 285:10265-72. [PMID: 20159987 DOI: 10.1074/jbc.m110.110551] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ufd2 is the founding member of E4 enzymes that are specifically involved in ubiquitin chain elongation but whose roles in proteolysis remain scarce. Here, using a genome-wide screen, we identified one cellular target of yeast Ufd2 as the membrane protein Pex29. The ubiquitin chains assembled on Pex29 in vivo by Ufd2 mainly contain Lys-48 linkages. We found that the ubiquitin-protein E3 ligase for overexpressed Pex29 is Doa10, which is known to be involved in protein quality control. Interestingly, not all Doa10 substrates are regulated by Ufd2, suggesting that E4 involvement is not specific to a particular E3, but may depend on the spatial arrangement of the E3-substrate interaction. Cells lacking UFD2 elicit an unfolded protein response, expanding the physiological function of Ufd2. Our results lead to novel insights into the biological role of Ufd2 and further underscore the significance of Ufd2 in proteolysis.
Collapse
Affiliation(s)
- Chang Liu
- Institute of Biotechnology, Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, Texas 78245, USA
| | | | | | | | | | | | | | | |
Collapse
|
157
|
Fonseca SG, Ishigaki S, Oslowski CM, Lu S, Lipson KL, Ghosh R, Hayashi E, Ishihara H, Oka Y, Permutt MA, Urano F. Wolfram syndrome 1 gene negatively regulates ER stress signaling in rodent and human cells. J Clin Invest 2010; 120:744-55. [PMID: 20160352 DOI: 10.1172/jci39678] [Citation(s) in RCA: 312] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Accepted: 01/06/2010] [Indexed: 12/15/2022] Open
Abstract
Wolfram syndrome is an autosomal-recessive disorder characterized by insulin-dependent diabetes mellitus, caused by nonautoimmune loss of beta cells, and neurological dysfunctions. We have previously shown that mutations in the Wolfram syndrome 1 (WFS1) gene cause Wolfram syndrome and that WFS1 has a protective function against ER stress. However, it remained to be determined how WFS1 mitigates ER stress. Here we have shown in rodent and human cell lines that WFS1 negatively regulates a key transcription factor involved in ER stress signaling, activating transcription factor 6alpha (ATF6alpha), through the ubiquitin-proteasome pathway. WFS1 suppressed expression of ATF6alpha target genes and repressed ATF6alpha-mediated activation of the ER stress response element (ERSE) promoter. Moreover, WFS1 stabilized the E3 ubiquitin ligase HRD1, brought ATF6alpha to the proteasome, and enhanced its ubiquitination and proteasome-mediated degradation, leading to suppression of ER stress signaling. Consistent with these data, beta cells from WFS1-deficient mice and lymphocytes from patients with Wolfram syndrome exhibited dysregulated ER stress signaling through upregulation of ATF6alpha and downregulation of HRD1. These results reveal a role for WFS1 in the negative regulation of ER stress signaling and in the pathogenesis of diseases involving chronic, unresolvable ER stress, such as pancreatic beta cell death in diabetes.
Collapse
Affiliation(s)
- Sonya G Fonseca
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, MA 01605-2324, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
158
|
Usa1 functions as a scaffold of the HRD-ubiquitin ligase. Mol Cell 2010; 36:782-93. [PMID: 20005842 DOI: 10.1016/j.molcel.2009.10.015] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Revised: 07/10/2009] [Accepted: 09/18/2009] [Indexed: 11/23/2022]
Abstract
Protein quality control in the endoplasmic reticulum is of central importance for cellular homeostasis in eukaryotes. Crucial for this process is the HRD-ubiquitin ligase (HMG-CoA reductase degradation), which singles out terminally misfolded proteins and routes them for degradation to cytoplasmic 26S-proteasomes. Certain functions of this enzyme complex are allocated to defined subunits. However, it remains unclear how these components act in a concerted manner. Here, we show that Usa1 functions as a major scaffold protein of the HRD-ligase. For the turnover of soluble substrates, Der1 binding to the C terminus of Usa1 is required. The N terminus of Usa1 associates with Hrd1 and thus bridges Der1 to Hrd1. Strikingly, the Usa1 N terminus also induces oligomerization of the HRD complex, which is an exclusive prerequisite for the degradation of membrane proteins. Our data demonstrate that scaffold proteins are required to adapt ubiquitin ligase activities toward different classes of substrates.
Collapse
|
159
|
Hosokawa N, Kamiya Y, Kato K. The role of MRH domain-containing lectins in ERAD. Glycobiology 2010; 20:651-60. [PMID: 20118070 DOI: 10.1093/glycob/cwq013] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The endoplasmic reticulum (ER) quality control system ensures that newly synthesized proteins in the early secretory pathway are in the correct conformation. Polypeptides that have failed to fold into native conformers are subsequently retrotranslocated and degraded by the cytosolic ubiquitin-proteasome system, a process known as endoplasmic reticulum-associated degradation (ERAD). Most of the polypeptides that enter the ER are modified by the addition of N-linked oligosaccharides, and quality control of these glycoproteins is assisted by lectins that recognize specific sugar moieties and molecular chaperones that recognize unfolded proteins, resulting in proper protein folding and ERAD substrate selection. In Saccharomyces cerevisiae, Yos9p, a lectin that contains a mannose 6-phosphate receptor homology (MRH) domain, was identified as an important component of ERAD. Yos9p was shown to associate with the membrane-embedded ubiquitin ligase complex, Hrd1p-Hrd3p, and provide a proofreading mechanism for ERAD. Meanwhile, the function of the mammalian homologues of Yos9p, OS-9 and XTP3-B remained elusive until recently. Recent studies have determined that both OS-9 and XTP3-B are ER resident proteins that associate with the HRD1-SEL1L ubiquitin ligase complex and are important for the regulation of ERAD. Moreover, recent studies have identified the N-glycan species with which both yeast Yos9p and mammalian OS-9 associate as M7A, a Man(7)GlcNAc(2) isomer that lacks the alpha1,2-linked terminal mannose from both the B and C branches. M7A has since been demonstrated to be a degradation signal in both yeast and mammals.
Collapse
Affiliation(s)
- Nobuko Hosokawa
- Department of Molecular and Cellular Biology Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8397, Japan.
| | | | | |
Collapse
|
160
|
Hosokawa N, Kato K, Kamiya Y. Mannose 6-phosphate receptor homology domain-containing lectins in mammalian endoplasmic reticulum-associated degradation. Methods Enzymol 2010; 480:181-97. [PMID: 20816211 DOI: 10.1016/s0076-6879(10)80010-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Quality control of glycoproteins synthesized in the endoplasmic reticulum (ER) is mediated by lectins and molecular chaperones. N-linked Glc(3)Man(9)GlcNAc(2) oligosaccharides attached to the nascent polypeptides are processed and recognized by lectins in the ER. OS-9 and XTP3-B/Erlectin, mannose 6-phosphate receptor homology (MRH) domain-containing lectins in mammals, were recently identified as ER luminal glycoproteins that participate in ER-associated degradation (ERAD) of misfolded proteins. Frontal affinity chromatography (FAC) and cell-surface expressed lectin assay revealed that both OS-9 and XTP3-B recognize high-mannose type N-glycans that lack the terminal mannose on the C branch. Furthermore, these lectins associate with the HRD1-SEL1L ubiquitin ligase complex on the ER membrane. In this chapter, we describe the FAC methods used to analyze the carbohydrate-recognition specificity of OS-9 and methods to examine the interaction and the effect on ERAD of these proteins in vivo. We also discuss the structure and function of OS-9 and XTP3-B, and the effect of these lectins on ERAD.
Collapse
Affiliation(s)
- Nobuko Hosokawa
- Department of Molecular and Cellular Biology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | | | | |
Collapse
|
161
|
Abstract
Ubiquitylation is a protein modification mechanism, which is found in a multitude of cellular processes like DNA repair and replication, cell signaling, intracellular trafficking and also, very prominently, in selective protein degradation. One specific protein degradation event in the cell concerns the elimination of misfolded proteins to prevent disastrous malfunctioning of cellular pathways. The most complex of these ubiquitylation dependent elimination pathways of misfolded proteins is associated with the endoplasmic reticulum (ER). Proteins, which enter the endoplasmic reticulum for secretion, are folded in this organelle and transported to their site of action. A rigid protein quality control check retains proteins in the endoplasmic reticulum, which fail to fold properly and sends them back to the cytosol for elimination by the proteasome. This requires crossing of the misfolded protein of the endoplasmic reticulum membrane and polyubiquitylation in the cytosol by the ubiquitin-activating, ubiquitin-conjugating and ubiquitin-ligating enzyme machinery.Ubiquitylation is required for different steps of the ER-associated degradation process (ERAD). It facilitates efficient extraction of the ubiquitylated misfolded proteins from and out of the ER membrane by the Cdc48-Ufd1-Npl4 complex and thereby triggers their retro translocation to the cytosol. In addition, the modification with ubiquitin chains guarantees guidance, recognition and binding of the misfolded proteins to the proteasome in the cytosol for efficient degradation.
