151
|
Mahne AE, Klementowicz JE, Chou A, Nguyen V, Tang Q. Therapeutic regulatory T cells subvert effector T cell function in inflamed islets to halt autoimmune diabetes. THE JOURNAL OF IMMUNOLOGY 2015; 194:3147-55. [PMID: 25732730 DOI: 10.4049/jimmunol.1402739] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Therapeutic regulatory T cells (Tregs) can reverse pre-established autoimmune pathology. In this study, using a mouse model of autoimmune diabetes, we aimed to determine the means by which therapeutic Tregs control islet inflammation. Islet Ag-specific Tregs infiltrated inflamed islets soon after infusion into prediabetic mice, which was quickly followed by a selective reduction of mRNA associated with effector T cells in the islets. This change was partially due to decreased CD8(+) T cell accumulation in the tissue. CD8(+) T cells that remained in the islets after Treg treatment were able to engage dendritic cells in a manner similar to that found in untreated mice, consistent with the retention of an activated phenotype by islet dendritic cells shortly after Treg treatment. Nonetheless, Treg treatment abrogated IFN-γ production by intraislet CD8(+) and CD4(+) T cells at the protein level with minimal effect on IFN-γ mRNA. Sustained expression of IFN-γ protein by effector T cells was dependent on common γ-chain cytokine activation of the mTOR pathway, which was suppressed in islet CD8(+) T cells in vivo after Treg treatment. These multifaceted mechanisms underlie the efficacy of therapeutic Treg subversion of effector T cell functions at the site of inflammation to restore normal tissue homeostasis.
Collapse
Affiliation(s)
- Ashley E Mahne
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143
| | - Joanna E Klementowicz
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143
| | - Annie Chou
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143
| | - Vinh Nguyen
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143
| | - Qizhi Tang
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143
| |
Collapse
|
152
|
Generation, cryopreservation, function and in vivo persistence of ex vivo expanded cynomolgus monkey regulatory T cells. Cell Immunol 2015; 295:19-28. [PMID: 25732601 DOI: 10.1016/j.cellimm.2015.02.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 02/05/2015] [Accepted: 02/06/2015] [Indexed: 12/16/2022]
Abstract
We expanded flow-sorted Foxp3(+) cynomolgus monkey regulatory T cells (Treg) >1000-fold after three rounds of stimulation with anti-CD3 mAb-loaded artificial antigen-presenting cells, rapamycin (first round only) and IL-2. The expanded Treg maintained their expression of Treg signature markers, CD25, CD27, CD39, Foxp3, Helios, and CTLA-4, as well as CXCR3, which plays an important role in T cell migration to sites of inflammation. In contrast to expanded effector T cells (Teff), expanded Treg produced minimal IFN-γ and IL-17 and no IL-2 and potently suppressed Teff proliferation. Following cryopreservation, thawed Treg were less viable than their freshly-expanded counterparts, although no significant changes in phenotype or suppressive ability were observed. Additional rounds of stimulation/expansion restored maximal viability. Furthermore, adoptively-transferred autologous Treg expanded from cryopreserved second round stocks and labeled with CFSE or VPD450 were detected in blood and secondary lymphoid tissues of normal or immunosuppressed recipients at least two months after their systemic infusion.
Collapse
|
153
|
Stelmaszczyk-Emmel A. Regulatory T cells in children with allergy and asthma: it is time to act. Respir Physiol Neurobiol 2014; 209:59-63. [PMID: 25462834 DOI: 10.1016/j.resp.2014.11.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 11/12/2014] [Accepted: 11/13/2014] [Indexed: 12/20/2022]
Abstract
Nowadays allergy and asthma are a huge medical problem. Despite deeper and more precise knowledge concerning their pathogenesis and the role of the immune system in these processes, so far immunotherapy is the only treatment which can modify the course of these diseases. Considering that regulatory T cells (Treg cells) have a great significance in pathogenesis of both diseases it seems appropriate to pay attention to their role in the treatment process. This work summarizes the Treg cells characteristics, the influence of allergen specific immunotherapy and other treatment modalities on Treg cells, and the possibility of using Treg cells in therapy.
Collapse
Affiliation(s)
- Anna Stelmaszczyk-Emmel
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Warsaw, Poland.
| |
Collapse
|
154
|
Abstract
Although intestinal bacteria live deep within the body, they are topographically on the exterior surface and thus outside the host. According to the classic notion that the immune system targets non-self rather than self, these intestinal bacteria should be considered foreign and therefore attacked and eliminated. While this appears to be true for some commensal bacterial species, recent data suggest that the immune system actively becomes tolerant to many bacterial organisms. The induction or activation of regulatory T (Treg) cells that inhibit, rather than promote, inflammatory responses to commensal bacteria appears to be a central component of mucosal tolerance. Loss of this mechanism can lead to inappropriate immune reactivity toward commensal organisms, perhaps contributing to mucosal inflammation characteristic of disorders such as inflammatory bowel disease.
Collapse
Affiliation(s)
- Teresa L Ai
- Department of Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO, USA
| | | | | |
Collapse
|
155
|
Khailaie S, Robert PA, Toker A, Huehn J, Meyer-Hermann M. A signal integration model of thymic selection and natural regulatory T cell commitment. THE JOURNAL OF IMMUNOLOGY 2014; 193:5983-96. [PMID: 25392533 DOI: 10.4049/jimmunol.1400889] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The extent of TCR self-reactivity is the basis for selection of a functional and self-tolerant T cell repertoire and is quantified by repeated engagement of TCRs with a diverse pool of self-peptides complexed with self-MHC molecules. The strength of a TCR signal depends on the binding properties of a TCR to the peptide and the MHC, but it is not clear how the specificity to both components drives fate decisions. In this study, we propose a TCR signal-integration model of thymic selection that describes how thymocytes decide among distinct fates, not only based on a single TCR-ligand interaction, but taking into account the TCR stimulation history. These fates are separated based on sustained accumulated signals for positive selection and transient peak signals for negative selection. This spans up the cells into a two-dimensional space where they are either neglected, positively selected, negatively selected, or selected as natural regulatory T cells (nTregs). We show that the dynamics of the integrated signal can serve as a successful basis for extracting specificity of thymocytes to MHC and detecting the existence of cognate self-peptide-MHC. It allows to select a self-MHC-biased and self-peptide-tolerant T cell repertoire. Furthermore, nTregs in the model are enriched with MHC-specific TCRs. This allows nTregs to be more sensitive to activation and more cross-reactive than conventional T cells. This study provides a mechanistic model showing that time integration of TCR-mediated signals, as opposed to single-cell interaction events, is needed to gain a full view on the properties emerging from thymic selection.
Collapse
Affiliation(s)
- Sahamoddin Khailaie
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Philippe A Robert
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; Institut de Génétique Moléculaire de Montpellier, Centre National de la Recherche Scientifique, 34293 Montpellier, France
| | - Aras Toker
- Department of Experimental Immunology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; and
| | - Jochen Huehn
- Department of Experimental Immunology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; and
| | - Michael Meyer-Hermann
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; Institute for Biochemistry, Biotechnology, and Bioinformatics, University of Technology Braunschweig, 38106 Braunschweig, Germany
| |
Collapse
|
156
|
Thomé R, Issayama LK, Alves da Costa T, Gangi RD, Ferreira IT, Rapôso C, Lopes SCP, da Cruz Höfling MA, Costa FTM, Verinaud L. Dendritic cells treated with crude Plasmodium berghei extracts acquire immune-modulatory properties and suppress the development of autoimmune neuroinflammation. Immunology 2014; 143:164-73. [PMID: 24689455 DOI: 10.1111/imm.12298] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 03/27/2014] [Accepted: 03/28/2014] [Indexed: 01/02/2023] Open
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells specifically targeted during Plasmodium infection. Upon infection, DCs show impaired antigen presentation and T-cell activation abilities. In this study, we aimed to evaluate whether cellular extracts obtained from Plasmodium berghei-infected erythrocytes (PbX) modulate DCs phenotypically and functionally and the potential therapeutic usage of PbX-modulated DCs in the control of experimental autoimmune encephalomyelitis (EAE, the mouse model for human multiple sclerosis). We found that PbX-treated DCs have impaired maturation and stimulated the generation of regulatory T cells when cultured with naive T lymphocytes in vitro. When adoptively transferred to C57BL/6 mice the EAE severity was reduced. Disease amelioration correlated with a diminished infiltration of cytokine-producing T cells in the central nervous system as well as the suppression of encephalitogenic T cells. Our study shows that extracts obtained from P. berghei-infected erythrocytes modulate DCs towards an immunosuppressive phenotype. In addition, the adoptive transfer of PbX-modulated DCs was able to ameliorate EAE development through the suppression of specific cellular immune responses towards neuro-antigens. To our knowledge, this is the first study to present evidence that DCs treated with P. berghei extracts are able to control autoimmune neuroinflammation.
Collapse
Affiliation(s)
- Rodolfo Thomé
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
157
|
Thymus-deriving natural regulatory T cell generation in vitro: role of the source of activation signals. Immunol Lett 2014; 162:199-209. [PMID: 25445615 DOI: 10.1016/j.imlet.2014.10.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 10/09/2014] [Accepted: 10/21/2014] [Indexed: 12/20/2022]
Abstract
In this research we have examined different sources of activation signals in order to optimize culture conditions for in vitro generation of thymus-deriving natural regulatory T cells (nTregs). We have established a novel model using JAWS II dendritic cell line of immature phenotype and compared it to commonly used methods for the generation of Tregs from peripheral lymphoid organs or blood T cells. In our model the first activation signal is provided by anti-CD3 monoclonal antibodies while the second is delivered by costimulatory molecules expressed on JAWS II cells. The presence of JAWS II cells co-cultured in vitro with unsorted thymocytes directly isolated from the thymus gland creates environment favoring SP CD4+ differentiation, provides the apoptotic cells clearance, maintains the survival of thymocytes and facilitate nTreg generation. Moreover the usage of immature dendritic cells stimuli enables to conduct research on agents affecting nTreg survival, proliferation and development in conditions of cell-to-cell contact of undifferentiated thymocytes with dendritic cells.
