151
|
Hardy RR, Hayakawa K. Development of B cells producing natural autoantibodies to thymocytes and senescent erythrocytes. ACTA ACUST UNITED AC 2004; 26:363-75. [PMID: 15611857 DOI: 10.1007/s00281-004-0183-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2004] [Accepted: 10/12/2004] [Indexed: 10/26/2022]
Abstract
Natural antibodies produced by CD5+ B-1 B cells include those with specificity for senescent erythrocytes (anti-BrMRBC, anti-PtC) and for thymocytes (anti-thymocyte autoantibody, ATA). Here we describe work from our laboratories studying two prototypic examples, V(H)11Vkappa9-encoded anti-BrMRBC and V(H)3609Vkappa21c-encoded ATA. Using V(H)11-mu transgenic mice, we discovered that certain natural autoantibodies utilize V(H) genes that are selected against in bone marrow B cell development, but not fetal liver, effectively restricting their generation to fetal/neonatal life. Studies with ATA-mu transgenic mice demonstrated a critical requirement for self antigen in the accumulation of B cells with this specificity and for the production of high levels of serum ATA. Finally, analysis of B cell development in ATA-mu kappa transgenic mice revealed two distinct responses by B cells to expression of this B cell receptor (BCR): most developing B cells in spleen of adult mice were blocked at an immature stage and only escaped apoptosis by editing their BCR to eliminate the ATA specificity; nevertheless, high levels of serum ATA were observed, indicating that some B cells differentiated to antibody-forming cells without altering their specificity. Thus, our studies reveal mechanisms for restricting the generation of B cells producing natural autoantibodies, demonstrate a key positive selection step in their development, and show that most developing B cells in adult mice bearing such specificities fail to reach a mature stage.
Collapse
Affiliation(s)
- Richard R Hardy
- Division of Basic Sciences, Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, PA 19111, USA.
| | | |
Collapse
|
152
|
Abstract
Exclusive gene expression, where only one member of a gene or gene cassette family is selected for expression, plays an important role in the establishment of cell identity in several biological systems. Here, we compare four such systems: mating-type switching in fission and budding yeast, where cells choose between expressing one of the two different mating-type cassettes, and immunoglobulin and odorant receptor gene expression in mammals, where the number of gene choices is substantially higher. The underlying mechanisms that establish this selective expression pattern in each system differ in almost every detail. In all four systems, once a successful gene activation event has taken place, a feedback mechanism affects the fate of the cell. In the mammalian systems, feedback is mediated by the expressed cell surface receptor to ensure monoallelic gene expression, whereas in the yeasts, the expressed gene cassette at the mating-type locus affects donor choice during the subsequent switching event.
Collapse
|
153
|
Hardy RR, Wei CJ, Hayakawa K. Selection during development of VH11+ B cells: a model for natural autoantibody-producing CD5+ B cells. Immunol Rev 2004; 197:60-74. [PMID: 14962187 DOI: 10.1111/j.0105-2896.2004.0100.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Natural autoantibodies constitute a large portion of serum immunoglobulin M (IgM) and bridge the adaptive and innate immune systems, serving as a rapid response to common pathogens. Many arise from a distinctive subset of B cells, termed B-1, that express CD5. Here, we describe our studies with a representative CD5+ B-cell-derived natural autoantibody, the VH11Vkappa9 B-cell receptor (BCR) that binds a determinant on senescent erythrocytes. This specificity represents 5-10% of the CD5+ B-cell subset, with a large portion accounted for by two novel BCRs, VH11Vkappa9 and VH12Vkappa4. We have found that the development of B-lineage cells with a VH11 rearrangement is surprisingly restricted at several crucial bottlenecks: (i). one of the most common VH11 rearrangements generates a heavy-chain protein that only inefficiently assembles a pre-BCR, key for recombinase-activating gene downregulation/allelic exclusion and pre-B-clonal expansion; (ii). cells containing VH11- micro chains lacking N-addition are favored for progression to the B-cell stage, eliminating most bone marrow VH11 rearrangements; and (iii). only a subset of Vkappa-light chains combine with VH11 heavy chain to foster progression to the mature B-cell stage. Together, these constrain VH11 generation to fetal development and may favor production of B cells with the prototype VH11Vkappa9 BCR.
Collapse
Affiliation(s)
- Richard R Hardy
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111-2497, USA.
| | | | | |
Collapse
|
154
|
Yu PW, Tabuchi RS, Kato RM, Astrakhan A, Humblet-Baron S, Kipp K, Chae K, Ellmeier W, Witte ON, Rawlings DJ. Sustained correction of B-cell development and function in a murine model of X-linked agammaglobulinemia (XLA) using retroviral-mediated gene transfer. Blood 2004; 104:1281-90. [PMID: 15142874 DOI: 10.1182/blood-2003-09-3044] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Abstract
X-linked agammaglobulinemia (XLA) is a human immunodeficiency caused by mutations in Bruton tyrosine kinase (Btk) and characterized by an arrest in early B-cell development, near absence of serum immunoglobulin, and recurrent bacterial infections. Using Btk- and Tec-deficient mice (BtkTec–/–) as a model for XLA, we determined if Btk gene therapy could correct this disorder. Bone marrow (BM) from 5-fluorouracil (5FU)–treated BtkTec–/– mice was transduced with a retroviral vector expressing human Btk and transplanted into BtkTec–/– recipients. Mice engrafted with transduced hematopoietic cells exhibited rescue of both primary and peripheral B-lineage development, recovery of peritoneal B1 B cells, and correction of serum immunoglobulin M (IgM) and IgG3 levels. Gene transfer also restored T-independent type II immune responses, and B-cell antigen receptor (BCR) proliferative responses. B-cell progenitors derived from Btk-transduced stem cells exhibited higher levels of Btk expression than non-B cells; and marking studies demonstrated a selective advantage for Btk-transduced B-lineage cells. BM derived from primary recipients also rescued Btk-dependent function in secondary hosts that had received a transplant. Together, these data demonstrate that gene transfer into hematopoietic stem cells can reconstitute Btk-dependent B-cell development and function in vivo, and strongly support the feasibility of pursuing Btk gene transfer for XLA.
Collapse
Affiliation(s)
- Phyllis W Yu
- Children's Hospital and Regional Medical Center, 307 Westlake Ave North, Suite 300, Seattle, WA 98109, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
155
|
Abstract
The generation of B-lymphocytes from hematopoietic stem cells is controlled by multiple transcription factors regulating distinct developmental aspects. Ikaros and PU.1 act in parallel pathways to control the development of lymphoid progenitors in part by regulating the expression of essential signaling receptors (Flt3, c-Kit, and IL-7R alpha). The generation of the earliest B cell progenitors depends on E2A and EBF, which coordinately activate the B cell gene expression program and immunoglobulin heavy-chain gene rearrangements at the onset of B-lymphopoiesis. Pax5 restricts the developmental options of lymphoid progenitors to the B cell lineage by repressing the transcription of lineage-inappropriate genes and simultaneously activating the expression of B-lymphoid signaling molecules. LEF1 and Sox4 contribute to the survival and proliferation of pro-B cells in response to extracellular signals. Finally, IRF4 and IRF8 together control the termination of pre-B cell receptor signaling and thus promote differentiation to small pre-B cells undergoing light-chain gene rearrangements.
Collapse
Affiliation(s)
- Meinrad Busslinger
- Research Institute of Molecular Pathology, Vienna Biocenter, A-1030 Vienna, Austria.
| |
Collapse
|
156
|
Abstract
Autoreactive antibodies are etiologic agents in a number of autoimmune diseases. Like all other antibodies these antibodies are produced in developing B cells by V(D)J recombination in the bone marrow. Three mechanisms regulate autoreactive B cells: deletion, receptor editing, and anergy. Here we review the prevalence of autoantibodies in the initial antibody repertoire, their regulation by receptor editing, and the role of the recombinase proteins (RAG1 and RAG2) in this process.
Collapse
Affiliation(s)
- Mila Jankovic
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York 10021, USA.
| | | | | | | | | |
Collapse
|
157
|
João C, Ogle BM, Gay-Rabinstein C, Platt JL, Cascalho M. B cell-dependent TCR diversification. THE JOURNAL OF IMMUNOLOGY 2004; 172:4709-16. [PMID: 15067046 DOI: 10.4049/jimmunol.172.8.4709] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
T cell diversity was once thought to depend on the interaction of T cell precursors with thymic epithelial cells. Recent evidence suggests, however, that diversity might arise through the interaction of developing T cells with other cells, the identity of which is not known. In this study we show that T cell diversity is driven by B cells and Ig. The TCR V beta diversity of thymocytes in mice that lack B cells and Ig is reduced to 6 x 10(2) from wild-type values of 1.1 x 10(8); in mice with oligoclonal B cells, the TCR V beta diversity of thymocytes is 0.01% that in wild-type mice. Adoptive transfer of diverse B cells or administration of polyclonal Ig increases thymocyte diversity in mice that lack B cells 8- and 7-fold, respectively, whereas adoptive transfer of monoclonal B cells or monoclonal Ig does not. These findings reveal a heretofore unrecognized and vital function of B cells and Ig for generation of T cell diversity and suggest a potential approach to immune reconstitution.