Collapse
Affiliation(s)
- Frederik Eisele
- Institut für Biochemie, Universität Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | | | | |
Collapse
|
162
|
Carroll SM, Hampton RY. Usa1p is required for optimal function and regulation of the Hrd1p endoplasmic reticulum-associated degradation ubiquitin ligase. J Biol Chem 2009; 285:5146-56. [PMID: 19940128 DOI: 10.1074/jbc.m109.067876] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Usa1p is a recently discovered member of the HRD ubiquitin ligase complex. The HRD pathway is a conserved route of ubiquitin-dependent, endoplasmic reticulum (ER)-associated degradation (ERAD) of numerous lumenal (ERAD-L) and membrane-anchored (ERAD-M) substrates. We have investigated Usa1p to understand its importance in HRD complex action. Usa1p was required for the optimal function of the Hrd1p E3 ubiquitin ligase; its loss caused deficient degradation of both membrane-associated and lumenal proteins. Furthermore, Usa1p functioned in regulation of Hrd1p by two mechanisms. First, Hrd1p self-degradation, which serves to limit the levels of uncomplexed E3, is absolutely dependent on Usa1p and the ubiquitin-like (Ubl) domain of Usa1p. We found that Usa1p allows Hrd1p degradation by promoting trans interactions between Hrd1p molecules. The Ubl domain of Usa1p was required specifically for Hrd1p self-ubiquitination but not for degradation of either ERAD-L or ERAD-M substrates. In addition, Usa1p was able to attenuate the activity-dependent toxicity of Hrd1p without compromising substrate degradation, indicating a separate role in ligase regulation that operates in parallel to stability control. Many of the described actions of Usa1p are distinct from those of Der1p, which is recruited to the HRD complex by Usa1p. Thus, this novel, conserved factor is broadly involved in the function and regulation of the HRD pathway of ERAD.
Collapse
Affiliation(s)
- Sarah M Carroll
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California San Diego, La Jolla, California 92093, USA
| | | |
Collapse
|
163
|
Usa1 protein facilitates substrate ubiquitylation through two separate domains. PLoS One 2009; 4:e7604. [PMID: 19898607 PMCID: PMC2764048 DOI: 10.1371/journal.pone.0007604] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Accepted: 10/08/2009] [Indexed: 01/02/2023] Open
Abstract
Background Defects in protein folding are recognized as the root of many neurodegenerative disorders. In the endoplasmic reticulum (ER), secretory proteins are subjected to a stringent quality control process to eliminate misfolded proteins by the ER-associated degradation (ERAD) pathway. A novel ERAD component Usa1 was recently identified. However, the specific role of Usa1 in ERAD remains obscure. Methodology/Principal Findings Here, we demonstrate that Usa1 is important for substrate ubiquitylation. Furthermore, we defined key cis-elements of Usa1 essential for its degradation function. Interestingly, a putative proteasome-binding motif is dispensable for the functioning of Usa1 in ERAD. We identify two separate cytosolic domains critical for Usa1 activity in ERAD, one of which is involved in binding to the Ub-protein ligase Hrd1/Hrd3. Usa1 may have another novel role in substrate ubiquitylation that is separate from the Hrd1 association. Conclusions/Significance We conclude that Usa1 has two important roles in ERAD substrate ubiquitylation.
Collapse
|
164
|
Schäfer A, Wolf DH. Sec61p is part of the endoplasmic reticulum-associated degradation machinery. EMBO J 2009; 28:2874-84. [PMID: 19696741 PMCID: PMC2760108 DOI: 10.1038/emboj.2009.231] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2008] [Accepted: 07/22/2009] [Indexed: 02/02/2023] Open
Abstract
Endoplasmic reticulum-associated degradation (ERAD) is a cellular pathway for the disposal of misfolded secretory proteins. This process comprises recognition of the misfolded proteins followed by their retro-translocation across the ER membrane into the cytosol in which polyubiquitination and proteasomal degradation occur. A variety of data imply that the protein import channel Sec61p has a function in the ERAD process. Until now, no physical interactions between Sec61p and other essential components of the ERAD pathway could be found. Here, we establish this link by showing that Hrd3p, which is part of the Hrd-Der ubiquitin ligase complex, and other core components of the ERAD machinery physically interact with Sec61p. In addition, we study binding of misfolded CPY(*) proteins to Sec61p during the process of degradation. We show that interaction with Sec61p is maintained until the misfolded proteins are ubiquitinated on the cytosolic side of the ER. Our observations suggest that Sec61p contacts an ERAD ligase complex for further elimination of ER lumenal misfolded proteins.
Collapse
Affiliation(s)
- Antje Schäfer
- Institute of Biochemistry, University of Stuttgart, Stuttgart, Germany
| | - Dieter H Wolf
- Institute of Biochemistry, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
165
|
Nguyen AD, Lee SH, DeBose-Boyd RA. Insig-mediated, sterol-accelerated degradation of the membrane domain of hamster 3-hydroxy-3-methylglutaryl-coenzyme A reductase in insect cells. J Biol Chem 2009; 284:26778-88. [PMID: 19638338 DOI: 10.1074/jbc.m109.032342] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sterol-accelerated degradation of the enzyme 3-hydroxy-3-methylglutaryl-coenzyme A reductase is one of several mechanisms through which cholesterol synthesis is controlled in mammalian cells. This degradation results from sterol-induced binding of the membrane domain of reductase to endoplasmic reticulum membrane proteins called Insig-1 and Insig-2, which are carriers of a ubiquitin ligase called gp78. The ensuing gp78-mediated ubiquitination of reductase is a prerequisite for its rapid, 26 S proteasome-mediated degradation from endoplasmic reticulum membranes, a reaction that slows a rate-limiting step in cholesterol synthesis. Here, we report that the membrane domain of hamster reductase is subject to sterol-accelerated degradation in Drosophila S2 cells, but only when mammalian Insig-1 or Insig-2 are co-expressed. This degradation mimics the reaction that occurs in mammalian cells with regard to its absolute requirement for the action of Insigs, sensitivity to proteasome inhibition, augmentation by nonsterol isoprenoids, and sterol specificity. RNA interference studies reveal that this degradation requires the Drosophila Hrd1 ubiquitin ligase and several other proteins, including a putative substrate selector, which associate with the enzyme in yeast and mammalian systems. These studies define Insigs as the minimal requirement for sterol-accelerated degradation of the membrane domain of reductase in Drosophila S2 cells.
Collapse
Affiliation(s)
- Andrew D Nguyen
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9046, USA
| | | | | |
Collapse
|
166
|
Xie W, Kanehara K, Sayeed A, Ng DTW. Intrinsic conformational determinants signal protein misfolding to the Hrd1/Htm1 endoplasmic reticulum-associated degradation system. Mol Biol Cell 2009; 20:3317-29. [PMID: 19458187 DOI: 10.1091/mbc.e09-03-0231] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Endoplasmic reticulum (ER) quality control mechanisms monitor the folding of nascent polypeptides of the secretory pathway. These are dynamic processes that retain folding proteins, promote the transport of conformationally mature proteins, and target misfolded proteins to ER-associated degradation (ERAD) pathways. Aided by the identification of numerous ERAD factors, late functions that include substrate extraction, ubiquitination, and degradation are fairly well described. By contrast, the mechanisms of substrate recognition remain mysterious. For some substrates, a specific N-linked glycan forms part of the recognition code but how it is read is incompletely understood. In this study, systematic analysis of model substrates revealed such glycans mark structural determinants that are sensitive to the overall folding state of the molecule. This strategy effectively generates intrinsic folding sensors that communicate with high fidelity to ERAD. Normally, these segments fold into the mature structure to pass the ERAD checkpoint. However, should a molecule fail to fold completely, they form a bipartite signal that comprises the unfolded local structure and adjacent enzymatically remodeled glycan. Only if both elements are present will the substrate be targeted to the ERAD pathway for degradation.
Collapse
Affiliation(s)
- Wei Xie
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604
| | | | | | | |
Collapse
|
167
|
Sato BK, Schulz D, Do PH, Hampton RY. Misfolded membrane proteins are specifically recognized by the transmembrane domain of the Hrd1p ubiquitin ligase. Mol Cell 2009; 34:212-22. [PMID: 19394298 PMCID: PMC2710143 DOI: 10.1016/j.molcel.2009.03.010] [Citation(s) in RCA: 168] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Revised: 12/12/2008] [Accepted: 03/20/2009] [Indexed: 01/05/2023]
Abstract
Quality control pathways such as ER-associated degradation (ERAD) employ a small number of factors to specifically recognize a wide variety of protein substrates. Delineating the mechanisms of substrate selection is a principle goal in studying quality control. The Hrd1p ubiquitin ligase mediates ERAD of numerous misfolded proteins including soluble, lumenal ERAD-L and membrane-anchored ERAD-M substrates. We tested if the Hrd1p multispanning membrane domain was involved in ERAD-M specificity. In this work, we have identified site-directed membrane domain mutants of Hrd1p impaired only for ERAD-M and normal for ERAD-L. Furthermore, other Hrd1p variants were specifically deficient for degradation of individual ERAD-M substrates. Thus, the Hrd1p transmembrane region bears determinants of high specificity in the ERAD-M pathway. From in vitro and interaction studies, we suggest a model in which the Hrd1p membrane domain employs intramembrane residues to evaluate substrate misfolding, leading to selective ubiquitination of appropriate ERAD-M clients.
