151
|
Riva V, Cantiani C, Benasich AA, Molteni M, Piazza C, Giorda R, Dionne G, Marino C. From CNTNAP2 to Early Expressive Language in Infancy: The Mediation Role of Rapid Auditory Processing. Cereb Cortex 2017; 28:2100-2108. [DOI: 10.1093/cercor/bhx115] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 04/20/2017] [Indexed: 01/17/2023] Open
Affiliation(s)
- Valentina Riva
- Department of Child Psychiatry, Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Lecco 23842, Italy
| | - Chiara Cantiani
- Department of Child Psychiatry, Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Lecco 23842, Italy
| | - April A Benasich
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, Newark, NJ 07102, USA
| | - Massimo Molteni
- Department of Child Psychiatry, Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Lecco 23842, Italy
| | - Caterina Piazza
- Bioengineering Lab, Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Lecco 23842, Italy
| | - Roberto Giorda
- Molecular Biology Laboratory, Scientific Institute IRCCS Eugenio Medea, Bosisio Parini, Lecco 23842, Italy
| | - Ginette Dionne
- School of Psychology, Laval University, Québec, Canada G1V 0A6
| | - Cecilia Marino
- Department of Child Psychiatry, Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Lecco 23842, Italy
- Centre for Addiction and Mental Health (CAMH), University of Toronto, Toronto, Canada ON M6J 1H4
| |
Collapse
|
152
|
Kleinecke S, Richert S, de Hoz L, Brügger B, Kungl T, Asadollahi E, Quintes S, Blanz J, McGonigal R, Naseri K, Sereda MW, Sachsenheimer T, Lüchtenborg C, Möbius W, Willison H, Baes M, Nave KA, Kassmann CM. Peroxisomal dysfunctions cause lysosomal storage and axonal Kv1 channel redistribution in peripheral neuropathy. eLife 2017; 6. [PMID: 28470148 PMCID: PMC5417850 DOI: 10.7554/elife.23332] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 04/06/2017] [Indexed: 12/12/2022] Open
Abstract
Impairment of peripheral nerve function is frequent in neurometabolic diseases, but mechanistically not well understood. Here, we report a novel disease mechanism and the finding that glial lipid metabolism is critical for axon function, independent of myelin itself. Surprisingly, nerves of Schwann cell-specific Pex5 mutant mice were unaltered regarding axon numbers, axonal calibers, and myelin sheath thickness by electron microscopy. In search for a molecular mechanism, we revealed enhanced abundance and internodal expression of axonal membrane proteins normally restricted to juxtaparanodal lipid-rafts. Gangliosides were altered and enriched within an expanded lysosomal compartment of paranodal loops. We revealed the same pathological features in a mouse model of human Adrenomyeloneuropathy, preceding disease-onset by one year. Thus, peroxisomal dysfunction causes secondary failure of local lysosomes, thereby impairing the turnover of gangliosides in myelin. This reveals a new aspect of axon-glia interactions, with Schwann cell lipid metabolism regulating the anchorage of juxtaparanodal Kv1-channels. DOI:http://dx.doi.org/10.7554/eLife.23332.001 Nerve cells transmit messages along their length in the form of electrical signals. Much like an electrical wire, the nerve fiber or axon is coated by a multiple-layered insulation, called the myelin sheath. However, unlike electrical insulation, the myelin sheath is regularly interrupted to expose short regions of the underlying nerve. These exposed regions and the adjacent regions underneath the myelin contain ion channels that help to propagate electrical signals along the axon. Peroxisomes are compartments in animal cells that process fats. Genetic mutations that prevent peroxisomes from working properly can lead to diseases where the nerves cannot transmit signals correctly. This is thought to be because the nerves lose their myelin sheath, which largely consists of fatty molecules. The nerves outside of the brain and spinal cord are known as peripheral nerves. Kleinecke et al. have now analyzed peripheral nerves from mice that had one of three different genetic mutations, preventing their peroxisomes from working correctly. Even in cases where the mutation severely impaired nerve signaling, the peripheral nerves retained their myelin sheath. The peroxisome mutations did affect a particular type of potassium ion channel and the anchor proteins that hold these channels in place. The role of these potassium ion channels is not fully known, but normally they are only found close to regions of the axon that are not coated by myelin. However, the peroxisome mutations meant that the channels and their protein anchors were now also located along the myelinated segments of the nerve’s axons. This redistribution of the potassium ion channels likely contributes to the peripheral nerves being unable to signal properly. In addition, Kleinecke et al. found that disrupting the peroxisomes also affected another cell compartment, called the lysosome, in the nerve cells that insulate axons with myelin sheaths. Lysosomes help to break down unwanted fat molecules. Mutant mice had more lysosomes than normal, but these lysosomes did not work efficiently. This caused the nerve cells to store more of certain types of molecules, including molecules called glycolipids that stabilize protein anchors, which hold the potassium channels in place. A likely result is that protein anchors that would normally be degraded are not, leading to the potassium channels appearing inappropriately throughout the nerve. Future work is now needed to investigate whether peroxisomal diseases cause similar changes in the brain. The results presented by Kleinecke et al. also suggest that targeting the lysosomes or the potassium channels could present new ways to treat disorders of the peroxisomes. DOI:http://dx.doi.org/10.7554/eLife.23332.002
Collapse
Affiliation(s)
- Sandra Kleinecke
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Sarah Richert
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Livia de Hoz
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Britta Brügger
- University of Heidelberg, Biochemistry Center (BZH), Heidelberg, Germany
| | - Theresa Kungl
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Ebrahim Asadollahi
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Susanne Quintes
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Judith Blanz
- Unit of Molecular Cell Biology and Transgenic, Institute of Biochemistry, University of Kiel, Kiel, Germany
| | - Rhona McGonigal
- Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Kobra Naseri
- Birjand University of Medical Sciences, Birjand, Iran
| | - Michael W Sereda
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Timo Sachsenheimer
- University of Heidelberg, Biochemistry Center (BZH), Heidelberg, Germany
| | | | - Wiebke Möbius
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Hugh Willison
- Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Myriam Baes
- Department of Pharmaceutical and Pharmacological Sciences, Cell Metabolism, KU Leuven- University of Leuven, Leuven, Belgium
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Celia Michèle Kassmann
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| |
Collapse
|
153
|
Fang Z, Yang Y, Chen X, Zhang W, Xie Y, Chen Y, Liu Z, Yuan W. Advances in Autoimmune Epilepsy Associated with Antibodies, Their Potential Pathogenic Molecular Mechanisms, and Current Recommended Immunotherapies. Front Immunol 2017; 8:395. [PMID: 28487693 PMCID: PMC5403900 DOI: 10.3389/fimmu.2017.00395] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 03/21/2017] [Indexed: 01/17/2023] Open
Abstract
In this comprehensive article, we present an overview of some most common autoimmune antibodies believed to be potentially pathogenic for autoimmune epilepsies and elaborate their pathogenic mode of action in molecular levels based on the existing knowledge. Findings of the studies of immunemodulatory treatments for epilepsy are also discussed, and guidelines for immunotherapy are sorted out. We aim to summarize the emerging understanding of different pathogenic mechanisms of autoantibodies and clinical immunotherapy regimens to open up therapeutic possibilities for future optimum therapy. We conclude that early diagnosis of autoimmune epilepsy is of great significance, as early immune treatments have useful disease-modifying effects on some epilepsies and can facilitate the recovery.
Collapse
Affiliation(s)
- Zhiwei Fang
- Department of Neurology, Xinhua Hospital Affiliated to the Medical School of Shanghai Jiao Tong University, Shanghai, China.,School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Yunqi Yang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China.,Zhiyuan College, Shanghai Jiao Tong University, Shanghai, China
| | - Xuan Chen
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Weiwang Zhang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Yangmei Xie
- Department of Neurology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Yinghui Chen
- Department of Neurology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Zhenguo Liu
- Department of Neurology, Xinhua Hospital Affiliated to the Medical School of Shanghai Jiao Tong University, Shanghai, China
| | - Weien Yuan
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
154
|
Duménieu M, Oulé M, Kreutz MR, Lopez-Rojas J. The Segregated Expression of Voltage-Gated Potassium and Sodium Channels in Neuronal Membranes: Functional Implications and Regulatory Mechanisms. Front Cell Neurosci 2017; 11:115. [PMID: 28484374 PMCID: PMC5403416 DOI: 10.3389/fncel.2017.00115] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 04/05/2017] [Indexed: 01/25/2023] Open
Abstract
Neurons are highly polarized cells with apparent functional and morphological differences between dendrites and axon. A critical determinant for the molecular and functional identity of axonal and dendritic segments is the restricted expression of voltage-gated ion channels (VGCs). Several studies show an uneven distribution of ion channels and their differential regulation within dendrites and axons, which is a prerequisite for an appropriate integration of synaptic inputs and the generation of adequate action potential (AP) firing patterns. This review article will focus on the signaling pathways leading to segmented expression of voltage-gated potassium and sodium ion channels at the neuronal plasma membrane and the regulatory mechanisms ensuring segregated functions. We will also discuss the relevance of proper ion channel targeting for neuronal physiology and how alterations in polarized distribution contribute to neuronal pathology.
Collapse
Affiliation(s)
- Maël Duménieu
- Research Group Neuroplasticity, Leibniz Institute for NeurobiologyMagdeburg, Germany
| | - Marie Oulé
- Research Group Neuroplasticity, Leibniz Institute for NeurobiologyMagdeburg, Germany
| | - Michael R Kreutz
- Research Group Neuroplasticity, Leibniz Institute for NeurobiologyMagdeburg, Germany.,Leibniz Group "Dendritic Organelles and Synaptic Function", University Medical Center Hamburg-Eppendorf, Center for Molecular Neurobiology (ZMNH)Hamburg, Germany
| | - Jeffrey Lopez-Rojas
- Research Group Neuroplasticity, Leibniz Institute for NeurobiologyMagdeburg, Germany
| |
Collapse
|
155
|
van Sonderen A, Petit-Pedrol M, Dalmau J, Titulaer MJ. The value of LGI1, Caspr2 and voltage-gated potassium channel antibodies in encephalitis. Nat Rev Neurol 2017; 13:290-301. [DOI: 10.1038/nrneurol.2017.43] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
156
|
Saifetiarova J, Liu X, Taylor AM, Li J, Bhat MA. Axonal domain disorganization in Caspr1 and Caspr2 mutant myelinated axons affects neuromuscular junction integrity, leading to muscle atrophy. J Neurosci Res 2017; 95:1373-1390. [PMID: 28370195 DOI: 10.1002/jnr.24052] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 02/14/2017] [Accepted: 02/24/2017] [Indexed: 12/19/2022]
Abstract
Bidirectional interactions between neurons and myelinating glial cells result in formation of axonal domains along myelinated fibers. Loss of axonal domains leads to detrimental consequences on nerve structure and function, resulting in reduced conductive properties and the diminished ability to reliably transmit signals to the targets they innervate. Thus, impairment of peripheral myelinated axons that project to the surface of muscle fibers and form neuromuscular junction (NMJ) synapses leads to muscle dysfunction. The goal of our studies was to determine how altered electrophysiological properties due to axonal domain disorganization lead to muscle pathology, which is relevant to a variety of peripheral neuropathies, demyelinating diseases, and neurodegenerative disorders. Using conventional Contactin-Associated Protein 1 (Caspr1) and Caspr2 single or double mutants with disrupted paranodal, juxtaparanodal, or both regions, respectively, in peripheral myelinated axons, we correlated defects in NMJ integrity and muscle pathology. Our data show that loss of axonal domains in Caspr1 and Caspr2 single and double mutants primarily alters distal myelinated fibers together with presynaptic terminals, eventually leading to NMJ denervation and reduction in postsynaptic endplate areas. Moreover, reduction in conductive properties of peripheral myelinated fibers together with NMJ disintegration leads to muscle atrophy in Caspr1 mutants or muscle fiber degeneration accompanied by mitochondrial dysfunction in Caspr1/Caspr2 double mutants. Together, our data indicate that proper organization of axonal domains in myelinated fibers is critical for optimal propagation of electrical signals, NMJ integrity, and muscle health, and provide insights into a wide range of pathologies that result in reduced nerve conduction leading to muscle atrophy. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Julia Saifetiarova
- Department of Cellular and Integrative Physiology, Center for Biomedical Neuroscience, School of Medicine, University of Texas Health Science Center, San Antonio, Texas
| | - Xi Liu
- Department of Cellular and Integrative Physiology, Center for Biomedical Neuroscience, School of Medicine, University of Texas Health Science Center, San Antonio, Texas.,Xiangya School of Medicine, Central South University, Changsha, China
| | - Anna M Taylor
- Department of Cellular and Integrative Physiology, Center for Biomedical Neuroscience, School of Medicine, University of Texas Health Science Center, San Antonio, Texas
| | - Jie Li
- Department of Cellular and Integrative Physiology, Center for Biomedical Neuroscience, School of Medicine, University of Texas Health Science Center, San Antonio, Texas
| | - Manzoor A Bhat
- Department of Cellular and Integrative Physiology, Center for Biomedical Neuroscience, School of Medicine, University of Texas Health Science Center, San Antonio, Texas
| |
Collapse
|
157
|
Carroll SL. The Molecular and Morphologic Structures That Make Saltatory Conduction Possible in Peripheral Nerve. J Neuropathol Exp Neurol 2017; 76:255-257. [DOI: 10.1093/jnen/nlx013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
158
|
Zare S, Mashayekhi F, Bidabadi E. The association of CNTNAP2 rs7794745 gene polymorphism and autism in Iranian population. J Clin Neurosci 2017; 39:189-192. [PMID: 28284582 DOI: 10.1016/j.jocn.2017.01.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 01/22/2017] [Indexed: 11/18/2022]
Abstract
Autism is a heterogeneous and multifactorial disease that results from the interaction between genetic vulnerability and environmental factors. Several studies showed that many of genes that play role in autism are component of signaling networks that regulate growth and synaptic plasticity, play an important role in the etiology of autism. Contactin associated-like 2 (CNTNAP2) gene is a member of the superfamily of synaptic adhesion proteins and encodes a scaffold protein called CASPR2 that is involved in the interaction of neuron-glia and clusters K+ channels in myelinated axons. CNTNAP2 is highly expressed during the nervous system development. In this study the association of rs7794745 CNTNAP2 gene polymorphism and autism was investigated. Two hundred patients with autism and 260 healthy individuals were included in this study. Genomic DNA was extracted from peripheral blood cells. Genotypes were analyzed by polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP). Statistical analysis was performed using the software MedCalc (12.1). The genotype frequencies of AA, AT, TT were 35.3%, 50.7% and 13.8% in controls and these values were 32% and 68% and 0% in patients with autism, respectively (P=0.0001) (OR=0.01, 95% CI 0.001-0.32). The frequency of A and T alleles were 66%, 34% in patients and 60%, 40% in controls, respectively (P=0.11). The results of this study showed that there is a significant association between rs7794745 CNTNAP2 gene polymorphism and autism in the studied population. However, to obtain a definitive conclusion larger studies with more patients and controls are needed to confirm the results.