Collapse
Affiliation(s)
- Cristina João
- Transplantation Biology Program, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | |
Collapse
|
158
|
Abstract
PURPOSE OF REVIEW It is now dogma that osteoclasts (OCs) arise from cells of the monocyte/macrophage lineage. However, data are accumulating suggesting that a relationship exists between B lymphocytes (B cells) and OC differentiation. Although the exact nature of this relation is unknown, it takes at least two forms. First, molecules that regulate B-cell growth and development have striking effects on OC lineage cells particularly at early stages of differentiation. Second, the possibility exists that pro-B cells can give rise to osteoclast-like cells (OCLs) in vitro and in vivo. Recent data indicate, at the least, that a regulatory relation exists between B lymphopoiesis and osteoclastogenesis. RECENT FINDINGS Pax5 is a member of the multigene family that encodes the paired box transcription factors. Pax5 is expressed exclusively in B-lymphocyte lineage cells extending from early B220 pro-B cells to mature B cells. Mice made deficient in Pax5 have a developmental arrest of the B-cell lineage at the pro-B-cell stage. Pax5-/- pro-B cells could be induced to form OCLs by treatment with macrophage colony-stimulating factor and receptor activator of nuclear factor-kappaB ligand (RANKL). Importantly, Pax5-/- mice are severely osteopenic, missing more than 60% of their bone mass. This is the result of a three- to fivefold increase in the number of OCs in bone, whereas the number of osteoblasts is indistinguishable from controls. SUMMARY The analysis of a variety of mutations in mice supports the hypothesis that B cells and OCs develop in parallel; that their development is regulated in a reciprocal manner; and that in the Pax5-deficient state, OCs arise from pro-B cells.
Collapse
Affiliation(s)
- Mark C Horowitz
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, Connecticut 06520-8071, USA.
| | | |
Collapse
|
159
|
Galler GR, Mundt C, Parker M, Pelanda R, Mårtensson IL, Winkler TH. Surface mu heavy chain signals down-regulation of the V(D)J-recombinase machinery in the absence of surrogate light chain components. ACTA ACUST UNITED AC 2004; 199:1523-32. [PMID: 15173209 PMCID: PMC2211789 DOI: 10.1084/jem.20031523] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Early B cell development is characterized by stepwise, ordered rearrangement of the immunoglobulin (Ig) heavy (HC) and light (LC) chain genes. Only one of the two alleles of these genes is used to produce a receptor, a phenomenon referred to as allelic exclusion. It has been suggested that pre–B cell receptor (pre-BCR) signals are responsible for down-regulation of the VDJH-recombinase machinery (Rag1, Rag2, and terminal deoxynucleotidyl transferase [TdT]), thereby preventing further rearrangement on the second HC allele. Using a mouse model, we show that expression of an inducible μHC transgene in Rag2−/− pro–B cells induces down-regulation of the following: (a) TdT protein, (b) a transgenic green fluorescent protein reporter reflecting endogenous Rag2 expression, and (c) Rag1 primary transcripts. Similar effects were also observed in the absence of surrogate LC (SLC) components, but not in the absence of the signaling subunit Ig-α. Furthermore, in wild-type mice and in mice lacking either λ5, VpreB1/2, or the entire SLC, the TdT protein is down-regulated in μHC+LC− pre–B cells. Surprisingly, μHC without LC is expressed on the surface of pro–/pre–B cells from λ5−/−, VpreB1−/−VpreB2−/−, and SLC−/− mice. Thus, SLC or LC is not required for μHC cell surface expression and signaling in these cells. Therefore, these findings offer an explanation for the occurrence of HC allelic exclusion in mice lacking SLC components.
Collapse
Affiliation(s)
- Gunther R Galler
- Hematopoiesis Unit, Nikolaus-Fiebiger-Center, Friedrich-Alexander University, Glueckstrasse 6, 91054 Erlangen, Germany
| | | | | | | | | | | |
Collapse
|
160
|
Fuxa M, Skok J, Souabni A, Salvagiotto G, Roldan E, Busslinger M. Pax5 induces V-to-DJ rearrangements and locus contraction of the immunoglobulin heavy-chain gene. Genes Dev 2004; 18:411-22. [PMID: 15004008 PMCID: PMC359395 DOI: 10.1101/gad.291504] [Citation(s) in RCA: 318] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The subnuclear location and chromatin state of the immunoglobulin heavy-chain (IgH) locus have been implicated in the control of VDJ recombination. VH-to-DJH rearrangement of distal, but not proximal V(H) genes, furthermore, depends on the B-lineage commitment factor Pax5 (BSAP). He e we demonstrate that ectopic Pax5 expression from the Ikaros promote induces proximal rather than distal VH-DJH rearrangements in Ik(Pax5/+) thymocytes, thus recapitulating the loss-of-function phenotype of Pax5-/- pro-B cells. The phenotypic similarities of both cell types include (1) chromatin accessibility of distal VH genes in the absence of VH-DJH rearrangements, (2) expression of the B-cell-specific regulator EBF, (3) central location of IgH alleles within the nucleus, and (4) physical separation of distal VH genes from proximal segments in an extended IgH locus. Reconstitution of Pax5 expression in Pax5-/- pro-B cells induced large-scale contraction and distal VH-DJH rearrangements of the IgH locus. Hence, VH-DJH recombination is regulated in two steps during early B-lymphopoiesis. The IgH locus is first repositioned from its default location at the nuclear periphery toward the center of the nucleus, which facilitates proximal VH-DJH recombination. Pax5 subsequently activates locus contraction and distal VH-DJH rearrangements in collaboration with an unknown factor that is present in pro-B cells, but absent in thymocytes.
Collapse
Affiliation(s)
- Martin Fuxa
- Research Institute of Molecular Pathology, Vienna Biocente, A-1030 Vienna, Austria
| | | | | | | | | | | |
Collapse
|
161
|
Bolland DJ, Wood AL, Johnston CM, Bunting SF, Morgan G, Chakalova L, Fraser PJ, Corcoran AE. Antisense intergenic transcription in V(D)J recombination. Nat Immunol 2004; 5:630-7. [PMID: 15107847 DOI: 10.1038/ni1068] [Citation(s) in RCA: 184] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2004] [Accepted: 03/26/2004] [Indexed: 01/24/2023]
Abstract
Antigen receptor genes undergo variable, diversity and joining (V(D)J) recombination, which requires ordered large-scale chromatin remodeling. Here we show that antisense transcription, both genic and intergenic, occurs extensively in the V region of the immunoglobulin heavy chain locus. RNA fluorescence in situ hybridization demonstrates antisense transcription is strictly developmentally regulated and is initiated during the transition from DJ(H) to VDJ(H) recombination and terminates concomitantly with VDJ(H) recombination. Our data show antisense transcription is specific to the V region and suggest transcripts extend across several genes. We propose that antisense transcription remodels the V region to facilitate V(H)-to-DJ(H) recombination. These findings have wider implications for V(D)J recombination of other antigen receptor loci and developmental regulation of multigene loci.
Collapse
Affiliation(s)
- Daniel J Bolland
- Laboratory of Chromatin and Gene Expression, The Babraham Institute, Cambridge CB2 4AT, UK
| | | | | | | | | | | | | | | |
Collapse
|
162
|
Manis JP, Morales JC, Xia Z, Kutok JL, Alt FW, Carpenter PB. 53BP1 links DNA damage-response pathways to immunoglobulin heavy chain class-switch recombination. Nat Immunol 2004; 5:481-7. [PMID: 15077110 DOI: 10.1038/ni1067] [Citation(s) in RCA: 264] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2004] [Accepted: 03/22/2004] [Indexed: 12/24/2022]
Abstract
The mammalian protein 53BP1 is activated in many cell types in response to genotoxic stress, including DNA double-strand breaks (DSBs). We now examine potential functions for 53BP1 in the specific genomic alterations that occur in B lymphocytes. Although 53BP1 was dispensable for V(D)J recombination and somatic hypermutation (SHM), the processes by which immunoglobulin (Ig) variable region exons are assembled and mutated, it was required for Igh class-switch recombination (CSR), the recombination and deletion process by which Igh constant region genes are exchanged. When stimulated to undergo CSR, 53BP1-deficient cells exhibited no defect in C(H) germline transcription or AID expression, however these cells had a profound decrease in switch junctions. The current findings, in combination with the known 53BP1 functions and how it is activated, implicate the DNA damage response to DSBs in the joining phase of class-switch recombination.
Collapse
Affiliation(s)
- John P Manis
- Howard Hughes Medical Institute, The Children's Hospital, and Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | | | | | | | |
Collapse
|
163
|
Affiliation(s)
- Leonard A Herzenberg
- Genetics Department, Stanford University Medical School, Beckman Center, Stanford, California 94305-5318, USA.
| | | |
Collapse
|
164
|
Aldrich MB, Chen W, Blackburn MR, Martinez-Valdez H, Datta SK, Kellems RE. Impaired germinal center maturation in adenosine deaminase deficiency. THE JOURNAL OF IMMUNOLOGY 2004; 171:5562-70. [PMID: 14607964 DOI: 10.4049/jimmunol.171.10.5562] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mice deficient in the enzyme adenosine deaminase (ADA) have small lymphoid organs that contain reduced numbers of peripheral lymphocytes, and they are immunodeficient. We investigated B cell deficiency in ADA-deficient mice and found that B cell development in the bone marrow was normal. However, spleens were markedly smaller, their architecture was dramatically altered, and splenic B lymphocytes showed defects in proliferation and activation. ADA-deficient B cells exhibited a higher propensity to undergo B cell receptor-mediated apoptosis than their wild-type counterparts, suggesting that ADA plays a role in the survival of cells during Ag-dependent responses. In keeping with this finding, IgM production by extrafollicular plasmablast cells was higher in ADA-deficient than in wild-type mice, thus indicating that activated B cells accumulate extrafollicularly as a result of a poor or nonexistent germinal center formation. This hypothesis was subsequently confirmed by the profound loss of germinal center architecture. A comparison of levels of the ADA substrates, adenosine and 2'-deoxyadenosine, as well resulting dATP levels and S-adenosylhomocysteine hydrolase inhibition in bone marrow and spleen suggested that dATP accumulation in ADA-deficient spleens may be responsible for impaired B cell development. The altered splenic environment and signaling abnormalities may concurrently contribute to a block in B cell Ag-dependent maturation in ADA-deficient mouse spleens.
