151
|
Berselli A, Alberini G, Benfenati F, Maragliano L. Computational Assessment of Different Structural Models for Claudin-5 Complexes in Blood-Brain Barrier Tight Junctions. ACS Chem Neurosci 2022; 13:2140-2153. [PMID: 35816296 PMCID: PMC9976285 DOI: 10.1021/acschemneuro.2c00139] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The blood-brain barrier (BBB) strictly regulates the exchange of ions and molecules between the blood and the central nervous system. Tight junctions (TJs) are multimeric structures that control the transport through the paracellular spaces between the adjacent brain endothelial cells of the BBB. Claudin-5 (Cldn5) proteins are essential for TJ formation and assemble into multiprotein complexes via cis-interactions within the same cell membrane and trans-interactions across two contiguous cells. Despite the relevant biological function of Cldn5 proteins and their role as targets of brain drug delivery strategies, the molecular details of their assembly within TJs are still unclear. Two different structural models have been recently introduced, in which Cldn5 dimers belonging to opposite cells join to generate paracellular pores. However, a comparison of these models in terms of ionic transport features is still lacking. In this work, we used molecular dynamics simulations and free energy (FE) calculations to assess the two Cldn5 pore models and investigate the thermodynamic properties of water and physiological ions permeating through them. Despite different FE profiles, both structures present single/multiple FE barriers to ionic permeation, while being permissive to water flux. These results reveal that both models are compatible with the physiological role of Cldn5 TJ strands. By identifying the protein-protein surface at the core of TJ Cldn5 assemblies, our computational investigation provides a basis for the rational design of synthetic peptides and other molecules capable of opening paracellular pores in the BBB.
Collapse
Affiliation(s)
- Alessandro Berselli
- Center
for Synaptic Neuroscience and Technology (NSYN@UniGe), Istituto Italiano di Tecnologia, Largo Rosanna Benzi, 10, Genova 16132, Italy
- Department
of Experimental Medicine, Università
Degli Studi di Genova, Viale Benedetto XV, 3, Genova 16132, Italy
| | - Giulio Alberini
- Center
for Synaptic Neuroscience and Technology (NSYN@UniGe), Istituto Italiano di Tecnologia, Largo Rosanna Benzi, 10, Genova 16132, Italy
- IRCCS
Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, Genova 16132, Italy
| | - Fabio Benfenati
- Center
for Synaptic Neuroscience and Technology (NSYN@UniGe), Istituto Italiano di Tecnologia, Largo Rosanna Benzi, 10, Genova 16132, Italy
- IRCCS
Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, Genova 16132, Italy
| | - Luca Maragliano
- Center
for Synaptic Neuroscience and Technology (NSYN@UniGe), Istituto Italiano di Tecnologia, Largo Rosanna Benzi, 10, Genova 16132, Italy
- Department
of Life and Environmental Sciences, Polytechnic
University of Marche, Via Brecce Bianche, Ancona 60131, Italy
| |
Collapse
|
152
|
Eng ME, Imperio GE, Bloise E, Matthews SG. ATP-binding cassette (ABC) drug transporters in the developing blood-brain barrier: role in fetal brain protection. Cell Mol Life Sci 2022; 79:415. [PMID: 35821142 PMCID: PMC11071850 DOI: 10.1007/s00018-022-04432-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/27/2022] [Accepted: 06/15/2022] [Indexed: 12/19/2022]
Abstract
The blood-brain barrier (BBB) provides essential neuroprotection from environmental toxins and xenobiotics, through high expression of drug efflux transporters in endothelial cells of the cerebral capillaries. However, xenobiotic exposure, stress, and inflammatory stimuli have the potential to disrupt BBB permeability in fetal and post-natal life. Understanding the role and ability of the BBB in protecting the developing brain, particularly with respect to drug/toxin transport, is key to promoting long-term brain health. Drug transporters, particularly P-gp and BCRP are expressed in early gestation at the developing BBB and have a crucial role in developmental homeostasis and fetal brain protection. We have highlighted several factors that modulate drug transporters at the developing BBB, including synthetic glucocorticoid (sGC), cytokines, maternal infection, and growth factors. Some factors have the potential to increase expression and function of drug transporters and increase brain protection (e.g., sGC, transforming growth factor [TGF]-β). However, others inhibit drug transporters expression and function at the BBB, increasing brain exposure to xenobiotics (e.g., tumor necrosis factor [TNF], interleukin [IL]-6), negatively impacting brain development. This has implications for pregnant women and neonates, who represent a vulnerable population and may be exposed to drugs and environmental toxins, many of which are P-gp and BCRP substrates. Thus, alterations in regulated transport across the developing BBB may induce long-term changes in brain health and compromise pregnancy outcome. Furthermore, a large portion of neonatal adverse drug reactions are attributed to agents that target or access the nervous system, such as stimulants (e.g., caffeine), anesthetics (e.g., midazolam), analgesics (e.g., morphine) and antiretrovirals (e.g., Zidovudine); thus, understanding brain protection is key for the development of strategies to protect the fetal and neonatal brain.
Collapse
Affiliation(s)
- Margaret E Eng
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Medical Sciences Bldg. Rm. 3207. 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | | | - Enrrico Bloise
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Medical Sciences Bldg. Rm. 3207. 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Canada
- Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Stephen G Matthews
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Medical Sciences Bldg. Rm. 3207. 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Canada.
- Department of Obstetrics and Gynecology, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada.
- Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada.
| |
Collapse
|
153
|
Wei T, Zhou M, Gu L, Zhou Y, Li M. How Shockwaves Open Tight Junctions of Blood–Brain Barrier: Comparison of Three Biomechanical Effects. J Phys Chem B 2022; 126:5094-5102. [DOI: 10.1021/acs.jpcb.2c02903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tong Wei
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, China
- Institute of Chemical Materials, China Academy of Engineering and Physics, Mianyang 621900, China
| | - Mi Zhou
- Institute of Chemical Materials, China Academy of Engineering and Physics, Mianyang 621900, China
| | - Lingzhi Gu
- Institute of Chemical Materials, China Academy of Engineering and Physics, Mianyang 621900, China
| | - Yang Zhou
- Institute of Chemical Materials, China Academy of Engineering and Physics, Mianyang 621900, China
| | - Ming Li
- Institute of Chemical Materials, China Academy of Engineering and Physics, Mianyang 621900, China
| |
Collapse
|
154
|
Stafford P, Mitra S, Debot M, Lutz P, Stem A, Hadley J, Hom P, Schaid TR, Cohen MJ. Astrocytes and pericytes attenuate severely injured patient plasma mediated expression of tight junction proteins in endothelial cells. PLoS One 2022; 17:e0270817. [PMID: 35789221 PMCID: PMC9255734 DOI: 10.1371/journal.pone.0270817] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/20/2022] [Indexed: 11/18/2022] Open
Abstract
Blood Brain Barrier (BBB) breakdown is a secondary form of brain injury which has yet to be fully elucidated mechanistically. Existing research suggests that breakdown of tight junction proteins between endothelial cells is a primary driver of increased BBB permeability following injury, and intercellular signaling between primary cells of the neurovascular unit: endothelial cells, astrocytes, and pericytes; contribute to tight junction restoration. To expound upon this body of research, we analyzed the effects of severely injured patient plasma on each of the cell types in monoculture and together in a triculture model for the transcriptional and translational expression of the tight junction proteins Claudins 3 and 5, (CLDN3, CLDN5) and Zona Occludens 1 (ZO-1). Conditioned media transfer studies were performed to illuminate the cell type responsible for differential tight junction expression. Our data show that incubation with 5% human ex vivo severely injured patient plasma is sufficient to produce a differential response in endothelial cell tight junction mRNA and protein expression. Endothelial cells in monoculture produced a significant increase of CLDN3 and CLDN5 mRNA expression, (3.98 and 3.51 fold increase vs. control respectively, p<0.01) and CLDN5 protein expression, (2.58 fold change vs. control, p<0.01), whereas in triculture, this increase was attenuated. Our triculture model and conditioned media experiments suggest that conditioned media from astrocytes and pericytes and a triculture of astrocytes, pericytes and endothelial cells are sufficient in attenuating the transcriptional increases of tight junction proteins CLDN3 and CLDN5 observed in endothelial monocultures following incubation with severely injured trauma plasma. This data suggests that inhibitory molecular signals from astrocytes and pericytes contributes to prolonged BBB breakdown following injury via tight junction transcriptional and translational downregulation of CLDN5.
Collapse
Affiliation(s)
- Preston Stafford
- Division of GITES, Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Sanchayita Mitra
- Division of GITES, Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Margot Debot
- Division of GITES, Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Patrick Lutz
- Division of GITES, Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Arthur Stem
- Division of GITES, Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Jamie Hadley
- Division of GITES, Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Patrick Hom
- Division of GITES, Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Terry R. Schaid
- Division of GITES, Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Mitchell J. Cohen
- Division of GITES, Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
155
|
Yazbeck P, Cullere X, Bennett P, Yajnik V, Wang H, Kawada K, Davis V, Parikh A, Kuo A, Mysore V, Hla T, Milstone D, Mayadas TN. DOCK4 Regulation of Rho GTPases Mediates Pulmonary Vascular Barrier Function. Arterioscler Thromb Vasc Biol 2022; 42:886-902. [PMID: 35477279 PMCID: PMC9233130 DOI: 10.1161/atvbaha.122.317565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 04/12/2022] [Indexed: 01/10/2023]
Abstract
BACKGROUND The vascular endothelium maintains tissue-fluid homeostasis by controlling the passage of large molecules and fluid between the blood and interstitial space. The interaction of catenins and the actin cytoskeleton with VE-cadherin (vascular endothelial cadherin) is the primary mechanism for stabilizing AJs (adherens junctions), thereby preventing lung vascular barrier disruption. Members of the Rho (Ras homology) family of GTPases and conventional GEFs (guanine exchange factors) of these GTPases have been demonstrated to play important roles in regulating endothelial permeability. Here, we evaluated the role of DOCK4 (dedicator of cytokinesis 4)-an unconventional Rho family GTPase GEF in vascular function. METHODS We generated mice deficient in DOCK4' used DOCK4 silencing and reconstitution approaches in human pulmonary artery endothelial cells' used assays to evaluate protein localization, endothelial cell permeability, and small GTPase activation. RESULTS Our data show that DOCK4-deficient mice are viable. However, these mice have hemorrhage selectively in the lung, incomplete smooth muscle cell coverage in pulmonary vessels, increased basal microvascular permeability, and impaired response to S1P (sphingosine-1-phosphate)-induced reversal of thrombin-induced permeability. Consistent with this, DOCK4 rapidly translocates to the cell periphery and associates with the detergent-insoluble fraction following S1P treatment, and its absence prevents S1P-induced Rac-1 activation and enhancement of barrier function. Moreover, DOCK4-silenced pulmonary artery endothelial cells exhibit enhanced basal permeability in vitro that is associated with enhanced Rho GTPase activation. CONCLUSIONS Our findings indicate that DOCK4 maintains AJs necessary for lung vascular barrier function by establishing the normal balance between RhoA (Ras homolog family member A) and Rac-1-mediated actin cytoskeleton remodeling, a previously unappreciated function for the atypical GEF family of molecules. Our studies also identify S1P as a potential upstream regulator of DOCK4 activity.
Collapse
Affiliation(s)
- Pascal Yazbeck
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
| | - Xavier Cullere
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
| | - Paul Bennett
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
| | - Vijay Yajnik
- Department of Medicine, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02445
| | - Huan Wang
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
| | - Kenji Kawada
- Department of Medicine, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02445
| | - Vanessa Davis
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
| | - Asit Parikh
- Department of Medicine, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02445
| | - Andrew Kuo
- Vascular Biology Program, Boston Children’s Hospital and Harvard Medical School, Boston, MA 20115
| | - Vijayashree Mysore
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
| | - Timothy Hla
- Vascular Biology Program, Boston Children’s Hospital and Harvard Medical School, Boston, MA 20115
| | - David Milstone
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
| | - Tanya N. Mayadas
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
| |
Collapse
|
156
|
Ben-Zvi A, Liebner S. Developmental regulation of barrier- and non-barrier blood vessels in the CNS. J Intern Med 2022; 292:31-46. [PMID: 33665890 DOI: 10.1111/joim.13263] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/01/2021] [Indexed: 12/22/2022]
Abstract
The blood-brain barrier (BBB) is essential for creating and maintaining tissue homeostasis in the central nervous system (CNS), which is key for proper neuronal function. In most vertebrates, the BBB is localized to microvascular endothelial cells that acquire barrier properties during angiogenesis of the neuroectoderm. Complex and continuous tight junctions, and the lack of fenestrae combined with low pinocytotic activity render the BBB endothelium a tight barrier for water-soluble molecules that may only enter the CNS via specific transporters. The differentiation of these unique endothelial properties during embryonic development is initiated by endothelial-specific flavours of the Wnt/β-catenin pathway in a precise spatiotemporal manner. In this review, we summarize the currently known cellular (neural precursor and endothelial cells) and molecular (VEGF and Wnt/β-catenin) mechanisms mediating brain angiogenesis and barrier formation. Moreover, we introduce more recently discovered crosstalk with cellular and acellular elements within the developing CNS such as the extracellular matrix. We discuss recent insights into the downstream molecular mechanisms of Wnt/β-catenin in particular, the recently identified target genes like Foxf2, Foxl2, Foxq1, Lef1, Ppard, Zfp551, Zic3, Sox17, Apcdd1 and Fgfbp1 that are involved in refining and maintaining barrier characteristics in the mature BBB endothelium. Additionally, we elute to recent insight into barrier heterogeneity and differential endothelial barrier properties within the CNS, focussing on the circumventricular organs as well as on the neurogenic niches in the subventricular zone and the hippocampus. Finally, open questions and future BBB research directions are highlighted in the context of taking benefit from understanding BBB development for strategies to modulate BBB function under pathological conditions.