Collapse
Affiliation(s)
- Sahar Zare
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - Farhad Mashayekhi
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran.
| | - Elham Bidabadi
- Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
159
|
Abstract
Intragenic deletions of the contactin-associated protein-like 2 gene (CNTNAP2) have been found in patients with Gilles de la Tourette syndrome, intellectual disability (ID), obsessive compulsive disorder, cortical dysplasia-focal epilepsy syndrome, autism, schizophrenia, Pitt-Hopkins syndrome, stuttering, and attention deficit hyperactivity disorder. A variety of molecular mechanisms, such as loss of transcription factor binding sites and perturbation of penetrance and expressivity, have been proposed to account for the phenotypic variability resulting from CNTNAP2 mutations. Deletions of both CNTNAP2 alleles produced truncated proteins lacking the transmembrane or some of the extracellular domains, or no protein at all. This observation can be extended to heterozygous intragenic deletions by assuming that such deletion-containing alleles lead to expression of a Caspr2 protein lacking one or several extracellular domains. Such altered forms of Capr2 proteins will lack the ability to bridge the intercellular space between neurons by binding to partners, such as CNTN1, CNTN2, DLG1, and DLG4. This presumed effect of intragenic deletions of CNTNAP2, and possibly other genes involved in connecting neuronal cells, represents a molecular basis for the postulated neuronal hypoconnectivity in autism and probably other neurodevelopmental disorders, including epilepsy, ID, language impairments and schizophrenia. Thus, CNTNAP2 may represent a paradigmatic case of a gene functioning as a node in a genetic and cellular network governing brain development and acquisition of higher cognitive functions.
Collapse
Affiliation(s)
- Martin Poot
- Department of Human Genetics, University of Würzburg, Würzburg, Germany
| |
Collapse
|
160
|
Wu ZQ, Li D, Huang Y, Chen XP, Huang W, Liu CF, Zhao HQ, Xu RX, Cheng M, Schachner M, Ma QH. Caspr Controls the Temporal Specification of Neural Progenitor Cells through Notch Signaling in the Developing Mouse Cerebral Cortex. Cereb Cortex 2017; 27:1369-1385. [PMID: 26740489 DOI: 10.1093/cercor/bhv318] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The generation of layer-specific neurons and astrocytes by radial glial cells during development of the cerebral cortex follows a precise temporal sequence, which is regulated by intrinsic and extrinsic factors. The molecular mechanisms controlling the timely generation of layer-specific neurons and astrocytes remain not fully understood. In this study, we show that the adhesion molecule contactin-associated protein (Caspr), which is involved in the maintenance of the polarized domains of myelinated axons, is essential for the timing of generation of neurons and astrocytes in the developing mouse cerebral cortex. Caspr is expressed by radial glial cells, which are neural progenitor cells that generate both neurons and astrocytes. Absence of Caspr in neural progenitor cells delays the production cortical neurons and induces precocious formation of cortical astrocytes, without affecting the numbers of progenitor cells. At the molecular level, Caspr cooperates with the intracellular domain of Notch to repress transcription of the Notch effector Hes1. Suppression of Notch signaling via a Hes1 shRNA rescues the abnormal neurogenesis and astrogenesis in Caspr-deficient mice. These findings establish Caspr as a novel key regulator that controls the temporal specification of cell fate in radial glial cells of the developing cerebral cortex through Notch signaling.
Collapse
Affiliation(s)
- Zhi-Qiang Wu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, Second Affiliated Hospital, Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Di Li
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, Second Affiliated Hospital, Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Ya Huang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, Second Affiliated Hospital, Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Xi-Ping Chen
- Department of Forensic Medicine, Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Wenhui Huang
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine, University of Saarland, Homburg D-66421, Germany
| | - Chun-Feng Liu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, Second Affiliated Hospital, Soochow University, Suzhou, Jiangsu Province 215123, China
| | - He-Qing Zhao
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, Second Affiliated Hospital, Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Ru-Xiang Xu
- Affiliated Bayi Brain Hospital, Beijing Military Hospital, Southern Medical University, Beijing 100070, China
| | - Mei Cheng
- Binzhou Medical University, Yantai, Shandong Province 264000, China
| | - Melitta Schachner
- Center for Neuroscience, Shantou University Medical College, Shantou, Guangdong Province 515041, China
| | - Quan-Hong Ma
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, Second Affiliated Hospital, Soochow University, Suzhou, Jiangsu Province 215123, China
| |
Collapse
|
161
|
Abstract
Contactin-2/transiently expressed axonal surface glycoprotein-1 (TAG-1) is a cell adhesion molecule belonging to the immunoglobulin superfamily (IgSF). It has six immunoglobulin-like extracellular domains and four fibronectin III-like ones, with anchoring to the cell membrane through glycosylphosphatidyl inositol. Contactin-2/TAG-1 is expressed in specific neurons transiently on the axonal surface during the fetal period. In postnatal stages, Contactin-2/TAG-1 is expressed in cerebellar granule cells, hippocampal pyramidal cells, and the juxtaparanodal regions of myelinated nerve fibers. In the embryonic nervous system, Contactin-2/TAG-1 plays important roles in axonal elongation, axonal guidance, and cellular migration. In the postnatal nervous system, it also plays an essential role in the formation of myelinated nerve fibers. Moreover, Contactin-2/TAG-1 has been linked to autoimmune diseases of the human nervous system. Taken together, Contactin-2/TAG-1 plays a central role in a variety of functions from development to disease.
Collapse
Affiliation(s)
- Tomoyuki Masuda
- a Doctoral and Master's Programs in Kansei, Behavioral and Brain Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba , Ibaraki , Japan.,b Department of Neurology , Faculty of Medicine, University of Tsukuba , Ibaraki , Japan.,c Department of Neurobiology , Faculty of Medicine, University of Tsukuba , Ibaraki , Japan
| |
Collapse
|
162
|
Amor V, Zhang C, Vainshtein A, Zhang A, Zollinger DR, Eshed-Eisenbach Y, Brophy PJ, Rasband MN, Peles E. The paranodal cytoskeleton clusters Na + channels at nodes of Ranvier. eLife 2017; 6. [PMID: 28134616 PMCID: PMC5279941 DOI: 10.7554/elife.21392] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 01/20/2017] [Indexed: 11/13/2022] Open
Abstract
A high density of Na+ channels at nodes of Ranvier is necessary for rapid and efficient action potential propagation in myelinated axons. Na+ channel clustering is thought to depend on two axonal cell adhesion molecules that mediate interactions between the axon and myelinating glia at the nodal gap (i.e., NF186) and the paranodal junction (i.e., Caspr). Here we show that while Na+ channels cluster at nodes in the absence of NF186, they fail to do so in double conditional knockout mice lacking both NF186 and the paranodal cell adhesion molecule Caspr, demonstrating that a paranodal junction-dependent mechanism can cluster Na+ channels at nodes. Furthermore, we show that paranode-dependent clustering of nodal Na+ channels requires axonal βII spectrin which is concentrated at paranodes. Our results reveal that the paranodal junction-dependent mechanism of Na+channel clustering is mediated by the spectrin-based paranodal axonal cytoskeleton.
Collapse
Affiliation(s)
- Veronique Amor
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Chuansheng Zhang
- Department of Neuroscience, Baylor College of Medicine, Houston, United States
| | - Anna Vainshtein
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ao Zhang
- Centre for Neuroregeneration, University of Edinburgh, Edinburgh, United Kingdom
| | - Daniel R Zollinger
- Department of Neuroscience, Baylor College of Medicine, Houston, United States
| | - Yael Eshed-Eisenbach
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Peter J Brophy
- Centre for Neuroregeneration, University of Edinburgh, Edinburgh, United Kingdom
| | - Matthew N Rasband
- Department of Neuroscience, Baylor College of Medicine, Houston, United States
| | - Elior Peles
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
163
|
Townsend LB, Smith SL. Genotype- and sex-dependent effects of altered Cntnap2 expression on the function of visual cortical areas. J Neurodev Disord 2017; 9:2. [PMID: 28115996 PMCID: PMC5244519 DOI: 10.1186/s11689-016-9182-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 12/30/2016] [Indexed: 12/29/2022] Open
Abstract
Background Autism spectrum disorder (ASD) is a heritable, heterogeneous neurodevelopmental disorder that is four times more likely to affect males than females. Despite this overt sex bias, it is unclear how genetic mutations associated with ASD alter cortical circuitry to produce the behavioral phenotypes by which ASD is diagnosed. Contactin-associated protein-like 2 (CNTNAP2) is an ASD-associated gene, and while Cntnap2 knockout (KO) mice recapitulate many of the features of ASD, the effect on cortical circuitry is poorly understood. Moreover, although heterozygous (Het) mice are the more relevant genotype for ASD-linked CNTNAP2 mutations in humans, to our knowledge, no effects in Het mice have been previously reported. Methods Intrinsic signal optical imaging was used to measure functional visual responses in primary and higher visual cortical areas in male and female Cntnap2 KO, Het, and wild-type (WT) mice. Main effect of genotype was assessed with one-way ANOVA. Visual responses were also measured in P17–18 and P30–32 KO and WT mice. Main effects of age and genotype were assessed using two-way ANOVA. Results Visually evoked activity in dorsal stream associated higher visual areas in both KO and Het adult males was decreased relative to WT adult males. This decrease was not observed in adult females. Additionally, no significant difference was observed between WT and KO males at P17–18 with differences beginning to emerge at P30–32. Conclusions The functional responses of cortical circuitry in male mice are more strongly affected by Cntnap2 mutations than females, an effect present even in Hets. The observed differences in males emerge with development beginning at P30–32. These results reveal genotype- and sex-dependent effects of altered Cntnap2 expression and can shed light on the sex-dependent incidence of ASD. Electronic supplementary material The online version of this article (doi:10.1186/s11689-016-9182-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Leah B Townsend
- Neuroscience Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Spencer L Smith
- Neuroscience Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC USA.,Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC USA.,Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC USA.,Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| |
Collapse
|
164
|
Brown MP, Hissaria P, Hsieh AH, Kneebone C, Vallat W. Autoimmune limbic encephalitis with anti-contactin-associated protein-like 2 antibody secondary to pembrolizumab therapy. J Neuroimmunol 2017; 305:16-18. [PMID: 28284337 DOI: 10.1016/j.jneuroim.2016.12.016] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 12/23/2016] [Accepted: 12/31/2016] [Indexed: 01/22/2023]
Abstract
Immune checkpoint inhibitors such as Pembrolizumab are used to restore antitumour immune response. It is important to be vigilant of immune mediated adverse events related to such therapy. We report a case of autoimmune limbic encephalitis with Contactin-Associated Protein-like 2 (CASPR2) antibody secondary to Pembrolizumab therapy for metastatic melanoma.