Collapse
|
158
|
Zhang L, Manirarora JN, Wei CH. Evaluation of immunosuppressive function of regulatory T cells using a novel in vitro cytotoxicity assay. Cell Biosci 2014; 4:51. [PMID: 25908962 PMCID: PMC4407464 DOI: 10.1186/2045-3701-4-51] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 07/30/2014] [Indexed: 01/10/2023] Open
Abstract
Naturally occurring regulatory T cells (Tregs) play a pivotal role in the maintenance of self-tolerance due to their intrinsic immunosuppressive activity. Currently, a number of human clinical trials are being conducted to investigate the roles of Tregs in treating various immune-mediated disorders. Traditionally, the suppressive activity of Tregs is measured using either a thymidine incorporation assay, which is a radioactive assay; or CFSE based flow cytometry assay, which requires a relatively large number of cells. Consequently, there is an increasing need to develop novel alternative bioassays that can characterize various aspects of the immunosuppressive function of Tregs in vitro. In this study, using murine clonal CD8(+) T cells specific for an islet antigen as responder T cells, we first established a novel, sensitive and quantitative in vitro luminescence based cell viability assay to measure cytotoxicity. Then we used this assay to measure if Tregs could inhibit the cytotoxicity of CD8 effector T cells. This assay does not involve the use of radioisotopes and only needs relatively low number of Tregs. Since normally Tregs only constitute 5-10% of peripheral CD4(+) T cells, this advantage is noteworthy compared with other methods. With the assay we developed, we demonstrated that regulatory T cells (Tregs) could inhibit the antigen-specific killing of an adherent target cell monolayer by the CD8(+) cytotoxic T cells. We observed more inhibition when Tregs and CD8 killer T cells were incubated during the in vitro activation (stimulation) stage of the cytotoxic T lymphocytes (CTL) than when they were added later at the start of the effector phase. Interestingly, Tregs from B6 mice demonstrated higher suppression of CD8(+) T cell killing than Tregs from NOD mice. Moreover, IL-2/anti-IL-2 mAb complexes induced expansion of Tregs in vivo, as well as enhancing the Treg's suppressive activity per cell. Therefore, this novel non-radioactive, luminescence based cytotoxicity assay mediated by clonal islet antigen-specific CD8 T cells can be used to measure, characterize, and quantitate the immunosuppressive activity of natural Tregs, representing a useful approach to characterize the functions of Tregs in the setting of autoimmune diseases and to elucidate the mechanisms for Treg cell-mediated immunoregulation.
Collapse
Affiliation(s)
- Linyi Zhang
- Gene Transfer and Immunogenicity Branch, Division of Cellular and Gene Therapies, Office of Cellular, Tissue, and Gene Therapies, FDA, Center for Biologics Evaluation and Research, Bethesda, Maryland USA
| | - Jean N Manirarora
- Gene Transfer and Immunogenicity Branch, Division of Cellular and Gene Therapies, Office of Cellular, Tissue, and Gene Therapies, FDA, Center for Biologics Evaluation and Research, Bethesda, Maryland USA
| | - Cheng-Hong Wei
- Gene Transfer and Immunogenicity Branch, Division of Cellular and Gene Therapies, Office of Cellular, Tissue, and Gene Therapies, FDA, Center for Biologics Evaluation and Research, Bethesda, Maryland USA
| |
Collapse
|
159
|
Tu E, Chia PZC, Chen W. TGFβ in T cell biology and tumor immunity: Angel or devil? Cytokine Growth Factor Rev 2014; 25:423-35. [PMID: 25156420 DOI: 10.1016/j.cytogfr.2014.07.014] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The evolutionally conserved transforming growth factor β (TGFβ) affects multiple cell types in the immune system by either stimulating or inhibiting their differentiation and function. Studies using transgenic mice with ablation of TGFβ or its receptor have revealed the biological significance of TGFβ signaling in the control of T cells. However, it is now clear that TGFβ is more than an immunosuppressive cytokine. Disruption of TGFβ signaling pathway also leads to impaired generation of certain T cell populations. Therefore, in the normal physiological state, TGFβ actively maintains T cell homeostasis and regulates T cell function. However, in the tumor microenvironment, TGFβ creates an immunosuppressive milieu that inhibits antitumor immunity. Here, we review recent advances in our understanding of the roles of TGFβ in the regulation of T cells and tumor immunity.
Collapse
Affiliation(s)
- Eric Tu
- Mucosal Immunology Section, OPCB, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Pei Zhi Cheryl Chia
- Mucosal Immunology Section, OPCB, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wanjun Chen
- Mucosal Immunology Section, OPCB, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
160
|
Zhao C, Shi G, Vistica BP, Hinshaw SJH, Wandu WS, Tan C, Zhang M, Gery I. Induced regulatory T-cells (iTregs) generated by activation with anti-CD3/CD28 antibodies differ from those generated by the physiological-like activation with antigen/APC. Cell Immunol 2014; 290:179-84. [PMID: 25038545 DOI: 10.1016/j.cellimm.2014.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 03/31/2014] [Accepted: 06/10/2014] [Indexed: 11/29/2022]
Abstract
Regulatory T-cells (Tregs) are responsible for homeostasis of the immune system, as well as for inhibition of pathogenic autoimmune processes. Induced-(i)-Tregs, can be generated in vitro by activation of CD4 cells in the presence of TGF-β. A commonly used activation mechanism is by antibodies against CD3 and CD28. The physiological-like activation of T-cells, however, is with the specific target antigen presented by antigen-presenting cells (APC). The two modes of activation have been considered to yield the same populations of iTregs. Here, we compared between iTreg populations generated by either one of the two methods and found differences between their capacities to inhibit T-lymphocyte proliferative response, their expression of cell surface antigens and particularly, in their transcript expression profiles of certain chemokines and chemokine receptors. Our data thus indicate that iTregs generated by activation with anti-CD3/CD28 antibodies cannot be considered identical to iTregs generated by antigen/APC.
Collapse
Affiliation(s)
- Chan Zhao
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD, United States; Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Guangpu Shi
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| | - Barbara P Vistica
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| | - Samuel J H Hinshaw
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| | - Wambui S Wandu
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| | - Cuiyan Tan
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| | - Meifen Zhang
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Igal Gery
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD, United States.
| |
Collapse
|
161
|
Li M, Song LJ, Qin XY. Advances in the cellular immunological pathogenesis of type 1 diabetes. J Cell Mol Med 2014; 18:749-58. [PMID: 24629100 PMCID: PMC4119381 DOI: 10.1111/jcmm.12270] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 01/30/2014] [Indexed: 12/13/2022] Open
Abstract
Type 1 diabetes is an autoimmune disease caused by the immune-mediated destruction of insulin-producing pancreatic β cells. In recent years, the incidence of type 1 diabetes continues to increase. It is supposed that genetic, environmental and immune factors participate in the damage of pancreatic β cells. Both the immune regulation and the immune response are involved in the pathogenesis of type 1 diabetes, in which cellular immunity plays a significant role. For the infiltration of CD4(+) and CD8(+) T lymphocyte, B lymphocytes, natural killer cells, dendritic cells and other immune cells take part in the damage of pancreatic β cells, which ultimately lead to type 1 diabetes. This review outlines the cellular immunological mechanism of type 1 diabetes, with a particular emphasis to T lymphocyte and natural killer cells, and provides the effective immune therapy in T1D, which is approached at three stages. However, future studies will be directed at searching for an effective, safe and long-lasting strategy to enhance the regulation of a diabetogenic immune system with limited toxicity and without global immunosuppression.
Collapse
Affiliation(s)
- Min Li
- Department of General Surgery, Zhongshan Hospital, Fudan UniversityShanghai, China
| | - Lu-Jun Song
- Department of General Surgery, Zhongshan Hospital, Fudan UniversityShanghai, China
| | - Xin-Yu Qin
- Department of General Surgery, Zhongshan Hospital, Fudan UniversityShanghai, China
| |
Collapse
|
162
|
He Y, Jie Y, Wang B, Zeng H, Zhang Y, Pan Z. Adoptive transfer of donor corneal antigen-specific regulatory T cells can prolong mice corneal grafts survival. Cornea 2014; 29 Suppl 1:S25-31. [PMID: 20935538 DOI: 10.1097/ico.0b013e3181ea4999] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE To explore the effects of adoptive transferring T regulatory cells (T reg cells) stimulated by donor corneal antigen (Ag) to prevent corneal transplantation immune rejection in mice. METHODS C57BL/6 mice were used as donors and BALB/c mice as recipients. Corneal Ag was harvested by homogenization and centrifugation. Bone marrow dendritic cells (DCs) from BALB/c mice were cultured with stimulation of granulocyte-macrophage colony-stimulating factor and interleukin-4 for 5 days. Then, donor corneal Ag was added to obtain donor corneal Ag-loaded DCs. The DCs were used to stimulate CD4+CD25+ and CD4+CD25+ T cells from the recipient to yield Ag-stimulated T reg cells. Penetrating keratoplasty was performed in the mice. The recipients were randomly divided into 3 groups receiving 0.1 mL of phosphate-buffered saline, 1 × 10(6) naive T reg cells, and Ag-stimulated T reg cells, respectively, given by retroorbital injection at the end of surgery. The allografts were observed, and histopathological examination was performed 15 days after surgery. RESULTS : The corneal Ag mainly comprised 2 proteins with molecular weight 54 and 42 kD, respectively. Corneal Ag-loaded DCs expressed higher levels of CD11c, CD80, and CD86 than bone marrow precursor cells. Both CD4CD25 and CD4+CD25+ T cells showed vigorous proliferative responses to corneal Ag-loaded DCs. Mean survival time of the mice corneal allografts in phosphate-buffered saline, naive T reg cells, and Ag-stimulated groups was 8.1 ± 1.1, 14.3 ± 2.0, and 23.3 ± 2.6 days, respectively (P < 0.01 among groups). Histopathological examination revealed less inflammatory cells infiltration in Ag-stimulated than in naive mice. CONCLUSIONS : Adoptive transfer of donor corneal Ag-specific T reg cells prolonged survival time of corneal allografts in our mouse model, which might suggest a useful approach to cellular immunotherapy for corneal transplantation immune rejection.
Collapse
Affiliation(s)
- Yan He
- From the *Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmic and Visual Science Key Laboratory, Beijing, China; and †Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | | | | | | | | | | |
Collapse
|
163
|
Abstract
Type 1 diabetes mellitus (T1DM) is the result of autoimmune destruction of pancreatic β cells in genetically predisposed individuals with impaired immune regulation. The insufficiency in the modulation of immune attacks on the β cells might be partly due to genetic causes; indeed, several of the genetic variants that predispose individuals to T1DM have functional features of impaired immune regulation. Whilst defects in immune regulation in patients with T1DM have been identified, many patients seem to have immune regulatory capacities that are indistinguishable from those of healthy individuals. Insight into the regulation of islet autoimmunity might enable us to restore immune imbalances with therapeutic interventions. In this Review, we discuss the current knowledge on immune regulation and dysfunction in humans that is the basis of tissue-specific immune regulation as an alternative to generalized immune suppression.
