151
|
Zhang H. Reversal of HIV-1 latency with anti-microRNA inhibitors. Int J Biochem Cell Biol 2008; 41:451-4. [PMID: 18761423 DOI: 10.1016/j.biocel.2008.07.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Revised: 07/07/2008] [Accepted: 07/08/2008] [Indexed: 10/21/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) latency is achieved when host cells contain integrated proviral DNA but do not produce viral particles. The virus remains in resting CD4 T-lymphocytes, evading host immune surveillance and antiviral drugs. When resting cells are activated, infectious viral particles are produced. Latency is critical for the survival of all HIV-1 strains in vivo. Recently, it has been reported that a cluster of cellular microRNAs (miRNAs) enriched specifically in resting CD4+ T-cells suppresses translation of most HIV-1-encoded proteins in the cytoplasm, sustaining HIV-1 escape from the host immune response. Complementary antisense miRNA inhibitors block the inhibitory effect of miRNAs and drive viral production from the resting T-lymphocytes without activating the cells. Therefore, inhibition of these HIV-1-specific cellular miRNAs is of great therapeutic significance for eliminating the HIV-1 reservoir in HIV-1-infected individuals receiving suppressive highly active antiretroviral therapy (HAART).
Collapse
Affiliation(s)
- Hui Zhang
- Center for Human Virology, Division of Infectious Diseases, Department of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
152
|
Calao M, Burny A, Quivy V, Dekoninck A, Van Lint C. A pervasive role of histone acetyltransferases and deacetylases in an NF-kappaB-signaling code. Trends Biochem Sci 2008; 33:339-49. [PMID: 18585916 DOI: 10.1016/j.tibs.2008.04.015] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Revised: 04/28/2008] [Accepted: 04/29/2008] [Indexed: 01/08/2023]
Abstract
Most nuclear factor-kappaB (NF-kappaB) inducers converge to activate the IkappaB kinase (IKK) complex, leading to NF-kappaB nuclear accumulation. However, depending on the inducer and the cell line, the subset of NF-kappaB-induced genes is different, underlining a complex regulation network. Recent findings have begun to delineate that histone and non-histone protein acetylation is involved, directly and indirectly, in controlling the duration, strength and specificity of the NF-kappaB-activating signaling pathway at multiple levels. Acetylation and deacetylation events, in combination with other post-translational protein modifications, generate an 'NF-kappaB-signaling code' and regulate NF-kappaB-dependent gene transcription in an inducer- and promoter-dependent manner. Indeed, the intricate involvement of histone acetyltransferases and histone deacetylases modulates both the NF-kappaB-signaling pathway and the transcriptional transactivation of NF-kappaB-dependent genes.
Collapse
Affiliation(s)
- Miriam Calao
- Laboratory of Molecular Virology, Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, 12 Rue des Profs Jeener et Brachet, 6041 Gosselies, Belgium
| | | | | | | | | |
Collapse
|
153
|
Perkins KJ, Lusic M, Mitar I, Giacca M, Proudfoot NJ. Transcription-dependent gene looping of the HIV-1 provirus is dictated by recognition of pre-mRNA processing signals. Mol Cell 2008; 29:56-68. [PMID: 18206969 PMCID: PMC2225447 DOI: 10.1016/j.molcel.2007.11.030] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2007] [Revised: 07/03/2007] [Accepted: 11/16/2007] [Indexed: 11/29/2022]
Abstract
HIV-1 provirus, either as a chromosomal integrant or as an episomal plasmid in HeLa cells, forms a transcription-dependent gene loop structure between the 5′LTR promoter and 3′LTR poly(A) signal. Flavopiridol-mediated inhibition of RNA polymerase II elongation blocks 5′ to 3′LTR juxtaposition, indicating that this structure is maintained during transcription. Analysis of mutant or hybrid HIV-1 plasmids demonstrates that replacement of the 5′LTR promoter with CMV or the 3′LTR poly(A) signal with a synthetic element (SPA) permits gene loop formation, suggesting that these interactions are not retroviral specific. In addition, activation of the 5′LTR poly(A) signal or inactivation of the 3′LTR poly(A) signal abolishes gene loop formation. Overall, we demonstrate that both ongoing transcription and pre-mRNA processing are essential for gene loop formation, and predict that these structures represent a defining feature of active gene transcription.
Collapse
Affiliation(s)
- Kelly J Perkins
- Sir William Dunn School of Pathology, South Parks Road, University of Oxford, Oxford OX1 3RE, UK
| | | | | | | | | |
Collapse
|
154
|
Acetylation of conserved lysines in the catalytic core of cyclin-dependent kinase 9 inhibits kinase activity and regulates transcription. Mol Cell Biol 2008; 28:2201-12. [PMID: 18250157 DOI: 10.1128/mcb.01557-07] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Promoter clearance and transcriptional processivity in eukaryotic cells are fundamentally regulated by the phosphorylation of the carboxy-terminal domain of RNA polymerase II (RNAPII). One of the kinases that essentially performs this function is P-TEFb (positive transcription elongation factor b), which is composed of cyclin-dependent kinase 9 (CDK9) associated with members of the cyclin T family. Here we show that cellular GCN5 and P/CAF, members of the GCN5-related N-acetyltransferase family of histone acetyltransferases, regulate CDK9 function by specifically acetylating the catalytic core of the enzyme and, in particular, a lysine that is essential for ATP coordination and the phosphotransfer reaction. Acetylation markedly reduces both the kinase function and transcriptional activity of P-TEFb. In contrast to unmodified CDK9, the acetylated fraction of the enzyme is specifically found in the insoluble nuclear matrix compartment. Acetylated CDK9 associates with the transcriptionally silent human immunodeficiency virus type 1 provirus; upon transcriptional activation, it is replaced by the unmodified form, which is involved in the elongating phase of transcription marked by Ser2-phosphorylated RNAPII. Given the conservation of the CDK9 acetylated residues in the catalytic task of virtually all CDK proteins, we anticipate that this mechanism of regulation might play a broader role in controlling the function of other members of this kinase family.
Collapse
|
155
|
Cervelli T, Palacios JA, Zentilin L, Mano M, Schwartz RA, Weitzman MD, Giacca M. Processing of recombinant AAV genomes occurs in specific nuclear structures that overlap with foci of DNA-damage-response proteins. J Cell Sci 2008; 121:349-57. [PMID: 18216333 DOI: 10.1242/jcs.003632] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Despite increasing utilization of rAAV vectors in gene transfer applications, several aspects of the biology of these vectors remain poorly understood. We have visualized the conversion of rAAV vector genomes from single-stranded to double-stranded DNA in real time. We report that rAAV DNA accumulates into discrete foci inside the nucleus. These rAAV foci are defined in number, increase in size over time after transduction, are relatively immobile, and their presence correlates with the efficiency of cell transduction. These structures overlap with, or lie in close proximity to, the foci in which proteins of the MRN (MRE11-RAD50-NBS1) complex as well as the MDC1 protein accumulate after DNA damage. The downregulation of MRN or MDC1 by RNA interference markedly increases both the formation of rAAV foci and the extent of rAAV transduction. Chromatin immunoprecipitation experiments indicate that the MRE11 protein associates with the incoming rAAV genomes and that this association decreases upon cell treatment with DNA damaging agents. These findings are consistent with a model whereby cellular DNA-damage-response proteins restrict rAAV transduction by negatively regulating rAAV genome processing.
Collapse
Affiliation(s)
- Tiziana Cervelli
- Molecular Biology Laboratory, Scuola Normale Superiore, AREA della Ricerca del CNR, Via Moruzzi 1, Pisa, Italy
| | | | | | | | | | | | | |
Collapse
|
156
|
Vardabasso C, Manganaro L, Lusic M, Marcello A, Giacca M. The histone chaperone protein Nucleosome Assembly Protein-1 (hNAP-1) binds HIV-1 Tat and promotes viral transcription. Retrovirology 2008; 5:8. [PMID: 18226242 PMCID: PMC2266780 DOI: 10.1186/1742-4690-5-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Accepted: 01/28/2008] [Indexed: 12/22/2022] Open
Abstract
Background Despite the large amount of data available on the molecular mechanisms that regulate HIV-1 transcription, crucial information is still lacking about the interplay between chromatin conformation and the events that regulate initiation and elongation of viral transcription. During transcriptional activation, histone acetyltransferases and ATP-dependent chromatin remodeling complexes cooperate with histone chaperones in altering chromatin structure. In particular, human Nucleosome Assembly Protein-1 (hNAP-1) is known to act as a histone chaperone that shuttles histones H2A/H2B into the nucleus, assembles nucleosomes and promotes chromatin fluidity, thereby affecting transcription of several cellular genes. Results Using a proteomic screening, we identified hNAP-1 as a novel cellular protein interacting with HIV-1 Tat. We observed that Tat specifically binds hNAP1, but not other members of the same family of factors. Binding between the two proteins required the integrity of the basic domain of Tat and of two separable domains of hNAP-1 (aa 162–290 and 290–391). Overexpression of hNAP-1 significantly enhanced Tat-mediated activation of the LTR. Conversely, silencing of the protein decreased viral promoter activity. To explore the effects of hNAP-1 on viral infection, a reporter HIV-1 virus was used to infect cells in which hNAP-1 had been either overexpressed or knocked-down. Consistent with the gene expression results, these two treatments were found to increase and inhibit viral infection, respectively. Finally, we also observed that the overexpression of p300, a known co-activator of both Tat and hNAP-1, enhanced hNAP-1-mediated transcriptional activation as well as its interaction with Tat. Conclusion Our study reveals that HIV-1 Tat binds the histone chaperone hNAP-1 both in vitro and in vivo and shows that this interaction participates in the regulation of Tat-mediated activation of viral gene expression.