Collapse
Affiliation(s)
- Michael P Brown
- Royal Adelaide Hospital, North Terrace, Adelaide, South Australia 5000, Australia.
| | - Pravin Hissaria
- Royal Adelaide Hospital, North Terrace, Adelaide, South Australia 5000, Australia.
| | - Amy Hc Hsieh
- Royal Adelaide Hospital, North Terrace, Adelaide, South Australia 5000, Australia.
| | - Christopher Kneebone
- Royal Adelaide Hospital, North Terrace, Adelaide, South Australia 5000, Australia.
| | - Wilson Vallat
- Royal Adelaide Hospital, North Terrace, Adelaide, South Australia 5000, Australia.
| |
Collapse
|
165
|
Zuko A, Oguro-Ando A, Post H, Taggenbrock RLRE, van Dijk RE, Altelaar AFM, Heck AJR, Petrenko AG, van der Zwaag B, Shimoda Y, Pasterkamp RJ, Burbach JPH. Association of Cell Adhesion Molecules Contactin-6 and Latrophilin-1 Regulates Neuronal Apoptosis. Front Mol Neurosci 2016; 9:143. [PMID: 28018171 PMCID: PMC5156884 DOI: 10.3389/fnmol.2016.00143] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 11/28/2016] [Indexed: 01/06/2023] Open
Abstract
In view of important neurobiological functions of the cell adhesion molecule contactin-6 (Cntn6) that have emerged from studies on null-mutant mice and autism spectrum disorders patients, we set out to examine pathways underlying functions of Cntn6 using a proteomics approach. We identified the cell adhesion GPCR latrophilin-1 (Lphn1, a.k.a. CIRL1/CL, ADGRL1) as a binding partner for Cntn6 forming together a heteromeric cis-complex. Lphn1 expression in cultured neurons caused reduction in neurite outgrowth and increase in apoptosis, which was rescued by coexpression of Cntn6. In cultured neurons derived from Cntn6-/- mice, Lphn1 knockdown reduced apoptosis, suggesting that the observed apoptosis was Lphn1-dependent. In line with these data, the number of apoptotic cells was increased in the cortex of Cntn6-/- mice compared to wild-type littermate controls. These results show that Cntn6 can modulate the activity of Lphn1 by direct binding and suggests that Cntn6 may prevent apoptosis thereby impinging on neurodevelopment.
Collapse
Affiliation(s)
- Amila Zuko
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht Utrecht, Netherlands
| | - Asami Oguro-Ando
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht Utrecht, Netherlands
| | - Harm Post
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht UniversityUtrecht, Netherlands; Netherlands Proteomics CentreUtrecht, Netherlands
| | - Renske L R E Taggenbrock
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht Utrecht, Netherlands
| | - Roland E van Dijk
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht Utrecht, Netherlands
| | - A F Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht UniversityUtrecht, Netherlands; Netherlands Proteomics CentreUtrecht, Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht UniversityUtrecht, Netherlands; Netherlands Proteomics CentreUtrecht, Netherlands
| | - Alexander G Petrenko
- Laboratory of Receptor Cell Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences Moscow, Russia
| | - Bert van der Zwaag
- Department of Genetics, University Medical Center Utrecht Utrecht, Netherlands
| | - Yasushi Shimoda
- Department of Bioengineering, Nagaoka University of Technology Nagaoka, Japan
| | - R J Pasterkamp
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht Utrecht, Netherlands
| | - J P H Burbach
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht Utrecht, Netherlands
| |
Collapse
|
166
|
Preclinical validation: LV/IL-12 transduction of patient leukemia cells for immunotherapy of AML. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2016; 3:16074. [PMID: 27933304 PMCID: PMC5142463 DOI: 10.1038/mtm.2016.74] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 09/27/2016] [Accepted: 09/28/2016] [Indexed: 01/21/2023]
Abstract
Interleukin-12 (IL-12) is a potent cytokine that may be harnessed to treat cancer. To date, nearly 100 IL-12-based clinical trials have been initiated worldwide. Yet systemic administration of IL-12 is toxic. Different strategies are being developed to reduce such toxicities by restricting IL-12 distribution. Our previous studies employed lentivector-mediated expression of murine IL-12 in tumor cells and demonstrated effective protection in both mouse leukemia and solid tumor challenge models. In this study, we carried out preclinical validation studies using a novel lentivector to engineer expression of human IL-12 in acute myeloid leukemia blast cells isolated from 21 patients. Acute myeloid leukemia cells were transduced with a bicistronic lentivector that encodes the human IL-12 cDNA as a fusion, as well as a LNGFR (ΔLNGFR)/mutant thymidylate kinase cassette as a marking and cell-fate control element. A range of 20-70% functional transduction efficiencies was achieved. Transduced acute myeloid leukemia cells produced bioactive IL-12 protein and displayed dose-dependent sensitivity to the prodrug 3'-azido-3'-deoxythymidine. In vitro immortalization assays using transduced mouse hematopoietic stem cells demonstrated minimal genotoxic risk from our IL-12 vector. Scale-up transduction and cell processing was subsequently validated in a GMP facility to support our (now approved) Clinical Trial Application (CTA).
Collapse
|
167
|
Brimberg L, Mader S, Jeganathan V, Berlin R, Coleman TR, Gregersen PK, Huerta PT, Volpe BT, Diamond B. Caspr2-reactive antibody cloned from a mother of an ASD child mediates an ASD-like phenotype in mice. Mol Psychiatry 2016; 21:1663-1671. [PMID: 27698429 PMCID: PMC5583730 DOI: 10.1038/mp.2016.165] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 08/03/2016] [Accepted: 08/08/2016] [Indexed: 11/09/2022]
Abstract
Autism spectrum disorder (ASD) occurs in 1 in 68 births, preferentially affecting males. It encompasses a group of neurodevelopmental abnormalities characterized by impaired social interaction and communication, stereotypic behaviors and motor dysfunction. Although recent advances implicate maternal brain-reactive antibodies in a causative role in ASD, a definitive assessment of their pathogenic potential requires cloning of such antibodies. Here, we describe the isolation and characterization of monoclonal brain-reactive antibodies from blood of women with brain-reactive serology and a child with ASD. We further demonstrate that male but not female mice exposed in utero to the C6 monoclonal antibody, binding to contactin-associated protein-like 2 (Caspr2), display abnormal cortical development, decreased dendritic complexity of excitatory neurons and reduced numbers of inhibitory neurons in the hippocampus, as well as impairments in sociability, flexible learning and repetitive behavior. Anti-Caspr2 antibodies are frequent in women with brain-reactive serology and a child with ASD. Together these studies provide a methodology for obtaining monclonal brain-reactive antibodies from blood B cells, demonstrate that ASD can result from in utero exposure to maternal brain-reactive antibodies of single specificity and point toward the exciting possibility of prognostic and protective strategies.
Collapse
Affiliation(s)
- L Brimberg
- Center for Autoimmune and Musculoskeletal Diseases, The Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - S Mader
- Center for Autoimmune and Musculoskeletal Diseases, The Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - V Jeganathan
- Center for Autoimmune and Musculoskeletal Diseases, The Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - R Berlin
- Laboratory of Functional Neuroanatomy, The Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - TR Coleman
- Center for Autoimmune and Musculoskeletal Diseases, The Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - PK Gregersen
- Center for Genomics and Human Genetics, The Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - PT Huerta
- Laboratory of Immune & Neural Networks, The Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - BT Volpe
- Laboratory of Functional Neuroanatomy, The Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - B Diamond
- Center for Autoimmune and Musculoskeletal Diseases, The Feinstein Institute for Medical Research, Manhasset, NY, USA
| |
Collapse
|
168
|
Gennarini G, Bizzoca A, Picocci S, Puzzo D, Corsi P, Furley AJW. The role of Gpi-anchored axonal glycoproteins in neural development and neurological disorders. Mol Cell Neurosci 2016; 81:49-63. [PMID: 27871938 DOI: 10.1016/j.mcn.2016.11.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 11/10/2016] [Accepted: 11/14/2016] [Indexed: 01/06/2023] Open
Abstract
This review article focuses on the Contactin (CNTN) subset of the Immunoglobulin supergene family (IgC2/FNIII molecules), whose components share structural properties (the association of Immunoglobulin type C2 with Fibronectin type III domains), as well as a general role in cell contact formation and axonal growth control. IgC2/FNIII molecules include 6 highly related components (CNTN 1-6), associated with the cell membrane via a Glycosyl Phosphatidyl Inositol (GPI)-containing lipid tail. Contactin 1 and Contactin 2 share ~50 (49.38)% identity at the aminoacid level. They are components of the cell surface, from which they may be released in soluble forms. They bind heterophilically to multiple partners in cis and in trans, including members of the related L1CAM family and of the Neurexin family Contactin-associated proteins (CNTNAPs or Casprs). Such interactions are important for organising the neuronal membrane, as well as for modulating the growth and pathfinding of axon tracts. In addition, they also mediate the functional maturation of axons by promoting their interactions with myelinating cells at the nodal, paranodal and juxtaparanodal regions. Such interactions also mediate differential ionic channels (both Na+ and K+) distribution, which is of critical relevance in the generation of the peak-shaped action potential. Indeed, thanks to their interactions with Ankyrin G, Na+ channels map within the nodal regions, where they drive axonal depolarization. However, no ionic channels are found in the flanking Contactin1-containing paranodal regions, where CNTN1 interactions with Caspr1 and with the Ig superfamily component Neurofascin 155 in cis and in trans, respectively, build a molecular barrier between the node and the juxtaparanode. In this region K+ channels are clustered, depending upon molecular interactions with Contactin 2 and with Caspr2. In addition to these functions, the Contactins appear to have also a role in degenerative and inflammatory disorders: indeed Contactin 2 is involved in neurodegenerative disorders with a special reference to the Alzheimer disease, given its ability to work as a ligand of the Alzheimer Precursor Protein (APP), which results in increased Alzheimer Intracellular Domain (AICD) release in a γ-secretase-dependent manner. On the other hand Contactin 1 drives Notch signalling activation via the Hes pathway, which could be consistent with its ability to modulate neuroinflammation events, and with the possibility that Contactin 1-dependent interactions may participate to the pathogenesis of the Multiple Sclerosis and of other inflammatory disorders.