Collapse
Affiliation(s)
- Bart O Roep
- Leiden University Medical Center, Department of Immunohaematology & Blood Transfusion, P. O. Box 9600, NL-2300 RC Leiden, Netherlands
| | - Timothy I M Tree
- Department of Immunobiology, King's College London, School of Medicine, London SE1 9RT, UK
| |
Collapse
|
164
|
Abstract
FOXP3(+) regulatory T (Treg) cells enforce immune self-tolerance and homeostasis, and variation in some aspects of Treg function may contribute to human autoimmune diseases. Here, we analyzed population-level Treg variability by performing genome-wide expression profiling of CD4(+) Treg and conventional CD4(+) T (Tconv) cells from 168 donors, healthy or with established type-1 diabetes (T1D) or type-2 diabetes (T2D), in relation to genetic and immunologic screening. There was a range of variability in Treg signature transcripts, some almost invariant, others more variable, with more extensive variability for genes that control effector function (ENTPD1, FCRL1) than for lineage-specification factors like FOXP3 or IKZF2. Network analysis of Treg signature genes identified coregulated clusters that respond similarly to genetic and environmental variation in Treg and Tconv cells, denoting qualitative differences in otherwise shared regulatory circuits whereas other clusters are coregulated in Treg, but not Tconv, cells, suggesting Treg-specific regulation of genes like CTLA4 or DUSP4. Dense genotyping identified 110 local genetic variants (cis-expression quantitative trait loci), some of which are specifically active in Treg, but not Tconv, cells. The Treg signature became sharper with age and with increasing body-mass index, suggesting a tuning of Treg function with repertoire selection and/or chronic inflammation. Some Treg signature transcripts correlated with FOXP3 mRNA and/or protein, suggesting transcriptional or posttranslational regulatory relationships. Although no single transcript showed significant association to diabetes, overall expression of the Treg signature was subtly perturbed in T1D, but not T2D, patients.
Collapse
|
165
|
Retinoic acid stabilizes antigen-specific regulatory T-cell function in autoimmune hepatitis type 2. J Autoimmun 2014; 53:26-32. [PMID: 24566085 DOI: 10.1016/j.jaut.2014.02.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 02/02/2014] [Indexed: 01/03/2023]
Abstract
Imbalance between effector and regulatory T-cells (Treg) underlies the loss of immune-tolerance to self-antigens in autoimmune disease. In autoimmune hepatitis type 2 (AIH-2), effector CD4 T-cell immune responses to cytochrome P450IID6 (CYP2D6) are permitted by numerically and functionally impaired Treg. Restoration of CYP2D6-specific Treg in AIH-2 would enable control over effectors sharing the same antigen specificity, leading to re-establishment of immune-tolerance. We have previously developed a protocol for generating antigen-specific Treg through co-culture with semi-mature dendritic cells presenting CYP2D6 peptides. In this study, we aimed to explore phenotypic and functional features of patient Treg compared to health, to test Treg stability under pro-inflammatory conditions, and to investigate the potential benefit of supplementation with all-trans-retinoic acid (RA) or rapamycin (RP), agents proven to enhance Treg function. We show that antigen-specific Treg from patients have comparable phenotypic and functional features to those from healthy controls, suppressing both proliferation and pro-inflammatory cytokine production by effector cells. Treg exposure to inflammatory challenge results in decreased suppressive function and up-regulation of Th1/Th2/Th17 transcription factors both in health and AIH-2. The increase of Th1 and Th17 transcription factors is limited by addition of RA in controls and Th1 expression is decreased by RP in patients. Importantly, inflammation-induced decrease in Treg function is also abrogated by RA/RP in health and RA in patients. Our data provide important information for the optimization of protocols aiming at generating antigen-specific Treg for treatment of autoimmune disease and for understanding their biology upon pro-inflammatory challenge and RP/RA supplementation.
Collapse
|
166
|
Miles B, Abdel-Ghaffar KA, Gamal AY, Baban B, Cutler CW. Blood dendritic cells: "canary in the coal mine" to predict chronic inflammatory disease? Front Microbiol 2014; 5:6. [PMID: 24478766 PMCID: PMC3902297 DOI: 10.3389/fmicb.2014.00006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 01/07/2014] [Indexed: 12/19/2022] Open
Abstract
The majority of risk factors for chronic inflammatory diseases are unknown. This makes personalized medicine for assessment, prognosis, and choice of therapy very difficult. It is becoming increasingly clear, however, that low-grade subclinical infections may be an underlying cause of many chronic inflammatory diseases and thus may contribute to secondary outcomes (e.g., cancer). Many diseases are now categorized as inflammatory-mediated diseases that stem from a dysregulation in host immunity. There is a growing need to study the links between low-grade infections, the immune responses they elicit, and how this impacts overall health. One such link explored in detail here is the extreme sensitivity of myeloid dendritic cells (mDCs) in peripheral blood to chronic low-grade infections and the role that these mDCs play in arbitrating the resulting immune responses. We find that emerging evidence supports a role for pathogen-induced mDCs in chronic inflammation leading to increased risk of secondary clinical disease. The mDCs that are elevated in the blood as a result of low-grade bacteremia often do not trigger a productive immune response, but can disseminate the pathogen throughout the host. This aberrant trafficking of mDCs can accelerate systemic inflammatory disease progression. Conversely, restoration of dendritic cell homeostasis may aid in pathogen elimination and minimize dissemination. Thus it would seem prudent when assessing chronic inflammatory disease risk to consider blood mDC numbers, and the microbial content (microbiome) and activation state of these mDCs. These may provide important clues (“the canary in the coal mine”) of high inflammatory disease risk. This will facilitate development of novel immunotherapies to eliminate such smoldering infections in atherosclerosis, cancer, rheumatoid arthritis, and pre-eclampsia.
Collapse
Affiliation(s)
- Brodie Miles
- Department of Periodontics, College of Dental Medicine, Georgia Regents University Augusta, GA, USA
| | | | | | - Babak Baban
- Department of Oral Biology, Georgia Regents University Augusta, GA, USA
| | - Christopher W Cutler
- Department of Periodontics, College of Dental Medicine, Georgia Regents University Augusta, GA, USA
| |
Collapse
|
167
|
Involvement of suppressive B-lymphocytes in the mechanism of tolerogenic dendritic cell reversal of type 1 diabetes in NOD mice. PLoS One 2014; 9:e83575. [PMID: 24465383 PMCID: PMC3894962 DOI: 10.1371/journal.pone.0083575] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 11/14/2013] [Indexed: 01/10/2023] Open
Abstract
The objective of the study was to identify immune cell populations, in addition to Foxp3+ T-regulatory cells, that participate in the mechanisms of action of tolerogenic dendritic cells shown to prevent and reverse type 1 diabetes in the Non-Obese Diabetic (NOD) mouse strain. Co-culture experiments using tolerogenic dendritic cells and B-cells from NOD as well as transgenic interleukin-10 promoter-reporter mice along with transfer of tolerogenic dendritic cells and CD19+ B-cells into NOD and transgenic mice, showed that these dendritic cells increased the frequency and numbers of interleukin-10-expressing B-cells in vitro and in vivo. The expansion of these cells was a consequence of both the proliferation of pre-existing interleukin-10-expressing B-lymphocytes and the conversion of CD19+ B-lymphcytes into interleukin-10-expressing cells. The tolerogenic dendritic cells did not affect the suppressive activity of these B-cells. Furthermore, we discovered that the suppressive murine B-lymphocytes expressed receptors for retinoic acid which is produced by the tolerogenic dendritic cells. These data assist in identifying the nature of the B-cell population increased in response to the tolerogenic dendritic cells in a clinical trial and also validate very recent findings demonstrating a mechanistic link between human tolerogenic dendritic cells and immunosuppressive regulatory B-cells.
Collapse
|
168
|
Hamano R, Baba T, Sasaki S, Tomaru U, Ishizu A, Kawano M, Yamagishi M, Mukaida N. Ag and IL-2 immune complexes efficiently expand Ag-specific Treg cells that migrate in response to chemokines and reduce localized immune responses. Eur J Immunol 2014; 44:1005-15. [DOI: 10.1002/eji.201343434] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 11/09/2013] [Accepted: 12/10/2013] [Indexed: 01/27/2023]
Affiliation(s)
- Ryoko Hamano
- Division of Rheumatology; Department of Internal Medicine; Kanazawa University Hospital; Kanazawa Ishikawa Japan
| | - Tomohisa Baba
- Division of Molecular Bioregulation; Cancer Research Institute; Kanazawa University; Kanazawa Ishikawa Japan
| | - Soichiro Sasaki
- Division of Molecular Bioregulation; Cancer Research Institute; Kanazawa University; Kanazawa Ishikawa Japan
| | - Utano Tomaru
- Department of Pathology/Pathophysiology; Graduate School of Medicine; Hokkaido University; Sapporo Hokkaido Japan
| | - Akihiro Ishizu
- Faculty of Health Science; Hokkaido University; Sapporo Hokkaido Japan
| | - Mitsuhiro Kawano
- Division of Rheumatology; Department of Internal Medicine; Kanazawa University Hospital; Kanazawa Ishikawa Japan
| | - Masakazu Yamagishi
- Division of Cardiology; Department of Internal Medicine; Kanazawa University Hospital; Kanazawa Ishikawa Japan
| | - Naofumi Mukaida
- Division of Molecular Bioregulation; Cancer Research Institute; Kanazawa University; Kanazawa Ishikawa Japan
| |
Collapse
|
169
|
Fujio K, Okamura T, Okamoto A, Yamamoto K. T-cell receptor- and anti-inflammatory gene-modulated T cells as therapy for autoimmune disease. Expert Rev Clin Immunol 2014; 3:883-90. [DOI: 10.1586/1744666x.3.6.883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
170
|
Wright GP, Ehrenstein MR, Stauss HJ. Regulatory T-cell adoptive immunotherapy: potential for treatment of autoimmunity. Expert Rev Clin Immunol 2014; 7:213-25. [DOI: 10.1586/eci.10.96] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
171
|
|
172
|
Lee K, Nguyen V, Lee KM, Kang SM, Tang Q. Attenuation of donor-reactive T cells allows effective control of allograft rejection using regulatory T cell therapy. Am J Transplant 2014; 14:27-38. [PMID: 24354870 PMCID: PMC5262439 DOI: 10.1111/ajt.12509] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 07/01/2013] [Accepted: 08/01/2013] [Indexed: 01/25/2023]
Abstract
Regulatory T cells (Tregs) are essential for the establishment and maintenance of immune tolerance, suggesting a potential therapeutic role for Tregs in transplantation. However, Treg administration alone is insufficient in inducing long-term allograft survival in normal hosts, likely due to the high frequency of alloreactive T cells. We hypothesized that a targeted reduction of alloreactive T effector cells would allow a therapeutic window for Treg efficacy. Here we show that preconditioning recipient mice with donor-specific transfusion followed by cyclophosphamide treatment deleted 70-80% donor-reactive T cells, but failed to prolong islet allograft survival. However, infusion of either 5 × 10(6) Tregs with direct donor reactivity or 25 × 10(6) polyclonal Tregs led to indefinite survival of BALB/c islets in more than 70% of preconditioned C57BL/6 recipients. Notably, protection of C3H islets in autoimmune nonobese diabetic mice required islet autoantigen-specific Tregs together with polyclonal Tregs. Treg therapy led to significant reduction of CD8(+) T cells and concomitant increase in endogenous Tregs among graft-infiltrating cells early after transplantation. Together, these results demonstrate that reduction of the donor-reactive T cells will be an important component of Treg-based therapies in transplantation.
