151
|
Seeger JPH, Benda NMM, Riksen NP, van Dijk APJ, Bellersen L, Hopman MTE, Cable NT, Thijssen DHJ. Heart failure is associated with exaggerated endothelial ischaemia-reperfusion injury and attenuated effect of ischaemic preconditioning. Eur J Prev Cardiol 2014; 23:33-40. [PMID: 25389072 DOI: 10.1177/2047487314558377] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 10/15/2014] [Indexed: 01/10/2023]
Abstract
BACKGROUND Reperfusion is mandatory after ischaemia, but it also triggers ischaemia-reperfusion (IR)-injury. It is currently unknown whether heart failure alters the magnitude of IR-injury. Ischaemic preconditioning can limit IR-injury. Since ischaemic preconditioning is typically applied in subjects at risk for cardiovascular complications, it is of clinical importance to understand its efficacy in heart failure patients. OBJECTIVE To examine the magnitude of endothelial IR-injury, and the ability of ischaemic preconditioning to protect against endothelial IR-injury in heart failure. METHODS We included 15 subjects with heart failure (67 ± 10 years, New York Heart Association class II/III) and 15 healthy, age- and sex-matched controls (65 ± 9 years). We examined brachial artery endothelial function using flow-mediated dilation before and after arm IR (induced by 5-min ischaemic handgrip exercise +15 min reperfusion). IR was preceded by ischaemic preconditioning (consisting in three cycles of 5-min upper arm cuff inflation to 220 mmHg) or no inflation. RESULTS A significant interaction-effect was found for the change in flow-mediated dilation after IR between groups (two-way ANOVA interaction-effect: p = 0.01). Whilst post-hoc analysis revealed a significantly decline in flow-mediated dilation in both groups (p < 0.05), the decline in flow-mediated dilation in heart failure patients (6.2 ± 3.6% to 3.3 ± 1.8%) was significantly larger than that observed in controls (4.9 ± 2.1 to 4.1 ± 2.0). Neither in heart failure patients nor controls was the decrease in flow-mediated dilation after IR altered by ischaemic preconditioning (three-way ANOVA interaction: p = 0.87). CONCLUSION We found that patients with heart failure are associated with exaggerated endothelial IR-injury compared with age- and sex-matched, healthy controls, which may contribute to the poor clinical prognosis in heart failure. Furthermore, we found no protective effect of ischaemic preconditioning (3 × 5-min forearm ischaemia) against endothelial IR-injury in heart failure patients.
Collapse
Affiliation(s)
- Joost P H Seeger
- Department of Physiology, Radboud University Medical Centre, Nijmegen, The Netherlands Department of Pharmacology-Toxicology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Nathalie M M Benda
- Department of Physiology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Niels P Riksen
- Department of General Internal Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands Department of Cardiology Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Arie P J van Dijk
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, UK
| | - Louise Bellersen
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, UK
| | - Maria T E Hopman
- Department of Physiology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - N Timothy Cable
- Department of Pharmacology-Toxicology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Dick H J Thijssen
- Department of Physiology, Radboud University Medical Centre, Nijmegen, The Netherlands Department of Pharmacology-Toxicology, Radboud University Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
152
|
Testai L, Rapposelli S, Martelli A, Breschi M, Calderone V. Mitochondrial Potassium Channels as Pharmacological Target for Cardioprotective Drugs. Med Res Rev 2014; 35:520-53. [DOI: 10.1002/med.21332] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- L. Testai
- Department of Pharmacy; University of Pisa; Pisa Italy
| | - S. Rapposelli
- Department of Pharmacy; University of Pisa; Pisa Italy
| | - A. Martelli
- Department of Pharmacy; University of Pisa; Pisa Italy
| | - M.C. Breschi
- Department of Pharmacy; University of Pisa; Pisa Italy
| | - V. Calderone
- Department of Pharmacy; University of Pisa; Pisa Italy
| |
Collapse
|
153
|
Czibik G, Derumeaux G, Sawaki D, Valen G, Motterlini R. Heme oxygenase-1: an emerging therapeutic target to curb cardiac pathology. Basic Res Cardiol 2014; 109:450. [PMID: 25344086 DOI: 10.1007/s00395-014-0450-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 10/05/2014] [Accepted: 10/17/2014] [Indexed: 12/18/2022]
Abstract
Activation of heme oxygenase-1 (HO-1), a heme-degrading enzyme responsive to a wide range of cellular stress, is traditionally considered to convey adaptive responses to oxidative stress, inflammation and vasoconstriction. These diversified effects are achieved through the degradation of heme to carbon monoxide (CO), biliverdin (which is rapidly converted to bilirubin by biliverdin reductase) and ferric iron. Recent findings have added antiproliferative and angiogenic effects to the list of HO-1/CO actions. HO-1 along with its reaction products bilirubin and CO are protective against ischemia-induced injury (myocardial infarction, ischemia-reperfusion (IR)-injury and post-infarct structural remodelling). Moreover, HO-1, and CO in particular, possess acute antihypertensive effects. As opposed to these curative potentials, the long-believed protective effect of HO-1 in cardiac remodelling in response to pressure overload and type 2 diabetes mellitus (DM) has been questioned by recent work. These challenges, coupled with emerging regulatory mechanisms, motivate further in-depth studies to help understand untapped layers of HO-1 regulation and action. The outcomes of these efforts may shed new light on critical mechanisms that could be used to harness the protective potential of this enzyme for the therapeutic benefit of patients suffering from such highly prevalent cardiovascular disorders.
Collapse
Affiliation(s)
- Gabor Czibik
- INSERM U955, Equipe 8, Faculty of Medicine, DHU A-TVB, Hôpital Henri Mondor, APHP, Creteil, University of Paris-Est, 3rd Floor, room 3006, Paris, France,
| | | | | | | | | |
Collapse
|
154
|
Lecour S, Bøtker HE, Condorelli G, Davidson SM, Garcia-Dorado D, Engel FB, Ferdinandy P, Heusch G, Madonna R, Ovize M, Ruiz-Meana M, Schulz R, Sluijter JPG, Van Laake LW, Yellon DM, Hausenloy DJ. ESC working group cellular biology of the heart: position paper: improving the preclinical assessment of novel cardioprotective therapies. Cardiovasc Res 2014; 104:399-411. [PMID: 25344369 PMCID: PMC4242141 DOI: 10.1093/cvr/cvu225] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Ischaemic heart disease (IHD) remains the leading cause of death and disability worldwide. As a result, novel therapies are still needed to protect the heart from the detrimental effects of acute ischaemia–reperfusion injury, in order to improve clinical outcomes in IHD patients. In this regard, although a large number of novel cardioprotective therapies discovered in the research laboratory have been investigated in the clinical setting, only a few of these have been demonstrated to improve clinical outcomes. One potential reason for this lack of success may have been the failure to thoroughly assess the cardioprotective efficacy of these novel therapies in suitably designed preclinical experimental animal models. Therefore, the aim of this Position Paper by the European Society of Cardiology Working Group Cellular Biology of the Heart is to provide recommendations for improving the preclinical assessment of novel cardioprotective therapies discovered in the research laboratory, with the aim of increasing the likelihood of success in translating these new treatments into improved clinical outcomes.
Collapse
Affiliation(s)
- Sandrine Lecour
- Hatter Institute for Cardiovascular Research in Africa and MRC Inter-University Cape Heart Group, University of Cape Town, Cape Town, South Africa
| | - Hans E Bøtker
- Department of Cardiology, Aarhus University Hospital Skejby, Aarhus N, Denmark
| | - Gianluigi Condorelli
- Humanitas Clinical and Research Institute, National Research Council of Italy, Rozzano, Italy
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews
| | - David Garcia-Dorado
- Department of Cardiology, Vall d'Hebron University Hospital and Research Institute, Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Felix B Engel
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Peter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary Pharmahungary Group, Szeged, Hungary
| | - Gerd Heusch
- Institut für Pathophysiologie, West German Heart and Vascular Centre, Universitätsklinikum Essen, Essen, Germany
| | - Rosalinda Madonna
- Institute of Cardiology and Center of Excellence on Aging, 'G. d'Annunzio' University of Chieti, Chieti, Italy Texas Heart Institute, Houston, TX, USA Department of Internal Medicine, University of Texas Medical School, Center of Cardiovascular and Atherosclerosis Research, Houston, TX, USA
| | - Michel Ovize
- Inserm U 1060 (CarMeN_Cardioprotection Team) & CIC de Lyon, Service d'Exploration Fonctionnelles Cardiovasculaires, Hospices Civils de Lyon, Université Claude Bernard Lyon1, Lyon, France
| | - Marisol Ruiz-Meana
- Department of Cardiology, Vall d'Hebron University Hospital and Research Institute, Universitat Autónoma de Barcelona, Barcelona, Spain
| | | | | | - Linda W Van Laake
- University Medical Center Utrecht and Hubrecht Institute, Utrecht, the Netherlands
| | - Derek M Yellon
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews
| | - Derek J Hausenloy
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews
| |
Collapse
|
155
|
Exercise training preserves ischemic preconditioning in aged rat hearts by restoring the myocardial polyamine pool. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:457429. [PMID: 25404991 PMCID: PMC4227379 DOI: 10.1155/2014/457429] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 09/06/2014] [Accepted: 09/21/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND Ischemic preconditioning (IPC) strongly protects against myocardial ischemia reperfusion (IR) injury. However, IPC protection is ineffective in aged hearts. Exercise training reduces the incidence of age-related cardiovascular disease and upregulates the ornithine decarboxylase (ODC)/polyamine pathway. The aim of this study was to investigate whether exercise can reestablish IPC protection in aged hearts and whether IPC protection is linked to restoration of the cardiac polyamine pool. METHODS Rats aging 3 or 18 months perform treadmill exercises with or without gradient respectively for 6 weeks. Isolated hearts and isolated cardiomyocytes were exposed to an IR and IPC protocol. RESULTS IPC induced an increase in myocardial polyamines by regulating ODC and spermidine/spermine acetyltransferase (SSAT) in young rat hearts, but IPC did not affect polyamine metabolism in aged hearts. Exercise training inhibited the loss of preconditioning protection and restored the polyamine pool by activating ODC and inhibiting SSAT in aged hearts. An ODC inhibitor, α-difluoromethylornithine, abolished the recovery of preconditioning protection mediated by exercise. Moreover, polyamines improved age-associated mitochondrial dysfunction in vitro. CONCLUSION Exercise appears to restore preconditioning protection in aged rat hearts, possibly due to an increase in intracellular polyamines and an improvement in mitochondrial function in response to a preconditioning stimulus.
