151
|
Gotoh K, Yoshimori M, Kanbara K, Tamamura H, Kanamoto T, Mochizuki K, Fujii N, Nakashima H. Increase of R5 HIV-1 infection and CCR5 expression in T cells treated with high concentrations of CXCR4 antagonists and SDF-1. J Infect Chemother 2001; 7:28-36. [PMID: 11406754 DOI: 10.1007/s101560170031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2000] [Accepted: 11/01/2000] [Indexed: 10/27/2022]
Abstract
The chemokine receptors CXCR4 and CCR5 are considered to be potential targets for the inhibition of HIV-1 replication. We found that the synthetic peptides T134 and T140 (see text for full names) inhibited X4 HIV-1 infection with selectivity and low toxicity because they acted as CXCR4 antagonists. However, high concentrations of T134, T140, and ALX40-4C (see text for full name) increased the expression of CCR5 and R5 HIV-1 infection, as did stromal cell-derived factor 1 (SDF-1). In contrast to CXCR4 antagonists and SDF-1, viral monocyte inflammatory protein (vMIP) II inhibited not only anti-CXCR4 monoclonal antibody (MAb) but also inhibited anti-CCR5 MAb binding to human peripheral blood mononuclear cells, and inhibited both X4 and R5 HIV-1 strains. T134, T140, ALX40-4C, and SDF-1 increased viral transcription in the treated cells. In addition, ALX40-4C and SDF-1 also increased nuclear transcription factor (NF)-kappaB. However, the mechanisms of action of T134 and T140 are different from those of clinically used anti-HIV drugs. Thus, synergistic activities were observed in the concomitant treatment with T134 and reverse transcriptase inhibitors or protease inhibitors. Our findings, presented here, are noteworthy in regard to the potential clinical use of these agents as drugs for the treatment of AIDS.
Collapse
Affiliation(s)
- K Gotoh
- Department of Microbiology and Immunology, Kagoshima University Dental School, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | | | | | | | | | | | | | | |
Collapse
|
152
|
Gatignol A, Jeang KT. Tat as a transcriptional activator and a potential therapeutic target for HIV-1. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2001; 48:209-27. [PMID: 10987092 DOI: 10.1016/s1054-3589(00)48007-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- A Gatignol
- U529 INSERM, Institut Cochin de Génétique Moléculaire, Paris, France
| | | |
Collapse
|
153
|
Tamamura H, Sugioka M, Odagaki Y, Omagari A, Kan Y, Oishi S, Nakashima H, Yamamoto N, Peiper SC, Hamanaka N, Otaka A, Fujii N. Conformational study of a highly specific CXCR4 inhibitor, T140, disclosing the close proximity of its intrinsic pharmacophores associated with strong anti-HIV activity. Bioorg Med Chem Lett 2001; 11:359-62. [PMID: 11212110 DOI: 10.1016/s0960-894x(00)00664-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We report the solution structure of T140, a truncated polyphemusin peptide analogue that efficiently inhibits infection of target cells by T-cell line-tropic strains of HIV-1 through its specific binding to a chemokine receptor, CXCR4. Nuclear magnetic resonance analysis and molecular dynamic calculations revealed that T140 has a rigidly structured conformation constituted by an antiparallel beta-sheet and a type II' beta-turn. A protuberance is formed on one side of the beta-sheet by the side-chain functional groups of the three amino acid residues (L-3-(2-naphthyl)alanine, Tyr5 and Arg14), each of which is indispensable for strong anti-HIV activity. These findings provide a rationale to dissect the structural basis for the ability of this compound to block the interaction between CXCR4 and envelope glycoproteins from T-tropic strains of HIV-1.
Collapse
Affiliation(s)
- H Tamamura
- Graduate School of Pharmaceutical Sciences, Kyoto University, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
154
|
Tomaras GD, Greenberg ML. Mechanisms for HIV-1 Entry: Current Strategies to Interfere with This Step. Curr Infect Dis Rep 2001; 3:93-99. [PMID: 11177736 DOI: 10.1007/s11908-001-0064-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Striking reductions in HIV replication, in vivo, by potent combinations of antiretroviral therapies (ART) are the most significant contributor to the decline in HIV morbidity and mortality. Unfortunately, HIV is not eradicated and rebounds quickly when therapy is stopped. Drug toxicity and the emergence of resistant virus cause virologic treatment failure in 40% to 60% of patients, underscoring the need for improved therapeutic modalities. Recent advances regarding the mechanisms and molecules involved in HIV entry have stimulated development of novel therapeutics. A phase I/IIB trial of an HIV-1 fusion inhibitor demonstrated potent inhibition of virus replication, providing proof of the concept that HIV entry can be blocked in vivo. The development of entry inhibitors and their addition to the armamentarium of HIV therapeutics will likely lead to more efficacious cocktails of antiretroviral agents for salvage therapy of antiretroviral-experienced patients, as well as for treatment of antiretroviral-naive patients.
Collapse
Affiliation(s)
- Georgia D. Tomaras
- Department of Surgery, Duke University Medical Center, Box 2926 SORF, LaSalle Street Extension, Durham, NC 27710, USA.
| | | |
Collapse
|
155
|
Murphy PM. Viral exploitation and subversion of the immune system through chemokine mimicry. Nat Immunol 2001; 2:116-22. [PMID: 11175803 DOI: 10.1038/84214] [Citation(s) in RCA: 241] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The chemokine superfamily of leukocyte chemoattractants coordinates development and deployment of the immune system by signaling through a family of G protein-coupled receptors. The importance of this system to antimicrobial host defense has been supported by the discovery of numerous herpesviruses and poxviruses that encode chemokine mimics able to block chemokine action. However, specific herpesviruses and lentiviruses can also exploit the immune system through chemokine mimicry, for example, to facilitate viral dissemination or, as in the case of HIV-1, to directly infect leukocyte target cells. The study of viral mimicry of chemokines and chemokine receptors is providing important new concepts in viral immunopathogenesis, new anti-inflammatory drug leads and new targets and concepts for antiviral drug and vaccine development.
Collapse
Affiliation(s)
- P M Murphy
- Molecular Signaling Section, Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, Bldg. 10, Room 11N113, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
156
|
Abstract
HIV virus particles interact with several receptors on cell surfaces. Two receptors, CD4 and a co-receptor act sequentially to trigger fusion of viral and cellular membranes and confer virus entry into cells. For HIV-1, the chemokine receptor CCR5 is the predominant co-receptor exploited for transmission and replication in vivo. Variants that switch to use CXCR4 and perhaps other co-receptors evolve in some infected individuals and have altered tropism and pathogenic properties. Other cell surface receptors including mannose binding protein on macrophages and DC-SIGN on dendritic cells also interact with gp120 on virus particles but do not actively promote fusion and virus entry. These receptors may tether virus particles to cells enabling interactions with suboptimal concentrations of CD4 and/or co-receptors. Alternatively such receptors may transport cell surface trapped virions into lymph nodes before transmitting them to susceptible cells. Therapeutic strategies that prevent HIV from interacting with receptors are currently being developed. This review describes how the interaction and use of different cellular receptors influences HIV tropism and pathogenesis in vivo.
Collapse
Affiliation(s)
- P R Clapham
- Center for AIDS Research, Program in Molecular Medicine, Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | |
Collapse
|
157
|
Holz-Smith SL, Sun IC, Jin L, Matthews TJ, Lee KH, Chen CH. Role of human immunodeficiency virus (HIV) type 1 envelope in the anti-HIV activity of the betulinic acid derivative IC9564. Antimicrob Agents Chemother 2001; 45:60-6. [PMID: 11120945 PMCID: PMC90240 DOI: 10.1128/aac.45.1.60-66.2001] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The betulinic acid derivative IC9564 is a potent anti-human immunodeficiency virus (anti-HIV) compound that can inhibit both HIV primary isolates and laboratory-adapted strains. However, this compound did not affect the replication of simian immunodeficiency virus and respiratory syncytial virus. Results from a syncytium formation assay indicated that IC9564 blocked HIV type 1 (HIV-1) envelope-mediated membrane fusion. Analysis of a chimeric virus derived from exchanging envelope regions between IC9564-sensitive and IC9564-resistant viruses indicated that regions within gp120 and the N-terminal 25 amino acids (fusion domain) of gp41 are key determinants for the drug sensitivity. By developing a drug-resistant mutant from the NL4-3 virus, two mutations were found within the gp120 region and one was found within the gp41 region. The mutations are G237R and R252K in gp120 and R533A in the fusion domain of gp41. The mutations were reintroduced into the NL4-3 envelope and analyzed for their role in IC9564 resistance. Both of the gp120 mutations contributed to the drug sensitivity. On the contrary, the gp41 mutation (R533A) did not appear to affect the IC9564 sensitivity. These results suggest that HIV-1 gp120 plays a key role in the anti-HIV-1 activity of IC9564.