Collapse
Affiliation(s)
- Gianfranco Gennarini
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Medical School, University of Bari Policlinico. Piazza Giulio Cesare. I-70124 Bari, Italy.
| | - Antonella Bizzoca
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Medical School, University of Bari Policlinico. Piazza Giulio Cesare. I-70124 Bari, Italy
| | - Sabrina Picocci
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Medical School, University of Bari Policlinico. Piazza Giulio Cesare. I-70124 Bari, Italy
| | - Daniela Puzzo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Italy
| | - Patrizia Corsi
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Medical School, University of Bari Policlinico. Piazza Giulio Cesare. I-70124 Bari, Italy
| | - Andrew J W Furley
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2NT, UK
| |
Collapse
|
169
|
Yin J, Schaaf CP. Autism genetics - an overview. Prenat Diagn 2016; 37:14-30. [DOI: 10.1002/pd.4942] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 10/04/2016] [Accepted: 10/11/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Jiani Yin
- Department of Molecular and Human Genetics; Baylor College of Medicine; Houston TX USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital; Houston TX USA
| | - Christian P. Schaaf
- Department of Molecular and Human Genetics; Baylor College of Medicine; Houston TX USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital; Houston TX USA
| |
Collapse
|
170
|
Baig DN, Yanagawa T, Tabuchi K. Distortion of the normal function of synaptic cell adhesion molecules by genetic variants as a risk for autism spectrum disorders. Brain Res Bull 2016; 129:82-90. [PMID: 27743928 DOI: 10.1016/j.brainresbull.2016.10.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 10/08/2016] [Accepted: 10/10/2016] [Indexed: 12/15/2022]
Abstract
Synaptic cell adhesion molecules (SCAMs) are a functional category of cell adhesion molecules that connect pre- and postsynapses by the protein-protein interaction via their extracellular cell adhesion domains. Countless numbers of common genetic variants and rare mutations in SCAMs have been identified in the patients with autism spectrum disorders (ASDs). Among these, NRXN and NLGN family proteins cooperatively function at synaptic terminals both of which genes are strongly implicated as risk genes for ASDs. Knock-in mice carrying a single rare point mutation of NLGN3 (NLGN3 R451C) discovered in the patients with ASDs display a deficit in social interaction and an enhancement of spatial learning and memory ability reminiscent of the clinical phenotype of ASDs. NLGN4 knockout (KO) and NRXN2α KO mice also show a deficit in sociability as well as some specific neuropsychiatric behaviors. In this review, we selected NRXNs/NLGNs, CNTNAP2/CNTNAP4, CNTN4, ITGB3, and KIRREL3 as strong ASD risk genes based on SFARI score and summarize the protein structures, functions at synapses, representative discoveries in human genetic studies, and phenotypes of the mutant model mice in light of the pathophysiology of ASDs.
Collapse
Affiliation(s)
- Deeba Noreen Baig
- Department of Biological Sciences, Forman Christian College, Zahoor Elahi Rd, Lahore, 54600, Pakistan
| | - Toru Yanagawa
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Katsuhiko Tabuchi
- Department of Molecular and Cellular Physiology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan; Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto, 390-8621, Japan; PRESTO, JST, Saitama, 332-0012, Japan.
| |
Collapse
|
171
|
Lu Z, Reddy MVVVS, Liu J, Kalichava A, Liu J, Zhang L, Chen F, Wang Y, Holthauzen LMF, White MA, Seshadrinathan S, Zhong X, Ren G, Rudenko G. Molecular Architecture of Contactin-associated Protein-like 2 (CNTNAP2) and Its Interaction with Contactin 2 (CNTN2). J Biol Chem 2016; 291:24133-24147. [PMID: 27621318 DOI: 10.1074/jbc.m116.748236] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/02/2016] [Indexed: 11/06/2022] Open
Abstract
Contactin-associated protein-like 2 (CNTNAP2) is a large multidomain neuronal adhesion molecule implicated in a number of neurological disorders, including epilepsy, schizophrenia, autism spectrum disorder, intellectual disability, and language delay. We reveal here by electron microscopy that the architecture of CNTNAP2 is composed of a large, medium, and small lobe that flex with respect to each other. Using epitope labeling and fragments, we assign the F58C, L1, and L2 domains to the large lobe, the FBG and L3 domains to the middle lobe, and the L4 domain to the small lobe of the CNTNAP2 molecular envelope. Our data reveal that CNTNAP2 has a very different architecture compared with neurexin 1α, a fellow member of the neurexin superfamily and a prototype, suggesting that CNTNAP2 uses a different strategy to integrate into the synaptic protein network. We show that the ectodomains of CNTNAP2 and contactin 2 (CNTN2) bind directly and specifically, with low nanomolar affinity. We show further that mutations in CNTNAP2 implicated in autism spectrum disorder are not segregated but are distributed over the whole ectodomain. The molecular shape and dimensions of CNTNAP2 place constraints on how CNTNAP2 integrates in the cleft of axo-glial and neuronal contact sites and how it functions as an organizing and adhesive molecule.
Collapse
Affiliation(s)
- Zhuoyang Lu
- From the Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720.,the Center for Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - M V V V Sekhar Reddy
- the Department of Pharmacology and Toxicology.,the Sealy Center for Structural Biology and Molecular Biophysics and
| | - Jianfang Liu
- From the Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Ana Kalichava
- the Department of Pharmacology and Toxicology.,the Sealy Center for Structural Biology and Molecular Biophysics and
| | - Jiankang Liu
- the Center for Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Lei Zhang
- From the Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Fang Chen
- the University of Michigan, Ann Arbor, Michigan 48109
| | - Yun Wang
- the University of Michigan, Ann Arbor, Michigan 48109
| | | | - Mark A White
- the Sealy Center for Structural Biology and Molecular Biophysics and.,the Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas 77555, and
| | - Suchithra Seshadrinathan
- the Department of Pharmacology and Toxicology.,the Sealy Center for Structural Biology and Molecular Biophysics and
| | - Xiaoying Zhong
- the Department of Pharmacology and Toxicology.,the Sealy Center for Structural Biology and Molecular Biophysics and
| | - Gang Ren
- From the Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720,
| | - Gabby Rudenko
- the Department of Pharmacology and Toxicology, .,the Sealy Center for Structural Biology and Molecular Biophysics and
| |
Collapse
|
172
|
Abstract
Myelinated axons are divided into polarized subdomains including axon initial segments and nodes of Ranvier. These domains initiate and propagate action potentials and regulate the trafficking and localization of somatodendritic and axonal proteins. Formation of axon initial segments and nodes of Ranvier depends on intrinsic (neuronal) and extrinsic (glial) interactions. Several levels of redundancy in both mechanisms and molecules also exist to ensure efficient node formation. Furthermore, the establishment of polarized domains at and near nodes of Ranvier reflects the intrinsic polarity of the myelinating glia responsible for node assembly. Here, we discuss the various polarized domains of myelinated axons, how they are established by both intrinsic and extrinsic interactions, and the polarity of myelinating glia.
Collapse
Affiliation(s)
- Daniel R Zollinger
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030;
| | - Kelli L Baalman
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030;
| | - Matthew N Rasband
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030;
| |
Collapse
|
173
|
Functions of the Alzheimer's Disease Protease BACE1 at the Synapse in the Central Nervous System. J Mol Neurosci 2016; 60:305-315. [PMID: 27456313 PMCID: PMC5059407 DOI: 10.1007/s12031-016-0800-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 07/07/2016] [Indexed: 02/06/2023]
Abstract
Inhibition of the protease β-site amyloid precursor protein-cleaving enzyme 1 (BACE1) is a promising treatment strategy for Alzheimer's disease, and a number of BACE inhibitors are currently progressing through clinical trials. The strategy aims to decrease production of amyloid-β (Aβ) peptide from the amyloid precursor protein (APP), thus reducing or preventing Aβ toxicity. Over the last decade, it has become clear that BACE1 proteolytically cleaves a number of substrates in addition to APP. These substrates are not known to be involved in the pathogenesis of Alzheimer's disease but have other roles in the developing and/or mature central nervous system. Consequently, BACE inhibition and knockout in mice results in synaptic and other neuronal dysfunctions and the key substrates responsible for these deficits are still being elucidated. Of the BACE1 substrates that have been validated to date, a number may contribute to the synaptic deficits seen with BACE blockade, including neuregulin 1, close homologue of L1 and seizure-related gene 6. It is important to understand the impact that BACE blockade may have on these substrates and other proteins detected in substrate screens and, if necessary, develop substrate-selective BACE inhibitors.
Collapse
|
174
|
Smogavec M, Cleall A, Hoyer J, Lederer D, Nassogne MC, Palmer EE, Deprez M, Benoit V, Maystadt I, Noakes C, Leal A, Shaw M, Gecz J, Raymond L, Reis A, Shears D, Brockmann K, Zweier C. Eight further individuals with intellectual disability and epilepsy carrying bi-allelic CNTNAP2 aberrations allow delineation of the mutational and phenotypic spectrum. J Med Genet 2016; 53:820-827. [PMID: 27439707 DOI: 10.1136/jmedgenet-2016-103880] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/20/2016] [Accepted: 06/25/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND Heterozygous copy number variants (CNVs) or sequence variants in the contactin-associated protein 2 gene CNTNAP2 have been discussed as risk factors for a wide spectrum of neurodevelopmental and neuropsychiatric disorders. Bi-allelic aberrations in this gene are causative for an autosomal-recessive disorder with epilepsy, severe intellectual disability (ID) and cortical dysplasia (CDFES). As the number of reported individuals is still limited, we aimed at a further characterisation of the full mutational and clinical spectrum. METHODS Targeted sequencing, chromosomal microarray analysis or multigene panel sequencing was performed in individuals with severe ID and epilepsy. RESULTS We identified homozygous mutations, compound heterozygous CNVs or CNVs and mutations in CNTNAP2 in eight individuals from six unrelated families. All aberrations were inherited from healthy, heterozygous parents and are predicted to be deleterious for protein function. Epilepsy occurred in all affected individuals with onset in the first 3.5 years of life. Further common aspects were ID (severe in 6/8), regression of speech development (5/8) and behavioural anomalies (7/8). Interestingly, cognitive impairment in one of two affected brothers was, in comparison, relatively mild with good speech and simple writing abilities. Cortical dysplasia that was previously reported in CDFES was not present in MRIs of six individuals and only suspected in one. CONCLUSIONS By identifying novel homozygous or compound heterozygous, deleterious CNVs and mutations in eight individuals from six unrelated families with moderate-to-severe ID, early onset epilepsy and behavioural anomalies, we considerably broaden the mutational and clinical spectrum associated with bi-allelic aberrations in CNTNAP2.
Collapse
Affiliation(s)
- Mateja Smogavec
- Institute of Human Genetics, University Medical Center, Georg August University, Göttingen, Germany
| | - Alison Cleall
- Oxford Genetics Laboratories, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Juliane Hoyer
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Damien Lederer
- Centre de Génétique Humaine, Institut de Pathologie et Génétique, Charleroi, Belgium
| | - Marie-Cécile Nassogne
- Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Woluwe-Saint-Lambert, Belgium
| | - Elizabeth E Palmer
- GOLD (Genetics of Learning and Disability) Service, Hunter Genetics, Waratah, New South Wales, Australia.,University of New South Wales, Sydney, New South Wales, Australia
| | - Marie Deprez
- Centre de Génétique Humaine, Institut de Pathologie et Génétique, Charleroi, Belgium
| | - Valérie Benoit
- Centre de Génétique Humaine, Institut de Pathologie et Génétique, Charleroi, Belgium
| | - Isabelle Maystadt
- Centre de Génétique Humaine, Institut de Pathologie et Génétique, Charleroi, Belgium
| | - Charlotte Noakes
- Oxford Genetics Laboratories, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Alejandro Leal
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.,Section of Genetics and Biotechnology, School of Biology and Neuroscience Research Center, University of Costa Rica, San José, Costa Rica
| | - Marie Shaw
- School of Medicine, and the Robinson Research Institute, the University of Adelaide, Adelaide, South Australia, Australia
| | - Jozef Gecz
- School of Medicine, and the Robinson Research Institute, the University of Adelaide, Adelaide, South Australia, Australia
| | - Lucy Raymond
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - André Reis
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Deborah Shears
- Department of Clinical Genetics, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Knut Brockmann
- Interdisciplinary Pediatric Center for Children with Developmental Disabilities and Severe Chronic Disorders, University Medical Center, Georg August University, Göttingen, Germany
| | - Christiane Zweier
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
175
|
|
176
|
Abstract
Autoantibodies targeting proteins at the neuromuscular junction are known to cause several distinct myasthenic syndromes. Recently, autoantibodies targeting neurotransmitter receptors and associated proteins have also emerged as a cause of severe, but potentially treatable, diseases of the CNS. Here, we review the clinical evidence as well as in vitro and in vivo experimental evidence that autoantibodies account for myasthenic syndromes and autoimmune disorders of the CNS by disrupting the functional or structural integrity of synapses. Studying neurological and psychiatric diseases of autoimmune origin may provide new insights into the cellular and circuit mechanisms underlying a broad range of CNS disorders.