Collapse
|
156
|
Czibik G, Steeples V, Yavari A, Ashrafian H. Citric Acid Cycle Intermediates in Cardioprotection. ACTA ACUST UNITED AC 2014; 7:711-9. [DOI: 10.1161/circgenetics.114.000220] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Over the last decade, there has been a concerted clinical effort to deliver on the laboratory promise that a variety of maneuvers can profoundly increase cardiac tolerance to ischemia and/or reduce additional damage consequent upon reperfusion. Here we will review the proximity of the metabolic approach to clinical practice. Specifically, we will focus on how the citric acid cycle is involved in cardioprotection. Inspired by cross-fertilization between fundamental cancer biology and cardiovascular medicine, a set of metabolic observations have identified novel metabolic pathways, easily manipulable in man, which can harness metabolism to robustly combat ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Gabor Czibik
- From the Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Violetta Steeples
- From the Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Arash Yavari
- From the Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Houman Ashrafian
- From the Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
157
|
Coletta C, Módis K, Oláh G, Brunyánszki A, Herzig DS, Sherwood ER, Ungvári Z, Szabo C. Endothelial dysfunction is a potential contributor to multiple organ failure and mortality in aged mice subjected to septic shock: preclinical studies in a murine model of cecal ligation and puncture. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2014; 18:511. [PMID: 25223540 PMCID: PMC4177582 DOI: 10.1186/s13054-014-0511-3] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 08/27/2014] [Indexed: 12/18/2022]
Abstract
INTRODUCTION The goal of the current study was to investigate the effect of aging on the development of endothelial dysfunction in a murine model of sepsis, and to compare it with the effect of genetic deficiency of the endothelial isoform of nitric oxide synthase (eNOS). METHODS Cecal ligation and puncture (CLP) was used to induce sepsis in mice. Survival rates were monitored and plasma indices of organ function were measured. Ex vivo studies included the measurement of vascular function in thoracic aortic rings, assessment of oxidative stress/cellular injury in various organs and the measurement of mitochondrial function in isolated liver mitochondria. RESULTS eNOS deficiency and aging both exacerbated the mortality of sepsis. Both eNOS-deficient and aged mice exhibited a higher degree of sepsis-associated multiple organ dysfunction syndrome (MODS), infiltration of tissues with mononuclear cells and oxidative stress. A high degree of sepsis-induced vascular oxidative damage and endothelial dysfunction (evidenced by functional assays and multiple plasma markers of endothelial dysfunction) was detected in aortae isolated from both eNOS(-/-) and aged mice. There was a significant worsening of sepsis-induced mitochondrial dysfunction, both in eNOS-deficient mice and in aged mice. Comparison of the surviving and non-surviving groups of animals indicated that the severity of endothelial dysfunction may be a predictor of mortality of mice subjected to CLP-induced sepsis. CONCLUSIONS Based on the studies in eNOS mice, we conclude that the lack of endothelial nitric oxide production, on its own, may be sufficient to markedly exacerbate the severity of septic shock. Aging markedly worsens the degree of endothelial dysfunction in sepsis, yielding a significant worsening of the overall outcome. Thus, endothelial dysfunction may constitute an early predictor and independent contributor to sepsis-associated MODS and mortality in aged mice.
Collapse
|
158
|
Pagliaro P, Gattullo D, Penna C. Nitroglycerine and sodium trioxodinitrate: from the discovery to the preconditioning effect. J Cardiovasc Med (Hagerstown) 2014; 14:698-704. [PMID: 23695182 DOI: 10.2459/jcm.0b013e3283621ac6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The history began in the 19th century with Ascanio Sobrero (1812-1888), the discoverer of glycerol trinitrate (nitroglycerine, NTG), and with Angelo Angeli (1864-1931), the discoverer of sodium trioxodinitrate (Angeli's salt). It is likely that Angeli and Sobrero never met, but their two histories will join each other more than a century later. In fact, it has been discovered that both NTG and Angeli's salt are able to induce a preconditioning effect. As NTG has a long history as an antianginal drug its newly discovered property as a preconditioning agent has also been tested in humans. Angeli's salt properties as a preconditioning and inotropic agent have only been tested in animals so far.
Collapse
Affiliation(s)
- Pasquale Pagliaro
- Dipartimento di Scienze Cliniche e Biologiche, Università di Torino, Torino, Italy
| | | | | |
Collapse
|
159
|
Wang K, Zhang J, Wang X, Liu X, Zuo L, Bai K, Shang J, Ma L, Liu T, Wang L, Wang W, Ma X, Liu H. Thioredoxin reductase was nitrated in the aging heart after myocardial ischemia/reperfusion. Rejuvenation Res 2014; 16:377-85. [PMID: 23802942 DOI: 10.1089/rej.2013.1437] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The age-related loss of anti-oxidant defense reduces recovery from myocardial ischemia/reperfusion injury (MI/R) in aged people. Our previous data showed that inactivation of thioredoxin (Trx) was involved in enhanced aging MI/R injury. Thioredoxin reductase (TrxR), the enzyme known to regulate Trx, is less efficient with age. The aim of the current study was to determine why TrxR activity was reduced and whether reduced TrxR activity contributed to enhanced aging MI/R injury. Both Trx and TrxR activity were decreased in the aging heart, and this difference was further amplified after MI/R. However, MI/R injury did not change TrxR expression between young and aging rats. Increased nitrogen oxide (NOx) but decreased nitric oxide (NO) bioavailability (decreased phosphorylated vasodilator-stimulated phosphoprotein) was observed in aging hearts. Peroxynitrite (ONOO⁻) was increased in aging hearts and was further amplified after MI/R. TrxR nitration in young and aging hearts was detected by immunoprecipitation (anti-nitrotyrosine) followed by immunoblotting (anti-TrxR). Compared with young hearts, TrxR nitration was increased in the aging hearts, and this was further intensified after MI/R. The ONOO⁻ decomposition catalyst (FeTMPyp) reduced TrxR nitration and increased TrxR and Trx activity. More importantly, FeTMPyp attenuated the MI/R injury in aging hearts as evidenced by decreased caspase-3 and malondialdehyde (MDA) concentration and increased cardiac function. Increased ONOO⁻ nitrated TrxR in the aging heart as a post-translational modification, which may be related to the enhanced MI/R injury of aging rats. Interventions that inhibit nitration and restore TrxR activity might be a therapy for attenuating enhanced MI/R injury in aging heart.
Collapse
Affiliation(s)
- Ke Wang
- 1 Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University , Beijing, P.R. China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Liu Y, Liu T, Han J, Yang Z, Xue X, Jiang H, Wang H. Advanced age impairs cardioprotective function of mesenchymal stem cell transplantation from patients to myocardially infarcted rats. Cardiology 2014; 128:209-19. [PMID: 24818643 DOI: 10.1159/000360393] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 02/05/2014] [Indexed: 11/19/2022]
Abstract
OBJECTIVES Mesenchymal stem cells (MSCs) have limited clinical therapeutic effects in older myocardial infarction (MI) patients. Thus, whether younger MSCs might confer greater protection is worth investigating. METHODS Human MSCs (hMSCs) were isolated before coronary artery bypass graft surgery and growth characteristics of hMSCs at passage 3 were observed. Vascular endothelial growth factor (VEGF) and Bcl-2 mRNA and protein expression from hMSCs were measured. In vivo, 45 adult male rats with MI were randomized to receive one of three treatments: old hMSCs, young hMSCs or culture medium (control) transplanted into infarcted myocardium. Echocardiography, TUNEL, immunohistochemistry and Western blot were used to assess results. RESULTS hMSC proliferation in the old group was significantly lower than the young group. VEGF decreased 35% and Bcl-2 decreased more than 60% at the mRNA level; VEGF and Bcl-2 protein were decreased in the old versus the young group. hMSC transplantation may improve cardiac function, but MSC source may affect therapeutic efficacy. Similar data were obtained from TUNEL, immunohistochemistry and Western blot. CONCLUSION Transplantation of hMSCs improves heart function, but proliferative ability and myocardial protection decrease with older MSCs, likely due to differences between VEGF and Bcl-2 expression and reduced anti-apoptosis.
Collapse
Affiliation(s)
- Yu Liu
- Department of Cardiovascular Surgery, Shenyang Northern Hospital, Shenyang, PR China
| | | | | | | | | | | | | |
Collapse
|
161
|
Porter GA, Urciuoli WR, Brookes PS, Nadtochiy SM. SIRT3 deficiency exacerbates ischemia-reperfusion injury: implication for aged hearts. Am J Physiol Heart Circ Physiol 2014; 306:H1602-9. [PMID: 24748594 DOI: 10.1152/ajpheart.00027.2014] [Citation(s) in RCA: 165] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Ischemia-reperfusion (IR) injury is significantly worse in aged hearts, but the underlying mechanisms are poorly understood. Age-related damage to mitochondria may be a critical feature, which manifests in an exacerbation of IR injury. Silent information regulator of transcription 3 (SIRT3), the major mitochondrial NAD(+)-dependent lysine deacetylase, regulates a variety of functions, and its inhibition may disrupt mitochondrial function to impact recovery from IR injury. In this study, the role of SIRT3 in mediating the response to cardiac IR injury was examined using an in vitro model of SIRT3 knockdown (SIRT3(kd)) in H9c2 cardiac-derived cells and in Langendorff preparations from adult (7 mo old) wild-type (WT) and SIRT3(+/-) hearts and aged (18 mo old) WT hearts. SIRT3(kd) cells were more vulnerable to simulated IR injury and exhibited a 46% decrease in mitochondrial complex I (Cx I) activity with low O2 consumption rates compared with controls. In the Langendorff model, SIRT3(+/-) adult hearts showed less functional recovery and greater infarct vs. WT, which recapitulates the in vitro results. In WT aged hearts, recovery from IR injury was similar to SIRT3(+/-) adult hearts. Mitochondrial protein acetylation was increased in both SIRT3(+/-) adult and WT aged hearts (relative to WT adult), suggesting similar activities of SIRT3. Also, enzymatic activities of two SIRT3 targets, Cx I and MnSOD, were similarly and significantly inhibited in SIRT3(+/-) adult and WT aged cardiac mitochondria. In conclusion, decreased SIRT3 may increase the susceptibility of cardiac-derived cells and adult hearts to IR injury and may contribute to a greater level of IR injury in the aged heart.