Collapse
Affiliation(s)
- A Ben-Zvi
- From the, The Department of Developmental Biology and Cancer Research, Institute for Medical Research IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - S Liebner
- Institute of Neurology (Edinger Institute), University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany.,Excellence Cluster Cardio-Pulmonary Systems (ECCPS), Partner Site Frankfurt, Frankfurt am Main, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Frankfurt am Main, Germany
| |
Collapse
|
157
|
Lansdell TA, Chambers LC, Dorrance AM. Endothelial Cells and the Cerebral Circulation. Compr Physiol 2022; 12:3449-3508. [PMID: 35766836 DOI: 10.1002/cphy.c210015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Endothelial cells form the innermost layer of all blood vessels and are the only vascular component that remains throughout all vascular segments. The cerebral vasculature has several unique properties not found in the peripheral circulation; this requires that the cerebral endothelium be considered as a unique entity. Cerebral endothelial cells perform several functions vital for brain health. The cerebral vasculature is responsible for protecting the brain from external threats carried in the blood. The endothelial cells are central to this requirement as they form the basis of the blood-brain barrier. The endothelium also regulates fibrinolysis, thrombosis, platelet activation, vascular permeability, metabolism, catabolism, inflammation, and white cell trafficking. Endothelial cells regulate the changes in vascular structure caused by angiogenesis and artery remodeling. Further, the endothelium contributes to vascular tone, allowing proper perfusion of the brain which has high energy demands and no energy stores. In this article, we discuss the basic anatomy and physiology of the cerebral endothelium. Where appropriate, we discuss the detrimental effects of high blood pressure on the cerebral endothelium and the contribution of cerebrovascular disease endothelial dysfunction and dementia. © 2022 American Physiological Society. Compr Physiol 12:3449-3508, 2022.
Collapse
Affiliation(s)
- Theresa A Lansdell
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Laura C Chambers
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Anne M Dorrance
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
158
|
Hua Y, Shen J, Fan R, Xiao R, Ma W. High-fat diets containing different types of fatty acids modulate gut-brain axis in obese mice. Nutr Metab (Lond) 2022; 19:40. [PMID: 35739547 PMCID: PMC9219185 DOI: 10.1186/s12986-022-00675-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 05/17/2022] [Indexed: 11/10/2022] Open
Abstract
Background Excessive consumption of high-fat diets is associated with disordered metabolic responses, which may lead to chronic diseases. High-fat diets containing different types of fatty acids lead to distinct alterations in metabolic responses of gut-brain axis. Methods In our study, normal male C57BL/6J mice were fed to multiple high fatty acid diets (long-chain and medium-chain saturated fatty acid, LCSFA and MCSFA group; n-3 and n-6 polyunsaturated fatty acid, n-3 and n-6 PUFA group; monounsaturated fatty acid, MUFA group; trans fatty acid, TFA group) and a basic diet (control, CON group) for 19 weeks. To investigate the effects of high-fat diets on metabolic responses of gut-brain axis in obese mice, blood lipids were detected by fast gas chromatography, and related proteins in brain and intestine were detected using Western blotting, ELISA, and immunochemistry analysis. Results All high-fat diets regardless of their fatty acid composition induced obesity, lipid disorders, intestinal barrier dysfunction, and changes in gut-brain axis related factors except basal diet in mice. For example, the protein expression of zonula occludens-1 (ZO-1) in ileum in the n-3 PUFA group was higher than that in the MCSFA group (P < 0.05). The expressions of insulin in hippocampus and leptin in ileum in the MCSFA group significantly increased, compared with other groups (all Ps < 0.05). Conclusion The high MCSFA diet had the most effect on metabolic disorders in gut-brain axis, but the high n-3 PUFA diet had the least effect on changes in metabolism.
Collapse
Affiliation(s)
- Yinan Hua
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, No.10 Xitoutiao, You An Men Wai, Beijing, 100069, People's Republic of China
| | - Jingyi Shen
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, No.10 Xitoutiao, You An Men Wai, Beijing, 100069, People's Republic of China
| | - Rong Fan
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, No.10 Xitoutiao, You An Men Wai, Beijing, 100069, People's Republic of China
| | - Rong Xiao
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, No.10 Xitoutiao, You An Men Wai, Beijing, 100069, People's Republic of China.
| | - Weiwei Ma
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, No.10 Xitoutiao, You An Men Wai, Beijing, 100069, People's Republic of China.
| |
Collapse
|
159
|
Matsuoka RL, Buck LD, Vajrala KP, Quick RE, Card OA. Historical and current perspectives on blood endothelial cell heterogeneity in the brain. Cell Mol Life Sci 2022; 79:372. [PMID: 35726097 PMCID: PMC9209386 DOI: 10.1007/s00018-022-04403-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/18/2022] [Accepted: 05/25/2022] [Indexed: 11/28/2022]
Abstract
Dynamic brain activity requires timely communications between the brain parenchyma and circulating blood. Brain-blood communication is facilitated by intricate networks of brain vasculature, which display striking heterogeneity in structure and function. This vascular cell heterogeneity in the brain is fundamental to mediating diverse brain functions and has long been recognized. However, the molecular basis of this biological phenomenon has only recently begun to be elucidated. Over the past century, various animal species and in vitro systems have contributed to the accumulation of our fundamental and phylogenetic knowledge about brain vasculature, collectively advancing this research field. Historically, dye tracer and microscopic observations have provided valuable insights into the anatomical and functional properties of vasculature across the brain, and these techniques remain an important approach. Additionally, recent advances in molecular genetics and omics technologies have revealed significant molecular heterogeneity within brain endothelial and perivascular cell types. The combination of these conventional and modern approaches has enabled us to identify phenotypic differences between healthy and abnormal conditions at the single-cell level. Accordingly, our understanding of brain vascular cell states during physiological, pathological, and aging processes has rapidly expanded. In this review, we summarize major historical advances and current knowledge on blood endothelial cell heterogeneity in the brain, and discuss important unsolved questions in the field.
Collapse
Affiliation(s)
- Ryota L Matsuoka
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA. .,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, 44195, USA.
| | - Luke D Buck
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, 44195, USA
| | - Keerti P Vajrala
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, 44195, USA.,Kansas City University College of Osteopathic Medicine, Kansas City, MO 64106, USA
| | - Rachael E Quick
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, 44195, USA
| | - Olivia A Card
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, 44195, USA
| |
Collapse
|
160
|
Li Y, Wang C, Zhang L, Chen B, Mo Y, Zhang J. Claudin-5a is essential for the functional formation of both zebrafish blood-brain barrier and blood-cerebrospinal fluid barrier. Fluids Barriers CNS 2022; 19:40. [PMID: 35658877 PMCID: PMC9164509 DOI: 10.1186/s12987-022-00337-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/04/2022] [Indexed: 11/25/2022] Open
Abstract
Background Mammalian Claudin-5 is the main endothelial tight junction component maintaining blood-brain barrier (BBB) permeability, while Claudin-1 and -3 seal the paracellular space of choroid plexus (CP) epithelial cells contributing to the blood-cerebrospinal fluid barrier (BCSFB). In zebrafish, two paralogs of claudin-5a and -5b are expressed while their roles in the formation of BBB and BCSFB are unclear. Methods The expression patterns of Claudin-5a and -5b in zebrafish brains were systematically analyzed by immunofluorescence (IF) assay. The developmental functions of Claudin-5a and -5b were characterized by generating of claudin-5a and -5b mutants respectively. Meanwhile, the cerebral inflammation and cell apoptosis in claudin-5a-/- were assessed by live imaging of transgenic zebrafish, RT-qPCR, IF, and TUNEL assay. The integrity of BBB and BCSFB was evaluated by in vivo angiographic and dye permeation assay. Finally, RT-qPCR, whole-mount RNA in situ hybridization (WISH), and transmission electron microscopy (TEM) analyses were performed to investigate the development of cerebral vessels and choroid plexus. Results We showed that Claudin-5a and -5b are both expressed in zebrafish cerebrovascular endothelial cells (ECs). In addition, Claudin-5a was strongly expressed in CP epithelial cells. Loss of Claudin-5b showed no effect on zebrafish vasculogenesis or BBB function. In contrast, the knockout of claudin-5a caused a lethal phenotype of severe whole-brain oedema, ventricular dilatation, and cerebral hernia in zebrafish larvae, although the cerebral vasculogenesis and the development of CP were not altered. In claudin-5a-/- , although ultrastructural analysis of CP and cerebral capillary showed intact integrity of epithelial and endothelial tight junctions, permeability assay indicated a disruption of both BBB and BCSFB functions. On the molecular level, it was found that ZO-1 was upregulated in the CP epithelium of claudin-5a-/-, while the notch and shh pathway responsible for CP development was not affected due to loss of Claudin-5a. Conclusions Our findings verified a non-functional role of zebrafish Claudin-5b in the BBB and identified Claudin-5a as the ortholog of mammalian Claudin-5, contributing to the development and the functional maintenance of both BBB and BCSFB. Supplementary Information The online version contains supplementary material available at 10.1186/s12987-022-00337-9.
Collapse
Affiliation(s)
- Yanyu Li
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang, 524001, China
| | - Chunchun Wang
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang, 524001, China
| | - Liang Zhang
- College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Bing Chen
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang, 524001, China
| | - Yuqian Mo
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang, 524001, China.,School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Jingjing Zhang
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang, 524001, China. .,The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, 524023, China.
| |
Collapse
|
161
|
Kim N, Lee J, Seon Song H, Joon Oh Y, Kwon MS, Yun M, Ki Lim S, Kyeong Park H, Seo Jang Y, Lee S, Choi SP, Woon Roh S, Choi HJ. Kimchi intake alleviates obesity-induced neuroinflammation by modulating the gut-brain axis. Food Res Int 2022; 158:111533. [DOI: 10.1016/j.foodres.2022.111533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 05/26/2022] [Accepted: 06/17/2022] [Indexed: 11/04/2022]
|
162
|
Claudin-17 Deficiency in Mice Results in Kidney Injury Due to Electrolyte Imbalance and Oxidative Stress. Cells 2022; 11:cells11111782. [PMID: 35681477 PMCID: PMC9180152 DOI: 10.3390/cells11111782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/18/2022] [Accepted: 05/24/2022] [Indexed: 11/17/2022] Open
Abstract
The multi-gene claudin (CLDN) family of tight junction proteins have isoform-specific roles in blood–tissue barrier regulation. CLDN17, a putative anion pore-forming CLDN based on its structural characterization, is assumed to regulate anion balance across the blood-tissue barriers. However, our knowledge about CLDN17 in physiology and pathology is limited. The current study investigated how Cldn17 deficiency in mice affects blood electrolytes and kidney structure. Cldn17−/− mice revealed no breeding abnormalities, but the newborn pups exhibited delayed growth. Adult Cldn17−/− mice displayed electrolyte imbalance, oxidative stress, and injury to the kidneys. Ingenuity pathway analysis followed by RNA-sequencing revealed hyperactivation of signaling pathways and downregulation of SOD1 expression in kidneys associated with inflammation and reactive oxygen species generation, demonstrating the importance of Cldn17 in the maintenance of electrolytes and reactive oxygen species across the blood-tissue barrier.