Collapse
Affiliation(s)
- S L Holz-Smith
- Department of Microbiology, Meharry Medical College, Nashville, Tennessee 37208, USA
| | | | | | | | | | | |
Collapse
|
158
|
Signoret N, Pelchen-Matthews A, Mack M, Proudfoot AE, Marsh M. Endocytosis and recycling of the HIV coreceptor CCR5. J Cell Biol 2000; 151:1281-94. [PMID: 11121442 PMCID: PMC2190598 DOI: 10.1083/jcb.151.6.1281] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The chemokine receptor CCR5 is a cofactor for the entry of R5 tropic strains of human immunodeficiency viruses (HIV)-1 and -2 and simian immunodeficiency virus. Cells susceptible to infection by these viruses can be protected by treatment with the CCR5 ligands regulated on activation, normal T cell expressed and secreted (RANTES), MIP-1alpha, and MIP-1beta. A major component of the mechanism through which chemokines protect cells from HIV infection is by inducing endocytosis of the chemokine receptor. Aminooxypentane (AOP)-RANTES, an NH(2)-terminal modified form of RANTES, is a potent inhibitor of infection by R5 HIV strains. AOP-RANTES efficiently downmodulates the cell surface expression of CCR5 and, in contrast with RANTES, appears to prevent recycling of CCR5 to the cell surface. Here, we investigate the cellular basis of this effect. Using CHO cells expressing human CCR5, we show that both RANTES and AOP-RANTES induce rapid internalization of CCR5. In the absence of ligand, CCR5 shows constitutive turnover with a half-time of 6-9 h. Addition of RANTES or AOP-RANTES has little effect on the rate of CCR5 turnover. Immunofluorescence and immunoelectron microscopy show that most of the CCR5 internalized after RANTES or AOP-RANTES treatment accumulates in small membrane-bound vesicles and tubules clustered in the perinuclear region of the cell. Colocalization with transferrin receptors in the same clusters of vesicles indicates that CCR5 accumulates in recycling endosomes. After the removal of RANTES, internalized CCR5 recycles to the cell surface and is sensitive to further rounds of RANTES-induced endocytosis. In contrast, after the removal of AOP-RANTES, most CCR5 remains intracellular. We show that these CCR5 molecules do recycle to the cell surface, with kinetics equivalent to those of receptors in RANTES-treated cells. However, these recycled CCR5 molecules are rapidly reinternalized. Our results indicate that AOP-RANTES-induced changes in CCR5 alter the steady-state distribution of the receptor and provide the first evidence for G protein-coupled receptor trafficking through the recycling endosome compartment.
Collapse
Affiliation(s)
- Nathalie Signoret
- Medical Research Council Laboratory for Molecular Cell Biology and Department of Biochemistry, University College London, London WC1E 6BT, United Kingdom
| | - Annegret Pelchen-Matthews
- Medical Research Council Laboratory for Molecular Cell Biology and Department of Biochemistry, University College London, London WC1E 6BT, United Kingdom
| | - Matthias Mack
- Medizinische Poliklinik, Ludwig-Maximilians-University, D-80336 Munich, Germany
| | - Amanda E.I. Proudfoot
- Serono Pharmaceuticals Research Institute, 1228 Plan-les-Ouates, Geneva, Switzerland
| | - Mark Marsh
- Medical Research Council Laboratory for Molecular Cell Biology and Department of Biochemistry, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
159
|
Tamamura H, Omagari A, Oishi S, Kanamoto T, Yamamoto N, Peiper SC, Nakashima H, Otaka A, Fujii N. Pharmacophore identification of a specific CXCR4 inhibitor, T140, leads to development of effective anti-HIV agents with very high selectivity indexes. Bioorg Med Chem Lett 2000; 10:2633-7. [PMID: 11128640 DOI: 10.1016/s0960-894x(00)00535-7] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A polyphemusin peptide analogue, T22 ([Tyr(5,12), Lys7]-polyphemusin II), and its shortened potent analogues, T134 (des-[Cys(8,13), Tyr(9,12)]-[D-Lys10, Pro11, L-citrulline16]-T22 without C-terminal amide) and T140 [[L-3-(2-naphthyl)alanine3]-T134], strongly inhibit the T-cell line-tropic (T-tropic) HIV-1 infection through their specific binding to a chemokine receptor, CXCR4. T22 is an extremely basic peptide possessing five Arg and three Lys residues in the molecule. In our previous study, we found that there is an apparent correlation in the T22-related peptides between the number of total positive charges and anti-HIV activity or cytotoxicity. Here, we have conducted the conventional Ala-scanning study in order to define the anti-HIV activity pharmacophore of T140 (the strongest analogue among our compounds) and identified four indispensable amino acid residues (Arg2, Nal3, Tyr5, and Arg14). Based on this result, a series of L-citrulline (Cit)-substituted analogues of T140 with decreased net positive charges have been synthesized and evaluated in terms of anti-HIV activity and cytotoxicity. As a result, novel effective inhibitors, TC14003 and TC14005, possessing higher selectivity indexes (SIs, 50% cytotoxic concentration/50% effective concentration) than that of T140 have been developed.
Collapse
Affiliation(s)
- H Tamamura
- Graduate School of Pharmaceutical Sciences, Kyoto University, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Luo Z, Fan X, Zhou N, Hiraoka M, Luo J, Kaji H, Huang Z. Structure-function study and anti-HIV activity of synthetic peptide analogues derived from viral chemokine vMIP-II. Biochemistry 2000; 39:13545-50. [PMID: 11063591 DOI: 10.1021/bi000633q] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The viral macrophage inflammatory protein II (vMIP-II) shows a broad spectrum interaction with both CC and CXC chemokine receptors including CCR5 and CXCR4, two principal coreceptors for the cellular entry of human immunodeficiency virus type 1 (HIV-1). Recently, we have shown that a synthetic peptide derived from the N-terminus of vMIP-II, designated as V1, is a potent antagonist of CXCR4 but not CCR5 [Zhou, N., et al. (2000) Biochemistry 39, 3782-3787]. In this study, we synthesized a series of new peptides derived from other regions of vMIP-II and characterized their binding activities with both CXCR4 and CCR5. The results provided further support for the notion that the N-terminus of vMIP-II is the major determinant for CXCR4 recognition and that vMIP-II probably interacts with other chemokine receptors such as CCR5 with different sequence and conformational determinants. To understand the structure-function relationship of V1 peptide, its solution conformation was studied using circular dichroism spectroscopy, which showed a random conformation similar to that of the corresponding N-terminus in native vMIP-II. In addition, we synthesized a series of mutant analogues of V1 containing alanine, glycine, or phenylalanine substitution at various positions. Residues Val-1, Arg-7, and Lys-9 of V1 peptide were found to be critical for receptor interaction, because single alanine replacement at these positions dramatically decreased peptide binding to CXCR4. In contrast, alanine or phenylalanine substitution at Cys-11 led to significant enhancement in peptide affinity for CXCR4. Finally, we showed that V1 peptide inhibits HIV-1 replication in CXCR4(+) T-cell lines. These studies provide new insights into the structure-function relationship of V1 peptide and demonstrate that this peptide may be a lead for the development of therapeutic agents.
Collapse
Affiliation(s)
- Z Luo
- Kimmel Cancer Center and Department of Biochemistry and Molecular Pharmacology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA.
| | | | | | | | | | | | | |
Collapse
|
161
|
Doms RW. Beyond receptor expression: the influence of receptor conformation, density, and affinity in HIV-1 infection. Virology 2000; 276:229-37. [PMID: 11040114 DOI: 10.1006/viro.2000.0612] [Citation(s) in RCA: 154] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- R W Doms
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA.
| |
Collapse
|
162
|
Hoffman TL, Canziani G, Jia L, Rucker J, Doms RW. A biosensor assay for studying ligand-membrane receptor interactions: binding of antibodies and HIV-1 Env to chemokine receptors. Proc Natl Acad Sci U S A 2000; 97:11215-20. [PMID: 11005830 PMCID: PMC17180 DOI: 10.1073/pnas.190274097] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The HIV envelope (Env) protein mediates entry into cells by binding CD4 and an appropriate coreceptor, which triggers structural changes in Env that lead to fusion between the viral and cellular membranes. The major HIV-1 coreceptors are the seven transmembrane domain chemokine receptors CCR5 and CXCR4. The type of coreceptor used by a virus strain is an important determinant of viral tropism and pathogenesis, and virus-receptor interactions can be therapeutic targets. However, Envs from many virus strains interact with CXCR4 and CCR5 with low affinity such that direct study of this important interaction is difficult if not impossible using standard cell-surface binding techniques. We have developed an approach that makes it possible to study ligand binding to membrane proteins, including Env-coreceptor interactions, using an optical biosensor. CCR5, CXCR4, and other membrane proteins were incorporated into retrovirus particles, which were purified and attached to the biosensor surface. Binding of conformationally sensitive antibodies as well as Env to these receptors was readily detected. The equilibrium dissociation constant for the interaction between an Env derived from the prototype HIV-1 strain IIIB for CXCR4 was approximately 500 nM, explaining the difficulty in measuring this interaction using standard equilibrium binding techniques. Retroviral pseudotypes represent easily produced, stable, homogenous structures that can be used to present a wide array of single and multiple membrane-spanning proteins in a native lipid environment for biosensor studies, thus avoiding the need for detergent solubilization, purification, and reconstitution. The approach should have general applicability and can be used to correlate Env-receptor binding constants to viral tropism and pathogenesis.