Collapse
Affiliation(s)
- Melissa B Aldrich
- Department of Biochemistry and Molecular Biology, University of Texas Medical School, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
165
|
Abstract
B cells complete maturation after migrating to the periphery, where they transit several intermediate developmental stages prior to recruitment into the long-lived primary pool. Because B-lineage commitment is not regulated by peripheral pool size and most peripheral B cells are quiescent, the primary factors governing steady-state numbers are the proportion of immature B cells surviving transit through later developmental stages and the longevity of mature B cells themselves. Substantial evidence indicates that the B-cell receptor (BCR) plays an essential role in all these processes, but recent findings suggest a central role for the recently described tumor necrosis factor (TNF) family member, B-lymphocyte stimulator (BLyS). Signaling through one of the BLyS receptors, BLyS receptor 3 (BR3), controls B-cell numbers in two ways: by varying the proportion of cells that complete transitional B-cell development and by serving as the primary determinant of mature B-cell longevity. The recent discovery that BCR signaling is selectively coupled to BR3 expression in a developmentally regulated fashion links BCR- and BLyS-mediated events, suggesting that specificity-based selection and survival may be mechanistically similar processes.
Collapse
Affiliation(s)
- Michael P Cancro
- Department of Pathology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6082, USA.
| |
Collapse
|
166
|
Tippin B, Pham P, Bransteitter R, Goodman MF. Somatic Hypermutation: A Mutational Panacea. ACTA ACUST UNITED AC 2004; 69:307-35. [PMID: 15588848 DOI: 10.1016/s0065-3233(04)69011-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Affiliation(s)
- Brigette Tippin
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | | | | | | |
Collapse
|
167
|
Collins AM, Sewell WA, Edwards MR. Immunoglobulin gene rearrangement, repertoire diversity, and the allergic response. Pharmacol Ther 2003; 100:157-70. [PMID: 14609718 DOI: 10.1016/j.pharmthera.2003.07.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The immunoglobulin repertoire arises as a consequence of combinatorial diversity, junctional diversity, and the process of somatic point mutation. Each of these processes involves biases that limit and shape the available immunoglobulin repertoire. The expressed repertoire is further shaped by selection, to the extent that biased gene usage can become apparent in many disease states. The study of rearranged immunoglobulin genes therefore may not only provide insights into the molecular processes involved in the generation of antibody diversity but also inform us of pathogenic processes and perhaps identify particular lymphocyte clones as therapeutic targets. Partly as a consequence of the low numbers of circulating IgE-committed B-cells, studies of rearranged IgE genes in allergic individuals have commenced relatively recently. In this review, recent advances in our understanding of the processes of immunoglobulin gene rearrangement and somatic point mutation are described, and biases inherent to these processes are discussed. The evidence that some diseases may be associated with particular gene rearrangements is then considered, with a particular focus on allergic disease. Reviewed data suggest that an important contribution to the IgE response may come from cells that use relatively rare heavy chain V (V(H)) segment genes, which display little somatic point mutation. Some IgE antibodies also seem to display polyreactive binding. In other contexts, these 3 characteristics have been associated with antibodies of the B-1 B-cell subset, and the possibility that B-1 B-cells contribute to the allergic response is therefore considered.
Collapse
Affiliation(s)
- A M Collins
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, New South Wales, Sydney, Australia.
| | | | | |
Collapse
|
168
|
Wen R, Chen Y, Xue L, Schuman J, Yang S, Morris SW, Wang D. Phospholipase Cgamma2 provides survival signals via Bcl2 and A1 in different subpopulations of B cells. J Biol Chem 2003; 278:43654-62. [PMID: 12928432 DOI: 10.1074/jbc.m307318200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
PLCgamma2 plays a critical role in B cell receptor (BCR) signaling and its targeted deletion results in defective B cell development and function. Here, we show that PLCgamma2 deficiency specifically blocks B cell maturation at the transitional type 2 (T2) to follicular (FO) B cell transition and the PLCgamma2 pathway regulates survival of B cells. BCR-induced apoptosis is dramatically enhanced in all subsets of splenic PLCgamma2-deficient B cells, especially in T2 and FO B cell subpopulations. We also find that all splenic PLCgamma2-deficient B cell subpopulations express abnormally low levels of Bcl-2 protein. In addition, PLCgamma2 deficiency disrupts BCR-mediated induction of A1 expression. Enforced expression of Bcl-2 prevents BCR-induced apoptosis in all splenic PLCgamma2-deficient B cell subpopulations and partially restores the numbers of PLCgamma2-deficient FO B cells. In contrast to Bcl-2, enforced expression of A1 preferentially prevents BCR-induced apoptosis in PLCgamma2-deficient FO B cells and partially restores the numbers of these B cells. Therefore, the PLCgamma2 pathway provides a survival signal via regulation of Bcl-2 in all splenic B cell subpopulations and via additional induction of A1 in mature FO B cells.
Collapse
Affiliation(s)
- Renren Wen
- Blood Research Institute, the Blood Center of Southeastern Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | | | | | | | | | |
Collapse
|
169
|
Zhang Z, Cotta CV, Stephan RP, deGuzman CG, Klug CA. Enforced expression of EBF in hematopoietic stem cells restricts lymphopoiesis to the B cell lineage. EMBO J 2003; 22:4759-69. [PMID: 12970188 PMCID: PMC212730 DOI: 10.1093/emboj/cdg464] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Mice deficient in early B cell factor (EBF) are blocked at the progenitor B cell stage prior to immunoglobulin gene rearrangement. The EBF-dependent block in B cell development occurs near the onset of B-lineage commitment, which raises the possibility that EBF may act instructively to specify the B cell fate from uncommitted, multipotential progenitor cells. To test this hypothesis, we transduced enriched hematopoietic progenitor cells with a retroviral vector that coexpressed EBF and the green fluorescent protein (GFP). Mice reconstituted with EBF-expressing cells showed a near complete absence of T lymphocytes. Spleen and peripheral blood samples were >95 and 90% GFP+EBF+ mature B cells, respectively. Both NK and lymphoid-derived dendritic cells were also significantly reduced compared with control-transplanted mice. These data suggest that EBF can restrict lymphopoiesis to the B cell lineage by blocking development of other lymphoid-derived cell pathways.
Collapse
Affiliation(s)
- Zheng Zhang
- Department of Microbiology, Division of Developmental and Clinical Immunology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | |
Collapse
|
170
|
Bouzin C, Clotman F, Renauld JC, Lemaigre FP, Rousseau GG. The onecut transcription factor hepatocyte nuclear factor-6 controls B lymphopoiesis in fetal liver. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:1297-303. [PMID: 12874218 DOI: 10.4049/jimmunol.171.3.1297] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mouse genetic models have helped to identify transcription factors that are expressed by hemopoietic cells and control their differentiation into lymphoid cells. However, little is known on transcription factors that are involved in this process, but are expressed in nonhemopoietic cells of the microenvironment. We show in this study that inactivation of the gene coding for hepatocyte nuclear factor-6 (HNF-6) in mice led to B lymphopenia in the bone marrow and spleen. This phenotype disappeared shortly after birth when fetal B lymphopoiesis is no longer active, pointing to a defect in fetal liver. Indeed, the number of B cells was decreased in this organ as well. An analysis of B cell developmental markers in fetal liver cells showed that B lymphopoiesis was impaired just beyond the pre-pro B cell stage. Hemopoietic cells from hnf6(-/-) fetal liver could reconstitute the lymphoid system when injected into scid mice. Because parenchymal cells, but not hemopoietic cells, expressed hnf6 in normal liver, we concluded that HNF-6 controls B lymphopoiesis in fetal liver and that HNF-6 exerts this control indirectly by acting in parenchymal cells. The involvement, in the B cell defect of hnf6(-/-) fetuses, of genes known to exert such an indirect control was ruled out by expression analysis, including microarrays, and by in vivo rescue experiments. This work identifies HNF-6 as the first noncell-intrinsic transcription factor known to control B lymphopoiesis specifically in fetal liver.
Collapse
Affiliation(s)
- Caroline Bouzin
- Hormone and Metabolic Research Unit, Université Catholique de Louvain and Institute of Cellular Pathology, Brussels, Belgium
| | | | | | | | | |
Collapse
|
171
|
Bertocci B, De Smet A, Berek C, Weill JC, Reynaud CA. Immunoglobulin kappa light chain gene rearrangement is impaired in mice deficient for DNA polymerase mu. Immunity 2003; 19:203-11. [PMID: 12932354 DOI: 10.1016/s1074-7613(03)00203-6] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
DNA polymerase mu (pol mu) is a template-dependent polymerase closely related to the lymphoid-specific enzyme terminal deoxynucleotidyl transferase (TdT). We report here the phenotype of pol mu-deficient mice. Such animals display an abnormal B cell differentiation, with a specific alteration in the IgM- to IgM+ transition in bone marrow. In all mice, Ig light chain gene rearrangement is impaired at the level of the Vkappa-Jkappa and Vlambda-Jlambda junctions, which show extensive nibbling of both coding extremities. These alterations lead to a profound defect in the peripheral B cell compartment which, although variable between animals, results in an average 40% reduction in the splenic B cell fraction. Pol mu appears, therefore, as a key element contributing to the relative homogeneity in size of light chain CDR3 and taking part in Ig gene rearrangement at a stage where TdT is no longer expressed.