Collapse
Affiliation(s)
- George A Porter
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York; and
| | - William R Urciuoli
- Department of Anesthesiology, University of Rochester Medical Center, Rochester, New York
| | - Paul S Brookes
- Department of Anesthesiology, University of Rochester Medical Center, Rochester, New York
| | - Sergiy M Nadtochiy
- Department of Anesthesiology, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
162
|
Kobashigawa J, Zuckermann A, Macdonald P, Leprince P, Esmailian F, Luu M, Mancini D, Patel J, Razi R, Reichenspurner H, Russell S, Segovia J, Smedira N, Stehlik J, Wagner F. Report from a consensus conference on primary graft dysfunction after cardiac transplantation. J Heart Lung Transplant 2014; 33:327-40. [DOI: 10.1016/j.healun.2014.02.027] [Citation(s) in RCA: 307] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 02/28/2014] [Indexed: 10/25/2022] Open
|
163
|
Zhou C, Li H, Yao Y, Li L. Delayed remote ischemic preconditioning produces an additive cardioprotection to sevoflurane postconditioning through an enhanced heme oxygenase 1 level partly via nuclear factor erythroid 2-related factor 2 nuclear translocation. J Cardiovasc Pharmacol Ther 2014; 19:558-66. [PMID: 24651515 DOI: 10.1177/1074248414524479] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although both sevoflurane postconditioning (SPoC) and delayed remote ischemic preconditioning (DRIPC) have been proved effective in various animal and human studies, the combined effect of these 2 strategies remains unclear. Therefore, this study was designed to investigate this effect and elucidate the related signal mechanisms in a Langendorff perfused rat heart model. After 30-minute balanced perfusion, isolated hearts were subjected to 30-minute ischemia followed by 60-minute reperfusion except 90-minute perfusion for control. A synergic cardioprotective effect of SPoC (3% v/v) and DRIPC (4 cycles 5-minute occlusion/5-minute reflow at the unilateral hindlimb once per day for 3 days before heart isolation) was observed with facilitated cardiac functional recovery and decreased cardiac enzyme release. The infarct size-limiting effect was more pronounced in the combined group (6.76% ± 2.18%) than in the SPoC group (16.50% ± 4.55%, P < .001) or in the DRIPC group (10.22% ± 2.57%, P = .047). Subsequent analysis revealed that an enhanced heme oxygenase 1 (HO-1) expression, but not protein kinase B/AKt or extracellular signal-regulated kinase 1 and 2 activation, was involved in the synergic cardioprotective effect, which was further confirmed in the messenger RNA level of HO-1. Such trend was also observed in the nuclear factor erythroid 2-related factor 2 (Nrf2) nuclear translocation, an upstream regulation of HO-1. In addition, correlation analysis showed a significantly positive relationship between HO-1 expression and Nrf2 translocation (r = 0.729, P < .001). Hence, we conclude that DRIPC may produce an additive cardioprotection to SPoC through an enhanced HO-1 expression partly via Nrf2 translocation.
Collapse
Affiliation(s)
- Chenghui Zhou
- Department of Anesthesiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huatong Li
- Department of Anesthesiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuntai Yao
- Department of Anesthesiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lihuan Li
- Department of Anesthesiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
164
|
Brooks MJ, Andrews DT. Molecular mechanisms of ischemic conditioning: translation into patient outcomes. Future Cardiol 2014; 9:549-68. [PMID: 23834695 DOI: 10.2217/fca.13.30] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Following the initiation of an ischemic insult, reperfusion injury (RI) can result in numerous deleterious cardiac effects, including cardiomyocyte death. Experimental data have suggested that ischemic conditioning, when delivered either before or after the ischemic event, can provide considerable cardioprotection against RI. Ischemic conditioning involves delivering brief repetitive cycles of ischemia to the myocardium (local) or to another distal organ or structure (remote). This review will discuss recent advances in the molecular mechanisms involved in RI, the signaling pathways recruited by ischemic conditioning and conclude with an appraisal of the evidence for the use of ischemic conditioning in current clinical practice.
Collapse
Affiliation(s)
- Matthew J Brooks
- Department of Cardiology, The Royal Melbourne Hospital, Parkville, Victoria 3050, Australia
| | | |
Collapse
|
165
|
Abstract
Myocardial conditioning is an endogenous cardioprotective phenomenon that profoundly limits infarct size in experimental models. The current challenge is to translate this paradigm from the laboratory to the clinic. Accordingly, our goal in this review is to provide a critical summary of the progress toward, opportunities for, and caveats to, the successful clinical translation of postconditioning and remote conditioning, the 2 conditioning strategies considered to have the broadest applicability for real-world patient care. In the majority of phase II studies published to date, postconditioning evoked a ≈35% reduction of infarct size in ST-segment-elevation myocardial infarction patients. Essential criteria for the successful implementation of postconditioning include the appropriate choice of patients (ie, those with large risk regions and negligible collateral flow), timely application of the postconditioning stimulus (immediately on reperfusion), together with proper choice of end points (infarct size, with concomitant assessment of risk region). Remote conditioning has been applied in planned ischemic events (including cardiac surgery and elective percutaneous coronary intervention) and in ST-segment-elevation myocardial infarction patients during hospital transport. Controversies with regard to efficacy have emerged, particularly among surgical trials. These disparate outcomes in all likelihood reflect the remarkable heterogeneity within and among studies, together with a deficit in our understanding of the impact of these variations on the infarct-sparing effect of remote conditioning. Ongoing phase III trials will provide critical insight into the future role of postconditioning and remote conditioning as clinically relevant cardioprotective strategies.
Collapse
Affiliation(s)
- Michel Ovize
- Centre d'Investigation Clinique de Lyon, Service d’Explorations Fonctionnelles Cardiovasculaires, Groupement Hospitalier Est, Hospices Civils de Lyon, Bron, France
| | | | | |
Collapse
|
166
|
Peart JN, Pepe S, Reichelt ME, Beckett N, See Hoe L, Ozberk V, Niesman IR, Patel HH, Headrick JP. Dysfunctional survival-signaling and stress-intolerance in aged murine and human myocardium. Exp Gerontol 2013; 50:72-81. [PMID: 24316036 DOI: 10.1016/j.exger.2013.11.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 11/03/2013] [Accepted: 11/26/2013] [Indexed: 11/26/2022]
Abstract
Changes in cytoprotective signaling may influence cardiac aging, and underpin sensitization to ischemic insult and desensitization to 'anti-ischemic' therapies. We tested whether age-dependent shifts in ischemia-reperfusion (I-R) tolerance in murine and human myocardium are associated with reduced efficacies and coupling of membrane, cytoplasmic and mitochondrial survival-signaling. Hormesis (exemplified in ischemic preconditioning; IPC) and expression of proteins influencing signaling/stress-resistance were also assessed in mice. Mouse hearts (18 vs. 2-4 mo) and human atrial tissue (75±2 vs. 55±2 yrs) exhibited profound age-dependent reductions in I-R tolerance. In mice aging negated cardioprotection via IPC, G-protein coupled receptor (GPCR) agonism (opioid, A1 and A3 adenosine receptors) and distal protein kinase c (PKC) activation (4 nM phorbol 12-myristate 13-acetate; PMA). In contrast, p38-mitogen activated protein kinase (p38-MAPK) activation (1 μM anisomycin), mitochondrial ATP-sensitive K(+) channel (mKATP) opening (50 μM diazoxide) and permeability transition pore (mPTP) inhibition (0.2 μM cyclosporin A) retained protective efficacies in older hearts (though failed to eliminate I-R tolerance differences). A similar pattern of change in protective efficacies was observed in human tissue. Murine hearts exhibited molecular changes consistent with altered membrane control (reduced caveolin-3, cholesterol and caveolae), kinase signaling (reduced p70 ribosomal s6 kinase; p70s6K) and stress-resistance (increased G-protein receptor kinase 2, GRK2; glycogen synthase kinase 3β, GSK3β; and cytosolic cytochrome c). In summary, myocardial I-R tolerance declines with age in association with dysfunctional hormesis and transduction of survival signals from GPCRs/PKC to mitochondrial effectors. Differential changes in proteins governing caveolar and mitochondrial function may contribute to signal dysfunction and stress-intolerance.
Collapse
Affiliation(s)
- Jason N Peart
- Heart Foundation Research Centre, Griffith Health Institute, Griffith University, Southport, Australia
| | - Salvatore Pepe
- Heart Research, Murdoch Children's Research Institute, Parkville, VIC, Australia; Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
| | - Melissa E Reichelt
- Department of Physiology, University of Melbourne, Parkville, VIC, Australia
| | - Nikkie Beckett
- Heart Foundation Research Centre, Griffith Health Institute, Griffith University, Southport, Australia
| | - Louise See Hoe
- Heart Foundation Research Centre, Griffith Health Institute, Griffith University, Southport, Australia
| | - Victoria Ozberk
- Heart Foundation Research Centre, Griffith Health Institute, Griffith University, Southport, Australia
| | | | - Hemal H Patel
- VA San Diego Healthcare System, San Diego, USA; Department of Anesthesiology, University of California San Diego, USA
| | - John P Headrick
- Heart Foundation Research Centre, Griffith Health Institute, Griffith University, Southport, Australia.
| |
Collapse
|
167
|
Costa JF, Fontes-Carvalho R, Leite-Moreira AF. Myocardial remote ischemic preconditioning: From pathophysiology to clinical application. REVISTA PORTUGUESA DE CARDIOLOGIA (ENGLISH EDITION) 2013. [DOI: 10.1016/j.repce.2013.10.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
168
|
Costa JF, Fontes-Carvalho R, Leite-Moreira AF. Pré-condicionamento isquémico remoto do miocárdio: dos mecanismos fisiopatológicos à aplicação na prática clínica. Rev Port Cardiol 2013; 32:893-904. [DOI: 10.1016/j.repc.2013.02.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 02/21/2013] [Indexed: 12/14/2022] Open
|
169
|
Rossano JW, Lin KY, Paridon SM, Zhang X, Gaynor JW, Kaufman BD, Shaddy RE. Pediatric Heart Transplantation From Donors With Depressed Ventricular Function. Circ Heart Fail 2013; 6:1223-9. [DOI: 10.1161/circheartfailure.112.000029] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Joseph W. Rossano
- From the Department of Pediatrics (J.W.R., K.Y.L., S.M.P., X.Z., B.D.K., R.E.S.) and Department of Surgery (J.W.G.), The Cardiac Center, The Children’s Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Kimberly Y. Lin
- From the Department of Pediatrics (J.W.R., K.Y.L., S.M.P., X.Z., B.D.K., R.E.S.) and Department of Surgery (J.W.G.), The Cardiac Center, The Children’s Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Stephen M. Paridon
- From the Department of Pediatrics (J.W.R., K.Y.L., S.M.P., X.Z., B.D.K., R.E.S.) and Department of Surgery (J.W.G.), The Cardiac Center, The Children’s Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Xuemei Zhang
- From the Department of Pediatrics (J.W.R., K.Y.L., S.M.P., X.Z., B.D.K., R.E.S.) and Department of Surgery (J.W.G.), The Cardiac Center, The Children’s Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - J. William Gaynor
- From the Department of Pediatrics (J.W.R., K.Y.L., S.M.P., X.Z., B.D.K., R.E.S.) and Department of Surgery (J.W.G.), The Cardiac Center, The Children’s Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Beth D. Kaufman
- From the Department of Pediatrics (J.W.R., K.Y.L., S.M.P., X.Z., B.D.K., R.E.S.) and Department of Surgery (J.W.G.), The Cardiac Center, The Children’s Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Robert E. Shaddy
- From the Department of Pediatrics (J.W.R., K.Y.L., S.M.P., X.Z., B.D.K., R.E.S.) and Department of Surgery (J.W.G.), The Cardiac Center, The Children’s Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
170
|
Xu X, Zhou Y, Luo S, Zhang W, Zhao Y, Yu M, Ma Q, Gao F, Shen H, Zhang J. Effect of remote ischemic preconditioning in the elderly patients with coronary artery disease with diabetes mellitus undergoing elective drug-eluting stent implantation. Angiology 2013; 65:660-6. [PMID: 24163121 DOI: 10.1177/0003319713507332] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
There is conflicting evidence regarding the effectiveness of remote ischemic preconditioning (RIPC) in patients undergoing elective percutaneous coronary intervention (PCI). Therefore, we prospectively enrolled elderly patients with coronary heart disease (CHD) with diabetes mellitus (DM) undergoing elective drug-eluting stent (DES) implantation. They were randomized to receive RIPC within 2 hours before PCI (n = 102) or not (controls, n = 98). Baseline clinical characteristics were similar between the 2 groups. Despite a trend toward decline, the median high-sensitivity cardiac troponin I (hscTnI) level (P = .256) and the incidence of myocardial infarction (MI) type 4a (P = .106) in the RIPC group 16 hours after PCI procedure was not significantly different from the control group. The RIPC could attenuate the release of a myocardial biomarker but failed to show a significant effect on hscTnI level or MI type 4a incidence after PCI procedure in elderly patients with CHD having DM undergoing elective DES implantation.