Collapse
Affiliation(s)
- Brian K. Sato
- University of California, San Diego, Division of Biological Sciences Section of Cell and Developmental Biology 9500 Gilman Dr., La Jolla, CA 92093
| | - Daniel Schulz
- University of California, San Diego, Division of Biological Sciences Section of Cell and Developmental Biology 9500 Gilman Dr., La Jolla, CA 92093
| | - Phong H. Do
- University of California, San Diego, Division of Biological Sciences Section of Cell and Developmental Biology 9500 Gilman Dr., La Jolla, CA 92093
| | - Randolph Y. Hampton
- University of California, San Diego, Division of Biological Sciences Section of Cell and Developmental Biology 9500 Gilman Dr., La Jolla, CA 92093
| |
Collapse
|
168
|
Garza RM, Sato BK, Hampton RY. In vitro analysis of Hrd1p-mediated retrotranslocation of its multispanning membrane substrate 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase. J Biol Chem 2009; 284:14710-22. [PMID: 19324879 DOI: 10.1074/jbc.m809607200] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Endoplasmic reticulum (ER)-associated degradation (ERAD) is responsible for the ubiquitin-mediated destruction of both misfolded and normal ER-resident proteins. ERAD substrates must be moved from the ER to the cytoplasm for ubiquitination and proteasomal destruction by a process called retrotranslocation. Many aspects of retrotranslocation are poorly understood, including its generality, the cellular components required, the energetics, and the mechanism of transfer through the ER membrane. To address these questions, we have developed an in vitro assay, using the 8-transmembrane span ER-resident Hmg2p isozyme of HMG-CoA reductase fused to GFP, which undergoes regulated ERAD mediated by the Hrd1p ubiquitin ligase. We have now directly demonstrated in vitro retrotranslocation of full-length, ubiquitinated Hmg2p-GFP to the aqueous phase. Hrd1p was rate-limiting for Hmg2p-GFP retrotranslocation, which required ATP, the AAA-ATPase Cdc48p, and its receptor Ubx2p. In addition, the adaptors Dsk2p and Rad23p, normally implicated in later parts of the pathway, were required. Hmg2p-GFP retrotranslocation did not depend on any of the proposed ER channel candidates. To examine the role of the Hrd1p transmembrane domain as a retrotranslocon, we devised a self-ubiquitinating polytopic substrate (Hmg1-Hrd1p) that undergoes ERAD in the absence of Hrd1p. In vitro retrotranslocation of full-length Hmg1-Hrd1p occurred in the absence of the Hrd1p transmembrane domain, indicating that it did not serve a required channel function. These studies directly demonstrate polytopic membrane protein retrotranslocation during ERAD and delineate avenues for mechanistic understanding of this general process.
Collapse
Affiliation(s)
- Renee M Garza
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093-0347, USA
| | | | | |
Collapse
|
169
|
Clerc S, Hirsch C, Oggier DM, Deprez P, Jakob C, Sommer T, Aebi M. Htm1 protein generates the N-glycan signal for glycoprotein degradation in the endoplasmic reticulum. ACTA ACUST UNITED AC 2009; 184:159-72. [PMID: 19124653 PMCID: PMC2615083 DOI: 10.1083/jcb.200809198] [Citation(s) in RCA: 195] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
To maintain protein homeostasis in secretory compartments, eukaryotic cells harbor a quality control system that monitors protein folding and protein complex assembly in the endoplasmic reticulum (ER). Proteins that do not fold properly or integrate into cognate complexes are degraded by ER-associated degradation (ERAD) involving retrotranslocation to the cytoplasm and proteasomal peptide hydrolysis. N-linked glycans are essential in glycoprotein ERAD; the covalent oligosaccharide structure is used as a signal to display the folding status of the host protein. In this study, we define the function of the Htm1 protein as an alpha1,2-specific exomannosidase that generates the Man(7)GlcNAc(2) oligosaccharide with a terminal alpha1,6-linked mannosyl residue on degradation substrates. This oligosaccharide signal is decoded by the ER-localized lectin Yos9p that in conjunction with Hrd3p triggers the ubiquitin-proteasome-dependent hydrolysis of these glycoproteins. The Htm1p exomannosidase activity requires processing of the N-glycan by glucosidase I, glucosidase II, and mannosidase I, resulting in a sequential order of specific N-glycan structures that reflect the folding status of the glycoprotein.
Collapse
Affiliation(s)
- Simone Clerc
- Department of Biology, Institute of Microbiology, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
170
|
Quan EM, Kamiya Y, Kamiya D, Denic V, Weibezahn J, Kato K, Weissman JS. Defining the glycan destruction signal for endoplasmic reticulum-associated degradation. Mol Cell 2008; 32:870-7. [PMID: 19111666 PMCID: PMC2873636 DOI: 10.1016/j.molcel.2008.11.017] [Citation(s) in RCA: 190] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Revised: 10/31/2008] [Accepted: 11/24/2008] [Indexed: 11/24/2022]
Abstract
The endoplasmic reticulum (ER) must target potentially toxic misfolded proteins for retrotranslocation and proteasomal degradation while avoiding destruction of productive folding intermediates. For luminal proteins, this discrimination typically depends not only on the folding status of a polypeptide, but also on its glycosylation state. Two putative sugar binding proteins, Htm1p and Yos9p, are required for degradation of misfolded glycoproteins, but the nature of the glycan degradation signal and how such signals are generated and decoded remains unclear. Here we characterize Yos9p's oligosaccharide-binding specificity and find that it recognizes glycans containing terminal alpha1,6-linked mannose residues. We also provide evidence in vivo that a terminal alpha1,6-linked mannose-containing oligosaccharide is required for degradation and that Htm1p acts upstream of Yos9p to mediate the generation of such sugars. This strategy of marking potential substrates by Htm1p and decoding the signal by Yos9p is well suited to provide a proofreading mechanism that enhances substrate specificity.
Collapse
Affiliation(s)
- Erin M. Quan
- Hughes Medical Institute, Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94143-2542, USA
| | - Yukiko Kamiya
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Tanabe-dori 3-1, Mizuho-ku, Nagoya 467-8603, Japan
- Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
| | - Daiki Kamiya
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Tanabe-dori 3-1, Mizuho-ku, Nagoya 467-8603, Japan
| | - Vladimir Denic
- Hughes Medical Institute, Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94143-2542, USA
| | - Jimena Weibezahn
- Hughes Medical Institute, Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94143-2542, USA
| | - Koichi Kato
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Tanabe-dori 3-1, Mizuho-ku, Nagoya 467-8603, Japan
- Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
| | - Jonathan S. Weissman
- Hughes Medical Institute, Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94143-2542, USA
| |
Collapse
|
171
|
Abstract
Protein folding in the endoplasmic reticulum (ER) is monitored by ER quality control (ERQC) mechanisms. Proteins that pass ERQC criteria traffic to their final destinations through the secretory pathway, whereas non-native and unassembled subunits of multimeric proteins are degraded by the ER-associated degradation (ERAD) pathway. During ERAD, molecular chaperones and associated factors recognize and target substrates for retrotranslocation to the cytoplasm, where they are degraded by the ubiquitin-proteasome machinery. The discovery of diseases that are associated with ERAD substrates highlights the importance of this pathway. Here, we summarize our current understanding of each step during ERAD, with emphasis on the factors that catalyse distinct activities.
Collapse
Affiliation(s)
- Shruthi S Vembar
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | |
Collapse
|
172
|
Hosokawa N, Wada I, Nagasawa K, Moriyama T, Okawa K, Nagata K. Human XTP3-B forms an endoplasmic reticulum quality control scaffold with the HRD1-SEL1L ubiquitin ligase complex and BiP. J Biol Chem 2008; 283:20914-24. [PMID: 18502753 PMCID: PMC3258950 DOI: 10.1074/jbc.m709336200] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2007] [Revised: 04/21/2008] [Indexed: 11/06/2022] Open
Abstract
The recognition of terminally misfolded proteins in the endoplasmic reticulum (ER) and the extraction of these proteins to the cytoplasm for proteasomal degradation are determined by a quality control mechanism in the ER. In yeast, Yos9p, an ER lectin containing a mannose 6-phosphate receptor homology (MRH) domain, enhances ER-associated degradation (ERAD) of glycoproteins. We show here that human XTP3-B (hXTP3-B), an ER lectin containing two MRH domains, has two transcriptional variants, and both isoforms retard ERAD of the human alpha(1)-antitrypsin variant null Hong Kong (NHK), a terminally misfolded glycoprotein. The hXTP3-B long isoform strongly inhibited ERAD of NHK-QQQ, which lacks all of the N-glycosylation sites of NHK, but the short transcriptional variant of hXTP3-B had almost no effect. Examination of complex formation by immunoprecipitation and by fractionation using sucrose density gradient centrifugation revealed that the hXTP3-B long isoform associates with the HRD1-SEL1L membrane-anchored ubiquitin ligase complex and BiP, forming a 27 S ER quality control scaffold complex. The hXTP3-B short isoform, however, is excluded from scaffold formation. Another MRH domain-containing ER lectin, hOS-9, is incorporated into this large complex, but gp78, another mammalian homolog of the yeast ubiquitin ligase Hrd1p, is not. Based on these results, we propose that this large ER quality control scaffold complex, containing ER lectins, a chaperone, and a ubiquitin ligase, provides a platform for the recognition and sorting of misfolded glycoproteins as well as nonglycosylated proteins prior to retrotranslocation into the cytoplasm for degradation.
