151
|
Abstract
Huntington disease (HD) is an adult-onset neurodegenerative disease caused by a CAG expansion in the HTT gene. HD is characterized by striatal atrophy and is associated with motor, cognitive and psychiatric deficits. In the presence of the HD mutation, the interactions between huntingtin (HTT) and huntingtin interacting protein 14 (HIP14 or DHHC17) and HIP14-like (DHHC13, a HIP14 orthologue), palmitoyl acyltransferases for HTT, are disturbed, resulting in reduced palmitoylation of HTT. Genetic ablation of either Hip14 or Hip14l recapitulates many features of HD, including striatal atrophy and motor deficits. However, there are no changes in palmitoylation of HTT in either mouse model and, subsequently, the similarities between the phenotypes of these two mouse models and the HD mouse model are believed to result from underpalmitoylation of other HIP14 and HIP14L substrates. HTT acts as a modulator of HIP14 activity such that in the presence of the HD mutation, HIP14 is less active. Consequently, HIP14 substrates are less palmitoylated, leading to neuronal toxicity. This suggests that altered HIP14–HTT and HIP14L–HTT interactions in the presence of the HD mutation reduces palmitoylation and promotes mislocalization of HTT and other HIP14/HIP14L substrates. Ultimately, HD may be, in part, a disease of altered palmitoylation.
Collapse
|
152
|
Hurst CH, Hemsley PA. Current perspective on protein S-acylation in plants: more than just a fatty anchor? JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:1599-606. [PMID: 25725093 DOI: 10.1093/jxb/erv053] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Membranes are an important signalling platform in plants. The plasma membrane is the point where information about the external environment must be converted into intracellular signals, while endomembranes are important sites of protein trafficking, organization, compartmentalization, and intracellular signalling. This requires co-ordinating the spatial distribution of proteins, their activation state, and their interacting partners. This regulation frequently occurs through post-translational modification of proteins. Proteins that associate with the cell membrane do so through transmembrane domains, protein-protein interactions, lipid binding motifs/domains or use the post-translational addition of lipid groups as prosthetic membrane anchors. S-acylation is one such lipid modification capable of anchoring proteins to the membrane. Our current knowledge of S-acylation function in plants is fairly limited compared with other post-translational modifications and S-acylation in other organisms. However, it is becoming increasingly clear that S-acylation can act as more than just a simple membrane anchor: it can also act as a regulatory mechanism in signalling pathways in plants. S-acylation is, therefore, an ideal mechanism for regulating protein function at membranes. This review discusses our current knowledge of S-acylated proteins in plants, the interaction of different lipid modifications, and the general effects of S-acylation on cellular function.
Collapse
Affiliation(s)
- Charlotte H Hurst
- Division of Plant Sciences, University of Dundee, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, uk Cell and molecular sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, K
| | - Piers A Hemsley
- Division of Plant Sciences, University of Dundee, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, uk Cell and molecular sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, K
| |
Collapse
|
153
|
Chauvin S, Sobel A. Neuronal stathmins: A family of phosphoproteins cooperating for neuronal development, plasticity and regeneration. Prog Neurobiol 2015; 126:1-18. [DOI: 10.1016/j.pneurobio.2014.09.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 09/23/2014] [Accepted: 09/29/2014] [Indexed: 02/06/2023]
|
154
|
Casein kinase 1γ ensures monopolar growth polarity under incomplete DNA replication downstream of Cds1 and calcineurin in fission yeast. Mol Cell Biol 2015; 35:1533-42. [PMID: 25691662 DOI: 10.1128/mcb.01465-14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 02/09/2015] [Indexed: 02/05/2023] Open
Abstract
Cell polarity is essential for various cellular functions during both proliferative and developmental stages, and it displays dynamic alterations in response to intracellular and extracellular cues. However, the molecular mechanisms underlying spatiotemporal control of polarity transition are poorly understood. Here, we show that fission yeast Cki3 (a casein kinase 1γ homolog) is a critical regulator to ensure persistent monopolar growth during S phase. Unlike the wild type, cki3 mutant cells undergo bipolar growth when S phase is blocked, a condition known to delay transition from monopolar to bipolar growth (termed NETO [new end takeoff]). Consistent with this role, Cki3 kinase activity is substantially increased, and cells lose their viability in the absence of Cki3 upon an S-phase block. Cki3 acts downstream of the checkpoint kinase Cds1/Chk2 and calcineurin, and the latter physically interacts with Cki3. Autophosphorylation in the C terminus is inhibitory toward Cki3 kinase activity, and calcineurin is responsible for its dephosphorylation. Cki3 localizes to the plasma membrane, and this localization requires the palmitoyltransferase complex Erf2-Erf4. Membrane localization is needed not only for proper NETO timing but also for Cki3 kinase activity. We propose that Cki3 acts as a critical inhibitor of cell polarity transition under S-phase arrest.
Collapse
|
155
|
Dual lipidation of the brain-specific Cdc42 isoform regulates its functional properties. Biochem J 2015; 456:311-22. [PMID: 24059268 DOI: 10.1042/bj20130788] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Cdc42 (cell division cycle 42) is a member of the Rho GTPase family which regulates a variety of cellular activities by controlling actin cytoskeleton and gene expression. Cdc42 is expressed in the form of two splice variants. The canonical Cdc42 isoform is prenylated (Cdc42-prenyl), whereas the brainspecific isoform can be palmitoylated (Cdc42-palm). In the present study we have demonstrated palmitoylation of endogenous Cdc42 in rodent and human brains and identified Cys(188) and Cys(189) as acylation sites of Cdc42-palm. Moreover, we have shown that Cys(188) can also be prenylated. Analysis of acylation-deficient mutants revealed that lipidation of Cys(188) is essential for proper membrane binding of Cdc42-palm as well as for Cdc42-mediated regulation of gene transcription and induction of densely packed filopodia in neuroblastoma cells. We also found that Cdc42-prenyl is a dominant splice variant in a wide range of commonly used cell lines as well as in the cerebellum, whereas Cdc42-palm is the main Cdc42 isoform in hippocampus, where it is critically involved in the formation of dendritic filopodia and spines. Replacement of endogenous Cdc42 by its acylation-deficient mutants revealed the importance of Cdc42-palm lipidation for its morphogenic and synaptogenic effects in neurons. These findings demonstrate that dual lipidation of Cdc42-palm represents an important regulator of morphogenic signalling in hippocampal neurons.
Collapse
|
156
|
Zheng B, Zhu S, Wu X. Clickable analogue of cerulenin as chemical probe to explore protein palmitoylation. ACS Chem Biol 2015; 10:115-21. [PMID: 25322207 DOI: 10.1021/cb500758s] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Dynamic palmitoylation is an important post-translational modification regulating protein localization, trafficking, and signaling activities. The Asp-His-His-Cys (DHHC) domain containing enzymes are evolutionarily conserved palmitoyl acyltransferases (PATs) mediating diverse protein S-palmitoylation. Cerulenin is a natural product inhibitor of fatty acid biosynthesis and protein palmitoylation, through irreversible alkylation of the cysteine residues in the enzymes. Here, we report the synthesis and characterization of a "clickable" and long alkyl chain analogue of cerulenin as a chemical probe to investigate its cellular targets and to label and profile PATs in vitro and in live cells. Our results showed that the probe could stably label the DHHC-family PATs and enable mass spectrometry studies of PATs and other target proteins in the cellular proteome. Such probe provides a new chemical tool to dissect the functions of palmitoylating enzymes in cell signaling and diseases and reveals new cellular targets of the natural product cerulenin.
Collapse
Affiliation(s)
- Baohui Zheng
- Cutaneous Biology Research
Center, Massachusetts General Hospital, Harvard Medical School, Building 149, 13th Street, Charlestown, Massachusetts 02129, United States
| | - Shunying Zhu
- Cutaneous Biology Research
Center, Massachusetts General Hospital, Harvard Medical School, Building 149, 13th Street, Charlestown, Massachusetts 02129, United States
| | - Xu Wu
- Cutaneous Biology Research
Center, Massachusetts General Hospital, Harvard Medical School, Building 149, 13th Street, Charlestown, Massachusetts 02129, United States
| |
Collapse
|
157
|
Wetzel J, Herrmann S, Swapna LS, Prusty D, John Peter AT, Kono M, Saini S, Nellimarla S, Wong TWY, Wilcke L, Ramsay O, Cabrera A, Biller L, Heincke D, Mossman K, Spielmann T, Ungermann C, Parkinson J, Gilberger TW. The role of palmitoylation for protein recruitment to the inner membrane complex of the malaria parasite. J Biol Chem 2015; 290:1712-1728. [PMID: 25425642 PMCID: PMC4340414 DOI: 10.1074/jbc.m114.598094] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 11/20/2014] [Indexed: 08/27/2023] Open
Abstract
To survive and persist within its human host, the malaria parasite Plasmodium falciparum utilizes a battery of lineage-specific innovations to invade and multiply in human erythrocytes. With central roles in invasion and cytokinesis, the inner membrane complex, a Golgi-derived double membrane structure underlying the plasma membrane of the parasite, represents a unique and unifying structure characteristic to all organisms belonging to a large phylogenetic group called Alveolata. More than 30 structurally and phylogenetically distinct proteins are embedded in the IMC, where a portion of these proteins displays N-terminal acylation motifs. Although N-terminal myristoylation is catalyzed co-translationally within the cytoplasm of the parasite, palmitoylation takes place at membranes and is mediated by palmitoyl acyltransferases (PATs). Here, we identify a PAT (PfDHHC1) that is exclusively localized to the IMC. Systematic phylogenetic analysis of the alveolate PAT family reveals PfDHHC1 to be a member of a highly conserved, apicomplexan-specific clade of PATs. We show that during schizogony this enzyme has an identical distribution like two dual-acylated, IMC-localized proteins (PfISP1 and PfISP3). We used these proteins to probe into specific sequence requirements for IMC-specific membrane recruitment and their interaction with differentially localized PATs of the parasite.