Collapse
Affiliation(s)
- Xiaohan Xu
- Department of Cardiology, An Zhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China
| | - Yujie Zhou
- Department of Cardiology, An Zhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China
| | - Shengjie Luo
- Department of Cardiology, An Zhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China Capital Medical University School of Rehabilitation Medicine, China Rehabilitation Research Centre, Beijing, China
| | - Weijun Zhang
- Department of Cardiology, An Zhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China
| | - Yingxin Zhao
- Department of Cardiology, An Zhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China
| | - Miao Yu
- Department of Cardiology, An Zhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China
| | - Qian Ma
- Department of Cardiology, An Zhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China
| | - Fei Gao
- Department of Cardiology, An Zhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China
| | - Hua Shen
- Department of Cardiology, An Zhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China
| | - Jianwei Zhang
- Department of Cardiology, An Zhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China
| |
Collapse
|
171
|
Krenz M, Baines C, Kalogeris T, Korthuis R. Cell Survival Programs and Ischemia/Reperfusion: Hormesis, Preconditioning, and Cardioprotection. ACTA ACUST UNITED AC 2013. [DOI: 10.4199/c00090ed1v01y201309isp044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
172
|
Sun J, Nguyen T, Kohr MJ, Murphy E. Cardioprotective Role of Caveolae in Ischemia-Reperfusion Injury. ACTA ACUST UNITED AC 2013; 3. [PMID: 26989575 DOI: 10.4172/2161-1025.1000114] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Caveolae are flask-like invaginations of the plasma membrane enriched in cholesterol, sphingolipids, the marker protein caveolin and the coat protein cavin. In cardiomyocytes, multiple signaling molecules are concentrated and organized within the caveolae to mediate signaling transduction. Recent studies suggest that caveolae and caveolae-associated signaling molecules play an important role in protecting the myocardium against ischemia-reperfusion injury. For example, cardiac-specific overexpression of caveolin-3 has been shown to lead to protection that mimics ischemic preconditioning, while the knockout of caveolin-3 abolished ischemic preconditioning. In this review, we discuss the molecular mechanisms and signaling pathways that are involved in caveolae-mediated cardioprotection, and examine the potential for caveolae as a therapeutic target for pharmaceutical intervention to treat cardiovascular disease.
Collapse
Affiliation(s)
- Junhui Sun
- Systems Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tiffany Nguyen
- Systems Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark J Kohr
- Systems Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; Department of Pathology, Johns Hopkins Medical Institutions, 720 Rutland Avenue, Baltimore, MD 21205, USA
| | - Elizabeth Murphy
- Systems Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
173
|
Ovariectomy reinstates the infarct size-limiting effect of postconditioning in female rabbits. Cell Biochem Biophys 2013; 65:373-80. [PMID: 23070726 DOI: 10.1007/s12013-012-9441-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Gender seems to interfere with the cardioprotective effect of ischemic preconditioning (PreC) and postconditioning (PostC); PreC-conferred protection is weaker or lost in female animals after ovariectomy (Ov), while the role of PostC is still in dispute. We sought to investigate the effect of PostC in female rabbits, its interaction with Ov, and the potential implicated intracellular pathways. Intact or Ov adult female rabbits (n = 46) were subjected to 30 min ischemia and reperfusion with PostC (PostC or OvPostC), which consisted of six cycles of 30-s ischemia/30-s reperfusion at the end of ischemia, or without PostC (Fem or OvFem). Infarct size (I) and area at risk (R) were determined by TTC staining and fluorescent particles, respectively, after 3-h reperfusion in 30 out of 46 animals. Plasma levels of estradiol and nitrite/nitrate (NO x ) were evaluated. ERKs, p38-MAPK, and Akt assessment was performed in excised hearts 1-min after starting the final reperfusion period in the remaining 16 animals. Infarct size was significantly reduced only in OvPostC group (I/R ratio, 25.3 ± 2.7, vs 48.1 ± 2.0, 43.6 ± 4.2 and 55.1 ± 5.6 % in Fem, OvFem, and PostC groups, p < 0.05). In ovariectomized rabbits, plasma estradiol and NO x levels were lower than in the normal ones. Akt phosphorylation in ischemic regions was significantly higher in OvPostC group, whereas ERK1/2 and p38-MAPK activation was observed in all ovariectomized animals irrespective of PostC. PostC is not effective in female rabbits, but the protection is reinstated after Ov potentially via the RISK pathway.
Collapse
|
174
|
LI H, ZHOU C, CHEN D, FANG N, YAO Y, LI L. Failure to protect against myocardial ischemia-reperfusion injury with sevoflurane postconditioning in old rats in vivo. Acta Anaesthesiol Scand 2013; 57:1024-31. [PMID: 23848060 DOI: 10.1111/aas.12156] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2013] [Indexed: 11/27/2022]
Abstract
BACKGROUND Sevoflurane post-conditioning (SpostC) protects young hearts against ischemia-reperfusion injury. It is unknown whether the infarct-limiting effect is also maintained in aged cohorts and whether there are age-associated differences in the underlying mechanisms. METHODS Young or old rats were randomly subjected to 30-min myocardial ischemia, followed by 120-min reperfusion in vivo, with or without SpostC in the presence or absence of phosphatidylinositol 3-kinase (PI3K) or mitogen-activated protein kinase kinase 1/2 (MEK1/2) inhibitor. Western blotting was used to determine the phosphorylation of protein kinase B (Akt) and extracellular signal-regulated kinase 1/2 (ERK1/2). Myocardial nicotinamide adenine dinucleotide (NAD(+) ) level was measured to indicate mitochondrial permeability transition pore (mPTP) opening. RESULTS SpostC significantly decreased infarct size in young (35 ± 4% vs. 56 ± 3%, P < 0.05) but not old rats (45 ± 3% vs. 47 ± 4%, P > 0.05) compared with each control group. SpostC substantially augmented phosphorylation of Akt (0.74 ± 0.03 arbitrary units vs. 0.27 ± 0.03 arbitrary units, P < 0.05) or ERK1/2 (0.85 ± 0.04 arbitrary units vs. 0.29 ± 0.04 arbitrary units, P < 0.05) compared with control group, which was abolished by PI3K or MEK1/2 inhibitor in young rats, respectively, but failed to activate Akt and ERK1/2 in old rats. NAD(+) level (nmol/g tissue) was higher in SpostC group in young (118.57 ± 9.27 vs. 46.78 ± 4.54, P < 0.05) but not old rats (58.50 ± 7.16 vs. 61.15 ± 5.50, P > 0.05) compared with each control group. PI3K or MEK1/2 inhibitor abrogated the infarct-sparing effect and inhibition of loss of NAD(+) induced by SpostC in young rats, respectively. CONCLUSION SpostC-mediated cardioprotection in young rats is not effective in senescent rats, which may at least be the consequence of failure to activate Akt and ERK1/2, and resultant failure to inhibit mPTP opening.
Collapse
Affiliation(s)
- H. LI
- Department of Anesthesiology; Fuwai Cardiovascular Hospital; Chinese Academy of Medical Sciences; Peking Union Medical College; Beijing; China
| | - C. ZHOU
- Department of Anesthesiology; Fuwai Cardiovascular Hospital; Chinese Academy of Medical Sciences; Peking Union Medical College; Beijing; China
| | - D. CHEN
- Department of Anesthesiology; Fuwai Cardiovascular Hospital; Chinese Academy of Medical Sciences; Peking Union Medical College; Beijing; China
| | - N. FANG
- Department of Anesthesiology; Fuwai Cardiovascular Hospital; Chinese Academy of Medical Sciences; Peking Union Medical College; Beijing; China
| | - Y. YAO
- Department of Anesthesiology; Fuwai Cardiovascular Hospital; Chinese Academy of Medical Sciences; Peking Union Medical College; Beijing; China
| | - L. LI
- Department of Anesthesiology; Fuwai Cardiovascular Hospital; Chinese Academy of Medical Sciences; Peking Union Medical College; Beijing; China
| |
Collapse
|
175
|
Ko IG, Kim SE, Kim CJ, Jee YS. Treadmill Exercise Alleviates Aging-induced Apoptosis in Rat Cardiac Myocytes. INT J GERONTOL 2013. [DOI: 10.1016/j.ijge.2013.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
176
|
Thielmann M, Wendt D, Tsagakis K, Price V, Dohle DS, Pasa S, Kottenberg E. Remote ischemic preconditioning: the surgeon's perspective. J Cardiovasc Med (Hagerstown) 2013; 14:187-92. [PMID: 23032962 DOI: 10.2459/jcm.0b013e3283590df6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Since cardiac surgery began, surgeons have aimed to find methods of minimizing myocardial injury resulting from ischemia and reperfusion. The concept of somehow conditioning the heart in order to attenuate ischemia and reperfusion-related injury has evolved in cardiovascular research over decades, from ischemic preconditioning and postconditioning to, more recently, remote ischemic preconditioning (and postconditioning). Although many strategies have proven to be beneficial in the experimental arena, a few have been successfully translated into clinical practice. Remote ischemic preconditioning, with the use of brief episodes of ischemia and reperfusion of vascular territories remote from the heart, has been shown convincingly to decrease myocardial injury. To date, the translation of this powerful innate mechanism of myocardial and/or multiorgan protection from the animal lab to the operating theatre, using transient occlusion of blood flow to the upper limb with a blood-pressure cuff before cardiac surgery, has shown promising results, with several proof-of-principle and first randomized controlled clinical trials reporting benefits for patients undergoing cardiac surgery. If the efficacy of remote ischemic preconditioning can be conclusively proven, the clinical applications in cardiac surgery could be almost infinite, providing multiorgan protection in various surgical scenarios.