Collapse
Affiliation(s)
- Nobuko Hosokawa
- Department of Molecular and Cellular Biology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan.
| | | | | | | | | | | |
Collapse
|
173
|
Abstract
Secretory and membrane proteins that fail to fold in the endoplasmic reticulum (ER) are retained and may be sorted for ER-associated degradation (ERAD). During ERAD, ER-associated components such as molecular chaperones and lectins recognize folding intermediates and specific oligosaccharyl modifications on ERAD substrates. Substrates selected for ERAD are then targeted for ubiquitin- and proteasome-mediated degradation. Because the catalytic steps of the ubiquitin-proteasome system reside in the cytoplasm, soluble ERAD substrates that reside in the ER lumen must be retrotranslocated back to the cytoplasm prior to degradation. In contrast, it has been less clear how polytopic, integral membrane substrates are delivered to enzymes required for ubiquitin conjugation and to the proteasome. In this review, we discuss recent studies addressing how ERAD substrates are recognized, ubiquitinated and delivered to the proteasome and then survey current views of how soluble and integral membrane substrates may be retrotranslocated.
Collapse
Affiliation(s)
- Kunio Nakatsukasa
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Jeffrey L. Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
174
|
Bazirgan OA, Hampton RY. Cue1p is an activator of Ubc7p E2 activity in vitro and in vivo. J Biol Chem 2008; 283:12797-810. [PMID: 18321851 PMCID: PMC2442330 DOI: 10.1074/jbc.m801122200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Indexed: 11/06/2022] Open
Abstract
Ubc7p is a ubiquitin-conjugating enzyme (E2) that functions with endoplasmic reticulum (ER)-resident ubiquitin ligases (E3s) to promote endoplasmic reticulum-associated degradation (ERAD). Ubc7p only functions in ERAD if bound to the ER surface by Cue1p, a membrane-anchored ER protein. The role of Cue1p was thought to involve passive concentration of Ubc7p at the surface of the ER. However, our biochemical studies of Ubc7p suggested that Cue1p may, in addition, stimulate Ubc7p E2 activity. We have tested this idea and found it to be true both in vitro and in vivo. Ubc7p bound to the soluble domain of Cue1p showed strongly enhanced in vitro ubiquitination activity, both in the presence and absence of E3. Cue1p also enhanced Ubc7p function in vivo, and this activation was separable from the established ER-anchoring role of Cue1p. Finally, we tested in vivo activation of Ubc7p by Cue1p in an assay independent of the ER membrane and ERAD. A chimeric E2 linking Ubc7p to the Cdc34p/Ubc3p localization domain complemented the cdc34-2 TS phenotype, and co-expression of the soluble Cue1p domain enhanced complementation by this chimeric Ubc7p E2. These studies reveal a previously unobserved stimulation of Ubc7p E2 activity by Cue1p that is critical for full ERAD and that functions independently of the well known Cue1p anchoring function. Moreover, it suggests a previously unappreciated mode for regulation of E2s by Cue1p-like interacting partners.
Collapse
Affiliation(s)
- Omar A Bazirgan
- Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093, USA
| | | |
Collapse
|
175
|
Synoviolin promotes IRE1 ubiquitination and degradation in synovial fibroblasts from mice with collagen-induced arthritis. EMBO Rep 2008; 9:480-5. [PMID: 18369366 DOI: 10.1038/embor.2008.37] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Revised: 02/11/2008] [Accepted: 02/18/2008] [Indexed: 11/08/2022] Open
Abstract
The E3 ubiquitin ligase synoviolin (SYVN1) functions as an anti-apoptotic factor that is responsible for the outgrowth of synovial cells during the development of rheumatoid arthritis. The molecular mechanisms underlying SYVN1 regulation of cell death are largely unknown. Here, we report that elevated SYVN1 expression correlates with decreased levels of the protein inositol-requiring enzyme 1 (IRE1)-a pro-apoptotic factor in the endoplasmic reticulum (ER)-stress-induced apoptosis pathway-in synovial fibroblasts from mice with collagen-induced arthritis (CIA). SYVN1 interacts with and catalyses IRE1 ubiquitination and consequently promotes IRE1 degradation. Suppression of SYVN1 expression in synovial fibroblasts from CIA mice restores IRE1 protein expression and reverses the resistance of ER-stress-induced apoptosis of CIA synovial fibroblasts. These results show that SYVN1 causes the overgrowth of synovial cells by degrading IRE1, and therefore antagonizes ER-stress-induced cell death.
Collapse
|
176
|
Christianson JC, Shaler TA, Tyler RE, Kopito RR. OS-9 and GRP94 deliver mutant alpha1-antitrypsin to the Hrd1-SEL1L ubiquitin ligase complex for ERAD. Nat Cell Biol 2008; 10:272-82. [PMID: 18264092 PMCID: PMC2757077 DOI: 10.1038/ncb1689] [Citation(s) in RCA: 413] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Accepted: 12/20/2007] [Indexed: 12/15/2022]
Abstract
Terminally misfolded or unassembled proteins in the early secretory pathway are degraded by a ubiquitin- and proteasome-dependent process known as ER-associated degradation (ERAD). How substrates of this pathway are recognized within the ER and delivered to the cytoplasmic ubiquitin-conjugating machinery is unknown. We report here that OS-9 and XTP3-B/Erlectin are ER-resident glycoproteins that bind to ERAD substrates and, through the SEL1L adaptor, to the ER-membrane-embedded ubiquitin ligase Hrd1. Both proteins contain conserved mannose 6-phosphate receptor homology (MRH) domains, which are required for interaction with SEL1L, but not with substrate. OS-9 associates with the ER chaperone GRP94 which, together with Hrd1 and SEL1L, is required for the degradation of an ERAD substrate, mutant alpha(1)-antitrypsin. These data suggest that XTP3-B and OS-9 are components of distinct, partially redundant, quality control surveillance pathways that coordinate protein folding with membrane dislocation and ubiquitin conjugation in mammalian cells.
Collapse
Affiliation(s)
- John C. Christianson
- Department of Biological Sciences & Bio-X Program, Stanford University, Lorry Lokey Bldg., 337 Campus Drive, Stanford, CA 94305
| | | | - Ryan E. Tyler
- Department of Biological Sciences & Bio-X Program, Stanford University, Lorry Lokey Bldg., 337 Campus Drive, Stanford, CA 94305
| | - Ron R. Kopito
- Department of Biological Sciences & Bio-X Program, Stanford University, Lorry Lokey Bldg., 337 Campus Drive, Stanford, CA 94305
| |
Collapse
|
177
|
Transcriptional activation and increased mRNA stability contribute to overexpression of CDR1 in azole-resistant Candida albicans. Antimicrob Agents Chemother 2008; 52:1481-92. [PMID: 18268086 DOI: 10.1128/aac.01106-07] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many azole-resistant (AR) clinical isolates of Candida albicans display increased expression of the drug transporters CDR1 and CDR2. In this study, we evaluate the molecular mechanisms that contribute to the maintenance of constitutively high CDR1 transcript levels in two matched pairs of azole-susceptible (AS) and AR clinical isolates of C. albicans. To address this, we use reporter constructs of GFP and lacZ fused either to the CDR1 promoter (P CDR1-GFP/lacZ; transcriptional fusion) or to the CDR1 open reading frame (P CDR1-CDR1-GFP/lacZ; translational fusion) integrated at the native CDR1 locus. It is observed that expression of the two reporter genes as a transcriptional fusion in the AR isolates is higher than that in matched AS isolates. However, the difference in the reporter activity between the AS and AR isolates is even greater for the translational fusions, indicating that the sequences within the CDR1 coding region also contribute to its increased expression in AR isolates. Further analysis of these observations by transcription run-on assays demonstrated a approximately 5- to 7-fold difference in the transcription initiation rates for the AR isolates from those for their respective matched AS isolates. Measurement of mRNA stability showed that the half-life of CDR1 mRNA in the AR isolates was threefold higher than that in the corresponding AS isolates. Our results demonstrate that both increased CDR1 transcription and enhanced CDR1 mRNA stability contribute to the overexpression of CDR1 in AR C. albicans isolates.
Collapse
|
178
|
Glenn KA, Nelson RF, Wen HM, Mallinger AJ, Paulson HL. Diversity in tissue expression, substrate binding, and SCF complex formation for a lectin family of ubiquitin ligases. J Biol Chem 2008; 283:12717-29. [PMID: 18203720 DOI: 10.1074/jbc.m709508200] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Post-translational modification of proteins regulates many cellular processes. Some modifications, including N-linked glycosylation, serve multiple functions. For example, the attachment of N-linked glycans to nascent proteins in the endoplasmic reticulum facilitates proper folding, whereas retention of high mannose glycans on misfolded glycoproteins serves as a signal for retrotranslocation and ubiquitin-mediated proteasomal degradation. Here we examine the substrate specificity of the only family of ubiquitin ligase subunits thought to target glycoproteins through their attached glycans. The five proteins comprising this FBA family (FBXO2, FBXO6, FBXO17, FBXO27, and FBXO44) contain a conserved G domain that mediates substrate binding. Using a variety of complementary approaches, including glycan arrays, we show that each family member has differing specificity for glycosylated substrates. Collectively, the F-box proteins in the FBA family bind high mannose and sulfated glycoproteins, with one FBA protein, FBX044, failing to bind any glycans on the tested arrays. Site-directed mutagenesis of two aromatic amino acids in the G domain demonstrated that the hydrophobic pocket created by these amino acids is necessary for high affinity glycan binding. All FBA proteins co-precipitated components of the canonical SCF complex (Skp1, Cullin1, and Rbx1), yet FBXO2 bound very little Cullin1, suggesting that FBXO2 may exist primarily as a heterodimer with Skp1. Using subunit-specific antibodies, we further demonstrate marked divergence in tissue distribution and developmental expression. These differences in substrate recognition, SCF complex formation, and tissue distribution suggest that FBA proteins play diverse roles in glycoprotein quality control.