Collapse
Affiliation(s)
- Johanna Wetzel
- From the M. G. DeGroote Institute for Infectious Disease Research, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Susann Herrmann
- From the M. G. DeGroote Institute for Infectious Disease Research, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Lakshmipuram Seshadri Swapna
- the Program in Molecular Structure and Function, Hospital for Sick Children, and Departments of Biochemistry and Molecular Genetics, University of Toronto, Toronto, Ontario M5G 0A4, Canada
| | - Dhaneswar Prusty
- From the M. G. DeGroote Institute for Infectious Disease Research, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Arun T John Peter
- the Department of Biology/Chemistry, Biochemistry Section, University of Osnabrück, 49076 Osnabrück, Germany
| | - Maya Kono
- the Bernhard-Nocht-Institute for Tropical Medicine, 20359 Hamburg, Germany, and
| | - Sidharth Saini
- From the M. G. DeGroote Institute for Infectious Disease Research, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Srinivas Nellimarla
- From the M. G. DeGroote Institute for Infectious Disease Research, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Tatianna Wai Ying Wong
- From the M. G. DeGroote Institute for Infectious Disease Research, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Louisa Wilcke
- From the M. G. DeGroote Institute for Infectious Disease Research, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario L8N 3Z5, Canada, the Bernhard-Nocht-Institute for Tropical Medicine, 20359 Hamburg, Germany, and
| | - Olivia Ramsay
- From the M. G. DeGroote Institute for Infectious Disease Research, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Ana Cabrera
- From the M. G. DeGroote Institute for Infectious Disease Research, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Laura Biller
- the Bernhard-Nocht-Institute for Tropical Medicine, 20359 Hamburg, Germany, and
| | - Dorothee Heincke
- From the M. G. DeGroote Institute for Infectious Disease Research, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario L8N 3Z5, Canada, the Bernhard-Nocht-Institute for Tropical Medicine, 20359 Hamburg, Germany, and
| | - Karen Mossman
- From the M. G. DeGroote Institute for Infectious Disease Research, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Tobias Spielmann
- the Bernhard-Nocht-Institute for Tropical Medicine, 20359 Hamburg, Germany, and
| | - Christian Ungermann
- the Department of Biology/Chemistry, Biochemistry Section, University of Osnabrück, 49076 Osnabrück, Germany
| | - John Parkinson
- the Program in Molecular Structure and Function, Hospital for Sick Children, and Departments of Biochemistry and Molecular Genetics, University of Toronto, Toronto, Ontario M5G 0A4, Canada
| | - Tim W Gilberger
- From the M. G. DeGroote Institute for Infectious Disease Research, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario L8N 3Z5, Canada, the Bernhard-Nocht-Institute for Tropical Medicine, 20359 Hamburg, Germany, and the Center for Structural Systems Biology, 22607 Hamburg, Germany
| |
Collapse
|
158
|
Han J, Wu P, Wang F, Chen J. S-palmitoylation regulates AMPA receptors trafficking and function: a novel insight into synaptic regulation and therapeutics. Acta Pharm Sin B 2015; 5:1-7. [PMID: 26579419 PMCID: PMC4629138 DOI: 10.1016/j.apsb.2014.12.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 12/05/2014] [Accepted: 12/09/2014] [Indexed: 01/11/2023] Open
Abstract
Glutamate acting on AMPA-type ionotropic glutamate receptor (AMPAR) mediates the majority of fast excitatory synaptic transmission in the mammalian central nervous system. Dynamic regulation of AMPAR by post-translational modifications is one of the key elements that allow the nervous system to adapt to environment stimulations. S-palmitoylation, an important lipid modification by post-translational addition of a long-chain fatty acid to a cysteine residue, regulates AMPA receptor trafficking, which dynamically affects multiple fundamental brain functions, such as learning and memory. In vivo, S-palmitoylation is controlled by palmitoyl acyl transferases and palmitoyl thioesterases. In this review, we highlight advances in the mechanisms for dynamic AMPA receptors palmitoylation, and discuss how palmitoylation affects AMPA receptors function at synapses in recent years. Pharmacological regulation of S-palmitoylation may serve as a novel therapeutic strategy for neurobiological diseases.
Collapse
Key Words
- 17-ODYA, 17-octadecynoic acid
- ABE, acyl-biotinyl exchange
- ABP, AMPA receptor binding protein
- AD, Alzheimer׳s disease
- AKAP79/150, A-kinase anchoring protein 79/150
- AMPA receptors
- AMPAR, α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor
- APT1, acyl-protein thioesterase-1
- APT2, acyl-protein thioesterase-2
- CP-AMPARs, Ca2+-permeable AMPARs
- DHHC
- DHHC, aspartate-histidine-histidine-cysteine
- FMRP, fragile X mental retardation protein
- FXS, Fragile X syndrome
- GAP-43, growth associated protein-43
- GRIP, glutamate receptor interacting protein
- LTD, long-term depression
- LTP, long-term potentiation
- PATs, palmitoyl acyl transferases
- PDZ, postsynaptic density-95/discs large/zona occludens-1
- PICK1, protein interacting with C-kinase 1
- PKA, protein kinase A
- PKC, protein kinase C
- PPT1, palmitoyl-protein thioesterase-1
- PSD-95, postsynaptic density-95
- Palmitoylation
- Ras, rat sarcoma
- SNAP-23, soluble N-ethylmaleimide-sensitive fusion protein-attachment protein receptor protein-23
- Trafficking
Collapse
|
159
|
Hornemann T. Palmitoylation and depalmitoylation defects. J Inherit Metab Dis 2015; 38:179-86. [PMID: 25091425 DOI: 10.1007/s10545-014-9753-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 07/11/2014] [Accepted: 07/17/2014] [Indexed: 11/29/2022]
Abstract
Palmitoylation describes the enzymatic attachment of a 16-carbon atom fatty acid to a target protein. Such lipidation events occur in all eukaryotes and can be of reversible (S-palmitoylation) or irreversible (N-palmitoylation) nature. In particular S-palmitoylation is dynamically regulated by two opposing types of enzymes which add (palmitoyl acyltransferases - PAT) or remove (acyl protein thioesterases) palmitate from proteins. Protein palmitoylation is an important process that dynamically regulates the assembly and compartmentalization of many neuronal proteins at specific subcellular sites. Enzymes that regulate protein palmitoylation are critical for several biological processes. To date, eight palmitoylation related genes have been reported to be associated with human disease. This review intends to give an overview on the pathological changes which are associated with defects in the palmitoylation/depalmitoylation process.
Collapse
Affiliation(s)
- Thorsten Hornemann
- Institute for Clinical Chemistry, University Hospital Zurich, Raemistrasse 100, CH-8091, Zurich, Switzerland,
| |
Collapse
|
160
|
Edmonds MJ, Morgan A. A systematic analysis of protein palmitoylation in Caenorhabditis elegans. BMC Genomics 2014; 15:841. [PMID: 25277130 PMCID: PMC4192757 DOI: 10.1186/1471-2164-15-841] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 08/26/2014] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Palmitoylation is a reversible post-translational protein modification which involves the addition of palmitate to cysteine residues. Palmitoylation is catalysed by the DHHC family of palmitoyl-acyl transferases (PATs) and reversibility is conferred by palmitoyl-protein thioesterases (PPTs). Mutations in genes encoding both classes of enzymes are associated with human diseases, notably neurological disorders, underlining their importance. Despite the pivotal role of yeast studies in discovering PATs, palmitoylation has not been studied in the key animal model Caenorhabditis elegans. RESULTS Analysis of the C. elegans genome identified fifteen PATs, using the DHHC cysteine-rich domain, and two PPTs, by homology. The twelve uncategorised PATs were officially named using a dhhc-x system. Genomic data on these palmitoylation enzymes and those in yeast, Drosophila and humans was collated and analysed to predict properties and relationships in C. elegans. All available C. elegans strains containing a mutation in a palmitoylation enzyme were analysed and a complete library of RNA interference (RNAi) feeding plasmids against PAT or PPT genes was generated. To test for possible redundancy, double RNAi was performed against selected closely related PATs and both PPTs. Animals were screened for phenotypes including size, longevity and sensory and motor neuronal functions. Although some significant differences were observed with individual mutants or RNAi treatment, in general there was little impact on these phenotypes, suggesting that genetic buffering exists within the palmitoylation network in worms. CONCLUSIONS This study reports the first characterisation of palmitoylation in C. elegans using both in silico and in vivo approaches, and opens up this key model organism for further detailed study of palmitoylation in future.
Collapse
Affiliation(s)
| | - Alan Morgan
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Crown St,, Liverpool L69 3BX, UK.
| |
Collapse
|
161
|
Konrad SSA, Popp C, Stratil TF, Jarsch IK, Thallmair V, Folgmann J, Marín M, Ott T. S-acylation anchors remorin proteins to the plasma membrane but does not primarily determine their localization in membrane microdomains. THE NEW PHYTOLOGIST 2014; 203:758-69. [PMID: 24897938 DOI: 10.1111/nph.12867] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 04/22/2014] [Indexed: 05/06/2023]
Abstract
Remorins are well-established marker proteins for plasma membrane microdomains. They specifically localize to the inner membrane leaflet despite an overall hydrophilic amino acid composition. Here, we determined amino acids and post-translational lipidations that are required for membrane association of remorin proteins. We used a combination of cell biological and biochemical approaches to localize remorin proteins and truncated variants of those in living cells and determined S-acylation on defined residues in these proteins. S-acylation of cysteine residues in a C-terminal hydrophobic core contributes to membrane association of most remorin proteins. While S-acylation patterns differ between members of this multi-gene family, initial membrane association is mediated by protein-protein or protein-lipid interactions. However, S-acylation is not a key determinant for the localization of remorins in membrane microdomains. Although remorins bind via a conserved mechanism to the plasma membrane, other membrane-resident proteins may be involved in the recruitment of remorins into membrane domains. S-acylation probably occurs after an initial targeting of the proteins to the plasma membrane and locks remorins in this compartment. As S-acylation is a reversible post-translational modification, stimulus-dependent intracellular trafficking of these proteins can be envisioned.
Collapse
Affiliation(s)
- Sebastian S A Konrad
- Ludwig-Maximilians-University (LMU) Munich, Institute of Genetics, 82152, Martinsried, Germany
| | | | | | | | | | | | | | | |
Collapse
|
162
|
Merino MC, Zamponi N, Vranych CV, Touz MC, Rópolo AS. Identification of Giardia lamblia DHHC proteins and the role of protein S-palmitoylation in the encystation process. PLoS Negl Trop Dis 2014; 8:e2997. [PMID: 25058047 PMCID: PMC4109852 DOI: 10.1371/journal.pntd.0002997] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 05/23/2014] [Indexed: 12/17/2022] Open
Abstract
Protein S-palmitoylation, a hydrophobic post-translational modification, is performed by protein acyltransferases that have a common DHHC Cys-rich domain (DHHC proteins), and provides a regulatory switch for protein membrane association. In this work, we analyzed the presence of DHHC proteins in the protozoa parasite Giardia lamblia and the function of the reversible S-palmitoylation of proteins during parasite differentiation into cyst. Two specific events were observed: encysting cells displayed a larger amount of palmitoylated proteins, and parasites treated with palmitoylation inhibitors produced a reduced number of mature cysts. With bioinformatics tools, we found nine DHHC proteins, potential protein acyltransferases, in the Giardia proteome. These proteins displayed a conserved structure when compared to different organisms and are distributed in different monophyletic clades. Although all Giardia DHHC proteins were found to be present in trophozoites and encysting cells, these proteins showed a different intracellular localization in trophozoites and seemed to be differently involved in the encystation process when they were overexpressed. dhhc transgenic parasites showed a different pattern of cyst wall protein expression and yielded different amounts of mature cysts when they were induced to encyst. Our findings disclosed some important issues regarding the role of DHHC proteins and palmitoylation during Giardia encystation. Giardiasis is a major cause of non-viral/non-bacterial diarrheal disease worldwide and has been included within the WHO Neglected Disease Initiative since 2004. Infection begins with the ingestion of Giardia lamblia in cyst form, which, after exposure to gastric acid in the host stomach and proteases in the duodenum, gives rise to trophozoites. The inverse process is called encystation and begins when the trophozoites migrate to the lower part of the small intestine where they receive signals that trigger synthesis of the components of the cyst wall. The cyst form enables the parasite to survive in the environment, infect a new host and evade the immune response. In this work, we explored the role of protein S-palmitoylation, a unique reversible post-translational modification, during Giardia encystation, because de novo generation of endomembrane compartments, protein sorting and vesicle fusion occur in this process. Our findings may contribute to the design of therapeutic agents against this important human pathogen.