Collapse
|
163
|
Sun J, Ou W, Han D, Paganini-Hill A, Fisher MJ, Sumbria RK. Comparative studies between the murine immortalized brain endothelial cell line (bEnd.3) and induced pluripotent stem cell-derived human brain endothelial cells for paracellular transport. PLoS One 2022; 17:e0268860. [PMID: 35613139 PMCID: PMC9132315 DOI: 10.1371/journal.pone.0268860] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/09/2022] [Indexed: 01/11/2023] Open
Abstract
Brain microvascular endothelial cells, forming the anatomical site of the blood-brain barrier (BBB), are widely used as in vitro complements to in vivo BBB studies. Among the immortalized cells used as in vitro BBB models, the murine-derived bEnd.3 cells offer culturing consistency and low cost and are well characterized for functional and transport assays, but result in low transendothelial electrical resistance (TEER). Human-induced pluripotent stem cells differentiated into brain microvascular endothelial cells (ihBMECs) have superior barrier properties, but the process of differentiation is time-consuming and can result in mixed endothelial-epithelial gene expression. Here we performed a side-by-side comparison of the ihBMECs and bEnd.3 cells for key paracellular diffusional transport characteristics. The TEER across the ihBMECs was 45- to 68-fold higher than the bEnd.3 monolayer. The ihBMECs had significantly lower tracer permeability than the bEnd.3 cells. Both, however, could discriminate between the paracellular permeabilities of two tracers: sodium fluorescein (MW: 376 Da) and fluorescein isothiocyanate (FITC)-dextran (MW: 70 kDa). FITC-dextran permeability was a strong inverse-correlate of TEER in the bEnd.3 cells, whereas sodium fluorescein permeability was a strong inverse-correlate of TEER in the ihBMECs. Both bEnd.3 cells and ihBMECs showed the typical cobblestone morphology with robust uptake of acetylated LDL and strong immuno-positivity for vWF. Both models showed strong claudin-5 expression, albeit with differences in expression location. We further confirmed the vascular endothelial- (CD31 and tube-like formation) and erythrophagocytic-phenotypes and the response to inflammatory stimuli of ihBMECs. Overall, both bEnd.3 cells and ihBMECs express key brain endothelial phenotypic markers, and despite differential TEER measurements, these in vitro models can discriminate between the passage of different molecular weight tracers. Our results highlight the need to corroborate TEER measurements with different molecular weight tracers and that the bEnd.3 cells may be suitable for large molecule transport studies despite their low TEER.
Collapse
Affiliation(s)
- Jiahong Sun
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA, United States of America
| | - Weijun Ou
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA, United States of America
| | - Derick Han
- Department of Biopharmaceutical Sciences, School of Pharmacy and Health Sciences, Keck Graduate Institute, Claremont, CA, United States of America
| | - Annlia Paganini-Hill
- Department of Neurology, University of California, Irvine, Irvine, CA, United States of America
| | - Mark J. Fisher
- Department of Neurology, University of California, Irvine, Irvine, CA, United States of America
- Department of Pathology & Laboratory Medicine, University of California, Irvine, Irvine, CA, United States of America
| | - Rachita K. Sumbria
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA, United States of America
- Department of Neurology, University of California, Irvine, Irvine, CA, United States of America
- * E-mail:
| |
Collapse
|
164
|
Schimith LE, Dos Santos MG, Arbo BD, André-Miral C, Muccillo-Baisch AL, Hort MA. Polydatin as a therapeutic alternative for central nervous system disorders: A systematic review of animal studies. Phytother Res 2022; 36:2852-2877. [PMID: 35614539 DOI: 10.1002/ptr.7497] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 03/25/2022] [Accepted: 05/08/2022] [Indexed: 12/25/2022]
Abstract
Polydatin, or piceid, is a natural stilbene found in grapes, peanuts, and wines. Polydatin presents pharmacological activities, including neuroprotective properties, exerting preventive and/or therapeutic effects in central nervous system (CNS) disorders. In the present study, we summarize and discuss the neuroprotective effects of polydatin in CNS disorders and related pathological conditions in preclinical animal studies. A systematic review was performed by searching online databases, returning a total of 110 records, where 27 articles were selected and discussed here. The included studies showed neuroprotective effects of polydatin in experimental models of neurological disorders, including cerebrovascular disorders, Parkinson's disease, traumatic brain injuries, diabetic neuropathy, glioblastoma, and neurotoxicity induced by chemical agents. Most studies were focused on stroke (22.2%) and conducted in male rodents. The intervention protocol with polydatin was mainly acute (66.7%), with postdamage induction treatment being the most commonly used regimen (55.2%). Overall, polydatin ameliorated behavioral dysfunctions and/or promoted neurological function by virtue of its antioxidant and antiinflammatory properties. In summary, this review offers important scientific evidence for the neuroprotective effects and distinct pharmacological mechanisms of polydatin that not only enhances the present understanding but is also useful for the development of future preclinical and clinical investigations.
Collapse
Affiliation(s)
- Lucia E Schimith
- Programa de Pós-graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal do Rio Grande - FURG, Rio Grande, Rio Grande do Sul, Brazil
| | - Michele G Dos Santos
- Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, Rio Grande do Sul, Brazil
| | - Bruno D Arbo
- Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, Rio Grande do Sul, Brazil.,Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Corinne André-Miral
- Unité en Sciences Biologiques et Biotechnologies (US2B), Nantes Université, CNRS, Nantes, France
| | - Ana L Muccillo-Baisch
- Programa de Pós-graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal do Rio Grande - FURG, Rio Grande, Rio Grande do Sul, Brazil
| | - Mariana A Hort
- Programa de Pós-graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal do Rio Grande - FURG, Rio Grande, Rio Grande do Sul, Brazil.,Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, Rio Grande do Sul, Brazil
| |
Collapse
|
165
|
Zhao Y, Gan L, Ren L, Lin Y, Ma C, Lin X. Factors influencing the blood-brain barrier permeability. Brain Res 2022; 1788:147937. [PMID: 35568085 DOI: 10.1016/j.brainres.2022.147937] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 04/28/2022] [Accepted: 05/03/2022] [Indexed: 12/14/2022]
Abstract
The blood-brain barrier (BBB) is a dynamic structure that protects the brain from harmful blood-borne, endogenous and exogenous substances and maintains the homeostatic microenvironment. All constituent cell types play indispensable roles in the BBB's integrity, and other structural BBB components, such as tight junction proteins, adherens junctions, and junctional proteins, can control the barrier permeability. Regarding the need to exchange nutrients and toxic materials, solute carriers, ATP-binding case families, and ion transporter, as well as transcytosis regulate the influx and efflux transport, while the difference in localisation and expression can contribute to functional differences in transport properties. Numerous chemical mediators and other factors such as non-physicochemical factors have been identified to alter BBB permeability by mediating the structural components and barrier function, because of the close relationship with inflammation. In this review, we highlight recently gained mechanistic insights into the maintenance and disruption of the BBB. A better understanding of the factors influencing BBB permeability could contribute to supporting promising potential therapeutic targets for protecting the BBB and the delivery of central nervous system drugs via BBB permeability interventions under pathological conditions.
Collapse
Affiliation(s)
- Yibin Zhao
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China; Department of Neurobiology and Acupuncture Research, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lin Gan
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China; Department of Neurobiology and Acupuncture Research, Zhejiang Chinese Medical University, Hangzhou, China
| | - Li Ren
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China; Department of Neurobiology and Acupuncture Research, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yubo Lin
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China; Department of Neurobiology and Acupuncture Research, Zhejiang Chinese Medical University, Hangzhou, China
| | - Congcong Ma
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China; Department of Neurobiology and Acupuncture Research, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xianming Lin
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China; Department of Neurobiology and Acupuncture Research, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
166
|
Polk T, Schmitt S, Aldrich JL, Long DS. Human dermal microvascular endothelial cell morphological response to fluid shear stress. Microvasc Res 2022; 143:104377. [PMID: 35561754 DOI: 10.1016/j.mvr.2022.104377] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/15/2022] [Accepted: 05/05/2022] [Indexed: 10/18/2022]
Abstract
As the cells that line the vasculature, endothelial cells are continually exposed to fluid shear stress by blood flow. Recent studies suggest that the morphological response of endothelial cells to fluid shear stress depends on the endothelial cell type. Thus, the present study characterizes the morphological response of human dermal microvascular endothelial cells (HMEC-1) and nuclei to steady, laminar, and unidirectional fluid shear stress. Cultured HMEC-1 monolayers were exposed to shear stress of 0.3 dyn/cm2, 16 dyn/cm2, or 32 dyn/cm2 for 72 h with hourly live-cell imaging capturing both the nuclear and cellular morphology. Despite changes in elongation and alignment occurring with increasing fluid shear stress, there was a lack of elongation and alignment over time under each fluid shear stress condition. Conversely, changes in cellular and nuclear area exhibited dependence on both time and fluid shear stress magnitude. The trends in cellular morphology differed at shear stress levels above and below 16 dyn/cm2, whereas the nuclear orientation was independent of fluid shear stress magnitude. These findings show the complex morphological response of HMEC-1 to fluid shear stress.
Collapse
Affiliation(s)
- Tabatha Polk
- Mechanobiology and Biomedicine Lab, Department of Biomedical Engineering, Wichita State University, Wichita, KS, USA
| | - Sarah Schmitt
- Mechanobiology and Biomedicine Lab, Department of Biomedical Engineering, Wichita State University, Wichita, KS, USA
| | - Jessica L Aldrich
- Mechanobiology and Biomedicine Lab, Department of Biomedical Engineering, Wichita State University, Wichita, KS, USA
| | - David S Long
- Mechanobiology and Biomedicine Lab, Department of Biomedical Engineering, Wichita State University, Wichita, KS, USA.
| |
Collapse
|
167
|
Hussain B, Fang C, Huang X, Feng Z, Yao Y, Wang Y, Chang J. Endothelial β-Catenin Deficiency Causes Blood-Brain Barrier Breakdown via Enhancing the Paracellular and Transcellular Permeability. Front Mol Neurosci 2022; 15:895429. [PMID: 35615065 PMCID: PMC9125181 DOI: 10.3389/fnmol.2022.895429] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 04/04/2022] [Indexed: 01/24/2023] Open
Abstract
Disruption of the blood-brain barrier (BBB) causes or contributes to neuronal dysfunction and several central nervous system (CNS) disorders. Wnt/β-catenin signaling is essential for maintaining the integrity of the adult BBB in physiological and pathological conditions, including stroke. However, how the impairment of the endothelial Wnt/β-catenin signaling results in BBB breakdown remains unclear. Furthermore, the individual contributions of different BBB permeability-inducing mechanisms, including intercellular junction damage, endothelial transcytosis, and fenestration, remains unexplored. Here, we induced β-catenin endothelial-specific conditional knockout (ECKO) in adult mice and determined its impact on BBB permeability and the underlying mechanism. β-catenin ECKO reduced the levels of active β-catenin and the mRNA levels of Wnt target genes in mice, indicating downregulation of endothelial Wnt/β-catenin signaling. β-catenin ECKO mice displayed severe and widespread leakage of plasma IgG and albumin into the cerebral cortex, which was absent in wild-type controls. Mechanistically, both the paracellular and transcellular transport routes were disrupted in β-catenin ECKO mice. First, β-catenin ECKO reduced the tight junction protein levels and disrupted the intercellular junction ultrastructure in the brain endothelium. Second, β-catenin ECKO substantially increased the number of endothelial vesicles and caveolae-mediated transcytosis through downregulating Mfsd2a and upregulating caveolin-1 expression. Interestingly, fenestration and upregulated expression of the fenestration marker Plvap were not observed in β-catenin ECKO mice. Overall, our study reveals that endothelial Wnt/β-catenin signaling maintains adult BBB integrity via regulating the paracellular as well as transcellular permeability. These findings may have broad applications in understanding and treatment of CNS disorders involving BBB disruption.
Collapse
Affiliation(s)
- Basharat Hussain
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Cheng Fang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xiaowen Huang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Ziying Feng
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuxuan Yao
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yu Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Junlei Chang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
168
|
Wakayama E, Kuzu T, Tachibana K, Hirayama R, Okada Y, Kondoh M. Modifying the blood-brain barrier by targeting claudin-5: Safety and risks. Ann N Y Acad Sci 2022; 1514:62-69. [PMID: 35508916 DOI: 10.1111/nyas.14787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The blood-brain barrier is a major obstacle to the delivery of drugs to the central nervous system. In the blood-brain barrier, the spaces between adjacent brain microvascular endothelial cells are sealed by multiprotein complexes known as tight junctions. Among the many components of the tight junction, claudin-5 has received the most attention as a target for loosening the tight-junction seal and allowing drugs to be delivered to the brain. In mice, transient knockdown of claudin-5 and the use of claudin-5 binders have been shown to enhance the permeation of small molecules from the blood into the brain without apparent adverse effects. However, sustained knockdown of claudin-5 in mice is lethal within 40 days, and administration of an anti-claudin-5 antibody induced convulsions in a nonhuman primate. Here, we review the safety concerns of claudin-5-targeted technologies with respect to their clinical application.