Collapse
Affiliation(s)
- Kevin A Glenn
- Veterans Affairs Medical Center, Iowa City, Iowa 52242, USA.
| | | | | | | | | |
Collapse
|
179
|
Kanehara K, Kawaguchi S, Ng DT. The EDEM and Yos9p families of lectin-like ERAD factors. Semin Cell Dev Biol 2007; 18:743-50. [DOI: 10.1016/j.semcdb.2007.09.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Revised: 08/17/2007] [Accepted: 09/05/2007] [Indexed: 11/16/2022]
|
180
|
Kostova Z, Tsai YC, Weissman AM. Ubiquitin ligases, critical mediators of endoplasmic reticulum-associated degradation. Semin Cell Dev Biol 2007; 18:770-9. [PMID: 17950636 PMCID: PMC2200800 DOI: 10.1016/j.semcdb.2007.09.002] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Revised: 08/23/2007] [Accepted: 09/05/2007] [Indexed: 12/25/2022]
Abstract
Endoplasmic reticulum-associated degradation (ERAD) represents the primary means of quality control within the secretory pathway. Critical to this process are ubiquitin protein ligases (E3s) which, together with ubiquitin conjugating enzymes (E2s), mediate the ubiquitylation of proteins targeted for degradation from the ER. In this chapter we review our knowledge of both Saccharomyces cerevisiae and mammalian ERAD ubiquitin ligases. We focus on recent insights into these E3s, their associated proteins and potential mechanisms of action.
Collapse
Affiliation(s)
- Zlatka Kostova
- Laboratory of Protein Dynamics and Signaling, Building 560 Room 22-103, Center for Cancer Research, National Cancer Institute at Frederick, National Institutes of Health, MD 21702, United States
| | | | | |
Collapse
|
181
|
Newton HJ, Sansom FM, Dao J, McAlister AD, Sloan J, Cianciotto NP, Hartland EL. Sel1 repeat protein LpnE is a Legionella pneumophila virulence determinant that influences vacuolar trafficking. Infect Immun 2007; 75:5575-85. [PMID: 17893138 PMCID: PMC2168337 DOI: 10.1128/iai.00443-07] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Revised: 05/10/2007] [Accepted: 09/05/2007] [Indexed: 11/20/2022] Open
Abstract
The environmental pathogen Legionella pneumophila possesses five proteins with Sel1 repeats (SLRs) from the tetratricopeptide repeat protein family. Three of these proteins, LpnE, EnhC, and LidL, have been implicated in the ability of L. pneumophila to efficiently establish infection and/or manipulate host cell trafficking events. Previously, we showed that LpnE is important for L. pneumophila entry into macrophages and epithelial cells. In further virulence studies here, we show that LpnE is also required for efficient infection of Acanthamoeba castellanii by L. pneumophila and for replication of L. pneumophila in the lungs of A/J mice. In addition, we found that the role of LpnE in host cell invasion is dependent on the eight SLR regions of the protein. A truncated form of LpnE lacking the two C-terminal SLR domains was unable to complement the invasion defect of an lpnE mutant of L. pneumophila 130b in both the A549 and THP-1 cell lines. The lpnE mutant displayed impaired avoidance of LAMP-1 association, suggesting that LpnE influenced trafficking of the L. pneumophila vacuole, similar to the case for EnhC and LidL. We also found that LpnE was present in L. pneumophila culture supernatants and that its export was independent of both the Lsp type II secretion system and the Dot/Icm type IV secretion system. The fact that LpnE was exported suggested that the protein may interact with a eukaryotic protein. Using LpnE as bait, we screened a HeLa cell cDNA library for interacting partners, using the yeast two-hybrid system. Examination of the protein-protein interaction between LpnE and a eukaryotic protein, obscurin-like protein 1, suggested that LpnE can interact with eukaryotic proteins containing immunoglobulin-like folds via the SLR regions. This investigation has further characterized the contribution of LpnE to L. pneumophila virulence and, more specifically, the importance of the SLR regions to LpnE function.
Collapse
Affiliation(s)
- Hayley J Newton
- Australian Bacterial Pathogenesis Program, Department of Microbiology, Monash University, Victoria 3800, Australia
| | | | | | | | | | | | | |
Collapse
|
182
|
Shenkman M, Tolchinsky S, Kondratyev M, Lederkremer G. Transient arrest in proteasomal degradation during inhibition of translation in the unfolded protein response. Biochem J 2007; 404:509-16. [PMID: 17338678 PMCID: PMC1896287 DOI: 10.1042/bj20061854] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The UPR (unfolded protein response) activates transcription of genes involved in proteasomal degradation. However, we found that in its early stages the UPR leads to a transient inhibition of proteasomal disposal of cytosolic substrates (p53 and p27kip1) and of those targeted to ER (endoplasmic reticulum)-associated degradation (uncleaved precursor of asialoglycoprotein receptor H2a). Degradation resumed soon after the protein synthesis arrest that occurs in early UPR subsided. Consistent with this, protein synthesis inhibitors blocked ubiquitin/proteasomal degradation. Ubiquitination was inhibited during the translation block, suggesting short-lived E3 ubiquitin ligases as candidate depleted proteins. This was indeed the case for p53 whose E3 ligase, Mdm2 (murine double minute 2), when overexpressed, restored the degradation, whereas a mutant Mdm2 in its acidic domain restored the ubiquitination but did not completely restore the degradation. Inhibition of proteasomal degradation early in UPR may prevent depletion of essential short-lived factors during the translation arrest. Stabilization of p27 through this mechanism may explain the cell cycle arrest in G1 when translation is blocked by inhibitors or by the UPR.
Collapse
Affiliation(s)
- Marina Shenkman
- Department of Cell Research and Immunology, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Sandra Tolchinsky
- Department of Cell Research and Immunology, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Maria Kondratyev
- Department of Cell Research and Immunology, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Gerardo Z. Lederkremer
- Department of Cell Research and Immunology, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- To whom correspondence should be addressed (email )
| |
Collapse
|
183
|
Pearce MMP, Wang Y, Kelley GG, Wojcikiewicz RJH. SPFH2 Mediates the Endoplasmic Reticulum-associated Degradation of Inositol 1,4,5-Trisphosphate Receptors and Other Substrates in Mammalian Cells. J Biol Chem 2007; 282:20104-15. [PMID: 17502376 DOI: 10.1074/jbc.m701862200] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Inositol 1,4,5-trisphosphate (IP(3)) receptors are endoplasmic reticulum (ER) membrane calcium channels that, upon activation, become substrates for the ER-associated degradation (ERAD) pathway. Although it is clear that IP(3) receptors are polyubiquitinated upon activation and are transferred to the proteasome by a p97-based complex, currently nothing is known about the proteins that initially select activated IP(3) receptors for ERAD. Here, we sought to identify novel proteins that associate with and mediate the ERAD of endogenous activated IP(3) receptors. SPFH2, an uncharacterized SPFH domain-containing protein, rapidly associated with IP(3) receptors in a manner that preceded significant polyubiquitination and the association of p97 and related proteins. SPFH2 was found to be an ER membrane protein largely residing within the ER lumen and in resting and stimulated cells was linked to ERAD pathway components, apparently via endogenous substrates undergoing degradation. Suppression of SPFH2 expression by RNA interference markedly inhibited IP(3) receptor polyubiquitination and degradation and the processing of other ERAD substrates. Overall, these studies identify SPFH2 as a key ERAD pathway component and suggest that it may act as a substrate recognition factor.
Collapse
Affiliation(s)
- Margaret M P Pearce
- Departments of Pharmacology and Medicine, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | | | | | | |
Collapse
|
184
|
Correia MA, Liao M. Cellular proteolytic systems in P450 degradation: evolutionary conservation from Saccharomyces cerevisiae to mammalian liver. Expert Opin Drug Metab Toxicol 2007; 3:33-49. [PMID: 17269893 DOI: 10.1517/17425255.3.1.33] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Mammalian hepatic cytochromes P450 (P450s) are endoplasmic reticulum (ER)-anchored haemoproteins with the bulk of their catalytic domains exposed to the cytosol and engaged in the metabolism of numerous xeno- and endobiotics. The native P450s exhibit widely ranging half-lifes and predominantly turn over via either autophagic-lysosomal degradation (ALD) or ubiquitin-dependent 26S proteasomal degradation (UPD). The basis for this heterogeneity and differential proteolytic targeting is unknown. On the other hand, structurally/functionally inactivated P450s are predominantly degraded via UPD in a process known as ER-associated degradation (ERAD). ALD/UPD/ERAD pathways are evolutionarily highly conserved. The availability of Saccharomyces cerevisiae mutants with specific genetic defects/deletions in various ALD/UPD/ERAD-associated proteins and corresponding isogenic wild-type strains has enabled the molecular dissection of the degradation pathways for heterologously expressed mammalian P450s, leading to the identification of specific protein participants. These findings collectively attest to a highly versatile cellular system for the physiological disposal of native, senescent and/or inactivated, structurally damaged mammalian liver P450s.
