151
|
Puff N, Watanabe C, Seigneuret M, Angelova MI, Staneva G. Lo/Ld phase coexistence modulation induced by GM1. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:2105-14. [DOI: 10.1016/j.bbamem.2014.05.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 04/30/2014] [Accepted: 05/03/2014] [Indexed: 01/31/2023]
|
152
|
Krengel U, Bousquet PA. Molecular recognition of gangliosides and their potential for cancer immunotherapies. Front Immunol 2014; 5:325. [PMID: 25101077 PMCID: PMC4104838 DOI: 10.3389/fimmu.2014.00325] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 06/27/2014] [Indexed: 01/30/2023] Open
Abstract
Gangliosides are sialic-acid-containing glycosphingolipids expressed on all vertebrate cells. They are primarily positioned in the plasma membrane with the ceramide part anchored in the membrane and the glycan part exposed on the surface of the cell. These lipids have highly diverse structures, not the least with respect to their carbohydrate chains, with N-acetylneuraminic acid (NeuAc) and N-glycolylneuraminic acid (NeuGc) being the two most common sialic-acid residues in mammalian cells. Generally, human healthy tissue is deficient in NeuGc, but this molecule is expressed in tumors and in human fetal tissues, and was hence classified as an onco-fetal antigen. Gangliosides perform important functions through carbohydrate-specific interactions with proteins, for example, as receptors in cell–cell recognition, which can be exploited by viruses and other pathogens, and also by regulating signaling proteins, such as the epidermal growth factor receptor (EGFR) and the vascular endothelial growth factor receptor (VEGFR), through lateral interaction in the membrane. Through both mechanisms, tumor-associated gangliosides may affect malignant progression, which makes them attractive targets for cancer immunotherapies. In this review, we describe how proteins recognize gangliosides, focusing on the molecular recognition of gangliosides associated with cancer immunotherapy, and discuss the importance of these molecules in cancer research.
Collapse
Affiliation(s)
- Ute Krengel
- Department of Chemistry, University of Oslo , Oslo , Norway
| | | |
Collapse
|
153
|
Molecular dynamics study of GM1 ganglioside complex with amyloid β peptide (Aβ42) in lipid membrane. J Mol Liq 2014. [DOI: 10.1016/j.molliq.2014.01.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
154
|
Number of sialic acid residues in ganglioside headgroup affects interactions with neighboring lipids. Biophys J 2014; 105:1421-31. [PMID: 24047994 DOI: 10.1016/j.bpj.2013.07.051] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 07/01/2013] [Accepted: 07/19/2013] [Indexed: 11/21/2022] Open
Abstract
Monolayers of binary mixtures of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and asialo-(GA1), disialo-(GD1b) and trisialo-(GT1b) gangliosides were used to determine the effect of ganglioside headgroup charge and geometry on its interactions with the neighboring zwitterionic lipid. Surface pressure versus molecular area isotherm measurements along with concurrent fluorescence microscopy of the monolayers at the air-water interface were complemented with atomic force microscopy imaging of monolayers deposited on solid substrates. Results were used to further develop a proposed geometric packing model that the complementary geometry of DPPC and monosialoganglioside GM1 headgroups affects their close molecular packing, inducing condensation of the layer at small mol % of ganglioside. For GA1, GD1b, and GT1b, a similar condensing effect, followed by a fluidizing effect is seen that varies with glycosphingolipid concentration, but results do not directly follow from geometric arguments because less DPPC is needed to condense ganglioside molecules with larger cross-sectional areas. The variations in critical packing mole ratios can be explained by global effects of headgroup charge and resultant dipole moments within the monolayer. Atomic force microscopy micrographs further support the model of ganglioside-induced DPPC condensation with condensed domains composed of a striped phase of condensed DPPC and DPPC/ganglioside geometrically packed complexes at low concentrations.
Collapse
|
155
|
Soluble Aβ oligomers are rapidly sequestered from brain ISF in vivo and bind GM1 ganglioside on cellular membranes. Neuron 2014; 82:308-19. [PMID: 24685176 DOI: 10.1016/j.neuron.2014.02.027] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2014] [Indexed: 01/06/2023]
Abstract
Soluble Aβ oligomers contribute importantly to synaptotoxicity in Alzheimer's disease, but their dynamics in vivo remain unclear. Here, we found that soluble Aβ oligomers were sequestered from brain interstitial fluid onto brain membranes much more rapidly than nontoxic monomers and were recovered in part as bound to GM1 ganglioside on membranes. Aβ oligomers bound strongly to GM1 ganglioside, and blocking the sialic acid residue on GM1 decreased oligomer-mediated LTP impairment in mouse hippocampal slices. In a hAPP transgenic mouse model, substantial levels of GM1-bound Aβ₄₂ were recovered from brain membrane fractions. We also detected GM1-bound Aβ in human CSF, and its levels correlated with Aβ₄₂, suggesting its potential as a biomarker of Aβ-related membrane dysfunction. Together, these findings highlight a mechanism whereby hydrophobic Aβ oligomers become sequestered onto GM1 ganglioside and presumably other lipids on neuronal membranes, where they may induce progressive functional and structural changes.