Collapse
Affiliation(s)
- Matthias Thielmann
- Department of Thoracic and Cardiovascular Surgery, West-German Heart Center Essen, University Duisburg-Essen, Essen, Germany.
| | | | | | | | | | | | | |
Collapse
|
177
|
|
178
|
Hofmann U, Frantz S. How can we cure a heart "in flame"? A translational view on inflammation in heart failure. Basic Res Cardiol 2013; 108:356. [PMID: 23740214 PMCID: PMC3709073 DOI: 10.1007/s00395-013-0356-y] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 04/03/2013] [Accepted: 04/08/2013] [Indexed: 01/12/2023]
Abstract
The prevalence of chronic heart failure is still increasing making it a major health issue in the 21st century. Tremendous evidence has emerged over the past decades that heart failure is associated with a wide array of mechanisms subsumed under the term “inflammation”. Based on the great success of immuno-suppressive treatments in auto-immunity and transplantation, clinical trials were launched targeting inflammatory mediators in patients with chronic heart failure. However, they widely lacked positive outcomes. The failure of the initial study program directed against tumor necrosis factor-α led to the search for alternative therapeutic targets involving a broader spectrum of mechanisms besides cytokines. We here provide an overview of the current knowledge on immune activation in chronic heart failure of different etiologies, summarize clinical studies in the field, address unresolved key questions, and highlight some promising novel therapeutic targets for clinical trials from a translational basic science and clinical perspective.
Collapse
Affiliation(s)
- Ulrich Hofmann
- Department of Internal Medicine I, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080, Würzburg, Germany.
| | | |
Collapse
|
179
|
Wang K, Zhang J, Liu J, Tian J, Wu Y, Wang X, Quan L, Xu H, Wang W, Liu H. Variations in the protein level of Omi/HtrA2 in the heart of aged rats may contribute to the increased susceptibility of cardiomyocytes to ischemia/reperfusion injury and cell death : Omi/HtrA2 and aged heart injury. AGE (DORDRECHT, NETHERLANDS) 2013; 35:733-746. [PMID: 22535253 PMCID: PMC3636415 DOI: 10.1007/s11357-012-9406-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 03/26/2012] [Indexed: 05/31/2023]
Abstract
Survival after acute myocardial infarction is decreased in elderly patients. The enhanced rates of apoptosis in the aging heart exacerbate myocardial ischemia/reperfusion (MI/R) injury. We have recently demonstrated that the X-linked inhibitor of apoptosis protein (XIAP), the most potent endogenous inhibitor of apoptosis, was decreased in aging rats' hearts. XIAP was balanced by two mitochondria proteins, Omi/HtrA2 and Smac/DIABLO. However, the implicative role of XIAP, Omi/HtrA2, and Smac/DIABLO to aging-related MI/R injury has not been previously investigated. In our study, male aging rats (20-24 months) or young adult rats (4-6 months) were subjected to 30 min of myocardial ischemia followed by reperfusion. MI/R-induced cardiac injury was enhanced in aging rats, as evidenced by aggravated cardiac dysfunction, enlarged infarct size, and increased myocardial apoptosis (TUNEL and caspase-3 activity). Then, the XIAP, Omi/HtrA2, and Smac/DIABLO protein and mRNA expression was detected. XIAP protein and mRNA expression was decreased in both aging hearts and aging hearts subjected to MI/R. Meanwhile, myocardial XIAP protein expression was correlated to cardiac function after MI/R. However, Omi/HtrA2, but not Smac/DIABLO, expression was increased in aging hearts. Moreover, the translocation of Omi/HtrA2 from mitochondria to cytosol was increased in both aging hearts and aging hearts subjected to MI/R. Treatment with ucf-101 (a novel and specific Omi/HtrA2 inhibitor) attenuated XIAP degradation and caspase-3 activity and exerted cardioprotective effects. Taken together, these results demonstrated that increased expression and leakage of Omi/HtrA2 enhanced MI/R injury in aging hearts via degrading XIAP and promoting myocardial apoptosis.
Collapse
MESH Headings
- Aging/genetics
- Aging/metabolism
- Aging/pathology
- Animals
- Apoptosis Regulatory Proteins
- Blotting, Western
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Cell Death/genetics
- Disease Models, Animal
- Gene Expression Regulation
- High-Temperature Requirement A Serine Peptidase 2
- In Situ Nick-End Labeling
- Male
- Mitochondria, Heart/genetics
- Mitochondria, Heart/metabolism
- Mitochondria, Heart/pathology
- Mitochondrial Proteins/biosynthesis
- Mitochondrial Proteins/genetics
- Mitochondrial Proteins/metabolism
- Myocardial Reperfusion Injury/genetics
- Myocardial Reperfusion Injury/metabolism
- Myocardial Reperfusion Injury/pathology
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Nerve Tissue Proteins/biosynthesis
- Nerve Tissue Proteins/genetics
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA-Binding Proteins/biosynthesis
- RNA-Binding Proteins/genetics
- Rats
- Rats, Sprague-Dawley
- Real-Time Polymerase Chain Reaction
- Serine Endopeptidases/biosynthesis
- Serine Endopeptidases/genetics
- Serine-Arginine Splicing Factors
- X-Linked Inhibitor of Apoptosis Protein/genetics
- X-Linked Inhibitor of Apoptosis Protein/metabolism
Collapse
Affiliation(s)
- Ke Wang
- />Department of Pathophysiology, School of Basic Medical Sciences, Capital Medical University, 10 Xitoutiao, You An Men, P.O. Box 907, Beijing, 100069 People’s Republic of China
| | - Jie Zhang
- />Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi 030001 People’s Republic of China
| | - Jingyi Liu
- />Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi 030001 People’s Republic of China
| | - Jue Tian
- />Department of Pathophysiology, Ningxia Medical University, Yinchuan, Ningxia 750004 People’s Republic of China
| | - Ye Wu
- />Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi 030001 People’s Republic of China
| | - Xiaoliang Wang
- />Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi 030001 People’s Republic of China
| | - Lin Quan
- />Department of Pathophysiology, School of Basic Medical Sciences, Capital Medical University, 10 Xitoutiao, You An Men, P.O. Box 907, Beijing, 100069 People’s Republic of China
| | - Haibo Xu
- />Department of Pathophysiology, School of Basic Medical Sciences, Capital Medical University, 10 Xitoutiao, You An Men, P.O. Box 907, Beijing, 100069 People’s Republic of China
| | - Wen Wang
- />Department of Pathophysiology, School of Basic Medical Sciences, Capital Medical University, 10 Xitoutiao, You An Men, P.O. Box 907, Beijing, 100069 People’s Republic of China
| | - Huirong Liu
- />Department of Pathophysiology, School of Basic Medical Sciences, Capital Medical University, 10 Xitoutiao, You An Men, P.O. Box 907, Beijing, 100069 People’s Republic of China
- />The Key Laboratory of Remodeling-related Cardiovascular Diseases, Capital Medical University, Ministry of Education, Beijing, 100069 People’s Republic of China
| |
Collapse
|
180
|
Oosterlinck W, Dresselaers T, Geldhof V, Nevelsteen I, Janssens S, Himmelreich U, Herijgers P. Diabetes mellitus and the metabolic syndrome do not abolish, but might reduce, the cardioprotective effect of ischemic postconditioning. J Thorac Cardiovasc Surg 2013; 145:1595-602. [DOI: 10.1016/j.jtcvs.2013.02.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 01/27/2013] [Accepted: 02/12/2013] [Indexed: 02/06/2023]
|
181
|
Whittington HJ, Harding I, Stephenson CIM, Bell R, Hausenloy DJ, Mocanu MM, Yellon DM. Cardioprotection in the aging, diabetic heart: the loss of protective Akt signalling. Cardiovasc Res 2013; 99:694-704. [PMID: 23723063 DOI: 10.1093/cvr/cvt140] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AIMS Old age and diabetes are risk factors that often coexist increasing the vulnerability of the heart to the lethal effects of ischaemia-reperfusion injury (IRI). However, to our knowledge, no investigations have examined IRI and cardioprotective signalling in animal models bearing these co-morbidities concomitantly. The ability of the heart to recover following IRI is greatly dependent on its innate cardioprotective potential, in which a central role is played by Akt. We aimed to investigate in an aging diabetic rat model, the susceptibility of the heart to IRI, the achievability of ischaemic preconditioning (IPC) against this lethal event, and the changes in Akt signalling, as the main prosurvival intracellular pathway. METHODS AND RESULTS Our data showed that the isolated hearts of aged, diabetic Goto-Kakizaki rats were more susceptible to sub-lethal injury and not amenable to cardioprotection via IPC, compared with younger diabetic rat hearts. Western blot analysis of the heart tissue suggested a chronic up-regulation of Akt phosphorylation, and reduced expression of the mitochondrial regulator PGC-1α and of the anti-oxidant enzyme catalase, potentially due to the Akt up-regulation. Moreover, no further activation of Akt could be achieved following IPC. CONCLUSION An increased susceptibility to IRI in the aged, diabetic heart could be a consequence of impaired Akt signalling due to chronic Akt phosphorylation. Additional Akt phosphorylation required for IPC protection may therefore not be possible in the aged, diabetic rat heart and may explain why this cardioprotective manoeuvre cannot be achieved in these hearts.
Collapse
|
182
|
Sung MMY, Dyck JRB. Age-related cardiovascular disease and the beneficial effects of calorie restriction. Heart Fail Rev 2013; 17:707-19. [PMID: 22095297 DOI: 10.1007/s10741-011-9293-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Aging is a well-recognized risk factor in the development of cardiovascular disease, which is the primary cause of death and disability in the elderly population. The normal process of aging is associated with progressive deterioration in structure and function of the heart and vasculature. These age-related changes likely act as both a catalyst and accelerator in the development of cardiovascular disease. Since the aging population is one of the fastest growing segments of the population, it is of vital importance that we have a thorough understanding of the physiological changes that occur with aging that contribute to the high incidence of cardiovascular disease in this population. This insight will allow for the development of more targeted therapies that can prevent and treat these conditions. One such anti-aging strategy that has received considerable attention as of late is calorie restriction. Calorie restriction has emerged as one of the most effective and reproducible interventions for extending lifespan, as well as protecting against obesity, metabolic disorders, and cardiovascular disease. Herein, we review the multiple beneficial effects that calorie restriction and resveratrol exert on the cardiovascular system with a particular focus on aging. Although calorie restriction and resveratrol have proven to be very effective in preventing and treating the development of cardiovascular disease in animal models, studies continue as to whether these profound beneficial effects can translate to humans to improve cardiovascular health.