Collapse
Affiliation(s)
- María C. Merino
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
- * E-mail:
| | - Nahuel Zamponi
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Cecilia V. Vranych
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María C. Touz
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Andrea S. Rópolo
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
163
|
He M, Abdi KM, Bennett V. Ankyrin-G palmitoylation and βII-spectrin binding to phosphoinositide lipids drive lateral membrane assembly. J Cell Biol 2014; 206:273-88. [PMID: 25049274 PMCID: PMC4107783 DOI: 10.1083/jcb.201401016] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 06/17/2014] [Indexed: 12/22/2022] Open
Abstract
Ankyrin-G and βII-spectrin colocalize at sites of cell-cell contact in columnar epithelial cells and promote lateral membrane assembly. This study identifies two critical inputs from lipids that together provide a rationale for how ankyrin-G and βII-spectrin selectively localize to Madin-Darby canine kidney (MDCK) cell lateral membranes. We identify aspartate-histidine-histidine-cysteine 5/8 (DHHC5/8) as ankyrin-G palmitoyltransferases required for ankyrin-G lateral membrane localization and for assembly of lateral membranes. We also find that βII-spectrin functions as a coincidence detector that requires recognition of both ankyrin-G and phosphoinositide lipids for its lateral membrane localization. DHHC5/8 and βII-spectrin colocalize with ankyrin-G in micrometer-scale subdomains within the lateral membrane that are likely sites for palmitoylation of ankyrin-G. Loss of either DHHC5/8 or ankyrin-G-βII-spectrin interaction or βII-spectrin-phosphoinositide recognition through its pleckstrin homology domain all result in failure to build the lateral membrane. In summary, we identify a functional network connecting palmitoyltransferases DHHC5/8 with ankyrin-G, ankyrin-G with βII-spectrin, and βII-spectrin with phosphoinositides that is required for the columnar morphology of MDCK epithelial cells.
Collapse
Affiliation(s)
- Meng He
- Department of Pharmacology and Cancer Biology, Department of Cell Biology, Department of Biochemistry, and Department of Neurobiology, Duke University Medical Center, Durham, NC 27710
| | - Khadar M Abdi
- Department of Pharmacology and Cancer Biology, Department of Cell Biology, Department of Biochemistry, and Department of Neurobiology, Duke University Medical Center, Durham, NC 27710
| | - Vann Bennett
- Department of Pharmacology and Cancer Biology, Department of Cell Biology, Department of Biochemistry, and Department of Neurobiology, Duke University Medical Center, Durham, NC 27710Department of Pharmacology and Cancer Biology, Department of Cell Biology, Department of Biochemistry, and Department of Neurobiology, Duke University Medical Center, Durham, NC 27710 Howard Hughes Medical Institute, Durham, NC 27710
| |
Collapse
|
164
|
Roberts BJ, Johnson KE, McGuinn KP, Saowapa J, Svoboda RA, Mahoney MG, Johnson KR, Wahl JK. Palmitoylation of plakophilin is required for desmosome assembly. J Cell Sci 2014; 127:3782-93. [PMID: 25002405 DOI: 10.1242/jcs.149849] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Desmosomes are prominent adhesive junctions found in various epithelial tissues. The cytoplasmic domains of desmosomal cadherins interact with a host of desmosomal plaque proteins, including plakophilins, plakoglobin and desmoplakin, which, in turn, recruit the intermediate filament cytoskeleton to sites of cell-cell contact. Although the individual components of the desmosome are known, mechanisms regulating the assembly of this junction are poorly understood. Protein palmitoylation is a posttranslational lipid modification that plays an important role in protein trafficking and function. Here, we demonstrate that multiple desmosomal components are palmitoylated in vivo. Pharmacologic inhibition of palmitoylation disrupts desmosome assembly at cell-cell borders. We mapped the site of plakophilin palmitoylation to a conserved cysteine residue present in the armadillo repeat domain. Mutation of this single cysteine residue prevents palmitoylation, disrupts plakophilin incorporation into the desmosomal plaque and prevents plakophilin-dependent desmosome assembly. Finally, plakophilin mutants unable to become palmitoylated act in a dominant-negative manner to disrupt proper localization of endogenous desmosome components and decrease desmosomal adhesion. Taken together, these data demonstrate that palmitoylation of desmosomal components is important for desmosome assembly and adhesion.
Collapse
Affiliation(s)
- Brett J Roberts
- The University of Nebraska Medical Center, College of Dentistry, Department of Oral Biology, Lincoln, NE 68583, USA
| | - Kristen E Johnson
- The University of Nebraska Medical Center, College of Dentistry, Department of Oral Biology, Lincoln, NE 68583, USA
| | - Kathleen P McGuinn
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Jintana Saowapa
- The University of Nebraska Medical Center, College of Dentistry, Department of Oral Biology, Lincoln, NE 68583, USA
| | - Robert A Svoboda
- The University of Nebraska Medical Center, College of Dentistry, Department of Oral Biology, Lincoln, NE 68583, USA
| | - My G Mahoney
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Keith R Johnson
- The University of Nebraska Medical Center, College of Dentistry, Department of Oral Biology, Lincoln, NE 68583, USA Eppley Institute for Research in Cancer and Allied Diseases, Omaha, NE 68198, USA
| | - James K Wahl
- The University of Nebraska Medical Center, College of Dentistry, Department of Oral Biology, Lincoln, NE 68583, USA
| |
Collapse
|
165
|
Goldston AM, Sharma AI, Paul KS, Engman DM. Acylation in trypanosomatids: an essential process and potential drug target. Trends Parasitol 2014; 30:350-60. [PMID: 24954795 DOI: 10.1016/j.pt.2014.05.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 05/06/2014] [Accepted: 05/06/2014] [Indexed: 12/11/2022]
Abstract
Fatty acylation--the addition of fatty acid moieties such as myristate and palmitate to proteins--is essential for the survival, growth, and infectivity of the trypanosomatids: Trypanosoma brucei, Trypanosoma cruzi, and Leishmania. Myristoylation and palmitoylation are critical for parasite growth, targeting and localization, and the intrinsic function of some proteins. The trypanosomatids possess a single N-myristoyltransferase (NMT) and multiple palmitoyl acyltransferases, and these enzymes and their protein targets are only now being characterized. Global inhibition of either process leads to cell death in trypanosomatids, and genetic ablation of NMT compromises virulence. Moreover, NMT inhibitors effectively cure T. brucei infection in rodents. Thus, protein acylation represents an attractive target for the development of new trypanocidal drugs.
Collapse
Affiliation(s)
- Amanda M Goldston
- Departments of Pathology and Microbiology-Immunology, Northwestern University, Chicago, Illinois, USA
| | - Aabha I Sharma
- Departments of Pathology and Microbiology-Immunology, Northwestern University, Chicago, Illinois, USA
| | - Kimberly S Paul
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, USA
| | - David M Engman
- Departments of Pathology and Microbiology-Immunology, Northwestern University, Chicago, Illinois, USA.
| |
Collapse
|
166
|
Frénal K, Kemp LE, Soldati-Favre D. Emerging roles for protein S-palmitoylation in Toxoplasma biology. Int J Parasitol 2014; 44:121-31. [PMID: 24184909 DOI: 10.1016/j.ijpara.2013.09.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 09/25/2013] [Accepted: 09/28/2013] [Indexed: 10/26/2022]
Abstract
Post-translational modifications are refined, rapidly responsive and powerful ways to modulate protein function. Among post-translational modifications, acylation is now emerging as a widespread modification exploited by eukaryotes, bacteria and viruses to control biological processes. Protein palmitoylation involves the attachment of palmitic acid, also known as hexadecanoic acid, to cysteine residues of integral and peripheral membrane proteins and increases their affinity for membranes. Importantly, similar to phosphorylation, palmitoylation is reversible and is becoming recognised as instrumental for the regulation of protein function by modulating protein interactions, stability, folding, trafficking and signalling. Palmitoylation appears to play a central role in the biology of the Apicomplexa, regulating critical processes such as host cell invasion which is vital for parasite survival and dissemination. The recent identification of over 400 palmitoylated proteins in Plasmodium falciparum erythrocytic stages illustrates the broad spread and impact of this modification on parasite biology. The main enzymes responsible for protein palmitoylation are multi-membrane protein S-acyl transferases harbouring a catalytic Asp-His-His-Cys (DHHC) motif. A global functional analysis of the repertoire of protein S-acyl transferases in Toxoplasma gondii and Plasmodium berghei has recently been performed. The essential nature of some of these enzymes illustrates the key roles played by this post-translational modification in the corresponding substrates implicated in fundamental processes such as parasite motility and organelle biogenesis. Toward a better understanding of the depalmitoylation event, a protein with palmitoyl protein thioesterase activity has been identified in T. gondii. TgPPT1/TgASH1 is the main target of specific acyl protein thioesterase inhibitors but is dispensable for parasite survival, suggesting the implication of other genes in depalmitoylation. Palmitoylation/depalmitoylation cycles are now emerging as potential novel regulatory networks and T. gondii represents a superb model organism in which to explore their significance.
Collapse
Affiliation(s)
- Karine Frénal
- Department of Microbiology and Molecular Medicine, University of Geneva, 1 rue Michel-Servet, 1211 Geneva 4, Switzerland.
| | - Louise E Kemp
- Department of Microbiology and Molecular Medicine, University of Geneva, 1 rue Michel-Servet, 1211 Geneva 4, Switzerland
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, University of Geneva, 1 rue Michel-Servet, 1211 Geneva 4, Switzerland
| |
Collapse
|
167
|
Wan J, Savas JN, Roth AF, Sanders SS, Singaraja RR, Hayden MR, Yates JR, Davis NG. Tracking brain palmitoylation change: predominance of glial change in a mouse model of Huntington's disease. CHEMISTRY & BIOLOGY 2013; 20:1421-34. [PMID: 24211138 PMCID: PMC3880188 DOI: 10.1016/j.chembiol.2013.09.018] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 08/28/2013] [Accepted: 09/08/2013] [Indexed: 11/25/2022]
Abstract
Protein palmitoylation, a reversible lipid modification of proteins, is widely used in the nervous system, with dysregulated palmitoylation being implicated in a variety of neurological disorders. Described below is ABE/SILAM, a proteomic strategy that couples acyl-biotinyl exchange (ABE) purification of palmitoyl-proteins to whole animal stable isotope labeling (SILAM) to provide an accurate tracking of palmitoylation change within rodent disease models. As a first application, we have used ABE/SILAM to look at Huntington's disease (HD), profiling palmitoylation change in two HD-relevant mouse mutants: the transgenic HD model mouse YAC128 and the hypomorphic Hip14-gt mouse, which has sharply reduced expression for HIP14 (Zdhhc17), a palmitoyl-transferase implicated in the HD disease process. Rather than mapping to the degenerating neurons themselves, the biggest disease changes instead map to astrocytes and oligodendrocytes (i.e., the supporting glial cells).