Collapse
|
156
|
Isolation and characterization of the plasma membrane from the yeast Pichia pastoris. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:1889-97. [PMID: 24680652 DOI: 10.1016/j.bbamem.2014.03.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 03/12/2014] [Accepted: 03/17/2014] [Indexed: 01/08/2023]
Abstract
Despite similarities of cellular membranes in all eukaryotes, every compartment displays characteristic and often unique features which are important for the functions of the specific organelles. In the present study, we biochemically characterized the plasma membrane of the methylotrophic yeast Pichia pastoris with emphasis on the lipids which form the matrix of this compartment. Prerequisite for this effort was the design of a standardized and reliable isolation protocol of the plasma membrane at high purity. Analysis of isolated plasma membrane samples from P. pastoris revealed an increase of phosphatidylserine and a decrease of phosphatidylcholine compared to bulk membranes. The amount of saturated fatty acids in the plasma membrane was higher than in total cell extracts. Ergosterol, the final product of the yeast sterol biosynthetic pathway, was found to be enriched in plasma membrane fractions, although markedly lower than in Saccharomyces cerevisiae. A further characteristic feature of the plasma membrane from P. pastoris was the enrichment of inositol phosphorylceramides over neutral sphingolipids, which accumulated in internal membranes. The detailed analysis of the P. pastoris plasma membrane is discussed in the light of cell biological features of this microorganism especially as a microbial cell factory for heterologous protein production.
Collapse
|
157
|
Ghiulai RM, Sarbu M, Vukelić Ž, Ilie C, Zamfir AD. Early stage fetal neocortex exhibits a complex ganglioside profile as revealed by high resolution tandem mass spectrometry. Glycoconj J 2014; 31:231-45. [DOI: 10.1007/s10719-014-9517-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 02/05/2014] [Accepted: 02/10/2014] [Indexed: 11/30/2022]
|
158
|
Lee H, Lee JK, Bae YC, Yang SH, Okino N, Schuchman EH, Yamashita T, Bae JS, Jin HK. Inhibition of GM3 synthase attenuates neuropathology of Niemann-Pick disease Type C. by affecting sphingolipid metabolism. Mol Cells 2014; 37:161-71. [PMID: 24599001 PMCID: PMC3935629 DOI: 10.14348/molcells.2014.2347] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 12/17/2013] [Accepted: 12/18/2013] [Indexed: 11/29/2022] Open
Abstract
In several lysosomal storage disorders, including Niemann-Pick disease Type C (NP-C), sphingolipids, including glycosphingolipids, particularly gangliosides, are the predominant storage materials in the brain, raising the possibility that accumulation of these lipids may be involved in the NP-C neurodegenerative process. However, correlation of these accumulations and NP-C neuropathology has not been fully characterized. Here we derived NP-C mice with complete and partial deletion of the Siat9 (encoding GM3 synthase) gene in order to investigate the role of ganglioside in NP-C pathogenesis. According to our results, NPC mice with homozygotic deletion of GM3 synthase exhibited an enhanced neuropathological phenotype and died significantly earlier than NP-C mice. Notably, in contrast to complete depletion, NP-C mice with partial deletion of the GM3 synthase gene showed ameliorated NP-C neuropathology, including motor disability, demyelination, and abnormal accumulation of cholesterol and sphingolipids. These findings indicate the crucial role of GM3 synthesis in the NP-C phenotype and progression of CNS pathologic abnormality, suggesting that well-controlled inhibition of GM3 synthesis could be used as a therapeutic strategy.