Collapse
Affiliation(s)
- Erika Wakayama
- Faculty of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Taiki Kuzu
- College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Japan.,Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Keisuke Tachibana
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | | | - Yoshiaki Okada
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Masuo Kondoh
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| |
Collapse
|
169
|
Breaking through the barrier: Modelling and exploiting the physical microenvironment to enhance drug transport and efficacy. Adv Drug Deliv Rev 2022; 184:114183. [PMID: 35278523 DOI: 10.1016/j.addr.2022.114183] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/03/2022] [Accepted: 03/06/2022] [Indexed: 02/08/2023]
Abstract
Pharmaceutical compounds are the main pillar in the treatment of various illnesses. To administer these drugs in the therapeutic setting, multiple routes of administration have been defined, including ingestion, inhalation, and injection. After administration, drugs need to find their way to the intended target for high effectiveness, and this penetration is greatly dependent on obstacles the drugs encounter along their path. Key hurdles include the physical barriers that are present within the body and knowledge of those is indispensable for progress in the development of drugs with increased therapeutic efficacy. In this review, we examine several important physical barriers, such as the blood-brain barrier, the gut-mucosal barrier, and the extracellular matrix barrier, and evaluate their influence on drug transport and efficacy. We explore various in vitro model systems that aid in understanding how parameters within the barrier model affect drug transfer and therapeutic effect. We conclude that physical barriers in the body restrict the quantity of drugs that can pass through, mainly as a consequence of the barrier architecture. In addition, the specific physical properties of the tissue can trigger intracellular changes, altering cell behavior in response to drugs. Though the barriers negatively influence drug distribution, physical stimulation of the surrounding environment may also be exploited as a mechanism to control drug release. This drug delivery approach is explored in this review as a potential alternative to the conventional ways of delivering therapeutics.
Collapse
|
170
|
Markov AG, Bikmurzina AE, Fedorova AA, Krivoi II. Methyl-beta-Cyclodextrin Alters the Level of Tight Junction Proteins in the Rat Cerebrovascular Endothelium. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022030188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
171
|
Blood-Brain Barrier Permeability Following Conventional Photon Radiotherapy - A Systematic Review and Meta-Analysis of Clinical and Preclinical Studies. Clin Transl Radiat Oncol 2022; 35:44-55. [PMID: 35601799 PMCID: PMC9117815 DOI: 10.1016/j.ctro.2022.04.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 04/30/2022] [Indexed: 01/16/2023] Open
Abstract
Radiotherapy (RT) is a cornerstone treatment strategy for brain tumours. Besides cytotoxicity, RT can cause disruption of the blood–brain barrier (BBB), resulting in an increased permeability into the surrounding brain parenchyma. Although this effect is generally acknowledged, it remains unclear how and to what extent different radiation schemes affect BBB integrity. The aim of this systematic review and meta-analysis is to investigate the effect of photon RT regimens on BBB permeability, including its reversibility, in clinical and preclinical studies. We systematically reviewed relevant clinical and preclinical literature in PubMed, Embase, and Cochrane search engines. A total of 69 included studies (20 clinical, 49 preclinical) were qualitatively and quantitatively analysed by meta-analysis and evaluated on key determinants of RT-induced BBB permeability in different disease types and RT protocols. Qualitative data synthesis showed that 35% of the included clinical studies reported BBB disruption following RT, whereas 30% were inconclusive. Interestingly, no compelling differences were observed between studies with different calculated biological effective doses based on the fractionation schemes and cumulative doses; however, increased BBB disruption was noted during patient follow-up after treatment. Qualitative analysis of preclinical studies showed RT BBB disruption in 78% of the included studies, which was significantly confirmed by meta-analysis (p < 0.01). Of note, a high risk of bias, publication bias and a high heterogeneity across the studies was observed. This systematic review and meta-analysis sheds light on the impact of RT protocols on BBB integrity and opens the discussion for integrating this factor in the decision-making process of future RT, with better study of its occurrence and influence on concomitant or adjuvant therapies.
Collapse
|
172
|
Zhu N, Wei M, Yuan L, He X, Chen C, Ji A, Zhang G. Claudin-5 relieves cognitive decline in Alzheimer's disease mice through suppression of inhibitory GABAergic neurotransmission. Aging (Albany NY) 2022; 14:3554-3568. [PMID: 35471411 PMCID: PMC9085235 DOI: 10.18632/aging.204029] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/08/2022] [Indexed: 11/25/2022]
Abstract
Alzheimer’s disease (AD) is characterized by progressive cognitive decline, which is considered as the most common form of dementia in the elderly. Recently, it is suggested that impaired cerebrovascular function may precede the onset of AD. Claudin-5, which is the most enriched tight junction protein, has been reported to prevent the passage of damaging material at the blood-brain barrier. However, whether claudin-5 impacts AD has no direct evidence. We found a decrease level of claudin-5 in the hippocampus of AD and elder mice. And intravenous injection of claudin-5 improved learning and memory ability in these mice, while knockout of the protein led to impaired learning and memory and long-term potentiation in adult control mice. Furthermore, the effects of claudin-5 are mediated by suppressing inhibitory GABAergic neurotransmission. Our results suggest benefit effects of claudin-5 on learning and memory, which may provide a new treatment strategy for AD.
Collapse
Affiliation(s)
- Ning Zhu
- General Practice Center, The Seventh Affiliated Hospital, Southern Medical University, Foshan 528244, China.,Department of Pharmacy, The Seventh Affiliated Hospital, Southern Medical University, Foshan 528244, China
| | - Meidan Wei
- Department of Pharmacy, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Linguang Yuan
- College of Basic Medicine, Changsha Medical University, Changsha 410219, China
| | - Xiaodan He
- General Practice Center, The Seventh Affiliated Hospital, Southern Medical University, Foshan 528244, China
| | - Chunli Chen
- Department of Pharmacy, The Seventh Affiliated Hospital, Southern Medical University, Foshan 528244, China
| | - Aimin Ji
- Department of Pharmacy, The Seventh Affiliated Hospital, Southern Medical University, Foshan 528244, China
| | - Guozeng Zhang
- Institute of Nursing and Health, School of Nursing and Health, Henan University, Kaifeng 475004, China
| |
Collapse
|
173
|
Microvascular stabilization via blood-brain barrier regulation prevents seizure activity. Nat Commun 2022; 13:2003. [PMID: 35422069 PMCID: PMC9010415 DOI: 10.1038/s41467-022-29657-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 03/22/2022] [Indexed: 01/03/2023] Open
Abstract
Blood-brain barrier (BBB) dysfunction is associated with worse epilepsy outcomes however the underlying molecular mechanisms of BBB dysfunction remain to be elucidated. Tight junction proteins are important regulators of BBB integrity and in particular, the tight junction protein claudin-5 is the most enriched in brain endothelial cells and regulates size-selectivity at the BBB. Additionally, disruption of claudin-5 expression has been implicated in numerous disorders including schizophrenia, depression and traumatic brain injury, yet its role in epilepsy has not been fully deciphered. Here we report that claudin-5 protein levels are significantly diminished in surgically resected brain tissue from patients with treatment-resistant epilepsy. Concomitantly, dynamic contrast-enhanced MRI in these patients showed widespread BBB disruption. We show that targeted disruption of claudin-5 in the hippocampus or genetic heterozygosity of claudin-5 in mice exacerbates kainic acid-induced seizures and BBB disruption. Additionally, inducible knockdown of claudin-5 in mice leads to spontaneous recurrent seizures, severe neuroinflammation, and mortality. Finally, we identify that RepSox, a regulator of claudin-5 expression, can prevent seizure activity in experimental epilepsy. Altogether, we propose that BBB stabilizing drugs could represent a new generation of agents to prevent seizure activity in epilepsy patients. The mechanisms underlying epilepsy development are not well understood. Here the authors show that loss of a key component of the so called blood-brain barrier drives seizures in mice and is also lost in humans with treatment resistant epilepsy
Collapse
|
174
|
Zhou SY, Guo ZN, Zhang DH, Qu Y, Jin H. The Role of Pericytes in Ischemic Stroke: Fom Cellular Functions to Therapeutic Targets. Front Mol Neurosci 2022; 15:866700. [PMID: 35493333 PMCID: PMC9043812 DOI: 10.3389/fnmol.2022.866700] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/18/2022] [Indexed: 12/25/2022] Open
Abstract
Ischemic stroke (IS) is a cerebrovascular disease causing high rates of disability and fatality. In recent years, the concept of the neurovascular unit (NVU) has been accepted by an increasing number of researchers and is expected to become a new paradigm for exploring the pathogenesis and treatment of IS. NVUs are composed of neurons, endothelial cells, pericytes, astrocytes, microglia, and the extracellular matrix. As an important part of the NVU, pericytes provide support for other cellular components and perform a variety of functions, including participating in the maintenance of the normal physiological function of the blood–brain barrier, regulating blood flow, and playing a role in inflammation, angiogenesis, and neurogenesis. Therefore, treatment strategies targeting pericyte functions, regulating pericyte epigenetics, and transplanting pericytes warrant exploration. In this review, we describe the reactions of pericytes after IS, summarize the potential therapeutic targets and strategies targeting pericytes for IS, and provide new treatment ideas for ischemic stroke.
Collapse
Affiliation(s)
- Sheng-Yu Zhou
- Department of Neurology, Stroke Center, The First Hospital of Jilin University, Changchun, China
| | - Zhen-Ni Guo
- Clinical Trial and Research Center for Stroke, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Dian-Hui Zhang
- Department of Neurology, Stroke Center, The First Hospital of Jilin University, Changchun, China
| | - Yang Qu
- Department of Neurology, Stroke Center, The First Hospital of Jilin University, Changchun, China
| | - Hang Jin
- Department of Neurology, Stroke Center, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Hang Jin,
| |
Collapse
|
175
|
Bai T, Yu S, Feng J. Advances in the Role of Endothelial Cells in Cerebral Small Vessel Disease. Front Neurol 2022; 13:861714. [PMID: 35481273 PMCID: PMC9035937 DOI: 10.3389/fneur.2022.861714] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/09/2022] [Indexed: 12/13/2022] Open
Abstract
Cerebral small vessel disease (CSVD) poses a serious socio-economic burden due to its high prevalence and severe impact on the quality of life of elderly patients. Pathological changes in CSVD mainly influence small cerebral arteries, microarteries, capillaries, and small veins, which are usually caused by multiple vascular risk factors. CSVD is often identified on brain magnetic resonance imaging (MRI) by recent small subcortical infarcts, white matter hyperintensities, lacune, cerebral microbleeds (CMBs), enlarged perivascular spaces (ePVSs), and brain atrophy. Endothelial cell (EC) dysfunction is earlier than clinical symptoms. Immune activation, inflammation, and oxidative stress may be potential mechanisms of EC injury. ECs of the blood–brain–barrier (BBB) are the most important part of the neurovascular unit (NVU) that ensures constant blood flow to the brain. Impaired cerebral vascular autoregulation and disrupted BBB cause cumulative brain damage. This review will focus on the role of EC injury in CSVD. Furthermore, several specific biomarkers will be discussed, which may be useful for us to assess the endothelial dysfunction and explore new therapeutic directions.
Collapse
|
176
|
Hulme H, Meikle LM, Strittmatter N, Swales J, Hamm G, Brown SL, Milling S, MacDonald AS, Goodwin RJ, Burchmore R, Wall DM. Mapping the Influence of the Gut Microbiota on Small Molecules across the Microbiome Gut Brain Axis. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:649-659. [PMID: 35262356 PMCID: PMC9047441 DOI: 10.1021/jasms.1c00298] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/28/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Microbes exert influence across the microbiome-gut-brain axis through neurotransmitter production, induction of host immunomodulators, or the release or induction of other microbial or host molecules. Here, we used mass spectrometry imaging (MSI), a label-free imaging tool, to map molecular changes in the gut and brain in germ-free, antibiotic-treated and control mice. We determined spatial distribution and relative quantification of neurotransmitters and their precursors in response to the microbiome. Using untargeted MSI, we detected a significant change in the levels of four identified small molecules in the brains of germ-free animals compared to controls. However, antibiotic treatment induced no significant changes in these same metabolites in the brain after 1 week of treatment. This work exemplifies the utility of MSI as a tool for the study of known and discovery of novel, mediators of microbiome-gut-brain axis communication.