Collapse
Affiliation(s)
- Sarah J Crisp
- UCL Institute of Neurology, University College London, Queen Square House, Queen Square, London WC1N 3BG, UK
| | - Dimitri M Kullmann
- UCL Institute of Neurology, University College London, Queen Square House, Queen Square, London WC1N 3BG, UK
| | - Angela Vincent
- Nuffield Department of Clinical Neurosciences, University of Oxford, Level 6, West Wing, John Radcliffe Hospital, Oxford OX3 9DU, UK
| |
Collapse
|
177
|
Hoffmann C, Zong S, Mané-Damas M, Molenaar P, Losen M, Martinez-Martinez P. Autoantibodies in Neuropsychiatric Disorders. Antibodies (Basel) 2016; 5:antib5020009. [PMID: 31557990 PMCID: PMC6698850 DOI: 10.3390/antib5020009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 04/01/2016] [Accepted: 04/06/2016] [Indexed: 12/15/2022] Open
Abstract
Little is known about the etiology of neuropsychiatric disorders. The identification of autoantibodies targeting the N-methyl-d-aspartate receptor (NMDA-R), which causes neurological and psychiatric symptoms, has reinvigorated the hypothesis that other patient subgroups may also suffer from an underlying autoimmune condition. In recent years, a wide range of neuropsychiatric diseases and autoantibodies targeting ion-channels or neuronal receptors including NMDA-R, voltage gated potassium channel complex (VGKC complex), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPA-R), γ-aminobutyric acid receptor (GABA-R) and dopamine receptor (DR) were studied and conflicting reports have been published regarding the seroprevalence of these autoantibodies. A clear causative role of autoantibodies on psychiatric symptoms has as yet only been shown for the NMDA-R. Several other autoantibodies have been related to the presence of certain symptoms and antibody effector mechanisms have been proposed. However, extensive clinical studies with large multicenter efforts to standardize diagnostic procedures for autoimmune etiology and animal studies are needed to confirm the pathogenicity of these autoantibodies. In this review, we discuss the current knowledge of neuronal autoantibodies in the major neuropsychiatric disorders: psychotic, major depression, autism spectrum, obsessive-compulsive and attention-deficit/hyperactivity disorders.
Collapse
Affiliation(s)
- Carolin Hoffmann
- Division Neurosciences, School for Mental Health and Neurosciences, Maastricht University, 6200 MD Maastricht, The Netherlands.
| | - Shenghua Zong
- Division Neurosciences, School for Mental Health and Neurosciences, Maastricht University, 6200 MD Maastricht, The Netherlands.
| | - Marina Mané-Damas
- Division Neurosciences, School for Mental Health and Neurosciences, Maastricht University, 6200 MD Maastricht, The Netherlands.
| | - Peter Molenaar
- Division Neurosciences, School for Mental Health and Neurosciences, Maastricht University, 6200 MD Maastricht, The Netherlands.
| | - Mario Losen
- Division Neurosciences, School for Mental Health and Neurosciences, Maastricht University, 6200 MD Maastricht, The Netherlands.
| | - Pilar Martinez-Martinez
- Division Neurosciences, School for Mental Health and Neurosciences, Maastricht University, 6200 MD Maastricht, The Netherlands.
| |
Collapse
|
178
|
Calvo M, Richards N, Schmid AB, Barroso A, Zhu L, Ivulic D, Zhu N, Anwandter P, Bhat MA, Court FA, McMahon SB, Bennett DLH. Altered potassium channel distribution and composition in myelinated axons suppresses hyperexcitability following injury. eLife 2016; 5:e12661. [PMID: 27033551 PMCID: PMC4841771 DOI: 10.7554/elife.12661] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 03/15/2016] [Indexed: 12/25/2022] Open
Abstract
Neuropathic pain following peripheral nerve injury is associated with hyperexcitability in damaged myelinated sensory axons, which begins to normalise over time. We investigated the composition and distribution of shaker-type-potassium channels (Kv1 channels) within the nodal complex of myelinated axons following injury. At the neuroma that forms after damage, expression of Kv1.1 and 1.2 (normally localised to the juxtaparanode) was markedly decreased. In contrast Kv1.4 and 1.6, which were hardly detectable in the naïve state, showed increased expression within juxtaparanodes and paranodes following injury, both in rats and humans. Within the dorsal root (a site remote from injury) we noted a redistribution of Kv1-channels towards the paranode. Blockade of Kv1 channels with α-DTX after injury reinstated hyperexcitability of A-fibre axons and enhanced mechanosensitivity. Changes in the molecular composition and distribution of axonal Kv1 channels, therefore represents a protective mechanism to suppress the hyperexcitability of myelinated sensory axons that follows nerve injury.
Collapse
Affiliation(s)
- Margarita Calvo
- Wolfson Centre for Age-Related Diseases, Kings College London, London, United Kingdom.,Departamento de Fisiologia, Facultad de Ciencias Biologicas- Pontificia Universidad Catolica de Chile, Santiago, Chile.,Departamento de Anestesiologia, Facultad de Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Natalie Richards
- Wolfson Centre for Age-Related Diseases, Kings College London, London, United Kingdom
| | - Annina B Schmid
- School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Australia.,Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Alejandro Barroso
- Wolfson Centre for Age-Related Diseases, Kings College London, London, United Kingdom.,Hospital Regional Universitario de Málaga. Servicio de Anestesiología, Málaga, Spain
| | - Lan Zhu
- Wolfson Centre for Age-Related Diseases, Kings College London, London, United Kingdom.,School of Allied Health Sciences, Faculty of Health and Life Sciences, De Montfort University, Leicester, United Kingdom
| | - Dinka Ivulic
- Departamento de Fisiologia, Facultad de Ciencias Biologicas- Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Ning Zhu
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Philipp Anwandter
- Departamento Ortopedia y Traumatologia, Facultad de Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Manzoor A Bhat
- Department of Physiology, UT Health Science Center at San Antonio, San Antonio, United States.,School of Medicine, UT Health Science Center at San Antonio, San Antonio, United States
| | - Felipe A Court
- Center for Integrative Biology, Universidad Mayor, Santiago, Chile.,FONDAP, Geroscience Center for Brain Health and Metabolism, Santiago, Chile.,Millenium Nucleus for Regenerative Biology, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Stephen B McMahon
- Wolfson Centre for Age-Related Diseases, Kings College London, London, United Kingdom
| | - David L H Bennett
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
179
|
Rash JE, Vanderpool KG, Yasumura T, Hickman J, Beatty JT, Nagy JI. KV1 channels identified in rodent myelinated axons, linked to Cx29 in innermost myelin: support for electrically active myelin in mammalian saltatory conduction. J Neurophysiol 2016; 115:1836-59. [PMID: 26763782 PMCID: PMC4869480 DOI: 10.1152/jn.01077.2015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 01/04/2016] [Indexed: 11/22/2022] Open
Abstract
Saltatory conduction in mammalian myelinated axons was thought to be well understood before recent discoveries revealed unexpected subcellular distributions and molecular identities of the K(+)-conductance pathways that provide for rapid axonal repolarization. In this study, we visualize, identify, localize, quantify, and ultrastructurally characterize axonal KV1.1/KV1.2 channels in sciatic nerves of rodents. With the use of light microscopic immunocytochemistry and freeze-fracture replica immunogold labeling electron microscopy, KV1.1/KV1.2 channels are localized to three anatomically and compositionally distinct domains in the internodal axolemmas of large myelinated axons, where they form densely packed "rosettes" of 9-nm intramembrane particles. These axolemmal KV1.1/KV1.2 rosettes are precisely aligned with and ultrastructurally coupled to connexin29 (Cx29) channels, also in matching rosettes, in the surrounding juxtaparanodal myelin collars and along the inner mesaxon. As >98% of transmembrane proteins large enough to represent ion channels in these specialized domains, ∼500,000 KV1.1/KV1.2 channels define the paired juxtaparanodal regions as exclusive membrane domains for the voltage-gated K(+)conductance that underlies rapid axonal repolarization in mammals. The 1:1 molecular linkage of KV1 channels to Cx29 channels in the apposed juxtaparanodal collars, plus their linkage to an additional 250,000-400,000 Cx29 channels along each inner mesaxon in every large-diameter myelinated axon examined, supports previously proposed K(+)conductance directly from juxtaparanodal axoplasm into juxtaparanodal myeloplasm in mammalian axons. With neither Cx29 protein nor myelin rosettes detectable in frog myelinated axons, these data showing axon-to-myelin linkage by abundant KV1/Cx29 channels in rodent axons support renewed consideration of an electrically active role for myelin in increasing both saltatory conduction velocity and maximum propagation frequency in mammalian myelinated axons.
Collapse
Affiliation(s)
- John E Rash
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado; Program in Molecular, Cellular and Integrative Neurosciences, Colorado State University, Fort Collins, Colorado; and
| | - Kimberly G Vanderpool
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Thomas Yasumura
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Jordan Hickman
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Jonathan T Beatty
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - James I Nagy
- Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
180
|
Chefdeville A, Honnorat J, Hampe CS, Desestret V. Neuronal central nervous system syndromes probably mediated by autoantibodies. Eur J Neurosci 2016; 43:1535-52. [PMID: 26918657 DOI: 10.1111/ejn.13212] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 02/09/2016] [Accepted: 02/15/2016] [Indexed: 01/17/2023]
Abstract
In the last few years, a rapidly growing number of autoantibodies targeting neuronal cell-surface antigens have been identified in patients presenting with neurological symptoms. Targeted antigens include ionotropic receptors such as N-methyl-d-aspartate receptor or the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor, metabotropic receptors such as mGluR1 and mGluR5, and other synaptic proteins, some of them belonging to the voltage-gated potassium channel complex. Importantly, the cell-surface location of these antigens makes them vulnerable to direct antibody-mediated modulation. Some of these autoantibodies, generally targeting ionotropic channels or their partner proteins, define clinical syndromes resembling models of pharmacological or genetic disruption of the corresponding antigen, suggesting a direct pathogenic role of the associated autoantibodies. Moreover, the associated neurological symptoms are usually immunotherapy-responsive, further arguing for a pathogenic effect of the antibodies. Some studies have shown that some patients' antibodies may have structural and functional in vitro effects on the targeted antigens. Definite proof of the pathogenicity of these autoantibodies has been obtained for just a few through passive transfer experiments in animal models. In this review we present existing and converging evidence suggesting a pathogenic role of some autoantibodies directed against neuronal cell-surface antigens observed in patients with central nervous system disorders. We describe the main clinical symptoms characterizing the patients and discuss conflicting arguments regarding the pathogenicity of these antibodies.
Collapse
Affiliation(s)
- Aude Chefdeville
- Institut NeuroMyoGène, INSERM U1217/UMR CNRS 5310, Lyon, France.,Université de Lyon, Lyon, France
| | - Jérôme Honnorat
- Institut NeuroMyoGène, INSERM U1217/UMR CNRS 5310, Lyon, France.,Université de Lyon, Lyon, France.,French Reference Center on Paraneoplastic Neurological Syndrome, F-69677, Bron, France.,Department of Neurology, Hospices Civils de Lyon, Hôpital Neurologique, F-69677, Bron, France
| | | | - Virginie Desestret
- Institut NeuroMyoGène, INSERM U1217/UMR CNRS 5310, Lyon, France.,Université de Lyon, Lyon, France.,French Reference Center on Paraneoplastic Neurological Syndrome, F-69677, Bron, France.,Department of Neurology, Hospices Civils de Lyon, Hôpital Neurologique, F-69677, Bron, France
| |
Collapse
|
181
|
Rubio-Marrero EN, Vincelli G, Jeffries CM, Shaikh TR, Pakos IS, Ranaivoson FM, von Daake S, Demeler B, De Jaco A, Perkins G, Ellisman MH, Trewhella J, Comoletti D. Structural Characterization of the Extracellular Domain of CASPR2 and Insights into Its Association with the Novel Ligand Contactin1. J Biol Chem 2016; 291:5788-5802. [PMID: 26721881 PMCID: PMC4786715 DOI: 10.1074/jbc.m115.705681] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 12/28/2015] [Indexed: 01/06/2023] Open
Abstract
Contactin-associated protein-like 2 (CNTNAP2) encodes for CASPR2, a multidomain single transmembrane protein belonging to the neurexin superfamily that has been implicated in a broad range of human phenotypes including autism and language impairment. Using a combination of biophysical techniques, including small angle x-ray scattering, single particle electron microscopy, analytical ultracentrifugation, and bio-layer interferometry, we present novel structural and functional data that relate the architecture of the extracellular domain of CASPR2 to a previously unknown ligand, Contactin1 (CNTN1). Structurally, CASPR2 is highly glycosylated and has an overall compact architecture. Functionally, we show that CASPR2 associates with micromolar affinity with CNTN1 but, under the same conditions, it does not interact with any of the other members of the contactin family. Moreover, by using dissociated hippocampal neurons we show that microbeads loaded with CASPR2, but not with a deletion mutant, co-localize with transfected CNTN1, suggesting that CNTN1 is an endogenous ligand for CASPR2. These data provide novel insights into the structure and function of CASPR2, suggesting a complex role of CASPR2 in the nervous system.