Collapse
Affiliation(s)
- Barbara Bertocci
- Institut National Français de Recherche Médicale U373, Faculté de Médecine Necker-Enfants Malades, 156 rue de Vaugirard, 75730 Paris 15, France
| | | | | | | | | |
Collapse
|
172
|
Hardy RR. Isolation of Ly-1+/CD5+ B cells by cell sorting. CURRENT PROTOCOLS IN IMMUNOLOGY 2003; Chapter 3:Unit 3.5B. [PMID: 18432908 DOI: 10.1002/0471142735.im0305bs55] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Ly-1/CD5 is a 68-kDa glycoprotein that was originally thought to mark the helper subset of T cells. Later it was shown to be present on all T cells and, more recently, on a subset of B cells. Although its function remains the subject of speculation, CD5 expression serves as a useful marker for a functionally distinct population of B cells that has attracted a considerable amount of interest from investigators of both murine and human immune systems. Of critical importance in much of this work is the isolation of pure populations of CD5+ B cells along with appropriate control populations. A flow cytometry technique is presented in this unit, which results in the selection and isolation of two populations of cells from a complex mixture based on physical properties (e.g., size and internal granularity) and correlated expression of several surface molecules.
Collapse
|
173
|
Hsu LY, Lauring J, Liang HE, Greenbaum S, Cado D, Zhuang Y, Schlissel MS. A conserved transcriptional enhancer regulates RAG gene expression in developing B cells. Immunity 2003; 19:105-17. [PMID: 12871643 DOI: 10.1016/s1074-7613(03)00181-x] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although expression of the RAG1 and RAG2 genes is essential for lymphocyte development, the mechanisms responsible for the lymphoid- and developmental stage-specific regulation of these genes are poorly understood. We have identified a novel, evolutionarily conserved transcriptional enhancer in the RAG locus, called Erag, which was essential for the expression of a chromosomal reporter gene driven by either RAG promoter. Targeted deletion of Erag in the mouse germline results in a partial block in B cell development associated with deficient V(D)J recombination, whereas T cell development appears unaffected. We found that E2A transcription factors bind to Erag in vivo and can transactivate Erag-dependent reporter constructs in cotransfected cell lines. These findings lead us to conclude that RAG transcription is regulated by distinct elements in developing B and T cells and that Erag is required for optimal levels of RAG expression in early B cell precursors but not in T cells.
Collapse
Affiliation(s)
- Lih-Yun Hsu
- Division of Immunology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | | | | | | | | | | |
Collapse
|
174
|
Tsapogas P, Breslin T, Bilke S, Lagergren A, Månsson R, Liberg D, Peterson C, Sigvardsson M. RNA analysis of B cell lines arrested at defined stages of differentiation allows for an approximation of gene expression patterns during B cell development. J Leukoc Biol 2003; 74:102-10. [PMID: 12832448 DOI: 10.1189/jlb.0103008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The development of a mature B lymphocyte from a bone marrow stem cell is a highly ordered process involving stages with defined features and gene expression patterns. To obtain a deeper understanding of the molecular genetics of this process, we have performed RNA expression analysis of a set of mouse B lineage cell lines representing defined stages of B cell development using Affymetrix microarrays. The cells were grouped based on their previously defined phenotypic features, and a gene expression pattern for each group of cell lines was established. The data indicated that the cell lines representing a defined stage generally presented a high similarity in overall expression profiles. Numerous genes could be identified as expressed with a restricted pattern using dCHIP-based, quantitative comparisons or presence/absence-based, probabilistic state analysis. These experiments provide a model for gene expression during B cell development, and the correctly identified expression patterns of a number of control genes suggest that a series of cell lines can be useful tools in the elucidation of the molecular genetics of a complex differentiation process.
Collapse
Affiliation(s)
- Panagiotis Tsapogas
- Laboratory for Cellular Differentiation, Department for Stemcell Biology, Lund University, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
175
|
Brunner C, Marinkovic D, Klein J, Samardzic T, Nitschke L, Wirth T. B cell-specific transgenic expression of Bcl2 rescues early B lymphopoiesis but not B cell responses in BOB.1/OBF.1-deficient mice. J Exp Med 2003; 197:1205-11. [PMID: 12732662 PMCID: PMC2193979 DOI: 10.1084/jem.20022014] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Mice deficient for the transcriptional coactivator BOB.1/OBF.1 show several defects in B cell differentiation. Numbers of immature transitional B cells in the bone marrow are reduced and fewer B cells reach the periphery. Furthermore, germinal center B cells are absent and marginal zone (MZ) B lymphocytes are markedly reduced. Increased levels of B cell apoptosis in these mice prompted us to analyze expression and function of antiapoptotic proteins. Bcl2 expression is strongly reduced in BOB.1/OBF.1-deficient pre-B cells. When BOB.1/OBF.1-deficient mice were crossed with Bcl2-transgenic mice, B cell development in the bone marrow and numbers of B cells in peripheral lymphoid organs were normalized. However, neither germinal center B cells nor MZ B cells were rescued. Additionally, Bcl2 did not rescue the defects in signaling and affinity maturation found in BOB.1/OBF.1-deficient mice. Interestingly, Bcl2-transgenic mice by themselves show an MZ B cell defect. Virtually no functional MZ B cells were detected in these mice. In contrast, mice deficient for Bcl2 show a relative increase in MZ B cell numbers, indicating a previously undetected function of Bcl2 for this B cell compartment.
Collapse
Affiliation(s)
- Cornelia Brunner
- Department of Physiological Chemistry, University of Ulm, D-89081 Ulm, Germany
| | | | | | | | | | | |
Collapse
|
176
|
Johnson K, Angelin-Duclos C, Park S, Calame KL. Changes in histone acetylation are associated with differences in accessibility of V(H) gene segments to V-DJ recombination during B-cell ontogeny and development. Mol Cell Biol 2003; 23:2438-50. [PMID: 12640127 PMCID: PMC150727 DOI: 10.1128/mcb.23.7.2438-2450.2003] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Although V(D)J recombination is thought to be regulated by changes in the accessibility of chromatin to the recombinase machinery, the mechanisms responsible for establishing "open" chromatin are poorly understood. We performed a detailed study of the acetylation status of histones associated with 11 V(H) gene segments, their flanking regions, and various intergenic elements during B-cell development and ontogeny, when V(D)J recombination is highly regulated. Histone H4 shows higher and more-regulated acetylation than does histone H3 in the V(H) locus. In adult pro-B cells, V(H) gene segments are acetylated prior to V(D)J rearrangement, with higher acetylation associated with J(H)-distal V(H) gene segments. While large regions of the V(H) locus have similar patterns of histone acetylation, acetylation is narrowly confined to the gene segments, their flanking promoters, and recombinase signal sequence elements. Thus, histone acetylation in the V(H) locus is both locally and globally regulated. Increased histone acetylation accompanies preferential recombination of J(H)-proximal V(H) gene segments in early B-cell ontogeny, and decreased histone acetylation accompanies inhibition of V-DJ recombination in a transgenic model of immunoglobulin heavy-chain allelic exclusion. Thus, changes in histone acetylation appear to be important for both promotion and inhibition of V-DJ rearrangement during B-cell ontogeny and development.
Collapse
Affiliation(s)
- Kristen Johnson
- Department of Microbiology, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | | | | | | |
Collapse
|
177
|
Yu D, Allman D, Goldschmidt MH, Atchison ML, Monroe JG, Thomas-Tikhonenko A. Oscillation between B-lymphoid and myeloid lineages in Myc-induced hematopoietic tumors following spontaneous silencing/reactivation of the EBF/Pax5 pathway. Blood 2003; 101:1950-5. [PMID: 12406913 PMCID: PMC4547547 DOI: 10.1182/blood-2002-06-1797] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
B lymphomagenesis is an uncontrolled expansion of immature precursors that fail to complete their differentiation program. This failure could be at least partly explained by inappropriate expression of several oncogenic transcription factors, such as Pax5 and Myc. Both Pax5 and c-Myc are implicated in the pathogenesis of non-Hodgkin lymphomas. To address their role in lymphomagenesis, we analyzed B-cell lymphomas derived from p53-null bone marrow progenitors infected in vivo by a Myc-encoding retrovirus. All Myc-induced lymphomas invariably maintained expression of Pax5, which is thought to be incompatible with terminal differentiation. However, upon culturing in vitro, several cell lines spontaneously down-regulated Pax5 and its target genes CD19, N-Myc, and MB1. Unexpectedly, other B-cell markers (eg, CD45R) were also down-regulated, and markers of myeloid lineage (CD11b and F4/80 antigen) were acquired instead. Moreover, cells assumed the morphology reminiscent of myeloid cells. A pool of F4/80-positive cells as well as several single-cell clones were obtained and reinjected into syngeneic mice. Remarkably, pooled cells rapidly re-expressed Pax5 and formed tumors of relatively mature lymphoid phenotype, with surface immunoglobulins being abundantly expressed. Approximately half of tumorigenic single-cell clones also abandoned myeloid differentiation and gave rise to B lymphomas. However, when secondary lymphoma cells were returned to in vitro conditions, they once again switched to myeloid differentiation. This process could be curbed via enforced expression of retrovirally encoded Pax5. Our data demonstrate that some Myc target cells are bipotent B-lymphoid/myeloid progenitors with the astonishing capacity to undergo successive rounds of lineage switching.