Collapse
Affiliation(s)
- Miranda M Y Sung
- Department of Pediatrics, Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
| | | |
Collapse
|
183
|
Fridolfsson HN, Patel HH. Caveolin and caveolae in age associated cardiovascular disease. JOURNAL OF GERIATRIC CARDIOLOGY : JGC 2013; 10:66-74. [PMID: 23610576 PMCID: PMC3627709 DOI: 10.3969/j.issn.1671-5411.2013.01.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 12/15/2012] [Accepted: 12/18/2012] [Indexed: 12/13/2022]
Abstract
It is estimated that the elderly (> 65 years of age) will increase from 13%−14% to 25% by 2035. If this trend continues, > 50% of the United States population and more than two billion people worldwide will be “aged” in the next 50 years. Aged individuals face formidable challenges to their health, as aging is associated with a myriad of diseases. Cardiovascular disease is the leading cause of morbidity and mortality in the United States with > 50% of mortality attributed to coronary artery disease and > 80% of these deaths occurring in those age 65 and older. Therefore, age is an important predictor of cardiovascular disease. The efficiency of youth is built upon cellular signaling scaffolds that provide tight and coordinated signaling. Lipid rafts are one such scaffold of which caveolae are a subset. In this review, we consider the importance of caveolae in common cardiovascular diseases of the aged and as potential therapeutic targets. We specifically address the role of caveolin in heart failure, myocardial ischemia, and pulmonary hypertension.
Collapse
Affiliation(s)
- Heidi N Fridolfsson
- Departments of Anesthesiology, University of California, San Diego, La Jolla, California 92093, USA
| | | |
Collapse
|
184
|
Schmidt MR, Sloth AD, Johnsen J, Bøtker HE. Remote ischemic conditioning: the cardiologist's perspective. J Cardiovasc Med (Hagerstown) 2013; 13:667-74. [PMID: 23114270 DOI: 10.2459/jcm.0b013e328357bff2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Early and successful restoration of myocardial reperfusion following an ischemic event is the most effective strategy to reduce final infarct size and improve clinical outcome. However, revascularization per se may induce further myocardial damage by myocardial ischemia-reperfusion injury and worsen clinical outcome. Therefore, new therapeutic strategies are required to protect the myocardium against ischemia-reperfusion injury in patients with coronary artery disease. Remote ischemic conditioning (RIC) by brief nonlethal episodes of ischemia and reperfusion to an organ or tissue remote from the heart activates innate cardioprotective mechanisms. The discovery that RIC can be performed noninvasively using a blood pressure cuff on the upper arm to induce brief episodes of limb ischemia and reperfusion has facilitated the translation of RIC into the clinical arena. Whereas some trials have shown contradictory results, recently published proof-of-concept clinical studies have reported encouraging results with RIC. Large-scale multicenter clinical trials are needed to establish the role of RIC in the current clinical practice. At present, the use of RIC in acute coronary syndromes seems particularly attractive due to its potential in-ambulance application and apparent dramatic reduction in infarct size in the patients with the largest infarcts. Cardiac arrest and stroke represent ischemia-reperfusion disorders where RIC has further potential to improve outcome beyond rapid revascularization alone.
Collapse
Affiliation(s)
- Michael R Schmidt
- Department of Cardiology, Aarhus University Hospital Skejby, Brendstrupgaardsvej, Aarhus N, Denmark
| | | | | | | |
Collapse
|
185
|
van den Munckhof I, Riksen N, Seeger JPH, Schreuder TH, Borm GF, Eijsvogels TMH, Hopman MTE, Rongen GA, Thijssen DHJ. Aging attenuates the protective effect of ischemic preconditioning against endothelial ischemia-reperfusion injury in humans. Am J Physiol Heart Circ Physiol 2013; 304:H1727-32. [PMID: 23604707 DOI: 10.1152/ajpheart.00054.2013] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Reperfusion is mandatory after ischemia but also triggers ischemia-reperfusion (I/R) injury. Ischemic preconditioning (IPC) can limit endothelial I/R injury. Nonetheless, translation of IPC to the clinical arena is often disappointing. Since application of IPC typically relates to older patients, efficacy of IPC may be attenuated with aging. Our objective was to examine the impact of advanced age on the ability of IPC to protect against endothelial dysfunction due to I/R injury. We included 15 healthy young (20-25 yr) and 15 older (68-77 yr) men. We examined brachial artery endothelial function using flow-mediated dilation (FMD) before and after arm I/R (induced by inflation of an upper-arm blood pressure cuff for 20 min and 15 min of reperfusion). In a randomized order, I/R was preceded by IPC or a control intervention consisting of three cycles of 5 min upper-arm cuff inflation to 220 or 20 mmHg, respectively. As a result, in young men, FMD decreased significantly after I/R (6.4 ± 2.7 to 4.4 ± 2.5%). This decrease was not present when I/R was preceded by IPC (5.9 ± 2.3 to 5.6 ± 2.5%). IPC-induced protection appeared to be significantly reduced in the elderly patients (P = 0.04). Although FMD decreased after I/R in older men (3.5 ± 1.7 to 2.5 ± 1.0%), IPC could not prevent this (3.7 ± 2.1 to 2.2 ± 1.1%). In conclusion, this study is the first to observe in humans in vivo that older age is associated with an abolished effect of IPC to protect against endothelial dysfunction after I/R in the brachial artery. This provides a possible explanation for the problematic translation of strategies that reduce I/R injury from preclinical work to the clinical arena.
Collapse
Affiliation(s)
- Inge van den Munckhof
- Department of Physiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
186
|
Zhu J, Rebecchi MJ, Glass PSA, Brink PR, Liu L. Interactions of GSK-3β with mitochondrial permeability transition pore modulators during preconditioning: age-associated differences. J Gerontol A Biol Sci Med Sci 2013; 68:395-403. [PMID: 23070879 DOI: 10.1093/gerona/gls205] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Anesthetic preconditioning (APC) and ischemic preconditioning (IPC) are lost with normal aging. Here, we investigated age-related difference between phosphoglycogen synthase kinase-3beta (pGSK-3β) and pGSK-3β with modulators of mitochondrial permeability transition pore, including adenine nucleotide translocase (ANT), cyclophilin-D, or voltage-dependent anion channel. APC or IPC significantly increased pGSK-3β in the young groups in both the cytosol and the mitochondria and also significantly increased pGSK-3β in co-immunoprecipitates with ANT. Importantly, the level of cyclophilin-D in co-immunoprecipitates with ANT was significantly decreased in the young APC and IPC groups, but not in old rats. We also found that APC or IPC significantly prolonged mitochondrial permeability transition pore opening time in the young cardiomyocytes under oxidative stress, but not in the elderly. Attenuation of APC or IPC protection in the aging heart is associated with failure to reduce ANT-cyclophilin-D interactions and to decreased pGSK-3β responsiveness of ANT, critical modulators of mitochondrial permeability transition pore.
Collapse
Affiliation(s)
- Jiang Zhu
- Department of Anesthesiology, Stony Brook University School of Medicine, HSC L4 060, NY 11794, USA
| | | | | | | | | |
Collapse
|
187
|
Korzick DH, Lancaster TS. Age-related differences in cardiac ischemia-reperfusion injury: effects of estrogen deficiency. Pflugers Arch 2013; 465:669-85. [PMID: 23525672 DOI: 10.1007/s00424-013-1255-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Revised: 02/23/2013] [Accepted: 02/25/2013] [Indexed: 01/17/2023]
Abstract
Despite conflicting evidence for the efficacy of hormone replacement therapy in cardioprotection of postmenopausal women, numerous studies have demonstrated reductions in ischemia/reperfusion (I/R) injury following chronic or acute exogenous estradiol (E2) administration in adult male and female, gonad-intact and gonadectomized animals. It has become clear that ovariectomized adult animals may not accurately represent the combined effects of age and E2 deficiency on reductions in ischemic tolerance seen in the postmenopausal female. E2 is known to regulate the transcription of several cardioprotective genes. Acute, non-genomic E2 signaling can also activate many of the same signaling pathways recruited in cardioprotection. Alterations in cardioprotective gene expression or cardioprotective signal transduction are therefore likely to result within the context of aging and E2 deficiency and may help explain the reduced ischemic tolerance and loss of cardioprotection in the senescent female heart. Quantification of the mitochondrial proteome as it adapts to advancing age and E2 deficiency may also represent a key experimental approach to uncover proteins associated with disruptions in cardiac signaling contributing to age-associated declines in ischemic tolerance. These alterations have important ramifications for understanding the increased morbidity and mortality due to ischemic cardiovascular disease seen in postmenopausal females. Functional perturbations that occur in mitochondrial respiration and Ca(2+) sensitivity with age-associated E2 deficiency may also allow for the identification of alternative therapeutic targets for reducing I/R injury and treatment of the leading cause of death in postmenopausal women.
Collapse
Affiliation(s)
- Donna H Korzick
- Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, USA.
| | | |
Collapse
|
188
|
De Luca G, van’t Hof AWJ, Huber K, Gibson CM, Bellandi F, Arntz HR, Maioli M, Noc M, Zorman S, Secco GG, Zeymer U, Gabriel HM, Emre A, Cutlip D, Rakowski T, Gyongyosi M, Dudek D. Impact of advanced age on myocardial perfusion, distal embolization, and mortality patients with ST-segment elevation myocardial infarction treated by primary angioplasty and glycoprotein IIb–IIIa inhibitors. Heart Vessels 2013; 29:15-20. [DOI: 10.1007/s00380-013-0323-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 01/18/2013] [Indexed: 10/27/2022]
|
189
|
Kottenberg E, Musiolik J, Thielmann M, Jakob H, Peters J, Heusch G. Interference of propofol with signal transducer and activator of transcription 5 activation and cardioprotection by remote ischemic preconditioning during coronary artery bypass grafting. J Thorac Cardiovasc Surg 2013; 147:376-82. [PMID: 23465551 DOI: 10.1016/j.jtcvs.2013.01.005] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Revised: 12/09/2012] [Accepted: 01/11/2013] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Remote ischemic preconditioning protects the myocardium from ischemia/reperfusion injury. We recently identified protection by remote ischemic preconditioning to be associated with the activation of signal transducer and activator of transcription 5 in left ventricular biopsy specimens of patients undergoing coronary artery bypass grafting during isoflurane anesthesia. Because remote ischemic preconditioning did not protect the heart during propofol anesthesia, we hypothesized that propofol anesthesia interferes with signal transducer and activator of transcription 5 activation. METHODS In a randomized, single-blind, placebo-controlled, prospective study, we analyzed an array of established cardioprotective proteins during propofol anesthesia with or without remote ischemic preconditioning in 24 nondiabetic patients with 3-vessel coronary artery disease. RESULTS Remote ischemic preconditioning (n = 12) compared with no remote ischemic preconditioning (n = 12) failed to decrease the area under the troponin I time curve (273 ± 184 ng/mL × 72 hours vs 365 ± 301 ng/mL × 72 hours; P = .374). Although phosphorylation of several protein kinases was increased from baseline to reperfusion, signal transducer and activator of transcription 5 phosphorylation was not increased and was not different between the remote ischemic preconditioning and no remote ischemic preconditioning groups. CONCLUSIONS Remote ischemic preconditioning during propofol anesthesia did not evoke either signal transducer and activator of transcription 5 activation or cardioprotection, implying interaction of propofol with cardioprotective signaling upstream of signal transducer and activator of transcription 5.