Collapse
Affiliation(s)
- Hyun Lee
- Stem Cell Neuroplasticity Research Group, Kyungpook National University, Daegu 702-701,
Korea
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu 702-701,
Korea
| | - Jong Kil Lee
- Stem Cell Neuroplasticity Research Group, Kyungpook National University, Daegu 702-701,
Korea
- Department of Physiology, BK21 PLUS KNU Biomedical Convergence Program for Creative Talent, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu 700-842,
Korea
| | - Yong Chul Bae
- Department of Oral Anatomy and Neurobiology, Kyungpook National University, Daegu 700-412,
Korea
| | - Song Hyun Yang
- Institute of Metabolism, Green Cross Reference Laboratory, Yongin 446-850,
Korea
| | - Nozomu Okino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 812-8581,
Japan
| | - Edward H. Schuchman
- Departments of Genetics and Genomic Sciences & Gene and Cell Therapy, Mount Sinai School of Medicine, New York,
USA
| | - Tadashi Yamashita
- World Class University Program, Kyungpook National University, Daegu 700-842,
Korea
- Laboratory of Advanced Chemical Biology, Graduate School of Life Science, Hokkaido University,
Japan
| | - Jae-sung Bae
- Stem Cell Neuroplasticity Research Group, Kyungpook National University, Daegu 702-701,
Korea
- Department of Physiology, BK21 PLUS KNU Biomedical Convergence Program for Creative Talent, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu 700-842,
Korea
| | - Hee Kyung Jin
- Stem Cell Neuroplasticity Research Group, Kyungpook National University, Daegu 702-701,
Korea
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu 702-701,
Korea
| |
Collapse
|
159
|
Garcia AD, Chavez JL, Mechref Y. Rapid and sensitive LC-ESI-MS of gangliosides. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 947-948:1-7. [DOI: 10.1016/j.jchromb.2013.11.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Revised: 11/12/2013] [Accepted: 11/17/2013] [Indexed: 11/30/2022]
|
160
|
Yao D, McGonigal R, Barrie JA, Cappell J, Cunningham ME, Meehan GR, Fewou SN, Edgar JM, Rowan E, Ohmi Y, Furukawa K, Furukawa K, Brophy PJ, Willison HJ. Neuronal expression of GalNAc transferase is sufficient to prevent the age-related neurodegenerative phenotype of complex ganglioside-deficient mice. J Neurosci 2014; 34:880-91. [PMID: 24431446 PMCID: PMC3891965 DOI: 10.1523/jneurosci.3996-13.2014] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 11/15/2013] [Accepted: 11/23/2013] [Indexed: 11/21/2022] Open
Abstract
Gangliosides are widely expressed sialylated glycosphingolipids with multifunctional properties in different cell types and organs. In the nervous system, they are highly enriched in both glial and neuronal membranes. Mice lacking complex gangliosides attributable to targeted ablation of the B4galnt1 gene that encodes β-1,4-N-acetylegalactosaminyltransferase 1 (GalNAc-transferase; GalNAcT(-/-)) develop normally before exhibiting an age-dependent neurodegenerative phenotype characterized by marked behavioral abnormalities, central and peripheral axonal degeneration, reduced myelin volume, and loss of axo-glial junction integrity. The cell biological substrates underlying this neurodegeneration and the relative contribution of either glial or neuronal gangliosides to the process are unknown. To address this, we generated neuron-specific and glial-specific GalNAcT rescue mice crossed on the global GalNAcT(-/-) background [GalNAcT(-/-)-Tg(neuronal) and GalNAcT(-/-)-Tg(glial)] and analyzed their behavioral, morphological, and electrophysiological phenotype. Complex gangliosides, as assessed by thin-layer chromatography, mass spectrometry, GalNAcT enzyme activity, and anti-ganglioside antibody (AgAb) immunohistology, were restored in both neuronal and glial GalNAcT rescue mice. Behaviorally, GalNAcT(-/-)-Tg(neuronal) retained a normal "wild-type" (WT) phenotype throughout life, whereas GalNAcT(-/-)-Tg(glial) resembled GalNAcT(-/-) mice, exhibiting progressive tremor, weakness, and ataxia with aging. Quantitative electron microscopy demonstrated that GalNAcT(-/-) and GalNAcT(-/-)-Tg(glial) nerves had significantly increased rates of axon degeneration and reduced myelin volume, whereas GalNAcT(-/-)-Tg(neuronal) and WT appeared normal. The increased invasion of the paranode with juxtaparanodal Kv1.1, characteristically seen in GalNAcT(-/-) and attributed to a breakdown of the axo-glial junction, was normalized in GalNAcT(-/-)-Tg(neuronal) but remained present in GalNAcT(-/-)-Tg(glial) mice. These results indicate that neuronal rather than glial gangliosides are critical to the age-related maintenance of nervous system integrity.