Collapse
Affiliation(s)
- Junmei Wan
- Department of Pharmacology, Wayne State University, Detroit, MI 48201, USA
| | - Jeffrey N. Savas
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Amy F. Roth
- Department of Pharmacology, Wayne State University, Detroit, MI 48201, USA
| | - Shaun S. Sanders
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4 Canada
| | - Roshni R. Singaraja
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4 Canada
| | - Michael R. Hayden
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4 Canada
| | - John R. Yates
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Nicholas G. Davis
- Department of Pharmacology, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
168
|
Zinc co-ordination by the DHHC cysteine-rich domain of the palmitoyltransferase Swf1. Biochem J 2013; 454:427-35. [PMID: 23790227 DOI: 10.1042/bj20121693] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
S-acylation, commonly known as palmitoylation, is a widespread post-translational modification of proteins that consists of the thioesterification of one or more cysteine residues with fatty acids. This modification is catalysed by a family of PATs (palmitoyltransferases), characterized by the presence of a 50-residue long DHHC-CRD (Asp-His-His-Cys cysteine-rich domain). To gain knowledge on the structure-function relationships of these proteins, we carried out a random-mutagenesis assay designed to uncover essential amino acids in Swf1, the yeast PAT responsible for the palmitoylation of SNARE (soluble N-ethylmaleimide-sensitive fusion protein-attachment protein receptor) proteins. We identified 21 novel loss-of-function mutations, which are mostly localized within the DHHC-CRD. Modelling of the tertiary structure of the Swf1 DHHC domain suggests that it could fold as a zinc-finger domain, co-ordinating two zinc atoms in a CCHC arrangement. All residues predicted to be involved in the co-ordination of zinc were found to be essential for Swf1 function in the screen. Moreover, these mutations result in unstable proteins, in agreement with a structural role for these zinc fingers. The conservation of amino acids predicted to form each zinc-binding pocket suggests a shared function, as the selective pressure to maintain them is lost upon mutation of one of them. A Swf1 orthologue that lacks one of the zinc-binding pockets is able to complement a yeast swf1∆ strain, possibly because a similar fold can be stabilized by hydrogen bonds instead of zinc co-ordination. Finally, we show directly that recombinant Swf1 DHHC-CRD is able to bind zinc. Sequence analyses of DHHC domains allowed us to present models of the zinc-binding properties for all PATs.
Collapse
|
169
|
Yuan X, Zhang S, Sun M, Liu S, Qi B, Li X. Putative DHHC-cysteine-rich domain S-acyltransferase in plants. PLoS One 2013; 8:e75985. [PMID: 24155879 PMCID: PMC3796536 DOI: 10.1371/journal.pone.0075985] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Accepted: 08/19/2013] [Indexed: 11/18/2022] Open
Abstract
Protein S-acyltransferases (PATs) containing Asp-His-His-Cys within a Cys-rich domain (DHHC-CRD) are polytopic transmembrane proteins that are found in eukaryotic cells and mediate the S-acylation of target proteins. S-acylation is an important secondary and reversible modification that regulates the membrane association, trafficking and function of target proteins. However, little is known about the characteristics of PATs in plants. Here, we identified 804 PATs from 31 species with complete genomes. The analysis of the phylogenetic relationships suggested that all of the PATs fell into 8 groups. In addition, we analysed the phylogeny, genomic organization, chromosome localisation and expression pattern of PATs in Arabidopsis, Oryza sative, Zea mays and Glycine max. The microarray data revealed that PATs genes were expressed in different tissues and during different life stages. The preferential expression of the ZmPATs in specific tissues and the response of Zea mays to treatments with phytohormones and abiotic stress demonstrated that the PATs play roles in plant growth and development as well as in stress responses. Our data provide a useful reference for the identification and functional analysis of the members of this protein family.
Collapse
Affiliation(s)
- Xiaowei Yuan
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai-An, Shandong 271018, China
- Huasheng Agriculture Limited Liability Company, Qingzhou, Shandong 262500, China
- Qingzhou City Bureau of Agriculture, Qingzhou, Shandong 262500, China
| | - Shizhong Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai-An, Shandong 271018, China
- National Research Center for Apple Engineering and Technology, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Meihong Sun
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Shiyang Liu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Baoxiu Qi
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Xinzheng Li
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai-An, Shandong 271018, China
- * E-mail:
| |
Collapse
|
170
|
Qi B, Doughty J, Hooley R. A Golgi and tonoplast localized S-acyl transferase is involved in cell expansion, cell division, vascular patterning and fertility in Arabidopsis. THE NEW PHYTOLOGIST 2013; 200:444-456. [PMID: 23795888 PMCID: PMC3817529 DOI: 10.1111/nph.12385] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 05/23/2013] [Indexed: 05/04/2023]
Abstract
S-acylation of eukaryotic proteins is the reversible attachment of palmitic or stearic acid to cysteine residues, catalysed by protein S-acyl transferases that share an Asp-His-His-Cys (DHHC) motif. Previous evidence suggests that in Arabidopsis S-acylation is involved in the control of cell size, polarity and the growth of pollen tubes and root hairs. Using a combination of yeast genetics, biochemistry, cell biology and loss of function genetics the roles of a member of the protein S-acyl transferase PAT family, AtPAT10 (At3g51390), have been explored. In keeping with its role as a PAT, AtPAT10 auto-S-acylates, and partially complements the yeast akr1 PAT mutant, and this requires Cys(192) of the DHHC motif. In Arabidopsis AtPAT10 is localized in the Golgi stack, trans-Golgi network/early endosome and tonoplast. Loss-of-function mutants have a pleiotropic phenotype involving cell expansion and division, vascular patterning, and fertility that is rescued by wild-type AtPAT10 but not by catalytically inactive AtPAT10C(192) A. This supports the hypothesis that AtPAT10 is functionally independent of the other Arabidopsis PATs. Our findings demonstrate a growing importance of protein S-acylation in plants, and reveal a Golgi and tonoplast located S-acylation mechanism that affects a range of events during growth and development in Arabidopsis.
Collapse
Affiliation(s)
- Baoxiu Qi
- Department of Biology and Biochemistry, University of BathClaverton Down, Bath, BA2 7AY, UK
- State Key Laboratory of Crop Biology, Shandong Agricultural UniversityShandong, 271018, China
| | - James Doughty
- Department of Biology and Biochemistry, University of BathClaverton Down, Bath, BA2 7AY, UK
| | - Richard Hooley
- Department of Biology and Biochemistry, University of BathClaverton Down, Bath, BA2 7AY, UK
| |
Collapse
|
171
|
Davda D, El Azzouny MA, Tom CT, Hernandez JL, Majmudar JD, Kennedy RT, Martin BR. Profiling targets of the irreversible palmitoylation inhibitor 2-bromopalmitate. ACS Chem Biol 2013; 8:1912-7. [PMID: 23844586 DOI: 10.1021/cb400380s] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
2-Bromohexadecanoic acid, or 2-bromopalmitate, was introduced nearly 50 years ago as a nonselective inhibitor of lipid metabolism. More recently, 2-bromopalmitate re-emerged as a general inhibitor of protein S-palmitoylation. Here, we investigate the cellular targets of 2-bromopalmitate through the synthesis and application of click-enabled analogues. In cells, 2-bromopalmitate is converted to 2-bromopalmitoyl-CoA, although less efficiently than free palmitate. Once conjugated to CoA, probe reactivity is dramatically enhanced. Importantly, both 2-bromopalmitate and 2-bromopalmitoyl-CoA label DHHC palmitoyl acyl transferases (PATs), the enzymes that catalyze protein S-palmitoylation. Mass spectrometry analysis of enriched 2-bromopalmitate targets identified PAT enzymes, transporters, and many palmitoylated proteins, with no observed preference for CoA-dependent enzymes. These data question whether 2-bromopalmitate (or 2-bromopalmitoyl-CoA) blocks S-palmitoylation by inhibiting protein acyl transferases, or by blocking palmitate incorporation by direct covalent competition. Overall, these findings highlight the promiscuous reactivity of 2BP and validate clickable 2BP analogues as activity-based probes of diverse membrane associated enzymes.
Collapse
Affiliation(s)
- Dahvid Davda
- Program
in Chemical Biology, ‡Department of Chemistry, and §Department of Pharmacology, University of Michigan, 930 North University Avenue,
Ann Arbor, Michigan 48109, United States
| | - Mahmoud A. El Azzouny
- Program
in Chemical Biology, ‡Department of Chemistry, and §Department of Pharmacology, University of Michigan, 930 North University Avenue,
Ann Arbor, Michigan 48109, United States
| | - Christopher T.M.B. Tom
- Program
in Chemical Biology, ‡Department of Chemistry, and §Department of Pharmacology, University of Michigan, 930 North University Avenue,
Ann Arbor, Michigan 48109, United States
| | - Jeannie L. Hernandez
- Program
in Chemical Biology, ‡Department of Chemistry, and §Department of Pharmacology, University of Michigan, 930 North University Avenue,
Ann Arbor, Michigan 48109, United States
| | - Jaimeen D. Majmudar
- Program
in Chemical Biology, ‡Department of Chemistry, and §Department of Pharmacology, University of Michigan, 930 North University Avenue,
Ann Arbor, Michigan 48109, United States
| | - Robert T. Kennedy
- Program
in Chemical Biology, ‡Department of Chemistry, and §Department of Pharmacology, University of Michigan, 930 North University Avenue,
Ann Arbor, Michigan 48109, United States
| | - Brent R. Martin
- Program
in Chemical Biology, ‡Department of Chemistry, and §Department of Pharmacology, University of Michigan, 930 North University Avenue,
Ann Arbor, Michigan 48109, United States
| |
Collapse
|
172
|
Abstract
The covalent attachment of palmitate to proteins can alter protein-lipid and protein-protein interactions thereby influencing protein function. Palmitoylation is a reversible post-translational modification. Thus, like protein phosphorylation, protein palmitoylation can function in activation-dependent signaling pathways. This review will provide an overview of the mechanisms and regulation of protein palmitoylation and focus on the role of palmitoylation in signal transduction pathways of lymphocytes and platelets.
Collapse
Affiliation(s)
- Robert Flaumenhaft
- Beth Israel Deaconess Medical Center, Harvard Medical School, Division of Hemostasis and Thrombosis, Department of Medicine, Boston, MA, 02215, USA.
| | | |
Collapse
|
173
|
DHHC17 palmitoylates ClipR-59 and modulates ClipR-59 association with the plasma membrane. Mol Cell Biol 2013; 33:4255-65. [PMID: 24001771 DOI: 10.1128/mcb.00527-13] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
ClipR-59 interacts with Akt and regulates Akt compartmentalization and Glut4 membrane trafficking in a plasma membrane association-dependent manner. The association of ClipR-59 with plasma membrane is mediated by ClipR-59 palmitoylation at Cys534 and Cys535. To understand the regulation of ClipR-59 palmitoylation, we have examined all known mammalian DHHC palmitoyltransferases with respect to their ability to promote ClipR-59 palmitoylation. We found that, among 23 mammalian DHHC palmitoyltransferases, DHHC17 is the major ClipR-59 palmitoyltransferase, as evidenced by the fact that DHHC17 interacted with ClipR-59 and palmitoylated ClipR-59 at Cys534 and Cys535. By palmitoylating ClipR-59, DHHC17 directly regulates ClipR-59 plasma membrane association, as ectopic expression of DHHC17 increased whereas silencing of DHHC17 reduced the levels of ClipR-59 associated with plasma membrane. We have also examined the role of DHHC17 in Akt signaling and found that silencing of DHHC17 in 3T3-L1 adipocytes decreased the levels of Akt as well as ClipR-59 on the plasma membrane and impaired insulin-dependent Glut4 membrane translocation. We suggest that DHHC17 is a ClipR-59 palmitoyltransferase that modulates ClipR-59 plasma membrane binding, thereby regulating Akt signaling and Glut4 membrane translocation in adipocytes.