Collapse
Affiliation(s)
- K. Lee
- Department of Surgery, University of California, San Francisco, San Francisco, CA,Department of Biochemistry and Molecular Biology, Korea University, Seoul, Republic of Korea
| | - V. Nguyen
- Department of Surgery, University of California, San Francisco, San Francisco, CA
| | - K.-M. Lee
- Department of Biochemistry and Molecular Biology, Korea University, Seoul, Republic of Korea
| | - S.-M. Kang
- Department of Surgery, University of California, San Francisco, San Francisco, CA,Corresponding authors: Qizhi Tang, and Sang-Mo Kang,
| | - Q. Tang
- Department of Surgery, University of California, San Francisco, San Francisco, CA,Corresponding authors: Qizhi Tang, and Sang-Mo Kang,
| |
Collapse
|
173
|
Wang Y, Wang Y, Wang Y, Zheng G, Tan TK, Lee S, Zhang J, Zhang GY, Hu M, Wang C, Cao Q, Zhao Y, Wang XM, Alexander SI, Harris DC. Regulatory T cells require renal antigen recognition through the TCR to protect against injury in nephritis. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2013; 7:38-47. [PMID: 24427324 PMCID: PMC3885458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 12/03/2013] [Indexed: 06/03/2023]
Abstract
Regulatory T cells (Treg) are important for maintaining immune homeostasis. Adoptive transfer of Tregs is protective in renal disease models in both immunocompetent and immunodeficient mice. However the involvement of TCR recognition of renal antigens remains to be clarified. To address this question, we made use of Tregs from the DO11.10 mouse (a TCR transgenic (Tg) mouse), that recognise the non-murine antigen Ovalbumin (OVA) and therefore are not activated by renal antigens. DO11.10 Tregs were assessed functionally in vitro and demonstrated equivalent suppression to WT BALB/c Tregs. Adriamycin Nephropathy (AN) was induced in mice which had been transfused with CD4+CD25+Tregs isolated from DO11.10 or BALB/c mice. To eliminate the memory/activation state as a cause of differences in activity, the protective capacity of DO11.10 Tregs pre-activated with OVA in vivo was assessed. Transfer of WT BALB/c Tregs significantly attenuated the development of AN with less glomerulosclerosis, tubular atrophy and macrophage infiltration as compared to AN mice without Treg transfer. However, mice receiving either naïve or pre-activated DO11.10 Tregs were not protected from AN. The lack of protection by DO11.10 Tregs was not due to failure to traffic to the affected kidney. These results suggest that antigen recognition in the kidney is important for Treg protection against injury.
Collapse
Affiliation(s)
- Ya Wang
- Centre for Transplantation and Renal Research, University of Sydney at Westmead Millennium InstituteSydney, Australia
| | - Yuanmin Wang
- Centre for Kidney Research, Children’s Hospital at WestmeadWestmead, NSW 2145, Australia
| | - Yiping Wang
- Centre for Transplantation and Renal Research, University of Sydney at Westmead Millennium InstituteSydney, Australia
| | - Guoping Zheng
- Centre for Transplantation and Renal Research, University of Sydney at Westmead Millennium InstituteSydney, Australia
| | - Thian Kui Tan
- Centre for Transplantation and Renal Research, University of Sydney at Westmead Millennium InstituteSydney, Australia
| | - Sora Lee
- Centre for Transplantation and Renal Research, University of Sydney at Westmead Millennium InstituteSydney, Australia
| | - Jianlin Zhang
- Centre for Transplantation and Renal Research, University of Sydney at Westmead Millennium InstituteSydney, Australia
| | - Geoff Yu Zhang
- Centre for Kidney Research, Children’s Hospital at WestmeadWestmead, NSW 2145, Australia
| | - Min Hu
- Centre for Transplantation and Renal Research, University of Sydney at Westmead Millennium InstituteSydney, Australia
| | - Changqi Wang
- Centre for Transplantation and Renal Research, University of Sydney at Westmead Millennium InstituteSydney, Australia
| | - Qi Cao
- Centre for Transplantation and Renal Research, University of Sydney at Westmead Millennium InstituteSydney, Australia
| | - Ye Zhao
- Centre for Transplantation and Renal Research, University of Sydney at Westmead Millennium InstituteSydney, Australia
| | - Xin Maggie Wang
- Flow Cytometry Facility, Westmead Millennium Institute for Medical ResearchWestmead, NSW 2145, Australia
| | - Stephen I Alexander
- Centre for Kidney Research, Children’s Hospital at WestmeadWestmead, NSW 2145, Australia
| | - David C Harris
- Centre for Transplantation and Renal Research, University of Sydney at Westmead Millennium InstituteSydney, Australia
| |
Collapse
|
174
|
Morel PA. Dendritic cell subsets in type 1 diabetes: friend or foe? Front Immunol 2013; 4:415. [PMID: 24367363 PMCID: PMC3853773 DOI: 10.3389/fimmu.2013.00415] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 11/13/2013] [Indexed: 12/13/2022] Open
Abstract
Type 1 diabetes (T1D) is a T cell mediated autoimmune disease characterized by immune mediated destruction of the insulin-producing β cells in the islets of Langerhans. Dendritic cells (DC) have been implicated in the pathogenesis of T1D and are also used as immunotherapeutic agents. Plasmacytoid (p)DC have been shown to have both protective and pathogenic effects and a newly described merocytic DC population has been shown to break tolerance in the mouse model of T1D, the non-obese diabetic (NOD) mouse. We have used DC populations to prevent the onset of T1D in NOD mice and clinical trials of DC therapy in T1D diabetes have been initiated. In this review we will critically examine the recent published literature on the role of DC subsets in the induction and regulation of the autoimmune response in T1D.
Collapse
Affiliation(s)
- Penelope A Morel
- Department of Immunology, University of Pittsburgh , Pittsburgh, PA , USA
| |
Collapse
|
175
|
Bayer AL, Pugliese A, Malek TR. The IL-2/IL-2R system: from basic science to therapeutic applications to enhance immune regulation. Immunol Res 2013; 57:197-209. [PMID: 24214027 PMCID: PMC3990437 DOI: 10.1007/s12026-013-8452-5] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
IL-2 plays a critical role in the normal function of the immune system. A trophic factor for lymphocytes, IL-2 is required for mounting and sustaining adaptive T cell responses; however, IL-2 is also critical for immune regulation via its effects on regulatory T cells (Treg cells). Over the years, we have contributed to the understanding of the biology of IL-2 and its signaling through the IL-2 receptor and helped define the key role played by IL-2 in Treg development and function. Our data show that Treg cells have a heightened sensitivity to IL-2, which may create a therapeutic window to promote immune regulation by selective stimulation of Treg cells. We are now developing new efforts to translate this knowledge to the clinical arena, through our focused interest in Type 1 diabetes as a prototypic autoimmune disease. Specifically, we aim at developing IL-2-based therapeutic regimens and incorporate means to enhance antigen-specific Treg responses, for improved and more selective regulation of islet autoimmunity. In parallel, we are pursuing studies in preclinical models of autoimmunity and transplantation to define critical factors for successful adoptive Treg therapy and develop clinically applicable therapeutic protocols.
Collapse
Affiliation(s)
- Allison L. Bayer
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33101, USA
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL 33101, USA
| | - Alberto Pugliese
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33101, USA
- Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33101, USA
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL 33101, USA
| | - Thomas R. Malek
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33101, USA
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL 33101, USA
| |
Collapse
|
176
|
Terhune J, Berk E, Czerniecki BJ. Dendritic Cell-Induced Th1 and Th17 Cell Differentiation for Cancer Therapy. Vaccines (Basel) 2013; 1:527-49. [PMID: 26344346 PMCID: PMC4494209 DOI: 10.3390/vaccines1040527] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 10/18/2013] [Accepted: 11/07/2013] [Indexed: 02/07/2023] Open
Abstract
The success of cellular immunotherapies against cancer requires the generation of activated CD4+ and CD8+ T-cells. The type of T-cell response generated (e.g., Th1 or Th2) will determine the efficacy of the therapy, and it is generally assumed that a type-1 response is needed for optimal cancer treatment. IL-17 producing T-cells (Th17/Tc17) play an important role in autoimmune diseases, but their function in cancer is more controversial. While some studies have shown a pro-cancerous role for IL-17, other studies have shown an anti-tumor function. The induction of polarized T-cell responses can be regulated by dendritic cells (DCs). DCs are key regulators of the immune system with the ability to affect both innate and adaptive immune responses. These properties have led many researchers to study the use of ex vivo manipulated DCs for the treatment of various diseases, such as cancer and autoimmune diseases. While Th1/Tc1 cells are traditionally used for their potent anti-tumor responses, mounting evidence suggests Th17/Tc17 cells should be utilized by themselves or for the induction of optimal Th1 responses. It is therefore important to understand the factors involved in the induction of both type-1 and type-17 T-cell responses by DCs.
Collapse
Affiliation(s)
- Julia Terhune
- Department of Surgery and Harrison Department of Surgical Research, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Erik Berk
- Department of Surgery and Harrison Department of Surgical Research, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Brian J Czerniecki
- Department of Surgery and Harrison Department of Surgical Research, University of Pennsylvania, Philadelphia, PA 19104, USA.