Collapse
Affiliation(s)
- Eva N Rubio-Marrero
- From the Child Health Institute of New Jersey and Departments of Neuroscience and Cell Biology and
| | - Gabriele Vincelli
- From the Child Health Institute of New Jersey and Departments of Neuroscience and Cell Biology and
| | - Cy M Jeffries
- the School of Molecular Bioscience, University of Sydney, New South Wales 2006, Australia
| | - Tanvir R Shaikh
- the Structural Biology Programme, Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic
| | - Irene S Pakos
- From the Child Health Institute of New Jersey and Departments of Neuroscience and Cell Biology and
| | - Fanomezana M Ranaivoson
- From the Child Health Institute of New Jersey and Departments of Neuroscience and Cell Biology and
| | - Sventja von Daake
- From the Child Health Institute of New Jersey and Departments of Neuroscience and Cell Biology and
| | - Borries Demeler
- the Department of Biochemistry, The University of Texas Health Science Center, San Antonio, Texas 78229
| | - Antonella De Jaco
- the Department of Biology and Biotechnologies "Charles Darwin" and Pasteur Institute-Cenci Bolognetti Foundation, Sapienza University of Rome, Rome, Italy 00185
| | - Guy Perkins
- the National Center for Microscopy and Imaging Research, University of California San Diego, La Jolla, California 92093, and
| | - Mark H Ellisman
- the National Center for Microscopy and Imaging Research, University of California San Diego, La Jolla, California 92093, and
| | - Jill Trewhella
- the School of Molecular Bioscience, University of Sydney, New South Wales 2006, Australia,; the Department of Chemistry, University of Utah, Salt Lake City, Utah 84112
| | - Davide Comoletti
- From the Child Health Institute of New Jersey and Departments of Neuroscience and Cell Biology and; Pediatrics, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey 08901,.
| |
Collapse
|
182
|
G protein-coupled receptor 37 is a negative regulator of oligodendrocyte differentiation and myelination. Nat Commun 2016; 7:10884. [PMID: 26961174 PMCID: PMC4792952 DOI: 10.1038/ncomms10884] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 01/29/2016] [Indexed: 12/22/2022] Open
Abstract
While the formation of myelin by oligodendrocytes is critical for the function of the
central nervous system, the molecular mechanism controlling oligodendrocyte
differentiation remains largely unknown. Here we identify G protein-coupled receptor
37 (GPR37) as an inhibitor of late-stage oligodendrocyte differentiation and
myelination. GPR37 is enriched in oligodendrocytes and its expression increases
during their differentiation into myelin forming cells. Genetic deletion of
Gpr37 does not affect the number of oligodendrocyte precursor cells, but
results in precocious oligodendrocyte differentiation and hypermyelination. The
inhibition of oligodendrocyte differentiation by GPR37 is mediated by suppression of
an exchange protein activated by cAMP (EPAC)-dependent activation of Raf-MAPK-ERK1/2
module and nuclear translocation of ERK1/2. Our data suggest that GPR37 regulates
central nervous system myelination by controlling the transition from
early-differentiated to mature oligodendrocytes. The molecular mechanism controlling oligodendrocyte differentiation is
not fully understood. Here the authors show that G protein coupled receptor 37 acts as a
negative regulator of CNS myelination, and this effect is mediated by suppression of ERK
signalling.
Collapse
|
183
|
Hoffman EJ, Turner KJ, Fernandez JM, Cifuentes D, Ghosh M, Ijaz S, Jain RA, Kubo F, Bill BR, Baier H, Granato M, Barresi MJF, Wilson SW, Rihel J, State MW, Giraldez AJ. Estrogens Suppress a Behavioral Phenotype in Zebrafish Mutants of the Autism Risk Gene, CNTNAP2. Neuron 2016; 89:725-33. [PMID: 26833134 PMCID: PMC4766582 DOI: 10.1016/j.neuron.2015.12.039] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 11/16/2015] [Accepted: 12/21/2015] [Indexed: 12/20/2022]
Abstract
Autism spectrum disorders (ASDs) are a group of devastating neurodevelopmental syndromes that affect up to 1 in 68 children. Despite advances in the identification of ASD risk genes, the mechanisms underlying ASDs remain unknown. Homozygous loss-of-function mutations in Contactin Associated Protein-like 2 (CNTNAP2) are strongly linked to ASDs. Here we investigate the function of Cntnap2 and undertake pharmacological screens to identify phenotypic suppressors. We find that zebrafish cntnap2 mutants display GABAergic deficits, particularly in the forebrain, and sensitivity to drug-induced seizures. High-throughput behavioral profiling identifies nighttime hyperactivity in cntnap2 mutants, while pharmacological testing reveals dysregulation of GABAergic and glutamatergic systems. Finally, we find that estrogen receptor agonists elicit a behavioral fingerprint anti-correlative to that of cntnap2 mutants and show that the phytoestrogen biochanin A specifically reverses the mutant behavioral phenotype. These results identify estrogenic compounds as phenotypic suppressors and illuminate novel pharmacological pathways with relevance to autism.
Collapse
Affiliation(s)
- Ellen J Hoffman
- Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA; Program on Neurogenetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Katherine J Turner
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Joseph M Fernandez
- Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA; Program on Neurogenetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Daniel Cifuentes
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA; Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Marcus Ghosh
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Sundas Ijaz
- Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA; Program on Neurogenetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Roshan A Jain
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Biology, Haverford College, Haverford, PA 19041, USA
| | - Fumi Kubo
- Department Genes - Circuits - Behavior, Max Planck Institute of Neurobiology, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Brent R Bill
- Center for Autism Research and Treatment, Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Biology, The University of Texas at Tyler, Tyler, TX 75799, USA
| | - Herwig Baier
- Department Genes - Circuits - Behavior, Max Planck Institute of Neurobiology, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Michael Granato
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Michael J F Barresi
- Department of Biological Sciences, Smith College, Northampton, MA 01063, USA
| | - Stephen W Wilson
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Jason Rihel
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK.
| | - Matthew W State
- Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA; Program on Neurogenetics, Yale School of Medicine, New Haven, CT 06510, USA; Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA; Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94143, USA.
| | - Antonio J Giraldez
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
184
|
Rendall AR, Truong DT, Fitch RH. Learning delays in a mouse model of Autism Spectrum Disorder. Behav Brain Res 2016; 303:201-7. [PMID: 26873041 DOI: 10.1016/j.bbr.2016.02.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 01/21/2016] [Accepted: 02/06/2016] [Indexed: 01/02/2023]
Abstract
Autism Spectrum Disorder (ASD) is a heterogeneous neurodevelopmental disorder with core symptoms of atypical social interactions and repetitive behaviors. It has also been reported that individuals with ASD have difficulty with multisensory integration, and this may disrupt higher-order cognitive abilities such as learning and social communication. Impairments in the integration of sensory information could in turn reflect diminished cross-modal white matter connectivity. Moreover, the genetic contribution in ASD appears to be strong, with heritability estimates as high as 90%. However, no single gene has been identified, and over 1000 risk genes have been reported. One of these genes - contactin-associated-like-protein 2 (CNTNAP2) - was first associated with Specific Language Impairment, and more recently has been linked to ASD. CNTNAP2 encodes a cell adhesion protein regulating synaptic signal transmission. To better understand the behavioral and biological underlying mechanisms of ASD, a transgenic mouse model was created with a genetic knockout (KO) of the rodent homolog Cntnap2. Initial studies on this mouse revealed poor social interactions, behavioral perseveration, and reduced vocalizations-all strongly resembling human ASD symptoms. Cntnap2 KO mice also show abnormalities in myelin formation, consistent with a hypo-connectivity model of ASD. The current study was designed to further assess the behavioral phenotype of this mouse model, with a focus on learning and memory. Cntnap2 KO and wild-type mice were tested on a 4/8 radial arm water maze for 14 consecutive days. Error scores (total, working memory, reference memory, initial and repeated reference memory), latency and average turn angle were independently assessed using a 2×14 repeated measures ANOVA. Results showed that Cntnap2 KO mice exhibited significant deficits in working and reference memory during the acquisition period of the task. During the retention period (i.e., after asymptote in errors), Cntnap2 KO mice performed comparably to wild-type mice. These findings suggest that CNTNAP2 may influence the development of neural systems important to learning and cross-modal integration, and that disruption of this function could be associated with delayed learning in ASD.
Collapse
Affiliation(s)
- Amanda R Rendall
- Department of Psychology/Behavioral Neuroscience and Institute for Systems Genomics, University of Connecticut, 406 Babbidge Road, Unit 1020, Storrs, CT 06269, United States.
| | - Dongnhu T Truong
- Department of Psychology/Behavioral Neuroscience and Institute for Systems Genomics, University of Connecticut, 406 Babbidge Road, Unit 1020, Storrs, CT 06269, United States
| | - R Holly Fitch
- Department of Psychology/Behavioral Neuroscience and Institute for Systems Genomics, University of Connecticut, 406 Babbidge Road, Unit 1020, Storrs, CT 06269, United States
| |
Collapse
|
185
|
Characterisation of CASPR2 deficiency disorder--a syndrome involving autism, epilepsy and language impairment. BMC MEDICAL GENETICS 2016; 17:8. [PMID: 26843181 PMCID: PMC4739328 DOI: 10.1186/s12881-016-0272-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 01/29/2016] [Indexed: 11/18/2022]
Abstract
Background Heterozygous mutations in CNTNAP2 have been identified in patients with a range of complex phenotypes including intellectual disability, autism and schizophrenia. However heterozygous CNTNAP2 mutations are also found in the normal population. Conversely, homozygous mutations are rare in patient populations and have not been found in any unaffected individuals. Case presentation We describe a consanguineous family carrying a deletion in CNTNAP2 predicted to abolish function of its protein product, CASPR2. Homozygous family members display epilepsy, facial dysmorphisms, severe intellectual disability and impaired language. We compared these patients with previously reported individuals carrying homozygous mutations in CNTNAP2 and identified a highly recognisable phenotype. Conclusions We propose that CASPR2 loss produces a syndrome involving early-onset refractory epilepsy, intellectual disability, language impairment and autistic features that can be recognized as CASPR2 deficiency disorder. Further screening for homozygous patients meeting these criteria, together with detailed phenotypic and molecular investigations will be crucial for understanding the contribution of CNTNAP2 to normal and disrupted development.
Collapse
|
186
|
Hivert B, Pinatel D, Labasque M, Tricaud N, Goutebroze L, Faivre-Sarrailh C. Assembly of juxtaparanodes in myelinating DRG culture: Differential clustering of the Kv1/Caspr2 complex and scaffolding protein 4.1B. Glia 2016; 64:840-52. [PMID: 26840208 DOI: 10.1002/glia.22968] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 01/04/2016] [Accepted: 01/06/2016] [Indexed: 11/06/2022]
Abstract
The precise distribution of ion channels at the nodes of Ranvier is essential for the efficient propagation of action potentials along myelinated axons. The voltage-gated potassium channels Kv1.1/1.2 are clustered at the juxtaparanodes in association with the cell adhesion molecules, Caspr2 and TAG-1 and the scaffolding protein 4.1B. In the present study, we set up myelinating cultures of DRG neurons and Schwann cells to look through the formation of juxtaparanodes in vitro. We showed that the Kv1.1/Kv1.2 channels were first enriched at paranodes before being restricted to distal paranodes and juxtaparanodes. In addition, the Kv1 channels displayed an asymmetric expression enriched at the distal juxtaparanodes. Caspr2 was strongly co-localized with Kv1.2 whereas the scaffolding protein 4.1B was preferentially recruited at paranodes while being present at juxtaparanodes too. Kv1.2/Caspr2 but not 4.1B, also transiently accumulated within the nodal region both in myelinated cultures and developing sciatic nerves. Studying cultures and sciatic nerves from 4.1B KO mice, we further showed that 4.1B is required for the proper targeting of Caspr2 early during myelination. Moreover, using adenoviral-mediated expression of Caspr-GFP and photobleaching experiments, we analyzed the stability of paranodal junctions and showed that the lateral stability of paranodal Caspr was not altered in 4.1B KO mice indicating that 4.1B is not required for the assembly and stability of the paranodal junctions. Thus, developing an adapted culture paradigm, we provide new insights into the dynamic and differential distribution of Kv1 channels and associated proteins during myelination.