Collapse
Affiliation(s)
- T L Hoffman
- Departments of Pathology and Lab Medicine, Medicine, and Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
163
|
Xiao H, Neuveut C, Tiffany HL, Benkirane M, Rich EA, Murphy PM, Jeang KT. Selective CXCR4 antagonism by Tat: implications for in vivo expansion of coreceptor use by HIV-1. Proc Natl Acad Sci U S A 2000; 97:11466-71. [PMID: 11027346 PMCID: PMC17223 DOI: 10.1073/pnas.97.21.11466] [Citation(s) in RCA: 299] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2000] [Accepted: 08/15/2000] [Indexed: 12/14/2022] Open
Abstract
Chemokines and chemokine receptors play important roles in HIV-1 infection and tropism. CCR5 is the major macrophage-tropic coreceptor for HIV-1 whereas CXC chemokine receptor 4 (CXCR4) serves the counterpart function for T cell-tropic viruses. An outstanding biological mystery is why only R5-HIV-1 is initially detected in new seroconvertors who are exposed to R5 and X4 viruses. Indeed, X4 virus emerges in a minority of patients and only in the late stage of disease, suggesting that early negative selection against HIV-1-CXCR4 interaction may exist. Here, we report that the HIV-1 Tat protein, which is secreted from virus-infected cells, is a CXCR4-specific antagonist. Soluble Tat selectively inhibited the entry and replication of X4, but not R5, virus in peripheral blood mononuclear cells (PBMCs). We propose that one functional consequence of secreted Tat is to select against X4 viruses, thereby influencing the early in vivo course of HIV-1 disease.
Collapse
Affiliation(s)
- H Xiao
- Laboratories of Molecular Microbiology and Host Defenses, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892-0460, USA
| | | | | | | | | | | | | |
Collapse
|
164
|
Abstract
Despite the success of protease and reverse transcriptase inhibitors, new drugs to suppress HIV-1 replication are still needed. Several other early events in the viral life cycle (stages before the viral genome is inserted into host cell DNA) are susceptible to drugs, including virus attachment to target cells, membrane fusion and post-entry events such as integration, accessory-gene function and assembly of viral particles. Among these, inhibitors of virus-cell fusion and integration are the most promising candidates.
Collapse
Affiliation(s)
- J P Moore
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, 1300 York Avenue, New York, New York 10021, USA.
| | | |
Collapse
|
165
|
Rusconi S, La Seta Catamancio S, Citterio P, Bulgheroni E, Croce F, Herrmann SH, Offord RE, Galli M, Hirsch MS. Combination of CCR5 and CXCR4 inhibitors in therapy of human immunodeficiency virus type 1 infection: in vitro studies of mixed virus infections. J Virol 2000; 74:9328-32. [PMID: 10982382 PMCID: PMC102134 DOI: 10.1128/jvi.74.19.9328-9332.2000] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We studied the combined anti-human immunodeficiency virus type 1 (HIV-1) effects of a derivative of stroma-derived factor 1beta (SDF-1beta), Met-SDF-1beta, and a modified form of RANTES, aminooxypentane (AOP)-RANTES. The antiviral agents were tested singly or in combination at 95 and 99% virus inhibitory concentrations. Clinical R5 and X4 HIV-1 isolates were used. AOP-RANTES inhibited R5 but not X4 viruses, whereas Met-SDF-1beta had the opposite effect. Combinations of these compounds inhibited mixed infections with R5 and X4 viruses (95 to 99%), whereas single drugs were less inhibitory (32 to 61%). Combinations of R5 and X4 inhibitors are promising and deserve further evaluation.
Collapse
Affiliation(s)
- S Rusconi
- Istituto di Malattie Infettive e Tropicali, Università di Milano, Ospedale Luigi Sacco, Milan, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
166
|
Li BQ, Fu T, Gong WH, Dunlop N, Kung H, Yan Y, Kang J, Wang JM. The flavonoid baicalin exhibits anti-inflammatory activity by binding to chemokines. IMMUNOPHARMACOLOGY 2000; 49:295-306. [PMID: 10996027 DOI: 10.1016/s0162-3109(00)00244-7] [Citation(s) in RCA: 173] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Baicalin (BA) is a flavonoid compound purified from the medicinal plant Scutellaria baicalensis Georgi and has been reported to possess anti-inflammatory and anti-viral activities. In order to elucidate the mechanism(s) of action of BA, we tested whether BA could interfere with chemokines or chemokine receptors, which are critical mediators of inflammation and infection. We observed that BA inhibited the binding of a number of chemokines to human leukocytes or cells transfected to express specific chemokine receptors. This was associated with a reduced capacity of the chemokines to induce cell migration. Co-injection of BA with CXC chemokine interleukin-8 (IL-8) into rat skin significantly inhibited IL-8 elicited neutrophil infiltration. BA did not directly compete with chemokines for binding to receptors, but rather acted through its selective binding to chemokine ligands. This conclusion was supported by the fact that BA cross-linked to oxime resin bound chemokines of the CXC (stromal cell-derived factor (SDF)-1alpha, IL-8), CC (macrophage inflammatory protein (MIP)-1beta, monocyte chemotactic protein (MCP)-2), and C (lymphotactin (Ltn)) subfamilies. BA did not interact with CX3C chemokine fractalkine/neurotactin or other cytokines, such as TNF-alpha and IFN-gamma, indicating that its action is selective. These results suggest that one possible anti-inflammatory mechanism of BA is to bind a variety of chemokines and limit their biological function.
Collapse
Affiliation(s)
- B Q Li
- Intramural Research Support Program, SAIC Frederick, National Cancer Institute-Frederick Cancer Research and Development Center, Building 560, Room 31-40, Frederick, MD 21702-1201, USA.
| | | | | | | | | | | | | | | |
Collapse
|
167
|
Sallusto F, Mackay CR, Lanzavecchia A. The role of chemokine receptors in primary, effector, and memory immune responses. Annu Rev Immunol 2000; 18:593-620. [PMID: 10837070 DOI: 10.1146/annurev.immunol.18.1.593] [Citation(s) in RCA: 786] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The immune system is composed of single cells, and its function is entirely dependent on the capacity of these cells to traffic, localize within tissues, and interact with each other in a precisely coordinated fashion. There is growing evidence that the large families of chemokines and chemokine receptors provide a flexible code for regulating cell traffic and positioning in both homeostatic and inflammatory conditions. The regulation of chemokine receptor expression during development and following cell activation explains the complex migratory pathways taken by dendritic cells, T and B lymphocytes, providing new insights into the mechanisms that control priming, effector function, and memory responses.
Collapse
Affiliation(s)
- F Sallusto
- Basel Institute for Immunology, Grenzacherstrasse 487, CH-4005 Basel, Switzerland.
| | | | | |
Collapse
|
168
|
Majka M, Ratajczak J, Lee B, Honczarenko M, Douglas R, Kowalska MA, Silberstein L, Gewirtz AM, Ratajczak MZ. The role of HIV-related chemokine receptors and chemokines in human erythropoiesis in vitro. Stem Cells 2000; 18:128-38. [PMID: 10742385 DOI: 10.1634/stemcells.18-2-128] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In order to better define the role of HIV-related chemokines in human erythropoiesis we studied: A) the expression of chemokine receptors, both on human CD34(+) cells which include erythroid progenitors and on more mature erythroid cells; B) the functionality of these receptors by calcium flux, chemotaxis assay and phosphorylation of mitogen-activated protein kinases (MAPK) p42/44 (ERK1/ERK2) and AKT, and finally C) the influence of chemokines on BFU-E formation. We found that HIV-related chemokine receptor CXCR4, but not CCR5, is detectable on human CD34(+) BFU-E cells. CXCR4 surface expression decreased during erythroid maturation, although CXCR4 mRNA was still present in cells isolated from differentiated erythroid colonies. SDF-1, a CXCR4 ligand, induced calcium flux and phosphorylation of MAPK (p42/44) and AKT in CD34(+)KIT(+) bone marrow mononuclear cells which contain BFU-E, as well as chemotactic activity of both human CD34(+) BFU-E progenitors and erythroid cells isolated from day 2-6 BFU-E colonies. Responsiveness to SDF-1 decreased when the cells differentiated to the point of surface expression of the erythroid-specific marker Glycophorin-A. In contrast, the CCR5 ligands (macrophage inflammatory protein-1alpha [MIP-1alpha], MIP-1beta, and RANTES) did not activate calcium flux, MAPK and AKT phosphorylation or chemotaxis of CD34(+)KIT(+) cells or cells isolated from the BFU-E colonies. Interestingly, none of the chemokines tested in this study had any effect on BFU-E colony formation. In conclusion, only CXCR4 is functional, and its specific ligand SDF-1 may therefore play an important role in the homing and/or retention of early erythroid precursors in the bone marrow environment.