Collapse
Affiliation(s)
- Denggao Yao
- Institute of Infection, Immunity, and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, United Kingdom
| | - Rhona McGonigal
- Institute of Infection, Immunity, and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, United Kingdom
| | - Jennifer A. Barrie
- Institute of Infection, Immunity, and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, United Kingdom
| | - Joanna Cappell
- Institute of Infection, Immunity, and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, United Kingdom
| | - Madeleine E. Cunningham
- Institute of Infection, Immunity, and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, United Kingdom
| | - Gavin R. Meehan
- Institute of Infection, Immunity, and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, United Kingdom
| | - Simon N. Fewou
- Institute of Infection, Immunity, and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, United Kingdom
| | - Julia M. Edgar
- Institute of Infection, Immunity, and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, United Kingdom
| | - Edward Rowan
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0NR, United Kingdom
| | - Yuhsuke Ohmi
- Department of Biochemistry II, Nagoya University School of Medicine, Nagoya 466-0065, Japan, and
| | - Keiko Furukawa
- Department of Biochemistry II, Nagoya University School of Medicine, Nagoya 466-0065, Japan, and
| | - Koichi Furukawa
- Department of Biochemistry II, Nagoya University School of Medicine, Nagoya 466-0065, Japan, and
| | - Peter J. Brophy
- Centre for Neuroregeneration, University of Edinburgh, Edinburgh EH16 4SB, United Kingdom
| | - Hugh J. Willison
- Institute of Infection, Immunity, and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, United Kingdom
| |
Collapse
|
161
|
Jiang L, Bechtel MD, Bean JL, Winefield R, Williams TD, Zaidi A, Michaelis EK, Michaelis ML. Effects of gangliosides on the activity of the plasma membrane Ca2+-ATPase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:1255-65. [PMID: 24434060 DOI: 10.1016/j.bbamem.2014.01.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 01/04/2014] [Accepted: 01/06/2014] [Indexed: 02/03/2023]
Abstract
Control of intracellular calcium concentrations ([Ca(2+)]i) is essential for neuronal function, and the plasma membrane Ca(2+)-ATPase (PMCA) is crucial for the maintenance of low [Ca(2+)]i. We previously reported on loss of PMCA activity in brain synaptic membranes during aging. Gangliosides are known to modulate Ca(2+) homeostasis and signal transduction in neurons. In the present study, we observed age-related changes in the ganglioside composition of synaptic plasma membranes. This led us to hypothesize that alterations in ganglioside species might contribute to the age-associated loss of PMCA activity. To probe the relationship between changes in endogenous ganglioside content or composition and PMCA activity in membranes of cortical neurons, we induced depletion of gangliosides by treating neurons with d-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (d-PDMP). This caused a marked decrease in the activity of PMCA, which suggested a direct correlation between ganglioside content and PMCA activity. Neurons treated with neuraminidase exhibited an increase in GM1 content, a loss in poly-sialoganglioside content, and a decrease in PMCA activity that was greater than that produced by d-PDMP treatment. Thus, it appeared that poly-sialogangliosides had a stimulatory effect whereas mono-sialogangliosides had the opposite effect. Our observations add support to previous reports of PMCA regulation by gangliosides by demonstrating that manipulations of endogenous ganglioside content and species affect the activity of PMCA in neuronal membranes. Furthermore, our studies suggest that age-associated loss in PMCA activity may result in part from changes in the lipid environment of this Ca(2+) transporter.
Collapse
Affiliation(s)
- Lei Jiang
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, USA; Higuchi Biosciences Center, University of Kansas, Lawrence, KS, USA.
| | - Misty D Bechtel
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, USA; Higuchi Biosciences Center, University of Kansas, Lawrence, KS, USA
| | - Jennifer L Bean
- Higuchi Biosciences Center, University of Kansas, Lawrence, KS, USA; Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Robert Winefield
- Structural Biology Center, University of Kansas, Lawrence, KS, USA
| | - Todd D Williams
- Structural Biology Center, University of Kansas, Lawrence, KS, USA
| | - Asma Zaidi
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, USA; Higuchi Biosciences Center, University of Kansas, Lawrence, KS, USA; Department of Biochemistry, Kansas City University of Medicine and Biosciences, Kansas City, MO, USA
| | - Elias K Michaelis
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, USA; Higuchi Biosciences Center, University of Kansas, Lawrence, KS, USA
| | - Mary L Michaelis
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, USA; Higuchi Biosciences Center, University of Kansas, Lawrence, KS, USA
| |
Collapse
|
162
|
Abstract
We demonstrated the molecular pathogenesis of type 2 diabetes and insulin resistance focusing on the interaction between insulin receptor and GM3 ganglioside in adipocytes and propose a working hypothesis "metabolic disorders, such as type 2 diabetes, are membrane microdomain disorders caused by aberrant expression of gangliosides". It is expected that the development of novel diagnosis of metabolic syndrome by identifying the specific ganglioside species and a therapeutic strategy "membrane microdomain ortho-signaling therapy".
