151
|
Kim J, Hamamoto S, Ravazzola M, Orci L, Schekman R. Uncoupled packaging of amyloid precursor protein and presenilin 1 into coat protein complex II vesicles. J Biol Chem 2004; 280:7758-68. [PMID: 15623526 DOI: 10.1074/jbc.m411091200] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Mutant forms of presenilin (PS) 1 and 2 and amyloid precursor protein (APP) lead to familial Alzheimer's disease. Several reports indicate that PS may modulate APP export from the endoplasmic reticulum (ER). To develop a test of this possibility, we reconstituted the capture of APP and PS1 in COPII (coat protein complex II) vesicles formed from ER membranes in permeabilized cultured cells. The recombinant forms of mammalian COPII proteins were active in a reaction that measures coat subunit assembly and coated vesicle budding on chemically defined synthetic liposomes. However, the recombinant COPII proteins were not active in cargo capture and vesicle budding from microsomal membranes. In contrast, rat liver cytosol was active in stimulating the sorting and packaging of APP, PS1, and p58 (an itinerant ER to Golgi marker protein) into transport vesicles from donor ER membranes. Budding was stimulated in dilute cytosol by the addition of recombinant COPII proteins. Fractionation of the cytosol suggested one or more additional proteins other than the COPII subunits may be essential for cargo selection or vesicle formation from the mammalian ER membrane. The recombinant Sec24C specifically recognized the APP C-terminal region for packaging. Titration of Sarla distinguished the packaging requirements of APP and PS1. Furthermore, APP packaging was not affected by deletion of PS1 or PS1 and 2, suggesting APP and PS1 trafficking from the ER are normally uncoupled.
Collapse
Affiliation(s)
- Jinoh Kim
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, California 94720, USA
| | | | | | | | | |
Collapse
|
152
|
Shimoi W, Ezawa I, Nakamoto K, Uesaki S, Gabreski G, Aridor M, Yamamoto A, Nagahama M, Tagaya M, Tani K. p125 is localized in endoplasmic reticulum exit sites and involved in their organization. J Biol Chem 2004; 280:10141-8. [PMID: 15623529 DOI: 10.1074/jbc.m409673200] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transport vesicles coated with the COPII complex, which is assembled from Sar1p, Sec23p-Sec24p, and Sec13p-Sec31p, are involved in protein export from the endoplasmic reticulum (ER). We previously identified and characterized a novel Sec23p-interacting protein, p125, that is only expressed in mammals and exhibits sequence homology with phosphatidic acid-preferring phospholipase A(1) (PA-PLA(1)). In this study, we examined the localization and function of p125 in detail. By using immunofluorescence and electron microscopy, we found that p125 is principally localized in ER exit sites where COPII-coated vesicles are produced. Analyses of chimeric proteins comprising p125 and two other members of the mammalian PA-PLA(1) family (PA-PLA(1) and KIAA0725p) showed that, for localization to ER exit sites, the p125-specific N-terminal region is critical, and the putative lipase domain is interchangeable with KIAA0725p but not with PA-PLA(1). RNA interference-mediated depletion of p125 affected the organization of ER exit sites. The structure of the cis-Golgi compartment was also substantially disturbed, whereas the medial-Golgi was not. Protein export from the ER occurred without a significant delay in p125-depleted cells. Our study suggests that p125 is a mammalian-specific component of ER exit sites and participates in the organization of this compartment.
Collapse
Affiliation(s)
- Wakako Shimoi
- School of Life Science, Tokyo University of Pharmacy and Life Science, Hachioji, Tokyo 192-0392, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
153
|
Reinke CA, Kozik P, Glick BS. Golgi inheritance in small buds of Saccharomyces cerevisiae is linked to endoplasmic reticulum inheritance. Proc Natl Acad Sci U S A 2004; 101:18018-23. [PMID: 15596717 PMCID: PMC539800 DOI: 10.1073/pnas.0408256102] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
According to the cisternal maturation hypothesis, endoplasmic reticulum (ER)-derived membranes nucleate new Golgi cisternae. The yeast Saccharomyces cerevisiae offers a unique opportunity to test this idea because small buds contain both ER and Golgi structures early in the cell cycle. We previously predicted that mutants defective in ER inheritance also would show defects in Golgi inheritance. Surprisingly, studies of S. cerevisiae have not revealed the expected link between ER and Golgi inheritance. Here, we revisit this issue by generating mutant strains in which many of the small buds are devoid of detectable ER. These strains also show defects in the inheritance of both early and late Golgi cisternae. Strikingly, virtually all of the buds that lack ER also lack early Golgi cisternae. Our results fit with the idea that membranes exported from the ER coalesce with vesicles derived from existing Golgi compartments to generate new Golgi cisternae. This basic mechanism of Golgi inheritance may be conserved from yeast to vertebrate cells.
Collapse
Affiliation(s)
- Catherine A Reinke
- Department of Molecular Genetics and Cell Biology, University of Chicago, 920 East 58th Street, Chicago, IL 60637, USA
| | | | | |
Collapse
|
154
|
Kapetanovich L, Baughman C, Lee TH. Nm23H2 facilitates coat protein complex II assembly and endoplasmic reticulum export in mammalian cells. Mol Biol Cell 2004; 16:835-48. [PMID: 15591128 PMCID: PMC545915 DOI: 10.1091/mbc.e04-09-0785] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The cytosolic coat protein complex II (COPII) mediates vesicle formation from the endoplasmic reticulum (ER) and is essential for ER-to-Golgi trafficking. The minimal machinery for COPII assembly is well established. However, additional factors may regulate the process in mammalian cells. Here, a morphological COPII assembly assay using purified COPII proteins and digitonin-permeabilized cells has been applied to demonstrate a role for a novel component of the COPII assembly pathway. The factor was purified and identified by mass spectrometry as Nm23H2, one of eight isoforms of nucleoside diphosphate kinase in mammalian cells. Importantly, recombinant Nm23H2, as well as a catalytically inactive version, promoted COPII assembly in vitro, suggesting a noncatalytic role for Nm23H2. Consistent with a function for Nm23H2 in ER export, Nm23H2 localized to a reticular network that also stained for the ER marker calnexin. Finally, an in vivo role for Nm23H2 in COPII assembly was confirmed by isoform-specific knockdown of Nm23H2 by using short interfering RNA. Knockdown of Nm23H2, but not its most closely related isoform Nm23H1, resulted in diminished COPII assembly at steady state and reduced kinetics of ER export. These results strongly suggest a previously unappreciated role for Nm23H2 in mammalian ER export.
Collapse
Affiliation(s)
- Lori Kapetanovich
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | | | | |
Collapse
|
155
|
Watson P, Forster R, Palmer KJ, Pepperkok R, Stephens DJ. Coupling of ER exit to microtubules through direct interaction of COPII with dynactin. Nat Cell Biol 2004; 7:48-55. [PMID: 15580264 PMCID: PMC1592520 DOI: 10.1038/ncb1206] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2004] [Accepted: 11/16/2004] [Indexed: 01/08/2023]
Abstract
Transport of proteins from the endoplasmic reticulum (ER) to the Golgi is mediated by the sequential action of two coat complexes: COPII concentrates cargo for secretion at ER export sites, then COPI is subsequently recruited to nascent carriers and retrieves recycling proteins back to the ER. These carriers then move towards the Golgi along microtubules, driven by the dynein/dynactin complexes. Here we show that the Sec23p component of the COPII complex directly interacts with the dynactin complex through the carboxy-terminal cargo-binding domain of p150(Glued). Functional assays, including measurements of the rate of recycling of COPII on the ER membrane and quantitative analyses of secretion, indicate that this interaction underlies functional coupling of ER export to microtubules. Together, our data suggest a mechanism by which membranes of the early secretory pathway can be linked to motors and microtubules for subsequent organization and movement to the Golgi apparatus.