Collapse
Affiliation(s)
- Maria Almira Correia
- University of California, Department of Cellular and Molecular Pharmacology, Mission Bay Campus, San Francisco, CA 94158-2517, USA.
| | | |
Collapse
|
185
|
Gao B, Calhoun K, Fang D. The proinflammatory cytokines IL-1beta and TNF-alpha induce the expression of Synoviolin, an E3 ubiquitin ligase, in mouse synovial fibroblasts via the Erk1/2-ETS1 pathway. Arthritis Res Ther 2007; 8:R172. [PMID: 17105652 PMCID: PMC1794516 DOI: 10.1186/ar2081] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2006] [Revised: 10/10/2006] [Accepted: 11/14/2006] [Indexed: 12/30/2022] Open
Abstract
The overgrowth of synovial tissues is critical in the pathogenesis of rheumatoid arthritis (RA). The expression of Synoviolin (SYN), an E3 ubiquitin ligase, is upregulated in arthritic synovial fibroblasts and is involved in the overgrowth of synovial cells during RA. However, the molecular mechanisms involved in the elevated SYN expression are not known. Here, we found that SYN expression is elevated in the synovial fibroblasts from mice with collagen-induced arthritis (CIA). The proinflammatory cytokines interleukin (IL)-1beta and tumor necrosis factor-alpha (TNF-alpha) induce SYN expression in mouse synovial fibroblasts. Cultivation of mouse synovial fibroblasts with IL-1beta activates mitogen-activated protein kinases, including extra-cellular signal-regulated kinase (Erk), JNK (c-Jun N-terminal kinase), and p38, while only Erk-specific inhibitor blocks IL-1beta-induced SYN expression. Expression of transcription factor ETS1 further enhances IL-1beta-induced SYN expression. The dominant negative ETS1 mutant lacking the transcription activation domain inhibits SYN expression in a dose-dependent manner. The activation of both Erk1/2 and ETS1 is increased in the CIA synovial fibroblasts. Inhibition of Erk activation reduces ETS1 phosphorylation and SYN expression. Our data indicate that the proinflammatory cytokines IL-1beta and TNF-alpha induce the overgrowth of synovial cells by upregulating SYN expression via the Erk1/-ETS1 pathway. These molecules or pathways could therefore be potential targets for the treatment of RA.
Collapse
Affiliation(s)
- Beixue Gao
- Department of Otolaryngology-Head and Neck Surgery, University of Missouri School of Medicine, One Hospital Drive, Columbia, MO 65212, USA
| | - Karen Calhoun
- Department of Otolaryngology-Head and Neck Surgery, University of Missouri School of Medicine, One Hospital Drive, Columbia, MO 65212, USA
| | - Deyu Fang
- Department of Otolaryngology-Head and Neck Surgery, University of Missouri School of Medicine, One Hospital Drive, Columbia, MO 65212, USA
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, One Hospital Drive, Columbia, MO 65212, USA
| |
Collapse
|
186
|
Abstract
Secretory and transmembrane proteins are synthesized in the endoplasmic reticulum (ER) in eukaryotic cells. Nascent polypeptide chains, which are translated on the rough ER, are translocated to the ER lumen and folded into their native conformation. When protein folding is inhibited because of mutations or unbalanced ratios of subunits of hetero-oligomeric proteins, unfolded or misfolded proteins accumulate in the ER in an event called ER stress. As ER stress often disturbs normal cellular functions, signal-transduction pathways are activated in an attempt to maintain the homeostasis of the ER. These pathways are collectively referred to as the unfolded protein response (UPR). There have been great advances in our understanding of the molecular mechanisms underlying the UPR in yeast and mammals over the past two decades. In plants, a UPR analogous to those in yeast and mammals has been recognized and has recently attracted considerable attention. This review will summarize recent advances in the plant UPR and highlight the remaining questions that have yet to be addressed.
Collapse
Affiliation(s)
- Reiko Urade
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.
| |
Collapse
|
187
|
Kincaid MM, Cooper AA. Misfolded proteins traffic from the endoplasmic reticulum (ER) due to ER export signals. Mol Biol Cell 2006; 18:455-63. [PMID: 17108324 PMCID: PMC1783784 DOI: 10.1091/mbc.e06-08-0696] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Most misfolded secretory proteins remain in the endoplasmic reticulum (ER) and are degraded by ER-associated degradation (ERAD). However, some misfolded proteins exit the ER and traffic to the Golgi before degradation. Using model misfolded substrates, with or without defined ER exit signals, we found misfolded proteins can depart the ER by continuing to exhibit the functional export signals present in the corresponding correctly folded proteins. Anterograde transport of misfolded proteins utilizes the same machinery responsible for exporting correctly folded proteins. Passive ER retention, in which misfolded proteins fail to exit the ER due to the absence of exit signals or the inability to functionally present them, likely contributes to the retention of nonnative proteins in the ER. Intriguingly, compromising ERAD resulted in increased anterograde trafficking of a misfolded protein with an ER exit signal, suggesting that ERAD and ER exit machinery can compete for binding of misfolded proteins. Disabling ERAD did not result in transport of an ERAD substrate lacking an export signal. This is an important distinction for those seeking possible therapeutic approaches involving inactivating ERAD in anticipation of exporting a partially active protein.
Collapse
Affiliation(s)
- Margaret M. Kincaid
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO 64110
| | - Antony A. Cooper
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO 64110
| |
Collapse
|
188
|
Omura T, Kaneko M, Okuma Y, Orba Y, Nagashima K, Takahashi R, Fujitani N, Matsumura S, Hata A, Kubota K, Murahashi K, Uehara T, Nomura Y. A ubiquitin ligase HRD1 promotes the degradation of Pael receptor, a substrate of Parkin. J Neurochem 2006; 99:1456-69. [PMID: 17059562 DOI: 10.1111/j.1471-4159.2006.04155.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
It has been proposed that in autosomal recessive juvenile parkinsonism (AR-JP), a ubiquitin ligase (E3) Parkin, which is involved in endoplasmic reticulum-associated degradation (ERAD), lacks E3 activity. The resulting accumulation of Parkin-associated endothelin receptor-like receptor (Pael-R), a substrate of Parkin, leads to endoplasmic reticulum stress, causing neuronal death. We previously reported that human E3 HRD1 in the endoplasmic reticulum protects against endoplasmic reticulum stress-induced apoptosis. This study shows that HRD1 was expressed in substantia nigra pars compacta (SNC) dopaminergic neurons and interacted with Pael-R through the HRD1 proline-rich region, promoting the ubiquitylation and degradation of Pael-R. Furthermore, the disruption of endogenous HRD1 by small interfering RNA (siRNA) induced Pael-R accumulation and caspase-3 activation. We also found that ATF6 overexpression, which induced HRD1, accelerated and caused Pael-R degradation; the suppression of HRD1 expression by siRNA partially prevents this degradation. These results suggest that in addition to Parkin, HRD1 is also involved in the degradation of Pael-R.
Collapse
Affiliation(s)
- Tomohiro Omura
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
189
|
Mueller B, Lilley BN, Ploegh HL. SEL1L, the homologue of yeast Hrd3p, is involved in protein dislocation from the mammalian ER. ACTA ACUST UNITED AC 2006; 175:261-70. [PMID: 17043138 PMCID: PMC2064567 DOI: 10.1083/jcb.200605196] [Citation(s) in RCA: 174] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Protein quality control in the endoplasmic reticulum (ER) involves recognition of misfolded proteins and dislocation from the ER lumen into the cytosol, followed by proteasomal degradation. Viruses have co-opted this pathway to destroy proteins that are crucial for host defense. Examination of dislocation of class I major histocompatibility complex (MHC) heavy chains (HCs) catalyzed by the human cytomegalovirus (HCMV) immunoevasin US11 uncovered a conserved complex of the mammalian dislocation machinery. We analyze the contributions of a novel complex member, SEL1L, mammalian homologue of yHrd3p, to the dislocation process. Perturbation of SEL1L function discriminates between the dislocation pathways used by US11 and US2, which is a second HCMV protein that catalyzes dislocation of class I MHC HCs. Furthermore, reduction of the level of SEL1L by small hairpin RNA (shRNA) inhibits the degradation of a misfolded ribophorin fragment (RI332) independently of the presence of viral accessories. These results allow us to place SEL1L in the broader context of glycoprotein degradation, and imply the existence of multiple independent modes of extraction of misfolded substrates from the mammalian ER.