Collapse
Affiliation(s)
- Jin-ichi Inokuchi
- Division of Glycopathology, Institute of Molecular Biomembranes and Glycobiology, Tohoku Pharmaceutical University, 4-4-1, komatsushima, Aoba-ku, Sendai, 981-8558, Miyagi, Japan,
| |
Collapse
|
163
|
Konishi M, Imamura A, Fujikawa K, Ando H, Ishida H, Kiso M. Extending the glucosyl ceramide cassette approach: application in the total synthesis of ganglioside GalNAc-GM1b. Molecules 2013; 18:15153-81. [PMID: 24335571 PMCID: PMC6269929 DOI: 10.3390/molecules181215153] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 12/01/2013] [Accepted: 12/02/2013] [Indexed: 11/23/2022] Open
Abstract
The development of a novel cyclic glucosyl ceramide cassette acceptor for efficient glycolipid syntheses was investigated. p-Methoxybenzyl (PMB) groups were selected as protecting groups at C2 and C3 of the glucose residue with the aim of improving the functionality of the cassette acceptor. The choice of the PMB group resulted in a loss of β-selectivity, which was corrected by using an appropriate tether to control the spatial arrangement and the nitrile solvent effect. To investigate the effect of linker structure on the β-selectivity of intramolecular glycosylation, several linkers for tethering the glucose and ceramide moiety were designed and prepared, namely, succinyl, glutaryl, dimethylmalonyl, and phthaloyl esters. The succinyl ester linker was the best for accessing the cassette form. The newly designed glucosyl ceramide cassette acceptor was then applied in the total synthesis of ganglioside GalNAc-GM1b.
Collapse
Affiliation(s)
- Miku Konishi
- Department of Applied Bio-Organic Chemistry, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan; E-Mails: (M.K.); (K.F.); (H.A.); (M.K.)
- Institute for Integrated Cell-Material Sciences, Kyoto University, 69 Konoe-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Akihiro Imamura
- Department of Applied Bio-Organic Chemistry, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan; E-Mails: (M.K.); (K.F.); (H.A.); (M.K.)
- Authors to whom correspondence should be addressed; E-Mails: (A.I.); (H.I.); Tel.: +81-58-293-3453 (A.I.); Fax: +81-58-293-2918 (H.I.)
| | - Kohki Fujikawa
- Department of Applied Bio-Organic Chemistry, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan; E-Mails: (M.K.); (K.F.); (H.A.); (M.K.)
- Institute for Integrated Cell-Material Sciences, Kyoto University, 69 Konoe-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiromune Ando
- Department of Applied Bio-Organic Chemistry, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan; E-Mails: (M.K.); (K.F.); (H.A.); (M.K.)
- Institute for Integrated Cell-Material Sciences, Kyoto University, 69 Konoe-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hideharu Ishida
- Department of Applied Bio-Organic Chemistry, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan; E-Mails: (M.K.); (K.F.); (H.A.); (M.K.)
- Authors to whom correspondence should be addressed; E-Mails: (A.I.); (H.I.); Tel.: +81-58-293-3453 (A.I.); Fax: +81-58-293-2918 (H.I.)
| | - Makoto Kiso
- Department of Applied Bio-Organic Chemistry, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan; E-Mails: (M.K.); (K.F.); (H.A.); (M.K.)
- Institute for Integrated Cell-Material Sciences, Kyoto University, 69 Konoe-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
164
|
Aureli M, Samarani M, Loberto N, Bassi R, Murdica V, Prioni S, Prinetti A, Sonnino S. The Glycosphingolipid Hydrolases in the Central Nervous System. Mol Neurobiol 2013; 50:76-87. [DOI: 10.1007/s12035-013-8592-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 11/08/2013] [Indexed: 12/27/2022]
|
165
|
Whitman JK, Alviar AF, Fleschner CR, Stuart MK. Monoclonal antibody 10A5 recognizes an antigen unique to the water-insoluble 25/45 membrane fraction of the rat ocular lens. SPRINGERPLUS 2013; 2:500. [PMID: 24109564 PMCID: PMC3793078 DOI: 10.1186/2193-1801-2-500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 10/01/2013] [Indexed: 11/18/2022]
Abstract
The water-insoluble 25/45 fraction and non-sedimenting membrane fraction (NSMF) are two membrane preparations isolated from the ocular lens. The fractions are postulated to represent distinct subdomains of the lens with unique functions. However, attempts to distinguish between the two fractions by detecting proteins present in one fraction but absent from other have been unsuccessful. In this study, we exploited the ability of the mouse immune system to detect antigenic differences between the 25/45 fraction and NSMF isolated from the lenses of 20-day-old rats. We generated a monoclonal antibody (MAb 10A5) that reacts with a ganglioside-like antigen that is present in the 25/45 fraction but absent from the NSMF. Restriction of the antigen to the 25/45 fraction in 20-day-old animals supports the hypothesis that the 25/45 fraction and NSMF represent different subdomains within the ocular lens.