Collapse
Affiliation(s)
- Peter Watson
- Department of Biochemistry, University of Bristol, School of Medical Sciences, University Walk, Bristol BS8 1TD, UK
| | - Rebecca Forster
- Cell Biology and Biophysics Programme, EMBL, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | - Krysten J. Palmer
- Department of Biochemistry, University of Bristol, School of Medical Sciences, University Walk, Bristol BS8 1TD, UK
| | - Rainer Pepperkok
- Cell Biology and Biophysics Programme, EMBL, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
- Correspondence should be addressed to D.J.S. () or R.P. ()
| | - David J. Stephens
- Department of Biochemistry, University of Bristol, School of Medical Sciences, University Walk, Bristol BS8 1TD, UK
- Correspondence should be addressed to D.J.S. () or R.P. ()
| |
Collapse
|
156
|
Yoshimura SI, Yamamoto A, Misumi Y, Sohda M, Barr FA, Fujii G, Shakoori A, Ohno H, Mihara K, Nakamura N. Dynamics of Golgi matrix proteins after the blockage of ER to Golgi transport. J Biochem 2004; 135:201-16. [PMID: 15047722 DOI: 10.1093/jb/mvh024] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
When the ER to Golgi transport is blocked by a GTP-restricted mutant of Sar1p (H79G) in NRK-52E cells, most Golgi resident proteins are transported back into the ER. In contrast, the cis-Golgi matrix proteins GM130 and GRASP65 are retained in punctate cytoplasmic structures, namely Golgi remnants. Significant amounts of the medial-Golgi matrix proteins golgin-45, GRASP55 and giantin are retained in the Golgi remnants, but a fraction of these proteins relocates to the ER. Golgin-97, a candidate trans-Golgi network matrix protein, is retained in Golgi remnant-like structures, but mostly separated from GM130 and GRASP65. Interestingly, most Sec13p, a COPII component, congregates into larger cytoplasmic clusters soon after the microinjection of Sar1p(H79G), and these move to accumulate around the Golgi apparatus. Sec13p clusters remain associated with Golgi remnants after prolonged incubation. Electron microscopic analysis revealed that Golgi remnants are clusters of larger vesicles with smaller vesicles, many of which are coated. GM130 is mainly associated with larger vesicles and Sec13p with smaller coated vesicles. The Sec13p clusters disperse when p115 binding to the Golgi apparatus is inhibited. These results suggest that cis-Golgi matrix proteins resist retrograde transport flow and stay as true residents in Golgi remnants after the inhibition of ER to Golgi transport.
Collapse
Affiliation(s)
- Shin-ichiro Yoshimura
- Molecular Biology Laboratory, Faculty of Pharmaceutical Sciences, and Cancer Research Institute, Kanazawa University, Kanazawa 920-0934
| | | | | | | | | | | | | | | | | | | |
Collapse
|
157
|
Sousa VL, Brito C, Costa J. Deletion of the cytoplasmic domain of human α3/4 fucosyltransferase III causes the shift of the enzyme to early Golgi compartments. Biochim Biophys Acta Gen Subj 2004; 1675:95-104. [PMID: 15535972 DOI: 10.1016/j.bbagen.2004.08.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2004] [Revised: 07/26/2004] [Accepted: 08/20/2004] [Indexed: 11/17/2022]
Abstract
The transmembrane domain (TM) and flanking regions of glycosyltransferases (GTs) have been implicated in the localization of these proteins in the Golgi apparatus (GA). alpha3/4 Fucosyltransferase III (FT3wt) (EC 2.4.1.65) is localized in the trans-Golgi and trans-Golgi network (TGN) of baby hamster kidney (BHK) cells and synthesizes Lewis determinants associated with cell adhesion events. We have evaluated the effect of removing the cytosolic domain on the localization of the enzyme and its capacity for synthesizing the Lewis A (Le A) determinant. The mutant where the cytoplasmic domain (Asp-2 to Trp-13) of FT3wt has been deleted (FT3dc) was localized in the Golgi but it was shifted to earlier compartments than FT3wt. The mutant was not detected on the plasma membrane (PM) and glycosylation analysis indicated that FT3dc was transported beyond the endoplasmic reticulum (ER) since complex type glycosylation was observed. Cells expressing FT3dc showed a significantly lower efficiency to synthesize Le A when compared with cells expressing FT3wt, in vivo. This reduction was not due to lower specific activity because both enzyme forms had a similar specific activity in vitro. Therefore, removal of FT3 cytosolic tail caused a shift in enzyme distribution to earlier Golgi compartments concomitant to the decrease of its biosynthetic capacity.
Collapse
Affiliation(s)
- V L Sousa
- Instituto de Tecnologia Química e Biológica, Avenida da República, Apartado 127, 2781-901 Oeiras, Portugal
| | | | | |
Collapse
|
158
|
Vetrivel KS, Cheng H, Lin W, Sakurai T, Li T, Nukina N, Wong PC, Xu H, Thinakaran G. Association of gamma-secretase with lipid rafts in post-Golgi and endosome membranes. J Biol Chem 2004; 279:44945-54. [PMID: 15322084 PMCID: PMC1201506 DOI: 10.1074/jbc.m407986200] [Citation(s) in RCA: 333] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Alzheimer's disease-associated beta-amyloid peptides (Abeta) are generated by the sequential proteolytic processing of amyloid precursor protein (APP) by beta- and gamma-secretases. There is growing evidence that cholesterol- and sphingolipid-rich membrane microdomains are involved in regulating trafficking and processing of APP. BACE1, the major beta-secretase in neurons is a palmitoylated transmembrane protein that resides in lipid rafts. A subset of APP is subject to amyloidogenic processing by BACE1 in lipid rafts, and this process depends on the integrity of lipid rafts. Here we describe the association of all four components of the gamma-secretase complex, namely presenilin 1 (PS1)-derived fragments, mature nicastrin, APH-1, and PEN-2, with cholesterol-rich detergent insoluble membrane (DIM) domains of non-neuronal cells and neurons that fulfill the criteria of lipid rafts. In PS1(-/-)/PS2(-/-) and NCT(-/-) fibroblasts, gamma-secretase components that still remain fail to become detergent-resistant, suggesting that raft association requires gamma-secretase complex assembly. Biochemical evidence shows that subunits of the gamma-secretase complex and three TGN/endosome-resident SNAREs cofractionate in sucrose density gradients, and show similar solubility or insolubility characteristics in distinct non-ionic and zwitterionic detergents, indicative of their co-residence in membrane microdomains with similar protein-lipid composition. This notion is confirmed using magnetic immunoisolation of PS1- or syntaxin 6-positive membrane patches from a mixture of membranes with similar buoyant densities following Lubrol WX extraction or sonication, and gradient centrifugation. These findings are consistent with the localization of gamma-secretase in lipid raft microdomains of post-Golgi and endosomes, organelles previously implicated in amyloidogenic processing of APP.
Collapse
Affiliation(s)
| | - Haipeng Cheng
- From the Department of Neurobiology, Pharmacology and Physiology and the
| | - William Lin
- Committee on Neurobiology, The University of Chicago, Chicago, Illinois 60637, the
| | - Takashi Sakurai
- Laboratory for Neurodegeneration Signal and Laboratory for Structural Neuropathology, RIKEN Brain Science Institute, Saitama, 351-0198, Japan, the
| | - Tong Li
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, and the
| | - Nobuyuki Nukina
- Laboratory for Neurodegeneration Signal and Laboratory for Structural Neuropathology, RIKEN Brain Science Institute, Saitama, 351-0198, Japan, the
| | - Philip C. Wong
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, and the
| | - Huaxi Xu
- Center for Neuroscience and Aging, The Burnham Institute, La Jolla, California 92037
| | - Gopal Thinakaran
- From the Department of Neurobiology, Pharmacology and Physiology and the
- Committee on Neurobiology, The University of Chicago, Chicago, Illinois 60637, the
- §§ To whom correspondence should be addressed. Tel.: 773-834-3752; Fax: 773-834-3808; E-mail:
| |
Collapse
|
159
|
Abstract
The neuronal secretory pathway represents the intracellular route for proteins involved in synaptic transmission and plasticity, as well as lipids required for outgrowth and remodelling of dendrites and axons. Although neurons use the same secretory compartments as other eukaryotic cells, the enormous distances involved, as well as the unique morphology of the neuron and its signalling requirements, challenge canonical models of secretory pathway organization. Here, we review evidence for a distributed secretory pathway in neurons, suggest mechanisms that may regulate secretory compartment distribution, and discuss the implications of a distributed secretory pathway for neuronal morphogenesis and neural-circuit plasticity.
Collapse
Affiliation(s)
- April C Horton
- Department of Neurobiology, Duke University Medical Center, Box 3209 Durham, NC 27710, USA
| | | |
Collapse
|
160
|
Breuza L, Halbeisen R, Jenö P, Otte S, Barlowe C, Hong W, Hauri HP. Proteomics of endoplasmic reticulum-Golgi intermediate compartment (ERGIC) membranes from brefeldin A-treated HepG2 cells identifies ERGIC-32, a new cycling protein that interacts with human Erv46. J Biol Chem 2004; 279:47242-53. [PMID: 15308636 DOI: 10.1074/jbc.m406644200] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cycling proteins play important roles in the organization and function of the early secretory pathway by participating in membrane traffic and selective transport of cargo between the endoplasmic reticulum (ER), the intermediate compartment (ERGIC), and the Golgi. To identify new cycling proteins, we have developed a novel procedure for the purification of ERGIC membranes from HepG2 cells treated with brefeldin A, a drug known to accumulate cycling proteins in the ERGIC. Membranes enriched 110-fold over the homogenate for ERGIC-53 were obtained and analyzed by mass spectrometry. Major proteins corresponded to established and putative cargo receptors and components mediating protein maturation and membrane traffic. Among the uncharacterized proteins, a 32-kDa protein termed ERGIC-32 is a novel cycling membrane protein with sequence homology to Erv41p and Erv46p, two proteins enriched in COPII vesicles of yeast. ERGIC-32 localizes to the ERGIC and partially colocalizes with the human homologs of Erv41p and Erv46p, which mainly localize to the cis-Golgi. ERGIC-32 interacts with human Erv46 (hErv46) as revealed by covalent cross-linking and mistargeting experiments, and silencing of ERGIC-32 by small interfering RNAs increases the turnover of hErv46. We propose that ERGIC-32 functions as a modulator of the hErv41-hErv46 complex by stabilizing hErv46. Our novel approach for the isolation of the ERGIC from BFA-treated cells may ultimately lead to the identification of all proteins rapidly cycling early in the secretory pathway.