Collapse
Affiliation(s)
- M Majka
- Department of Pathology & Laboratory Medicine, Children's Hospital of Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
169
|
Abstract
Virtually all the compounds that are currently used, or under advanced clinical trial, for the treatment of HIV infections, belong to one of the following classes: (i) nucleoside/nucleotide reverse transcriptase inhibitors (NRTIs), (ii) non-nucleoside reverse transcriptase inhibitors (NNRTIs) and (iii) protease inhibitors (PIs). In addition to the reverse transcriptase and protease step, various other events in the HIV replicative cycle are potential targets for chemotherapeutic intervention: (i) viral adsorption, through binding to the viral envelope glycoprotein gp120 (polysulphates, polysulphonates, polyoxometalates, zintevir, negatively charged albumins); (ii) viral entry, through blockade of the viral coreceptors CXCR4 and CCR5 [bicyclams (AMD3100), polyphemusins (T22), TAK-779]; (iii) virus-cell fusion, through binding to the viral glycoprotein gp41 [T-20 (DP-178), siamycins, betulinic acid derivatives]; (iv) viral assembly and disassembly, through NCp7 zinc finger-targeted agents [2,2'-dithiobisbenzamides (DIBAs), azadicarbonamide (ADA)]; (v) proviral DNA integration, through integrase inhibitors such as L-chicoric acid; (vi) viral mRNA transcription, through inhibitors of the transcription (transactivation) process (peptoid CGP64222, fluoroquinolone K-12, Streptomyces product EM2487). Also, in recent years new NRTIs, NNRTIs and PIs have been developed that possess, respectively, improved metabolic characteristics (i.e. phosphoramidate and cyclosaligenyl pronucleotides of d4T), or increased activity against NNRTI-resistant HIV strains, or, in the case of PIs, a different, non-peptidic scaffold. Given the multitude of molecular targets with which anti-HIV agents can interact, one should be cautious in extrapolating from cell-free enzymatic assays to the mode of action of these agents in intact cells. A number of compounds (i.e. zintevir and L-chicoric acid, on the one hand; and CGP64222 on the other hand) have recently been found to interact with virus-cell binding and viral entry in contrast to their proposed modes of action targeted at the integrase and transactivation process, respectively.
Collapse
Affiliation(s)
- E De Clercq
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Belgium
| |
Collapse
|
170
|
Takamune N, Misumi S, Shoji S. Cyclic zinc-dithiocarbamate-S,S'-dioxide blocks CXCR4-mediated HIV-1 infection. Biochem Biophys Res Commun 2000; 272:351-6. [PMID: 10833417 DOI: 10.1006/bbrc.2000.2779] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To test the anti-human immunodeficiency virus type-1 (HIV-1) activity of 3,6,9,12-tetraazatetradecane-1,14-diylbis(zinc dithiocarbamate)-S,S'-dioxide (cyclic zinc-dithiocarbamate-S, S'-dioxide), MAGI and MAGIC-5 cells were used; the former express CXCR4 and the latter express both CXCR4 and CCR5, which are HIV-1 coreceptors. The compound markedly inhibited HIV-1 X4 (CXCR4-using) viral replication in both MAGI and MAGIC-5 cells. On the other hand, the replication of HIV-1 R5X4 (both CXCR4-and CCR5-using) in MAGI cells but not MAGIC-5 cells was inhibited by the compound. The compound was found to specifically inhibit HIV-1 (X4) envelope-mediated cell-to-cell fusion, binding of anti-CXCR4 monoclonal antibody (12G5) to CXCR4 expressed on the surface of cells, and calcium flux induced by stromal-derived factor-1alpha (SDF-1alpha) bound to CXCR4. The results suggest that the compound inhibited CXCR4-mediated HIV-1 infection by influencing to the HIV-1 coreceptor activity of CXCR4.
Collapse
MESH Headings
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacology
- Calcium/metabolism
- Cell Fusion/drug effects
- Cell Line
- Chemokine CCL5/pharmacology
- Chemokine CXCL12
- Chemokines, CXC/antagonists & inhibitors
- Chemokines, CXC/pharmacology
- Cyclic S-Oxides/chemistry
- Cyclic S-Oxides/pharmacology
- Cytopathogenic Effect, Viral/drug effects
- DNA, Viral/analysis
- DNA, Viral/genetics
- Flow Cytometry
- Giant Cells/drug effects
- Giant Cells/metabolism
- Giant Cells/pathology
- Giant Cells/virology
- HIV-1/drug effects
- HIV-1/genetics
- HIV-1/metabolism
- HIV-1/physiology
- Humans
- Inhibitory Concentration 50
- Organometallic Compounds/chemistry
- Organometallic Compounds/pharmacology
- Proviruses/drug effects
- Proviruses/genetics
- Receptors, CCR5/genetics
- Receptors, CCR5/immunology
- Receptors, CCR5/metabolism
- Receptors, CXCR4/antagonists & inhibitors
- Receptors, CXCR4/genetics
- Receptors, CXCR4/immunology
- Receptors, CXCR4/metabolism
Collapse
Affiliation(s)
- N Takamune
- Department of Biochemistry, Kumamoto University, Kumamoto, 862-0973, Japan
| | | | | |
Collapse
|
171
|
Affiliation(s)
- C M McManus
- Department of Pathology, University of Pennsylvania, Philadelphia 19104, USA
| | | |
Collapse
|
172
|
Huang Z. Structural chemistry and therapeutic intervention of protein-protein interactions in immune response, human immunodeficiency virus entry, and apoptosis. Pharmacol Ther 2000; 86:201-15. [PMID: 10882809 DOI: 10.1016/s0163-7258(00)00052-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Protein-protein interactions involved in diverse biological functions are largely unexplored therapeutic targets, and present a major challenge and opportunity for drug design research. Encouraging new approaches to this problem recently have emerged from studies of small molecule regulators of protein-protein complexes. This review outlines the basic concepts for two of these approaches, based on structural and chemical strategies, by illustrating their application in the design of small molecule inhibitors for three biological systems: (1) cell surface molecules CD4 and CD8 involved in immune response, (2) chemokine receptor-ligand interactions implicated in human immunodeficiency virus entry, and (3) B-cell leukemia/lymphoma-2 family proteins essential for regulation of programmed cell death or apoptosis. The design and discovery of these novel reagents provide valuable tools to probe fundamental questions about a particular protein-protein complex, and may lead to a new generation of potential therapeutic agents. Furthermore, these studies suggest a framework for chemical intervention of other protein-protein interactions involved in many pathological processes.
Collapse
Affiliation(s)
- Z Huang
- Kimmel Cancer Institute, Jefferson Medical College, Thomas Jefferson University, 802 BLSB, 233 South 10th Street, Philadelphia, PA 19107 USA.
| |
Collapse
|
173
|
Cormier EG, Persuh M, Thompson DA, Lin SW, Sakmar TP, Olson WC, Dragic T. Specific interaction of CCR5 amino-terminal domain peptides containing sulfotyrosines with HIV-1 envelope glycoprotein gp120. Proc Natl Acad Sci U S A 2000; 97:5762-7. [PMID: 10823934 PMCID: PMC18507 DOI: 10.1073/pnas.97.11.5762] [Citation(s) in RCA: 158] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The HIV-1 envelope glycoprotein gp120 interacts consecutively with CD4 and the CCR5 coreceptor to mediate the entry of certain HIV-1 strains into target cells. Acidic residues and sulfotyrosines in the amino-terminal domain (Nt) of CCR5 are crucial for viral fusion and entry. We tested the binding of a panel of CCR5 Nt peptides to different soluble gp120/CD4 complexes and anti-CCR5 mAbs. The tyrosine residues in the peptides were sulfated, phosphorylated, or unmodified. None of the gp120/CD4 complexes associated with peptides containing unmodified or phosphorylated tyrosines. The gp120/CD4 complexes containing envelope glycoproteins from isolates that use CCR5 as a coreceptor associated with Nt peptides containing sulfotyrosines but not with peptides containing sulfotyrosines in scrambled Nt sequences. Finally, only peptides containing sulfotyrosines inhibited the entry of an R5 isolate. Our data show that proper posttranslational modification of the CCR5 Nt is required for gp120 binding and viral entry. More importantly, the Nt domain determines the specificity of the interaction between CCR5 and gp120s from isolates that use this coreceptor.
Collapse
Affiliation(s)
- E G Cormier
- Albert Einstein College of Medicine, Microbiology and Immunology Department, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | | | | | | | | | |
Collapse
|
174
|
Dragic T, Trkola A, Thompson DA, Cormier EG, Kajumo FA, Maxwell E, Lin SW, Ying W, Smith SO, Sakmar TP, Moore JP. A binding pocket for a small molecule inhibitor of HIV-1 entry within the transmembrane helices of CCR5. Proc Natl Acad Sci U S A 2000; 97:5639-44. [PMID: 10779565 PMCID: PMC25881 DOI: 10.1073/pnas.090576697] [Citation(s) in RCA: 356] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
HIV-1 entry into CD4(+) cells requires the sequential interactions of the viral envelope glycoproteins with CD4 and a coreceptor such as the chemokine receptors CCR5 and CXCR4. A plausible approach to blocking this process is to use small molecule antagonists of coreceptor function. One such inhibitor has been described for CCR5: the TAK-779 molecule. To facilitate the further development of entry inhibitors as antiviral drugs, we have explored how TAK-779 acts to prevent HIV-1 infection, and we have mapped its site of interaction with CCR5. We find that TAK-779 inhibits HIV-1 replication at the membrane fusion stage by blocking the interaction of the viral surface glycoprotein gp120 with CCR5. We could identify no amino acid substitutions within the extracellular domain of CCR5 that affected the antiviral action of TAK-779. However, alanine scanning mutagenesis of the transmembrane domains revealed that the binding site for TAK-779 on CCR5 is located near the extracellular surface of the receptor, within a cavity formed between transmembrane helices 1, 2, 3, and 7.