Collapse
Affiliation(s)
- Britta Mueller
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | | | | |
Collapse
|
190
|
Bazirgan OA, Garza RM, Hampton RY. Determinants of RING-E2 fidelity for Hrd1p, a membrane-anchored ubiquitin ligase. J Biol Chem 2006; 281:38989-9001. [PMID: 17035235 DOI: 10.1074/jbc.m608174200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
A critical aspect of E3 ubiquitin ligase function is the selection of a particular E2 ubiquitin-conjugating enzyme to accomplish ubiquitination of a substrate. We examined the requirements for correct E2-E3 specificity in the RING-H2 ubiquitin ligase Hrd1p, an ER-localized protein known to use primarily Ubc7p for its function. Versions of Hrd1p containing the RING motif from homologous E3s were unable to carry out Hrd1p function, revealing a requirement for the specific Hrd1p RING motif in vivo. An in vitro assay revealed that these RING motifs were sufficient to function as ubiquitin ligases, but that they did not display the E2 specificity predicted from in vivo results. We further refined the in vitro assay of Hrd1p function by demanding not only ubiquitin ligase activity, but also specific activity that recapitulated both the E2 specificity and RING selectivity observed in vivo. Doing so revealed that correct E2 engagement by Hrd1p required the presence of portions of the Hrd1p soluble cytoplasmic domain outside the RING motif, the placement of the Hrd1p ubiquitin ligase in the ER membrane, and presentation of Ubc7p in the cytosolic context. We confirmed that these conditions supported the ubiquitination of Hrd1p itself, and the transfer of ubiquitin to the prototype substrate Hmg2p-GFP, validating Hrd1p self-ubiquitination as a viable assay of ligase function.
Collapse
Affiliation(s)
- Omar A Bazirgan
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093, USA
| | | | | |
Collapse
|
191
|
Ran Y, Jiang Y, Zhong X, Zhou Z, Liu H, Hu H, Lou JN, Yang Z. Identification of derlin-1 as a novel growth factor-responsive endothelial antigen by suppression subtractive hybridization. Biochem Biophys Res Commun 2006; 348:1272-8. [PMID: 16914117 DOI: 10.1016/j.bbrc.2006.07.186] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Accepted: 07/24/2006] [Indexed: 11/21/2022]
Abstract
Endothelial cells play an important regulatory role in embryonic development, reproductive functions, tumor growth and progression. In the present study, the suppression subtractive hybridization (SSH) method was employed to identify differentially expressed genes between non-stimulated endothelial cells and activated endothelial cells. Following mRNA isolation of non-stimulated and hepatocellular carcinoma homogenate-stimulated cells, cDNAs of both populations were prepared and subtracted by suppressive PCR. Sequencing of the enriched cDNAs identified a couple of genes differentially expressed, including derlin-1. Derlin-1 was significantly up-regulated by tumor homogenates, VEGF, and endothelial growth supplements in a dose-dependent manner. Knock-down of derlin-1 triggered endothelial cell apoptosis, inhibited endothelial cell proliferation, and blocked the formation of a network of tubular-like structures. Our data reveal that derlin-1 is a novel growth factor-responsive endothelial antigen that promotes endothelial cell survival and growth.
Collapse
Affiliation(s)
- Yuliang Ran
- Department of Cellular and Molecular Biology, Cancer Institute (Hospital), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, PR China
| | | | | | | | | | | | | | | |
Collapse
|
192
|
Mbonye UR, Wada M, Rieke CJ, Tang HY, Dewitt DL, Smith WL. The 19-amino acid cassette of cyclooxygenase-2 mediates entry of the protein into the endoplasmic reticulum-associated degradation system. J Biol Chem 2006; 281:35770-8. [PMID: 17001073 DOI: 10.1074/jbc.m608281200] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cyclooxygenase (COX) isoforms catalyze the committed step in prostaglandin biosynthesis. The primary structures of COX-1 and COX-2 are very similar except that COX-2 has a 19-amino acid (19-AA) segment of unknown function located just inside its C terminus. Here we provide evidence that the major role of the 19-AA cassette is to mediate entry of COX-2 into the ER-associated degradation system that transports ER proteins to the cytoplasm. COX-1 is constitutively expressed in many cells, whereas COX-2 is usually expressed inducibly and transiently. In murine NIH/3T3 fibroblasts, we find that COX-2 protein is degraded with a half-life (t(1/2)) of about 2 h, whereas COX-1 is reasonably stable (t(1/2) > 12 h); COX-2 degradation is retarded by 26 S proteasome inhibitors. Similarly, COX-1 expressed heterologously in HEK293 cells is quite stable (t(1/2) > 24 h), whereas COX-2 expressed heterologously is degraded with a t(1/2) of approximately 5 h, and its degradation is slowed by proteasome inhibitors. A deletion mutant of COX-2 was prepared lacking 18 residues of the 19-AA cassette. This mutant retains native COX-2 activity but, unlike native COX-2, is stable in HEK293 cells. Conversely, inserting the COX-2 19-AA cassette near the C terminus of COX-1 yields a mutant ins594-612 COX-1 that is unstable (t(1/2) approximately 3 h). Mutation of Asn-594, an N-glycosylation site at the beginning of the 19-AA cassette, stabilizes both COX-2 and ins594-612 COX-1; nonetheless, COX mutants that are glycosylated at Asn-594 but lack the remainder of the 19-amino acid cassette (i.e. del597-612 COX-2 and ins594-596 COX-1) are stable. Thus, although glycosylation of Asn-594 is necessary for COX-2 degradation, at least part of the remainder of the 19-AA insert is also required. Finally, kifunensine, a mannosidase inhibitor that can block entry of ER proteins into the ER-associated degradation system, retards COX-2 degradation.
Collapse
Affiliation(s)
- Uri R Mbonye
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | | | | | |
Collapse
|
193
|
Hassink GC, Barel MT, Van Voorden SB, Kikkert M, Wiertz EJ. Ubiquitination of MHC class I heavy chains is essential for dislocation by human cytomegalovirus-encoded US2 but not US11. J Biol Chem 2006; 281:30063-71. [PMID: 16877758 DOI: 10.1074/jbc.m602248200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human cytomegalovirus-encoded glycoproteins US2 and US11 target newly synthesized major histocompatibility complex class I heavy chains for degradation by mediating their dislocation from the endoplasmic reticulum back into the cytosol, where they are degraded by proteasomes. A functional ubiquitin system is required for US2- and US11-dependent dislocation of the class I heavy chains. It has been assumed that the class I heavy chain itself is ubiquitinated during the dislocation reaction. To test this hypothesis, all lysines within the class I heavy chain were substituted. The lysine-less class I molecules could no longer be dislocated by US2 despite the fact that the interaction between the two proteins was maintained. Interestingly, US11 was still capable of dislocating the lysine-less heavy chains into the cytosol. Ubiquitination does not necessarily require lysine residues but can also occur at the N terminus of a protein. To investigate the potential role of N-terminal ubiquitination in heavy chain dislocation, a lysine-less ubiquitin moiety was fused to the N terminus of the class I molecule. This lysine-less fusion protein was still dislocated in the presence of US11. Ubiquitination could not be detected in vitro, either for the lysine-less heavy chains or for the lysine-less ubiquitin-heavy chain fusion protein. Our data show that although dislocation of the lysineless class I heavy chains requires a functional ubiquitin system, the heavy chain itself does not serve as the ubiquitin acceptor. This finding sheds new light on the role of the ubiquitin system in the dislocation process.
Collapse
Affiliation(s)
- Gerco C Hassink
- Department of Medical Microbiology, Leiden University Medical Center, Box 9600, 2300 RC Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
194
|
Mittl PRE, Schneider-Brachert W. Sel1-like repeat proteins in signal transduction. Cell Signal 2006; 19:20-31. [PMID: 16870393 DOI: 10.1016/j.cellsig.2006.05.034] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2006] [Accepted: 05/23/2006] [Indexed: 02/06/2023]
Abstract
Solenoid proteins, which are distinguished from general globular proteins by their modular architectures, are frequently involved in signal transduction pathways. Proteins from the tetratricopeptide repeat (TPR) and Sel1-like repeat (SLR) families share similar alpha-helical conformations but different consensus sequence lengths and superhelical topologies. Both families are characterized by low sequence similarity levels, rendering the identification of functional homologous difficult. Therefore current knowledge of the molecular and cellular functions of the SLR proteins Sel1, Hrd3, Chs4, Nif1, PodJ, ExoR, AlgK, HcpA, Hsp12, EnhC, LpnE, MotX, and MerG has been reviewed. Although SLR proteins possess different cellular functions they all seem to serve as adaptor proteins for the assembly of macromolecular complexes. Sel1, Hrd3, Hsp12 and LpnE are activated under cellular stress. The eukaryotic Sel1 and Hrd3 proteins are involved in the ER-associated protein degradation, whereas the bacterial LpnE, EnhC, HcpA, ExoR, and AlgK proteins mediate the interactions between bacterial and eukaryotic host cells. LpnE and EnhC are responsible for the entry of L. pneumophila into epithelial cells and macrophages. ExoR from the symbiotic microorganism S. melioti and AlgK from the pathogen P. aeruginosa regulate exopolysaccaride synthesis. Nif1 and Chs4 from yeast are responsible for the regulation of mitosis and septum formation during cell division, respectively, and PodJ guides the cellular differentiation during the cell cycle of the bacterium C. crescentus. Taken together the SLR motif establishes a link between signal transduction pathways from eukaryotes and bacteria. The SLR motif is so far absent from archaea. Therefore the SLR could have developed in the last common ancestor between eukaryotes and bacteria.