Collapse
MESH Headings
- Animals
- Antigens, CD19/biosynthesis
- Antigens, CD19/genetics
- Antigens, Differentiation/biosynthesis
- Antigens, Differentiation/genetics
- Antigens, Differentiation, B-Lymphocyte/biosynthesis
- Antigens, Differentiation, B-Lymphocyte/genetics
- CD11b Antigen/biosynthesis
- CD11b Antigen/genetics
- Cell Adhesion
- Cell Differentiation
- Cell Lineage/genetics
- Cell Size
- Cell Transformation, Neoplastic/genetics
- Clone Cells/transplantation
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/physiology
- Gene Expression Regulation, Neoplastic
- Gene Silencing
- Genes, myc
- Leukocyte Common Antigens/biosynthesis
- Leukocyte Common Antigens/genetics
- Lymphocytes/pathology
- Lymphoma, B-Cell/genetics
- Lymphoma, B-Cell/pathology
- Mice
- Mice, Inbred C57BL
- Myeloid Cells/pathology
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Neoplasm Transplantation
- PAX5 Transcription Factor
- Receptors, Antigen, B-Cell/biosynthesis
- Receptors, Antigen, B-Cell/genetics
- Recombinant Fusion Proteins/physiology
- Trans-Activators/physiology
- Transcription Factors/genetics
- Transcription Factors/physiology
- Tumor Cells, Cultured/metabolism
- Tumor Cells, Cultured/pathology
Collapse
Affiliation(s)
- Duonan Yu
- Departments of Pathobiology, Pathology and Laboratory Medicine, and Animal Biology, University of Pennsylvania, Philadelphia, PA 19104-6051, USA
| | | | | | | | | | | |
Collapse
|
178
|
Sun J, Matthias G, Mihatsch MJ, Georgopoulos K, Matthias P. Lack of the transcriptional coactivator OBF-1 prevents the development of systemic lupus erythematosus-like phenotypes in Aiolos mutant mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:1699-706. [PMID: 12574333 DOI: 10.4049/jimmunol.170.4.1699] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Here we show that mice lacking the zinc finger transcription factor Aiolos develop the symptoms of human systemic lupus erythematosus (SLE), which is characterized by the production of anti-dsDNA Ab and immune complex-mediated glomerulonephritis. This finding indicates that normal Aiolos function is necessary to maintain immune homeostasis and suppress the development of systemic autoimmune disease and implicates Aiolos as a possible candidate gene for SLE. Interestingly, Aiolos-null mice can no longer mount autoimmune reactions and completely fail to develop SLE when they are deficient for the B cell-specific transcription coactivator OBF-1. The lack of OBF-1 reverses several Aiolos mutant mouse phenotypes, such as B cell hyperproliferation, high expression of activation marker on B cells, and spontaneous germinal center formation. Unexpectedly, B cell development at the immature B cell stage is severely impaired in the bone marrow of Aiolos/OBF-1 double-deficient mice, demonstrating the key role of these factors in the transition from pre-B to immature B cells. Our results indicate that B cells play a crucial role in the development of SLE in Aiolos mutant mice and might be useful for the strategy of SLE treatment.
Collapse
Affiliation(s)
- Jian Sun
- Friedrich Miescher Institute for Biomedical Research, Novartis Research Foundation, Basel, Switzerland
| | | | | | | | | |
Collapse
|
179
|
Hayakawa K, Asano M, Shinton SA, Gui M, Wen LJ, Dashoff J, Hardy RR. Positive selection of anti-thy-1 autoreactive B-1 cells and natural serum autoantibody production independent from bone marrow B cell development. J Exp Med 2003; 197:87-99. [PMID: 12515816 PMCID: PMC2193793 DOI: 10.1084/jem.20021459] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
A natural serum autoantibody specific for the Thy-1 glycoprotein (anti-Thy-1 autoantibody [ATA]) is produced by B-1 cells that are positively selected by self-antigen. Here, using ATA micro kappa transgenic mice we show that cells with this B cell receptor are negatively selected during bone marrow (BM) development. In a Thy-1 null environment, BM ATA B cells progress to a normal follicular stage in spleen. However, in a self-antigen-positive environment, development is arrested at an immature stage in the spleen, concomitant with induction of CD5. Such cells are tolerant and short-lived, different from B-1. Nonetheless, ATA-positive selection was evident by self-antigen-dependent high serum ATA production, comprising approximately 90% of serum immunoglobulin M in ATA micro kappa mice. Splenectomy did not eliminate ATA production and transfer of tolerant splenic B cells did not induce it. These findings demonstrate that B-1 positive selection, resulting in the production of natural serum ATA, arises independently from the major pathway of BM B cell development and selection.
Collapse
|
180
|
Otero DC, Anzelon AN, Rickert RC. CD19 function in early and late B cell development: I. Maintenance of follicular and marginal zone B cells requires CD19-dependent survival signals. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:73-83. [PMID: 12496385 DOI: 10.4049/jimmunol.170.1.73] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Loss of membrane-bound Ig results in the rapid onset of apoptosis in recirculating B cells. This observation implies that a competent B cell receptor (BCR) is not only required for Ag-dependent differentiation, but also for continued survival in the peripheral immune system. Expression of the B cell coreceptor, CD19, is likewise essential for key B cell differentiative events including the formation of B-1, germinal center, and marginal zone (MZ) B cells. In this study, we report that CD19 also exerts a role before Ag encounter by promoting the survival of naive recirculating B cells. This aspect of CD19 signaling was first suggested by the analysis of mixed bone marrow chimeras, wherein CD19-/- B cells fail to effectively compete with wild-type B cells to reconstitute the peripheral B cell compartment. Consistent with this observation, Bromodeoxyuridine- and CFSE-labeling studies reveal a shorter in vivo life span for CD19-/- B cells vs their wild-type counterparts. Moreover, we find that CD19 is necessary for propagation of BCR-induced survival signals and thus may contribute to homeostatic mechanisms of tonic signaling. To determine whether provision of a constitutive survival signal could compensate for the loss of CD19 in vivo, Bcl-2-transgenic mice were bred onto the CD19-/- background. Here, we observe an increase in follicular B cell numbers and selective recovery of the MZ B cell compartment. Together these findings suggest that maintenance of the follicular and MZ B cell compartments require CD19-dependent survival signals.
Collapse
Affiliation(s)
- Dennis C Otero
- Division of Biology and University of California, San Diego Cancer Center, University of California, San Diego, La Jolla, CA 92093-0322, USA
| | | | | |
Collapse
|
181
|
Manis JP, Michaelson JS, Birshtein BK, Alt FW. Elucidation of a downstream boundary of the 3' IgH regulatory region. Mol Immunol 2003; 39:753-60. [PMID: 12531286 DOI: 10.1016/s0161-5890(02)00256-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Class switch recombination (CSR) changes the immunoglobulin heavy chain (IgH) constant region gene (C(H)) in B cells from IgM to IgG, IgA, or IgE, without modifying the variable region gene segment. This process requires transcription through switch (S) regions located upstream of the C(H) genes targeted for CSR, a process that relies on the activity of an uncharacterized regulatory region at the 3' end of the C(H) locus (3' IgH RR) that has been implicated via the effects of pgk-neo cassettes inserted into the locus. The 30kb region just downstream of the most 3' C(H) gene (Ca) contains four known enhancer elements including HS3a, HS1,2, HS3b, and HS4. Replacement of either of the proximal two enhancer elements (HS3a or HS1,2) with a pgk-neo gene cassette disrupted germline transcription of and CSR to most C(H) genes. However, replacement of either of the enhancers with a loxP sequence had no effect on CSR indicating that these elements are not critical for CSR. Insertion of a pgk-neo cassette at various sites within the C(H) locus inhibited CSR to upstream, but not downstream C(H) genes, supporting the notion that the pgk-neo cassette insertion into the locus short-circuits the ability of the 3' RR to facilitate CSR of dependent C(H) genes upstream of the insertion. These analyses also indicated that the key elements of the 3' IgH RR were downstream from HS1,2. In this study, we have sought to localize the 3' IgH RR by defining its 3' boundary. For this purpose, a pgk-neo gene cassette was targeted 2kb downstream of the HS4 element in ES cells that had normal ability to undergo CSR. We then employed Rag-2 deficient blastocyst complementation to generate chimeric mice that harbored B cells homozygous for this mutation. Such chimeras exhibited normal reconstitution of the splenic compartment and had normal serum immunoglobulin levels. Upon in vitro activation, transcription from the pgk-neo cassette was induced in B cells, however, CSR to all measured IgH isotypes occurred at normal levels. These findings, coupled with previous pgk-neo insertion studies, suggest that key elements of the 3' IgH RR lie within a 17kb region between HS1,2 and 2kb downstream of HS4.
Collapse
Affiliation(s)
- John P Manis
- Howard Hughes Medical Institute, Children's Hospital, Harvard Medical School Boston, Enders Building, Room 861, 320 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
182
|
Flemming A, Brummer T, Reth M, Jumaa H. The adaptor protein SLP-65 acts as a tumor suppressor that limits pre-B cell expansion. Nat Immunol 2003; 4:38-43. [PMID: 12436112 DOI: 10.1038/ni862] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2002] [Accepted: 10/16/2002] [Indexed: 11/08/2022]
Abstract
Mice deficient in the adaptor protein SLP-65 (also known as BLNK) have reduced numbers of mature B cells, but an increased pre-B cell compartment. We show here that compared to wild-type cells, SLP-65(-/-) pre-B cells show an enhanced ex vivo proliferative capacity. This proliferation requires interleukin 7 and expression of the pre-B cell receptor (pre-BCR). In addition, SLP-65(-/-) mice have a high incidence of pre-B cell lymphoma. Reintroduction of SLP-65 into SLP-65(-/-) pre-B cells led to pre-BCR down-regulation and enhanced differentiation. Our results indicate that SLP-65 regulates a developmental program that promotes differentiation and limits pre-B cell expansion, thereby acting as a tumor suppressor.