Collapse
Affiliation(s)
- T Dragic
- Aaron Diamond AIDS Research Center, The Rockefeller University, New York, NY 10016, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
175
|
|
176
|
A Novel Role for Tumor Necrosis Factor-α in Regulating Susceptibility of Activated CD4+ T Cells From Human and Nonhuman Primates for Distinct Coreceptor Using Lentiviruses. J Acquir Immune Defic Syndr 2000. [DOI: 10.1097/00042560-200005010-00003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
177
|
Brice GT, Mayne AE, Villinger F, Ansari AA. A novel role for tumor necrosis factor-alpha in regulating susceptibility of activated CD4+ T cells from human and nonhuman primates for distinct coreceptor using lentiviruses. J Acquir Immune Defic Syndr 2000; 24:10-22. [PMID: 10877490 DOI: 10.1097/00126334-200005010-00003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Although CD4+ T-cell activation has long been shown to promote infection and replication of simian immunodeficiency virus (SIV) and HIV, recent studies have documented that not all activated CD4+ T cells from human and nonhuman primates are susceptible to infection with HIV/SIV, respectively. Activation of CD4+ T cells with anti-CD3 + anti-CD28 conjugated beads led to induction of a state of anti-viral resistance to infection with strains of viruses that primarily use CCR5 as a coreceptor. The studies reported herein were designed to address the mechanism by which anti-CD3 + anti-CD28-induced stimulation in turn induced antiviral resistance. Results of these studies show that the anti-viral resistance induced by activation of CD4+ T cells with anti-CD3 + anti-CD28 is primarily conferred by the synthesis of tumor necrosis factor-alpha (TNF-alpha), and highlight a unique regulatory role for TNF-alpha in regulating synthesis of MIP-1alpha, MIP-1beta, and regulated-on-activation normal T-expressed and secreted cells, which contributes to this state of antiviral resistance to R5-tropic strains of HIV/SIV. However, while TNF-alpha has a protective role in antiviral resistance of activated CD4+ T cells to R5-tropic viruses, it enhances CXCR4 expression of CD4+ T cells and mediates increased susceptibility to infection with X4-tropic strains of HIV and recombinant SIVs. The results of the studies reported herein also suggest that it is not the Th1 v/s Th2 cytokine profile but the mode of CD4+ T-cell activation that dictates the synthesis of distinct cytokines which regulate the expression of chemokines and chemokine receptors which in turn regulate and confer susceptibility/resistance to R5 v/s X4-tropic HIV and SIV.
Collapse
Affiliation(s)
- G T Brice
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | |
Collapse
|
178
|
Sei S, Yang QE, O'Neill D, Yoshimura K, Nagashima K, Mitsuya H. Identification of a key target sequence to block human immunodeficiency virus type 1 replication within the gag-pol transframe domain. J Virol 2000; 74:4621-33. [PMID: 10775598 PMCID: PMC111982 DOI: 10.1128/jvi.74.10.4621-4633.2000] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although the full sequence of the human immunodeficiency virus type 1 (HIV-1) genome has been known for more than a decade, effective genetic antivirals have yet to be developed. Here we show that, of 22 regions examined, one highly conserved sequence (ACTCTTTGGCAACGA) near the 3' end of the HIV-1 gag-pol transframe region, encoding viral protease residues 4 to 8 and a C-terminal Vpr-binding motif of p6(Gag) protein in two different reading frames, can be successfully targeted by an antisense peptide nucleic acid oligomer named PNA(PR2). A disrupted translation of gag-pol mRNA induced at the PNA(PR2)-annealing site resulted in a decreased synthesis of Pr160(Gag-Pol) polyprotein, hence the viral protease, a predominant expression of Pr55(Gag) devoid of a fully functional p6(Gag) protein, and the excessive intracellular cleavage of Gag precursor proteins, hindering the processes of virion assembly. Treatment with PNA(PR2) abolished virion production by up to 99% in chronically HIV-1-infected H9 cells and in peripheral blood mononuclear cells infected with clinical HIV-1 isolates with the multidrug-resistant phenotype. This particular segment of the gag-pol transframe gene appears to offer a distinctive advantage over other regions in invading viral structural genes and restraining HIV-1 replication in infected cells and may potentially be exploited as a novel antiviral genetic target.
Collapse
Affiliation(s)
- S Sei
- HIV Clinical Interface Laboratory, SAIC-Frederick, NCI-Frederick Cancer Research and Development Center, Frederick, Maryland 21702, USA.
| | | | | | | | | | | |
Collapse
|
179
|
Abstract
The advent of highly active antiretroviral therapy (HAART)-combinations of protease and reverse transcriptase inhibitors-provided a potent and clinically effective method of suppressing viral load in HIV-1- infected individuals. However, although initially successful, a broader clinical experience has revealed limitations in this therapeutic regimen, with up to 40% of treated individuals ultimately failing to sustain control over viral replication. Significant advances in understanding the process by which HIV-1 enters host cells have brought into clear focus a target for drug discovery not represented in the current clinical armamentarium. In this article, the mechanism of HIV-1 entry is reviewed in the context of representative antiviral agents that interfere with key steps in this process.
Collapse
|
180
|
Cabrera C, Gutiérrez A, Blanco J, Barretina J, Litovchick A, Lapidot A, Evdokimov AG, Clotet B, Esté JA. Anti-human immunodeficiency virus activity of novel aminoglycoside-arginine conjugates at early stages of infection. AIDS Res Hum Retroviruses 2000; 16:627-34. [PMID: 10791873 DOI: 10.1089/088922200308855] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Conjugates of L-arginine with aminoglycosides have already been described as potent in vitro inhibitors of the HIV-1 Tat-trans-activation responsive element interaction. The polycationic nature of these agents leads us to suggest that they may be active against HIV-1 replication by inhibiting earlier stages of the virus life cycle. We have found that R4K and R3G, kanamycin A, and gentamicin C, conjugated with arginine, inhibited HIV-1 NL4-3 replication at EC50 values of 15 and 30 microM for R3G and R4K, respectively, without a detectable tonic effect on MT-4 cells at concentrations higher than 4000 and about 1000 microM, respectively. Both compounds inhibited the binding of a monoclonal antibody (12G5) directed to CXCR4 as well as the intracellular Ca2+ signal induced by the chemokine SDF-1alpha on CXCR4+ cells, suggesting that aminoglycoside-arginine conjugates interact with CXCR4, the coreceptor used by T-tropic, X4 strains of HIV-1. On the other hand, CB4K, a conjugate of kanamycin A with gamma-guanidinobutyric acid, structurally similar to R4K, failed to display any anti-HIV activity of CXCR4 antagonist activity. An HIV-1 strain that was made resistant to the known CXCR4 antagonist AMD3100 was cross-resistant to both R4K and R3G. However, unlike SDF-1alpha and R4K, R3G inhibited the binding of HIV-1 to MT-4 cells. Aminoglycoside-arginine conjugates inhibit HIV replication by interrupting the early phase of the virus life cycle, namely virus binding to CD4 cells and interaction with CXCR4. R3G and R4K may serve as prototypes of novel anti-HIV agents and should be further studied.
Collapse
Affiliation(s)
- C Cabrera
- Institut de Recerca de la SIDA-Caixa (irsiCaixa), Retrovirology Laboratory, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
181
|
Zhou N, Luo Z, Luo J, Hall JW, Huang Z. A novel peptide antagonist of CXCR4 derived from the N-terminus of viral chemokine vMIP-II. Biochemistry 2000; 39:3782-7. [PMID: 10736178 DOI: 10.1021/bi992750v] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The viral macrophage inflammatory protein-II (vMIP-II) encoded by Kaposi's sarcoma-associated herpesvirus is unique among all known chemokines in that vMIP-II shows a broad-spectrum interaction with both CC and CXC chemokine receptors including CCR5 and CXCR4, two principal coreceptors for the cell entry of human immunodeficiency virus type 1 (HIV-1). To elucidate the mechanism of the promiscuous receptor interaction of vMIP-II, synthetic peptides derived from the N-terminus of vMIP-II were studied. In contrast to the full-length protein that recognizes both CXCR4 and CCR5, a peptide corresponding to residues 1-21 of vMIP-II (LGASWHRPDKCCLGYQKRPLP) was shown to strongly bind CXCR4, but not CCR5. The IC(50) of this peptide in competing with CXCR4 binding of (125)I-SDF-1alpha is 190 nM as compared to the IC(50) of 14.8 nM of native vMIP-II in the same assay. The peptide selectively prevented CXCR4 signal transduction and coreceptor function in mediating the entry of T- and dual-tropic HIV-1 isolates, but not those of CCR5. Further analysis of truncated peptide analogues revealed the importance of the first five residues for the activity with CXCR4. These results suggest that the N-terminus of vMIP-II is essential for its function via CXCR4. In addition, they reveal a possible mechanism for the distinctive interactions of vMIP-II with different chemokine receptors, a notion that may be further exploited to dissect the structural basis of its promiscuous biological function. Finally, the potent CXCR4 peptide antagonist shown here could serve as a lead for the development of new therapeutic agents for HIV infection and other immune system diseases.