Collapse
Affiliation(s)
- Joseph K Whitman
- Department of Biochemistry, A T Still University, Kirksville College of Osteopathic Medicine, 800 W Jefferson St, Kirksville, MO 63501 USA
| | | | | | | |
Collapse
|
166
|
Magini A, Polchi A, Urbanelli L, Cesselli D, Beltrami A, Tancini B, Emiliani C. TFEB activation promotes the recruitment of lysosomal glycohydrolases β-hexosaminidase and β-galactosidase to the plasma membrane. Biochem Biophys Res Commun 2013; 440:251-7. [DOI: 10.1016/j.bbrc.2013.09.060] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 09/11/2013] [Indexed: 12/17/2022]
|
167
|
Fewou SN, Plomp JJ, Willison HJ. The pre-synaptic motor nerve terminal as a site for antibody-mediated neurotoxicity in autoimmune neuropathies and synaptopathies. J Anat 2013; 224:36-44. [PMID: 23937354 DOI: 10.1111/joa.12088] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2013] [Indexed: 12/20/2022] Open
Abstract
The pre-synaptic motor nerve terminal is a highly complex and dynamic compartment within the lower motor neuron responsible for converting electrical signals into secreted chemicals. This self-renewing process of synaptic transmission is accomplished by the calcium-triggered fusion of neurotransmitter-containing vesicles with the plasma membrane and the subsequent retrieval and recycling of vesicle components. Besides this conventional physiological role, the highly active process of vesicle fusion and re-uptake into endosomal sorting pathways acts as a conduit for entry of a range of substances into the intracellular compartment of the motor nerve terminal. Whilst this entry portal sub-serves many vital physiological processes, such as those mediated by neurotrophin trafficking, there is also the potential for substantial pathological consequences resulting from uptake of noxious agents, including autoantibodies, viruses and toxins. These may act locally to induce disease within the nerve terminal, or traffic beyond to the motor neuron cell body and central nervous system to exert their pathological effects. This review focuses on the recent evidence that the ganglioside-rich pre-synaptic membrane acts as a binding site for potentially neurotoxic serum autoantibodies that are present in human autoimmune motor neuropathies. Autoantibodies that bind surface antigens induce membrane lytic effects, whereas their uptake attenuates local injury and transfers any potential pathological consequences to the intracellular compartment. Herein the thesis is explored that a balance exists between local injury at the exofacial leaflet of the pre-synaptic membrane and antibody uptake, which dictates the overall level and site of motor nerve injury in this group of disorders.
Collapse
Affiliation(s)
- Simon N Fewou
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | | | | |
Collapse
|
168
|
Interaction of membrane/lipid rafts with the cytoskeleton: impact on signaling and function: membrane/lipid rafts, mediators of cytoskeletal arrangement and cell signaling. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:532-45. [PMID: 23899502 DOI: 10.1016/j.bbamem.2013.07.018] [Citation(s) in RCA: 386] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 05/14/2013] [Accepted: 07/16/2013] [Indexed: 12/14/2022]
Abstract
The plasma membrane in eukaryotic cells contains microdomains that are enriched in certain glycosphingolipids, gangliosides, and sterols (such as cholesterol) to form membrane/lipid rafts (MLR). These regions exist as caveolae, morphologically observable flask-like invaginations, or as a less easily detectable planar form. MLR are scaffolds for many molecular entities, including signaling receptors and ion channels that communicate extracellular stimuli to the intracellular milieu. Much evidence indicates that this organization and/or the clustering of MLR into more active signaling platforms depends upon interactions with and dynamic rearrangement of the cytoskeleton. Several cytoskeletal components and binding partners, as well as enzymes that regulate the cytoskeleton, localize to MLR and help regulate lateral diffusion of membrane proteins and lipids in response to extracellular events (e.g., receptor activation, shear stress, electrical conductance, and nutrient demand). MLR regulate cellular polarity, adherence to the extracellular matrix, signaling events (including ones that affect growth and migration), and are sites of cellular entry of certain pathogens, toxins and nanoparticles. The dynamic interaction between MLR and the underlying cytoskeleton thus regulates many facets of the function of eukaryotic cells and their adaptation to changing environments. Here, we review general features of MLR and caveolae and their role in several aspects of cellular function, including polarity of endothelial and epithelial cells, cell migration, mechanotransduction, lymphocyte activation, neuronal growth and signaling, and a variety of disease settings. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé.