Collapse
Affiliation(s)
- Lionel Breuza
- Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | | | | | | | | | | | | |
Collapse
|
161
|
Wyles JP, Ridgway ND. VAMP-associated protein-A regulates partitioning of oxysterol-binding protein-related protein-9 between the endoplasmic reticulum and Golgi apparatus. Exp Cell Res 2004; 297:533-47. [PMID: 15212954 DOI: 10.1016/j.yexcr.2004.03.052] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2004] [Revised: 03/16/2004] [Indexed: 11/20/2022]
Abstract
We recently showed that oxysterol-binding protein (OSBP), one of twelve related PH domain containing proteins with lipid and sterol binding activity, interacts with VAMP-associated protein (VAP)-A on the endoplasmic reticulum (ER). In addition to OSBP, seven OSBP-related proteins (ORPs) bind VAP-A via a conserved E-F/Y-F/Y-DA 'FFAT' motif. We focused on this interaction for ORP9, which is expressed as a full-length (ORP9L) or truncated version missing the PH domain (ORP9S). Mutation analysis showed that the interaction required the ORP9 FFAT motif and the N-terminal conserved domain of VAP. Endogenous ORP9L displayed Golgi localization, which was partially mediated by the PH domain based on limited localization of OPR9-PH-GFP with the Golgi apparatus. When inducibly overexpressed, ORP9S and ORP9L colocalized with VAP-A and caused vacuolation of the ER as well as retention of the ER-Golgi intermediate compartment marker ERGIC-53/p58 in the ER. ORP9L mutated in the VAP-A binding domain (ORP9L-FY-->AA) did not localize to the ER but appeared with giantin and Sec31 on large vesicular structures, suggesting the presence of a hybrid Golgi-COPII compartment. Normal Golgi localization was also observed for ORP9L-FY-->AA. Results show that VAP binding and PH domains target ORP9 to the ER and a Golgi-COPII compartment, respectively, and that ORP9L overexpression in these compartments severely perturbed their organization.
Collapse
Affiliation(s)
- Jessica P Wyles
- The Atlantic Research Center, Departments of Pediatrics and Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4H7
| | | |
Collapse
|
162
|
Bind E, Kleyner Y, Skowronska-Krawczyk D, Bien E, Dynlacht BD, Sánchez I. A novel mechanism for mitogen-activated protein kinase localization. Mol Biol Cell 2004; 15:4457-66. [PMID: 15269285 PMCID: PMC519140 DOI: 10.1091/mbc.e04-03-0234] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Mitogen-activated protein kinases/extracellular signal regulated kinases (MAPKs/ERKs) are typically thought to be soluble cytoplasmic enzymes that translocate to the nucleus subsequent to their phosphorylation by their activating kinases or mitogen-activated protein/extracellular signal regulated kinase kinase. We report here the first example of nuclear translocation of a MAPK that occurs via temporally regulated exit from a membranous organelle. Confocal microscopy examining the subcellular localization of ERK3 in several cell lines indicated that this enzyme was targeted to the Golgi/endoplasmic reticulum Golgi intermediate compartment. Deletion analysis of green fluorescent protein (GFP)-ERK3 uncovered a nuclear form that was carboxy-terminally truncated and established a Golgi targeting motif at the carboxy terminus. Immunoblot analysis of cells treated with the proteasome inhibitor MG132 further revealed two cleavage products, suggesting that in vivo, carboxy-terminal cleavage of the full-length protein controls its subcellular localization. In support of this hypothesis, we found that deletion of a small region rich in acidic residues within the carboxy terminus eliminated both the cleavage and nuclear translocation of GFP-ERK3. Finally, cell cycle synchronization studies revealed that the subcellular localization of ERK3 is temporally regulated. These data suggest a novel mechanism for the localization of an MAPK family member, ERK3, in which cell cycle-regulated, site-specific proteolysis generates the nuclear form of the protein.
Collapse
Affiliation(s)
- Eric Bind
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | | | |
Collapse
|
163
|
Kano F, Tanaka AR, Yamauchi S, Kondo H, Murata M. Cdc2 kinase-dependent disassembly of endoplasmic reticulum (ER) exit sites inhibits ER-to-Golgi vesicular transport during mitosis. Mol Biol Cell 2004; 15:4289-98. [PMID: 15254263 PMCID: PMC515359 DOI: 10.1091/mbc.e03-11-0822] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We observed the disassembly of endoplasmic reticulum (ER) exit sites (ERES) by confocal microscopy during mitosis in Chinese hamster ovary (CHO) cells by using Yip1A fused to green fluorescence protein (GFP) as a transmembrane marker of ERES. Photobleaching experiments revealed that Yip1A-GFP, which was restricted to the ERES during interphase, diffused throughout the ER network during mitosis. Next, we reconstituted mitotic disassembly of Yip1A-GFP-labeled ERES in streptolysin O-permeabilized CHO cells by using mitotic L5178Y cytosol. Using the ERES disassembly assay and the anterograde transport assay of GFP-tagged VSVGts045, we demonstrated that the phosphorylation of p47 by Cdc2 kinase regulates the disassembly of ERES and results in the specific inhibition of ER-to-Golgi transport during mitosis.
Collapse
Affiliation(s)
- Fumi Kano
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | | | | | | | | |
Collapse
|
164
|
Soderholm J, Bhattacharyya D, Strongin D, Markovitz V, Connerly PL, Reinke CA, Glick BS. The transitional ER localization mechanism of Pichia pastoris Sec12. Dev Cell 2004; 6:649-59. [PMID: 15130490 DOI: 10.1016/s1534-5807(04)00129-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2004] [Revised: 03/24/2004] [Accepted: 03/24/2004] [Indexed: 10/26/2022]
Abstract
COPII vesicles assemble at ER subdomains called transitional ER (tER) sites, but the mechanism that generates tER sites is unknown. To study tER biogenesis, we analyzed the transmembrane protein Sec12, which initiates COPII vesicle formation. Sec12 is concentrated at discrete tER sites in the budding yeast Pichia pastoris. We find that P. pastoris Sec12 exchanges rapidly between tER sites and the general ER. The tER localization of Sec12 is saturable and is mediated by interaction of the Sec12 cytosolic domain with a partner component. This interaction apparently requires oligomerization of the Sec12 lumenal domain. Redistribution of P. pastoris Sec12 to the general ER does not perturb the localization of downstream tER components, suggesting that Sec12 and other COPII proteins associate with a tER scaffold. These results provide evidence that tER sites form by a network of dynamic associations at the cytosolic face of the ER.
Collapse
Affiliation(s)
- Jon Soderholm
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 920 East 58th Street, Chicago, IL 60637, USA
| | | | | | | | | | | | | |
Collapse
|
165
|
daSilva LLP, Snapp EL, Denecke J, Lippincott-Schwartz J, Hawes C, Brandizzi F. Endoplasmic reticulum export sites and Golgi bodies behave as single mobile secretory units in plant cells. THE PLANT CELL 2004; 16:1753-71. [PMID: 15208385 PMCID: PMC514159 DOI: 10.1105/tpc.022673] [Citation(s) in RCA: 225] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2004] [Accepted: 04/21/2004] [Indexed: 05/17/2023]
Abstract
In contrast with animals, plant cells contain multiple mobile Golgi stacks distributed over the entire cytoplasm. However, the distribution and dynamics of protein export sites on the plant endoplasmic reticulum (ER) surface have yet to be characterized. A widely accepted model for ER-to-Golgi transport is based on the sequential action of COPII and COPI coat complexes. The COPII complex assembles by the ordered recruitment of cytosolic components on the ER membrane. Here, we have visualized two early components of the COPII machinery, the small GTPase Sar1p and its GTP exchanging factor Sec12p in live tobacco (Nicotiana tabacum) leaf epidermal cells. By in vivo confocal laser scanning microscopy and fluorescence recovery after photobleaching experiments, we show that Sar1p cycles on mobile punctate structures that track with the Golgi bodies in close proximity but contain regions that are physically separated from the Golgi bodies. By contrast, Sec12p is uniformly distributed along the ER network and does not accumulate in these structures, consistent with the fact that Sec12p does not become part of a COPII vesicle. We propose that punctate accumulation of Sar1p represents ER export sites (ERES). The sites may represent a combination of Sar1p-coated ER membranes, nascent COPII membranes, and COPII vectors in transit, which have yet to lose their coats. ERES can be induced by overproducing Golgi membrane proteins but not soluble bulk-flow cargos. Few punctate Sar1p loci were observed that are independent of Golgi bodies, and these may be nascent ERES. The vast majority of ERES form secretory units that move along the surface of the ER together with the Golgi bodies, but movement does not influence the rate of cargo transport between these two organelles. Moreover, we could demonstrate using the drug brefeldin A that formation of ERES is strictly dependent on a functional retrograde transport route from the Golgi apparatus.