Collapse
|
174
|
Kim JH, Roy A, Jouandot D, Cho KH. The glucose signaling network in yeast. Biochim Biophys Acta Gen Subj 2013; 1830:5204-10. [PMID: 23911748 DOI: 10.1016/j.bbagen.2013.07.025] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 07/24/2013] [Accepted: 07/26/2013] [Indexed: 01/26/2023]
Abstract
BACKGROUND Most cells possess a sophisticated mechanism for sensing glucose and responding to it appropriately. Glucose sensing and signaling in the budding yeast Saccharomyces cerevisiae represent an important paradigm for understanding how extracellular signals lead to changes in the gene expression program in eukaryotes. SCOPE OF REVIEW This review focuses on the yeast glucose sensing and signaling pathways that operate in a highly regulated and cooperative manner to bring about glucose-induction of HXT gene expression. MAJOR CONCLUSIONS The yeast cells possess a family of glucose transporters (HXTs), with different kinetic properties. They employ three major glucose signaling pathways-Rgt2/Snf3, AMPK, and cAMP-PKA-to express only those transporters best suited for the amounts of glucose available. We discuss the current understanding of how these pathways are integrated into a regulatory network to ensure efficient uptake and utilization of glucose. GENERAL SIGNIFICANCE Elucidating the role of multiple glucose signals and pathways involved in glucose uptake and metabolism in yeast may reveal the molecular basis of glucose homeostasis in humans, especially under pathological conditions, such as hyperglycemia in diabetics and the elevated rate of glycolysis observed in many solid tumors.
Collapse
Affiliation(s)
- Jeong-Ho Kim
- Department of Biochemistry and Molecular Medicine, The George Washington University Medical Center, 2300 Eye Street, Washington, DC 20037, USA.
| | | | | | | |
Collapse
|
175
|
Abstract
Protein S-palmitoylation is a reversible post-translational modification of proteins with fatty acids. In the last 5 years, improved proteomic methods have increased the number of proteins identified as substrates for palmitoylation from tens to hundreds. Palmitoylation regulates protein membrane interactions, activity, trafficking and stability and can be constitutive or regulated by signalling inputs. A family of PATs (protein acyltransferases) is responsible for modifying proteins with palmitate or other long-chain fatty acids on the cytoplasmic face of cellular membranes. PATs share a signature DHHC (Asp-His-His-Cys) cysteine-rich domain that is the catalytic centre of the enzyme. The biomedical importance of members of this family is underscored by their association with intellectual disability, Huntington's disease and cancer in humans, and raises the possibility of DHHC PATs as targets for therapeutic intervention. In the present paper, we discuss recent progress in understanding enzyme mechanism, regulation and substrate specificity.
Collapse
|
176
|
Frénal K, Tay CL, Mueller C, Bushell ES, Jia Y, Graindorge A, Billker O, Rayner JC, Soldati-Favre D. Global analysis of apicomplexan protein S-acyl transferases reveals an enzyme essential for invasion. Traffic 2013; 14:895-911. [PMID: 23638681 PMCID: PMC3813974 DOI: 10.1111/tra.12081] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 04/29/2013] [Accepted: 05/02/2013] [Indexed: 11/27/2022]
Abstract
The advent of techniques to study palmitoylation on a whole proteome scale has revealed that it is an important reversible modification that plays a role in regulating multiple biological processes. Palmitoylation can control the affinity of a protein for lipid membranes, which allows it to impact protein trafficking, stability, folding, signalling and interactions. The publication of the palmitome of the schizont stage of Plasmodium falciparum implicated a role for palmitoylation in host cell invasion, protein export and organelle biogenesis. However, nothing is known so far about the repertoire of protein S-acyl transferases (PATs) that catalyse this modification in Apicomplexa. We undertook a comprehensive analysis of the repertoire of Asp-His-His-Cys cysteine-rich domain (DHHC-CRD) PAT family in Toxoplasma gondii and Plasmodium berghei by assessing their localization and essentiality. Unlike functional redundancies reported in other eukaryotes, some apicomplexan-specific DHHCs are essential for parasite growth, and several are targeted to organelles unique to this phylum. Of particular interest is DHHC7, which localizes to rhoptry organelles in all parasites tested, including the major human pathogen P. falciparum. TgDHHC7 interferes with the localization of the rhoptry palmitoylated protein TgARO and affects the apical positioning of the rhoptry organelles. This PAT has a major impact on T. gondii host cell invasion, but not on the parasite's ability to egress.
Collapse
Affiliation(s)
- Karine Frénal
- Department of Microbiology and Molecular Medicine, CMU, University of GenevaRue Michel-Servet 1, CH-1211, Geneva 4, Switzerland
| | - Chwen L Tay
- Malaria Programme, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, HinxtonCambridge, CB10 1SA, UK
| | - Christina Mueller
- Department of Microbiology and Molecular Medicine, CMU, University of GenevaRue Michel-Servet 1, CH-1211, Geneva 4, Switzerland
| | - Ellen S Bushell
- Malaria Programme, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, HinxtonCambridge, CB10 1SA, UK
| | - Yonggen Jia
- Department of Microbiology and Molecular Medicine, CMU, University of GenevaRue Michel-Servet 1, CH-1211, Geneva 4, Switzerland
| | - Arnault Graindorge
- Department of Microbiology and Molecular Medicine, CMU, University of GenevaRue Michel-Servet 1, CH-1211, Geneva 4, Switzerland
| | - Oliver Billker
- Malaria Programme, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, HinxtonCambridge, CB10 1SA, UK
| | - Julian C Rayner
- Malaria Programme, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, HinxtonCambridge, CB10 1SA, UK
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, CMU, University of GenevaRue Michel-Servet 1, CH-1211, Geneva 4, Switzerland
| |
Collapse
|
177
|
Zhang MM, Wu PYJ, Kelly FD, Nurse P, Hang HC. Quantitative control of protein S-palmitoylation regulates meiotic entry in fission yeast. PLoS Biol 2013; 11:e1001597. [PMID: 23843742 PMCID: PMC3699447 DOI: 10.1371/journal.pbio.1001597] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 05/13/2013] [Indexed: 11/18/2022] Open
Abstract
Protein S-palmitoylation, a lipid modification mediated by members of the palmitoyltransferase family, serves as an important membrane-targeting mechanism in eukaryotes. Although changes in palmitoyltransferase expression are associated with various physiological and disease states, how these changes affect global protein palmitoylation and cellular function remains unknown. Using a bioorthogonal chemical reporter and labeling strategy to identify and analyze multiple cognate substrates of a single Erf2 palmitoyltransferase, we demonstrate that control of Erf2 activity levels underlies the differential modification of key substrates such as the Rho3 GTPase in vegetative and meiotic cells. We show further that modulation of Erf2 activity levels drives changes in the palmitoylome as cells enter meiosis and affects meiotic entry. Disruption of Erf2 function delays meiotic entry, while increasing Erf2 palmitoyltransferase activity triggers aberrant meiosis in sensitized cells. Erf2-induced meiosis requires the function of the Rho3 GTPase, which is regulated by its palmitoylation state. We propose that control of palmitoyltransferase activity levels provides a fundamental mechanism for modulating palmitoylomes and cellular functions.
Collapse
Affiliation(s)
- Mingzi M. Zhang
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, New York, United States of America
| | - Pei-Yun Jenny Wu
- Laboratory of Yeast Genetics and Cell Biology, The Rockefeller University, New York, New York, United States of America
| | - Felice D. Kelly
- Laboratory of Yeast Genetics and Cell Biology, The Rockefeller University, New York, New York, United States of America
| | - Paul Nurse
- Laboratory of Yeast Genetics and Cell Biology, The Rockefeller University, New York, New York, United States of America
| | - Howard C. Hang
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, New York, United States of America
| |
Collapse
|
178
|
Abstract
The formation of dimers or higher-order oligomers is a property of numerous integral membrane proteins, including ion channels, transporters, and receptors. In this study, we examined whether members of the DHHC-S-acyltransferase family oligomerize in intact cells and in vitro. DHHC-S-acyltransferases are integral membrane proteins that catalyze the addition of palmitate to cysteine residues on proteins at the cytoplasmic face of cell membranes. Bioluminescence resonance energy transfer (BRET) experiments revealed that DHHC2 or DHHC3 (Golgi-specific DHHC zinc finger protein (GODZ)) self-associate when expressed in HEK-293 cells. Homomultimer formation was confirmed by coimmunoprecipitation. Purified DHHC3 resolved predominately as a monomer and dimer on blue native polyacrylamide gels. In intact cells and in vitro, catalytically inactive DHHC proteins displayed a greater propensity to form dimers. BRET signals were higher for the catalytically inactive DHHC2 or DHHC3 than their wild-type counterparts. DHHC3 BRET in cell membranes was decreased by the addition of its lipid substrate palmitoyl-CoA, a treatment that results in autoacylation of the enzyme. Enzyme activity of a covalently linked DHHC3 dimer was less than that of the monomeric form, suggesting that enzyme activity may be modulated by the oligomerization status of the protein.
Collapse
Affiliation(s)
- Jianbin Lai
- Department of Molecular Medicine, Cornell University College of Veterinary Medicine, Ithaca, New York 14853, USA
| | | |
Collapse
|
179
|
Oku S, Takahashi N, Fukata Y, Fukata M. In silico screening for palmitoyl substrates reveals a role for DHHC1/3/10 (zDHHC1/3/11)-mediated neurochondrin palmitoylation in its targeting to Rab5-positive endosomes. J Biol Chem 2013; 288:19816-29. [PMID: 23687301 DOI: 10.1074/jbc.m112.431676] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Protein palmitoylation, a common post-translational lipid modification, plays an important role in protein trafficking and functions. Recently developed palmitoyl-proteomic methods identified many novel substrates. However, the whole picture of palmitoyl substrates has not been clarified. Here, we performed global in silico screening using the CSS-Palm 2.0 program, free software for prediction of palmitoylation sites, and selected 17 candidates as novel palmitoyl substrates. Of the 17 candidates, 10 proteins, including 6 synaptic proteins (Syd-1, transmembrane AMPA receptor regulatory protein (TARP) γ-2, TARP γ-8, cornichon-2, Ca(2+)/calmodulin-dependent protein kinase IIα, and neurochondrin (Ncdn)/norbin), one focal adhesion protein (zyxin), two ion channels (TRPM8 and TRPC1), and one G-protein-coupled receptor (orexin 2 receptor), were palmitoylated. Using the DHHC palmitoylating enzyme library, we found that all tested substrates were palmitoylated by the Golgi-localized DHHC3/7 subfamily. Ncdn, a regulator for neurite outgrowth and synaptic plasticity, was robustly palmitoylated by the DHHC1/10 (zDHHC1/11; z1/11) subfamily, whose substrate has not yet been reported. As predicted by CSS-Palm 2.0, Cys-3 and Cys-4 are the palmitoylation sites for Ncdn. Ncdn was specifically localized in somato-dendritic regions, not in the axon of rat cultured neurons. Stimulated emission depletion microscopy revealed that Ncdn was localized to Rab5-positive early endosomes in a palmitoylation-dependent manner, where DHHC1/10 (z1/11) were also distributed. Knockdown of DHHC1, -3, or -10 (z11) resulted in the loss of Ncdn from Rab5-positive endosomes. Thus, through in silico screening, we demonstrate that Ncdn and the DHHC1/10 (z1/11) and DHHC3/7 subfamilies are novel palmitoyl substrate-enzyme pairs and that Ncdn palmitoylation plays an essential role in its specific endosomal targeting.