Collapse
|
169
|
Armendariz KP, Dunn RC. Ganglioside influence on phospholipid films investigated with single molecule fluorescence measurements. J Phys Chem B 2013; 117:7959-66. [PMID: 23745772 DOI: 10.1021/jp405312a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Single molecule fluorescence measurements are used to probe the effects of GM1 in DPPC monolayers. Langmuir-Blodgett films of GM1 and DPPC were doped with ~10(-8) mol % of the fluorescent lipid probe, BODIPY-PC, and transferred onto glass substrates at 23 mN/m. As shown previously, the individual orientation of each BODIPY-PC probe in the membrane can be measured using defocused polarized total internal reflection fluorescence microscopy, revealing changes in film properties at the molecular level. Here, BODIPY-PC tilt angle histograms are used to characterize the effects of GM1 in DPPC films from 0.05 to 100 mol % GM1. At high GM1 levels (>5 mol % GM1), trends in the single molecule measurements agree with previous bulk measurements showing the turnover from condensing to expanding influence of GM1 at 15-20 mol %, thus validating the single molecule approach. At biologically relevant, low concentrations of GM1 (<5 mol % GM1), where bulk fluorescence measurements are less informative, the single molecule measurements reveal a marked influence of GM1 on film properties. The addition of trace amounts of GM1 to DPPC films leads to an expansion of the film which continues to 0.10 mol % GM1, above which the trend reverses and the condensing effect previously noted is observed.
Collapse
Affiliation(s)
- Kevin P Armendariz
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047, USA
| | | |
Collapse
|
170
|
Gavella M, Lipovac V. Protective effects of exogenous gangliosides on ROS-induced changes in human spermatozoa. Asian J Androl 2013; 15:375-81. [PMID: 23503425 PMCID: PMC3739653 DOI: 10.1038/aja.2012.144] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 07/11/2012] [Accepted: 11/14/2012] [Indexed: 01/02/2023] Open
Abstract
This article summarizes the available evidence on the efficacy of gangliosides to reduce the degree of reactive oxygen species (ROS)-mediated damage. The antioxidative efficacy of exogenous gangliosides in protecting different cells encouraged us to examine their ability to protect human spermatozoa. Gangliosides are sialic acid-containing glycosphingolipids with strong amphiphilic character due to the bulky headgroup made of several sugar rings with sialic acid residues and the double-tailed hydrophobic lipid moiety. The amphiphilicity of gangliosides allows them to exist as micelles in aqueous media when they are present at a concentration above their critical micellar concentration. The protective effect of ganglioside micelles on spermatozoa is believed to stem from their ability to scavenge free radicals and prevent their damaging effects. In our study, we particularly focused our attention on the protective effect of ganglioside micelles on DNA in human spermatozoa exposed to cryopreservation. The results indicate that ganglioside micelles can modulate the hydrophobic properties of the sperm membrane to increase tolerance to DNA fragmentation, thus protecting the DNA from cryopreservation-induced damage. Further actions of ganglioside micelles, which were documented by biochemical and biophysical studies, included (i) the modulation of superoxide anion generation by increasing the diffusion barrier for membrane events responsible for signal translocation to the interior of the cell; (ii) the inhibition of iron-catalysed hydroxyl radical formation due to the iron chelation potential of gangliosides; and (iii) inhibition of hydrogen peroxide diffusion across the sperm membrane.
Collapse
Affiliation(s)
- Mirjana Gavella
- Reproductive Biochemistry and Cell Metabolism Unit, Institute of Clinical Chemistry and Laboratory Medicine, Merkur University Hospital, Zagreb 10000, Croatia.