Collapse
Affiliation(s)
- Eva Kottenberg
- Klinik für Anästhesiologie und Intensivmedizin, Universität Duisburg-Essen, Universitätsklinikum Essen, Essen, Germany.
| | - Judith Musiolik
- Institut für Pathophysiologie, Universität Duisburg-Essen, Universitätsklinikum Essen, Essen, Germany
| | - Matthias Thielmann
- Klinik für Thorax- und Kardiovaskuläre Chirurgie, Universität Duisburg-Essen, Universitätsklinikum Essen, Essen, Germany
| | - Heinz Jakob
- Klinik für Thorax- und Kardiovaskuläre Chirurgie, Universität Duisburg-Essen, Universitätsklinikum Essen, Essen, Germany
| | - Jürgen Peters
- Klinik für Anästhesiologie und Intensivmedizin, Universität Duisburg-Essen, Universitätsklinikum Essen, Essen, Germany
| | - Gerd Heusch
- Institut für Pathophysiologie, Universität Duisburg-Essen, Universitätsklinikum Essen, Essen, Germany
| |
Collapse
|
190
|
Penna C, Perrelli MG, Pagliaro P. Mitochondrial pathways, permeability transition pore, and redox signaling in cardioprotection: therapeutic implications. Antioxid Redox Signal 2013; 18:556-99. [PMID: 22668069 DOI: 10.1089/ars.2011.4459] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Reperfusion therapy is the indispensable treatment of acute myocardial infarction (AMI) and must be applied as soon as possible to attenuate the ischemic insult. However, reperfusion is responsible for additional myocardial damage likely involving opening of the mitochondrial permeability transition pore (mPTP). A great part of reperfusion injury occurs during the first minute of reperfusion. The prolonged opening of mPTP is considered one of the endpoints of the cascade to myocardial damage, causing loss of cardiomyocyte function and viability. Opening of mPTP and the consequent oxidative stress due to reactive oxygen and nitrogen species (ROS/RNS) are considered among the major mechanisms of mitochondrial and myocardial dysfunction. Kinases and mitochondrial components constitute an intricate network of signaling molecules and mitochondrial proteins, which interact in response to stressors. Cardioprotective pathways are activated by stimuli such as preconditioning and postconditioning (PostC), obtained with brief intermittent ischemia or with pharmacological agents, which drastically reduce the lethal ischemia/reperfusion injury. The protective pathways converging on mitochondria may preserve their function. Protection involves kinases, adenosine triphosphate-dependent potassium channels, ROS signaling, and the mPTP modulation. Some clinical studies using ischemic PostC during angioplasty support its protective effects, and an interesting alternative is pharmacological PostC. In fact, the mPTP desensitizer, cyclosporine A, has been shown to induce appreciable protections in AMI patients. Several factors and comorbidities that might interfere with cardioprotective signaling are considered. Hence, treatments adapted to the characteristics of the patient (i.e., phenotype oriented) might be feasible in the future.
Collapse
Affiliation(s)
- Claudia Penna
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | | | | |
Collapse
|
191
|
Ceylan-Isik AF, Dong M, Zhang Y, Dong F, Turdi S, Nair S, Yanagisawa M, Ren J. Cardiomyocyte-specific deletion of endothelin receptor A rescues aging-associated cardiac hypertrophy and contractile dysfunction: role of autophagy. Basic Res Cardiol 2013; 108:335. [PMID: 23381122 DOI: 10.1007/s00395-013-0335-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 12/27/2012] [Accepted: 01/24/2013] [Indexed: 11/25/2022]
Abstract
Cardiac aging is manifested as cardiac remodeling and contractile dysfunction although precise mechanisms remain elusive. This study was designed to examine the role of endothelin-1 (ET-1) in aging-associated myocardial morphological and contractile defects. Echocardiographic and cardiomyocyte contractile properties were evaluated in young (5-6 months) and old (26-28 months) C57BL/6 wild-type and cardiomyocyte-specific ET(A) receptor knockout (ETAKO) mice. Cardiac ROS production and histology were examined. Our data revealed that ETAKO mice displayed an improved survival. Aging increased plasma levels of ET-1 and Ang II, compromised cardiac function (fractional shortening, cardiomyocyte peak shortening, maximal velocity of shortening/relengthening and prolonged relengthening) and intracellular Ca(2+) handling (reduced intracellular Ca(2+) release and decay), the effects of which with the exception of ET-1 and Ang II levels was improved by ETAKO. Histological examination displayed cardiomyocyte hypertrophy and interstitial fibrosis associated with cardiac remodeling in aged C57 mice, which were alleviated in ETAKO mice. Aging promoted ROS generation, protein damage, ER stress, upregulated GATA4, ANP, NFATc3 and the autophagosome cargo protein p62, downregulated intracellular Ca(2+) regulatory proteins SERCA2a and phospholamban as well as the autophagic markers Beclin-1, Atg7, Atg5 and LC3BII, which were ablated by ETAKO. ET-1 triggered a decrease in autophagy and increased hypertrophic markers in vitro, the effect of which were reversed by the ET(A) receptor antagonist BQ123 and the autophagy inducer rapamycin. Antagonism of ET(A), but not ET(B) receptor, rescued cardiac aging, which was negated by autophagy inhibition. Taken together, our data suggest that cardiac ET(A) receptor ablation protects against aging-associated myocardial remodeling and contractile dysfunction possibly through autophagy regulation.
Collapse
Affiliation(s)
- Asli F Ceylan-Isik
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| | | | | | | | | | | | | | | |
Collapse
|
192
|
Bao L, Taskin E, Foster M, Ray B, Rosario R, Ananthakrishnan R, Howlett SE, Schmidt AM, Ramasamy R, Coetzee WA. Alterations in ventricular K(ATP) channel properties during aging. Aging Cell 2013; 12:167-76. [PMID: 23173756 DOI: 10.1111/acel.12033] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2012] [Indexed: 12/27/2022] Open
Abstract
Coronary heart disease remains the principle cause of mortality in the United States. During aging, the efficiency of the cardiovascular system is decreased and the aged heart is less tolerant to ischemic injury. ATP-sensitive K(+) (K(ATP)) channels protect the myocardium against ischemic damage. We investigated how aging affects cardiac K(ATP) channels in the Fischer 344 rat model. Expression of K(ATP) channel subunit mRNA and protein levels was unchanged in hearts from 26-month-old vs. 4-month-old rats. Interestingly, the mRNA expression of several other ion channels (> 80) was also largely unchanged, suggesting that posttranscriptional regulatory mechanisms occur during aging. The whole-cell K(ATP) channel current density was strongly diminished in ventricular myocytes from aged male rat hearts (also observed in aged C57BL/6 mouse myocytes). Experiments with isolated patches (inside-out configuration) demonstrated that the K(ATP) channel unitary conductance was unchanged, but that the inhibitory effect of cytosolic ATP on channel activity was enhanced in the aged heart. The mean patch current was diminished, consistent with the whole-cell data. We incorporated these findings into an empirical model of the K(ATP) channel and numerically simulated the effects of decreased cytosolic ATP levels on the human action potential. This analysis predicts lesser activation of K(ATP) channels by metabolic impairment in the aged heart and a diminished action potential shortening. This study provides insights into the changes in K(ATP) channels during aging and suggests that the protective role of these channels during ischemia is significantly compromised in the aged individual.
Collapse
Affiliation(s)
- Li Bao
- Pediatrics; NYU School of Medicine; New York; NY; USA
| | - Eylem Taskin
- Pediatrics; NYU School of Medicine; New York; NY; USA
| | | | - Beevash Ray
- Medicine; NYU School of Medicine; New York; NY; USA
| | - Rosa Rosario
- Medicine; NYU School of Medicine; New York; NY; USA
| | | | - Susan E. Howlett
- Department of Pharmacology; Dalhousie University; 5850 College Street; PO Box 15000; Sir Charles Tupper Medical Building; Halifax; Nova Scotia; Canada; B3H 4R2
| | | | | | | |
Collapse
|
193
|
Huang JV, Lu L, Ye S, Bergman BC, Sparagna GC, Sarraf M, Reusch JEB, Greyson CR, Schwartz GG. Impaired contractile recovery after low-flow myocardial ischemia in a porcine model of metabolic syndrome. Am J Physiol Heart Circ Physiol 2013; 304:H861-73. [PMID: 23335793 DOI: 10.1152/ajpheart.00535.2012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Clinical metabolic syndrome conveys a poor prognosis in patients with acute coronary syndrome, not fully accounted for by the extent of coronary atherosclerosis. To explain this observation, we determined whether postischemic myocardial contractile and metabolic function are impaired in a porcine dietary model of metabolic syndrome without atherosclerosis. Micropigs (n = 28) were assigned to a control diet (low fat, no added sugars) or an intervention diet (high saturated fat and simple sugars, no added cholesterol) for 7 mo. The intervention diet produced obesity, hypertension, dyslipidemia, and impaired glucose tolerance, but not atherosclerosis. Under open-chest, anesthetized conditions, pigs underwent 45 min of low-flow myocardial ischemia and 120 min of reperfusion. In both diet groups, contractile function was similar at baseline and declined similarly during ischemia. However, after 120 min of reperfusion, regional work recovered to 21 ± 12% of baseline in metabolic syndrome pigs compared with 61 ± 13% in control pigs (P = 0.01). Ischemia-reperfusion caused a progressive decline in mechanical/metabolic efficiency (regional work/O2 consumption) in metabolic syndrome hearts, but not in control hearts. Metabolic syndrome hearts demonstrated altered fatty acyl composition of cardiolipin and increased Akt phosphorylation in both ischemic and nonischemic regions, suggesting tonic activation. Metabolic syndrome hearts used more fatty acid than control hearts (P = 0.03). When fatty acid availability was restricted by prior insulin exposure, differences between groups in postischemic contractile recovery and mechanical/metabolic efficiency were eliminated. In conclusion, pigs with characteristics of metabolic syndrome demonstrate impaired contractile and metabolic recovery after low-flow myocardial ischemia. Contributory mechanisms may include remodeling of cardiolipin, abnormal activation of Akt, and excessive utilization of fatty acid substrates.