Collapse
Affiliation(s)
- Bruno Hivert
- Aix-Marseille Université, CNRS, Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille-UMR7286, Marseille, France
| | - Delphine Pinatel
- Aix-Marseille Université, CNRS, Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille-UMR7286, Marseille, France
| | - Marilyne Labasque
- Aix-Marseille Université, CNRS, Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille-UMR7286, Marseille, France
| | - Nicolas Tricaud
- INSERM U1051 Institut des Neurosciences de Montpellier, Montpellier, France
| | | | - Catherine Faivre-Sarrailh
- Aix-Marseille Université, CNRS, Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille-UMR7286, Marseille, France
| |
Collapse
|
187
|
Selective Dysregulation of Hippocampal Inhibition in the Mouse Lacking Autism Candidate Gene CNTNAP2. J Neurosci 2016; 35:14681-7. [PMID: 26511255 DOI: 10.1523/jneurosci.1666-15.2015] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mutations in the human gene encoding contactin-associated protein-like 2 (CNTNAP2) have been strongly associated with autism spectrum disorders (ASDs). Cntnap2(-/-) mice recapitulate major features of ASD, including social impairment, reduced vocalizations, and repetitive behavior. In addition, Cntnap2(-/-) mice show reduced cortical neuronal synchrony and develop spontaneous seizures throughout adulthood. As suggested for other forms of ASDs, this phenotype could reflect some form of synaptic dysregulation. However, the impact of lifelong deletion of CNTNAP2 on synaptic function in the brain remains unknown. To address this issue, we have assessed excitatory and inhibitory synaptic transmission in acute hippocampal slices of Cntnap2(-/-) mice. We found that although excitatory transmission was mostly normal, inhibition onto CA1 pyramidal cells was altered in Cntnap2(-/-) mice. Specifically, putative perisomatic, but not dendritic, evoked IPSCs were significantly reduced in these mice. Whereas both inhibitory short-term plasticity and miniature IPSC frequency and amplitude were normal in Cntnap2(-/-) mice, we found an unexpected increase in the frequency of spontaneous, action potential-driven IPSCs. Altered hippocampal inhibition could account for the behavioral phenotype Cntnap2(-/-) mice present later in life. Overall, our findings that Cntnap2 deletion selectively impairs perisomatic hippocampal inhibition while sparing excitation provide additional support for synaptic dysfunction as a common mechanism underlying ASDs.
Collapse
|
188
|
|
189
|
Caspr3-Deficient Mice Exhibit Low Motor Learning during the Early Phase of the Accelerated Rotarod Task. PLoS One 2016; 11:e0147887. [PMID: 26807827 PMCID: PMC4726695 DOI: 10.1371/journal.pone.0147887] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 01/08/2016] [Indexed: 11/19/2022] Open
Abstract
Caspr3 (Contactin-associated protein-like 3, Cntnap3) is a neural cell adhesion molecule belonging to the Caspr family. We have recently shown that Caspr3 is expressed abundantly between the first and second postnatal weeks in the mouse basal ganglia, including the striatum, external segment of the globus pallidus, subthalamic nucleus, and substantia nigra. However, its physiological role remains largely unknown. In this study, we conducted a series of behavioral analyses on Capsr3-knockout (KO) mice and equivalent wild-type (WT) mice to investigate the role of Caspr3 in brain function. No significant differences were observed in most behavioral traits between Caspr3-KO and WT mice, but we found that Caspr3-KO mice performed poorly during the early phase of the accelerated rotarod task in which latency to falling off a rod rotating with increasing velocity was examined. In the late phase, the performance of the Caspr3-KO mice caught up to the level of WT mice, suggesting that the deletion of Caspr3 caused a delay in motor learning. We then examined changes in neural activity after training on the accelerated rotarod by conducting immunohistochemistry using antibody to c-Fos, an indirect marker for neuronal activity. Experience of the accelerated rotarod task caused increases in the number of c-Fos-positive cells in the dorsal striatum, cerebellum, and motor cortex in both Caspr3-KO and WT mice, but the number of c-Fos-positive cells was significantly lower in the dorsal striatum of Caspr3-KO mice than in that of WT mice. The expression of c-Fos in the ventral striatum of Caspr3-KO and WT mice was not altered by the training. Our findings suggest that reduced activation of neural cells in the dorsal striatum in Caspr3-KO mice leads to a decline in motor learning in the accelerated rotarod task.
Collapse
|
190
|
Susuki K, Otani Y, Rasband MN. Submembranous cytoskeletons stabilize nodes of Ranvier. Exp Neurol 2016; 283:446-51. [PMID: 26775177 DOI: 10.1016/j.expneurol.2015.11.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 11/10/2015] [Accepted: 11/23/2015] [Indexed: 01/22/2023]
Abstract
Rapid action potential propagation along myelinated axons requires voltage-gated Na(+) (Nav) channel clustering at nodes of Ranvier. At paranodes flanking nodes, myelinating glial cells interact with axons to form junctions. The regions next to the paranodes called juxtaparanodes are characterized by high concentrations of voltage-gated K(+) channels. Paranodal axoglial junctions function as barriers to restrict the position of these ion channels. These specialized domains along the myelinated nerve fiber are formed by multiple molecular mechanisms including interactions between extracellular matrix, cell adhesion molecules, and cytoskeletal scaffolds. This review highlights recent findings into the roles of submembranous cytoskeletal proteins in the stabilization of molecular complexes at and near nodes. Axonal ankyrin-spectrin complexes stabilize Nav channels at nodes. Axonal protein 4.1B-spectrin complexes contribute to paranode and juxtaparanode organization. Glial ankyrins enriched at paranodes facilitate node formation. Finally, disruption of spectrins or ankyrins by genetic mutations or proteolysis is involved in the pathophysiology of various neurological or psychiatric disorders.
Collapse
Affiliation(s)
- Keiichiro Susuki
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States.
| | - Yoshinori Otani
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Matthew N Rasband
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States.
| |
Collapse
|
191
|
Kazdoba TM, Leach PT, Crawley JN. Behavioral phenotypes of genetic mouse models of autism. GENES, BRAIN, AND BEHAVIOR 2016; 15:7-26. [PMID: 26403076 PMCID: PMC4775274 DOI: 10.1111/gbb.12256] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 08/27/2015] [Accepted: 09/18/2015] [Indexed: 12/11/2022]
Abstract
More than a hundred de novo single gene mutations and copy-number variants have been implicated in autism, each occurring in a small subset of cases. Mutant mouse models with syntenic mutations offer research tools to gain an understanding of the role of each gene in modulating biological and behavioral phenotypes relevant to autism. Knockout, knockin and transgenic mice incorporating risk gene mutations detected in autism spectrum disorder and comorbid neurodevelopmental disorders are now widely available. At present, autism spectrum disorder is diagnosed solely by behavioral criteria. We developed a constellation of mouse behavioral assays designed to maximize face validity to the types of social deficits and repetitive behaviors that are central to an autism diagnosis. Mouse behavioral assays for associated symptoms of autism, which include cognitive inflexibility, anxiety, hyperactivity, and unusual reactivity to sensory stimuli, are frequently included in the phenotypic analyses. Over the past 10 years, we and many other laboratories around the world have employed these and additional behavioral tests to phenotype a large number of mutant mouse models of autism. In this review, we highlight mouse models with mutations in genes that have been identified as risk genes for autism, which work through synaptic mechanisms and through the mTOR signaling pathway. Robust, replicated autism-relevant behavioral outcomes in a genetic mouse model lend credence to a causal role for specific gene contributions and downstream biological mechanisms in the etiology of autism.
Collapse
Affiliation(s)
- T. M. Kazdoba
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, USA
| | - P. T. Leach
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, USA
| | - J. N. Crawley
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, USA
| |
Collapse
|
192
|
Jacob J. Cortical interneuron dysfunction in epilepsy associated with autism spectrum disorders. Epilepsia 2015; 57:182-93. [DOI: 10.1111/epi.13272] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2015] [Indexed: 12/30/2022]
Affiliation(s)
- John Jacob
- Nuffield Department of Clinical Neurosciences; John Radcliffe Hospital; Oxford United Kingdom
- Department of Neurology; Milton Keynes Hospital; Buckinghamshire United Kingdom
- Department of Neurology; John Radcliffe Hospital; Oxford United Kingdom
| |
Collapse
|
193
|
Rosch RE, Bamford A, Hacohen Y, Wraige E, Vincent A, Mewasingh L, Lim M. Guillain-Barré syndrome associated with CASPR2 antibodies: two paediatric cases. J Peripher Nerv Syst 2015; 19:246-9. [PMID: 25413786 DOI: 10.1111/jns.12089] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 06/17/2014] [Accepted: 07/31/2014] [Indexed: 11/28/2022]
Abstract
The pathogenesis of Guillain-Barré syndrome (GBS) is considered to be, at least in part, mediated by autoantibodies directed against neuronal antigens. Antibodies to contactin-associated protein-like 2 (CASPR2), part of the voltage-gated potassium channel complex (VGKC-complex), are associated with neurological disease predominantly affecting the peripheral nervous system but are not known to be associated with GBS. We report two cases of ganglioside antibody-negative paediatric GBS associated with CASPR2 antibodies. Both patients made a complete clinical recovery. The tissue distribution and function of CASPR2 make it a biologically plausible autoimmune target in GBS and its clinical relevance in GBS should be determined in further studies.
Collapse
Affiliation(s)
- Richard E Rosch
- Department of Clinical Neurosciences, Institute of Psychiatry, King's College London, London, UK
| | | | | | | | | | | | | |
Collapse
|
194
|
Gordon A, Salomon D, Barak N, Pen Y, Tsoory M, Kimchi T, Peles E. Expression of Cntnap2 (Caspr2) in multiple levels of sensory systems. Mol Cell Neurosci 2015; 70:42-53. [PMID: 26647347 DOI: 10.1016/j.mcn.2015.11.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 10/01/2015] [Accepted: 11/27/2015] [Indexed: 01/09/2023] Open
Abstract
Genome-wide association studies and copy number variation analyses have linked contactin associated protein 2 (Caspr2, gene name Cntnap2) with autism spectrum disorder (ASD). In line with these findings, mice lacking Caspr2 (Cntnap2(-/-)) were shown to have core autism-like deficits including abnormal social behavior and communication, and behavior inflexibility. However the role of Caspr2 in ASD pathogenicity remains unclear. Here we have generated a new Caspr2:tau-LacZ knock-in reporter line (Cntnap2(tlacz/tlacz)), which enabled us to monitor the neuronal circuits in the brain expressing Caspr2. We show that Caspr2 is expressed in many brain regions and produced a comprehensive report of Caspr2 expression. Moreover, we found that Caspr2 marks all sensory modalities: it is expressed in distinct brain regions involved in different sensory processings and is present in all primary sensory organs. Olfaction-based behavioral tests revealed that mice lacking Caspr2 exhibit abnormal response to sensory stimuli and lack preference for novel odors. These results suggest that loss of Caspr2 throughout the sensory system may contribute to the sensory manifestations frequently observed in ASD.
Collapse
Affiliation(s)
- Aaron Gordon
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Daniela Salomon
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Noy Barak
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yefim Pen
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Michael Tsoory
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Tali Kimchi
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Elior Peles
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
195
|
Reiner O, Karzbrun E, Kshirsagar A, Kaibuchi K. Regulation of neuronal migration, an emerging topic in autism spectrum disorders. J Neurochem 2015; 136:440-56. [PMID: 26485324 DOI: 10.1111/jnc.13403] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 09/04/2015] [Accepted: 10/09/2015] [Indexed: 12/14/2022]
Abstract
Autism spectrum disorders (ASD) encompass a group of neurodevelopmental diseases that demonstrate strong heritability, however, the inheritance is not simple and many genes have been associated with these disorders. ASD is regarded as a neurodevelopmental disorder, and abnormalities at different developmental stages are part of the disease etiology. This review provides a general background on neuronal migration during brain development and discusses recent advancements in the field connecting ASD and aberrant neuronal migration. We propose that neuronal migration impairment may be an important common pathophysiology in autism spectrum disorders (ASD). This review provides a general background on neuronal migration during brain development and discusses recent advancements in the field connecting ASD and aberrant neuronal migration.