Collapse
Affiliation(s)
- Shinichiro Oku
- Division of Membrane Physiology, Department of Cell Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | | | | | | |
Collapse
|
180
|
Zheng B, DeRan M, Li X, Liao X, Fukata M, Wu X. 2-Bromopalmitate analogues as activity-based probes to explore palmitoyl acyltransferases. J Am Chem Soc 2013; 135:7082-5. [PMID: 23631516 DOI: 10.1021/ja311416v] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Reversible S-palmitoylation is an important post-translational modification that regulates the trafficking, localization, and activity of proteins. Cysteine-rich Asp-His-His-Cys (DHHC) domain-containing enzymes are evolutionarily conserved protein palmitoyl acyltransferases (PATs). The human genome encodes 23 DHHC-PATs that regulate diverse cellular functions. Although chemical probes and proteomic methods to detect palmitoylated protein substrates have been reported, no probes for direct detection of the activity of PATs are available. Here we report the synthesis and characterization of 2-bromohexadec-15-ynoic acid and 2-bromooctadec-17-ynoic acid, which are analogues of 2-bromopalmitate (2-BP), as activity-based probes for PATs as well as other palmitoylating and 2-BP-binding enzymes. These probes will serve as new chemical tools for activity-based protein profiling to explore PATs, to dissect the functions of PATs in cell signaling and diseases, and to facilitate the identification of their inhibitors.
Collapse
Affiliation(s)
- Baohui Zheng
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Building 149, 13th Street, Charlestown, Massachusetts 02129, USA
| | | | | | | | | | | |
Collapse
|
181
|
Batista CM, Kalb LC, Moreira CMDN, Batista GTH, Eger I, Soares MJ. Identification and subcellular localization of TcHIP, a putative Golgi zDHHC palmitoyl transferase of Trypanosoma cruzi. Exp Parasitol 2013; 134:52-60. [PMID: 23428831 DOI: 10.1016/j.exppara.2013.01.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 01/14/2013] [Accepted: 01/30/2013] [Indexed: 12/28/2022]
Abstract
Protein palmitoylation is a post-translational modification that contributes to determining protein localization and function. Palmitoylation has been described in trypanosomatid protozoa, but no zDHHC palmitoyl transferase has been identified in Trypanosoma cruzi, the etiological agent of Chagas disease in Latin America. In this study we identify and show the subcellular localization of TcHIP (Tc00.1047053508199.50), a putative T. cruzi zDHHC palmitoyl transferase. Analysis of the deduced protein sequence indicates that it contains ankyrin repeats (Ank and Ank2) and the zDHHC conserved domain, typical of zDHHC palmitoyl transferases. A TcHIP polyclonal antiserum obtained from mice immunized with the purified recombinant protein was used to study the presence and subcellular localization of the native enzyme. In western blots this antiserum recognized a protein of about 95 kDa, consistent with the predicted molecular mass of TcHIP (95.4 kDa), in whole extracts of T. cruzi epimastigotes, metacyclic trypomastigotes and intracellular amastigotes. Immunolocalization by confocal microscopy showed TcHIP labeling at the Golgi complex, co-localizing with the T. cruzi Golgi marker TcRab7-GFP. Transfectant T. cruzi epimastigotes containing a construct encoding TcHIP fused to proteins A and C (TcHIP/AC) were obtained. In western blotting experiments, the TcHIP polyclonal antiserum recognized both native and TcHIP/AC proteins in extracts of the transfectants. Confocal microscopy showed co-localization of native TcHIP with TcHIP/AC. These findings demonstrate the presence of a putative zDHHC palmitoyl transferase (TcHIP) containing ankyrin and zDHHC domains in different developmental forms of T. cruzi, and its association with the Golgi complex.
Collapse
|
182
|
Beck JR, Fung C, Straub KW, Coppens I, Vashisht AA, Wohlschlegel JA, Bradley PJ. A Toxoplasma palmitoyl acyl transferase and the palmitoylated armadillo repeat protein TgARO govern apical rhoptry tethering and reveal a critical role for the rhoptries in host cell invasion but not egress. PLoS Pathog 2013; 9:e1003162. [PMID: 23408890 PMCID: PMC3567180 DOI: 10.1371/journal.ppat.1003162] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 12/13/2012] [Indexed: 11/19/2022] Open
Abstract
Apicomplexans are obligate intracellular parasites that actively penetrate their host cells to create an intracellular niche for replication. Commitment to invasion is thought to be mediated by the rhoptries, specialized apical secretory organelles that inject a protein complex into the host cell to form a tight-junction for parasite entry. Little is known about the molecular factors that govern rhoptry biogenesis, their subcellular organization at the apical end of the parasite and subsequent release of this organelle during invasion. We have identified a Toxoplasma palmitoyl acyltransferase, TgDHHC7, which localizes to the rhoptries. Strikingly, conditional knockdown of TgDHHC7 results in dispersed rhoptries that fail to organize at the apical end of the parasite and are instead scattered throughout the cell. While the morphology and content of these rhoptries appears normal, failure to tether at the apex results in a complete block in host cell invasion. In contrast, attachment and egress are unaffected in the knockdown, demonstrating that the rhoptries are not required for these processes. We show that rhoptry targeting of TgDHHC7 requires a short, highly conserved C-terminal region while a large, divergent N-terminal domain is dispensable for both targeting and function. Additionally, a point mutant lacking a key residue predicted to be critical for enzyme activity fails to rescue apical rhoptry tethering, strongly suggesting that tethering of the organelle is dependent upon TgDHHC7 palmitoylation activity. We tie the importance of this activity to the palmitoylated Armadillo Repeats-Only (TgARO) rhoptry protein by showing that conditional knockdown of TgARO recapitulates the dispersed rhoptry phenotype of TgDHHC7 knockdown. The unexpected finding that apicomplexans have exploited protein palmitoylation for apical organelle tethering yields new insight into the biogenesis and function of rhoptries and may provide new avenues for therapeutic intervention against Toxoplasma and related apicomplexan parasites. Apicomplexans possess a highly polarized secretory pathway that is critical for their ability to invade host cells and cause disease. This unique cellular organization enables delivery of protein cargo to specialized secretory organelles called micronemes and rhoptries that drive forward penetration into the host cell. The rhoptries are tethered in a bundle at the apex of the parasite, but how these organelles are organized in this manner is unknown. In this work, we identify a rhoptry-localized palmitoyl acyl transferase (named TgDHHC7) that functions to properly affix the rhoptries at the apical end of the parasite. Conditional disruption of TgDHHC7 results in a failure to tether the rhoptries at the cell apex and a corresponding loss of rhoptry function. We exploit this mutant to clearly demonstrate a critical role for the rhoptries in host invasion but not attachment or egress. Additionally, we find that mutation of a key residue predicted to be required for catalytic activity renders TgDHHC7 non-functional and that knockdown of the candidate substrate TgARO produces an identical phenotype to loss of TgDHHC7. The finding that Toxoplasma employs protein palmitoylation to position the rhoptries at the cell apex provides new insight into the molecular mechanisms that underlie apicomplexan cell polarity, host invasion and pathogenesis.
Collapse
Affiliation(s)
- Josh R. Beck
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Connie Fung
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Kurtis W. Straub
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Isabelle Coppens
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Ajay A. Vashisht
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
| | - James A. Wohlschlegel
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Peter J. Bradley
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
183
|
Sutton LM, Sanders SS, Butland SL, Singaraja RR, Franciosi S, Southwell AL, Doty CN, Schmidt ME, Mui KKN, Kovalik V, Young FB, Zhang W, Hayden MR. Hip14l-deficient mice develop neuropathological and behavioural features of Huntington disease. Hum Mol Genet 2013; 22:452-65. [PMID: 23077216 DOI: 10.1093/hmg/dds441] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Palmitoylation, the dynamic post-translational addition of the lipid, palmitate, to proteins by Asp-His-His-Cys-containing palmitoyl acyltransferase (PAT) enzymes, modulates protein function and localization and plays a key role in the nervous system. Huntingtin-interacting protein 14 (HIP14), a well-characterized neuronal PAT, has been implicated in the pathogenesis of Huntington disease (HD), a fatal neurodegenerative disease associated with motor, psychiatric and cognitive symptoms, caused by a CAG expansion in the huntingtin gene (HTT). Mice deficient for Hip14 expression develop neuropathological and behavioural features similar to HD, and the catalytic activity of HIP14 is impaired in HD mice, most likely due to the reduced interaction of HIP14 with HTT. Huntingtin-interacting protein 14-like (HIP14L) is a paralog of HIP14, with identical domain structure. Together, HIP14 and HIP14L are the major PATs for HTT. Here, we report the characterization of a Hip14l-deficient mouse model, which develops adult-onset, widespread and progressive neuropathology accompanied by early motor deficits in climbing, impaired motor learning and reduced palmitoylation of a novel HIP14L substrate: SNAP25. Although the phenotype resembles that of the Hip14(-/-) mice, a more progressive phenotype, similar to that of the YAC128 transgenic mouse model of HD, is observed. In addition, HIP14L interacts less with mutant HTT than the wild-type protein, suggesting that reduced HIP14L-dependent palmitoylation of neuronal substrates may contribute to the pathogenesis of HD. Thus, both HIP14 and HIP14L may be dysfunctional in the disease.
Collapse
Affiliation(s)
- Liza M Sutton
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
184
|
Hemsley PA, Weimar T, Lilley KS, Dupree P, Grierson CS. A proteomic approach identifies many novel palmitoylated proteins in Arabidopsis. THE NEW PHYTOLOGIST 2013; 197:805-814. [PMID: 23252521 DOI: 10.1111/nph.12077] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 10/31/2012] [Indexed: 05/06/2023]
Abstract
S-acylation (palmitoylation) is a poorly understood post-translational modification of proteins involving the addition of acyl lipids to cysteine residues. S-acylation promotes the association of proteins with membranes and influences protein stability, microdomain partitioning, membrane targeting and activation state. No consensus motif for S-acylation exists and it therefore requires empirical identification. Here, we describe a biotin switch isobaric tagging for relative and absolute quantification (iTRAQ)-based method to identify S-acylated proteins from Arabidopsis. We use these data to predict and confirm S-acylation of proteins not in our dataset. We identified c. 600 putative S-acylated proteins affecting diverse cellular processes. These included proteins involved in pathogen perception and response, mitogen-activated protein kinases (MAPKs), leucine-rich repeat receptor-like kinases (LRR-RLKs) and RLK superfamily members, integral membrane transporters, ATPases, soluble N-ethylmaleimide-sensitive factor-activating protein receptors (SNAREs) and heterotrimeric G-proteins. The prediction of S-acylation of related proteins was demonstrated by the identification and confirmation of S-acylation sites within the SNARE and LRR-RLK families. We showed that S-acylation of the LRR-RLK FLS2 is required for a full response to elicitation by the flagellin derived peptide flg22, but is not required for localization to the plasma membrane. Arabidopsis contains many more S-acylated proteins than previously thought. These data can be used to identify S-acylation sites in related proteins. We also demonstrated that S-acylation is required for full LRR-RLK function.