Collapse
Affiliation(s)
- Janice V Huang
- Cardiology Section, Veterans Affairs Medical Center, Denver, CO 80220, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
194
|
A kinase interacting protein (AKIP1) is a key regulator of cardiac stress. Proc Natl Acad Sci U S A 2013; 110:E387-96. [PMID: 23319652 DOI: 10.1073/pnas.1221670110] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
cAMP-dependent protein kinase (PKA) regulates a myriad of functions in the heart, including cardiac contractility, myocardial metabolism,and gene expression. However, a molecular integrator of the PKA response in the heart is unknown. Here, we show that the PKA adaptor A-kinase interacting protein 1 (AKIP1) is up-regulated in cardiac myocytes in response to oxidant stress. Mice with cardiac gene transfer of AKIP1 have enhanced protection to ischemic stress. We hypothesized that this adaptation to stress was mitochondrial dependent. AKIP1 interacted with the mitochondrial localized apoptosis inducing factor (AIF) under both normal and oxidant stress. When cardiac myocytes or whole hearts are exposed to oxidant and ischemic stress, levels of both AKIP1 and AIF were enhanced. AKIP1 is preferentially localized to interfibrillary mitochondria and up-regulated in this cardiac mitochondrial subpopulation on ischemic injury. Mitochondria isolated from AKIP1 gene transferred hearts showed increased mitochondrial localization of AKIP1, decreased reactive oxygen species generation, enhanced calcium tolerance, decreased mitochondrial cytochrome C release,and enhance phosphorylation of mitochondrial PKA substrates on ischemic stress. These observations highlight AKIP1 as a critical molecular regulator and a therapeutic control point for stress adaptation in the heart.
Collapse
|
195
|
Abstract
Myocardial infarct size is a major determinant of prognosis. Ischaemic preconditioning with brief coronary occlusion and reperfusion before a sustained period of coronary occlusion with reperfusion delays infarct development. Ischaemic postconditioning uses repetitive brief coronary occlusion during early reperfusion of myocardial infarction and reduces infarct size. Remote ischaemic preconditioning uses brief ischaemia and reperfusion of a distant organ to protect the myocardium. These conditioning protocols recruit a complex signal cascade of sarcolemmal receptor activation, intracellular enzyme activation, and ultimately mitochondrial stabilisation and inhibition of death signalling. Conditioning protocols have been successfully used in patients undergoing elective coronary revascularisation and reperfusion after acute myocardial infarction. Pharmacological recruitment of cardioprotective signalling has also been used to reduce infarct size, but so far without prognostic benefit. Outcomes of cardioprotection are affected by age, sex, comorbidities, and drugs, but also by technical issues related to determination of infarct size and revascularisation procedure.
Collapse
Affiliation(s)
- Gerd Heusch
- Institut für Pathophysiologie, Universitätsklinikum Essen, Essen, Germany.
| |
Collapse
|
196
|
Age may contribute to the negative cardiac effect of postconditioning on STEMI patients. Int J Cardiol 2012; 162:59-60. [DOI: 10.1016/j.ijcard.2012.09.174] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 09/25/2012] [Indexed: 11/21/2022]
|
197
|
Zhong C, Fleming N, Lu X, Moore P, Liu H. Age-associated differences in gene expression in response to delayed anesthetic preconditioning. AGE (DORDRECHT, NETHERLANDS) 2012; 34:1459-1472. [PMID: 22009153 PMCID: PMC3528372 DOI: 10.1007/s11357-011-9322-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 10/05/2011] [Indexed: 05/31/2023]
Abstract
Evidence suggests that the protective benefits of anesthetic preconditioning (APC) are significantly attenuated in the aged myocardium. In this study, we investigated the effect of aging on gene expression in delayed APC. Hearts from Fischer 344 rats, age 4 or 24 months, were divided into five groups: control; ischemia/reperfusion (I/R); and delayed APC at 6, 12, and 24 h. Whole-genome array was studied using Affymetrix Rat Genome 230 2.0 array. Data were analyzed for significant ≥2.0-fold changes in gene expression. Microarray results were confirmed by quantitative real-time reverse transcription-polymerase chain reaction. Of the 28,000 genes represented on the Affymetrix Rat Genome 230 2.0 Microarray chip, 24 transcripts in 6 h APC, 28 in 12 h APC, and 28 in 24 h APC group displayed significant up-regulation in mRNA levels, and 70 transcripts in 6 h APC, 101 in 12 h APC, and 82 in 24 h APC displayed significant down-regulation in young rat hearts. These altered genes fall into functional categories of cell defense/death, cell structure, gene expression/protein synthesis, inflammatory response/growth/remodeling, and signaling/communication. Although alterations for some genes were in common, the numbers of changed genes in old rats were markedly and consistently lower than the young rats. Twenty-four hour delayed APC also significantly reduced infarct size and improved myocardial left ventricular function in young hearts, effects that were not observed in old rat hearts. We concluded that delayed APC profoundly and differentially affected gene expression profiles of the cardiomyocyte in an age-associated pattern. The impaired genomic response to delayed APC could underlie the loss of the protective benefits of preconditioning in aged hearts.
Collapse
Affiliation(s)
- C. Zhong
- />Institute of Toxicology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029 China
| | - N. Fleming
- />Department of Anesthesiology and Pain Medicine, University of California, Davis, School of Medicine, 4150 V Street, Suite 1200, Sacramento, CA 95817 USA
| | - X. Lu
- />Department of Pharmacology, University of California, Davis, School of Medicine, Sacramento, CA USA
| | - P. Moore
- />Department of Anesthesiology and Pain Medicine, University of California, Davis, School of Medicine, 4150 V Street, Suite 1200, Sacramento, CA 95817 USA
| | - H. Liu
- />Department of Anesthesiology and Pain Medicine, University of California, Davis, School of Medicine, 4150 V Street, Suite 1200, Sacramento, CA 95817 USA
| |
Collapse
|
198
|
Prasad A, Gössl M, Hoyt J, Lennon RJ, Polk L, Simari R, Holmes DR, Rihal CS, Lerman A. Remote ischemic preconditioning immediately before percutaneous coronary intervention does not impact myocardial necrosis, inflammatory response, and circulating endothelial progenitor cell counts: a single center randomized sham controlled trial. Catheter Cardiovasc Interv 2012; 81:930-6. [PMID: 22517646 DOI: 10.1002/ccd.24443] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 04/12/2012] [Indexed: 12/12/2022]
Abstract
AIMS Percutaneous coronary intervention (PCI) is frequently accompanied by myocardial injury. The present study was performed to determine whether remote ischemic preconditioning (IP) induces cardioprotection during PCI. METHODS We enrolled 95 patients requiring nonemergency PCI for stable disease or unstable angina into this prospective clinical trial. Patients were randomized to either remote IP (induced by three 3-min cycles of blood pressure cuff inflations to 200 mm Hg around the upper arm, followed by 3-min of reperfusion n = 47) or sham control (n = 48) immediately preceding PCI. The primary outcome measure was the frequency of post-PCI myonecrosis, defined as a peak postprocedural cTnT T ≥ 0.03 ng/dL. Secondary outcome measures were the change in plasma high-sensitivity C-reactive protein (hsCRP) levels following PCI and in endothelial progenitor cells (EPC) counts following IP. RESULTS There was no difference in the primary endpoint of the frequency of PCI related myonecrosis which occurred in 22 (47%) and 19 (40%) patients in the remote IP and control groups, respectively, P = 0.42. There was significant increase in hsCRP post-PCI in both groups (P < 0.001), but there was no difference between the groups (median %change in hsCRP 46% vs. 54%, P = 0.73). There was no significant change in circulating early (CD34 -/CD133+/KDR+), intermediate (CD34+/CD133+/KDR+), or late (CD34+/CD133-/KDR+) EPC in the two groups immediately following IP. The composite rate of death, myocardial infarction, and target lesion revascularization at 1 year was 14.1% versus 13.7% (P = 0.90). CONCLUSIONS Our study indicates that remote IP immediately before PCI does not induce cardioprotection in low to moderate risk patients.
Collapse
Affiliation(s)
- Abhiram Prasad
- Division of Cardiovascular Diseases and Department of Internal Medicine, Mayo Clinic and Mayo Foundation, Rochester, Minnesota 55905, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
199
|
Bell R, Beeuwkes R, Bøtker HE, Davidson S, Downey J, Garcia-Dorado D, Hausenloy DJ, Heusch G, Ibanez B, Kitakaze M, Lecour S, Mentzer R, Miura T, Opie L, Ovize M, Ruiz-Meana M, Schulz R, Shannon R, Walker M, Vinten-Johansen J, Yellon D. Trials, tribulations and speculation! Report from the 7th Biennial Hatter Cardiovascular Institute Workshop. Basic Res Cardiol 2012; 107:300. [DOI: 10.1007/s00395-012-0300-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 09/11/2012] [Indexed: 02/05/2023]
|
200
|
Adam T, Sharp S, Opie LH, Lecour S. Loss of cardioprotection with ischemic preconditioning in aging hearts: role of sirtuin 1? J Cardiovasc Pharmacol Ther 2012; 18:46-53. [PMID: 22960148 DOI: 10.1177/1074248412458723] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The effectiveness of ischemic preconditioning (IPC) to protect the heart against ischemia/reperfusion injury (IRI) declines with age. The deacetylase protein sirtuin 1 (Sirt 1) confers myriad functions including longevity and cardioprotection against IRI. As such, Sirt 1 may be a potential candidate to explain the protective effect of IPC. We aim to explore the role of Sirt 1 in the loss of the cardioprotective effect of IPC with age. Isolated hearts from young (9 weeks) and older (12-18 months) Long-Evans rats were subjected to 30 minutes of global ischemia and 60 minutes of reperfusion. Preconditioning stimuli were applied with either 2 cycles of 5-minute ischemia/reperfusion or with the potent Sirt 1 agonist resveratrol (RSV, 10 µmol/L) for 15 minutes followed by a 10-minute washout before the sustained ischemia. Both IPC and RSV significantly enhanced the functional recovery of young hearts by 168% (P < .001 vs control) and 65% (P < .01 vs control), respectively, and concomitantly reduced the infarct size by 65% and 45%, but the effect was blunted in older hearts. Administration of the selective Sirt 1 inhibitor III to young hearts did not alter the protective effect of IPC. Following ischemia/reperfusion, higher Sirt 1 deacetylase activity was detected in older hearts compared to young hearts (0.48 ± 0.13 arbitrary units [AU] vs 0.17 ± 0.03 AU, P < .01) and IPC did not alter Sirt 1 deacetylase activity. In conclusion, although Sirt 1 deacetylase activity is increased with age during ischemia/reperfusion, our data suggest that the loss of the cardioprotective effect of IPC in older animals is likely to be independent of Sirt 1.
Collapse
Affiliation(s)
- Tasneem Adam
- Department of Medicine, Hatter Institute for Cardiovascular Research in Africa, University of Cape Town, Cape Town, South Africa.
| | | | | | | |
Collapse
|