Collapse
Affiliation(s)
- Chiara Vardabasso
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34012 Trieste, Italy.
| | | | | | | | | |
Collapse
|
157
|
Boireau S, Maiuri P, Basyuk E, de la Mata M, Knezevich A, Pradet-Balade B, Bäcker V, Kornblihtt A, Marcello A, Bertrand E. The transcriptional cycle of HIV-1 in real-time and live cells. ACTA ACUST UNITED AC 2007; 179:291-304. [PMID: 17954611 PMCID: PMC2064765 DOI: 10.1083/jcb.200706018] [Citation(s) in RCA: 160] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
RNA polymerase II (RNAPII) is a fundamental enzyme, but few studies have analyzed its activity in living cells. Using human immunodeficiency virus (HIV) type 1 reporters, we study real-time messenger RNA (mRNA) biogenesis by photobleaching nascent RNAs and RNAPII at specific transcription sites. Through modeling, the use of mutant polymerases, drugs, and quantitative in situ hybridization, we investigate the kinetics of the HIV-1 transcription cycle. Initiation appears efficient because most polymerases demonstrate stable gene association. We calculate an elongation rate of approximately 1.9 kb/min, and, surprisingly, polymerases remain at transcription sites 2.5 min longer than nascent RNAs. With a total polymerase residency time estimated at 333 s, 114 are assigned to elongation, and 63 are assigned to 3′-end processing and/or transcript release. However, mRNAs were released seconds after polyadenylation onset, and analysis of polymerase density by chromatin immunoprecipitation suggests that they pause or lose processivity after passing the polyA site. The strengths and limitations of this kinetic approach to analyze mRNA biogenesis in living cells are discussed.
Collapse
Affiliation(s)
- Stéphanie Boireau
- Institute of Molecular Genetics of Montpellier, Unité Mixte de Recherche 5535, Centre National de la Recherche Scientifique, 34293 Montpellier, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
158
|
Abstract
The exact quantification of tiny amounts of nucleic acids in biological samples continues to remain a requirement in both the experimental and the diagnostic laboratory. Competitive PCR involves the coamplification of a target DNA sample with known amounts of a competitor DNA that shares most of the nucleotide sequence with the target; in this way, any predictable or unpredictable variable affecting PCR amplification has the same effect on both molecular species. Competitive PCR therefore permits the quantification of the absolute number of target molecules in comparison to the amount of competitor DNA. Although requiring intensive post-PCR manipulation, the accuracy of competitive PCR by far exceeds that of any other quantitative PCR procedure, including real-time PCR. This protocol covers all stages in the competitive PCR and RT-PCR methods, from the design and construction of competitor molecules, and the competitive PCR itself, to the analysis of data and quantification of target DNA. Once the correct primers are available, the protocol can be completed in about 24 h.
Collapse
Affiliation(s)
- Lorena Zentilin
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, Trieste, Italy
| | | |
Collapse
|
159
|
CBF-1 promotes transcriptional silencing during the establishment of HIV-1 latency. EMBO J 2007; 26:4985-95. [PMID: 18007589 DOI: 10.1038/sj.emboj.7601928] [Citation(s) in RCA: 178] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Accepted: 10/24/2007] [Indexed: 01/12/2023] Open
Abstract
The establishment of HIV proviral latency requires the creation of repressive chromatin structures that impair the initiation of transcription and restrict RNAP II elongation. We have found that C-promoter binding factor-1 (CBF-1), a CSL (CBF-1, Su(H) and Lag-1)-type transcription factor and key effector of the Notch signaling pathway, is a remarkably potent and specific inhibitor of the HIV-1 LTR promoter. Knockdown of endogenous CBF-1 using specific small hairpin RNAs expressed on lentiviral vectors results in the partial reactivation of latent HIV proviruses, recruitment of RNAP II, loss of histone deacetylases and the concomitant acetylation of histones. An important property of any repressor utilized to establish HIV latency is that it must become displaced or deactivated upon T-cell activation. Consistent with this hypothesis, CBF-1 mRNA and protein levels are highest in quiescent or unstimulated T cells but decline rapidly in response to proliferative stimulation such as activation of the T-cell receptor or treatment with TNF-alpha. We conclude that CBF-1 is a previously overlooked factor that induces transcriptional silencing during the establishment of HIV latency.
Collapse
|
160
|
Jiang G, Espeseth A, Hazuda DJ, Margolis DM. c-Myc and Sp1 contribute to proviral latency by recruiting histone deacetylase 1 to the human immunodeficiency virus type 1 promoter. J Virol 2007; 81:10914-23. [PMID: 17670825 PMCID: PMC2045540 DOI: 10.1128/jvi.01208-07] [Citation(s) in RCA: 184] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Histone deacetylase (HDAC) inhibitors such as valproic acid (VPA) induce the expression of quiescent proviral human immunodeficiency virus type 1 (HIV-1) and may deplete proviral infection in vivo. To uncover novel molecular mechanisms that maintain HIV latency, we sought cellular mRNAs whose expression was diminished in resting CD4(+) T cells of HIV-1-infected patients exposed to VPA. c-Myc was prominent among genes markedly downregulated upon exposure to VPA. c-Myc expression repressed HIV-1 expression in chronically infected cell lines. Chromatin immunoprecipitation (ChIP) assays revealed that c-Myc and HDAC1 are coordinately resident at the HIV-1 long terminal repeat (LTR) promoter and absent from the promoter after VPA treatment in concert with histone acetylation, RNA polymerase II recruitment, and LTR expression. Sequential ChIP assays demonstrated that c-Myc, Sp1, and HDAC1 coexist in the same DNA-protein complex at the HIV promoter. Short hairpin RNA inhibition of c-Myc reduces both c-Myc and HDAC1 occupancy, blocks c-Myc repression of Tat activation, and increases LTR expression. These results expand the understanding of mechanisms that recruit HDAC and maintain the latency of HIV-1, suggesting novel therapeutic approaches against latent proviral HIV infection.
Collapse
Affiliation(s)
- Guochun Jiang
- Department of Medicine, University of North Carolina at Chapel Hill, 3302 Michael Hooker Research Ctr., Chapel Hill, NC 27599-7435, USA
| | | | | | | |
Collapse
|
161
|
HIV-1 TAR element is processed by Dicer to yield a viral micro-RNA involved in chromatin remodeling of the viral LTR. BMC Mol Biol 2007; 8:63. [PMID: 17663774 PMCID: PMC1955452 DOI: 10.1186/1471-2199-8-63] [Citation(s) in RCA: 198] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2007] [Accepted: 07/30/2007] [Indexed: 12/27/2022] Open
Abstract
Background RNA interference (RNAi) is a regulatory mechanism conserved in higher eukaryotes. The RNAi pathway generates small interfering RNA (siRNA) or micro RNA (miRNA) from either long double stranded stretches of RNA or RNA hairpins, respectively. The siRNA or miRNA then guides an effector complex to a homologous sequence of mRNA and regulates suppression of gene expression through one of several mechanisms. The suppression of gene expression through these mechanisms serves to regulate endogenous gene expression and protect the cell from foreign nucleic acids. There is growing evidence that many viruses have developed in the context of RNAi and express either a suppressor of RNAi or their own viral miRNA. Results In this study we investigated the possibility that the HIV-1 TAR element, a hairpin structure of ~50 nucleotides found at the 5' end of the HIV viral mRNA, is recognized by the RNAi machinery and processed to yield a viral miRNA. We show that the protein Dicer, the enzyme responsible for cleaving miRNA and siRNA from longer RNA sequences, is expressed in CD4+ T-cells. Interestingly, the level of expression of Dicer in monocytes is sub-optimal, suggesting a possible role for RNAi in maintaining latency in T-cells. Using a biotin labeled TAR element we demonstrate that Dicer binds to this structure. We show that recombinant Dicer is capable of cleaving the TAR element in vitro and that TAR derived miRNA is present in HIV-1 infected cell lines and primary T-cell blasts. Finally, we show that a TAR derived miRNA is capable of regulating viral gene expression and may be involved in repressing gene expression through transcriptional silencing. Conclusion HIV-1 TAR element is processed by the Dicer enzyme to create a viral miRNA. This viral miRNA is detectable in infected cells and appears to contribute to viral latency.
Collapse
|
162
|
Abstract
In contrast to genetic aberrations, epigenetic aberrations can be reversed by the use of histone acetyltransferase (HAT), histone deacetylase (HDAC), SIRT, or histone methyltransferase (HMT) inhibitors. A well-known HDACi, suberoylanilide hydroxamic acid, has been recently approved for the treatment of cutaneous T cell lymphoma, and a number of HDACi are in clinical trials as anticancer drugs. In addition, HDACi could be useful in antimalarial and antifungal therapies and can reactivate the HIV-1 expression in latent cellular reservoirs, thus suggesting the use in a combination therapy with highly active antiretroviral therapy. HDACi have also been reported to have anti-inflammatory effects through inhibition of cytokines and key transcription factors, and to ameliorate the phenotypes in animal models of neurological disorders. HDACi can also reactivate the gamma-globin gene for the treatment of beta-thalassaemia, and recently were shown to relieve morphological and functional effects of muscular dystrophia. Dysfunction of HAT enzymes is also often associated with several diseases, including cancer; thus, the HATi can represent new chemical entities for the development of new drugs. Only a few HMTi have been described to date, but these small molecules could be a useful scaffold to discovering new highly active and enzyme-selective compounds to develop as therapeutics.