Collapse
Affiliation(s)
- Luis L P daSilva
- Centre of Plant Sciences, University of Leeds, LS2 9JT, United Kingdom
| | | | | | | | | | | |
Collapse
|
166
|
O'Callaghan DW, Hasdemir B, Leighton M, Burgoyne RD. Residues within the myristoylation motif determine intracellular targeting of the neuronal Ca2+ sensor protein KChIP1 to post-ER transport vesicles and traffic of Kv4 K+ channels. J Cell Sci 2004; 116:4833-45. [PMID: 14600268 DOI: 10.1242/jcs.00803] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
KChIPs (K+ channel interacting proteins) regulate the function of A-type Kv4 potassium channels by modifying channel properties and by increasing their cell surface expression. We have explored factors affecting the localisation of Kv4.2 and the targeting of KChIP1 and other NCS proteins by using GFP-variant fusion proteins expressed in HeLa cells. ECFP-Kv4.2 expressed alone was not retained in the ER but reached the Golgi complex. In cells co-expressing ECFP-Kv4.2 and KChIP1-EYFP, the two proteins were co-localised and were mainly present on the plasma membrane. When KChIP1-EYFP was expressed alone it was instead targeted to punctate structures. This was distinct from the localisation of the NCS proteins NCS-1 and hippocalcin, which were targeted to the trans-Golgi network (TGN) and plasma membrane. The membrane localisation of each NCS protein required myristoylation and minimal myristoylation motifs of hippocalcin or KChIP1 were sufficient to target fusion proteins to either TGN/plasma membrane or to punctate structures. The existence of targeting information within the N-terminal motifs was confirmed by mutagenesis of residues corresponding to three conserved basic amino acids in hippocalcin and NCS-1 at positions 3, 7 and 9. Residues at these positions determined intracellular targeting to the different organelles. Myristoylation and correct targeting of KChIP1 was required for the efficient traffic of ECFP-Kv4.2 to the plasma membrane. Expression of KChIP1(1-11)-EYFP resulted in the formation of enlarged structures that were positive for ERGIC-53 and beta-COP. ECFP-Kv4.2 was also accumulated in these structures suggesting that KChIP1(1-11)-EYFP inhibited traffic out of the ERGIC. We suggest that KChIP1 is targeted by its myristoylation motif to post-ER transport vesicles where it could interact with and regulate the traffic of Kv4 channels to the plasma membrane under the influence of localised Ca2+ signals.
Collapse
Affiliation(s)
- Dermott W O'Callaghan
- The Physiological Laboratory, University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| | | | | | | |
Collapse
|
167
|
Loïodice I, Alves A, Rabut G, Van Overbeek M, Ellenberg J, Sibarita JB, Doye V. The entire Nup107-160 complex, including three new members, is targeted as one entity to kinetochores in mitosis. Mol Biol Cell 2004; 15:3333-44. [PMID: 15146057 PMCID: PMC452587 DOI: 10.1091/mbc.e03-12-0878] [Citation(s) in RCA: 207] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In eukaryotes, bidirectional transport of macromolecules between the cytoplasm and the nucleus occurs through elaborate supramolecular structures embedded in the nuclear envelope, the nuclear pore complexes (NPCs). NPCs are composed of multiple copies of approximately 30 different proteins termed nucleoporins, of which several can be biochemically isolated as subcomplexes. One such building block of the NPC, termed the Nup107-160 complex in vertebrates, was so far demonstrated to be composed of six different nucleoporins. Here, we identify three WD (Trp-Asp)-repeat nucleoporins as new members of this complex, two of which, Nup37 and Nup43, are specific to higher eukaryotes. The third new member Seh1 is more loosely associated with the Nup107-160 complex biochemically, but its depletion by RNA interference leads to phenotypes similar to knock down of other constituents of this complex. By combining green fluorescent protein-tagged nucleoporins and specific antibodies, we show that all the constituents of this complex, including Nup37, Nup43, Seh1, and Sec13, are targeted to kinetochores from prophase to anaphase of mitosis. Together, our results indicate that the entire Nup107-160 complex, which comprises nearly one-third of the so-far identified nucleoporins, specifically localizes to kinetochores in mitosis.
Collapse
Affiliation(s)
- Isabelle Loïodice
- Unité Mixte de Recherche 144 Centre National de la Recherche Scientifique-Institut Curie, Section Recherche, 75248 Paris Cedex 05, France
| | | | | | | | | | | | | |
Collapse
|
168
|
Brandon E, Gao Y, Garcia-Mata R, Alvarez C, Sztul E. Membrane targeting of p115 phosphorylation mutants and their effects on Golgi integrity and secretory traffic. Eur J Cell Biol 2004; 82:411-20. [PMID: 14533739 DOI: 10.1078/0171-9335-00327] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The cytosolic phosphoprotein p115 is required for ER to Golgi traffic and for Golgi reassembly after mitosis. In cells, p115 is localized to ER exit sites, ER-Golgi Intermediate Compartment (ERGIC) and the Golgi, and cycles between these compartments. P115 is phosphorylated on serine 942, and this modification appears to control p115 association with membranes. P115 is likely to function by reversibly interacting with effector proteins, and in the Golgi, two proteins, GM130 and giantin, have been shown to bind p115. The GM130-p115 and the giantin-p115 interactions are enhanced by p115 phosphorylation. Phosphorylation appears to be essential for p115 function, since substitutions of serine 942 abolish p115 ability to sustain cisternal reformation in an in vitro assay reconstituting Golgi reassembly after mitosis. Here, we explored how phosphorylation of p115 affects its intracellular targeting to distinct cellular compartments, and its function in secretory traffic. We generated phosphorylation mutants of p115 and tested their ability to target to ER exit sites, ERGIC and the Golgi. In addition, we explored whether expression of the mutants causes disruption of Golgi structure and perturbs ER-Golgi traffic of a VSV-G cargo protein.
Collapse
Affiliation(s)
- Elizabeth Brandon
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | |
Collapse
|
169
|
Netherton C, Rouiller I, Wileman T. The subcellular distribution of multigene family 110 proteins of African swine fever virus is determined by differences in C-terminal KDEL endoplasmic reticulum retention motifs. J Virol 2004; 78:3710-21. [PMID: 15016891 PMCID: PMC371041 DOI: 10.1128/jvi.78.7.3710-3721.2004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
African swine fever virus (ASFV) is a large double-stranded DNA virus that replicates in discrete areas in the cytosol of infected cells called viral factories. Recent studies have shown that assembling virions acquire their internal envelopes through enwrapment by membranes derived from the endoplasmic reticulum (ER). However, the mechanisms that underlie the formation of viral factories and progenitor viral membranes are as yet unclear. Analysis of the published genome of the virus revealed a conserved multigene family that encodes proteins with hydrophobic signal sequences, indicating possible translocation into the ER lumen. Strikingly, two of these genes, XP124L and Y118L, encoded proteins with KDEL-like ER retention motifs. Analysis of XP124L and Y118L gene product by biochemical and immunofluorescence techniques showed that the proteins were localized to pre-Golgi compartments and that the KEDL motif at the C terminus of pXP124L was functional. XP124L expression, in the absence of other ASFV genes, had a dramatic effect on the contents of the ER that was dependent precisely on the C-terminal sequence KEDL. The normal subcellular distribution of a number of proteins resident to this important, cellular organelle was drastically altered in cells expressing wild-type XP124L gene product. PXP124L formed unusual perinuclear structures that contained resident ER proteins, as well as proteins of the ER-Golgi intermediate compartment. The data presented here hint at a role for MGF110 gene product in preparing the ER for its role in viral morphogenesis; this and other potential functions are discussed.
Collapse
Affiliation(s)
- Christopher Netherton
- Division of Immunology, Pirbright Laboratory, Institute for Animal Health, Pirbright, Surrey GU24 0NF, United Kingdom
| | | | | |
Collapse
|
170
|
Nizak C, Sougrat R, Jollivet F, Rambourg A, Goud B, Perez F. Golgi Inheritance Under a Block of Anterograde and Retrograde Traffic. Traffic 2004; 5:284-99. [PMID: 15030570 DOI: 10.1111/j.1398-9219.2004.0174.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In mitosis, the Golgi complex is inherited following its dispersion, equal partitioning and reformation in each daughter cell. The state of Golgi membranes during mitosis is controversial, and the role of Golgi-intersecting traffic in Golgi inheritance is unclear. We have used brefeldin A (BFA) to perturb Golgi-intersecting membrane traffic at different stages of the cell cycle and followed by live cell imaging the fate of Golgi membranes in those conditions. We observed that addition of the drug on cells in prometaphase prevents mitotic Golgi dispersion. Under continuous treatment, Golgi fragments persist throughout mitosis and accumulate in a Golgi-like structure at the end of mitosis. This structure localizes at microtubule minus ends and contains all classes of Golgi markers, but is not accessible to cargo from the endoplasmic reticulum or the plasma membrane because of the continuous BFA traffic block. However, it contains preaccumulated cargo, and intermixes with the reforming Golgi upon BFA washout. This structure also forms when BFA is added during metaphase, when the Golgi is not discernible by light microscopy. Together the data indicate that independent Golgi fragments that contain all classes of Golgi markers (and that can be isolated from other organelles by blocking anterograde and retrograde Golgi-intersecting traffic) persist throughout mitosis.