Collapse
Affiliation(s)
- Piers A Hemsley
- School of Biological Science, University of Bristol, Woodland Road, Bristol, BS8 1UG, UK
| | - Thilo Weimar
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Kathryn S Lilley
- Cambridge Centre for Proteomics, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - Paul Dupree
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Claire S Grierson
- School of Biological Science, University of Bristol, Woodland Road, Bristol, BS8 1UG, UK
| |
Collapse
|
185
|
Abstract
S-Palmitoylation, the only reversible post-translational lipid modification, confers unique biochemical and functional properties to proteins. Although it has long been known that viral proteins are palmitoylated, recent studies reveal that this modification plays a critical role for pathogens of all kinds and at multiple steps of their life cycle. The present review examines the involvement of S-palmitoylation in infection by viruses, bacteria and parasites and illustrates how pathogens have evolved to manipulate the host palmitoylation machinery.
Collapse
|
186
|
Abstract
Protein palmitoylation describes the post-translational fatty acyl thioesterification of cellular cysteine residues and is critical for the localization, trafficking, and compartmentalization of a large number of membrane proteins. This labile thioester modification facilitates a dynamic acylation cycle that directionally traffics key signaling complexes, receptors, and channels to select membrane compartments. Chemical enrichment and advanced mass spectrometry-based proteomics methods have highlighted a pervasive role for palmitoylation across all eukaryotes, including animals, plants, and parasites. Emerging chemical tools promise to open new avenues to study the enzymes, substrates, and dynamics of this distinct post-translational modification.
Collapse
Affiliation(s)
- Christopher T.M.B. Tom
- Program in Chemical Biology and Department
of Chemistry, University of Michigan, 930
N. University Avenue, Ann
Arbor, Michigan 48109, United States
| | - Brent R. Martin
- Program in Chemical Biology and Department
of Chemistry, University of Michigan, 930
N. University Avenue, Ann
Arbor, Michigan 48109, United States
| |
Collapse
|
187
|
Emerging roles for protein S-palmitoylation in immunity from chemical proteomics. Curr Opin Chem Biol 2013; 17:27-33. [PMID: 23332315 DOI: 10.1016/j.cbpa.2012.11.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 10/30/2012] [Accepted: 11/01/2012] [Indexed: 02/08/2023]
Abstract
The activation of innate and adaptive immune signaling pathways and effector functions often occur at cellular membranes and are regulated by complex mechanisms. Here we review the growing number of proteins which are known to be regulated by S-palmitoylation in immune cells emerging from recent advances in chemical proteomics. These chemical proteomic studies have highlighted the roles of this dynamic lipid modification in regulating the specificity and strength of immune responses in different lymphocyte populations.
Collapse
|
188
|
Jones ML, Tay CL, Rayner JC. Getting stuck in: protein palmitoylation in Plasmodium. Trends Parasitol 2012; 28:496-503. [DOI: 10.1016/j.pt.2012.08.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 08/28/2012] [Accepted: 08/28/2012] [Indexed: 11/26/2022]
|
189
|
Batistic O. Genomics and localization of the Arabidopsis DHHC-cysteine-rich domain S-acyltransferase protein family. PLANT PHYSIOLOGY 2012; 160:1597-612. [PMID: 22968831 PMCID: PMC3490592 DOI: 10.1104/pp.112.203968] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 09/07/2012] [Indexed: 05/18/2023]
Abstract
Protein lipid modification of cysteine residues, referred to as S-palmitoylation or S-acylation, is an important secondary and reversible modification that regulates membrane association, trafficking, and function of target proteins. This enzymatic reaction is mediated by protein S-acyl transferases (PATs). Here, the phylogeny, genomic organization, protein topology, expression, and localization pattern of the 24 PAT family members from Arabidopsis (Arabidopsis thaliana) is described. Most PATs are expressed at ubiquitous levels and tissues throughout the development, while few genes are expressed especially during flower development preferentially in pollen and stamen. The proteins display large sequence and structural variations but exhibit a common protein topology that is preserved in PATs from various organisms. Arabidopsis PAT proteins display a complex targeting pattern and were detected at the endoplasmic reticulum, Golgi, endosomal compartments, and the vacuolar membrane. However, most proteins were targeted to the plasma membrane. This large concentration of plant PAT activity to the plasma membrane suggests that the plant cellular S-acylation machinery is functionally different compared with that of yeast (Saccharomyces cerevisiae) and mammalians.
Collapse
Affiliation(s)
- Oliver Batistic
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, 48149 Muenster, Germany.
| |
Collapse
|
190
|
Ohno Y, Kashio A, Ogata R, Ishitomi A, Yamazaki Y, Kihara A. Analysis of substrate specificity of human DHHC protein acyltransferases using a yeast expression system. Mol Biol Cell 2012; 23:4543-51. [PMID: 23034182 PMCID: PMC3510016 DOI: 10.1091/mbc.e12-05-0336] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Twenty-one human DHHC proteins formed acyl intermediates. Seventeen of the proteins exhibited protein acyltransferase activities. DHHC1, 10, 14, and 16 are novel protein acyltransferases. DHHC proteins are classified into three classes based on substrate specificities. Palmitoylation plays important roles in the regulation of protein localization, stability, and activity. The protein acyltransferases (PATs) have a common DHHC Cys-rich domain. Twenty-three DHHC proteins have been identified in humans. However, it is unclear whether all of these DHHC proteins function as PATs. In addition, their substrate specificities remain largely unknown. Here we develop a useful method to examine substrate specificities of PATs using a yeast expression system with six distinct model substrates. We identify 17 human DHHC proteins as PATs. Moreover, we classify 11 human and 5 yeast DHHC proteins into three classes (I, II, and III), based on the cellular localization of their respective substrates (class I, soluble proteins; class II, integral membrane proteins; class III, lipidated proteins). Our results may provide an important clue for understanding the function of individual DHHC proteins.
Collapse
Affiliation(s)
- Yusuke Ohno
- Laboratory of Biochemistry, Hokkaido University, Kita 12-jo, Nishi 6-chome, Kita-ku, Sapporo 060-0812, Japan
| | | | | | | | | | | |
Collapse
|
191
|
Mitchell DA, Hamel LD, Ishizuka K, Mitchell G, Schaefer LM, Deschenes RJ. The Erf4 subunit of the yeast Ras palmitoyl acyltransferase is required for stability of the Acyl-Erf2 intermediate and palmitoyl transfer to a Ras2 substrate. J Biol Chem 2012; 287:34337-48. [PMID: 22904317 DOI: 10.1074/jbc.m112.379297] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein S-palmitoylation is a posttranslational modification in which a palmitoyl group is added to a protein via a thioester linkage on cysteine. Palmitoylation is a reversible modification involved in protein membrane targeting, receptor trafficking and signaling, vesicular biogenesis and trafficking, protein aggregation, and protein degradation. An example of the dynamic nature of this modification is the palmitoylation-depalmitoylation cycle that regulates the subcellular trafficking of Ras family GTPases. The Ras protein acyltransferase (PAT) consists of a complex of Erf2-Erf4 and DHHC9-GCP16 in yeast and mammalian cells, respectively. Both subunits are required for PAT activity, but the function of the Erf4 and Gcp16 subunits has not been established. This study elucidates the function of Erf4 and shows that one role of Erf4 is to regulate Erf2 stability through an ubiquitin-mediated pathway. In addition, Erf4 is required for the stable formation of the palmitoyl-Erf2 intermediate, the first step of palmitoyl transfer to protein substrates. In the absence of Erf4, the rate of hydrolysis of the active site palmitoyl thioester intermediate is increased, resulting in reduced palmitoyl transfer to a Ras2 substrate. This is the first demonstration of regulation of a DHHC PAT enzyme by an associated protein.
Collapse
Affiliation(s)
- David A Mitchell
- Department of Molecular Medicine, University of South Florida, Tampa, Florida 33612, USA
| | | | | | | | | | | |
Collapse
|
192
|
Abstract
The article summarises the results of more than 30 years of research on palmitoylation (S‐acylation) of viral proteins, the post‐translational attachment of fatty acids to cysteine residues of integral and peripheral membrane proteins. Analysing viral proteins is not only important to characterise the cellular pathogens but also instrumental to decipher the palmitoylation machinery of cells. This comprehensive review describes methods to identify S‐acylated proteins and covers the fundamental biochemistry of palmitoylation: the location of palmitoylation sites in viral proteins, the fatty acid species found in S‐acylated proteins, the intracellular site of palmitoylation and the enzymology of the reaction. Finally, the functional consequences of palmitoylation are discussed regarding binding of proteins to membranes or membrane rafts, entry of enveloped viruses into target cells by spike‐mediated membrane fusion as well as assembly and release of virus particles from infected cells. The topics are described mainly for palmitoylated proteins of influenza virus, but proteins of other important pathogens, such as the causative agents of AIDS and severe acute respiratory syndrome, and of model viruses are discussed.
Collapse
Affiliation(s)
- Michael Veit
- Department of Immunology and Molecular Biology, Free University, Berlin, Germany.
| |
Collapse
|
193
|
Yuan Y, Wang X, Li X, Teng M, Niu L, Gao Y. Cloning, purification, crystallization and preliminary X-ray diffraction crystallographic study of acyl-protein thioesterase 1 from Saccharomyces cerevisiae. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:775-7. [PMID: 22750862 PMCID: PMC3388919 DOI: 10.1107/s1744309112019276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 04/29/2012] [Indexed: 11/11/2022]
Abstract
Palmitoylation/depalmitoylation plays an important role in protein modification. yApt1 is the only enzyme in Saccharomyces cerevisiae that catalyses depalmitoylation. In the present study, recombinant full-length yApt1 was cloned, expressed, purified and crystallized. The crystals diffracted to 2.40 Å resolution and belonged to space group P4(2)2(1)2, with unit-cell parameters a = b = 146.43, c = 93.29 Å. A preliminary model of the three-dimensional structure has been built and further refinement is ongoing.