Collapse
Affiliation(s)
- Antonello Mai
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Studi Farmaceutici, Università di Roma La Sapienza, Piazzale Aldo Moro 5, I-00185 Roma, Italy.
| |
Collapse
|
163
|
Zhang Z, Klatt A, Gilmour DS, Henderson AJ. Negative elongation factor NELF represses human immunodeficiency virus transcription by pausing the RNA polymerase II complex. J Biol Chem 2007; 282:16981-8. [PMID: 17442680 DOI: 10.1074/jbc.m610688200] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human immunodeficiency virus (HIV) transcription requires virally encoded Tat and the P-TEFb protein complex, which together associate with the Tat-activating region, a structured region in the nascent transcript. P-TEFb phosphorylates Proteins in the transcription elongation complex, including RNA polymerase II (pol II), to stimulate elongation and to overcome premature termination. However, the status of the elongation complex on the HIV long terminal repeat (LTR) in a repressed state is not known. Chromatin immunoprecipitation demonstrated that NELF, a negative transcription elongation factor, was associated with the LTR. Depleting NELF increased processive HIV transcription and replication. Mapping pol II on the LTR showed that pol II was paused and that NELF depletion released pol II. Decreasing NELF also correlated with displacement of a positioned nucleosome and increased acetylation of histone H4, suggesting coupling of transcription elongation and chromatin remodeling. Previous work has indicated that the Tat-activating region plays a critical role in regulating transcription from the LTR. Our results reveal an earlier stage, mediated by NELF, when repression occurs at the HIV LTR.
Collapse
Affiliation(s)
- Zhiqiang Zhang
- Center of Molecular Immunology and Infectious Diseases, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | |
Collapse
|
164
|
Sharma A, Awasthi S, Harrod CK, Matlock EF, Khan S, Xu L, Chan S, Yang H, Thammavaram CK, Rasor RA, Burns DK, Skiest DJ, Van Lint C, Girard AM, McGee M, Monnat RJ, Harrod R. The Werner Syndrome Helicase Is a Cofactor for HIV-1 Long Terminal Repeat Transactivation and Retroviral Replication. J Biol Chem 2007; 282:12048-57. [PMID: 17317667 DOI: 10.1074/jbc.m608104200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Werner syndrome helicase (WRN) participates in DNA replication, double strand break repair, telomere maintenance, and p53 activation. Mutations of wrn cause Werner syndrome (WS), an autosomal recessive premature aging disorder associated with cancer predisposition, atherosclerosis, and other aging related symptoms. Here, we report that WRN is a novel cofactor for HIV-1 replication. Immortalized human WRN(-/-) WS fibroblasts, lacking a functional wrn gene, are impaired for basal and Tat-activated HIV-1 transcription. Overexpression of wild-type WRN transactivates the HIV-1 long terminal repeat (LTR) in the absence of Tat, and WRN cooperates with Tat to promote high-level LTR transactivation. Ectopic WRN induces HIV-1 p24(Gag) production and retroviral replication in HIV-1-infected H9(HIV-1IIIB) lymphocytes. A dominant-negative helicase-minus mutant, WRN(K577M), inhibits LTR transactivation and HIV-1 replication. Inhibition of endogenous WRN, through co-expression of WRN(K577M), diminishes recruitment of p300/CREB-binding protein-associated factor (PCAF) and positive transcription elongation factor b (P-TEFb) to Tat/transactivation response-RNA complexes, and immortalized WRN(-/-) WS fibroblasts exhibit comparable defects in recruitment of PCAF and P-TEFb to the HIV-1 LTR. Our results demonstrate that WRN is a novel cellular cofactor for HIV-1 replication and suggest that the WRN helicase participates in the recruitment of PCAF/P-TEFb-containing transcription complexes. WRN may be a plausible target for antiretroviral therapy.
Collapse
Affiliation(s)
- Anima Sharma
- Laboratory of Molecular Virology, Department of Biological Sciences, Southern Methodist University, Dallas, Texas 75275-0376, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
165
|
Chéné ID, Basyuk E, Lin YL, Triboulet R, Knezevich A, Chable-Bessia C, Mettling C, Baillat V, Reynes J, Corbeau P, Bertrand E, Marcello A, Emiliani S, Kiernan R, Benkirane M. Suv39H1 and HP1gamma are responsible for chromatin-mediated HIV-1 transcriptional silencing and post-integration latency. EMBO J 2007; 26:424-35. [PMID: 17245432 PMCID: PMC1783455 DOI: 10.1038/sj.emboj.7601517] [Citation(s) in RCA: 248] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2006] [Accepted: 11/30/2006] [Indexed: 12/11/2022] Open
Abstract
HIV-1 gene expression is the major determinant regulating the rate of virus replication and, consequently, AIDS progression. Following primary infection, most infected cells produce virus. However, a small population becomes latently infected and constitutes the viral reservoir. This stable viral reservoir seriously challenges the hope of complete viral eradication. Viewed in this context, it is critical to define the molecular mechanisms involved in the establishment of transcriptional latency and the reactivation of viral expression. We show that Suv39H1, HP1gamma and histone H3Lys9 trimethylation play a major role in chromatin-mediated repression of integrated HIV-1 gene expression. Suv39H1, HP1gamma and histone H3Lys9 trimethylation are reversibly associated with HIV-1 in a transcription-dependent manner. Finally, we show in different cellular models, including PBMCs from HIV-1-infected donors, that HIV-1 reactivation could be achieved after HP1gamma RNA interference.
Collapse
Affiliation(s)
- Isaure du Chéné
- Laboratoire de Virologie Moléculaire, Institut de Génétique Humaine, UPR 1142, Montpellier, France
| | - Euguenia Basyuk
- Traffic et Assemblage des RNPs, Institut de Génétique Moléculaire, UMR 5355, Montpellier, France
| | - Yea-Lih Lin
- Lentivirus et Transfert de Gènes, Institut de Génétique Humaine, UPR 1142, Montpellier, France
| | - Robinson Triboulet
- Laboratoire de Virologie Moléculaire, Institut de Génétique Humaine, UPR 1142, Montpellier, France
| | - Anna Knezevich
- Laboratory of Molecular Virology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Christine Chable-Bessia
- Laboratoire de Virologie Moléculaire, Institut de Génétique Humaine, UPR 1142, Montpellier, France
| | - Clement Mettling
- Lentivirus et Transfert de Gènes, Institut de Génétique Humaine, UPR 1142, Montpellier, France
| | - Vincent Baillat
- Service des Maladies Infectieuses et Tropicales Hôpital Gui de Chauliac, Institut de Génétique Moléculaire, UMR 5355, Montpellier, France
| | - Jacques Reynes
- Service des Maladies Infectieuses et Tropicales Hôpital Gui de Chauliac, Institut de Génétique Moléculaire, UMR 5355, Montpellier, France
| | - Pierre Corbeau
- Lentivirus et Transfert de Gènes, Institut de Génétique Humaine, UPR 1142, Montpellier, France
| | - Edouard Bertrand
- Traffic et Assemblage des RNPs, Institut de Génétique Moléculaire, UMR 5355, Montpellier, France
| | - Alessandro Marcello
- Laboratory of Molecular Virology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Stephane Emiliani
- Département de Maladies Infectieuses, Institut Cochin, Paris, France
| | - Rosemary Kiernan
- Laboratoire de Virologie Moléculaire, Institut de Génétique Humaine, UPR 1142, Montpellier, France
| | - Monsef Benkirane
- Laboratoire de Virologie Moléculaire, Institut de Génétique Humaine, UPR 1142, Montpellier, France
- Laboratoire de Virologie Moléculaire, Institut de Génétique Humaine, CNRS, UPR 1142, Montpellier, 141 rue la Cardonille, 34396 Montpellier Cedex 5, France. Tel.: +33 4 99 61 99 32; Fax: + 33 4 99 61 99 01; E-mail:
| |
Collapse
|
166
|
Mok HP, Javed S, Lever A. Stable gene expression occurs from a minority of integrated HIV-1-based vectors: transcriptional silencing is present in the majority. Gene Ther 2007; 14:741-51. [PMID: 17330088 DOI: 10.1038/sj.gt.3302923] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Human immunodeficiency virus (HIV)-based vectors are being increasingly used in vitro for gene transfer and in vivo for gene therapy. The proportion of integrated retroviral vectors that are silenced or remain transcriptionally active, and the stability of gene expression in the latter remains poorly explored. To study this, T cells were infected with an HIV-1-based vector construct containing a long terminal repeat-driven reporter gene. Only a small percentage of detectable integrated vector expressed gene product. In clones derived from cells with transcriptionally active vector, gene expression was remarkably stable with more than 80% continuing to express for greater than 18 months. Failure to continue expressing the vector was associated with epigenetic changes. Our data suggest that there are two forms of vector silencing: one occurring immediately after integration affecting the majority of the vectors, and one occurring in the much longer term affecting a small minority of vectors which had previously established expression.