Collapse
Affiliation(s)
- N Zhou
- Kimmel Cancer Institute, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | |
Collapse
|
182
|
Rusconi S, Merrill DP, La Seta Catamancio S, Citterio P, Bulgheroni E, Croce F, Chou TC, Yang OO, Herrmann SH, Galli M, Hirsch MS. In Vitro Inhibition of HIV-1 by Met-Sdf-1β Alone or in Combination with Antiretroviral Drugs. Antivir Ther 2000. [DOI: 10.1177/135965350000500304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Compounds that can block the CXCR4 chemokine receptor are a promising new class of antiretroviral agents. In these experiments we studied the effect of a modified form of the native stromal cell-derived factor-1 (SDF-1), Met-SDF-1β. The in vitro susceptibility of two different CXCR4-tropic HIV-1 strains was determined. Antiviral effect was assessed by the reduction of p24 antigen production in PHA-stimulated peripheral blood mononuclear cells with exposure to the modified SDF-1 molecule. The 50% inhibitory concentrations (IC50) were derived from six separate experiments. The IC50 against the two HIV-1 isolates was in 1.0–2.8 μg/ml range for Met-SDF-1β. Met-SDF-1β showed synergy to additivity with either zidovudine or nelfinavir at IC75, IC90 and IC95. Additivity was seen when Met-SDF-1β was combined with efavirenz. No cellular toxicity was observed at the highest concentrations when these agents were used either singly or in combination. This compound is a promising new candidate in a receptor-based approach to HIV-1 infection in conjunction with currently available combination antiretroviral drug therapies.
Collapse
Affiliation(s)
- Stefano Rusconi
- Infectious Disease Division, Massachusetts General Hospital and Harvard Medical School, Boston, Mass., USA
- Istituto di Malattie Infettive e Tropicali, Universitá di Milano, Ospedale Luigi Sacco, Milan, Italy
| | - Debra P Merrill
- Infectious Disease Division, Massachusetts General Hospital and Harvard Medical School, Boston, Mass., USA
| | - Simona La Seta Catamancio
- Istituto di Malattie Infettive e Tropicali, Universitá di Milano, Ospedale Luigi Sacco, Milan, Italy
| | - Paola Citterio
- Istituto di Malattie Infettive e Tropicali, Universitá di Milano, Ospedale Luigi Sacco, Milan, Italy
| | - Elisabetta Bulgheroni
- Istituto di Malattie Infettive e Tropicali, Universitá di Milano, Ospedale Luigi Sacco, Milan, Italy
| | - Francesco Croce
- Istituto di Malattie Infettive e Tropicali, Universitá di Milano, Ospedale Luigi Sacco, Milan, Italy
| | - Ting-Chao Chou
- Memorial Sloan-Kettering Cancer Center, New York, N.Y., USA
| | - Otto O Yang
- Infectious Disease Division, Massachusetts General Hospital and Harvard Medical School, Boston, Mass., USA
| | - Steven H Herrmann
- Infectious Disease and Molecular Biology-Gene Expression, Genetics Institute, Cambridge, Mass., USA
| | - Massimo Galli
- Istituto di Malattie Infettive e Tropicali, Universitá di Milano, Ospedale Luigi Sacco, Milan, Italy
| | - Martin S Hirsch
- Infectious Disease Division, Massachusetts General Hospital and Harvard Medical School, Boston, Mass., USA
| |
Collapse
|
183
|
Engel BC, Bauer G, Pepper KA, Bockstoce DC, Yu XJ, Chen SY, Kohn DB. Intrakines--evidence for a trans-cellular mechanism of action. Mol Ther 2000; 1:165-70. [PMID: 10933927 DOI: 10.1006/mthe.2000.0026] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Human CXCR4 is the receptor for the CXC chemokine SDF-1alpha and also acts as a coreceptor for T lymphotropic HIV-1 strains. Blocking the surface expression of this receptor via an intrakine approach has recently been shown to efficiently prevent HIV-1 infection of T cells. The CXC-chemokine gene is fused to an endoplasmic reticulum retention signal (KDEL) that retains the newly synthesized chemokine and its receptor within the cell, where both are subsequently degraded. We constructed MoMuLV-based vectors containing the SDF-KDEL construct driven by the "MND" long terminal repeat, using eGFP as a marker gene (MND-SDF-KDEL-IRES-eGFP) and a control vector (MND-X-IRES-eGFP). CEM human T lymphoblastic leukemia cells were transduced with the intrakine vector or the control vector. We detected a marked downregulation of CXCR4 expression in the cells transduced with the intrakine vectors as opposed to the cells transduced with the control vector. However, the eGFP-negative fraction of the cells transduced with the intrakine vector displayed the same CXCR4 downregulation as the eGFP-positive fraction, suggesting an effect in trans. The possibility of this being due to eGFP being silenced while SDF-KDEL was still expressed was excluded by Southern and Northern blot analyses. Upon cultivating the control cells with supernatant of the cells transduced with the intrakine vector, we observed a downregulation of CXCR4 expression on the control cells. Experiments using rhSDF-1alpha showed downregulation by the supernatant to be comparable to that achieved by the exogenous addition of 30 ng/ml SDF-1alpha. To assess the bioactivity of the secreted substance in the supernatant, a chemotaxis assay was performed. The transmigration observed was, once again, within the range of that achieved by the addition of 30 ng/ml SDF-1alpha. We conclude that the intrakine SDF-KDEL, apart from acting within the cell, is also in part secreted and causes the downregulation of the receptor by acting like a secreted chemokine.
Collapse
Affiliation(s)
- B C Engel
- Division of Research Immunology/Bone Marrow Transplantation, Childrens Hospital Los Angeles, California 90027, USA
| | | | | | | | | | | | | |
Collapse
|
184
|
Blanco J, Barretina J, Henson G, Bridger G, De Clercq E, Clotet B, Esté JA. The CXCR4 antagonist AMD3100 efficiently inhibits cell-surface-expressed human immunodeficiency virus type 1 envelope-induced apoptosis. Antimicrob Agents Chemother 2000; 44:51-6. [PMID: 10602722 PMCID: PMC89627 DOI: 10.1128/aac.44.1.51-56.2000] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Infection by human immunodeficiency virus type 1 (HIV-1) has been associated with increased cell death by apoptosis in infected and uninfected cells. The envelope glycoprotein complex ([gp120/gp41](n)) of X4 HIV-1 isolates is involved in both infected and uninfected cell death via its interaction with cellular receptors CD4 and CXCR4. We studied the effect of the blockade of CXCR4 receptors by the agonist stromal derived factor (SDF-1alpha) and the antagonist bicyclam AMD3100 on apoptotic cell death of CD4(+) cells in different models of HIV infection. In HIV-infected CEM or SUP-T1 cultures, AMD3100 showed antiapoptotic activity even when added 24 h after infection. In contrast, other antiviral agents, such as zidovudine, failed to block apoptosis under these conditions. The antiapoptotic activity of AMD3100 was also studied in coculture of peripheral blood mononuclear cells or CD4(+) cell lines with chronically infected H9/IIIB cells. AMD3100 was found to inhibit both syncytium formation and apoptosis induction with 50% inhibitory concentrations ranging from 0.009 to 0.24 microg/ml, depending on the cell type. When compared to SDF-1alpha, AMD3100 showed higher inhibitory potency in all cell lines tested. Our data indicate that the bicyclam AMD3100 not only inhibits HIV replication but also efficiently blocks cell-surface-expressed HIV-1 envelope-induced apoptosis in uninfected cells.
Collapse
Affiliation(s)
- J Blanco
- Institut de Recerca de la SIDA-Caixa, Laboratori de Retrovirologia, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Catalonia, Spain.