Collapse
Affiliation(s)
- Ye Yuan
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People’s Republic of China
- Key Laboratory of Structural Biology, Chinese Academy of Sciences, 96 Jinzhai Road, Hefei, Anhui 230026, People’s Republic of China
| | - Xiao Wang
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People’s Republic of China
- Key Laboratory of Structural Biology, Chinese Academy of Sciences, 96 Jinzhai Road, Hefei, Anhui 230026, People’s Republic of China
| | - Xu Li
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People’s Republic of China
- Key Laboratory of Structural Biology, Chinese Academy of Sciences, 96 Jinzhai Road, Hefei, Anhui 230026, People’s Republic of China
| | - Maikun Teng
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People’s Republic of China
- Key Laboratory of Structural Biology, Chinese Academy of Sciences, 96 Jinzhai Road, Hefei, Anhui 230026, People’s Republic of China
| | - Liwen Niu
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People’s Republic of China
- Key Laboratory of Structural Biology, Chinese Academy of Sciences, 96 Jinzhai Road, Hefei, Anhui 230026, People’s Republic of China
| | - Yongxiang Gao
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People’s Republic of China
- Key Laboratory of Structural Biology, Chinese Academy of Sciences, 96 Jinzhai Road, Hefei, Anhui 230026, People’s Republic of China
| |
Collapse
|
194
|
Marin EP, Derakhshan B, Lam TT, Davalos A, Sessa WC. Endothelial cell palmitoylproteomic identifies novel lipid-modified targets and potential substrates for protein acyl transferases. Circ Res 2012; 110:1336-44. [PMID: 22496122 PMCID: PMC3428238 DOI: 10.1161/circresaha.112.269514] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 04/02/2012] [Indexed: 11/16/2022]
Abstract
RATIONALE Protein S-palmitoylation is the posttranslational attachment of a saturated 16-carbon palmitic acid to a cysteine side chain via a thioester bond. Palmitoylation can affect protein localization, trafficking, stability, and function. The extent and roles of palmitoylation in endothelial cell (EC) biology is not well-understood, partly because of technological limits on palmitoylprotein detection. OBJECTIVE To develop a method using acyl-biotinyl exchange technology coupled with mass spectrometry to globally isolate and identify palmitoylproteins in ECs. METHODS AND RESULTS More than 150 putative palmitoyl proteins were identified in ECs using acyl-biotinyl exchange and mass spectrometry. Among the novel palmitoylproteins identified is superoxide dismutase-1, an intensively studied enzyme that protects all cells from oxidative damage. Mutation of cysteine-6 prevents palmitoylation, leads to reduction in superoxide dismutase-1 activity in vivo and in vitro, and inhibits nuclear localization, thereby supporting a functional role for superoxide dismutase-1 palmitoylation. Moreover, we used acyl-biotinyl exchange to search for substrates of particular protein acyl transferases in ECs. We found that palmitoylation of the cell adhesion protein platelet endothelial cell adhesion molecule-1 is dependent on the protein acyl transferase ZDHHC21. We show that knockdown of ZDHHC21 leads to reduced levels of platelet endothelial cell adhesion molecule-1 at the cell surface. CONCLUSIONS Our data demonstrate the utility of EC palmitoylproteomics to reveal new insights into the role of this important posttranslational lipid modification in EC biology.
Collapse
Affiliation(s)
- Ethan P. Marin
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, 06520 USA
- Department of Nephrology, Yale University School of Medicine, New Haven, CT, 06520 USA
| | - Behrad Derakhshan
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, 06520 USA
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520 USA
| | - TuKiet T. Lam
- WM Keck Foundation Biotechnology Resource Laboratory, Keck MS and Proteomics Resources, Yale University, New Haven, CT, USA
| | - Alberto Davalos
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, 06520 USA
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520 USA
| | - William C. Sessa
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, 06520 USA
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520 USA
| |
Collapse
|
195
|
Young FB, Butland SL, Sanders SS, Sutton LM, Hayden MR. Putting proteins in their place: Palmitoylation in Huntington disease and other neuropsychiatric diseases. Prog Neurobiol 2012; 97:220-38. [DOI: 10.1016/j.pneurobio.2011.11.002] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2011] [Revised: 11/01/2011] [Accepted: 11/08/2011] [Indexed: 01/02/2023]
|
196
|
Apostolaki A, Harispe L, Calcagno-Pizarelli AM, Vangelatos I, Sophianopoulou V, Arst HN, Peñalva MA, Amillis S, Scazzocchio C. Aspergillus nidulans CkiA is an essential casein kinase I required for delivery of amino acid transporters to the plasma membrane. Mol Microbiol 2012; 84:530-49. [PMID: 22489878 PMCID: PMC3491690 DOI: 10.1111/j.1365-2958.2012.08042.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Type I casein kinases are highly conserved among Eukaryotes. Of the two Aspergillus nidulans casein kinases I, CkiA is related to the δ/ε mammalian kinases and to Saccharomyces cerevisiæ Hrr25p. CkiA is essential. Three recessive ckiA mutations leading to single residue substitutions, and downregulation using a repressible promoter, result in partial loss-of-function, which leads to a pleiotropic defect in amino acid utilization and resistance to toxic amino acid analogues. These phenotypes correlate with miss-routing of the YAT plasma membrane transporters AgtA (glutamate) and PrnB (proline) to the vacuole under conditions that, in the wild type, result in their delivery to the plasma membrane. Miss-routing to the vacuole and subsequent transporter degradation results in a major deficiency in the uptake of the corresponding amino acids that underlies the inability of the mutant strains to catabolize them. Our findings may have important implications for understanding how CkiA, Hrr25p and other fungal orthologues regulate the directionality of transport at the ER-Golgi interface.
Collapse
Affiliation(s)
- Angeliki Apostolaki
- Institut de Génétique et Microbiologie, Université Paris-Sud (XI), UMR 8621 CNRS 91450 Orsay, France
| | | | | | | | | | | | | | | | | |
Collapse
|
197
|
Zeidman R, Buckland G, Cebecauer M, Eissmann P, Davis DM, Magee AI. DHHC2 is a protein S-acyltransferase for Lck. Mol Membr Biol 2012; 28:473-86. [PMID: 22034844 DOI: 10.3109/09687688.2011.630682] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Lck is a non-receptor tyrosine kinase of the Src family that is essential for T cell activation. Dual N-terminal acylation of Lck with myristate (N-acylation) and palmitate (S-acylation) is essential for its membrane association and function. Reversible S-acylation of Lck is observed in vivo and may function as a control mechanism. Here we identify the DHHC family protein S-acyltransferase DHHC2 as an enzyme capable of palmitoylating of Lck in T cells. Reducing the DHHC2 level in Jurkat T cells using siRNA causes decreased Lck S-acylation and partial dislocation from membranes, and conversely overexpression of DHHC2 increases S-acylation of an Lck surrogate, LckN10-GFP. DHHC2 localizes primarily to the endoplasmic reticulum and Golgi apparatus suggesting that it is involved in S-acylation of newly-synthesized or recycling Lck involved in T cell signalling.
Collapse
Affiliation(s)
- Ruth Zeidman
- Molecular Medicine Section, National Heart & Lung Institute, Imperial College London, Sir Alexander Fleming Building, South Kensington, London, UK
| | | | | | | | | | | |
Collapse
|
198
|
Abstract
Many signaling proteins such as the members of the Ras superfamily of GTPases are posttranslationally modified by covalent attachment of lipid groups, which is crucial for the correct localization and function of these proteins. Numerous lipidated proteins are oncogens often found mutated in several human cancers. Therefore, several therapeutic strategies have been developed based on the inhibition of the enzymes involved in these lipidation steps. Here, we will summarize the results on protein lipidation inhibition, mainly focusing on the small molecules targeting the isoprenylation and acylation of proteins.
Collapse
Affiliation(s)
- Gemma Triola
- Abteilung
Chemische Biologie, Max-Planck-Institut für molekulare Physiologie, Otto-Hahn-Str. 11,
44227 Dortmund, Germany, and Fakultät Chemie, Lehrbereich Chemische
Biologie, Technische Universität Dortmund, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| | - Herbert Waldmann
- Abteilung
Chemische Biologie, Max-Planck-Institut für molekulare Physiologie, Otto-Hahn-Str. 11,
44227 Dortmund, Germany, and Fakultät Chemie, Lehrbereich Chemische
Biologie, Technische Universität Dortmund, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| | - Christian Hedberg
- Abteilung
Chemische Biologie, Max-Planck-Institut für molekulare Physiologie, Otto-Hahn-Str. 11,
44227 Dortmund, Germany, and Fakultät Chemie, Lehrbereich Chemische
Biologie, Technische Universität Dortmund, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| |
Collapse
|
199
|
Jennings BC, Linder ME. DHHC protein S-acyltransferases use similar ping-pong kinetic mechanisms but display different acyl-CoA specificities. J Biol Chem 2012; 287:7236-45. [PMID: 22247542 DOI: 10.1074/jbc.m111.337246] [Citation(s) in RCA: 153] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
DHHC proteins catalyze the reversible S-acylation of proteins at cysteine residues, a modification important for regulating protein localization, stability, and activity. However, little is known about the kinetic mechanism of DHHC proteins. A high-performance liquid chromatography (HPLC), fluorescent peptide-based assay for protein S-acylation activity was developed to characterize mammalian DHHC2 and DHHC3. Time courses and substrate saturation curves allowed the determination of V(max) and K(m) values for both the peptide N-myristoylated-GCG and palmitoyl-coenzyme A. DHHC proteins acylate themselves upon incubation with palmitoyl-CoA, which is hypothesized to reflect a transient acyl enzyme transfer intermediate. Single turnover assays with DHHC2 and DHHC3 demonstrated that a radiolabeled acyl group on the enzyme transferred to the protein substrate, consistent with a two-step ping-pong mechanism. Enzyme autoacylation and acyltransfer to substrate displayed the same acyl-CoA specificities, further supporting a two-step mechanism. Interestingly, DHHC2 efficiently transferred acyl chains 14 carbons and longer, whereas DHHC3 activity was greatly reduced by acyl-CoAs with chain lengths longer than 16 carbons. The rate and extent of autoacylation of DHHC3, as well as the rate of acyl chain transfer to protein substrate, were reduced with stearoyl-CoA when compared with palmitoyl-CoA. This is the first observation of lipid substrate specificity among DHHC proteins and may account for the differential S-acylation of proteins observed in cells.
Collapse
Affiliation(s)
- Benjamin C Jennings
- Department of Molecular Medicine, Cornell University College of Veterinary Medicine, Ithaca, New York 14853, USA
| | | |
Collapse
|
200
|
Li Y, Martin BR, Cravatt BF, Hofmann SL. DHHC5 protein palmitoylates flotillin-2 and is rapidly degraded on induction of neuronal differentiation in cultured cells. J Biol Chem 2012; 287:523-530. [PMID: 22081607 PMCID: PMC3249106 DOI: 10.1074/jbc.m111.306183] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 11/07/2011] [Indexed: 01/20/2023] Open
Abstract
Post-translational palmitoylation of intracellular proteins is mediated by protein palmitoyltransferases belonging to the DHHC family, which share a common catalytic Asp-His-His-Cys (DHHC) motif. Several members have been implicated in neuronal development, neurotransmission, and synaptic plasticity. We previously observed that mice homozygous for a hypomorphic allele of the ZDHHC5 gene are impaired in context-dependent learning and memory. To identify potentially relevant protein substrates of DHHC5, we performed a quantitative proteomic analysis of stable isotope-labeled neuronal stem cell cultures from forebrains of normal and DHHC5-GT (gene-trapped) mice using the bioorthogonal palmitate analog 17-octadecynoic acid. We identified ∼300 17-octadecynoic acid-modified and hydroxylamine-sensitive proteins, of which a subset was decreased in abundance in DHHC5-GT cells. Palmitoylation and oligomerization of one of these proteins (flotillin-2) was abolished in DHHC5-GT neuronal stem cells. In COS-1 cells, overexpression of DHHC5 markedly stimulated the palmitoylation of flotillin-2, strongly suggesting a direct enzyme-substrate relationship. Serendipitously, we found that down-regulation of DHHC5 was triggered within minutes following growth factor withdrawal from normal neural stem cells, a maneuver that is used to induce neural differentiation in culture. The effect was reversible for up to 4 h, and degradation was partially prevented by inhibitors of ubiquitin-mediated proteolysis. These findings suggest that protein palmitoylation can be regulated through changes in DHHC PAT levels in response to differentiation signals.
Collapse
Affiliation(s)
- Yi Li
- Hamon Center for Therapeutic Oncology Research and Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-8593
| | - Brent R Martin
- Skaggs Institute of Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037
| | - Benjamin F Cravatt
- Skaggs Institute of Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037
| | - Sandra L Hofmann
- Hamon Center for Therapeutic Oncology Research and Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-8593.
| |
Collapse
|