Collapse
Affiliation(s)
- H P Mok
- Department of Medicine, University of Cambridge, Level 5, Addenbrooke's Hospital, Cambridge, UK
| | | | | |
Collapse
|
167
|
Crotti A, Lusic M, Lupo R, Lievens PMJ, Liboi E, Della Chiara G, Tinelli M, Lazzarin A, Patterson BK, Giacca M, Bovolenta C, Poli G. Naturally occurring C-terminally truncated STAT5 is a negative regulator of HIV-1 expression. Blood 2007; 109:5380-9. [PMID: 17332243 DOI: 10.1182/blood-2006-08-042556] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
CD4(+) cells of most individuals infected with HIV-1 harbor a C-terminally truncated and constitutively activated form of signal transducer and activator of transcription-5 (STAT5 Delta). We report that the chronically HIV-infected U1 cell line expresses STAT5 Delta but not full-length STAT5. Granulocyte-macrophage colony-stimulating factor (GM-CSF) stimulation of U1 cells promoted early activation of STAT5 Delta and of extracellular signal regulated kinases (ERKs), followed by later activation of activator protein 1 (AP-1) and HIV expression. Inhibition of ERK/AP-1 by PD98,059 abolished, whereas either tyrphostin AG490 or a STAT5 small interfering RNA (siRNA) enhanced, virion production in GM-CSF-stimulated U1 cells. Chromatin immunoprecipitation demonstrated the induction of STAT5 Delta binding to STAT consensus sequences in the HIV-1 promoter together with a decreased recruitment of RNA polymerase II after 1 hour of GM-CSF stimulation of U1 cells. Down-regulation of STAT5 Delta by siRNA resulted in the up-regulation of both HIV-1 gag-pol RNA and p24 Gag antigen expression in CD8-depleted leukocytes of several HIV-positive individuals cultivated ex vivo in the presence of interleukin-2 but not of interleukin-7. Thus, the constitutively activated STAT5 Delta present in the leukocytes of most HIV-positive individuals acts as a negative regulator of HIV expression.
Collapse
Affiliation(s)
- Andrea Crotti
- AIDS Immunopathogenesis Unit and the Division of Infectious Diseases, San Raffaele Scientific Institute, Milano, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
168
|
Hetzer C, Bisgrove D, Cohen MS, Pedal A, Kaehlcke K, Speyerer A, Bartscherer K, Taunton J, Ott M. Recruitment and activation of RSK2 by HIV-1 Tat. PLoS One 2007; 2:e151. [PMID: 17225856 PMCID: PMC1764712 DOI: 10.1371/journal.pone.0000151] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Accepted: 12/11/2006] [Indexed: 12/21/2022] Open
Abstract
The transcriptional activity of the integrated HIV provirus is dependent on the chromatin organization of the viral promoter and the transactivator Tat. Tat recruits the cellular pTEFb complex and interacts with several chromatin-modifying enzymes, including the histone acetyltransferases p300 and PCAF. Here, we examined the interaction of Tat with activation-dependent histone kinases, including the p90 ribosomal S6 kinase 2 (RSK2). Dominant-negative RSK2 and treatment with a small-molecule inhibitor of RSK2 kinase activity inhibited the transcriptional activity of Tat, indicating that RSK2 is important for Tat function. Reconstitution of RSK2 in cells from subjects with a genetic defect in RSK2 expression (Coffin-Lowry syndrome) enhanced Tat transactivation. Tat interacted with RSK2 and activated RSK2 kinase activity in cells. Both properties were lost in a mutant Tat protein (F38A) that is deficient in HIV transactivation. Our data identify a novel reciprocal regulation of Tat and RSK2 function, which might serve to induce early changes in the chromatin organization of the HIV LTR.
Collapse
Affiliation(s)
| | - Dwayne Bisgrove
- Gladstone Institute of Virology and Immunology, University of California San Francisco, San Francisco, California, United States of America
| | - Michael S. Cohen
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, United States of America
| | - Angelika Pedal
- Gladstone Institute of Virology and Immunology, University of California San Francisco, San Francisco, California, United States of America
| | - Katrin Kaehlcke
- Gladstone Institute of Virology and Immunology, University of California San Francisco, San Francisco, California, United States of America
| | - Anja Speyerer
- Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | | | - Jack Taunton
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, United States of America
| | - Melanie Ott
- Gladstone Institute of Virology and Immunology, University of California San Francisco, San Francisco, California, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
169
|
Gatignol A. Transcription of HIV: Tat and cellular chromatin. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2007; 55:137-59. [PMID: 17586314 DOI: 10.1016/s1054-3589(07)55004-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Anne Gatignol
- Virus-Cell Interactions Laboratory, Lady Davis Institute for Medical Research,, Department of Microbiology & Immunology and Experimental Medicine, McGill University, Montréal, Québec, Canada
| |
Collapse
|
170
|
Heery DM, Fischer PM. Pharmacological targeting of lysine acetyltransferases in human disease: a progress report. Drug Discov Today 2006; 12:88-99. [PMID: 17198977 DOI: 10.1016/j.drudis.2006.11.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Revised: 11/01/2006] [Accepted: 11/17/2006] [Indexed: 01/12/2023]
Abstract
Lysine acetyltransferases (LATs) are a structurally disparate group of enzymes involved in regulating transcription by participating as cofactors in transcriptional regulatory complexes, and by acetylation of lysine residues in histones and other proteins. Aberrant LAT function probably plays an important part in the pathogenesis of certain cancers, especially leukaemias and endocrine tumours. However, LAT activity might also be an important drug target in a range of other indications, including inflammatory lung diseases, viral infections and metabolic disorders. At present, comparatively few LAT inhibitors are known, but progress regarding the understanding of their structural and functional biology is now beginning to reveal LATs as promising new epigenetic drug targets.
Collapse
Affiliation(s)
- David M Heery
- Centre for Biomolecular Sciences and School of Pharmacy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | | |
Collapse
|
171
|
Bisgrove D, Lewinski M, Bushman F, Verdin E. Molecular mechanisms of HIV-1 proviral latency. Expert Rev Anti Infect Ther 2006; 3:805-14. [PMID: 16207172 DOI: 10.1586/14787210.3.5.805] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
While great strides have been made in the treatment of HIV infection with highly active antiretroviral therapy, an actual cure remains out of grasp. One confounding factor is the persistence of a small population of infected cells containing transcriptionally silent but reactivatable HIV proviruses. Following cessation of highly active antiretroviral therapy, these latently-infected cells serve as an inoculum for re-establishing an active infection. Recent progress in our understanding of the molecular mechanisms underlying HIV proviral latency will be reviewed. Recent advances in the study of transcriptional regulation and the completion of the Human Genome Project underscore the role of chromatin and the site of viral integration on HIV transcription. Finally, experimental therapies designed to eliminate the latent population will be highlighted.
Collapse
Affiliation(s)
- Dwayne Bisgrove
- Gladstone Institute of Virology and Immunology, University of California, San Francisco, CA 94158, USA.
| | | | | | | |
Collapse
|
172
|
Mahmoudi T, Parra M, Vries RGJ, Kauder SE, Verrijzer CP, Ott M, Verdin E. The SWI/SNF chromatin-remodeling complex is a cofactor for Tat transactivation of the HIV promoter. J Biol Chem 2006; 281:19960-8. [PMID: 16687403 DOI: 10.1074/jbc.m603336200] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tat is a critical viral transactivator essential for human immunodeficiency virus (HIV) gene expression. Activation involves binding to an RNA stem-loop structure and recruitment of the positive transcription elongation factor b. Tat also induces the remodeling of a single nucleosome in the HIV promoter. However, the mechanism of this remodeling has remained unclear. Knockdown of INI-1 and BRG-1, two components of the SWI/SNF chromatin-remodeling complex, suppressed Tat-mediated transactivation. Cells lacking INI-1 (G401 and MON) or BRG-1 (C33A) exhibited defective transactivation by Tat that was restored upon INI-1 and BRG-1 expression, respectively. Tat was co-immunoprecipitated with several SWI/SNF subunits, including INI-1, BRG-1, and beta-actin. The SWI/SNF complex interacted with the integrated HIV promoter in a Tat-dependent manner. We also found that INI-1 and BRG-1 synergized with the p300 acetyltransferase to activate the HIV promoter. This synergism depended on the acetyltransferase activity of p300 and on Tat Lys(50) and Lys(51). In conclusion, Tat-mediated activation of the HIV promoter requires the SWI/SNF complex in synergy with the coactivator p300.
Collapse
Affiliation(s)
- Tokameh Mahmoudi
- Gladstone Institute of Virology and Immunology, University of California, San Francisco, California 94158, USA
| | | | | | | | | | | | | |
Collapse
|
173
|
Tréand C, du Chéné I, Brès V, Kiernan R, Benarous R, Benkirane M, Emiliani S. Requirement for SWI/SNF chromatin-remodeling complex in Tat-mediated activation of the HIV-1 promoter. EMBO J 2006; 25:1690-9. [PMID: 16601680 PMCID: PMC1440843 DOI: 10.1038/sj.emboj.7601074] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2005] [Accepted: 03/08/2006] [Indexed: 11/09/2022] Open
Abstract
Activation of the human immunodeficiency virus type-1 (HIV-1) promoter in infected cells requires the sequential recruitment of several cellular factors to facilitate the formation of a processive elongation complex. The nucleosomal reorganization of the HIV-1 long terminal repeat (LTR) observed upon Tat stimulation suggests that chromatin-remodeling complexes could play a role during this process. Here, we reported that Tat interacts directly with Brm, a DNA-dependent ATPase subunit of the SWI/SNF chromatin-remodeling complex, to activate the HIV-1 LTR. Inhibition of Brm via small interfering RNAs impaired Tat-mediated transactivation of an integrated HIV-1 promoter. Furthermore, Brm is recruited in vivo to the HIV-1 LTR in a Tat-dependent manner. Interestingly, we found that Tat/Brm interaction is regulated by Tat lysine 50 acetylation. These data show the requirement of Tat-mediated recruitment of SWI/SNF chromatin-remodeling complex to HIV-1 promoter in the activation of the LTR.