- Rena Rowan Breast Center, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
177
|
Jethwa H, Adami AA, Maher J. Use of gene-modified regulatory T-cells to control autoimmune and alloimmune pathology: is now the right time? Clin Immunol 2013; 150:51-63. [PMID: 24333533 DOI: 10.1016/j.clim.2013.11.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 10/21/2013] [Accepted: 11/06/2013] [Indexed: 12/22/2022]
Abstract
Adoptive immunotherapy using genetically targeted T-cells has recently begun to achieve impressive clinical impact in selected tumor types. Furthermore, long-term follow-up studies indicate thus far that integrating viral vectors do not elicit clinically evident genotoxicity in T-cells, unlike hematopoietic stem cells. The optimism engendered by this clinical experience provides a platform for consideration of the extended use of this technology in other disease types. One area of particular interest entails the harnessing of regulatory T-cells (Tregs) in order to down-regulate unwanted immune responses. Increasing evidence supports the efficacy of this approach in pre-clinical models of autoimmune disease and allograft rejection. Nonetheless, questions remain about optimal host cell, transgene cargo, phenotypic stability of engineered cells in vivo and potential for toxicity. Here, we review the evidence that genetically engineered Tregs can effectively dampen pathogenic immune responses and critically evaluate the prospects for clinical development of this approach.
Collapse
Affiliation(s)
- Hannah Jethwa
- Department of Medicine, Barnet and Chase Farm NHS Trust, Barnet, Hertfordshire EN5 3DJ, UK
| | - Antonella A Adami
- King's College London, King's Health Partners Integrated Cancer Centre, Department of Research Oncology, Guy's Hospital Campus, Great Maze Pond, London SE1 9RT, UK
| | - John Maher
- King's College London, King's Health Partners Integrated Cancer Centre, Department of Research Oncology, Guy's Hospital Campus, Great Maze Pond, London SE1 9RT, UK; Department of Immunology, Barnet and Chase Farm NHS Trust, Barnet, Hertfordshire EN5 3DJ, UK; Department of Clinical Immunology and Allergy, King's College Hospital NHS Foundation Trust, Denmark Hill, London SE5 9RS, UK.
| |
Collapse
|
178
|
Miskov-Zivanov N, Turner MS, Kane LP, Morel PA, Faeder JR. The duration of T cell stimulation is a critical determinant of cell fate and plasticity. Sci Signal 2013; 6:ra97. [PMID: 24194584 DOI: 10.1126/scisignal.2004217] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Variations in T cell receptor (TCR) signal strength, as indicated by differential activation of downstream signaling pathways, determine the fate of naïve T cells after encounter with antigen. Low-strength signals favor differentiation into regulatory T (T(reg)) cells containing the transcription factor Foxp3, whereas high-strength signals favor generation of interleukin-2-producing T helper (T(H)) cells. We constructed a logic circuit model of TCR signaling pathways, a major feature of which is an incoherent feed-forward loop involving both TCR-dependent activation of Foxp3 and its inhibition by mammalian target of rapamycin (mTOR), leading to the transient appearance of Foxp3(+) cells under T(H) cell-generating conditions. Experiments confirmed this behavior and the prediction that the immunosuppressive cytokine TGF-β (transforming growth factor-β) could generate T(reg) cells even during continued Akt-mTOR signaling. We predicted that sustained mTOR activity could suppress FOXP3 expression upon TGF-β removal, suggesting a possible mechanism for the experimentally observed instability of Foxp3(+) cells. Our model predicted, and experiments confirmed, that transient stimulation of cells with high-dose antigen generated T(H), T(reg), and nonactivated cells in proportions depending on the duration of TCR stimulation. Experimental analysis of cells after antigen removal identified three populations that correlated with these T cell fates. Further analysis of simulations implicated a negative feedback loop involving Foxp3, the phosphatase PTEN, and Akt-mTOR in determining fate. These results suggest that there is a critical time after TCR stimulation during which heterogeneity in the differentiating population of cells leads to increased plasticity of cell fate.
Collapse
Affiliation(s)
- Natasa Miskov-Zivanov
- 1Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | | | | | | |
Collapse
|
179
|
Look M, Saltzman WM, Craft J, Fahmy TM. The nanomaterial-dependent modulation of dendritic cells and its potential influence on therapeutic immunosuppression in lupus. Biomaterials 2013; 35:1089-95. [PMID: 24183697 DOI: 10.1016/j.biomaterials.2013.10.046] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Accepted: 10/15/2013] [Indexed: 10/26/2022]
Abstract
Targeting dendritic cells with nanoparticles is an attractive modality for instigating immunity or inducing immunosuppression. An important aspect of successful delivery of antigen and immune modulators to these cells is the efficacy of nanoparticle internalization, which can dictate the strength and robustness of immune responses; optimizing particulate uptake is thus key. We compared the internalization of two nanoparticulate platforms: a vesicular "nanogel" platform with a lipid exterior, and the widely-used solid biodegradable poly(lactic-co-glycolic acid) (PLGA) system. We found that nanogels were more effectively internalized by dendritic cells in vitro, as demonstrated by fluorescent tracer measurements. Additionally, the magnitude of dendritic cell immunosuppression achieved by nanogels loaded with mycophenolic acid, an immunosuppressant, was greater than similarly drug-loaded PLGA. Although both types of particles could mitigate the production of inflammatory cytokines and the up-regulation of stimulatory surface markers, nanogels yielded greater reductions. These in vitro measurements correlated with in vivo efficacy, where immunosuppressive therapy with nanogels extended the survival of lupus-prone NZB/W F1 mice whereas PLGA particles did not. Our results highlight the importance of material on nanoparticle uptake by dendritic cells, which impacts the quality of therapeutic immunosuppression.
Collapse
Affiliation(s)
- Michael Look
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
180
|
Colonna L, Florek M, Leveson-Gower DB, Sega EI, Baker J, Smith AT, Negrin RS. IL-17 gene ablation does not impact Treg-mediated suppression of graft-versus-host disease after bone marrow transplantation. Biol Blood Marrow Transplant 2013; 19:1557-65. [PMID: 23921175 PMCID: PMC3934793 DOI: 10.1016/j.bbmt.2013.07.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 07/25/2013] [Indexed: 10/26/2022]
Abstract
Regulatory T cell (Treg) immunotherapy is a promising strategy for the treatment of graft rejection responses and autoimmune disorders. Our and other laboratories have shown that the transfer of highly purified CD4(+)CD25(+)Foxp3(+) natural Treg can prevent lethal graft-versus-host disease (GVHD) after allogeneic hematopoietic cell transplantation across both major and minor histocompatibility barriers. However, recent evidence suggests that the Treg suppressive phenotype can become unstable, a phenomenon that can culminate in Treg conversion into IL-17-producing cells. We hypothesized that the intense proinflammatory signals released during an ongoing alloreaction might redirect a fraction of the transferred Treg to the Th17 cell fate, thereby losing immunosuppressive potential. We therefore sought to evaluate the impact of Il17 gene ablation on Treg stability and immunosuppressive capacity in a major MHC mismatch model. We show that although Il17 gene ablation results in a mildly enhanced Treg immunosuppressive ability in vitro, such improvement is not observed when IL-17-deficient Treg are used for GVHD suppression in vivo. Similarly, when we selectively blocked IL-1 signaling in Treg, that was shown to be necessary for Th17 conversion, we did not detect any improvement on Treg-mediated GVHD suppressive ability in vivo. Furthermore, upon ex vivo reisolation of transferred wild-type Treg, we detected little or no Treg-mediated IL-17 production upon GVHD induction. Our results indicate that blocking Th17 conversion does not affect the GVHD suppressive ability of highly purified natural Treg in vivo, suggesting that IL-17 targeting is not a valuable strategy to improve Treg immunotherapy after hematopoietic cell transplantation.
Collapse
Affiliation(s)
- Lucrezia Colonna
- Department of Medicine, Division of Blood and Marrow Transplantation, Stanford University, Stanford, California
| | - Mareike Florek
- Department of Medicine, Division of Blood and Marrow Transplantation, Stanford University, Stanford, California
| | - Dennis B. Leveson-Gower
- Department of Medicine, Division of Blood and Marrow Transplantation, Stanford University, Stanford, California
| | - Emanuela I. Sega
- Department of Medicine, Division of Blood and Marrow Transplantation, Stanford University, Stanford, California
| | - Jeanette Baker
- Department of Medicine, Division of Blood and Marrow Transplantation, Stanford University, Stanford, California
| | - Aaron T. Smith
- Department of Medicine, Division of Blood and Marrow Transplantation, Stanford University, Stanford, California
| | - Robert S. Negrin
- Department of Medicine, Division of Blood and Marrow Transplantation, Stanford University, Stanford, California
| |
Collapse
|
181
|
Li L, Nishio J, van Maurik A, Mathis D, Benoist C. Differential response of regulatory and conventional CD4⁺ lymphocytes to CD3 engagement: clues to a possible mechanism of anti-CD3 action? JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 191:3694-704. [PMID: 23986534 PMCID: PMC3932531 DOI: 10.4049/jimmunol.1300408] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Several clinical trials have shown anti-CD3 treatment to be a promising therapy for autoimmune diabetes, but its mechanism of action remains unclear. Foxp3(+) regulatory T cells (Tregs) are likely to be involved, but through unknown mechanistic pathways. We profiled the transcriptional consequences in CD4(+) Tregs and conventional T cells (Tconvs) in the first hours and days after anti-CD3 treatment of NOD mice. Anti-CD3 treatment led to a transient transcriptional response, terminating faster than most Ag-induced responses. Most transcripts were similarly induced in Tregs and Tconvs, but several were differential, in particular, those encoding the IL-7R and transcription factors Id2/3 and Gfi1, upregulated in Tregs but repressed in Tconvs. Because IL-7R was a plausible candidate for driving the homeostatic response of Tregs to anti-CD3, we tested its relevance by supplementation of anti-CD3 treatment with IL-7/anti-IL-7 complexes. Although ineffective alone, IL-7 significantly improved the rate of remission induced by anti-CD3. Four anti-human CD3 mAbs exhibited the same differential effect on IL-7R expression in human as in mouse cells, suggesting that the mechanism also underlies therapeutic effect in human cells, and perhaps a rationale for testing a combination of anti-CD3 and IL-7 for the treatment of recent-onset human type 1 diabetes. Thus, systems-level analysis of the response to anti-CD3 in the early phase of the treatment demonstrates different responses in Tregs and Tconvs, and provides new leads to a mechanistic understanding of its mechanism of action in reverting recent-onset diabetes.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/metabolism
- Antibodies, Monoclonal/pharmacology
- CD3 Complex/immunology
- CD3 Complex/metabolism
- CD4-Positive T-Lymphocytes/drug effects
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- Cells, Cultured
- Drug Synergism
- Gene Expression Regulation/drug effects
- Humans
- Interleukin-7/pharmacology
- Mice
- Mice, Transgenic
- Protein Binding
- Receptors, Interleukin-7/genetics
- Receptors, Interleukin-7/metabolism
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
Collapse
Affiliation(s)
- Li Li
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Junko Nishio
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - André van Maurik
- Immuno Inflammation, GlaxoSmithKline, Stevenage, SG1 2NY, United Kingdom
| | - Diane Mathis
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Christophe Benoist
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
182
|
Price JD, Beauchamp NM, Rahir G, Zhao Y, Rieger CC, Lau-Kilby AW, Tarbell KV. CD8+ dendritic cell-mediated tolerance of autoreactive CD4+ T cells is deficient in NOD mice and can be corrected by blocking CD40L. J Leukoc Biol 2013; 95:325-36. [PMID: 24082013 DOI: 10.1189/jlb.0113013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
DCs are important mediators of peripheral tolerance for the prevention of autoimmunity. Chimeric αDEC-205 antibodies with attached antigens allow in vivo antigen-specific stimulation of T cells by CD8(+) DCs, resulting in tolerance in nonautoimmune mice. However, it is not clear whether DC-mediated tolerance induction occurs in the context of ongoing autoimmunity. We assessed the role of CD8(+) DCs in stimulation of autoreactive CD4(+) T cells in the NOD mouse model of type 1 diabetes. Targeting of antigen to CD8(+) DCs via αDEC-205 led to proliferation and expansion of β-cell specific BDC2.5 T cells. These T cells also produced IL-2 and IFN-γ and did not up-regulate FoxP3, consistent with an activated rather than tolerant phenotype. Similarly, endogenous BDC peptide-reactive T cells, identified with I-A(g7) tetramers, did not become tolerant after antigen delivery via αDEC-205: no deletion or Treg induction was observed. We observed that CD8(+) DCs from NOD mice expressed higher surface levels of CD40 than CD8(+) DCs from C57BL/6 mice. Blockade of CD40-CD40L interactions reduced the number of BDC2.5 T cells remaining in mice, 10 days after antigen targeting to CD8 DCs, and blocked IFN-γ production by BDC2.5 T cells. These data indicate that the ability of autoreactive CD4(+) T cells to undergo tolerance mediated by CD8(+) DCs is defective in NOD mice and that blocking CD40-CD40L interactions can restore tolerance induction.