Collapse
Affiliation(s)
- Heather Hulme
- Institute
of Infection, Immunity and Inflammation, College of Medical, Veterinary
and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Lynsey M. Meikle
- Institute
of Infection, Immunity and Inflammation, College of Medical, Veterinary
and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Nicole Strittmatter
- Imaging
and Data Analytics, Clinical Pharmacology and Safety Sciences, Biopharmaceuticals R&D, AstraZeneca, Cambridge CB4 0WG, U.K.
| | - John Swales
- Imaging
and Data Analytics, Clinical Pharmacology and Safety Sciences, Biopharmaceuticals R&D, AstraZeneca, Cambridge CB4 0WG, U.K.
| | - Gregory Hamm
- Imaging
and Data Analytics, Clinical Pharmacology and Safety Sciences, Biopharmaceuticals R&D, AstraZeneca, Cambridge CB4 0WG, U.K.
| | - Sheila L. Brown
- Lydia
Becker Institute of Immunology and Inflammation, Faculty of Biology,
Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9NT, U.K.
| | - Simon Milling
- Institute
of Infection, Immunity and Inflammation, College of Medical, Veterinary
and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Andrew S. MacDonald
- Lydia
Becker Institute of Immunology and Inflammation, Faculty of Biology,
Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9NT, U.K.
| | - Richard J.A. Goodwin
- Imaging
and Data Analytics, Clinical Pharmacology and Safety Sciences, Biopharmaceuticals R&D, AstraZeneca, Cambridge CB4 0WG, U.K.
| | - Richard Burchmore
- Institute
of Infection, Immunity and Inflammation, College of Medical, Veterinary
and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Daniel M. Wall
- Institute
of Infection, Immunity and Inflammation, College of Medical, Veterinary
and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow G12 8TA, United Kingdom
| |
Collapse
|
177
|
Younis A, Hardowar L, Barker S, Hulse RP. The consequence of endothelial remodelling on the blood spinal cord barrier and nociception. Curr Res Physiol 2022; 5:184-192. [PMID: 35434652 PMCID: PMC9010889 DOI: 10.1016/j.crphys.2022.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/09/2022] [Accepted: 03/30/2022] [Indexed: 12/01/2022] Open
Abstract
Nociception is a fundamental acute protective mechanism that prevents harm to an organism. Understanding the integral processes that control nociceptive processing are fundamental to our appreciation of which cellular and molecular features underlie this process. There is an extensive understanding of how sensory neurons interpret differing sensory modalities and intensities. However, it is widely appreciated that the sensory neurons do not act alone. These work in harmony with inflammatory and vascular systems to modulate pain perception. The spinal cord has an extensive interaction with the capillary network in the form of a blood spinal cord barrier to ensure homeostatic control of the spinal cord neuron milieu. However, there is an extensive appreciation that disturbances in the blood spinal cord barrier contribute to the onset of chronic pain. Enhanced vascular permeability and impaired blood perfusion have both been highlighted as contributors to chronic pain manifestation. Here, we discuss the evidence that demonstrates alterations in the blood spinal cord barrier influences nociceptive processing and perception of pain.
Collapse
Affiliation(s)
- Awais Younis
- School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Lydia Hardowar
- School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Sarah Barker
- School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Richard Philip Hulse
- School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| |
Collapse
|
178
|
Gueniot F, Rubin S, Bougaran P, Abelanet A, Morel JL, Bontempi B, Proust C, Dufourcq P, Couffinhal T, Duplàa C. Targeting Pdzrn3 maintains adult blood-brain barrier and central nervous system homeostasis. J Cereb Blood Flow Metab 2022; 42:613-629. [PMID: 34644209 PMCID: PMC9051145 DOI: 10.1177/0271678x211048981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Blood brain barrier (BBB) disruption is a critical component of the pathophysiology of cognitive impairment of vascular etiology (VCI) and associated with Alzheimer's disease (AD). The Wnt pathway plays a crucial role in BBB maintenance, but there is limited data on its role in cognitive pathologies. The E3 ubiquitin ligase PDZRN3 is a regulator of the Wnt pathway. In a murine model of VCI, overexpressing Pdzrn3 in endothelial cell (EC) exacerbated BBB hyperpermeability and accelerated cognitive decline. We extended these observations, in both VCI and AD models, showing that EC-specific depletion of Pdzrn3, reinforced the BBB, with a decrease in vascular permeability and a subsequent spare in cognitive decline. We found that in cerebral vessels, Pdzrn3 depletion protects against AD-induced Wnt target gene alterations and enhances endothelial tight junctional proteins. Our results provide evidence that Wnt signaling could be a molecular link regulating BBB integrity and cognitive decline under VCI and AD pathologies.
Collapse
Affiliation(s)
- Florian Gueniot
- Biology of Cardiovascular Diseases, University of Bordeaux U1034, Bordeaux, France
| | - Sebastien Rubin
- Biology of Cardiovascular Diseases, University of Bordeaux U1034, Bordeaux, France
| | - Pauline Bougaran
- Biology of Cardiovascular Diseases, University of Bordeaux U1034, Bordeaux, France
| | - Alice Abelanet
- Biology of Cardiovascular Diseases, University of Bordeaux U1034, Bordeaux, France
| | | | | | - Carole Proust
- Biology of Cardiovascular Diseases, University of Bordeaux U1034, Bordeaux, France
| | - Pascale Dufourcq
- Biology of Cardiovascular Diseases, University of Bordeaux U1034, Bordeaux, France.,Service de Biochimie clinique, CHU de Bordeaux, Bordeaux, France
| | - Thierry Couffinhal
- Biology of Cardiovascular Diseases, University of Bordeaux U1034, Bordeaux, France.,Service des Maladies cardiaques et vasculaires, CHU de Bordeaux, Bordeaux, France
| | - Cecile Duplàa
- Biology of Cardiovascular Diseases, University of Bordeaux U1034, Bordeaux, France
| |
Collapse
|
179
|
Abstract
The brain harbors a unique ability to, figuratively speaking, shift its gears. During wakefulness, the brain is geared fully toward processing information and behaving, while homeostatic functions predominate during sleep. The blood-brain barrier establishes a stable environment that is optimal for neuronal function, yet the barrier imposes a physiological problem; transcapillary filtration that forms extracellular fluid in other organs is reduced to a minimum in brain. Consequently, the brain depends on a special fluid [the cerebrospinal fluid (CSF)] that is flushed into brain along the unique perivascular spaces created by astrocytic vascular endfeet. We describe this pathway, coined the term glymphatic system, based on its dependency on astrocytic vascular endfeet and their adluminal expression of aquaporin-4 water channels facing toward CSF-filled perivascular spaces. Glymphatic clearance of potentially harmful metabolic or protein waste products, such as amyloid-β, is primarily active during sleep, when its physiological drivers, the cardiac cycle, respiration, and slow vasomotion, together efficiently propel CSF inflow along periarterial spaces. The brain's extracellular space contains an abundance of proteoglycans and hyaluronan, which provide a low-resistance hydraulic conduit that rapidly can expand and shrink during the sleep-wake cycle. We describe this unique fluid system of the brain, which meets the brain's requisites to maintain homeostasis similar to peripheral organs, considering the blood-brain-barrier and the paths for formation and egress of the CSF.
Collapse
Affiliation(s)
- Martin Kaag Rasmussen
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Humberto Mestre
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
180
|
Krolak T, Chan KY, Kaplan L, Huang Q, Wu J, Zheng Q, Kozareva V, Beddow T, Tobey IG, Pacouret S, Chen AT, Chan YA, Ryvkin D, Gu C, Deverman BE. A High-Efficiency AAV for Endothelial Cell Transduction Throughout the Central Nervous System. NATURE CARDIOVASCULAR RESEARCH 2022; 1:389-400. [PMID: 35571675 PMCID: PMC9103166 DOI: 10.1038/s44161-022-00046-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 03/08/2022] [Indexed: 01/08/2023]
Abstract
Endothelial cells have a crucial role in nervous system function, and mounting evidence points to endothelial impairment as a major contributor to a wide range of neurological diseases. However, tools to genetically interrogate these cells in vivo remain limited. Here, we describe AAV-BI30, a capsid that specifically and efficiently transduces endothelial cells throughout the central nervous system. At relatively low systemic doses, this vector transduces the majority of arterial, capillary, and venous endothelial cells in the brain, retina, and spinal cord vasculature of adult C57BL/6 mice. Furthermore, we show that AAV-BI30 robustly transduces endothelial cells in multiple mouse strains and rats in vivo and human brain microvascular endothelial cells in vitro. Finally, we demonstrate AAV-BI30's capacity to achieve efficient and endothelial-specific Cre-mediated gene manipulation in the central nervous system. This combination of attributes makes AAV-BI30 uniquely well-suited to address outstanding research questions in neurovascular biology and aid the development of therapeutics to remediate endothelial dysfunction in disease.
Collapse
Affiliation(s)
- Trevor Krolak
- Department of Neurobiology and Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Ken Y. Chan
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Luke Kaplan
- Department of Neurobiology and Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Qin Huang
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jason Wu
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Qingxia Zheng
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Velina Kozareva
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Thomas Beddow
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Isabelle G. Tobey
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Simon Pacouret
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Albert T. Chen
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Yujia A. Chan
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Daniel Ryvkin
- Department of Neurobiology and Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Chenghua Gu
- Department of Neurobiology and Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Benjamin E. Deverman
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
181
|
Loss of CLDN5 in podocytes deregulates WIF1 to activate WNT signaling and contributes to kidney disease. Nat Commun 2022; 13:1600. [PMID: 35332151 PMCID: PMC8948304 DOI: 10.1038/s41467-022-29277-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 03/07/2022] [Indexed: 02/05/2023] Open
Abstract
Although mature podocytes lack tight junctions, tight junction integral membrane protein claudin-5 (CLDN5) is predominantly expressed on plasma membranes of podocytes under normal conditions. Using podocyte-specific Cldn5 knockout mice, we identify CLDN5 as a crucial regulator of podocyte function and reveal that Cldn5 deletion exacerbates podocyte injury and proteinuria in a diabetic nephropathy mouse model. Mechanistically, CLDN5 deletion reduces ZO1 expression and induces nuclear translocation of ZONAB, followed by transcriptional downregulation of WNT inhibitory factor-1 (WIF1) expression, which leads to activation of WNT signaling pathway. Podocyte-derived WIF1 also plays paracrine roles in tubular epithelial cells, as evidenced by the finding that animals with podocyte-specific deletion of Cldn5 or Wif1 have worse kidney fibrosis after unilateral ureteral obstruction than littermate controls. Systemic delivery of WIF1 suppresses the progression of diabetic nephropathy and ureteral obstruction-induced renal fibrosis. These findings establish a function for podocyte CLDN5 in restricting WNT signaling in kidney. Claudin-5 is a tight junction integral membrane protein, but it is also expressed in mature podocytes which lack tight junctions. Here the authors report that podocyte claudin-5 regulates WNT signaling activity by modulating WIF1 expression, and its downregulation contributes to kidney disease progression in mice.
Collapse
|
182
|
van Leeuwen E, Hampton MB, Smyth LCD. Hypothiocyanous Acid Disrupts the Barrier Function of Brain Endothelial Cells. Antioxidants (Basel) 2022; 11:antiox11040608. [PMID: 35453292 PMCID: PMC9030776 DOI: 10.3390/antiox11040608] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 02/06/2023] Open
Abstract
Inflammation is a common feature of neurological diseases. During neuroinflammation, neutrophils are recruited to the brain vasculature, where myeloperoxidase can produce hypochlorous acid and the less well-studied oxidant hypothiocyanous acid (HOSCN). In this study, we exposed primary brain endothelial cells (BECs) to HOSCN and observed a rapid loss of transendothelial electrical resistance (TEER) at sublethal concentrations. Decreased barrier function was associated with a loss of tight junctions at cellular contacts and a concomitant loss of dynamic microtubules. Both tight junction and cytoskeletal disruptions were visible within 30 min of exposure, whereas significant loss of TEER took more than 1 h. The removal of the HOSCN after 30 min prevented subsequent barrier dysfunction. These results indicate that BECs are sensitive to HOSCN, resulting in the eventual loss of barrier function. We hypothesise that this mechanism may be relevant in neutrophil transmigration, with HOSCN facilitating blood–brain barrier opening at the sites of egress. Furthermore, this mechanism may be a way through which neutrophils, residing in the vasculature, can influence neuroinflammation in diseases.
Collapse
Affiliation(s)
- Eveline van Leeuwen
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch 8011, New Zealand; (E.v.L.); (M.B.H.)
| | - Mark B. Hampton
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch 8011, New Zealand; (E.v.L.); (M.B.H.)
| | - Leon C. D. Smyth
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch 8011, New Zealand; (E.v.L.); (M.B.H.)