Collapse
Affiliation(s)
- Alexandra Flemming
- Institute for Biology III, Albert-Ludwigs University of Freiburg and Max Planck Institute for Immunobiology, Stuebeweg 51, 79108 Freiburg, Germany
| | | | | | | |
Collapse
|
183
|
Abstract
BACKGROUND Reconstitution of the immune system following allogeneic stem-cell transplantation is a complex process that requires successful engraftment of the hematopoietic stem cell, as well as adequate thymic function. As the majority of patients have reduced thymic function due to age, hormonal changes, as well as the damage caused by conditioning and GvHD, immune recovery is often delayed and incomplete. Following graft infusion there is rapid proliferation of natural killer (NK) cells that appear to proceed directly from the hematopoietic stem cell. B-cell function is dependent on specific maturation development in the BM micro-environment, as well as CD4 help. The CD8 population expands rapidly due to proliferation of many memory cells that react against Class I Ags, as well as viral molecules. Expansion of T-helper cells originates mainly from the memory pool that is present in the bone marrow graft. Naive cells require competent thymus hence the CD4 cell counts may be subnormal with clinical immunodeficiency. Controversy remains as to the capacity of the thymus to recover and thus extra thymic proliferation of T cells have been postulated. However these cells appear to have a limited capacity to expand and a fixed repertoire. DISCUSSION Donor lymphocyte infusions may contribute a competent CD4 population that can cause GvHD, but have limitations in the capacity to respond to new antigens. Future research needs to be concentrated on improving the capacity of the thymus to reconstitute a functional naive population.
Collapse
Affiliation(s)
- N Novitzky
- The University of Cape Town Leukaemia Centre and the Department of Haematology, Groote Schuur Hospital, Cape Town, South Africa
| | | |
Collapse
|
184
|
Abstract
Lymphocytes develop from hematopoietic stem cells through a series of highly regulated differentiation events in the bone marrow and thymus. A number of transcription factors are known to collaborate in controlling the timing and specificity of gene expression required for these developmental processes to occur. The basic helix-loop-helix (bHLH) proteins encoded by the E2A gene have been shown to play particularly important roles in the initiation and progression of lymphocyte differentiation. Gene targeting experiments in mice have demonstrated a requirement for E2A proteins at the onset of B lymphocyte development. More recent studies have broadened our view on the function of E2A proteins at multiple stages of lymphopoiesis and in the regulation of lymphoid-specific gene expression. Here we review the mammalian E2A proteins and the accumulated evidence demonstrating central roles for E2A throughout early B and T lymphocyte development. We also speculate on the direction of future research on the mechanisms underlying the lineage and stage-specific functions of E2A in lymphopoiesis.
Collapse
Affiliation(s)
- Stephen Greenbaum
- Department of Immunology, Box 3010, Duke University Medical Center, 328 Jones Building, Research Drive, Durham, NC 27710, USA.
| | | |
Collapse
|
185
|
Abstract
Multipotent hematopoietic stem cells (HSC) differentiate into mature cells in the fetal liver (FL) during embryonic development, and in the bone marrow (BM) in adult animals. Multilineage differentiation is accomplished by the stepwise commitment of stem cells that sequentially loose differentiation potential. The characterization of the intermediate lymphoid precursors isolated from both hematopoietic sites suggests that, in FL, their potential of differentiation as well as their growth factor requirements are apparently less strict than in the BM. This could be the result of different commitment strategies at those sites: stochastic in the FL and instructive in the BM.
Collapse
Affiliation(s)
- Iyadh Douagi
- Unité du Développement des Lymphocytes, URA CNRS 1961, Institut Pasteur, 25-28 Rue du Docteur Roux, 75724 Paris, Cedex 15, France
| | | | | |
Collapse
|
186
|
de Andrés B, Gonzalo P, Minguet S, Martínez-Marin JA, Soro PG, Marcos MAR, Gaspar ML. The first 3 days of B-cell development in the mouse embryo. Blood 2002; 100:4074-81. [PMID: 12393735 DOI: 10.1182/blood-2002-03-0809] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
B-lineage-committed cells are believed to arise in the liver of mouse embryos at 14 days after coitus (dpc). However, pre-B-specific gene transcripts and DJH gene rearrangements have been detected in earlier, midgestation embryos. We describe here a population of c-kit(+)AA4.1(+)CD19(+)Pax5(+) cells present in the aorta-gonad-mesonephros (AGM) area and in the livers of 11-dpc mouse embryos. In contrast to multipotent c-kit(+)AA4.1(+)CD19(-) hematopoietic stem cells (HSCs), these c-kit(+)AA4.1(+)CD19(+) progenitors differentiated only to B-lineage cells in vitro. We propose that mouse embryonic B lymphopoiesis starts earlier than previously thought, at 10 to 11 dpc, both in liver and extra-liver hematopoietic sites. The B-cell differentiation program is not delayed with respect to the emerging lymphohematopoiesis events in the midgestation mouse embryo (8-9 dpc).
Collapse
Affiliation(s)
- Belen de Andrés
- Centro Nacional de Microbiologia, Instituto de Salud Carlos III (ISCIII), Majadahonda, Spain
| | | | | | | | | | | | | |
Collapse
|
187
|
Kincade PW, Igarashi H, Medina KL, Kouro T, Yokota T, Rossi MID, Owen JJT, Garrett KP, Sun XH, Sakaguchi N. Lymphoid lineage cells in adult murine bone marrow diverge from those of other blood cells at an early, hormone-sensitive stage. Semin Immunol 2002; 14:385-94. [PMID: 12457611 DOI: 10.1016/s1044532302000738] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Advances in cell sorting and GFP knock-in technology have made it possible to identify rare hematopoietic cells in murine bone marrow that are undergoing lymphocyte fate specification. Steroid hormones also represent important research tools for investigating relationships between different categories of lympho-hematopoietic precursors. By selectively blocking entry into and progression within lymphoid lineages, the hormones probably have a major influence on numbers of lymphocytes that are produced under normal circumstances. These issues are discussed within the context of developmental age-dependent changes that occur in the lymphopoietic process.
Collapse
Affiliation(s)
- Paul W Kincade
- Immunobiology and Cancer Program, Oklahoma Medical Research Foundation, 825 N.E. 13th Street, Oklahoma City, OK 73104, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
188
|
Serra P, Amrani A, Han B, Yamanouchi J, Thiessen SJ, Santamaria P. RAG-dependent peripheral T cell receptor diversification in CD8+ T lymphocytes. Proc Natl Acad Sci U S A 2002; 99:15566-71. [PMID: 12432095 PMCID: PMC137757 DOI: 10.1073/pnas.242321099] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Rearrangement of T cell receptor (TCR) genes is driven by transient expression of V(D)J recombination-activating genes (RAGs) during lymphocyte development. Immunological dogma holds that T cells irreversibly terminate RAG expression before exiting the thymus, and that all of the progeny arising from mature T cells express the parental TCRs. When single pancreatic islet-derived, NRP-A7 peptide-reactive CD8(+) T cells from nonobese diabetic (NOD) mice were repeatedly stimulated with peptide-pulsed dendritic cells, daughter T cells reexpressed RAGs, lost their ability to bind to NRP-A7K(d) tetramers, ceased to transcribe tetramer-specific TCR genes, and, instead, expressed a vast array of other TCR rearrangements. Pancreatic lymph node (PLN) CD8(+) T cells from animals expressing a transgenic NRP-A7-reactive TCR transcribed and translated RAGs in vivo and displayed endogenous TCRs on their surface. RAG reexpression also occurred in the PLN CD8(+) T cells of wild-type NOD mice and could be induced in the peripheral CD8(+) T cells of nondiabetes-prone TCR-transgenic B10.H2(g7) mice by stimulation with peptide-pulsed dendritic cells. In contrast, reexpression of RAGs could not be induced in the CD8(+) T cells of B6 mice expressing an ovalbumin-specific, K(b)-restricted TCR, or in the CD8(+) T cells of NOD mice expressing a lymphocytic choriomeningitis virus-specific, D(b)-restricted TCR. Extra-thymic reexpression of the V(D)J recombination machinery in certain CD8(+) T cell subpopulations, therefore, enables further diversification of the peripheral T cell repertoire.