Collapse
Affiliation(s)
- Clément Nizak
- Institut Curie, CNRS UMR144, 26 rue d'Ulm 75248 Paris cedex 05, France
| | | | | | | | | | | |
Collapse
|
171
|
Abstract
Genetic and biochemical analyses of the secretory pathway have produced a detailed picture of the molecular mechanisms involved in selective cargo transport between organelles. This transport occurs by means of vesicular intermediates that bud from a donor compartment and fuse with an acceptor compartment. Vesicle budding and cargo selection are mediated by protein coats, while vesicle targeting and fusion depend on a machinery that includes the SNARE proteins. Precise regulation of these two aspects of vesicular transport ensures efficient cargo transfer while preserving organelle identity.
Collapse
Affiliation(s)
- Juan S Bonifacino
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
172
|
Pecot MY, Malhotra V. Golgi membranes remain segregated from the endoplasmic reticulum during mitosis in mammalian cells. Cell 2004; 116:99-107. [PMID: 14718170 DOI: 10.1016/s0092-8674(03)01068-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
What happens to organelles during mitosis, and how they are apportioned to each of the daughter cells, is not completely clear. We have devised a procedure to address whether Golgi membranes fuse with the Endoplasmic Reticulum (ER) during mitosis via the detection of interactions between ER and Golgi proteins. This procedure involves coexpressing an FKBP-tagged Golgi enzyme with an ER-retained protein fused to FRAP in COS cells. Since treatment with rapamycin induces a tight association between FKBP and FRAP, one would expect rapamycin to trap the FKBP-fused Golgi protein in the ER if it ever visits the ER during mitosis. However, after the doubly transfected cells progress through mitosis in the presence of rapamycin, we find the Golgi protein in the newly formed Golgi stacks and not in the ER. Based on these results, we conclude that Golgi membranes remain separate from the ER during mitosis in mammalian cells.
Collapse
Affiliation(s)
- Matt Yasuo Pecot
- Cell and Developmental Biology Department, University of California San Diego, La Jolla, CA 92093, USA
| | | |
Collapse
|
173
|
Mironov AA, Mironov AA, Beznoussenko GV, Trucco A, Lupetti P, Smith JD, Geerts WJC, Koster AJ, Burger KNJ, Martone ME, Deerinck TJ, Ellisman MH, Luini A. ER-to-Golgi carriers arise through direct en bloc protrusion and multistage maturation of specialized ER exit domains. Dev Cell 2003; 5:583-94. [PMID: 14536060 DOI: 10.1016/s1534-5807(03)00294-6] [Citation(s) in RCA: 196] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Protein transport between the ER and the Golgi in mammalian cells occurs via large pleiomorphic carriers, and most current models suggest that these are formed by the fusion of small ER-derived COPII vesicles. We have examined the dynamics and structural features of these carriers during and after their formation from the ER by correlative video/light electron microscopy and tomography. We found that saccular carriers containing either the large supramolecular cargo procollagen or the small diffusible cargo protein VSVG arise through cargo concentration and direct en bloc protrusion of specialized ER domains in the vicinity of COPII-coated exit sites. This formation process is COPII dependent but does not involve budding and fusion of COPII-dependent vesicles. Fully protruded saccules then move centripetally, evolving into one of two types of carriers (with distinct kinetic and structural features). These findings provide an alternative framework for analysis of ER-to-Golgi traffic.
Collapse
Affiliation(s)
- Alexander A Mironov
- Department of Cell Biology and Oncology, Istituto di Ricerche Farmacologiche Mario Negri, Consorzio Mario Negri Sud, 66030 Santa Maria Imbaro, (Chieti), Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
174
|
Enninga J, Levay A, Fontoura BMA. Sec13 shuttles between the nucleus and the cytoplasm and stably interacts with Nup96 at the nuclear pore complex. Mol Cell Biol 2003; 23:7271-84. [PMID: 14517296 PMCID: PMC230331 DOI: 10.1128/mcb.23.20.7271-7284.2003] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2003] [Accepted: 07/10/2003] [Indexed: 11/20/2022] Open
Abstract
Sec13 is a constituent of the endoplasmic reticulum and the nuclear pore complex (NPC). At the endoplasmic reticulum, Sec13 is involved in the biogenesis of COPII-coated vesicles, whereas at the NPC its function is unknown. We show here, by yeast two-hybrid screenings and biochemical assays, that a region at the amino terminus of the human nuclear pore complex protein Nup96 interacts with the WD (Trp-Asp) repeat region of human Sec13. By using immunofluorescence and confocal and immunoelectron microscopy, we found that in interphase, Sec13 and Nup96 are localized at both sides of the NPC in addition to other intracellular sites. In mitosis, Sec13 was found dispersed throughout the cell, whereas a pool of Nup96 colocalized with the spindle apparatus. Photobleaching experiments showed that Sec13 shuttles between intranuclear sites and the cytoplasm, and a fraction of Sec13 is stably associated with NPCs. Cotransfection of Sec13 and the Sec13 binding site of Nup96 decreased the mobile pool of Sec13, demonstrating the interaction of Sec13 and Nup96 in vivo. Targeting studies showed that Sec13 is actively transported into the nucleus and contains a nuclear localization signal. These results indicate that Sec13 stably interacts with Nup96 at the NPC during interphase and that the shuttling of Sec13 between the nucleus and the cytoplasm may couple and regulate functions between these two compartments.
Collapse
Affiliation(s)
- Jost Enninga
- Department of Molecular and Cellular Pharmacology and Sylvester Cancer Center, University of Miami School of Medicine, Miami, Florida 33136, USA
| | | | | |
Collapse
|
175
|
Abstract
Organelles of the neuronal secretory pathway are critical for the addition of membrane that accompanies neuronal development, as well as for the proper localization of plasma membrane proteins necessary for polarity, synaptic transmission, and plasticity. Here, we demonstrate that two organizations of the secretory pathway exist in neurons: one requiring processing of membrane and lipids in the Golgi complex of the cell body and one in which endoplasmic reticulum (ER)-to-Golgi trafficking is localized to dendrites. Using time-lapse imaging of green fluorescent protein-tagged cargo proteins and compartment markers, we show that organelles of the secretory pathway, including ER, ER exit sites, and Golgi, are present and engage in trafficking in neuronal dendrites. We find that ER-to-Golgi trafficking involves highly mobile vesicular carriers that traffic in both the anterograde and retrograde directions throughout the dendritic arbor. Dendritic Golgi outposts, which appear developmentally during the phase of process outgrowth, are involved in the trafficking of both integral membrane proteins and the secreted neuronal growth factor BDNF. This distributed dendritic Golgi represents an organization of the secretory pathway unique among mammalian cells.
Collapse
|
176
|
Sannerud R, Saraste J, Goud B. Retrograde traffic in the biosynthetic-secretory route: pathways and machinery. Curr Opin Cell Biol 2003; 15:438-45. [PMID: 12892784 DOI: 10.1016/s0955-0674(03)00077-2] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In the secretory pathway, the forward (anterograde) membrane flow is compensated by retrograde transport of proteins and lipids. Membrane recycling is required for the maintenance of organelle homeostasis and the re-use of components of the transport machineries for the generation of new transport intermediates. However, the molecular mechanisms and other cellular functions of retrograde traffic are still poorly understood. In recent years, a multitude of protein factors that function in the secretory pathway have been discovered, most of them originally suggested to play a role in forward trafficking. However, in many cases subsequent studies have revealed that these proteins participate (also) in retrograde traffic. It is likely that this shift will continue, reflecting the fact that the two pathways are intimately connected.
Collapse
Affiliation(s)
- Ragna Sannerud
- Department of Anatomy and Cell Biology, University of Bergen, Jonas Lies vei 91, N-5009, Bergen, Norway
| | | | | |
Collapse
|
177
|
Abstract
The Golgi membranes, in the form of stacks of cisternae, are contained in the pericentriolar region of mammalian cells. During mitosis, these membranes are fragmented and dispersed throughout the cell. Recent studies are revealing the significance of pericentriolar position of the Golgi apparatus and mechanism by which these membranes are fragmented during mitosis.