- Center for Brain Immunology and Glia, Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO 63110, USA
- Correspondence: ; Tel.: +64-3-378-6225
| |
Collapse
|
183
|
Mapunda JA, Tibar H, Regragui W, Engelhardt B. How Does the Immune System Enter the Brain? Front Immunol 2022; 13:805657. [PMID: 35273596 PMCID: PMC8902072 DOI: 10.3389/fimmu.2022.805657] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/31/2022] [Indexed: 12/13/2022] Open
Abstract
Multiple Sclerosis (MS) is considered the most frequent inflammatory demyelinating disease of the central nervous system (CNS). It occurs with a variable prevalence across the world. A rich armamentarium of disease modifying therapies selectively targeting specific actions of the immune system is available for the treatment of MS. Understanding how and where immune cells are primed, how they access the CNS in MS and how immunomodulatory treatments affect neuroinflammation requires a proper knowledge on the mechanisms regulating immune cell trafficking and the special anatomy of the CNS. The brain barriers divide the CNS into different compartments that differ with respect to their accessibility to cells of the innate and adaptive immune system. In steady state, the blood-brain barrier (BBB) limits immune cell trafficking to activated T cells, which can reach the cerebrospinal fluid (CSF) filled compartments to ensure CNS immune surveillance. In MS immune cells breach a second barrier, the glia limitans to reach the CNS parenchyma. Here we will summarize the role of the endothelial, epithelial and glial brain barriers in regulating immune cell entry into the CNS and which immunomodulatory treatments for MS target the brain barriers. Finally, we will explore current knowledge on genetic and environmental factors that may influence immune cell entry into the CNS during neuroinflammation in Africa.
Collapse
Affiliation(s)
| | - Houyam Tibar
- Medical School of Rabat, Mohamed 5 University, Rabat, Morocco.,Hôpital des spécialités de Rabat, Ibn Sina University Hospital of Rabat, Rabat, Morocco
| | - Wafa Regragui
- Medical School of Rabat, Mohamed 5 University, Rabat, Morocco.,Hôpital des spécialités de Rabat, Ibn Sina University Hospital of Rabat, Rabat, Morocco
| | | |
Collapse
|
184
|
Sakaue TA, Fujishima Y, Fukushima Y, Tsugawa-Shimizu Y, Fukuda S, Kita S, Nishizawa H, Ranscht B, Nishida K, Maeda N, Shimomura I. Adiponectin accumulation in the retinal vascular endothelium and its possible role in preventing early diabetic microvascular damage. Sci Rep 2022; 12:4159. [PMID: 35264685 PMCID: PMC8907357 DOI: 10.1038/s41598-022-08041-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/28/2022] [Indexed: 12/15/2022] Open
Abstract
Adiponectin (APN), a protein abundantly secreted from adipocytes, has been reported to possess beneficial effects on cardiovascular diseases in association with its accumulation on target organs and cells by binding to T-cadherin. However, little is known about the role of APN in the development of diabetic microvascular complications, such as diabetic retinopathy (DR). Here we investigated the impact of APN on the progression of early retinal vascular damage using a streptozotocin (STZ)-induced diabetic mouse model. Our immunofluorescence results clearly showed T-cadherin-dependent localization of APN in the vascular endothelium of retinal arterioles, which was progressively decreased during the course of diabetes. Such reduction of retinal APN accompanied the early features of DR, represented by increased vascular permeability, and was prevented by glucose-lowering therapy with dapagliflozin, a selective sodium-glucose co-transporter 2 inhibitor. In addition, APN deficiency resulted in severe vascular permeability under relatively short-term hyperglycemia, together with a significant increase in vascular cellular adhesion molecule-1 (VCAM-1) and a reduction in claudin-5 in the retinal endothelium. The present study demonstrated a possible protective role of APN against the development of DR.
Collapse
Affiliation(s)
- Taka-Aki Sakaue
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, 2-2-B5, Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Yuya Fujishima
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, 2-2-B5, Yamada-oka, Suita, Osaka, 565-0871, Japan.
| | - Yoko Fukushima
- Department of Ophthalmology, Graduate School of Medicine, Osaka University, 2-2-B5, Yamada-oka, Suita, Osaka, 565-0871, Japan.,Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-2, Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Yuri Tsugawa-Shimizu
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, 2-2-B5, Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Shiro Fukuda
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, 2-2-B5, Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Shunbun Kita
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, 2-2-B5, Yamada-oka, Suita, Osaka, 565-0871, Japan.,Department of Adipose Management, Graduate School of Medicine, Osaka University, 2-2, Yamada-oka, Suita, Osaka, Japan
| | - Hitoshi Nishizawa
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, 2-2-B5, Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Barbara Ranscht
- Sanford Burnham Prebys Medical Discovery Institute, NIH-Designated Cancer Center, Development, Aging and Regeneration Program, La Jolla, CA, USA
| | - Kohji Nishida
- Department of Ophthalmology, Graduate School of Medicine, Osaka University, 2-2-B5, Yamada-oka, Suita, Osaka, 565-0871, Japan.,Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-2, Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Norikazu Maeda
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, 2-2-B5, Yamada-oka, Suita, Osaka, 565-0871, Japan.,Department of Metabolism and Atherosclerosis, Graduate School of Medicine Osaka University, 2-2, Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Iichiro Shimomura
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, 2-2-B5, Yamada-oka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
185
|
Shen S, Wang J, Zhao Q, Hu Q. The protective effects of butorphanol tartrate against homocysteine-induced blood-brain barrier dysfunction. Bioengineered 2022; 13:7209-7220. [PMID: 35245993 PMCID: PMC8974167 DOI: 10.1080/21655979.2022.2037953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A high concentration of homocysteine (Hcy) has been recently reported to be closely associated with the development of stroke, which is related to the Hcy-induced blood-brain barrier (BBB) dysfunction. Butorphanol tartrate is a promising analgesic agent that targets the opiate receptor and shows promising protective effects on ischemia/reperfusion injury. The present research proposes to investigate the protective effect of butorphanol tartrate on Hcy-induced BBB disruption to explore the potential application of butorphanol tartrate in treating Hcy-induced stroke. Hcy was utilized to establish both an in vivo animal model and in vitro human brain vascular endothelial cells (HBVECs) injury model. We found that the increased diffusion of sodium fluorescein and Evan’s blue, declined expression of Claudin-5, and increased production of interleukin- 6 (IL-6) and tumor necrosis factor-α (TNF-α) were observed in Hcy-treated mice, which were all significantly reversed by butorphanol tartrate. In Hcy-stimulated HBVECs, increased endothelial permeability and reduced expression levels of Claudin-5 and Krüppel-like factor 5 (KLF5) were observed, all of which were dramatically rescued by 2 and 5 µM butorphanol tartrate. Lastly, the protective function of butorphanol tartrate in Hcy-stimulated HBVECs was dramatically abolished by the knockdown of KLF5. Collectively, butorphanol tartrate showed protective effects on Hcy-induced BBB disruption by upregulating the KLF5/Claudin-5 axis.
Collapse
Affiliation(s)
- Sufeng Shen
- Department of Anesthesiology, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, China
| | - Jiandong Wang
- Department of Anesthesiology, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, China
| | - Qingyuan Zhao
- Department of Anesthesiology, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, China
| | - Qiangfu Hu
- Department of Anesthesiology, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, China
| |
Collapse
|
186
|
Abstract
Blood-brain barrier (BBB) integrity is critical for proper function of the central nervous system (CNS). Here, we show that the endothelial Unc5B receptor controls BBB integrity by maintaining Wnt/β-catenin signaling. Inducible endothelial-specific deletion of Unc5B in adult mice leads to BBB leak from brain capillaries that convert to a barrier-incompetent state with reduced Claudin-5 and increased PLVAP expression. Loss of Unc5B decreases BBB Wnt/β-catenin signaling, and β-catenin overexpression rescues Unc5B mutant BBB defects. Mechanistically, the Unc5B ligand Netrin-1 enhances Unc5B interaction with the Wnt co-receptor LRP6, induces its phosphorylation and activates Wnt/β-catenin downstream signaling. Intravenous delivery of antibodies blocking Netrin-1 binding to Unc5B causes a transient BBB breakdown and disruption of Wnt signaling, followed by neurovascular barrier resealing. These data identify Netrin-1-Unc5B signaling as a ligand-receptor pathway that regulates BBB integrity, with implications for CNS diseases. The authors show that Netrin-1-Unc5B signaling controls blood-brain barrier integrity by maintaining Wnt/b-catenin signaling and that delivery of antibodies blocking Netrin-1 binding to Unc5B causes transient and size-selective BBB breakdown.
Collapse
|
187
|
Siqueira M, Stipursky J. BLOOD BRAIN BARRIER AS AN INTERFACE FOR ALCOHOL INDUCED NEUROTOXICITY DURING DEVELOPMENT. Neurotoxicology 2022; 90:145-157. [DOI: 10.1016/j.neuro.2022.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/15/2022] [Accepted: 03/14/2022] [Indexed: 11/30/2022]
|
188
|
Harati R, Hammad S, Tlili A, Mahfood M, Mabondzo A, Hamoudi R. miR-27a-3p regulates expression of intercellular junctions at the brain endothelium and controls the endothelial barrier permeability. PLoS One 2022; 17:e0262152. [PMID: 35025943 PMCID: PMC8758013 DOI: 10.1371/journal.pone.0262152] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 12/17/2021] [Indexed: 01/08/2023] Open
Abstract
Background The brain endothelial barrier permeability is governed by tight and adherens junction protein complexes that restrict paracellular permeability at the blood-brain barrier (BBB). Dysfunction of the inter-endothelial junctions has been implicated in neurological disorders such as multiple sclerosis, stroke and Alzheimer’s disease. The molecular mechanisms underlying junctional dysfunction during BBB impairment remain elusive. MicroRNAs (miRNAs) have emerged as versatile regulators of the BBB function under physiological and pathological conditions, and altered levels of BBB-associated microRNAs were demonstrated in a number of brain pathologies including neurodegeneration and neuroinflammatory diseases. Among the altered micro-RNAs, miR-27a-3p was found to be downregulated in a number of neurological diseases characterized by loss of inter-endothelial junctions and disruption of the barrier integrity. However, the relationship between miR-27a-3p and tight and adherens junctions at the brain endothelium remains unexplored. Whether miR-27a-3p is involved in regulation of the junctions at the brain endothelium remains to be determined. Methods Using a gain-and-loss of function approach, we modulated levels of miR-27a-3p in an in-vitro model of the brain endothelium, key component of the BBB, and examined the resultant effect on the barrier paracellular permeability and on the expression of essential tight and adherens junctions. The mechanisms governing the regulation of junctional proteins by miR-27a-3p were also explored. Results Our results showed that miR-27a-3p inhibitor increases the barrier permeability and causes reduction of claudin-5 and occludin, two proteins highly enriched at the tight junction, while miR-27a-3p mimic reduced the paracellular leakage and increased claudin-5 and occludin protein levels. Interestingly, we found that miR-27-3p induces expression of claudin-5 and occludin by downregulating Glycogen Synthase Kinase 3 beta (GSK3ß) and activating Wnt/ß-catenin signaling, a key pathway required for the BBB maintenance. Conclusion For the first time, we showed that miR-27a-3p is a positive regulator of key tight junction proteins, claudin-5 and occludin, at the brain endothelium through targeting GSK3ß gene and activating Wnt/ß-catenin signaling. Thus, miR-27a-3p may constitute a novel therapeutic target that could be exploited to prevent BBB dysfunction and preserves its integrity in neurological disorders characterized by impairment of the barrier’s function.
Collapse
Affiliation(s)
- Rania Harati
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates.,Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Saba Hammad
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates.,Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Abdelaziz Tlili
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Mona Mahfood
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Aloïse Mabondzo
- Department of Medicines and Healthcare Technologies, Paris-Saclay University, The French Alternative Energies and Atomic Energy Commission, Gif-sur-Yvette, France
| | - Rifat Hamoudi
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates.,Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Division of Surgery and Interventional Science, University College London, London, United Kingdom
| |
Collapse
|
189
|
Matsuyama S, Tanaka Y, Hasebe R, Hojyo S, Murakami M. Gateway Reflex and Mechanotransduction. Front Immunol 2022; 12:780451. [PMID: 35003096 PMCID: PMC8728022 DOI: 10.3389/fimmu.2021.780451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/30/2021] [Indexed: 12/18/2022] Open
Abstract
The gateway reflex explains how autoreactive CD4+ T cells cause inflammation in tissues that have blood-barriers, such as the central nervous system and retina. It depends on neural activations in response to specific external stimuli, such as gravity, pain, stress, and light, which lead to the secretion of noradrenaline at specific vessels in the tissues. Noradrenaline activates NFkB at these vessels, followed by an increase of chemokine expression as well as a reduction of tight junction molecules to accumulate autoreactive CD4+ T cells, which breach blood-barriers. Transient receptor potential vanilloid 1 (TRPV1) molecules on sensory neurons are critical for the gateway reflex, indicating the importance of mechano-sensing. In this review, we overview the gateway reflex with a special interest in mechanosensory transduction (mechanotransduction).