Collapse
Affiliation(s)
- Céline Tréand
- Institut Cochin, Département de Génétique et Développement, Paris, France
- Inserm, U567, Paris, France
- CNRS, UMR 8104, Paris, France
- Université Paris 5, Faculté de Médecine René Descartes, UM 3, Paris, France
| | - Isaure du Chéné
- Institut de Génétique Humaine, CNRSUPR1142, Montpellier, France
| | - Vanessa Brès
- Institut de Génétique Humaine, CNRSUPR1142, Montpellier, France
| | | | - Richard Benarous
- Institut Cochin, Département de Génétique et Développement, Paris, France
- Inserm, U567, Paris, France
- CNRS, UMR 8104, Paris, France
- Université Paris 5, Faculté de Médecine René Descartes, UM 3, Paris, France
| | | | - Stéphane Emiliani
- Institut Cochin, Département de Génétique et Développement, Paris, France
- Inserm, U567, Paris, France
- CNRS, UMR 8104, Paris, France
- Université Paris 5, Faculté de Médecine René Descartes, UM 3, Paris, France
- Institut Cochin, Département Maladies Infectieuses, 27 rue du faubourg Saint Jacques, Gustave Roussy, 75014 Paris, France. Tel.: +33 1 40 51 65 76; Fax: +33 1 40 51 65 70; E-mail:
| |
Collapse
|
174
|
Pantano S, Marcello A, Ferrari A, Gaudiosi D, Sabò A, Pellegrini V, Beltram F, Giacca M, Carloni P. Insights on HIV-1 Tat:P/CAF bromodomain molecular recognition from in vivo experiments and molecular dynamics simulations. Proteins 2006; 62:1062-73. [PMID: 16362936 DOI: 10.1002/prot.20805] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Structural and functional studies indicate that, through its bromodomain, the cellular acetyltransferase P/CAF binds the acetylated Tat protein of human immunodeficiency virus type 1 (HIV-1) and promotes transcriptional activation of the integrated provirus. Based on the NMR structure of P/CAF complexed with an acetylated Tat peptide, here we use molecular dynamics simulations to construct a model describing the interaction between full length Tat and the P/CAF bromodomain. Our calculations show that the protein-protein interface involves hydrophobic interactions between the P/CAF ZA loop and the Tat core domain. In particular, tyrosines 760 and 761 of P/CAF, two residues that are highly conserved in most known bromodomains, play an essential role for the binding. Fluorescence resonance energy transfer (FRET) experiments performed in this work demonstrate that P/CAF proteins in which these tyrosines are mutated into hydrophilic residues neither bind to Tat inside the cells nor mediate Tat transactivation. The combination of theoretical and in vivo studies provides new insights into the specificity of bromodomain recognition.
Collapse
Affiliation(s)
- Sergio Pantano
- International School for Advanced Studies, INFM-DEMOCRITOS Modeling Center for Research in Atomistic Simulation, Trieste, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
175
|
Lieberman PM. Chromatin regulation of virus infection. Trends Microbiol 2006; 14:132-40. [PMID: 16458005 DOI: 10.1016/j.tim.2006.01.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2005] [Revised: 12/14/2005] [Accepted: 01/16/2006] [Indexed: 02/02/2023]
Abstract
Cellular chromatin forms a dynamic structure that maintains the stability and accessibility of the host DNA genome. Viruses that enter and persist in the nucleus must, therefore, contend with the forces that drive chromatin formation and regulate chromatin structure. In some cases, cellular chromatin inhibits viral gene expression and replication by suppressing DNA accessibility. In other cases, cellular chromatin provides essential structure and organization to the viral genome and is necessary for successful completion of the viral life cycle. Consequently, viruses have acquired numerous mechanisms to manipulate cellular chromatin to ensure viral genome survival and propagation.
Collapse
|
176
|
Victoriano AFB, Asamitsu K, Hibi Y, Imai K, Barzaga NG, Okamoto T. Inhibition of human immunodeficiency virus type 1 replication in latently infected cells by a novel IkappaB kinase inhibitor. Antimicrob Agents Chemother 2006; 50:547-55. [PMID: 16436709 PMCID: PMC1366890 DOI: 10.1128/aac.50.2.547-555.2006] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2005] [Revised: 09/22/2005] [Accepted: 11/04/2005] [Indexed: 11/20/2022] Open
Abstract
In human immunodeficiency virus type 1 (HIV-1) latently infected cells, NF-kappaB plays a major role in the transcriptional induction of HIV-1 replication. Hence, downregulation of NF-kappaB activation has long been sought for effective anti-HIV therapy. Tumor necrosis factor alpha (TNF-alpha) stimulates IkappaB kinase (IKK) complex, a critical regulator in the NF-kappaB signaling pathway. A novel IKK inhibitor, ACHP {2-amino-6-[2-(cyclopropylmethoxy)-6-hydroxyphenyl]-4-piperidin-4-yl-nicotinonitrile}, was developed and evaluated as a potent and specific inhibitor for IKK-alpha and IKK-beta. In this study, we examined the ability of this compound to inhibit HIV-1 replication in OM10.1 cells latently infected with HIV. When these cells were pretreated with ACHP, TNF-alpha-induced HIV-1 replication was dramatically inhibited, as measured by the HIV p24 antigen levels in the culture supernatants. Its 50% effective concentration was approximately 0.56 microM, whereas its 50% cytotoxic concentration was about 15 microM. Western blot analysis revealed inhibition of IkappaBalpha phosphorylation, IkappaBalpha degradation, p65 nuclear translocation, and p65 phosphorylation. ACHP was also found to suppress HIV-1 long terminal repeat (LTR)-driven gene expression through the inhibition of NF-kappaB activation. Furthermore, ACHP inhibited TNF-alpha-induced NF-kappaB (p65) recruitment to the HIV-1 LTR, as assessed by chromatin immunoprecipitation assay. These findings suggest that ACHP acts as a potent suppressor of TNF-alpha-induced HIV replication in latently infected cells and that this inhibition is mediated through suppression of IKK activity.
Collapse
Affiliation(s)
- Ann Florence B Victoriano
- Department of Molecular and Cellular Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | | | | | | | | | | |
Collapse
|
177
|
Abstract
Eradication of HIV-1 from an infected individual cannot be achieved by current regimens. Viral reservoirs established early during the infection remain unaffected by anti-retroviral therapy for a long time and are able to replenish systemic infection upon interruption of the treatment. Therapeutic targeting of viral latency will require a better understanding of the basic mechanisms underlying the establishment and long-term maintenance of HIV-1 in resting memory CD4 T cells, the most prominent reservoir of transcriptionally silent provirus. Since the molecular mechanisms that permit long term transcriptional control of proviral gene expression in these cells are still obscure, this review aims at summarizing the various aspects of the problem that need to be considered. In particular, this review will focus the attention on the control of transcription imposed by chromatin through various epigenetic mechanisms. Exploring the molecular details of viral latency will provide new insights for eventual future therapeutics that aim at viral eradication.
Collapse
Affiliation(s)
- Alessandro Marcello
- Laboratory of Molecular Virology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano, 99 - 34012 Trieste, Italy.
| |
Collapse
|
178
|
Munier S, Delcroix-Genête D, Carthagéna L, Gumez A, Hazan U. Characterization of two candidate genes, NCoA3 and IRF8, potentially involved in the control of HIV-1 latency. Retrovirology 2005; 2:73. [PMID: 16305739 PMCID: PMC1310520 DOI: 10.1186/1742-4690-2-73] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2005] [Accepted: 11/23/2005] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The persistence of latent HIV-1 reservoirs is the principal barrier preventing the eradication of HIV-1 infection in patients by current antiretroviral therapy. It is thus crucial to understand the molecular mechanisms involved in the establishment, maintenance and reactivation of HIV-1 latency. Since chromatin remodeling has been implicated in the transcriptional reactivation of the HIV-1 promoter, we assessed the role of the histone deacetylase inhibitor sodium butyrate (NaB) on two HIV-1 latently infected cell lines (U1 and ACH-2) gene expression. RESULTS Analysis of microarrays data led us to select two candidate genes: NCoA3 (Nuclear Receptor Coactivator 3), a nuclear receptor coactivator and IRF8 (Interferon Regulatory Factor 8), an interferon regulatory factor. NCoA3 gene expression is upregulated following NaB treatment of latently infected cells whereas IRF8 gene expression is strongly downregulated in the promonocytic cell line following NaB treatment. Their differential expressions were confirmed at the transcriptional and translational levels. Moreover, NCoA3 gene expression was also upregulated after treatment of U1 and ACH-2 cells with phorbol myristyl acetate (PMA) but not trichostatin A (TSA) and after treatment with NaB of two others HIV-1 latently infected cell lines (OM10.1 and J1.1). IRF8 gene is only expressed in U1 cells and was also downregulated after treatment with PMA or TSA. Functional analyses confirmed that NCoA3 synergizes with Tat to enhance HIV-1 promoter transcription and that IRF8 represses the IRF1-mediated activation through the HIV-1 promoter Interferon-stimulated response element (ISRE). CONCLUSION These results led us to postulate that NCoA3 could be involved in the transcriptional reactivation of the HIV-1 promoter from latency and that IRF8 may contribute to the maintenance of the latent state in the promonocytic cell line. Implication of these factors in the maintenance or reactivation of the viral latency may provide potential new targets to control HIV-1 replication in latent viral reservoirs.