Collapse
Affiliation(s)
- Antonino Colanzi
- Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA
| | | | | |
Collapse
|
178
|
Abstract
Here, we describe that depletion of the Drosophila homologue of p115 (dp115) by RNA interference in Drosophila S2 cells led to important morphological changes in the Golgi stack morphology and the transitional ER (tER) organization. Using conventional and immunoelectron microscopy and confocal immunofluorescence microscopy, we show that Golgi stacks were converted into clusters of vesicles and tubules, and that the tERs (marked by Sec23p) lost their focused organization and were now dispersed throughout the cytoplasm. However, we found that this morphologically altered exocytic pathway was nevertheless largely competent in anterograde protein transport using two different assays. The effects were specific for dp115. Depletion of the Drosophila homologues of GM130 and syntaxin 5 (dSed5p) did not lead to an effect on the tER organization, though the Golgi stacks were greatly vesiculated in the cells depleted of dSed5p. Taken together, these studies suggest that dp115 could be implicated in the architecture of both the Golgi stacks and the tER sites.
Collapse
Affiliation(s)
- Vangelis Kondylis
- The Wellcome Trust Center for Cell Biology, Institute for Cell and Molecular Biology, University of Edinburgh, UK
| | | |
Collapse
|
179
|
Horton AC, Ehlers MD. Dual modes of endoplasmic reticulum-to-Golgi transport in dendrites revealed by live-cell imaging. J Neurosci 2003; 23:6188-99. [PMID: 12867502 PMCID: PMC6740539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Organelles of the neuronal secretory pathway are critical for the addition of membrane that accompanies neuronal development, as well as for the proper localization of plasma membrane proteins necessary for polarity, synaptic transmission, and plasticity. Here, we demonstrate that two organizations of the secretory pathway exist in neurons: one requiring processing of membrane and lipids in the Golgi complex of the cell body and one in which endoplasmic reticulum (ER)-to-Golgi trafficking is localized to dendrites. Using time-lapse imaging of green fluorescent protein-tagged cargo proteins and compartment markers, we show that organelles of the secretory pathway, including ER, ER exit sites, and Golgi, are present and engage in trafficking in neuronal dendrites. We find that ER-to-Golgi trafficking involves highly mobile vesicular carriers that traffic in both the anterograde and retrograde directions throughout the dendritic arbor. Dendritic Golgi outposts, which appear developmentally during the phase of process outgrowth, are involved in the trafficking of both integral membrane proteins and the secreted neuronal growth factor BDNF. This distributed dendritic Golgi represents an organization of the secretory pathway unique among mammalian cells.
Collapse
Affiliation(s)
- April C Horton
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
180
|
Abstract
COP I and COP II coat proteins direct protein and membrane trafficking in between early compartments of the secretory pathway in eukaryotic cells. These coat proteins perform the dual, essential tasks of selecting appropriate cargo proteins and deforming the lipid bilayer of appropriate donor membranes into buds and vesicles. COP II proteins are required for selective export of newly synthesized proteins from the endoplasmic reticulum (ER). COP I proteins mediate a retrograde transport pathway that selectively recycles proteins from the cis-Golgi complex to the ER. Additionally, COP I coat proteins have complex functions in intra-Golgi trafficking and in maintaining the normal structure of the mammalian interphase Golgi complex.
Collapse
Affiliation(s)
- Rainer Duden
- Cambridge Institute for Medical Research, Department of Clinical Biochemistry, University of Cambridge, Hills Road, Cambridge CB2 2XY, UK.
| |
Collapse
|
181
|
Mogelsvang S, Gomez-Ospina N, Soderholm J, Glick BS, Staehelin LA. Tomographic evidence for continuous turnover of Golgi cisternae in Pichia pastoris. Mol Biol Cell 2003; 14:2277-91. [PMID: 12808029 PMCID: PMC260745 DOI: 10.1091/mbc.e02-10-0697] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The budding yeast Pichia pastoris contains ordered Golgi stacks next to discrete transitional endoplasmic reticulum (tER) sites, making this organism ideal for structure-function studies of the secretory pathway. Here, we have used P. pastoris to test various models for Golgi trafficking. The experimental approach was to analyze P. pastoris tER-Golgi units by using cryofixed and freeze-substituted cells for electron microscope tomography, immunoelectron microscopy, and serial thin section analysis of entire cells. We find that tER sites and the adjacent Golgi stacks are enclosed in a ribosome-excluding "matrix." Each stack contains three to four cisternae, which can be classified as cis, medial, trans, or trans-Golgi network (TGN). No membrane continuities between compartments were detected. This work provides three major new insights. First, two types of transport vesicles accumulate at the tER-Golgi interface. Morphological analysis indicates that the center of the tER-Golgi interface contains COPII vesicles, whereas the periphery contains COPI vesicles. Second, fenestrae are absent from cis cisternae, but are present in medial through TGN cisternae. The number and distribution of the fenestrae suggest that they form at the edges of the medial cisternae and then migrate inward. Third, intact TGN cisternae apparently peel off from the Golgi stacks and persist for some time in the cytosol, and these "free-floating" TGN cisternae produce clathrin-coated vesicles. These observations are most readily explained by assuming that Golgi cisternae form at the cis face of the stack, progressively mature, and ultimately dissociate from the trans face of the stack.
Collapse
Affiliation(s)
- Soren Mogelsvang
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder 80309-0347, USA.
| | | | | | | | | |
Collapse
|
182
|
DiDonato D, Brasaemle DL. Fixation methods for the study of lipid droplets by immunofluorescence microscopy. J Histochem Cytochem 2003; 51:773-80. [PMID: 12754288 DOI: 10.1177/002215540305100608] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The study of proteins associated with lipid droplets in adipocytes and many other cells is a rapidly developing area of inquiry. Although lipid droplets are easily visible by light microscopy, few standardized microscopy methods have been developed. Several methods of chemical fixation have recently been used to preserve cell structure before visualization of lipid droplets by light microscopy. We tested the most commonly used methods to compare the effects of the fixatives on cellular lipid content and lipid droplet structure. Cold methanol fixation has traditionally been used before visualization of cytoskeletal elements. We found this method unacceptable for study of lipid droplets because it extracted the majority of cellular phospholipids and promoted fusion of lipid droplets. Cold acetone fixation is similarly unacceptable because the total cellular lipids are extracted, causing collapse of the shell of lipid droplet-associated proteins. Fixation of cells with paraformaldehyde is the method of choice, because the cells retain their lipid content and lipid droplet structure is unaffected. As more lipid droplet-associated proteins are discovered and studied, it is critical to use appropriate methods to avoid studying artifacts.
Collapse
Affiliation(s)
- Deanna DiDonato
- Department of Nutritional Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, USA
| | | |
Collapse
|
183
|
Abstract
Golgi inheritance proceeds via sequential biogenesis and partitioning phases. Although little is known about Golgi growth and replication (biogenesis), ultrastructural and fluorescence analyses have provided a detailed, though still controversial, perspective of Golgi partitioning during mitosis in mammalian cells. Partitioning requires the fragmentation of the juxtanuclear ribbon of interconnected Golgi stacks into a multitude of tubulovesicular clusters. This process is choreographed by a cohort of mitotic kinases and an inhibition of heterotypic and homotypic Golgi membrane-fusion events. Our model posits that accurate partitioning occurs early in mitosis by the equilibration of Golgi components on either side of the metaphase plate. Disseminated Golgi components then coalesce to regenerate Golgi stacks during telophase. Semi-intact cell and cell-free assays have accurately recreated these processes and allowed their molecular dissection. This review attempts to integrate recent findings to depict a more coherent, synthetic molecular picture of mitotic Golgi fragmentation and reassembly. Of particular importance is the emerging concept of a highly regulated and dynamic Golgi structural matrix or template that interfaces with cargo receptors, Golgi enzymes, Rab-GTPases, and SNAREs to tightly couple biosynthetic transport to Golgi architecture. This structural framework may be instructive for Golgi biogenesis and may encode sufficient information to ensure accurate Golgi inheritance, thereby helping to resolve some of the current discrepancies between different workers.
Collapse
|
184
|
Bost AG, Venable D, Liu L, Heinz BA. Cytoskeletal requirements for hepatitis C virus (HCV) RNA synthesis in the HCV replicon cell culture system. J Virol 2003; 77:4401-8. [PMID: 12634397 PMCID: PMC150619 DOI: 10.1128/jvi.77.7.4401-4408.2003] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hepatitis C virus (HCV) induces microtubule aggregates in infected hepatocytes. To determine if cytoskeletal elements are important for HCV RNA synthesis, we examined the effect of cytoskeleton inhibitors on HCV replicon transcription in Huh7 cells. The data demonstrate that HCV replication complex-mediated RNA synthesis requires microtubule and actin polymerization.