| | | | | | | | | | | | | |
Collapse
|
185
|
McDermott DH, Murphy PM. Chemokines and their receptors in infectious disease. SPRINGER SEMINARS IN IMMUNOPATHOLOGY 2000; 22:393-415. [PMID: 11155443 DOI: 10.1007/s002810000052] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- D H McDermott
- Molecular Signaling Section, Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 10 Center Drive, Bldg. 10, Room 11N113, Bethesda, MD 20892-1886, USA
| | | |
Collapse
|
186
|
Chapter 16. Recent developments in antiretroviral therapies. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2000. [DOI: 10.1016/s0065-7743(00)35017-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
187
|
|
188
|
Loetscher P, Moser B, Baggiolini M. Chemokines and their receptors in lymphocyte traffic and HIV infection. Adv Immunol 1999; 74:127-80. [PMID: 10605606 DOI: 10.1016/s0065-2776(08)60910-4] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
MESH Headings
- Animals
- Anti-HIV Agents/pharmacology
- Anti-HIV Agents/therapeutic use
- Antibodies, Monoclonal/therapeutic use
- B-Lymphocyte Subsets/cytology
- B-Lymphocyte Subsets/immunology
- Chemokines/antagonists & inhibitors
- Chemokines/chemistry
- Chemokines/genetics
- Chemokines/immunology
- Chemokines/pharmacology
- Chemokines/physiology
- Chemotaxis, Leukocyte/physiology
- Chromosomes, Human/genetics
- Drug Design
- Evolution, Molecular
- Genetic Variation
- HIV/drug effects
- HIV/physiology
- HIV Infections/immunology
- HIV Infections/therapy
- Hematopoietic Stem Cells/cytology
- Hematopoietic Stem Cells/immunology
- Humans
- Immunologic Memory
- Killer Cells, Natural/cytology
- Killer Cells, Natural/immunology
- Lymphocyte Activation/physiology
- Lymphocytes/cytology
- Mice
- Receptors, Chemokine/chemistry
- Receptors, Chemokine/drug effects
- Receptors, Chemokine/genetics
- Receptors, Chemokine/immunology
- Receptors, Chemokine/physiology
- Sequence Homology
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/immunology
- Transfection
- Virus Replication/drug effects
Collapse
Affiliation(s)
- P Loetscher
- Theodor Kocher Institute, University of Bern, Switzerland
| | | | | |
Collapse
|
189
|
Romerio F, Gallo RC. Novel biologic approaches for the treatment of AIDS. THE JOURNAL OF LABORATORY AND CLINICAL MEDICINE 1999; 134:577-84. [PMID: 10595784 DOI: 10.1016/s0022-2143(99)90096-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- F Romerio
- Institute of Human Virology, University of Maryland Biotechnology Institute, Baltimore 21201, USA
| | | |
Collapse
|
190
|
Trkola A, Matthews J, Gordon C, Ketas T, Moore JP. A cell line-based neutralization assay for primary human immunodeficiency virus type 1 isolates that use either the CCR5 or the CXCR4 coreceptor. J Virol 1999; 73:8966-74. [PMID: 10516002 PMCID: PMC112928 DOI: 10.1128/jvi.73.11.8966-8974.1999] [Citation(s) in RCA: 157] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
We describe here a cell line-based assay for the evaluation of human immunodeficiency virus type 1 (HIV-1) neutralization. The assay is based on CEM.NKR cells, transfected to express the HIV-1 coreceptor CCR5 to supplement the endogenous expression of CD4 and the CXCR4 coreceptor. The resulting CEM.NKR-CCR5 cells efficiently replicate primary HIV-1 isolates of both R5 and X4 phenotypes. A comparison of the CEM.NKR-CCR5 cells with mitogen-activated peripheral blood mononuclear cells (PBMC) in neutralization assays with sera from HIV-1-infected individuals or specific anti-HIV-1 monoclonal antibodies shows that the sensitivity of HIV-1 neutralization is similar in the two cell types. The CEM.NKR-CCR5 cell assay, however, is more convenient to perform and eliminates the donor-to-donor variation in HIV-1 replication efficiency, which is one of the principal drawbacks of the PBMC-based neutralization assay. We suggest that this new assay is suitable for the general measurement of HIV-1 neutralization by antibodies.
Collapse
Affiliation(s)
- A Trkola
- The Aaron Diamond AIDS Research Center, New York University School of Medicine, New York, New York, USA
| | | | | | | | | |
Collapse
|
191
|
Orsini MJ, Parent JL, Mundell SJ, Marchese A, Benovic JL. Trafficking of the HIV coreceptor CXCR4. Role of arrestins and identification of residues in the c-terminal tail that mediate receptor internalization. J Biol Chem 1999; 274:31076-86. [PMID: 10521508 DOI: 10.1074/jbc.274.43.31076] [Citation(s) in RCA: 212] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The G protein-coupled chemokine receptor CXCR4 serves as the primary coreceptor for entry of T-cell tropic human immunodeficiency virus. CXCR4 undergoes tonic internalization as well as internalization in response to stimulation with phorbol esters and ligand (SDF-1alpha). We investigated the trafficking of this receptor, and we attempted to define the residues of CXCR4 that were critical for receptor internalization. In both COS-1 and HEK-293 cells transiently overexpressing CXCR4, SDF-1alpha and phorbol esters (PMA) promoted rapid internalization of cell surface receptors as assessed by both enzyme-linked immunosorbent assay and immunofluorescence analysis. Expression of GRK2 and/or arrestins promoted modest additional CXCR4 internalization in response to both PMA and SDF. Both PMA- and SDF-mediated CXCR4 internalization was inhibited by coexpression of dominant negative mutants of dynamin-1 and arrestin-3. Arrestin was also recruited to the plasma membrane and appeared to colocalize with internalized receptors in response to SDF but not PMA. We then evaluated the ability of CXCR4 receptors containing mutations of serines and threonines, as well as a dileucine motif, within the C-terminal tail to be internalized and phosphorylated in response to either PMA or SDF-1alpha. This analysis showed that multiple residues within the CXCR4 C-terminal tail appear to mediate both PMA- and SDF-1alpha-mediated receptor internalization. The ability of coexpressed GRK2 and arrestins to promote internalization of the CXCR4 mutants revealed distinct differences between respective mutants and suggested that the integrity of the dileucine motif (Ile-328 and Leu-329) and serines 324, 325, 338, and 339 are critical for receptor internalization.
Collapse
Affiliation(s)
- M J Orsini
- Department of Microbiology, Kimmel Cancer Institute, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | |
Collapse
|
192
|
Luo Z, Zhou N, Luo J, Hall JW, Huang Z. The role of positively charged residues in CXCR4 recognition probed with synthetic peptides. Biochem Biophys Res Commun 1999; 263:691-5. [PMID: 10512741 DOI: 10.1006/bbrc.1999.1441] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A high positive charge is the common characteristic shared by the beta-sheet region of stromal cell-derived factor-1 (SDF-1) and CXCR4 antagonists such as ALX40-4C consisting of nine D-arginines. This raises the question that the positively charged residues may play a role in recognition of CXCR4. To test this hypothesis, two studies were carried out using synthetic peptides. In the first study, peptide analogs possessing amino acid sequences from both the N-terminus and the beta-sheet region of SDF-1 were used as models to study the functional role of the beta-sheet region of SDF-1. The attachment of positively charged residues to the N-terminal peptide sequence of SDF-1 was found to enhance the ability of the peptides in CXCR4 binding and inhibiting CXCR4-mediated T-tropic HIV-1 entry. In the second study, two peptides containing nine arginines and the N-terminal signal sequence of SDF-1 were used as models to study the receptor binding mechanism of CXCR4 antagonists of high positive charges such as ALX40-4C. One peptide did not show signaling activity as indicated by the lack of calcium influx while another peptide induced unusual calcium influx distinct from that induced by the SDF-1 N-terminal peptide. In addition, the signal induced by the SDF-1 N-terminal peptide was inhibited by ALX40-4C. Therefore, the first study provides experimental support for the role of the highly positive beta-sheet region of SDF-1 in CXCR4 binding. The second study suggests that the binding site of ALX40-4C in CXCR4 may partially overlap with that of the SDF-1 N-terminal peptide. Both findings should be valuable for the design of SDF-1 agonists and antagonists.
Collapse
Affiliation(s)
- Z Luo
- Kimmel Cancer Institute, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | |
Collapse
|
193
|
Quinkal I, Hernandez JF, Chevallier S, Arlaud GJ, Vernet T. Mapping of the interaction between the immunodominant loop of the ectodomain of HIV-1 gp41 and human complement protein C1q. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 265:656-63. [PMID: 10504397 DOI: 10.1046/j.1432-1327.1999.00757.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The human immunodeficiency virus type 1 transmembrane envelope glycoprotein gp41 has been previously shown to activate the C1 complex of human complement through direct interaction with its C1q subunit. The major interaction site has been located within the gp41 immunodominant region (residues 590-620), and a synthetic peptide overlapping residues 601-613 of gp41 (sequence GIWGCSGKLICTT) was shown to inhibit binding of gp41 to C1q in vitro (Thielens, N.M., Bally, I.M., Ebenbichler, C.F., Dierich, M.P. & Arlaud, G.J. (1993) J. Immunol. 151, 6583-6592). The ectodomain of gp41 (s-gp41) was secreted from the methylotrophic yeast Pichia pastoris and purified by immunoaffinity chromatography. Enzymatic deglycosylation of the recombinant s-gp41 was necessary to allow its in vitro interaction with C1q. A solid-phase competition assay was used to monitor the effect of mutant peptides derived from segment 601-613 of gp41 on the binding of deglycosylated s-gp41 to C1q. Whereas mutation of Ser606 had no effect, replacement of Ile602, Trp603, Lys608, Leu609 and Ile610 by Ala abolished the ability of the resulting peptides to inhibit binding of s-gp41 to C1q, suggesting that these residues participate in the interaction between gp41 and C1q. These findings are discussed in the light of a structural model of the immunodominant loop of gp41. It is proposed that the recognition of gp41 by C1q is driven by hydrophobic interactions, and that the sites of gp41 responsible for interaction with gp120 and C1q partly overlap.
Collapse
Affiliation(s)
- I Quinkal
- Laboratoire d'Ingénierie des Macromolécules, Institut de Biologie Structurale Jean-Pierre Ebel, Grenoble, France
| | | | | | | | | |
Collapse
|
194
|
Moir S, Lapointe R, Malaspina A, Ostrowski M, Cole CE, Chun TW, Adelsberger J, Baseler M, Hwu P, Fauci AS. CD40-Mediated induction of CD4 and CXCR4 on B lymphocytes correlates with restricted susceptibility to human immunodeficiency virus type 1 infection: potential role of B lymphocytes as a viral reservoir. J Virol 1999; 73:7972-80. [PMID: 10482544 PMCID: PMC112811 DOI: 10.1128/jvi.73.10.7972-7980.1999] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) replicates primarily in lymphoid tissues where it has ready access to activated immune competent cells. We used one of the major pathways of immune activation, namely, CD40-CD40L interactions, to study the infectability of B lymphocytes isolated from peripheral blood mononuclear cells. Highly enriched populations of B lymphocytes generated in the presence of interleukin-4 and oligomeric soluble CD40L upregulated costimulatory and activation markers, as well as HIV-1 receptors CD4 and CXCR4, but not CCR5. By using single-round competent luciferase viruses complemented with either amphotropic or HIV-derived envelopes, we found a direct correlation between upregulation of HIV-1 receptors and the susceptibility of the B lymphocytes to infection with dual-tropic and T-tropic strains of HIV-1; in contrast, cells were resistant to M-tropic strains of HIV-1. HIV-1 envelope-mediated infection was completely abolished with either an anti-CD4 monoclonal antibody or a peptide known to directly block CXCR4 usage and partially blocked with stromal cell-derived factor 1, all of which had no effect on the entry of virus pseudotyped with amphotropic envelope. Full virus replication kinetics confirmed that infection depends on CXCR4 usage. Furthermore, productive cycles of virus replication occurred rapidly yet under most conditions, without the appearance of syncytia. Thus, an activated immunological environment may induce the expression of HIV-1 receptors on B lymphocytes, priming them for infection with selective strains of HIV-1 and allowing them to serve as a potential viral reservoir.