Collapse
Affiliation(s)
- Orly Reiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Eyal Karzbrun
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Aditya Kshirsagar
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Kozo Kaibuchi
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Showa, Nagoya, Japan
| |
Collapse
|
196
|
Satzer D, Miller C, Maxon J, Voth J, DiBartolomeo C, Mahoney R, Dutton JR, Low WC, Parr AM. T cell deficiency in spinal cord injury: altered locomotor recovery and whole-genome transcriptional analysis. BMC Neurosci 2015; 16:74. [PMID: 26546062 PMCID: PMC4635574 DOI: 10.1186/s12868-015-0212-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 10/23/2015] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND T cells undergo autoimmunization following spinal cord injury (SCI) and play both protective and destructive roles during the recovery process. T cell-deficient athymic nude (AN) rats exhibit improved functional recovery when compared to immunocompetent Sprague-Dawley (SD) rats following spinal cord transection. METHODS In the present study, we evaluated locomotor recovery in SD and AN rats following moderate spinal cord contusion. To explain variable locomotor outcome, we assessed whole-genome expression using RNA sequencing, in the acute (1 week post-injury) and chronic (8 weeks post-injury) phases of recovery. RESULTS Athymic nude rats demonstrated greater locomotor function than SD rats only at 1 week post-injury, coinciding with peak T cell infiltration in immunocompetent rats. Genetic markers for T cells and helper T cells were acutely enriched in SD rats, while AN rats expressed genes for T(h)2 cells, cytotoxic T cells, NK cells, mast cells, IL-1a, and IL-6 at higher levels. Acute enrichment of cell death-related genes suggested that SD rats undergo secondary tissue damage from T cells. Additionally, SD rats exhibited increased acute expression of voltage-gated potassium (Kv) channel-related genes. However, AN rats demonstrated greater chronic expression of cell death-associated genes and less expression of axon-related genes. Immunostaining for macrophage markers revealed no T cell-dependent difference in the acute macrophage infiltrate. CONCLUSIONS We put forth a model in which T cells facilitate early tissue damage, demyelination, and Kv channel dysregulation in SD rats following contusion SCI. However, compensatory features of the immune response in AN rats cause delayed tissue death and limit long-term recovery. T cell inhibition combined with other neuroprotective treatment may thus be a promising therapeutic avenue.
Collapse
Affiliation(s)
- David Satzer
- Department of Neurosurgery, University of Minnesota, D429 Mayo Memorial Building, MMC 96, 420 Delaware Street, SE, Minneapolis, MN, 55455, USA.
| | - Catherine Miller
- Department of Neurosurgery, University of Minnesota, D429 Mayo Memorial Building, MMC 96, 420 Delaware Street, SE, Minneapolis, MN, 55455, USA.
| | - Jacob Maxon
- Department of Neurosurgery, University of Minnesota, D429 Mayo Memorial Building, MMC 96, 420 Delaware Street, SE, Minneapolis, MN, 55455, USA.
| | - Joseph Voth
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, 55455, USA.
| | - Christina DiBartolomeo
- Department of Neurosurgery, University of Minnesota, D429 Mayo Memorial Building, MMC 96, 420 Delaware Street, SE, Minneapolis, MN, 55455, USA.
| | - Rebecca Mahoney
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, 55455, USA.
| | - James R Dutton
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, 55455, USA.
| | - Walter C Low
- Department of Neurosurgery, University of Minnesota, D429 Mayo Memorial Building, MMC 96, 420 Delaware Street, SE, Minneapolis, MN, 55455, USA.
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, 55455, USA.
| | - Ann M Parr
- Department of Neurosurgery, University of Minnesota, D429 Mayo Memorial Building, MMC 96, 420 Delaware Street, SE, Minneapolis, MN, 55455, USA.
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
197
|
Targeted Gene Resequencing (Astrochip) to Explore the Tripartite Synapse in Autism-Epilepsy Phenotype with Macrocephaly. Neuromolecular Med 2015; 18:69-80. [PMID: 26537360 DOI: 10.1007/s12017-015-8378-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 10/27/2015] [Indexed: 12/26/2022]
Abstract
The frequent co-occurrence of autism spectrum disorders (ASD) and epilepsy, or paroxysmal EEG abnormalities, defines a condition termed autism-epilepsy phenotype (AEP). This condition results, in some cases , from dysfunctions of glial inwardly rectifying potassium channels (Kir), which are mainly expressed in astrocytes where they mediate neuron-glia communication. Macrocephaly is also often comorbid with autism-epilepsy (autism-epilepsy phenotype with macrocephaly, MAEP), and it is tempting to hypothesize that shared pathogenic mechanisms might explain concurrence of these conditions. In the present study, we assessed whether protein pathways involved, along with Kir channels, in astrocyte-neuron interaction at the tripartite synapse play a role in the etiopathogenesis of MAEP. Using a targeted resequencing methodology, we investigated the coding regions of 35 genes in 61 patients and correlated genetic results with clinical features. Variants were subdivided into 12 classes and clustered into four groups. We detected rare or previously unknown predicted deleterious missense changes in GJA1, SLC12A2, SNTA1, EFNA3, CNTNAP2, EPHA4, and STXBP1 in seven patients and two high-frequency variants in DLG1 in six individuals. We also found that a group of variants (predicted deleterious and non-coding), segregating with the comorbid MAEP/AEP subgroups, belong to proteins specifically involved in glutamate transport and metabolism (namely, SLC17A6, GRM8, and GLUL), as well as in potassium conductance (KCNN3). This "endophenotype-oriented" study, performed using a targeted strategy, helped to further delineate part of the complex genetic background of ASD, particularly in the presence of coexisting macrocephaly and/or epilepsy/paroxysmal EEG, and suggests that use of stringent clinical clustering might be an approach worth adopting in order to unravel the complex genomic data in neurodevelopmental disorders.
Collapse
|
198
|
Kagiava A, Theophilidis G, Sargiannidou I, Kyriacou K, Kleopa KA. Oxaliplatin-induced neurotoxicity is mediated through gap junction channels and hemichannels and can be prevented by octanol. Neuropharmacology 2015; 97:289-305. [PMID: 26044641 DOI: 10.1016/j.neuropharm.2015.05.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 04/16/2015] [Accepted: 05/16/2015] [Indexed: 12/22/2022]
Abstract
Oxaliplatin-induced neurotoxicity (OIN) is a common complication of chemotherapy without effective treatment. In order to clarify the mechanisms of both acute and chronic OIN, we used an ex-vivo mouse sciatic nerve model. Exposure to 25 μM oxaliplatin caused a marked prolongation in the duration of the nerve evoked compound action potential (CAP) by nearly 1200% within 300 min while amplitude remained constant for over 20 h. This oxaliplatin effect was almost completely reversed by the gap junction (GJ) inhibitor octanol in a concentration-dependent manner. Further GJ blockers showed similar effects although with a narrower therapeutic window. To clarify the target molecule we studied sciatic nerves from connexin32 (Cx32) and Cx29 knockout (KO) mice. The oxaliplatin effect and neuroprotection by octanol partially persisted in Cx29 better than in Cx32 KO nerves, suggesting that oxaliplatin affects both, but Cx32 GJ channels more than Cx29 hemichannels. Oxaliplatin also accelerated neurobiotin uptake in HeLa cells expressing the human ortholog of Cx29, Cx31.3, as well as dye transfer between cells expressing the human Cx32, and this effect was blocked by octanol. Oxaliplatin caused no morphological changes initially (up to 3 h of exposure), but prolonged nerve exposure caused juxtaparonodal axonal edema, which was prevented by octanol. Our study indicates that oxaliplatin causes forced opening of Cx32 channels and Cx29 hemichannels in peripheral myelinated fibers leading to disruption of axonal K(+) homeostasis. The GJ blocker octanol prevents OIN at very low concentrations and should be further studied as a neuroprotectant.
Collapse
Affiliation(s)
- Alexia Kagiava
- Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - George Theophilidis
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Irene Sargiannidou
- Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Kyriacos Kyriacou
- Department of Molecular Pathology and Electron Microscopy, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Kleopas A Kleopa
- Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, Nicosia, Cyprus; Neurology Clinics, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, Nicosia, Cyprus.
| |
Collapse
|
199
|
Papale LA, Zhang Q, Li S, Chen K, Keleş S, Alisch RS. Genome-wide disruption of 5-hydroxymethylcytosine in a mouse model of autism. Hum Mol Genet 2015; 24:7121-31. [PMID: 26423458 DOI: 10.1093/hmg/ddv411] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 09/28/2015] [Indexed: 01/29/2023] Open
Abstract
The autism spectrum disorders (ASD) comprise a broad group of behaviorally related neurodevelopmental disorders affecting as many as 1 in 68 children. The hallmarks of ASD consist of impaired social and communication interactions, pronounced repetitive behaviors and restricted patterns of interests. Family, twin and epidemiological studies suggest a polygenetic and epistatic susceptibility model involving the interaction of many genes; however, the etiology of ASD is likely to be complex and include both epigenetic and environmental factors. 5-hydroxymethylcytosine (5hmC) is a novel environmentally sensitive DNA modification that is highly enriched in post-mitotic neurons and is associated with active transcription of neuronal genes. Here, we used an established chemical labeling and affinity purification method coupled with high-throughput sequencing technology to generate a genome-wide profile of striatal 5hmC in an autism mouse model (Cntnap2(-/-) mice) and found that at 9 weeks of age the Cntnap2(-/-) mice have a genome-wide disruption in 5hmC, primarily in genic regions and repetitive elements. Annotation of differentially hydroxymethylated regions (DhMRs) to genes revealed a significant overlap with known ASD genes (e.g. Nrxn1 and Reln) that carried an enrichment of neuronal ontological functions, including axonogenesis and neuron projection morphogenesis. Finally, sequence motif predictions identified associations with transcription factors that have a high correlation with important genes in neuronal developmental and functional pathways. Together, our data implicate a role for 5hmC-mediated epigenetic modulation in the pathogenesis of autism and represent a critical step toward understanding the genome-wide molecular consequence of the Cntnap2 mutation, which results in an autism-like phenotype.
Collapse
Affiliation(s)
| | - Qi Zhang
- Department of Statistics, Biostatistics, and Medical Informatics and
| | - Sisi Li
- Department of Psychiatry, Neuroscience training program, University of Wisconsin, Madison, WI 53719, USA
| | - Kailei Chen
- Department of Statistics, Biostatistics, and Medical Informatics and
| | - Sündüz Keleş
- Department of Statistics, Biostatistics, and Medical Informatics and
| | | |
Collapse
|
200
|
Hirata H, Umemori J, Yoshioka H, Koide T, Watanabe K, Shimoda Y. Cell adhesion molecule contactin-associated protein 3 is expressed in the mouse basal ganglia during early postnatal stages. J Neurosci Res 2015; 94:74-89. [DOI: 10.1002/jnr.23670] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 08/14/2015] [Accepted: 08/31/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Haruna Hirata
- Department of Bioengineering; Nagaoka University of Technology; Nagaoka Niigata Japan
| | - Juzoh Umemori
- Mouse Genomics Resource Laboratory; National Institute of Genetics; Mishima Shizuoka Japan
| | - Hiroki Yoshioka
- Mouse Genomics Resource Laboratory; National Institute of Genetics; Mishima Shizuoka Japan
| | - Tsuyoshi Koide
- Mouse Genomics Resource Laboratory; National Institute of Genetics; Mishima Shizuoka Japan
| | - Kazutada Watanabe
- Department of Bioengineering; Nagaoka University of Technology; Nagaoka Niigata Japan
- Nagaoka National College of Technology; Nagaoka Niigata Japan
| | - Yasushi Shimoda
- Department of Bioengineering; Nagaoka University of Technology; Nagaoka Niigata Japan
| |
Collapse
|