Collapse
Affiliation(s)
- Sandie Munier
- Département des Maladies Infectieuses, Institut Cochin, INSERM U567/CNRS UMR-S 8104/Université Paris 5-René Descartes, 22 rue Méchain, 75014 Paris, France
| | - Delphine Delcroix-Genête
- Département des Maladies Infectieuses, Institut Cochin, INSERM U567/CNRS UMR-S 8104/Université Paris 5-René Descartes, 22 rue Méchain, 75014 Paris, France
| | - Laëtitia Carthagéna
- Département des Maladies Infectieuses, Institut Cochin, INSERM U567/CNRS UMR-S 8104/Université Paris 5-René Descartes, 22 rue Méchain, 75014 Paris, France
| | - Audrey Gumez
- Département des Maladies Infectieuses, Institut Cochin, INSERM U567/CNRS UMR-S 8104/Université Paris 5-René Descartes, 22 rue Méchain, 75014 Paris, France
| | - Uriel Hazan
- Département des Maladies Infectieuses, Institut Cochin, INSERM U567/CNRS UMR-S 8104/Université Paris 5-René Descartes, 22 rue Méchain, 75014 Paris, France
- UFR de Biochimie, Université Paris 7-Denis Diderot, 2 Place Jussieu, 75251 Paris, France
| |
Collapse
|
179
|
Brady J, Kashanchi F. Tat gets the "green" light on transcription initiation. Retrovirology 2005; 2:69. [PMID: 16280076 PMCID: PMC1308864 DOI: 10.1186/1742-4690-2-69] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2005] [Accepted: 11/09/2005] [Indexed: 11/10/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) Tat transactivation is an essential step in the viral life cycle. Over the past several years, it has become widely accepted that Tat exerts its transcriptional effect by binding the transactivation-responsive region (TAR) and enhancing transcriptional elongation. Consistent with this hypothesis, it has been shown that Tat promotes the binding of P-TEFb, a transcription elongation factor composed of cyclin T1 and cdk9, and the interaction of Tat with P-TEFb and TAR leads to hyperphosphorylation of the C-terminal domain (CTD) of RNA Pol II and increased processivity of RNA Pol II. A recent report, however, has generated renewed interest that Tat may also play a critical role in transcription complex (TC) assembly at the preinitiation step. Using in vivo chromatin immunoprecipitation assays, the authors reported that the HIV TC contains TBP but not TBP-associated factors. The stimulatory effect involved the direct interaction of Tat and P-TEFb and was evident at the earliest step of TC assembly, the TBP-TATA box interaction. In this article, we will review this data in context of earlier data which also support Tat's involvement in transcriptional complex assembly. Specifically, we will discuss experiments which demonstrated that Tat interacted with TBP and increased transcription initiation complex stability in cell free assays. We will also discuss studies which demonstrated that over expression of TBP alone was sufficient to obtain Tat activated transcription in vitro and in vivo. Finally, studies using self-cleaving ribozymes which suggested that Tat transactivation was not compatible with pausing of the RNA Pol II at the TAR site will be discussed.
Collapse
Affiliation(s)
- John Brady
- National Cancer Institute, Laboratory of Cellular Oncology, Bethesda, MD 20892, USA
| | - Fatah Kashanchi
- The George Washington University School of Medicine, Department of Biochemistry and Molecular Biology, Washington, DC 20037, USA
| |
Collapse
|
180
|
Sadowski I, Mitchell DA. TFII-I and USF (RBF-2) regulate Ras/MAPK-responsive HIV-1 transcription in T cells. Eur J Cancer 2005; 41:2528-36. [PMID: 16223582 DOI: 10.1016/j.ejca.2005.08.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The HIV-1 long terminal repeat (LTR) is stringently controlled by T cell activation signals, and binds a variety of transcription factors whose activities are regulated downstream of the T cell receptor. One of the most highly conserved cis-elements on the LTR, designated RBEIII, binds the factor RBF-2 which is comprised of a USF-1/USF-2 heterodimer and a co-factor TFII-I. RBF-2 is necessary for transcription from the LTR in response to RAS-MAPK activation through T cell receptor engagement, but is also required for repression of viral expression in unstimulated cells. Considering the defined activities of USF and TFII-I, RBF-2 may be responsible for regulating promoter context by controlling chromatin organisation, thereby coordinating opportunity for transcriptional activation by additional factors bound to the enhancer region.
Collapse
Affiliation(s)
- Ivan Sadowski
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2146 Health Sciences Mall, Vancouver, BC, Canada V6T 1Z3.
| | | |
Collapse
|
181
|
Suzuki K, Shijuuku T, Fukamachi T, Zaunders J, Guillemin G, Cooper D, Kelleher A. Prolonged transcriptional silencing and CpG methylation induced by siRNAs targeted to the HIV-1 promoter region. JOURNAL OF RNAI AND GENE SILENCING : AN INTERNATIONAL JOURNAL OF RNA AND GENE TARGETING RESEARCH 2005; 1:66-78. [PMID: 19771207 PMCID: PMC2737205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2005] [Revised: 09/20/2005] [Accepted: 09/26/2005] [Indexed: 11/21/2022]
Abstract
In addition to the degradation of homologous RNAs through the RNA interference (RNAi) pathway, small interfering RNAs (siRNAs) can in some systems induce cytosine methylation and transcriptional silencing of homologous promoters. Targeting of HIV-1 by RNAi results in transient suppression of the virus through degradation of viral transcripts. In an effort to prolong the suppressive effect of siRNAs on productive HIV-1 infection, we targeted conserved tandem NF-kappaB binding motifs in the viral LTR. A 21-nucleotide-RNA duplex induced marked and durable (at least 30 days) suppression of productive HIV-1 infection in chronically infected Magic-5 cells. This suppression is associated with CpG methylation within the 5'LTR and marked reduction of HIV-1 transcription in nuclear run-on assays. We then assessed three additional siRNAs targeting other sites within the HIV-1 promoter region. These siRNAs suppressed HIV-1 infection to different extents and the degree of suppression correlated with the extent of de novo methylation of CpG motifs within the HIV-1 promoter region. These findings indicate that HIV-1 can be silenced by an RNA-directed mechanism that suppresses transcription and induces CpG methylation. In addition to providing evidence that this RNA-directed DNA methylation is active in mammalian cells, this is the first report of prolonged suppression of HIV-1 infection induced by siRNA.
Collapse
Affiliation(s)
- Kazuo Suzuki
- Centre for Immunology, Immunovirology Laboratory, St Vincent's Hospital, Darlinghurst, NSW, 2010
| | - Toshiaki Shijuuku
- Centre for Immunology, Immunovirology Laboratory, St Vincent's Hospital, Darlinghurst, NSW, 2010
| | - Toshihiko Fukamachi
- Centre for Immunology, Immunovirology Laboratory, St Vincent's Hospital, Darlinghurst, NSW, 2010
| | - John Zaunders
- Centre for Immunology, Immunovirology Laboratory, St Vincent's Hospital, Darlinghurst, NSW, 2010
| | - Gilles Guillemin
- Centre for Immunology, Neuroimmunology Dept. UNSW, Darlinghurst, NSW, 2010
| | - David Cooper
- Centre for Immunology, Immunovirology Laboratory, St Vincent's Hospital, Darlinghurst, NSW, 2010,National Centre in HIV Epidemiology and Clinical Research, UNSW, Darlinghurst, 2010, Australia
| | - Anthony Kelleher
- Centre for Immunology, Immunovirology Laboratory, St Vincent's Hospital, Darlinghurst, NSW, 2010,National Centre in HIV Epidemiology and Clinical Research, UNSW, Darlinghurst, 2010, Australia,Correspondence to: Anthony Kelleher, , Tel: +61283822094, Fax: +61283822391
| |
Collapse
|
182
|
Cereseto A, Manganaro L, Gutierrez MI, Terreni M, Fittipaldi A, Lusic M, Marcello A, Giacca M. Acetylation of HIV-1 integrase by p300 regulates viral integration. EMBO J 2005; 24:3070-81. [PMID: 16096645 PMCID: PMC1201351 DOI: 10.1038/sj.emboj.7600770] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2005] [Accepted: 07/14/2005] [Indexed: 11/08/2022] Open
Abstract
Integration of HIV-1 into the human genome, which is catalyzed by the viral protein integrase (IN), preferentially occurs near transcriptionally active genes. Here we show that p300, a cellular acetyltransferase that regulates chromatin conformation through the acetylation of histones, also acetylates IN and controls its activity. We have found that p300 directly binds IN both in vitro and in the cells, as also specifically demonstrated by fluorescence resonance energy transfer technique analysis. This interaction results in the acetylation of three specific lysines (K264, K266, K273) in the carboxy-terminus of IN, a region that is required for DNA binding. Acetylation increases IN affinity to DNA, and promotes the DNA strand transfer activity of the protein. In the context of the viral replication cycle, point mutations in the IN acetylation sites abolish virus replication by specifically impairing its integration capacity. This is the first demonstration that HIV-1 IN activity is specifically regulated by post-translational modification.