Collapse
MESH Headings
- Animals
- Antigen Presentation
- Antigens/immunology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Clone Cells/immunology
- DNA-Binding Proteins/biosynthesis
- DNA-Binding Proteins/physiology
- Dendritic Cells/immunology
- Gene Expression Regulation
- Gene Rearrangement, beta-Chain T-Cell Antigen Receptor
- Genes, RAG-1
- H-2 Antigens/immunology
- Homeodomain Proteins/biosynthesis
- Homeodomain Proteins/physiology
- Islets of Langerhans/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, Transgenic
- Ovalbumin/immunology
- Peptide Fragments/immunology
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Transcription, Genetic
Collapse
Affiliation(s)
- Pau Serra
- Department of Microbiology and Infectious Diseases, and Julia McFarlane Diabetes Research Centre, Faculty of Medicine, Health Sciences Centre, University of Calgary, 3330 Hospital Drive N.W., AB, Canada T2N 4N1
| | | | | | | | | | | |
Collapse
|
189
|
Hirose J, Kouro T, Igarashi H, Yokota T, Sakaguchi N, Kincade PW. A developing picture of lymphopoiesis in bone marrow. Immunol Rev 2002; 189:28-40. [PMID: 12445263 PMCID: PMC1850235 DOI: 10.1034/j.1600-065x.2002.18904.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The earliest progenitors of lymphocytes are extremely rare and typically present among very complex populations of hematopoietic cells. Additionally, it is difficult to know how cells with any given set of characteristics are developmentally related to stem cells and maturing lymphoid precursors. However, it is now possible to divide bone marrow into progressively smaller fractions and exploit well-defined culture systems to determine which ones contain cells that can turn into lymphocytes. Analysis of steroid hormone sensitive cells and use of two-step cultures is providing additional information about the most likely differentiation pathways for B and natural killer cell lineage lymphocytes. A newly identified category of early lymphoid progenitors can now be sorted to high purity from RAG1/GFP knock in mice. Furthermore, the same experimental model makes it possible to image lymphoid progenitors in fetal and adult hematopoietic tissues.
Collapse
Affiliation(s)
- Jun Hirose
- Immunobiology & Cancer Program, Oklahoma Medical Research Foundation 825 N.E. 13 Street, Oklahoma City, OK 73104
| | - Taku Kouro
- Immunobiology & Cancer Program, Oklahoma Medical Research Foundation 825 N.E. 13 Street, Oklahoma City, OK 73104
| | - Hideya Igarashi
- Immunobiology & Cancer Program, Oklahoma Medical Research Foundation 825 N.E. 13 Street, Oklahoma City, OK 73104
| | - Takafumi Yokota
- Immunobiology & Cancer Program, Oklahoma Medical Research Foundation 825 N.E. 13 Street, Oklahoma City, OK 73104
| | - Nobuo Sakaguchi
- Department of Immunology, Kumamoto University, School of Medicine 2-2-1 Honjo, Kumamoto, 860-0811 Japan
| | - Paul W. Kincade
- Immunobiology & Cancer Program, Oklahoma Medical Research Foundation 825 N.E. 13 Street, Oklahoma City, OK 73104
| |
Collapse
|
190
|
Abstract
Expression of surface immunoglobulin (sIg) related receptors has been conserved in phylogenetically distinct species as a critical checkpoint in B cell development. The sIg receptor comprises extracellular IgM heavy and light chains, with the potential for ligand binding, complexed to the Igalpha/Igbeta heterodimer that is responsible for signal transduction through sIg. Experimental systems, from both avian and murine models of B cell development, have been designed to identify the function of individual receptor components in B cell development. In this review, we assess the regulatory functions of different components of the sIg receptor complex during early development in experimental systems from evolutionarily distinct species.
Collapse
Affiliation(s)
- Kelly A Pike
- Department of Immunology, University of Toronto, 1 King's College Circle, Toronto, Ont., Canada M5S 1A8
| | | |
Collapse
|
191
|
Okubo T, Yanai N, Ikawa S, Obinata M. Reversible switching of expression of c-kit and Pax-5 in immature hematopoietic progenitor cells by stromal cells. Exp Hematol 2002; 30:1193-201. [PMID: 12384151 DOI: 10.1016/s0301-472x(02)00899-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Bone marrow stromal cells provide the microenvironment for self-renewal and differentiation of hematopoietic stem/progenitor cells through complex cell-cell interaction. To elucidate the regulatory mechanisms of hematopoiesis by stromal cells, we established a novel stroma-dependent hematopoietic cell line and explored the phenotypic changes regulated by the two stromal cells. MATERIALS AND METHODS DFC-28 cells clonally established from long-term bone marrow culture of C57BL/6 mice were sustained by coculture on MSS62 cells (mouse spleen stromal cell line). When DFC-28 cells were transferred to TBR31-1 cells (mouse bone marrow stromal cell line), their phenotypic changes were analyzed by flow cytometry and reverse transcriptase polymerase chain reaction. RESULTS DFC-28 cells on MSS62 cells exhibited surface phenotypes of the immature hematopoietic progenitor cells (Lin(-)AA4.1(+)c-kit(+)Sca-1(-)). By stroma-replacement from MSS62 cells to TBR31-1 cells, DFC-28 cells were differentiated into very early B-lymphoid stage characterized by c-kit down-regulation and induction of BP-1 and B-lymphoid-associated genes (Pax-5, CD19, TdT, Rag-1, and Rag-2). In addition, the differentiation phenotypes reverted to the immature state characterized by c-kit induction and down-regulation of BP-1 and B-lymphoid-associated genes by replacing stroma back to MSS62 from TBR31-1. Interleukin-7 stimulation and conditioned medium of TBR31-1 cells were ineffective in converting the differentiation phenotypes of DFC-28 cells. CONCLUSIONS The results demonstrate that the differentiation phenotypes and growth potential of stroma-dependent hematopoietic progenitor cells we established could be reversibly controlled via direct contact with stromal cells in the microenvironment.
Collapse
Affiliation(s)
- Tadashi Okubo
- Department of Cell Biology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | | | | | | |
Collapse
|
192
|
Schebesta M, Pfeffer PL, Busslinger M. Control of pre-BCR signaling by Pax5-dependent activation of the BLNK gene. Immunity 2002; 17:473-85. [PMID: 12387741 DOI: 10.1016/s1074-7613(02)00418-1] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The developmental progression from pro-B to pre-B cells is controlled by pre-B cell receptor (pre-BCR) signaling which depends on BLNK (SLP-65) for coupling the Syk kinase to its downstream effector pathways. Here we identified BLNK as a direct target of the transcription factor Pax5 (BSAP). Restoration of BLNK expression in Ig(mu) transgenic Pax5(-/-) pro-B cells resulted in constitutive pre-BCR signaling and increased cell proliferation without inducing progression to the pre-B cell stage. Ig(mu)(+) Pax5(-/-) pro-B cells expressing a BLNK-estrogen receptor fusion protein initiated signaling immediately upon hormone addition, which facilitated analysis of pre-BCR-induced gene expression changes. The pre-BCR was shown to execute its checkpoint function by regulating genes involved in cell proliferation, intracellular signaling, growth factor responsiveness, and V(D)J recombination.
Collapse
Affiliation(s)
- Michael Schebesta
- Research Institute of Molecular Pathology, Vienna Biocenter, Dr. Bohr-Gasse 7, A-1030 Vienna, Austria
| | | | | |
Collapse
|
193
|
Waskow C, Paul S, Haller C, Gassmann M, Rodewald HR. Viable c-Kit(W/W) mutants reveal pivotal role for c-kit in the maintenance of lymphopoiesis. Immunity 2002; 17:277-88. [PMID: 12354381 DOI: 10.1016/s1074-7613(02)00386-2] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mice lacking the receptor tyrosine kinase c-Kit (c-Kit(W/W)) have hematopoietic defects causing perinatal death. We have identified a viable c-Kit(W/W) mouse, termed the "Vickid" mouse. Around birth, c-Kit plays a redundant role in T and no role in B cell development. Here, we show an age-dependent, progressive decline of pro-T and pro-B cells accompanied by loss of common lymphoid progenitors in the bone marrow in adult mice lacking c-Kit. Adult c-Kit(W/W) hematopoietic stem cells can engraft in host bone marrow but fail to radioprotect, form spleen colonies, or establish sustained lymphopoiesis. These defects in adult T and B cell development are also evident in a second viable c-Kit(W/W) strain, rescued by overexpression of erythropoietin.
Collapse
Affiliation(s)
- Claudia Waskow
- Department for Immunology, University of Ulm, Ulm, Germany
| | | | | | | | | |
Collapse
|
194
|
Meffre E, Nussenzweig MC. Deletion of immunoglobulin beta in developing B cells leads to cell death. Proc Natl Acad Sci U S A 2002; 99:11334-9. [PMID: 12165571 PMCID: PMC123257 DOI: 10.1073/pnas.172369999] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2002] [Accepted: 06/20/2002] [Indexed: 01/25/2023] Open
Abstract
Inducible gene-targeting experiments have shown that Igmu expression is essential for maintaining survival of mature B cells, but the role of Igmu expression in immature B cell survival has not been determined. To assess whether continued B cell receptor (BCR) expression is required for bone marrow B cell precursor development and survival, we developed a method for conditional gene deletion in these cells. Recombination-activating gene regulatory elements were used to express Igbeta cDNA as a transgene to complement Igbeta(-/-) mice. Transgenic Igbeta expression was found in proB and small preB cells and was extinguished in large preB and immature B cells. Igbeta deletion from large preB cells and immature B cells resulted in cell death that could be rescued by transgenic bcl-2 expression. However, transgenic bcl-2 expression was unable to restore B cell development in the absence of Igbeta. We conclude that Igbeta expression is essential to maintain preB cell and immature B cell survival and to mediate B cell differentiation. In addition, complementation of null mutations with cDNAs under the control of heterologous bacterial artificial chromosomes is a useful method for cell-type-specific and developmentally regulated gene ablation in vivo.