Collapse
Affiliation(s)
- Anne G Bost
- Infectious Diseases Research, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285-0438, USA
| | | | | | | |
Collapse
|
185
|
|
186
|
Fujiwara T, Misumi Y, Ikehara Y. Direct interaction of the Golgi membrane with the endoplasmic reticulum membrane caused by nordihydroguaiaretic acid. Biochem Biophys Res Commun 2003; 301:927-33. [PMID: 12589801 DOI: 10.1016/s0006-291x(03)00069-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Nordihydroguaiaretic acid (NDGA), an inhibitor of lipoxygenase, blocks protein transport from the endoplasmic reticulum (ER) to the Golgi complex and induces the redistribution of Golgi proteins into the ER. We investigated characteristics of NDGA-induced retrograde movement of the Golgi proteins to the ER. At an early stage of incubation of cells with NDGA, the Golgi complex formed convoluted membrane aggregates. Electron microscopy revealed that these aggregates directly interact en bloc with the ER membrane. The direct interaction and subsequent incorporation of the Golgi proteins into the ER were found to be temperature-dependent. The protein of ER-Golgi intermediate compartment (ERGIC), ERGIC53, was rapidly accumulated in the Golgi upon treatment with NDGA. This accumulation was significantly inhibited by low temperature at 15 degrees C. Under the condition, the redistribution of the Golgi proteins into the ER as well as the direct interaction between the ER and the Golgi by NDGA were also inhibited, suggesting an important role of the ERGIC in the retrograde movement. In contrast, the low temperature did not inhibit formation of the Golgi aggregates by NDGA. Taken together, these results suggest that NDGA causes the redistribution of the Golgi proteins into the ER through the direct connections between the Golgi, the ERGIC, and the ER.
Collapse
Affiliation(s)
- Toshiyuki Fujiwara
- Department of Cell Biology, Fukuoka University School of Medicine, Nanakuma, Jonan-ku, 814-0180, Fukuoka, Japan
| | | | | |
Collapse
|
187
|
Stephens DJ. De novo formation, fusion and fission of mammalian COPII-coated endoplasmic reticulum exit sites. EMBO Rep 2003; 4:210-7. [PMID: 12612614 PMCID: PMC1315834 DOI: 10.1038/sj.embor.embor736] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2002] [Revised: 11/14/2002] [Accepted: 12/03/2002] [Indexed: 11/09/2022] Open
Abstract
Transport between the endoplasmic reticulum (ER) and Golgi is mediated by the sequential action of the COPII and COPI coat complexes. COPII subunits are recruited to the ER membrane where they mediate the selection of cargo for transport to the Golgi, and also membrane deformation and vesicle formation. New ER exit sites can be generated by lateral growth and medial fission (in Pythium sp.) or by de novo formation (in Pichia pastoris) but it is not known how mammalian ER exit sites form. Here, time-lapse imaging of COPII-coated structures in live mammalian cells reveals that the number of ER export sites increases greatly during interphase by de novo formation. These results show the fusion of pre-existing ER export sites and the fission of larger structures. These three mechanisms of de novo formation, fusion and fission probably cooperate to regulate the size of these sites in mammalian cells.
Collapse
Affiliation(s)
- David J Stephens
- Department of Biochemistry, University of Bristol, School of Medical Sciences, University Walk, Bristol BS8 1TD, UK.
| |
Collapse
|
188
|
Abstract
In non-polarised mammalian cells, the Golgi apparatus is localised around the centrosome and actively maintained there. Microtubules and molecular motor activity are required for determining both the localisation and organisation of the Golgi apparatus. Other factors, however, also appear necessary for regulating both the static steady-state distribution of this organelle and its relationship with microtubule minus-end-anchoring activities of the centrosome. Several non-motor microtubule-binding proteins have now been found to be associated with the Golgi apparatus. Recent advances suggest that, in addition to important roles in cell motility, polarisation and differentiation, the interplay between Golgi apparatus and centrosome could participate in other physiological processes such as intracellular signalling, mitosis and apoptosis.
Collapse
Affiliation(s)
- Rosa M Rios
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Reina Mercedes 6, 41012-Sevilla, Spain.
| | | |
Collapse
|
189
|
Kagan JC, Roy CR. Legionella phagosomes intercept vesicular traffic from endoplasmic reticulum exit sites. Nat Cell Biol 2002; 4:945-54. [PMID: 12447391 DOI: 10.1038/ncb883] [Citation(s) in RCA: 354] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2002] [Revised: 08/29/2002] [Accepted: 10/24/2002] [Indexed: 11/09/2022]
Abstract
It is unknown how Legionella pneumophila cells escape the degradative lysosomal pathway after phagocytosis by macrophages and replicate in an organelle derived from the endoplasmic reticulum. Here we show that, after internalization, L. pneumophila-containing phagosomes recruit early secretory vesicles. Once L. pneumophila phagosomes have intercepted early secretory vesicles they begin to acquire proteins residing in transitional and rough endoplasmic reticulum. The functions of Sar1 and ADP-ribosylation factor-1 are important for biogenesis of the L. pneumophila replicative organelle. These data indicate that L. pneumophila intercepts vesicular traffic from endoplasmic-reticulum exit sites to create an organelle that permits intracellular replication and prevents destruction by the host cell.
Collapse
Affiliation(s)
- Jonathan C Kagan
- Section of Microbial Pathogenesis, Yale University School of Medicine, Boyer Center for Molecular Medicine, 295 Congress Avenue, New Haven, CT 06536-0812, USA
| | | |
Collapse
|
190
|
Mezzacasa A, Helenius A. The transitional ER defines a boundary for quality control in the secretion of tsO45 VSV glycoprotein. Traffic 2002; 3:833-49. [PMID: 12383349 DOI: 10.1034/j.1600-0854.2002.31108.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Quality control in the secretory pathway limits forward transport of newly synthesized cargo proteins to those that have acquired their fully folded conformation. To determine which organelles participate in this conformation-dependent sorting process, we analyzed the trafficking of the temperature-sensitive, thermo-reversible folding mutant of vesicular stomatitis virus glycoprotein (tsO45 G protein) in VERO cells. Using temperature blocks, the G protein could be localized to the ER (39.5 degrees C), to the vesiculo-tubular clusters (VTCs, 15 degrees C), and to the trans-Golgi network (TGN, 20 degrees C). To localize the G protein specifically to ER exit sites, we incubated cells at 10 degrees C. The exit sites contained Sec13p, a COPII component, and were devoid of calnexin and other ER chaperones. We found that if the G protein in the exit sites was misfolded by a temperature shift from 10 degrees C to 39.5 degrees C, it failed to enter the VTCs. Instead, it was returned to the reticular ER where it associated with calnexin. However, if the G protein was in the VTCs or beyond, its folding status no longer affected further transport. The observations indicate that quality control took place in the ER and in the ER transitional elements, but not in the VTCs or the Golgi complex. The results provide a way to discriminate biochemically between exit sites and VTCs, two related structures that are difficult to distinguish from each other.
Collapse
Affiliation(s)
- Anna Mezzacasa
- Swiss Federal Institute of Technology Zürich (ETHZ), HPM, ETH Hönggerberg, CH-8093 Zürich, Switzerland
| | | |
Collapse
|
191
|
Bevis BJ, Hammond AT, Reinke CA, Glick BS. De novo formation of transitional ER sites and Golgi structures in Pichia pastoris. Nat Cell Biol 2002; 4:750-6. [PMID: 12360285 DOI: 10.1038/ncb852] [Citation(s) in RCA: 190] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2001] [Revised: 07/26/2002] [Accepted: 07/26/2002] [Indexed: 11/09/2022]
Abstract
Transitional ER (tER) sites are ER subdomains that are functionally, biochemically and morphologically distinct from the surrounding rough ER. Here we have used confocal video microscopy to study the dynamics of tER sites and Golgi structures in the budding yeast Pichia pastoris. The biogenesis of tER sites is tightly linked to the biogenesis of Golgi, and both compartments can apparently form de novo. tER sites often fuse with one another, but they maintain a consistent average size through shrinkage after fusion and growth after de novo formation. Golgi dynamics are similar, although late Golgi elements often move away from tER sites towards regions of polarized growth. Our results can be explained by assuming that tER sites give rise to Golgi cisternae that continually mature.
Collapse
Affiliation(s)
- Brooke J Bevis
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 920 East 58th Street, Chicago, Illinois 60637, USA
| | | | | | | |
Collapse
|
192
|
Abstract
Yeast and mammalian cells use a variety of different mechanisms to ensure that the endoplasmic reticulum and Golgi apparatus are inherited by both daughter cells on cell division. In yeast, endoplasmic reticulum inheritance involves both active microtubule and passive actin-based mechanisms, while the Golgi is transported into the forming daughter cell by an active actin-based mechanism. Animal cells actively partition the endoplasmic reticulum and Golgi apparatus, but association with the mitotic spindle-rather than the actin cytoskeleton-appears to be the mechanism
Collapse
Affiliation(s)
- Francis A Barr
- Department of Cell Biology, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18a, Martinsried, 82152 Germany.
| |
Collapse
|
193
|
Abstract
Does the Golgi apparatus proliferate by adding new material to a permanent template, or do Golgi structures form de novo by a process of self-organization? Recent work suggests that the Golgi is capable of forming de novo.