Collapse
Affiliation(s)
- Shiina Matsuyama
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yuki Tanaka
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan.,Group of Quantum Immunology, Institute for Quantum Life Science, National Institute for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Rie Hasebe
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Shintaro Hojyo
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan.,Group of Quantum Immunology, Institute for Quantum Life Science, National Institute for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Masaaki Murakami
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan.,Group of Quantum Immunology, Institute for Quantum Life Science, National Institute for Quantum and Radiological Science and Technology (QST), Chiba, Japan.,Division of Neurommunology, National Institute for Physiological Sciences, Okazaki, Japan
| |
Collapse
|
190
|
Liu S, Song G, Li F, Li R, Chen X, Guo Y, Zhou F, Wang Q, Yang L, Zhou B. Bis (2-ethylhexyl)-2,3,4,5-tetrabromophthalate showed poor penetrability but increased the permeability of blood brain barrier: Evidences from in vitro and in vivo studies. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127386. [PMID: 34879576 DOI: 10.1016/j.jhazmat.2021.127386] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
Bis(2ethylhexyl)-2,3,4,5-tetrabromophthalate (TBPH), a replacement for restricted flame retardants, has become ubiquitous in the environment. To reveal the neurotoxicity and underlying mechanism of TBPH, we first evaluated its penetrability through the blood-brain barrier (BBB) using hCMEC/D3 cells as in vitro model, and found TBPH had poor penetrability through BBB with a maximum Papp of 14.8 × 10-6 cms-1. Further study using transgenetic zebrafish (Tg flk1: EGFP) as in vivo model confirmed that TBPH could affect the BBB permeability, probably via affecting the transcription of genes encoding tight junction proteins. Finally, wild type zebrafish embryos/larvae were exposed to TBPH to evaluate the neurotoxicity. The neurodevelopment, neurotransmitters and locomotor activity of zebrafish larvae did not changed, which may be because TBPH can hardly cross the BBB to pose direct exposure to the central nervous system. However, the transcription of opsins genes and visual response to light stimulation in zebrafish larvae were inhibited, pointing to additional mechanism that may cause visual impairment indirectly. Above all, these results can help further understand the neurotoxicity and underlying mechanism by TBPH, and also pointed out potential risk of this chemical to aquatic organisms.
Collapse
Affiliation(s)
- Sitian Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Guili Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Fan Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Ruiwen Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; Ecological Environment Monitoring and Scientific Research Center, Changjiang River Basin Ecological Environment Administration, Ministry of Ecology and Environment, Wuhan 430014, PR China
| | - Xiangping Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Yongyong Guo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Fang Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Qiangwei Wang
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, PR China
| | - Lihua Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China.
| | - Bingsheng Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| |
Collapse
|
191
|
Lin P, Tan R, Yu P, Li Y, Mo Y, Li W, Zhang J. Autophagic degradation of claudin‐5 mediated by its binding to a
Clostridium perfringens
enterotoxin fragment modulates endothelial barrier permeability. FEBS Lett 2022; 596:924-937. [PMID: 35156707 DOI: 10.1002/1873-3468.14315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 01/23/2022] [Accepted: 02/04/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Panpan Lin
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University Zhanjiang 524001 China
| | - Rongbang Tan
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University Zhanjiang 524001 China
| | - Ping Yu
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University Zhanjiang 524001 China
| | - Yanyu Li
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University Zhanjiang 524001 China
| | - Yuqian Mo
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University Zhanjiang 524001 China
| | - Wen Li
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University Zhanjiang 524001 China
| | - Jingjing Zhang
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University Zhanjiang 524001 China
| |
Collapse
|
192
|
Blood-Brain Barrier Transporters: Opportunities for Therapeutic Development in Ischemic Stroke. Int J Mol Sci 2022; 23:ijms23031898. [PMID: 35163820 PMCID: PMC8836701 DOI: 10.3390/ijms23031898] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 12/20/2022] Open
Abstract
Globally, stroke is a leading cause of death and long-term disability. Over the past decades, several efforts have attempted to discover new drugs or repurpose existing therapeutics to promote post-stroke neurological recovery. Preclinical stroke studies have reported successes in identifying novel neuroprotective agents; however, none of these compounds have advanced beyond a phase III clinical trial. One reason for these failures is the lack of consideration of blood-brain barrier (BBB) transport mechanisms that can enable these drugs to achieve efficacious concentrations in ischemic brain tissue. Despite the knowledge that drugs with neuroprotective properties (i.e., statins, memantine, metformin) are substrates for endogenous BBB transporters, preclinical stroke research has not extensively studied the role of transporters in central nervous system (CNS) drug delivery. Here, we review current knowledge on specific BBB uptake transporters (i.e., organic anion transporting polypeptides (OATPs in humans; Oatps in rodents); organic cation transporters (OCTs in humans; Octs in rodents) that can be targeted for improved neuroprotective drug delivery. Additionally, we provide state-of-the-art perspectives on how transporter pharmacology can be integrated into preclinical stroke research. Specifically, we discuss the utility of in vivo stroke models to transporter studies and considerations (i.e., species selection, co-morbid conditions) that will optimize the translational success of stroke pharmacotherapeutic experiments.
Collapse
|
193
|
Williams LM, Fujimoto T, Weaver RR, Logsdon AF, Evitts KM, Young JE, Banks WA, Erickson MA. Prolonged culturing of iPSC-derived brain endothelial-like cells is associated with quiescence, downregulation of glycolysis, and resistance to disruption by an Alzheimer’s brain milieu. Fluids Barriers CNS 2022; 19:10. [PMID: 35123529 PMCID: PMC8817611 DOI: 10.1186/s12987-022-00307-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/18/2022] [Indexed: 12/13/2022] Open
Abstract
Abstract
Background
Human induced pluripotent stem cell (hiPSC)-derived brain endothelial-like cells (iBECs) are a robust, scalable, and translatable model of the human blood–brain barrier (BBB). Prior works have shown that high transendothelial electrical resistance (TEER) persists in iBECs for at least 2 weeks, emphasizing the utility of the model for longer term studies. However, most studies evaluate iBECs within the first few days of subculture, and little is known about their proliferative state, which could influence their functions. In this study, we characterized iBEC proliferative state in relation to key BBB properties at early (2 days) and late (9 days) post-subculture time points.
Methods
hiPSCs were differentiated into iBECs using fully defined, serum-free medium. The proportion of proliferating cells was determined by BrdU assays. We evaluated TEER, expression of glycolysis enzymes and tight and adherens junction proteins (TJP and AJP), and glucose transporter-1 (GLUT1) function by immunoblotting, immunofluorescence, and quantifying radiolabeled tracer permeabilities. We also compared barrier disruption in response to TNF-α and conditioned medium (CM) from hiPSC-derived neurons harboring the Alzheimer’s disease (AD)-causing Swedish mutation (APPSwe/+).
Results
A significant decline in iBEC proliferation over time in culture was accompanied by adoption of a more quiescent endothelial metabolic state, indicated by downregulation of glycolysis-related proteins and upregulation GLUT1. Interestingly, upregulation of GLUT1 was associated with reduced glucose transport rates in more quiescent iBECs. We also found significant decreases in claudin-5 (CLDN5) and vascular endothelial-cadherin (VE-Cad) and a trend toward a decrease in platelet endothelial cell adhesion molecule-1 (PECAM-1), whereas zona occludens-1 (ZO-1) increased and occludin (OCLN) remained unchanged. Despite differences in TJP and AJP expression, there was no difference in mean TEER on day 2 vs. day 9. TNF-α induced disruption irrespective of iBEC proliferative state. Conversely, APPSwe/+ CM disrupted only proliferating iBEC monolayers.
Conclusion
iBECs can be used to study responses to disease-relevant stimuli in proliferating vs. more quiescent endothelial cell states, which may provide insight into BBB vulnerabilities in contexts of development, brain injury, and neurodegenerative disease.
Collapse
|
194
|
Ikeshima-Kataoka H, Sugimoto C, Tsubokawa T. Integrin Signaling in the Central Nervous System in Animals and Human Brain Diseases. Int J Mol Sci 2022; 23:ijms23031435. [PMID: 35163359 PMCID: PMC8836133 DOI: 10.3390/ijms23031435] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 02/06/2023] Open
Abstract
The integrin family is involved in various biological functions, including cell proliferation, differentiation and migration, and also in the pathogenesis of disease. Integrins are multifunctional receptors that exist as heterodimers composed of α and β subunits and bind to various ligands, including extracellular matrix (ECM) proteins; they are found in many animals, not only vertebrates (e.g., mouse, rat, and teleost fish), but also invertebrates (e.g., planarian flatworm, fruit fly, nematodes, and cephalopods), which are used for research on genetics and social behaviors or as models for human diseases. In the present paper, we describe the results of a phylogenetic tree analysis of the integrin family among these species. We summarize integrin signaling in teleost fish, which serves as an excellent model for the study of regenerative systems and possesses the ability for replacing missing tissues, especially in the central nervous system, which has not been demonstrated in mammals. In addition, functions of astrocytes and reactive astrocytes, which contain neuroprotective subpopulations that act in concert with the ECM proteins tenascin C and osteopontin via integrin are also reviewed. Drug development research using integrin as a therapeutic target could result in breakthroughs for the treatment of neurodegenerative diseases and brain injury in mammals.
Collapse
Affiliation(s)
- Hiroko Ikeshima-Kataoka
- Department of Biology, Keio University, 4-1-1, Hiyoshi, Kohoku-ku, Yokohama-shi 223-8521, Japan; (C.S.); (T.T.)
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Correspondence:
| | - Chikatoshi Sugimoto
- Department of Biology, Keio University, 4-1-1, Hiyoshi, Kohoku-ku, Yokohama-shi 223-8521, Japan; (C.S.); (T.T.)
| | - Tatsuya Tsubokawa
- Department of Biology, Keio University, 4-1-1, Hiyoshi, Kohoku-ku, Yokohama-shi 223-8521, Japan; (C.S.); (T.T.)
| |
Collapse
|
195
|
Maurissen TL, Pavlou G, Bichsel C, Villaseñor R, Kamm RD, Ragelle H. Microphysiological Neurovascular Barriers to Model the Inner Retinal Microvasculature. J Pers Med 2022; 12:jpm12020148. [PMID: 35207637 PMCID: PMC8876566 DOI: 10.3390/jpm12020148] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 02/07/2023] Open
Abstract
Blood-neural barriers regulate nutrient supply to neuronal tissues and prevent neurotoxicity. In particular, the inner blood-retinal barrier (iBRB) and blood–brain barrier (BBB) share common origins in development, and similar morphology and function in adult tissue, while barrier breakdown and leakage of neurotoxic molecules can be accompanied by neurodegeneration. Therefore, pre-clinical research requires human in vitro models that elucidate pathophysiological mechanisms and support drug discovery, to add to animal in vivo modeling that poorly predict patient responses. Advanced cellular models such as microphysiological systems (MPS) recapitulate tissue organization and function in many organ-specific contexts, providing physiological relevance, potential for customization to different population groups, and scalability for drug screening purposes. While human-based MPS have been developed for tissues such as lung, gut, brain and tumors, few comprehensive models exist for ocular tissues and iBRB modeling. Recent BBB in vitro models using human cells of the neurovascular unit (NVU) showed physiological morphology and permeability values, and reproduced brain neurological disorder phenotypes that could be applicable to modeling the iBRB. Here, we describe similarities between iBRB and BBB properties, compare existing neurovascular barrier models, propose leverage of MPS-based strategies to develop new iBRB models, and explore potentials to personalize cellular inputs and improve pre-clinical testing.
Collapse
Affiliation(s)
- Thomas L. Maurissen
- Roche Pharma Research and Early Development, Immunology, Infectious Diseases and Ophthalmology, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland;
| | - Georgios Pavlou
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., MIT Building, Room NE47-321, Cambridge, MA 02139, USA;
| | - Colette Bichsel
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland;
- Roche Pharma Research and Early Development, Institute for Translational Bioengineering, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Roberto Villaseñor
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland;
| | - Roger D. Kamm
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., MIT Building, Room NE47-321, Cambridge, MA 02139, USA;
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., MIT Building, Room NE47-321, Cambridge, MA 02139, USA
- Correspondence: (R.D.K.); (H.R.)
| | - Héloïse Ragelle
- Roche Pharma Research and Early Development, Immunology, Infectious Diseases and Ophthalmology, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland;
- Correspondence: (R.D.K.); (H.R.)
| |
Collapse
|
196
|
Kim Y, Cho AY, Kim HC, Ryu D, Jo SA, Jung YS. Effects of Natural Polyphenols on Oxidative Stress-Mediated Blood–Brain Barrier Dysfunction. Antioxidants (Basel) 2022; 11:antiox11020197. [PMID: 35204080 PMCID: PMC8868362 DOI: 10.3390/antiox11020197] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 02/01/2023] Open
Abstract
The blood-brain barrier (BBB), which consists mainly of brain microvascular endothelial cells and astrocytes connected by tight junctions (TJs) and adhesion molecules (AMs), maintains the homeostatic balance between brain parenchyma and extracellular fluid. Accumulating evidence shows that BBB dysfunction is a common feature of neurodegenerative diseases, including stroke, traumatic brain injury, and Alzheimer’s disease. Among the various pathological pathways of BBB dysfunction, reactive oxygen species (ROS) are known to play a key role in inducing BBB disruption mediated via TJ modification, AM induction, cytoskeletal reorganization, and matrix metalloproteinase activation. Thus, antioxidants have been suggested to exert beneficial effects on BBB dysfunction-associated brain diseases. In this review, we summarized the sources of ROS production in multiple cells that constitute or surround the BBB, such as BBB endothelial cells, astrocytes, microglia, and neutrophils. We also reviewed various pathological mechanisms by which BBB disruption is caused by ROS in these cells. Finally, we summarized the effects of various natural polyphenols on BBB dysfunction to suggest a therapeutic strategy for BBB disruption-related brain diseases.