Collapse
Affiliation(s)
- Jeffrey D Price
- 1.Diabetes, Endocrinology, and Obesity Branch, NIDDK, NIH, Bldg. 10, CRC, West Labs, 5-5940, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | |
Collapse
|
183
|
Schliesser U, Chopra M, Beilhack A, Appelt C, Vogel S, Schumann J, Panov I, Vogt K, Schlickeiser S, Olek S, Wood K, Brandt C, Volk HD, Sawitzki B. Generation of highly effective and stable murine alloreactive Treg cells by combined anti-CD4 mAb, TGF-β, and RA treatment. Eur J Immunol 2013; 43:3291-305. [PMID: 23946112 DOI: 10.1002/eji.201243292] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 07/02/2013] [Accepted: 08/12/2013] [Indexed: 11/10/2022]
Abstract
The transfer of alloreactive regulatory T (aTreg) cells into transplant recipients represents an attractive treatment option to improve long-term graft acceptance. We recently described a protocol for the generation of aTreg cells in mice using a nondepleting anti-CD4 antibody (aCD4). Here, we investigated whether adding TGF-β and retinoic acid (RA) or rapamycin (Rapa) can further improve aTreg-cell generation and function. Murine CD4(+) T cells were cultured with allogeneic B cells in the presence of aCD4 alone, aCD4+TGF-β+RA or aCD4+Rapa. Addition of TGF-β+RA or Rapa resulted in an increase of CD25(+)Foxp3(+)-expressing T cells. Expression of CD40L and production of IFN-γ and IL-17 was abolished in aCD4+TGF-β+RA aTreg cells. Additionally, aCD4+TGF-β+RA aTreg cells showed the highest level of Helios and Neuropilin-1 co-expression. Although CD25(+)Foxp3(+) cells from all culture conditions displayed complete demethylation of the Treg-specific demethylated region, aCD4+TGF-β+RA Treg cells showed the most stable Foxp3 expression upon restimulation. Consequently, aCD4+TGF-β+RA aTreg cells suppressed effector T-cell differentiation more effectively in comparison to aTreg cells harvested from all other cultures, and furthermore inhibited acute graft versus host disease and especially skin transplant rejection. Thus, addition of TGF-β+RA seems to be superior over Rapa in stabilising the phenotype and functional capacity of aTreg cells.
Collapse
Affiliation(s)
- Ulrike Schliesser
- Institute of Medical Immunology, Charité - Universitätsmedizin, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
184
|
Xu D, Prasad S, Miller SD. Inducing immune tolerance: a focus on Type 1 diabetes mellitus. ACTA ACUST UNITED AC 2013; 3:415-426. [PMID: 24505231 DOI: 10.2217/dmt.13.36] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Tolerogenic strategies that specifically target diabetogenic immune cells in the absence of complications of immunosuppression are the desired treatment for the prevention or even reversal of Type 1 diabetes (T1D). Antigen (Ag)-based therapies must not only suppress disease-initiating diabetogenic T cells that are already activated, but, more importantly, prevent activation of naive auto-Ag-specific T cells that may become autoreactive through epitope spreading as a result of Ag liberation from damaged islet cells. Therefore, identification of auto-Ags relevant to T1D initiation and progression is critical to the design of effective Ag-specific therapies. Animal models of T1D have been successfully employed to identify potential diabetogenic Ags, and have further facilitated translation of Ag-specific tolerance strategies into human clinical trials. In this review, we highlight important advances using animal models in Ag-specific T1D immunotherapies, and the application of the preclinical findings to human subjects. We provide an up-to-date overview of the strengths and weaknesses of various tolerance-inducing strategies, including infusion of soluble Ags/peptides by various routes of delivery, genetic vaccinations, cell- and inert particle-based tolerogenic approaches, and various other strategies that target distinct tolerance-inducing pathways.
Collapse
Affiliation(s)
- Dan Xu
- Department of Microbiology-Immunology & Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, 303 E Chicago Avenue, Chicago, IL 60611, USA
| | - Suchitra Prasad
- Department of Microbiology-Immunology & Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, 303 E Chicago Avenue, Chicago, IL 60611, USA
| | - Stephen D Miller
- Department of Microbiology-Immunology & Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, 303 E Chicago Avenue, Chicago, IL 60611, USA
| |
Collapse
|
185
|
Yu K, Zhu P, Dong Q, Zhong Y, Zhu Z, Lin Y, Huang Y, Meng K, Ji Q, Yi G, Zhang W, Wu B, Mao Y, Cheng P, Zhao X, Mao X, Zeng Q. Thymic stromal lymphopoietin attenuates the development of atherosclerosis in ApoE-/- mice. J Am Heart Assoc 2013; 2:e000391. [PMID: 23985377 PMCID: PMC3835250 DOI: 10.1161/jaha.113.000391] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Thymic stromal lymphopoietin (TSLP) is a cytokine with multiple effects on the body. For one thing, TSLP induces Th2 immunoreaction and facilitates allergic reaction; for another, it promotes the differentiation of naturally occurring CD4+CD25+Foxp3+ regulatory T cells (nTregs) and maintains immune tolerance. However, the exact role of TSLP in atherosclerosis remains unknown. Methods and Results In vitro, we examined the phenotype of TSLP‐conditioned bone marrow dendritic cells (TSLP‐DCs) of apolipoprotein E–deficient (ApoE−/−) mice and their capacity to induce the differentiation of Tregs. Our results indicated that TSLP‐DCs obtained the characteristics of tolerogenic dendritic cells and increased a generation of CD4+ latency‐associated peptide (LAP)+ Tregs and nTregs when cocultured with naive T cells. In addition, the functional relevance of TSLP and TSLP‐DCs in the development of atherosclerosis was also determined. Interestingly, we found that TSLP was almost absent in cardiovascular tissue of ApoE−/− mice, and TSLP administration increased the levels of antioxidized low‐density lipoprotein IgM and IgG1, but decreased the levels of IgG2a in plasma. Furthermore, mice treated with TSLP and TSLP‐DCs developed significantly fewer (32.6% and 28.2%, respectively) atherosclerotic plaques in the aortic root compared with controls, along with increased numbers of CD4+LAP+ Tregs and nTregs in the spleen and decreased inflammation in the aorta, which could be abrogated by anti‐TGF‐β antibody. Conclusions Our results revealed a protective role for TSLP in atherosclerosis that is possibly mediated by reestablishing a tolerogenic immune response, which may represent a novel possibility for treatment or prevention of atherosclerosis.
Collapse
Affiliation(s)
- Kunwu Yu
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
186
|
Human regulatory T cells against minor histocompatibility antigens: ex vivo expansion for prevention of graft-versus-host disease. Blood 2013; 122:2251-61. [PMID: 23908471 DOI: 10.1182/blood-2013-03-492397] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Alloreactive donor T cells against host minor histocompatibility antigens (mHAs) cause graft-versus-host disease (GVHD) after marrow transplantation from HLA-identical siblings. We sought to identify and expand regulatory CD4 T cells (Tregs) specific for human mHAs in numbers and potency adequate for clinical testing. Purified Tregs from normal donors were stimulated by dendritic cells (DCs) from their HLA-matched siblings in the presence of interleukin 2, interleukin 15, and rapamycin. Male-specific Treg clones against H-Y antigens DBY, UTY, or DFFRY-2 suppressed conventional CD4 T cell (Tconv) response to the specific antigen. In the blood of 16 donors, we found a 24-fold (range, 8-fold to 39-fold) excess Tconvs over Tregs reactive against sibling mHAs. We expanded mHA-specific Tregs from 4 blood samples and 4 leukaphereses by 155- to 405-fold. Cultured Tregs produced allospecific suppression, maintained demethylation of the Treg-specific Foxp3 gene promoter, Foxp3 expression, and transforming growth factor β production. The rare CD4 T conv and CD8 T cells in the end product were anergic. This is the first report of detection and expansion of potent mHA-specific Tregs from HLA-matched siblings in sufficient numbers for application in human transplant trials.