Collapse
Affiliation(s)
- Anna Cereseto
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
183
|
Todorovic V, Giadrossi S, Pelizon C, Mendoza-Maldonado R, Masai H, Giacca M. Human Origins of DNA Replication Selected from a Library of Nascent DNA. Mol Cell 2005; 19:567-75. [PMID: 16109380 DOI: 10.1016/j.molcel.2005.07.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2004] [Revised: 03/24/2005] [Accepted: 07/05/2005] [Indexed: 11/25/2022]
Abstract
The identification of metazoan origins of DNA replication has so far been hampered by the lack of a suitable genetic screening and by the cumbersomeness of the currently available mapping procedures. Here we describe the construction of a library of nascent DNA, representative of all cellular origin sequences, and its utilization as a screening probe for origin identification in large genomic regions. The procedure developed was successfully applied to the human 5q31.1 locus, encoding for the IL-3 and GM-CSF genes. Two novel origins were identified and subsequently characterized by competitive PCR mapping, located approximately 3.5 kb downstream of the GM-CSF gene. The two origins (GM-CSF Ori1 and Ori2) were shown to interact with different members of the DNA prereplication complex. This observation reinforces the universal paradigm that initiation of DNA replication takes place at, or in close proximity to, the binding sites of the trans-acting initiator proteins.
Collapse
Affiliation(s)
- Vesna Todorovic
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology, Padriciano, 99, 34012 Trieste, Italy
| | | | | | | | | | | |
Collapse
|
184
|
Brès V, Gomes N, Pickle L, Jones KA. A human splicing factor, SKIP, associates with P-TEFb and enhances transcription elongation by HIV-1 Tat. Genes Dev 2005; 19:1211-26. [PMID: 15905409 PMCID: PMC1132007 DOI: 10.1101/gad.1291705] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
HIV-1 Tat binds human CyclinT1 and recruits the CDK9/P-TEFb complex to the viral TAR RNA in a step that links RNA polymerase II (RNAPII) C-terminal domain (CTD) Ser 2 phosphorylation with transcription elongation. Previous studies have suggested a connection between Tat and pre-mRNA splicing factors. Here we show that the splicing-associated c-Ski-interacting protein, SKIP, is required for Tat transactivation in vivo and stimulates HIV-1 transcription elongation, but not initiation, in vitro. SKIP associates with CycT1:CDK9/P-TEFb and Tat:P-TEFb complexes in nuclear extracts and interacts with recombinant Tat:P-TEFb:TAR RNA complexes in vitro, indicating that it may act through nascent RNA to overcome pausing by RNAPII. SKIP also associates with U5snRNP proteins and tri-snRNP110K in nuclear extracts, and facilitates recognition of an alternative Tat-specific splice site in vivo. The effects of SKIP on transcription elongation, binding to P-TEFb, and splicing are mediated through the SNW domain. HIV-1 Tat transactivation is accompanied by the recruitment of P-TEFb, SKIP, and tri-snRNP110K to the integrated HIV-1 promoter in vivo, whereas the U5snRNPs associate only with the transcribed coding region. These findings suggest that SKIP plays independent roles in transcription elongation and pre-mRNA splicing.
Collapse
Affiliation(s)
- Vanessa Brès
- Regulatory Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
185
|
Chen J, Malcolm T, Estable MC, Roeder RG, Sadowski I. TFII-I regulates induction of chromosomally integrated human immunodeficiency virus type 1 long terminal repeat in cooperation with USF. J Virol 2005; 79:4396-406. [PMID: 15767439 PMCID: PMC1061576 DOI: 10.1128/jvi.79.7.4396-4406.2005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) replication is coupled to T-cell activation through its dependence on host cell transcription factors. Despite the enormous sequence variability of these factors, several cis elements for host factors are highly conserved within the 5' long terminal repeats (LTRs) of viruses from AIDS patients; among these is the RBEIII upstream element for the Ras response element binding factor 2 (RBF-2). Here we show that RBF-2 is comprised of a USF1/USF2 heterodimer and TFII-I, which bind cooperatively to RBEIII. Recombinant USF1/USF2 binds to the RBEIII core sequence 160-fold less efficiently than it binds to an E box element, but the interaction with RBEIII is stimulated by TFII-I. Chromosomally integrated HIV-1 LTRs bearing an RBEIII mutation have slightly elevated basal transcription in unstimulated Jurkat cells but are unresponsive to cross-linking of the T-cell receptor or stimulation with phorbol myristate acetate (PMA) and ionomycin. Induction is inhibited by dominant interfering USF and TFII-I but not by the dominant negative I-kappaB protein. USF1, USF2, and TFII-I bind to the integrated wild-type LTR in unstimulated cells and become phosphorylated during the induction of transcription upon stimulation with PMA. These results demonstrate that USF1/USF2 and TFII-I interact cooperatively at the upstream RBEIII element and are necessary for the induction of latent HIV-1 in response to T-cell activation signals.
Collapse
Affiliation(s)
- Jiguo Chen
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | | | | | | | | |
Collapse
|
186
|
Duraisingh MT, Voss TS, Marty AJ, Duffy MF, Good RT, Thompson JK, Freitas-Junior LH, Scherf A, Crabb BS, Cowman AF. Heterochromatin Silencing and Locus Repositioning Linked to Regulation of Virulence Genes in Plasmodium falciparum. Cell 2005; 121:13-24. [PMID: 15820675 DOI: 10.1016/j.cell.2005.01.036] [Citation(s) in RCA: 363] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2004] [Revised: 10/06/2004] [Accepted: 01/14/2005] [Indexed: 11/26/2022]
Abstract
The malaria parasite Plasmodium falciparum undergoes antigenic variation to evade host immune responses through switching expression of variant surface proteins encoded by the var gene family. We demonstrate that both a subtelomeric transgene and var genes are subject to reversible gene silencing. Var gene silencing involves the SIR complex as gene disruption of PfSIR2 results in activation of this gene family. We also demonstrate that perinuclear gene activation involves chromatin alterations and repositioning into a location that may be permissive for transcription. Together, this implies that locus repositioning and heterochromatic silencing play important roles in the epigenetic regulation of virulence genes in P. falciparum.
Collapse
Affiliation(s)
- Manoj T Duraisingh
- The Walter and Eliza Hall Institute of Medical Research, Melbourne 3050, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
187
|
Thierry S, Marechal V, Rosenzwajg M, Sabbah M, Redeuilh G, Nicolas JC, Gozlan J. Cell cycle arrest in G2 induces human immunodeficiency virus type 1 transcriptional activation through histone acetylation and recruitment of CBP, NF-kappaB, and c-Jun to the long terminal repeat promoter. J Virol 2004; 78:12198-206. [PMID: 15507606 PMCID: PMC525107 DOI: 10.1128/jvi.78.22.12198-12206.2004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In human immunodeficiency virus type 1 (HIV-1)-infected cells, a cell cycle arrest in G(2) increases viral expression and may represent a strategy for the virus to optimize its expression. In latently infected cells, balance between viral silencing and reactivation relies on the nucleosomal organization of the integrated long terminal repeat (LTR). It is shown here that nucleosome nuc-1, which is located downstream of the TATA box, is specifically modified when latently infected cells are arrested in G(2) by chemical inducers. Notably, histones H3 and H4 are hyperacetylated, and this modification is associated with an increased LTR-driven transcription. nuc-1 hyperacetylation is also associated with the recruitment of histone acetyltransferase CBP and transcription factors NF-kappaB and c-Jun. NF-kappaB and/or c-Jun binding to the LTR in G(2)-arrested cells appears to be required for CBP recruitment as well as for nuc-1 remodeling and viral reactivation.
Collapse
Affiliation(s)
- Sylvain Thierry
- UMR 7079, Université Pierre et Marie Curie, 7 quai Saint-Bernard, 75005 Paris, France
| | | | | | | | | | | | | |
Collapse
|
188
|
Zhao C, Chen Y, Park J, Kim JB, Tang H. Tat-dependent repression of human immunodeficiency virus type 1 long terminal repeat promoter activity by fusion of cellular transcription factors. Biochem Biophys Res Commun 2004; 322:614-22. [PMID: 15325274 DOI: 10.1016/j.bbrc.2004.07.165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2004] [Indexed: 10/26/2022]
Abstract
Transcription initiation from HIV-1 long terminal repeat (LTR) promoter requires the virally encoded transactivator, Tat, and several cellular co-factors to accomplish the Tat-dependent processive transcription elongation. Individual cellular transcription activators, LBP-1b and Oct-1, on the other hand, have been shown to inhibit LTR promoter activities probably via competitive binding against TFIID to the TATA-box in LTR promoter. To explore the genetic interference strategies against the viral replication, we took advantage of the existence of the bipartite DNA binding domains and the repression domains of LBP-1b and Oct-1 factors to generate a chimeric transcription repressor. Our results indicated that the fusion protein of LBP-1b and Oct-1 exhibited higher DNA binding affinity to the viral promoter than the individual factors, and little interference with the host cell gene expression due to its anticipated rare cognate DNA sites in the host cell genome. Moreover, the chimera exerted increased Tat-dependent repression of transcription initiation at the LTR promoter both in vitro and in vivo compared to LBP-1b, Oct-1 or combination of LBP-1b and Oct-1. These results might provide the lead in generating a therapeutic reagent useful to suppress HIV-1 replication.