Collapse
Affiliation(s)
- Yeonjae Kim
- College of Pharmacy, Ajou University, Suwon 16499, Korea; (Y.K.); (A.Y.C.); (H.C.K.); (D.R.)
- Research Institute of Pharmaceutical Sciences and Technology, Ajou University, Suwon 16499, Korea
| | - A Yeon Cho
- College of Pharmacy, Ajou University, Suwon 16499, Korea; (Y.K.); (A.Y.C.); (H.C.K.); (D.R.)
| | - Hong Cheol Kim
- College of Pharmacy, Ajou University, Suwon 16499, Korea; (Y.K.); (A.Y.C.); (H.C.K.); (D.R.)
| | - Dajung Ryu
- College of Pharmacy, Ajou University, Suwon 16499, Korea; (Y.K.); (A.Y.C.); (H.C.K.); (D.R.)
- Research Institute of Pharmaceutical Sciences and Technology, Ajou University, Suwon 16499, Korea
| | - Sangmee Ahn Jo
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Korea;
- Department of Pharmacology, College of Pharmacy, Dankook University, Cheonan 31116, Korea
| | - Yi-Sook Jung
- College of Pharmacy, Ajou University, Suwon 16499, Korea; (Y.K.); (A.Y.C.); (H.C.K.); (D.R.)
- Research Institute of Pharmaceutical Sciences and Technology, Ajou University, Suwon 16499, Korea
- Correspondence: ; Tel.: +82-31-219-3444
| |
Collapse
|
197
|
Stringer MS, Heye AK, Armitage PA, Chappell F, Valdés Hernández MDC, Makin SDJ, Sakka E, Thrippleton MJ, Wardlaw JM. Tracer kinetic assessment of blood-brain barrier leakage and blood volume in cerebral small vessel disease: Associations with disease burden and vascular risk factors. Neuroimage Clin 2022; 32:102883. [PMID: 34911189 PMCID: PMC8607271 DOI: 10.1016/j.nicl.2021.102883] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/16/2021] [Indexed: 12/01/2022]
Abstract
Permeability surface area (PS) was higher, even in normal appearing tissue. PS was higher in patients with more white matter hyperintensities. Tissue damage affecting vascular surface area may affect how we interpret tracer kinetic results.
Subtle blood–brain barrier (BBB) permeability increases have been shown in small vessel disease (SVD) using various analysis methods. Following recent consensus recommendations, we used Patlak tracer kinetic analysis, considered optimal in low permeability states, to quantify permeability-surface area product (PS), a BBB leakage estimate, and blood plasma volume (vP) in 201 patients with SVD who underwent dynamic contrast-enhanced MRI scans. We ran multivariable regression models with a quantitative or qualitative metric of white matter hyperintensity (WMH) severity, demographic and vascular risk factors. PS increased with WMH severity in grey (B = 0.15, Confidence Interval (CI): [0.001,0.299], p = 0.049) and normal-appearing white matter (B = 0.015, CI: [−0.008,0.308], p = 0.062). Patients with more severe WMH had lower vP in WMH (B = -0.088, CI: [−0.138,-0.039], p < 0.001), but higher vP in normal-appearing white matter (B = 0.031, CI: [−0.004,0.065], p = 0.082). PS and vP were lower at older ages in WMH, grey and white matter. We conclude higher PS in normal-appearing tissue with more severe WMH suggests impaired BBB integrity beyond visible lesions indicating that the microvasculature is compromised in normal-appearing white matter and WMH. BBB dysfunction is an important mechanism in SVD, but associations with clinical variables are complex and underlying damage affecting vascular surface area may alter interpretation of tracer kinetic results.
Collapse
Affiliation(s)
- Michael S Stringer
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK; UK DRI at the University of Edinburgh, University of Edinburgh, Edinburgh, UK
| | - Anna K Heye
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK; Edinburgh Clinical Trials Unit, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Paul A Armitage
- Academic Unit of Radiology, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Royal Hallamshire Hospital, Sheffield, UK
| | - Francesca Chappell
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK; UK DRI at the University of Edinburgh, University of Edinburgh, Edinburgh, UK
| | - Maria Del C Valdés Hernández
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK; UK DRI at the University of Edinburgh, University of Edinburgh, Edinburgh, UK
| | | | - Eleni Sakka
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK; UK DRI at the University of Edinburgh, University of Edinburgh, Edinburgh, UK
| | - Michael J Thrippleton
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK; UK DRI at the University of Edinburgh, University of Edinburgh, Edinburgh, UK.
| | - Joanna M Wardlaw
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK; UK DRI at the University of Edinburgh, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
198
|
Vascular and blood-brain barrier-related changes underlie stress responses and resilience in female mice and depression in human tissue. Nat Commun 2022; 13:164. [PMID: 35013188 PMCID: PMC8748803 DOI: 10.1038/s41467-021-27604-x] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 11/09/2021] [Indexed: 12/13/2022] Open
Abstract
Prevalence, symptoms, and treatment of depression suggest that major depressive disorders (MDD) present sex differences. Social stress-induced neurovascular pathology is associated with depressive symptoms in male mice; however, this association is unclear in females. Here, we report that chronic social and subchronic variable stress promotes blood-brain barrier (BBB) alterations in mood-related brain regions of female mice. Targeted disruption of the BBB in the female prefrontal cortex (PFC) induces anxiety- and depression-like behaviours. By comparing the endothelium cell-specific transcriptomic profiling of the mouse male and female PFC, we identify several pathways and genes involved in maladaptive stress responses and resilience to stress. Furthermore, we confirm that the BBB in the PFC of stressed female mice is leaky. Then, we identify circulating vascular biomarkers of chronic stress, such as soluble E-selectin. Similar changes in circulating soluble E-selectin, BBB gene expression and morphology can be found in blood serum and postmortem brain samples from women diagnosed with MDD. Altogether, we propose that BBB dysfunction plays an important role in modulating stress responses in female mice and possibly MDD.
Collapse
|
199
|
Luo Y, Yao F, Hu X, Li Y, Chen Y, Li Z, Zhu Z, Yu S, Tian D, Cheng L, Zheng M, Jing J. M1 macrophages impair tight junctions between endothelial cells after spinal cord injury. Brain Res Bull 2022; 180:59-72. [PMID: 34995751 DOI: 10.1016/j.brainresbull.2021.12.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/30/2021] [Accepted: 12/31/2021] [Indexed: 12/11/2022]
Abstract
After spinal cord injury (SCI), endogenous angiogenesis occurs in the injury core, unexpectedly accompanied by continuous leakage of the blood-spinal cord barrier (BSCB), which may be caused by destruction of the tight junctions (TJs) between vascular endothelial cells-an important structure of the BSCB. Blood-derived macrophages infiltrate into the spinal cord, aggregate to the injury core and then polarize toward M1/M2 phenotypes after SCI. However, the effect of macrophages with different polarizations on the TJs between vascular endothelial cells remains unclear. Here, we demonstrated that from 7 days postinjury (dpi) to 28 dpi, accompanied by the aggregation of macrophages, the expression of claudin-5 (CLN-5) and zonula occludens-1 (ZO-1) in vascular endothelial cells in the injury core was significantly decreased in comparison to that in normal spinal cord tissue and in the penumbra. Moreover, the leakage of the BSCB was severe in the injury core, as demonstrated by FITC-dextran perfusion. Notably, our study demonstrated that depletion of macrophages facilitated the restoration of TJs between vascular endothelial cells and decreased the leakage of BSCB in the injury core after SCI. Furthermore, we confirmed that the endothelial TJs could be impaired by M1 macrophages through secreting IL-6 in vitro, leading to an increased permeability of endothelial cells, but it was not significantly affected by M0 and M2 macrophages. These results indicated that the TJs between vascular endothelial cells were impaired by M1 macrophages in the injury core, potentially resulting in continuous leakage of the BSCB after SCI. Preventing M1 polarization of macrophages or blocking IL-6 in the injury core may promote restoration of the BSCB, thus accelerating functional recovery after SCI.
Collapse
Affiliation(s)
- Yang Luo
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032, Anhui Province, People's Republic of China
| | - Fei Yao
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032, Anhui Province, People's Republic of China
| | - Xuyang Hu
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032, Anhui Province, People's Republic of China
| | - Yiteng Li
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032, Anhui Province, People's Republic of China
| | - Yihao Chen
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032, Anhui Province, People's Republic of China
| | - Ziyu Li
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032, Anhui Province, People's Republic of China
| | - Zhenyu Zhu
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032, Anhui Province, People's Republic of China
| | - Shuisheng Yu
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032, Anhui Province, People's Republic of China
| | - Dasheng Tian
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032, Anhui Province, People's Republic of China
| | - Li Cheng
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032, Anhui Province, People's Republic of China; School of Pharmacy, Anhui Medical University, Hefei 230032, Anhui Province, People's Republic of China.
| | - Meige Zheng
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032, Anhui Province, People's Republic of China.
| | - Juehua Jing
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032, Anhui Province, People's Republic of China.
| |
Collapse
|
200
|
Hypoxia increases expression of selected blood-brain barrier transporters GLUT-1, P-gp, SLC7A5 and TFRC, while maintaining barrier integrity, in brain capillary endothelial monolayers. Fluids Barriers CNS 2022; 19:1. [PMID: 34983574 PMCID: PMC8725498 DOI: 10.1186/s12987-021-00297-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 12/15/2021] [Indexed: 01/01/2023] Open
Abstract
Background Brain capillary endothelial cells (BCECs) experience hypoxic conditions during early brain development. The newly formed capillaries are tight and functional before astrocytes and pericytes join the capillaries and establish the neurovascular unit. Brain endothelial cell phenotype markers P-gp (ABCB1), LAT-1(SLC7A5), GLUT-1(SLC2A1), and TFR(TFRC) have all been described to be hypoxia sensitive. Therefore, we hypothesized that monolayers of BCECs, cultured under hypoxic conditions, would show an increase in LAT-1, GLUT-1 and TFR expression and display tight endothelial barriers. Methods and results Primary bovine BCECs were cultured under normoxic and hypoxic conditions. Chronic hypoxia induced HIF-1α stabilization and translocation to the nucleus, as judged by immunocytochemistry and confocal laser scanning imaging. Endothelial cell morphology, claudin-5 and ZO-1 localization and barrier integrity were unaffected by hypoxia, indicating that the tight junctions in the BBB model were not compromised. SLC7A5, SLC2A1, and TFRC-mRNA levels were increased in hypoxic cultures, while ABCB1 remained unchanged as shown by real-time qPCR. P-gp, TfR and GLUT-1 were found to be significantly increased at protein levels. An increase in uptake of [3H]-glucose was demonstrated, while a non-significant increase in the efflux ratio of the P-gp substrate [3H]-digoxin was observed in hypoxic cells. No changes were observed in functional LAT-1 as judged by uptake studies of [3H]-leucine. Stabilization of HIF-1α under normoxic conditions with desferrioxamine (DFO) mimicked the effects of hypoxia on endothelial cells. Furthermore, low concentrations of DFO caused an increase in transendothelial electrical resistance (TEER), suggesting that a slight activation of the HIF-1α system may actually increase brain endothelial monolayer tightness. Moreover, exposure of confluent monolayers to hypoxia resulted in markedly increase in TEER after 24 and 48 h, which corresponded to a higher transcript level of CLDN5. Conclusions Our findings collectively suggest that hypoxic conditions increase some BBB transporters' expression via HIF-1α stabilization, without compromising monolayer integrity. This may in part explain why brain capillaries show early maturation, in terms of barrier tightness and protein expression, during embryogenesis, and provides a novel methodological tool for optimal brain endothelial culture. Supplementary Information The online version contains supplementary material available at 10.1186/s12987-021-00297-6.
Collapse
|