Collapse
|
187
|
Podojil JR, Miller SD. Targeting the B7 family of co-stimulatory molecules: successes and challenges. BioDrugs 2013; 27:1-13. [PMID: 23329394 DOI: 10.1007/s40259-012-0001-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
As more patient data is cross-referenced with animal models of disease, the primary focus on T(h)1 autoreactive effector cell function in autoimmune diseases, such as rheumatoid arthritis and multiple sclerosis, has shifted towards the role of T(h)17 autoreactive effector cells and the ability of regulatory T cells (T(reg)) to modulate the pro-inflammatory autoimmune response. Therefore, the currently favored hypothesis is that a delicate balance between T(h)1/17 effector cells and T(reg) cell function is critical in the regulation of inflammatory autoimmune disease. An intensive area of research with regard to the T(h)1/17:T(reg) cell balance is the utilization of blockade and/or ligation of various co-stimulatory or co-inhibitory molecules, respectively, during ongoing disease to skew the immune response toward a more tolerogenic/regulatory state. Currently, FDA-approved therapies for multiple sclerosis patients are all aimed at the suppression of immune cell function. The other favored method of treatment is a modulation or deletion of autoreactive immune cells via short-term blockade of activating co-stimulatory receptors via treatment with fusion proteins such as CTLA4-Ig and CTLA4-FasL. Based on the initial success of CTLA4-Ig, there are additional fusion proteins that are currently under development. Examples of the more recently identified B7/CD28 family members are PD-L1, PD-L2, inducible co-stimulatory molecule-ligand (ICOS-L), B7-H3, and B7-H4, all of which may emerge as potential fusion protein therapeutics, each with unique, yet often overlapping functions. The expression of both stimulatory and inhibitory B7 molecules seems to play an essential role in modulating immune cell function through a variety of mechanisms, which is supported by findings that suggest each B7 molecule has developed its own indispensable niche in the immune system. As more data are generated, the diagnostic and therapeutic potential of the above B7 family-member-derived fusion proteins becomes ever more apparent. Besides defining the biology of these B7/CD28 family members in vivo, additional difficulty in the development of these therapies lies in maintaining the normal immune functions of recognition and reaction to non-self-antigens following viral or bacterial infection in the patient. Further complicating the clinical translation of these therapies, the mechanism of action identified for a particular reagent may depend upon the method of immune-cell activation and the subset of immune cells targeted in the study.
Collapse
Affiliation(s)
- Joseph R Podojil
- Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, Tarry 6-718, 303 E. Chicago Ave, Chicago, IL, 60611, USA
| | | |
Collapse
|
188
|
Martin GH, Grégoire S, Landau DA, Pilon C, Grinberg-Bleyer Y, Charlotte F, Mège JP, Chatenoud L, Salomon BL, Cohen JL. In vivo activation of transferred regulatory T cells specific for third-party exogenous antigen controls GVH disease in mice. Eur J Immunol 2013; 43:2263-72. [PMID: 23765389 PMCID: PMC4738555 DOI: 10.1002/eji.201343449] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 04/09/2013] [Accepted: 06/10/2013] [Indexed: 12/23/2022]
Abstract
Treg cells hold enormous promise for therapeutic application in GVH disease, a lethal complication of allogeneic HSC transplantation. Mouse studies showed that donor‐derived recipient‐specific Treg (rsTreg) cells are far more efficient than polyclonal Treg cells in suppressing GVH disease. However, clinical grade preparations of rsTreg cells carries the risk of containing significant numbers of highly pathogenic recipient‐specific effector T cells. We hypothesized that an alternative approach using Treg cells specific for an exogenous (i.e. nondonor, nonrecipient) Ag (exoTreg cells) can overcome this risk by taking advantage of the bystander suppressive effect of Treg cells. For this, we used a murine model for aggressive GVH disease. We expanded ex vivo exoTreg cells that are primed against the HY Ag, which is only expressed in males. ExoTreg cells supressed GVH disease as efficiently as rsTreg cells in recipient male mice. We also applied this strategy in female mice that do not express this Ag. While exoTreg cells were not effective in female recipients when applied alone, providing the cognate HY Ag in vivo along side effectively activated exoTreg cells and completely abrogated GVH disease, establishing a targeted on/off system to provide a suppressive effect on alloreactive effector T cells.
Collapse
Affiliation(s)
- Gaëlle H Martin
- UPMC Univ Paris 06, CNRS UMR7211, INSERM U959, Immunology-Immunopathology-Immunotherapy (I3), Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
189
|
Yamazaki S, Morita A. Dendritic cells in the periphery control antigen-specific natural and induced regulatory T cells. Front Immunol 2013; 4:151. [PMID: 23801989 PMCID: PMC3689032 DOI: 10.3389/fimmu.2013.00151] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 06/04/2013] [Indexed: 12/20/2022] Open
Abstract
Dendritic cells (DCs) are specialized antigen-presenting cells that regulate both immunity and tolerance. DCs in the periphery play a key role in expanding naturally occurring Foxp3+ CD25+ CD4+ regulatory T cells (Natural T-regs) and inducing Foxp3 expression (Induced T-regs) in Foxp3− CD4+ T cells. DCs are phenotypically and functionally heterogeneous, and further classified into several subsets depending on distinct marker expression and their location. Recent findings indicate the presence of specialized DC subsets that act to expand Natural T-regs or induce Foxp3+ T-regs from Foxp3− CD4+ T cells. For example, two major subsets of DCs in lymphoid organs act differentially in inducing Foxp3+ T-regs from Foxp3− cells or expanding Natural T-regs with model-antigen delivery by anti-DC subset monoclonal antibodies in vivo. Furthermore, DCs expressing CD103 in the intestine induce Foxp3+ T-regs from Foxp3− CD4+ T cells with endogenous TGF-β and retinoic acid. In addition, antigen-presenting DCs have a capacity to generate Foxp3+ T-regs in the oral cavity where many antigens and commensals exist, similar to intestine and skin. In skin and skin-draining lymph nodes, at least six DC subsets have been identified, suggesting a complex DC-T-reg network. Here, we will review the specific activity of DCs in expanding Natural T-regs and inducing Foxp3+ T-regs from Foxp3− precursors, and further discuss the critical function of DCs in maintaining tolerance at various locations including skin and oral cavity.
Collapse
Affiliation(s)
- Sayuri Yamazaki
- Department of Geriatric and Environmental Dermatology, Graduate School of Medical Sciences, Nagoya City University , Nagoya , Japan
| | | |
Collapse
|
190
|
Safinia N, Leech J, Hernandez-Fuentes M, Lechler R, Lombardi G. Promoting transplantation tolerance; adoptive regulatory T cell therapy. Clin Exp Immunol 2013; 172:158-68. [PMID: 23574313 DOI: 10.1111/cei.12052] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2012] [Indexed: 01/09/2023] Open
Abstract
Transplantation is a successful treatment for end-stage organ failure. Despite improvements in short-term outcome, long-term survival remains suboptimal because of the morbidity and mortality associated with long-term use of immunosuppression. There is, therefore, a pressing need to devise protocols that induce tolerance in order to minimize or completely withdraw immunosuppression in transplant recipients. In this review we will discuss how regulatory T cells (T(regs)) came to be recognized as an attractive way to promote transplantation tolerance. We will summarize the preclinical data, supporting the importance of these cells in the induction and maintenance of immune tolerance and that provide the rationale for the isolation and expansion of these cells for cellular therapy. We will also describe the data from the first clinical trials, using T(regs) to inhibit graft-versus-host disease (GVHD) after haematopoietic stem cell transplantation and will address both the challenges and opportunities in human T(reg) cell therapy.
Collapse
Affiliation(s)
- N Safinia
- MRC Centre for Transplantation, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | | | | | | | | |
Collapse
|
191
|
Al Shamsi M, Shahin A, Iwakura Y, Lukic ML, Mensah-Brown EPK. Pam3CSK(4) enhanced beta cell loss and diabetogenesis: the roles of IFN-gamma and IL-17. Clin Immunol 2013; 149:86-96. [PMID: 23899994 DOI: 10.1016/j.clim.2013.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 06/03/2013] [Accepted: 06/04/2013] [Indexed: 11/28/2022]
Abstract
Toll like receptors are primary sensors of both innate and adaptive immune systems. They activate APCs and influence T-cell function in inflammatory autoimmune response. Studies have shown that TLR manipulation may lead to either tolerance or trigger autoimmunity. Using diabetogenic and subdiabetogenic multiple low doses of streptozotocin, we demonstrate here that Pam3 CYS-CK4 a TLR-2 agonist, enhances and promotes diabetes in C57BL/6 male mice following increased apoptosis of β islet cells. FACS analysis of isolated pancreatic lymph node cells revealed significant increased number of macrophages, dendritic cells, CD4(+) TNF-α(+), CD4(+) IFN-γ(+) and most significantly, CD4(+) IL-17(+) and reduced number of CD25(+)Fox p3(+) T cells after Pam3CSK4 treatment. Genetic deletion of IFN-γ prevents whereas deletion of IL-17 reduced severity of Pam3CSK4-induced enhancement of diabetes. TLR-2 agonist-enhanced diabetogenesis is also influenced by enhanced influx of antigen presenting cells and suppression of regulatory T cell activity.
Collapse
Affiliation(s)
- Mariam Al Shamsi
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates
| | | | | | | | | |
Collapse
|
192
|
Tsai S, Serra P, Clemente-Casares X, Slattery RM, Santamaria P. Dendritic Cell–Dependent In Vivo Generation of Autoregulatory T Cells by Antidiabetogenic MHC Class II. THE JOURNAL OF IMMUNOLOGY 2013; 191:70-82. [DOI: 10.4049/jimmunol.1300168] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
193
|
Beumer W, Effraimidis G, Drexhage RC, Wiersinga WM, Drexhage HA. Changes in serum adhesion molecules, chemokines, cytokines, and tissue remodeling factors in euthyroid women without thyroid antibodies who are at risk for autoimmune thyroid disease: a hypothesis on the early phases of the endocrine autoimmune reaction. J Clin Endocrinol Metab 2013; 98:2460-8. [PMID: 23559080 DOI: 10.1210/jc.2012-4122] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
BACKGROUND The target glands in spontaneous animal models of endocrine autoimmune disease show, prior to the autoimmune reaction, growth and connective tissue abnormalities, whereas the autoimmune reaction is initiated by an early accumulation of macrophages and dendritic cells in the target glands. AIM The aim of the study was to test the hypothesis that serum factors related to these growth and connective tissue abnormalities and the early accumulation of immune cells, ie, tissue growth/remodeling factors, adhesion molecules, chemokines, and pro- and anti-inflammatory cytokines, are related to thyroid peroxidase autoantibodies (TPO-Abs) seroconversion in subjects at risk to develop autoimmune thyroid disease (AITD). DESIGN A controlled study on 64 TPO-Ab-negative euthyroid female relatives with at least 1 first- or second-degree relative with documented autoimmune hyper- or hypothyroidism, 32 of whom did and 32 who did not seroconvert to TPO-Ab positivity in 5-year follow-up. The relatives were compared with 32 healthy controls. In all subjects we measured serum levels of chemokine (C-C motif) ligand (CCL)-2, CCL3, CCL4, soluble vascular cell adhesion molecule, soluble intercellular adhesion molecule-1, thrombospondin-1, vascular endothelial growth factor-A, angiopoietin 1 receptor-2, metalloproteinase-13, platelet-derived growth factor-BB, fibronectin, IL-1β, IL-6, TNF-α, IL-10, and growth differentiation factor-15 by multiplex (cytometric bead array) or a single commercial ELISA. RESULTS Both seroconverting and nonseroconverting family members showed an up-regulation of fibronectin and a down-regulation of platelet-derived growth factor-BB and the adhesion and migration factors CCL2, CCL4, soluble vascular cell adhesion molecule-1, angiopoietin 1 receptor-2, and metalloproteinase-13. The seroconverters differed from the nonseroconverters by an up-regulation of the proinflammatory compounds Il-1β, IL-6, and CCL3. CONCLUSION This study shows that euthyroid females within AITD families show a characteristic pattern of abnormalities in serum levels of tissue remodeling factors, growth factors, chemokines, (vascular) adhesion molecules, and cytokines prior to the occurrence of TPO-Abs in serum. The results provide proof of principle that preseroconversion stages and seroconversion to AITD might be predicted using serum analytes related to growth/connective tissue abnormalities and migration/accumulation abnormalities of macrophages and dendritic cells.