Collapse
|
194
|
Abstract
Most models put forward to explain cellular processes do not stand the test of time. The 'lucky' few that are able to survive extensive experimental tests and peer critique may eventually become dogmas or paradigms. When this happens, the amount of experimental data required to overturn the paradigm is extensive. To some, such inertia may seem prohibitive to scientific progress but rather, in our opinion, this helps to maintain a degree of coherence. It is needed so that experiments and interpretations may be conducted within relatively safe boundaries. In the field of protein transport in the secretory pathway, we have enjoyed a relatively stable and productive period for quite some time (more than 30 years!). It is only very recently that the field has entered into a phase where all bets seem to be off. As in any paradigm shift, the accumulation of experimental observations inconsistent with the old dogma eventually reached a critical point. As we 'reluctantly' dispense with the long-standing paradigm of forward vesicular transport, we face a time that is bound to be trying as well as exciting.
Collapse
Affiliation(s)
- Brian Storrie
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0308, USA.
| | | |
Collapse
|
195
|
Kawamoto K, Yoshida Y, Tamaki H, Torii S, Shinotsuka C, Yamashina S, Nakayama K. GBF1, a guanine nucleotide exchange factor for ADP-ribosylation factors, is localized to the cis-Golgi and involved in membrane association of the COPI coat. Traffic 2002; 3:483-95. [PMID: 12047556 DOI: 10.1034/j.1600-0854.2002.30705.x] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Formation of coated carrier vesicles, such as COPI-coated vesicles from the cis-Golgi, is triggered by membrane binding of the GTP-bound form of ADP-ribosylation factors. This process is blocked by brefeldin A, which is an inhibitor of guanine nucleotide exchange factors for ADP-ribosylation factor. GBF1 is one of the guanine nucleotide-exchange factors for ADP-ribosylation factor and is localized in the Golgi region. In the present study, we have determined the detailed subcellular localization of GBF1. Immunofluorescence microscopy of cells treated with nocodazole or incubated at 15 degrees C has suggested that GBF1 behaves similarly to proteins recycling between the cis-Golgi and the endoplasmic reticulum. Immunoelectron microscopy has revealed that GBF1 localizes primarily to vesicular and tubular structures apposed to the cis-face of Golgi stacks and minor fractions to the Golgi stacks. GBF1 overexpressed in cells causes recruitment of class I and class II ADP-ribosylation factors onto Golgi membranes. Furthermore, overexpressed GBF1 antagonizes various effects of brefeldin A, such as inhibition of membrane recruitment of ADP-ribosylation factors and the COPI coat, and redistribution of Golgi-resident and itinerant proteins. These observations indicate that GBF1 is involved in the formation of COPI-coated vesicles from the cis-Golgi or the pre-Golgi intermediate compartment through activating ADP-ribosylation factors.
Collapse
Affiliation(s)
- Kazumasa Kawamoto
- Institute of Biological Sciences and Gene Research Center, University of Tsukuba, Tsukuba Science City, Ibaraki 305-8572, Japan
| | | | | | | | | | | | | |
Collapse
|
196
|
Brandizzi F, Snapp EL, Roberts AG, Lippincott-Schwartz J, Hawes C. Membrane protein transport between the endoplasmic reticulum and the Golgi in tobacco leaves is energy dependent but cytoskeleton independent: evidence from selective photobleaching. THE PLANT CELL 2002; 14:1293-309. [PMID: 12084828 PMCID: PMC150781 DOI: 10.1105/tpc.001586] [Citation(s) in RCA: 248] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2002] [Accepted: 03/01/2002] [Indexed: 05/17/2023]
Abstract
The mechanisms that control protein transport between the endoplasmic reticulum (ER) and the Golgi apparatus are poorly characterized in plants. Here, we examine in tobacco leaves the structural relationship between Golgi and ER membranes using electron microscopy and demonstrate that Golgi membranes contain elements that are in close association and/or in direct contact with the ER. We further visualized protein trafficking between the ER and the Golgi using Golgi marker proteins tagged with green fluorescent protein. Using photobleaching techniques, we showed that Golgi membrane markers constitutively cycle to and from the Golgi in an energy-dependent and N-ethylmaleimide-sensitive manner. We found that membrane protein transport toward the Golgi occurs independently of the cytoskeleton and does not require the Golgi to be motile along the surface of the ER. Brefeldin A treatment blocked forward trafficking of Golgi proteins before their redistribution into the ER. Our results indicate that in plant cells, the Golgi apparatus is a dynamic membrane system whose components continuously traffic via membrane trafficking pathways regulated by brefeldin A- and N-ethylmaleimide-sensitive machinery.
Collapse
Affiliation(s)
- Federica Brandizzi
- Research School of Biological and Molecular Sciences, Oxford Brookes University, Gipsy Lane, Oxford OX3 0BP, United Kingdom.
| | | | | | | | | |
Collapse
|
197
|
Spiliotis ET, Pentcheva T, Edidin M. Probing for membrane domains in the endoplasmic reticulum: retention and degradation of unassembled MHC class I molecules. Mol Biol Cell 2002; 13:1566-81. [PMID: 12006653 PMCID: PMC111127 DOI: 10.1091/mbc.01-07-0322] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Quality control of protein biosynthesis requires ER-retention and ER-associated degradation (ERAD) of unassembled/misfolded molecules. Although some evidence exists for the organization of the ER into functionally distinct membrane domains, it is unknown if such domains are involved in the retention and ERAD of unassembled proteins. Here, it is shown that unassembled MHC class I molecules are retained in the ER without accumulating at ER-exit sites or in the ERGIC of beta2m-/- cells. Furthermore, these molecules did not cluster in the ER membrane and appeared to be highly mobile even when ERAD or their association with calnexin were inhibited. However, upon ATP depletion, they were reversibly segregated into an ER membrane domain, distinct from ER exit sites, which included calnexin and COPII, but not the ERGIC marker protein p58. This quality control domain was also observed upon prolonged inhibition of proteasomes. Microtubules were required for its appearance. Segregation of unfolded proteins, ER-resident chaperones, and COPII may be a temporal adaptation to cell stress.
Collapse
Affiliation(s)
- Elias T Spiliotis
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | |
Collapse
|
198
|
Stephens DJ, Pepperkok R. Imaging of procollagen transport reveals COPI-dependent cargo sorting during ER-to-Golgi transport in mammalian cells. J Cell Sci 2002; 115:1149-60. [PMID: 11884515 DOI: 10.1242/jcs.115.6.1149] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have examined the ER-to-Golgi transport of procollagen, which, when assembled in the lumen of the ER, is thought to be physically too large to fit in classically described 60-80 nm COPI- and COPII-coated transport vesicles. We found that procollagen exits the ER via COPII- coated ER exit sites and is transported to the Golgi along microtubules in defined transport complexes. These procollagen-containing transport complexes are, however, distinct from those containing other cargo proteins like ERGIC-53 and ts-045-G. Furthermore,they do not label for the COPI coat complex in contrast to those containing ts-045-G. Inhibition of COPII or COPI function before addition of ascorbate,which is required for the folding of procollagen, inhibits export of procollagen from the ER. Inactivation of COPI coat function after addition of ascorbate results in the localisation of procollagen to transport complexes that now also contain ERGIC-53 and are inhibited in their transport to the Golgi complex. These data reveal the existence of an early COPI-dependent,pre-Golgi cargo sorting step in mammalian cells.
Collapse
Affiliation(s)
- David J Stephens
- Cell Biology and Cell Biophysics Programme, EMBL Heidelberg, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| | | |
Collapse
|
199
|
Pentcheva T, Spiliotis ET, Edidin M. Cutting edge: Tapasin is retained in the endoplasmic reticulum by dynamic clustering and exclusion from endoplasmic reticulum exit sites. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:1538-41. [PMID: 11823478 DOI: 10.4049/jimmunol.168.4.1538] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Tapasin retains empty or suboptimally loaded MHC class I molecules in the endoplasmic reticulum (ER). However, the molecular mechanism of this process and how tapasin itself is retained in the ER are unknown. These questions were addressed by tagging tapasin with the cyan fluorescent protein or yellow fluorescent protein (YFP) and probing the distribution and mobility of the tagged proteins. YFP-tapasin molecules were functional and could be isolated in association with TAP, as reported for native tapasin. YFP-tapasin was excluded from ER exit sites even after accumulation of secretory cargo due to disrupted anterograde traffic. Almost all tapasin molecules were clustered, and these clusters diffused freely in the ER. Tapasin oligomers appear to be retained by the failure of the export machinery to recognize them as cargo.
Collapse
|
200
|
Roth J. Protein N-glycosylation along the secretory pathway: relationship to organelle topography and function, protein quality control, and cell interactions. Chem Rev 2002; 102:285-303. [PMID: 11841244 DOI: 10.1021/cr000423j] [Citation(s) in RCA: 334] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Jürgen Roth
- Division of Cell and Molecular Pathology, Department of Pathology, University of Zurich, CH-8091 Zurich, Switzerland.
| |
Collapse
|