Collapse
Affiliation(s)
- Peer R E Mittl
- Biochemisches Institut, Universität Zürich, Winterthurer Strasse 190, 8057 Zürich, Switzerland.
| | | |
Collapse
|
195
|
Gauss R, Jarosch E, Sommer T, Hirsch C. A complex of Yos9p and the HRD ligase integrates endoplasmic reticulum quality control into the degradation machinery. Nat Cell Biol 2006; 8:849-54. [PMID: 16845381 DOI: 10.1038/ncb1445] [Citation(s) in RCA: 181] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2006] [Accepted: 07/03/2006] [Indexed: 11/08/2022]
Abstract
A quality-control system surveys the lumen of the endoplasmic reticulum for terminally misfolded proteins. Polypeptides singled out by this system are ultimately degraded by the cytosolic ubiquitin-proteasome pathway. Key components of both the endoplasmic reticulum quality-control system and the degradation machinery have been identified, but a connection between the two systems has remained elusive. Here, we report an association between the endoplasmic reticulum quality-control lectin Yos9p and Hrd3p, a component of the ubiquitin-proteasome system that links these pathways. We identify designated regions in the luminal domain of Hrd3p that interact with Yos9p and the ubiquitin ligase Hrd1p. Binding of misfolded proteins occurs through Hrd3p, suggesting that Hrd3p recognises proteins that deviate from their native conformation, whereas Yos9p ensures that only terminally misfolded polypeptides are degraded.
Collapse
Affiliation(s)
- Robert Gauss
- Max-Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | | | | | | |
Collapse
|
196
|
Abstract
Numerous factors are involved in the eradication of misfolded proteins, yet how these factors achieve substrate specificity remains unclear. In this issue of Cell, Denic et al. (2006) and Carvalho et al. (2006) report that two distinct protein complexes at the endoplasmic reticulum membrane are responsible for the recognition and degradation of specific subsets of protein substrates.
Collapse
Affiliation(s)
- Nurzian Ismail
- Temasek Life Sciences Laboratory and Department of Biological Sciences, National University of Singapore, Singapore 117604
| | | |
Collapse
|
197
|
Carvalho P, Goder V, Rapoport TA. Distinct Ubiquitin-Ligase Complexes Define Convergent Pathways for the Degradation of ER Proteins. Cell 2006; 126:361-73. [PMID: 16873066 DOI: 10.1016/j.cell.2006.05.043] [Citation(s) in RCA: 567] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2006] [Revised: 04/30/2006] [Accepted: 05/18/2006] [Indexed: 11/22/2022]
Abstract
Many misfolded endoplasmic reticulum (ER) proteins are eliminated by ERAD, a process in which substrates are polyubiquitylated and moved into the cytosol for proteasomal degradation. We have identified in S. cerevisiae distinct ubiquitin-ligase complexes that define different ERAD pathways. Proteins with misfolded ER-luminal domains use the ERAD-L pathway, in which the Hrd1p/Hrd3p ligase forms a near stoichiometric membrane core complex by binding to Der1p via the linker protein Usa1p. This core complex associates through Hrd3p with Yos9p, a substrate recognition protein in the ER lumen. Substrates with misfolded intramembrane domains define a pathway (ERAD-M) that differs from ERAD-L by being independent of Usa1p and Der1p. Membrane proteins with misfolded cytosolic domains use the ERAD-C pathway and are directly targeted to the Doa10p ubiquitin ligase. All three pathways converge at the Cdc48p ATPase complex. These results lead to a unifying concept for ERAD that may also apply to mammalian cells.
Collapse
Affiliation(s)
- Pedro Carvalho
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | | | | |
Collapse
|
198
|
Denic V, Quan EM, Weissman JS. A Luminal Surveillance Complex that Selects Misfolded Glycoproteins for ER-Associated Degradation. Cell 2006; 126:349-59. [PMID: 16873065 DOI: 10.1016/j.cell.2006.05.045] [Citation(s) in RCA: 329] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2006] [Revised: 04/20/2006] [Accepted: 05/10/2006] [Indexed: 10/24/2022]
Abstract
How the ER-associated degradation (ERAD) machinery accurately identifies terminally misfolded proteins is poorly understood. For luminal ERAD substrates, this recognition depends on their folding and glycosylation status as well as on the conserved ER lectin Yos9p. Here we show that Yos9p is part of a stable complex that organizes key components of ERAD machinery on both sides of the ER membrane, including the transmembrane ubiquitin ligase Hrd1p. We further demonstrate that Yos9p, together with Kar2p and Hrd3p, forms a luminal surveillance complex that both recruits nonnative proteins to the core ERAD machinery and assists a distinct sugar-dependent step necessary to commit substrates for degradation. When Hrd1p is uncoupled from the Yos9p surveillance complex, degradation can occur independently of the requirement for glycosylation. Thus, Yos9p/Kar2p/Hrd3p acts as a gatekeeper, ensuring correct identification of terminally misfolded proteins by recruiting misfolded forms to the ERAD machinery, contributing to the interrogation of substrate sugar status, and preventing glycosylation-independent degradation.
Collapse
Affiliation(s)
- Vladimir Denic
- Howard Hughes Medical Institute, Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA
| | | | | |
Collapse
|
199
|
Gauss R, Sommer T, Jarosch E. The Hrd1p ligase complex forms a linchpin between ER-lumenal substrate selection and Cdc48p recruitment. EMBO J 2006; 25:1827-35. [PMID: 16619026 PMCID: PMC1456945 DOI: 10.1038/sj.emboj.7601088] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2006] [Accepted: 03/21/2006] [Indexed: 11/09/2022] Open
Abstract
Misfolded proteins of the endoplasmic reticulum (ER) are targeted to the cytoplasm for proteasomal degradation. Key components of this process are ER membrane-bound ubiquitin ligases. These ligases associate with the cytoplasmic AAA-ATPase Cdc48p/p97, which is thought to support the release of malfolded proteins from the ER. Here, we characterize a yeast protein complex containing the ubiquitin ligase Hrd1p and the ER membrane proteins Hrd3p and Der1p. Hrd3p binds malfolded proteins in the ER lumen enabling their delivery to downstream components. Therefore, we propose that Hrd3p acts as a substrate recruitment factor for the Hrd1p ligase complex. Hrd3p function is also required for the association of Cdc48p with Hrd1p. Moreover, our data demonstrate that recruitment of Cdc48p depends on substrate processing by the Hrd1p ligase complex. Thus, the Hrd1p ligase complex unites substrate selection in the ER lumen and polyubiquitination in the cytoplasm and links these processes to the release of ER proteins via the Cdc48p complex.
Collapse
Affiliation(s)
- Robert Gauss
- Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Thomas Sommer
- Max-Delbrück Center for Molecular Medicine, Berlin, Germany
- Max-Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, Berlin 13092, Germany. Tel.: +49 30 9406 3753; Fax: +49 30 9406 3363; E-mail:
| | - Ernst Jarosch
- Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| |
Collapse
|
200
|
Loertscher J, Larson LL, Matson CK, Parrish ML, Felthauser A, Sturm A, Tachibana C, Bard M, Wright R. Endoplasmic reticulum-associated degradation is required for cold adaptation and regulation of sterol biosynthesis in the yeast Saccharomyces cerevisiae. EUKARYOTIC CELL 2006; 5:712-22. [PMID: 16607018 PMCID: PMC1459677 DOI: 10.1128/ec.5.4.712-722.2006] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2005] [Accepted: 01/16/2006] [Indexed: 11/20/2022]
Abstract
Endoplasmic reticulum-associated degradation (ERAD) mediates the turnover of short-lived and misfolded proteins in the ER membrane or lumen. In spite of its important role, only subtle growth phenotypes have been associated with defects in ERAD. We have discovered that the ERAD proteins Ubc7 (Qri8), Cue1, and Doa10 (Ssm4) are required for growth of yeast that express high levels of the sterol biosynthetic enzyme, 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR). Interestingly, the observed growth defect was exacerbated at low temperatures, producing an HMGR-dependent cold sensitivity. Yeast strains lacking UBC7, CUE1, or DOA10 also assembled aberrant karmellae (ordered arrays of membranes surrounding the nucleus that assemble when HMGR is expressed at high levels). However, rather than reflecting the accumulation of abnormal karmellae, the cold sensitivity of these ERAD mutants was due to increased HMGR catalytic activity. Mutations that compromise proteasomal function also resulted in cold-sensitive growth of yeast with elevated HMGR, suggesting that improper degradation of ERAD targets might be responsible for the observed cold-sensitive phenotype. However, the essential ERAD targets were not the yeast HMGR enzymes themselves. The sterol metabolite profile of ubc7Delta cells was altered relative to that of wild-type cells. Since sterol levels are known to regulate membrane fluidity, the viability of ERAD mutants expressing normal levels of HMGR was examined at low temperatures. Cells lacking UBC7, CUE1, or DOA10 were cold sensitive, suggesting that these ERAD proteins have a role in cold adaptation, perhaps through effects on sterol biosynthesis.
Collapse
|