Collapse
Affiliation(s)
- Eric Meffre
- Laboratory of Molecular Immunology, The Rockefeller University and Howard Hughes Medical Institute, 1230 York Avenue, New York, NY 10021-6399, USA
| | | |
Collapse
|
195
|
Igarashi H, Gregory SC, Yokota T, Sakaguchi N, Kincade PW. Transcription from the RAG1 locus marks the earliest lymphocyte progenitors in bone marrow. Immunity 2002; 17:117-30. [PMID: 12196284 DOI: 10.1016/s1074-7613(02)00366-7] [Citation(s) in RCA: 355] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Viable Lin(-) CD27(+) c-kit(Hi) Sca-1(Hi) GFP(+) cells recovered from heterozygous RAG1/GFP knockin mice progressed through previously defined stages of B, T, and NK cell lineage differentiation. In contrast to the GFP(-) cohort, there was minimal myeloid or erythroid potential in cells with an active RAG1 locus. Partial overlap with TdT(+) cells suggested that distinctive early lymphocyte characteristics are not synchronously acquired. Rearrangement of Ig genes initiates before typical lymphoid lineage patterns of gene expression are established, and activation of the RAG1 locus transiently occurs in a large fraction of cells destined to become NK cells. These early lymphocyte progenitors (ELP) are distinct from stem cells, previously described prolymphocytes, or progenitors corresponding to other blood cell lineages.
Collapse
Affiliation(s)
- Hideya Igarashi
- Immunobiology and Cancer Program, Oklahoma Medical Research Foundation, 825 Northeast 13th Street, Oklahoma City 73104, USA
| | | | | | | | | |
Collapse
|
196
|
Smith EMK, Gisler R, Sigvardsson M. Cloning and characterization of a promoter flanking the early B cell factor (EBF) gene indicates roles for E-proteins and autoregulation in the control of EBF expression. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:261-70. [PMID: 12077253 DOI: 10.4049/jimmunol.169.1.261] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The early B cell factor (EBF) is a transcription factor shown crucial for the development of B lymphocytes. The protein is expressed from the earliest stages of B cell development until the mature B cell stage, but the control elements responsible for the regulation of the gene are unknown. In this study, we report of the identification of a promoter region flanking the EBF gene. Several transcription start sites were identified by primer extension analysis in a region approximately 3.1 kb from the predicted ATG. Transient transfections revealed that this region was able to stimulate transcription of a reporter gene in B lymphoid and to a lesser extent, myeloid cells, but not in a pre-T cell line. The promoter was also able to functionally interact with E47, suggesting that the EBF gene may be a direct target for activation by E-proteins. In addition, functional binding of EBF to its own promoter was confirmed by EMSA and transfection assays indicating that the EBF protein may be involved in an autoregulatory loop. Finally, a tissue-restricted factor was able to bind an upstream regulatory region in B-lineage cells, further supporting the idea that the cloned promoter participates in the regulation of stage and lineage specific expression of the EBF gene.
Collapse
Affiliation(s)
- Emma M K Smith
- Laboratory of Cellular Differentiation, Department of Stem Cell Biology, Lund University, Lund, Sweden
| | | | | |
Collapse
|
197
|
Abstract
Whether B-1a (CD5+) cells are a distinct lineage derived from committed fetal/neonatal precursors or arise from follicular B-2 cells in response to BCR ligation and other, unknown signals remains controversial. Recent evidence indicates that B-1a cells can derive from adult precursors expressing an appropriate specificity when the (self-) antigen is present. Antibody specificity determines whether a B cell expressing immunoglobulin transgenes has a B-2, B-1a or marginal zone (MZ) phenotype. MZ cells share many phenotypic characteristics of B-1 cells and, like them, appear to develop in response to T independent type 2 antigens. Because fetal-derived B cell progenitors fail to express terminal deoxynucleotidyl transferase (TdT) and for other reasons, they are likely to express a repertoire that allows selection into the B-1a population. As it is selected by self-antigen, the B-1 repertoire tends to be autoreactive. This potentially dangerous repertoire is also useful, as B-1 cells are essential for resistance to several pathogens and they play an important role in mucosal immunity. The CD5 molecule can function as a negative regulator of BCR signaling that may help prevent inappropriate activation of autoreactive B-1a cells.
Collapse
Affiliation(s)
- Robert Berland
- Department of Pathology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA.
| | | |
Collapse
|
198
|
Miranda GA, Villalvazo M, Galic Z, Alva J, Abrines R, Yates Y, Evans CJ, Aguilera RJ. Combinatorial regulation of the murine RAG-2 promoter by Sp1 and distinct lymphocyte-specific transcription factors. Mol Immunol 2002; 38:1151-9. [PMID: 12044781 DOI: 10.1016/s0161-5890(02)00007-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The recombination activation genes, RAG-1 and RAG-2, encode the critical components of the recombinase complex responsible for the generation of functional antigen receptor genes. In order to gain an insight into the transcription factors and cis-acting elements that regulate the lymphocyte-specific expression of RAG-2, the promoter-region of this gene was isolated and characterized. This analysis demonstrated that a relatively small promoter fragment could confer lymphocyte-restricted expression to a reporter construct. Our work and that of others subsequently revealed that RAG-2 promoter expression is positively regulated by BSAP (PAX-5) and c-Myb transcription factors in B- and T-lineage cells, respectively. Although BSAP and c-Myb were deemed necessary for lymphocyte-specific expression, our analysis also uncovered a G-rich region at the 5'-end of the core promoter that was essential for full activity in lymphocyte cell lines. Site-directed mutagenesis revealed that a GA-box within the G-rich region was required for full promoter activity and subsequent DNA binding assays demonstrated that this element was specifically recognized by Sp1. Apart from showing that Sp1 interacts within the RAG-2 promoter, we also demonstrate that the Sp1-binding site is necessary for the high-level activation of this promoter.
Collapse
Affiliation(s)
- Gustavo A Miranda
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles 405 Hilgard Ave, Los Angeles, CA 90095-1606, USA
| | | | | | | | | | | | | | | |
Collapse
|
199
|
Gisler R, Sigvardsson M. The human V-preB promoter is a target for coordinated activation by early B cell factor and E47. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:5130-8. [PMID: 11994467 DOI: 10.4049/jimmunol.168.10.5130] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The development of mature B lymphoid cells involves a highly orchestrated regulation of stage- and lineage-specific genes. In this study, we report an analysis of the human surrogate L chain VpreB promoter. The promoter has an overall homology of 56% to the mouse counterpart and displays a preB cell-restricted activity in transient transfections in cell lines. The promoter harbors three independent binding sites for early B cell factor (EBF) as defined by EMSA and supershift experiments. These sites were important for the full function of the promoter in a preB cell line, and chromatin immunoprecipitation experiments indicate that EBF interacts with the promoter in vivo. In addition to this, ectopic expression of EBF induces the activity of a reporter gene under control of the VpreB promoter in epithelioid HeLa cells, an effect augmented by coexpression of the basic-helix-loop helix transcription factor E47. The ability to interact directly with E47 was shared by the promoters controlling the human mb-1 and B29 genes. These data indicate that the human VpreB promoter is a direct target for activation by EBF and E47 and that functional collaboration between these proteins may be of great importance in human B cell development.
Collapse
Affiliation(s)
- Ramiro Gisler
- Laboratory for Cellular Differentiation, Department for Stem Cell Biology, BMC B12, 22184 Lund, Sweden.
| | | |
Collapse
|
200
|
Bichi R, Shinton SA, Martin ES, Koval A, Calin GA, Cesari R, Russo G, Hardy RR, Croce CM. Human chronic lymphocytic leukemia modeled in mouse by targeted TCL1 expression. Proc Natl Acad Sci U S A 2002; 99:6955-60. [PMID: 12011454 PMCID: PMC124510 DOI: 10.1073/pnas.102181599] [Citation(s) in RCA: 495] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The TCL1 gene at 14q32.1 is involved in chromosomal translocations and inversions in mature T cell leukemias. These leukemias are classified either as T prolymphocytic leukemias, which occur very late in life, or as T chronic lymphocytic leukemias, which often arise in patients with ataxia telangiectasia (AT) at a young age. In transgenic animals, the deregulated expression of TCL1 leads to mature T cell leukemia, demonstrating the role of TCL1 in the initiation of malignant transformation in T cell neoplasia. Expression of high levels of Tcl1 have also been found in a variety of human tumor-derived B cell lines ranging from pre-B cell to mature B cell. Here we describe the phenotype of transgenic mice, E mu-TCL1, established with TCL1 under the control of a V(H) promoter-Ig(H)-E mu enhancer to target TCL1 expression to immature and mature B cells. Flow cytometric analysis reveals a markedly expanded CD5(+) population in the peritoneal cavity of E mu-TCL1 mice starting at 2 mo of age that becomes evident in the spleen by 3-5 mo and in the bone marrow by 5-8 mo. Analysis of Ig gene rearrangements indicates monoclonality or oligoclonality in these populations, suggesting a preneoplastic expansion of CD5(+) B cell clones, with the elder mice eventually developing a chronic lymphocytic leukemia (CLL)-like disorder resembling human B-CLL. Our findings provide an animal model for CLL, the most common human leukemia, and demonstrate that deregulation of the Tcl1 pathway plays a crucial role in CLL pathogenesis.
Collapse
MESH Headings
- Aging
- Animals
- CD5 Antigens
- Cell Cycle
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- DNA-Binding Proteins/physiology
- Disease Models, Animal
- G1 Phase
- Gene Targeting
- Humans
- Immunoenzyme Techniques
- Immunoglobulin Heavy Chains
- Immunoglobulin M
- Immunoglobulin Variable Region
- Immunophenotyping
- Leukemia, Lymphocytic, Chronic, B-Cell/etiology
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Mice
- Mice, Transgenic
- Plasmids
- Proto-Oncogene Proteins
- Resting Phase, Cell Cycle
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcription Factors/physiology
Collapse
Affiliation(s)
- Roberta Bichi
- Kimmel Cancer Center, Jefferson Medical College, 233 South 10th Street, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | | | | | |
Collapse
|