Collapse
Affiliation(s)
- Wouter Beumer
- Department of Immunology, Erasmus Medical Center, Erasmus University, Rotterdam, The Netherlands
| | | | | | | | | |
Collapse
|
194
|
Schmidt HH, Ge Y, Hartmann FJ, Conrad H, Klug F, Nittel S, Bernhard H, Domschke C, Schuetz F, Sohn C, Beckhove P. HLA Class II tetramers reveal tissue-specific regulatory T cells that suppress T-cell responses in breast carcinoma patients. Oncoimmunology 2013; 2:e24962. [PMID: 23894725 PMCID: PMC3716760 DOI: 10.4161/onci.24962] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 05/03/2013] [Accepted: 05/08/2013] [Indexed: 12/23/2022] Open
Abstract
Regulatory T cells (Tregs) play an important role in controlling antitumor T-cell responses and hence represent a considerable obstacle for cancer immunotherapy. The abundance of specific Treg populations in cancer patients has been poorly analyzed so far. Here, we demonstrate that in breast cancer patients, Tregs often control spontaneous effector memory T-cell responses against mammaglobin, a common breast tissue-associated antigen that is overexpressed by breast carcinoma. Using functional assays, we identified a HLA-DRB1*04:01- and HLA-DRB1*07:01-restricted epitope of mammaglobin (mam34–48) that was frequently recognized by Tregs isolated from breast cancer patients. Using mam34–48-labeled HLA Class II tetramers, we quantified mammaglobin-specific Tregs and CD4+ conventional T (Tcon) cells in breast carcinoma patients as well as in healthy individuals. Both mammaglobin-specific Tregs and Tcon cells were expanded in breast cancer patients, each constituting approximately 0.2% of their respective cell subpopulations. Conversely, mammaglobin-specific Tregs and CD4+ Tcon cells were rare in healthy individuals (0.07%). Thus, we provide here for the first time evidence supporting the expansion of breast tissue-specific Tregs and CD4+ Tcon cells in breast cancer patients. In addition, we substantiate the potential implications of breast tissue-specific Tregs in the suppression of antitumor immune responses in breast cancer patients. The HLA Class II tetramers used in this study may constitute a valuable tool to elucidate the role of antigen-specific Tregs in breast cancer immunity and to monitor breast cancer-specific CD4+ T cells.
Collapse
Affiliation(s)
- Hans-Henning Schmidt
- German Cancer Research Center and National Center for Tumor Diseases; Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
195
|
Kaminitz A, Yolcu ES, Mizrahi K, Shirwan H, Askenasy N. Killer Treg cells ameliorate inflammatory insulitis in non-obese diabetic mice through local and systemic immunomodulation. Int Immunol 2013; 25:485-94. [DOI: 10.1093/intimm/dxt016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
196
|
Giannoukakis N, Trucco M. Dendritic cell therapy for Type 1 diabetes suppression. Immunotherapy 2013; 4:1063-74. [PMID: 23148758 DOI: 10.2217/imt.12.76] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
While dendritic cell-based therapy is a clinical reality for human malignancies, until now, some conceptual concerns have served to delay its consideration to treat human autoimmune diseases, even in light of almost two decades' worth of overwhelmingly supportive preclinical animal studies. This article provides an overview of the development of dendritic cell-based therapy for Type 1 diabetes mellitus, given that this is the best-studied autoimmune disorder and that there is a good understanding of the underlying immunology. This article also highlights data from the authors' pioneering Phase I clinical trial with tolerogenic dendritic cells, which hopes to motivate the clinical translation of other dendritic cell-based approaches, to one or more carefully selected Type 1 diabetic patient populations.
Collapse
Affiliation(s)
- Nick Giannoukakis
- Department of Pathology, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh, Rangos Research Center, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | | |
Collapse
|
197
|
Koristka S, Cartellieri M, Arndt C, Bippes CC, Feldmann A, Michalk I, Wiefel K, Stamova S, Schmitz M, Ehninger G, Bornhäuser M, Bachmann M. Retargeting of regulatory T cells to surface-inducible autoantigen La/SS-B. J Autoimmun 2013; 42:105-16. [PMID: 23352111 DOI: 10.1016/j.jaut.2013.01.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 12/20/2012] [Accepted: 01/02/2013] [Indexed: 12/16/2022]
Abstract
The nuclear autoantigen La can be detected on the surface of dying cells. Here we present an assay which enables us to show that La protein is not limited to the surface of dying cells but will be released upon stress-induced cell death. As released La protein tightly binds to the surface of neighboring intact cells we asked the question whether or not La protein could serve as a stress-inducible target e.g. for redirecting of regulatory T cells (Tregs) into damaged tissues to downregulate an immune response. In order to provide first proof of concept we developed a novel fully humanized single-chain bispecific antibody (bsAb) which on the one hand is directed to the La antigen and on the other hand to the CD3 complex of T cells. A cross-linkage of Tregs with La-decorated target cells mediated by this bsAb resulted indeed in the activation of the Tregs in a target-dependent manner. Moreover, such bsAb activated Tregs displayed a potent suppressive capacity and negatively influenced proliferation, expansion and cytokine production of autologous CD4(+) and CD8(+) Teff cells.
Collapse
Affiliation(s)
- Stefanie Koristka
- Institute of Immunology, Medical Faculty Carl Gustav Carus, Technical University Dresden, Fetscherstr. 74, 01307 Dresden, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
198
|
McPherson RC, Anderton SM. Adaptive immune responses in CNS autoimmune disease: mechanisms and therapeutic opportunities. J Neuroimmune Pharmacol 2013; 8:774-90. [PMID: 23568718 DOI: 10.1007/s11481-013-9453-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 03/13/2013] [Indexed: 01/20/2023]
Abstract
The processes underlying autoimmune CNS inflammation are complex, but key roles for autoimmune lymphocytes seem inevitable, based on clinical investigations in multiple sclerosis (MS) and related diseases such as neuromyelitis optica, together with the known pathogenic activity of T cells in experimental autoimmune encephalomyelitis (EAE) models. Despite intense investigation, the details of etiopathology in these diseases have been elusive. Here we describe recent advances in the rodent models that begin to allow a map of pathogenic and protective immunity to be drawn. This map might illuminate previous successful and unsuccessful therapeutic strategies targeting particular pathways, whilst also providing better opportunities for the future, leading to tailored intervention based on understanding the quality of each individual's autoimmune response.
Collapse
Affiliation(s)
- Rhoanne C McPherson
- Centre for Inflammation Research and Centre for Multiple Sclerosis Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | | |
Collapse
|
199
|
Abstract
PURPOSE OF REVIEW Transfer of human regulatory T cells (Tregs) has become an attractive therapeutic alternative to improve the long-term outcome in transplantation and thus reduce the side-effects of conventional immunosuppressive drugs. Here, we summarize the recent findings on human Treg subsets, their phenotype and in-vivo function. RECENT FINDINGS In the last 2 years, it has become apparent that several Treg subsets exist that specifically regulate Th1-driven, Th2-driven, or Th17-driven immune responses; these subsets are very unstable and rapidly change their phenotype, for example, there is loss of Foxp3 expression upon extensive ex-vivo expansion and only the administration of rapamycin has been shown to be able to interfere reproducibly. New humanized mouse models incorporating human solid-organ grafts have been developed, which have been used to test the human Treg in-vivo function, and the first human Treg-cell products have been tested for safety and efficacy in stem cell transplantation. SUMMARY With the recent findings, we have gained a better understanding of Treg heterogeneity, plasticity and function. Using the outcomes of clinical trials in stem cell transplantation, we have learned that adoptive therapy of Tregs is well tolerated and we are now awaiting the first result in solid-organ transplantation from the 'ONE Study'.
Collapse
|
200
|
Burt TD. Fetal regulatory T cells and peripheral immune tolerance in utero: implications for development and disease. Am J Reprod Immunol 2013; 69:346-58. [PMID: 23432802 PMCID: PMC3951896 DOI: 10.1111/aji.12083] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 01/03/2013] [Indexed: 12/13/2022] Open
Abstract
The developing fetus must actively learn to tolerate benign antigens or suffer the consequences of broken tolerance. Tolerance of self-antigens prevents development of autoimmune diseases and is achieved by both deletion of autoreactive T cell clones in the thymus (central tolerance) and by the suppressive influence of CD4(+) CD25(+) FoxP3(+) regulatory T cells (Tregs) in the periphery. Fetal CD4(+) T cells have a strong predisposition to differentiate into tolerogenic Tregs that actively promote self-tolerance, as well as tolerance to non-inherited antigens on chimeric maternal cells that reside in fetal tissues. As the fetus nears birth, a crucial transition must occur between the tolerogenic fetal immune system and a more defensive adult-type immune system that is able to combat pathogens. This paper will review the unique tolerogenic nature of fetal T cells and will examine evidence for a novel model of fetal immune development: the layered immune system hypothesis.
Collapse
Affiliation(s)
- Trevor D Burt
- Division of Neonatology, Department of Pediatrics, University of California San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|