Collapse
Affiliation(s)
- S Moir
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
195
|
Wang JM, Oppenheim JJ. Interference with the signaling capacity of CC chemokine receptor 5 can compromise its role as an HIV-1 entry coreceptor in primary T lymphocytes. J Exp Med 1999; 190:591-5. [PMID: 10477544 PMCID: PMC2195610 DOI: 10.1084/jem.190.5.591] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- J M Wang
- Laboratory of Molecular Immunoregulation, Division of Basic Sciences, National Cancer Institute-Frederick Cancer Research and Development Center, Frederick, Maryland 21702-1201, USA.
| | | |
Collapse
|
196
|
Murakami T, Zhang TY, Koyanagi Y, Tanaka Y, Kim J, Suzuki Y, Minoguchi S, Tamamura H, Waki M, Matsumoto A, Fujii N, Shida H, Hoxie JA, Peiper SC, Yamamoto N. Inhibitory mechanism of the CXCR4 antagonist T22 against human immunodeficiency virus type 1 infection. J Virol 1999; 73:7489-96. [PMID: 10438838 PMCID: PMC104275 DOI: 10.1128/jvi.73.9.7489-7496.1999] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We recently reported that a cationic peptide, T22 ([Tyr(5,12), Lys(7)]-polyphemusin II), specifically inhibits human immunodeficiency virus type 1 (HIV-1) infection mediated by CXCR4 (T. Murakami et al., J. Exp. Med. 186:1389-1393, 1997). Here we demonstrate that T22 effectively inhibits replication of T-tropic HIV-1, including primary isolates, but not of non-T-tropic strains. By using a panel of chimeric viruses between T- and M-tropic HIV-1 strains, viral determinants for T22 susceptibility were mapped to the V3 loop region of gp120. T22 bound to CXCR4 and interfered with stromal-cell-derived factor-1alpha-CXCR4 interactions in a competitive manner. Blocking of anti-CXCR4 monoclonal antibodies by T22 suggested that the peptide interacts with the N terminus and two of the extracellular loops of CXCR4. Furthermore, the inhibition of cell-cell fusion in cells expressing CXCR4/CXCR2 chimeric receptors suggested that determinants for sensitivity of CXCR4 to T22 include the three extracellular loops of the coreceptor.
Collapse
Affiliation(s)
- T Murakami
- Department of Microbiology and Molecular Virology, Faculty of Medicine, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8519, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
197
|
Abstract
Several chemotactic cytokines, or chemokines. inhibit HIV replication by blocking or down regulating chemokine receptors that serve as entry cofactors for the virus. Although the role of chemokine receptors in HIV pathogenesis has been the subject of intense interest, chemokines are comparatively less seriously considered as potential correlates of protection from HIV infection and disease progression. However, a critical analysis of newly available data reveals substantial evidence to support a beneficial role for chemokines in HIV infection and disease. In this review we summarize the results of such studies and their promising implications for HIV infection.
Collapse
Affiliation(s)
- R C Gallo
- University of Maryland Biotechnology Institute, University of Maryland, Baltimore 21201-1192, USA.
| | | | | |
Collapse
|
198
|
Fenard D, Lambeau G, Valentin E, Lefebvre JC, Lazdunski M, Doglio A. Secreted phospholipases A(2), a new class of HIV inhibitors that block virus entry into host cells. J Clin Invest 1999; 104:611-8. [PMID: 10487775 PMCID: PMC408539 DOI: 10.1172/jci6915] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Mammalian and venom secreted phospholipases A(2) (sPLA(2)s) have been associated with a variety of biological effects. Here we show that several sPLA(2)s protect human primary blood leukocytes from the replication of various macrophage and T cell-tropic HIV-1 strains. Inhibition by sPLA(2)s results neither from a virucidal effect nor from a cytotoxic effect on host cells, but it involves a more specific mechanism. sPLA(2)s have no effect on virus binding to cells nor on syncytia formation, but they prevent the intracellular release of the viral capsid protein, suggesting that sPLA(2)s block viral entry into cells before virion uncoating and independently of the coreceptor usage. Various inhibitors and catalytic products of sPLA(2) have no effect on HIV-1 infection, suggesting that sPLA(2) catalytic activity is not involved in the antiviral effect. Instead, the antiviral activity appears to involve a specific interaction of sPLA(2)s to host cells. Indeed, of 11 sPLA(2)s from venom and mammalian tissues assayed, 4 venom sPLA(2)s were found to be very potent HIV-1 inhibitors (ID(50) < 1 nM) and also to bind specifically to host cells with high affinities (K(0.5) < 1 nM). Although mammalian pancreatic group IB and inflammatory-type group IIA sPLA(2)s were inactive against HIV-1 replication, our results could be of physiological interest, as novel sPLA(2)s are being characterized in humans.
Collapse
Affiliation(s)
- D Fenard
- Laboratoire de Virologie, Faculté de Médecine, 06107 Nice cédex 2, France Institut de Pharmacologie Moléculaire et Cellulaire, 06560 Valbonne, France
| | | | | | | | | | | |
Collapse
|
199
|
Derdeyn CA, Costello C, Kilby JM, Sfakianos G, Saag MS, Kaslow R, Bucy RP. Correlation between circulating stromal cell-derived factor 1 levels and CD4+ cell count in human immunodeficiency virus type 1-infected individuals. AIDS Res Hum Retroviruses 1999; 15:1063-71. [PMID: 10461826 DOI: 10.1089/088922299310359] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Stromal cell-derived factor 1 (SDF-1) is the natural ligand that recognizes CXCR4, which also serves as a coreceptor for some strains of HIV-1. In this study, we explored SDF-1 blood levels among HIV-1-infected individuals exhibiting a wide range of CD4+ cell counts. Plasma or serum concentrations of SDF-1 protein were measured by ELISA in samples from 31 HIV-1-seronegative individuals and 79 HIV-1-infected subjects. Although SDF-1 protein levels were stable for months among seronegative individuals (mean intrasubject variation, 17%), the absolute values varied widely (0.28 to 106.5 ng/ml; mean, 25.6 ng/ml). In HIV-1-infected subjects, there was a direct correlation between SDF-1 level and CD4+ cell count. Subjects with fewer than 50 CD4+ cells per cubic microliter of blood had significantly lower mean SDF-1 levels (+/-SD) than did either HIV-1-infected subjects with higher CD4+ cell counts or uninfected controls: CD4+ cell count <50, mean SDF-1 level of 10.7+/-33.7, 50 < CD4+ cell count <200, mean SDF-1 level of 12.9+/-19.0, 200 < CD4+ cell count <500, mean SDF-1 level of 19.3+/-36.8; CD4+ cell count >500, mean SDF-1 level of 18.5+/-25.2; uninfected control mean SDF-1 level, 25.6+/-34.7. No significant change in SDF-1 level was detected after administration of antiretroviral therapy in nine subjects with advanced disease (mean intrasubject variation, 43%). Analysis of SDF-1 mRNA expression in lymph nodes from HIV-1-infected subjects at different disease stages revealed that the medullary cords contained stromal cells that express SDF-1 mRNA. This preliminary analysis suggests a possible link between lower SDF-1 levels and disease progression.
Collapse
Affiliation(s)
- C A Derdeyn
- Department of Pathology, University of Alabama at Birmingham, 35233, USA
| | | | | | | | | | | | | |
Collapse
|
200
|
Abstract
Interaction of HIV and SIV Envelope (Env) proteins with viral coreceptors is a critical step in viral entry. By using a sensitive and specific gp120 binding assay, we have identified a discordance between the ability of a coreceptor to support Env-mediated membrane fusion and high-affinity binding of gp120. Direct binding of gp120 from the dual-tropic HIV-1 strain 89.6 was not detectable for any coreceptor that it uses for fusion, while detectable binding of gp120s from the R5 HIV-1 strains JRFL and CM235 and the SIV strain 239 was not measurable for many CCR5 chimeras and mutants that function efficiently as viral coreceptors. In comparison, binding of chemokines to these same mutants was highly predictive of their ability to signal. Thus, gp120 is more sensitive than chemokines to perturbations of CCR5 structure. We conclude that while chemokine binding to CCR5 is a good predictor of chemokine receptor function, gp120 binding does not always predict coreceptor function.
Collapse
Affiliation(s)
- S S Baik
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | | | | |
Collapse
|