Collapse
Affiliation(s)
- Cunyou Zhao
- The Center for Molecular Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100080, China
| | | | | | | | | |
Collapse
|
189
|
Varier RA, Swaminathan V, Balasubramanyam K, Kundu TK. Implications of small molecule activators and inhibitors of histone acetyltransferases in chromatin therapy. Biochem Pharmacol 2004; 68:1215-20. [PMID: 15313419 DOI: 10.1016/j.bcp.2004.05.038] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2004] [Accepted: 05/17/2004] [Indexed: 10/26/2022]
Abstract
Histone acetylation is a diagnostic feature of transcriptionally active chromatin. The group of enzymes, histone acetyltransferases (HATs), involved in this crucial step of gene regulation, covalently modifies the N-terminal lysine residues of histones by the addition of an acetyl group from acetyl coenzyme A. Dysfunction of these enzymes is often associated with several diseases, ranging from neurodegenerative disorders to cancer. These enzymes thus are potential new targets for therapeutics. We have discovered few small molecule compounds, which target HATs and either activate or inhibit the enzyme potently. These compounds would be useful as biological switching molecules for probing into the role of HATs in gene regulation and cell cycle and may be useful as new chemical entities for the development of new drugs.
Collapse
Affiliation(s)
- Radhika A Varier
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | | | | | | |
Collapse
|
190
|
Lassen KG, Bailey JR, Siliciano RF. Analysis of human immunodeficiency virus type 1 transcriptional elongation in resting CD4+ T cells in vivo. J Virol 2004; 78:9105-14. [PMID: 15308706 PMCID: PMC506937 DOI: 10.1128/jvi.78.17.9105-9114.2004] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2004] [Accepted: 04/19/2004] [Indexed: 12/11/2022] Open
Abstract
A stable latent reservoir for human immunodeficiency virus type 1 (HIV-1) in resting memory CD4+ T cells presents a barrier to eradication of the infection even in patients on highly active antiretroviral therapy. Potential mechanisms for latency include inaccessibility of the integrated viral genome, absence of key host transcription factors, premature termination of HIV-1 RNAs, and abnormal splicing patterns. To differentiate among these mechanisms, we isolated extremely pure populations of resting CD4+ T cells from patients on highly active antiretroviral therapy. These cells did not produce virus but retained the capacity to do so if appropriately stimulated. Products of HIV-1 transcription were examined in purified resting CD4+ T cells. Although short, prematurely terminated HIV-1 transcripts have been suggested as a marker for latently infected cells, the production of short transcripts had not been previously demonstrated in purified populations of resting CD4+ T cells. By separating RNA into polyadenylated and nonpolyadenylated fractions, we showed that resting CD4+ T cells from patients on highly active antiretroviral therapy produce abortive transcripts that lack a poly(A) tail and that terminate prior to nucleotide 181. Short transcripts dominated the pool of total HIV-1 transcripts in resting CD4+ T cells. Processive, polyadenylated HIV-1 mRNAs were also present at a low level. Both unspliced and multiply spliced forms were found. Taken together, these results show that the nonproductive nature of the infection in resting CD4+ T cells from patients on highly active antiretroviral therapy is not due to absolute blocks at the level of either transcriptional initiation or elongation but rather relative inefficiencies at multiple steps.
Collapse
Affiliation(s)
- Kara G Lassen
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
191
|
Kiefer HLB, Hanley TM, Marcello JE, Karthik AG, Viglianti GA. Retinoic acid inhibition of chromatin remodeling at the human immunodeficiency virus type 1 promoter. Uncoupling of histone acetylation and chromatin remodeling. J Biol Chem 2004; 279:43604-13. [PMID: 15299018 DOI: 10.1074/jbc.m408069200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
All-trans retinoic acid (RA) represses HIV-1 transcription and replication in cultured monocytic cells and in primary monocyte-derived macrophages. Here we examine the role of histone acetylation and chromatin remodeling in RA-mediated repression. RA pretreatment of latently infected U1 promonocytes inhibits HIV-1 expression in response to the histone deacetylase (HDAC) inhibitor, trichostatin A (TSA). TSA is thought to activate HIV-1 transcription by inducing histone hyperacetylation within a regulatory nucleosome, nuc-1, positioned immediately downstream from the transcription start site. Acetylation of nuc-1 is thought to be a critical step in activation that precedes nuc-1 remodeling and, subsequently, transcriptional initiation. Here we demonstrate that TSA treatment induces H3 and H4 hyperacetylation and nuc-1 remodeling. Although RA pretreatment inhibits nuc-1 remodeling and HIV-1 transcription, it has no effect on histone acetylation. This suggests that acetylation and remodeling are not obligatorily coupled. We also show that growth of U1 cells in retinoid-deficient medium induces nuc-1 remodeling and HIV-1 expression but does not induce histone hyperacetylation. These findings suggest that remodeling, not histone hyperacetylation, is the limiting step in transcriptional activation in these cells. Together, these data suggest that RA signaling maintains the chromatin structure of the HIV-1 promoter in a transcriptionally non-permissive state that may contribute to the establishment of latency in monocyte/macrophages.
Collapse
Affiliation(s)
- Heather L B Kiefer
- Department of Microbiology, Boston University School of Medicine, Massachusetts 02118, USA
| | | | | | | | | |
Collapse
|
192
|
Balasubramanyam K, Altaf M, Varier RA, Swaminathan V, Ravindran A, Sadhale PP, Kundu TK. Polyisoprenylated benzophenone, garcinol, a natural histone acetyltransferase inhibitor, represses chromatin transcription and alters global gene expression. J Biol Chem 2004; 279:33716-26. [PMID: 15155757 DOI: 10.1074/jbc.m402839200] [Citation(s) in RCA: 391] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Histone acetylation is a diagnostic feature of transcriptionally active genes. The proper recruitment and function of histone acetyltransferases (HATs) and deacetylases (HDACs) are key regulatory steps for gene expression and cell cycle. Functional defects of either of these enzymes may lead to several diseases, including cancer. HATs and HDACs thus are potential therapeutic targets. Here we report that garcinol, a polyisoprenylated benzophenone derivative from Garcinia indica fruit rind, is a potent inhibitor of histone acetyltransferases p300 (IC50 approximately 7 microm) and PCAF (IC50 approximately 5 microm) both in vitro and in vivo. The kinetic analysis shows that it is a mixed type of inhibitor with an increased affinity for PCAF compared with p300. HAT activity-dependent chromatin transcription was strongly inhibited by garcinol, whereas transcription from DNA template was not affected. Furthermore, it was found to be a potent inducer of apoptosis, and it alters (predominantly down-regulates) the global gene expression in HeLa cells.
Collapse
Affiliation(s)
- Karanam Balasubramanyam
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore-560064, India
| | | | | | | | | | | | | |
Collapse
|
193
|
Marcello A, Lusic M, Pegoraro G, Pellegrini V, Beltram F, Giacca M. Nuclear organization and the control of HIV-1 transcription. Gene 2004; 326:1-11. [PMID: 14729258 DOI: 10.1016/j.gene.2003.10.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The regulation of transcription of the human immunodeficiency virus (HIV) is a complex event of significant pathological relevance, which recapitulates general concepts of cellular transcription with some peculiarities. The viral promoter is embedded in a chromatin structure that exerts powerful repression on transcription; activation of gene expression relies on the combined activity of a series of cellular factors that respond to different external stimuli, and on the function of a single viral regulatory protein, the Tat transactivator. Transcriptional activation is consequent to both chromatin remodeling and to the recruitment of elongation-competent RNA polymerase II complexes onto the integrated promoter, two events that require the coordinate, but transient, assembly of different protein complexes. Application of optical imaging techniques now allows us to appreciate the spatial and temporal evolvement of these reactions in vivo. The picture that is emerging is not only descriptive, but also relevant to the understanding of the regulation of the process. In particular, it appears that the confinement of biomolecules within specific subcellular compartments represents a way to control and coordinate the assembly of functional complexes that regulate viral gene expression.
Collapse
Affiliation(s)
- Alessandro Marcello
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology, Area Science Park, Padriciano 99, 34012 Trieste, Italy
| | | | | | | | | | | |
Collapse
|
194
|
Abstract
Gene expression is a highly interconnected multistep process. A recent meeting in Iguazu Falls, Argentina, highlighted the need to uncover both the molecular details of each single step as well as the mechanisms of coordination among processes in order to fully understand the expression of genes.
Collapse
Affiliation(s)
- Tom Misteli
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.
| |
Collapse
|
195
|
Dandekar DH, Ganesh KN, Mitra D. HIV-1 Tat directly binds to NFkappaB enhancer sequence: role in viral and cellular gene expression. Nucleic Acids Res 2004; 32:1270-8. [PMID: 14981150 PMCID: PMC390279 DOI: 10.1093/nar/gkh289] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
HIV-1 Tat protein reprograms cellular gene expression of infected as well as uninfected cells apart from its primary function of transactivating HIV-1 long terminal repeat (LTR) promoter by binding to a nascent RNA stem-loop structure known as the transactivator response region (TAR). Tat also induces chromatin remodeling of proviral LTR-mediated gene expression by recruiting histone acetyl transferases to the chromatin, which results in histone acetylation. Furthermore several studies have shown convincing evidence that Tat can transactivate HIV-1 gene expression in the absence of TAR, the molecular mechanism of which remains to be elucidated. Here we show a direct interaction of Tat with nuclear factor kappa B (NFkappaB) enhancer, a global regulatory sequence for many cellular genes both in vitro and in vivo. This interaction not only provides a novel molecular basis to explain TAR-independent transactivation in HIV-1, but also points toward the potential mechanism of Tat- mediated modulation of cellular genes.
Collapse
Affiliation(s)
- Dineshkumar H Dandekar
- Division of Organic Chemistry (Synthesis), National Chemical Laboratory, Pune-411008, India
| | | | | |
Collapse
|