| | | |
Collapse
|
171
|
A shift from N-glycolyl- to N-acetyl-sialic acid in the GM3 ganglioside impairs tumor development in mouse lymphocytic leukemia cells. Glycoconj J 2013; 30:687-99. [DOI: 10.1007/s10719-013-9473-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Revised: 03/15/2013] [Accepted: 03/17/2013] [Indexed: 12/12/2022]
|
172
|
Kuhn-Nentwig L, Sheynis T, Kolusheva S, Nentwig W, Jelinek R. N-terminal aromatic residues closely impact the cytolytic activity of cupiennin 1a, a major spider venom peptide. Toxicon 2013; 75:177-86. [PMID: 23523532 DOI: 10.1016/j.toxicon.2013.03.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 02/27/2013] [Accepted: 03/06/2013] [Indexed: 01/13/2023]
Abstract
Cupiennins are small cationic α-helical peptides from the venom of the ctenid spider Cupiennius salei which are characterized by high bactericidal as well as hemolytic activities. To gain insight into the determinants responsible for the broad cytolytic activities, two analogues of cupiennin 1a with different N-terminal hydrophobicities were designed. The insecticidal, bactericidal and hemolytic activities of these analogues were assayed and compared to the native peptide. Specifically, substitution of two N-terminal Phe residues by Ala results in less pronounced insecticidal and cytolytic activity, whereas a substitution by Lys reduces strongly its bactericidal activity and completely diminishes its hemolytic activity up to very high tested concentrations. Biophysical analyses of peptide/bilayer membrane interactions point to distinct interactions of the analogues with lipid bilayers, and dependence upon membrane surface charge. Indeed, we find that lower hemolytic activity was correlated with less surface association of the analogues. In contrast, our data indicate that the reduced bactericidal activity of the two cupiennin 1a analogues likely correspond to greater bilayer-surface localization of the peptides. Overall, ultimate insertion and destruction of the host cell membrane is highly dependent on the presence of Phe-2 and Phe-6 (Cu 1a) or Leu-6 (Cu 2a) in the N-terminal sequences of native cupiennins.
Collapse
Affiliation(s)
- Lucia Kuhn-Nentwig
- Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, CH-3012 Bern, Switzerland.
| | | | | | | | | |
Collapse
|
173
|
Bauwens A, Betz J, Meisen I, Kemper B, Karch H, Müthing J. Facing glycosphingolipid-Shiga toxin interaction: dire straits for endothelial cells of the human vasculature. Cell Mol Life Sci 2013; 70:425-57. [PMID: 22766973 PMCID: PMC11113656 DOI: 10.1007/s00018-012-1060-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 05/25/2012] [Accepted: 06/14/2012] [Indexed: 12/23/2022]
Abstract
The two major Shiga toxin (Stx) types, Stx1 and Stx2, produced by enterohemorrhagic Escherichia coli (EHEC) in particular injure renal and cerebral microvascular endothelial cells after transfer from the human intestine into the circulation. Stxs are AB(5) toxins composed of an enzymatically active A subunit and the pentameric B subunit, which preferentially binds to the glycosphingolipid globotriaosylceramide (Gb3Cer/CD77). This review summarizes the current knowledge on Stx-caused cellular injury and the structural diversity of Stx receptors as well as the initial molecular interaction of Stxs with the human endothelium of different vascular beds. The varying lipoforms of Stx receptors and their spatial organization in lipid rafts suggest a central role in different modes of receptor-mediated endocytosis and intracellular destiny of the toxins. The design and development of tailored Stx neutralizers targeting the oligosaccharide-toxin recognition event has become a very real prospect to ameliorate or prevent life-threatening renal and neurological complications.
Collapse
Affiliation(s)
- Andreas Bauwens
- Institute for Hygiene, University of Münster, Robert-Koch-Str. 41, 48149 Münster, Germany
| | - Josefine Betz
- Institute for Hygiene, University of Münster, Robert-Koch-Str. 41, 48149 Münster, Germany
| | - Iris Meisen
- Institute for Hygiene, University of Münster, Robert-Koch-Str. 41, 48149 Münster, Germany
- Interdisciplinary Center for Clinical Research, University of Münster, Domagkstr. 3, 48149 Münster, Germany
| | - Björn Kemper
- Center for Biomedical Optics and Photonics, University of Münster, Robert-Koch-Str. 45, 48149 Münster, Germany
| | - Helge Karch
- Institute for Hygiene, University of Münster, Robert-Koch-Str. 41, 48149 Münster, Germany
| | - Johannes Müthing
- Institute for Hygiene, University of Münster, Robert-Koch-Str. 41, 48149 Münster, Germany
- Interdisciplinary Center for Clinical Research, University of Münster, Domagkstr. 3, 48149 Münster, Germany
| |
Collapse
|
174
|
Chinnapen DJF, Hsieh WT, te Welscher YM, Saslowsky DE, Kaoutzani L, Brandsma E, D'Auria L, Park H, Wagner JS, Drake KR, Kang M, Benjamin T, Ullman MD, Costello CE, Kenworthy AK, Baumgart T, Massol RH, Lencer WI. Lipid sorting by ceramide structure from plasma membrane to ER for the cholera toxin receptor ganglioside GM1. Dev Cell 2013; 23:573-86. [PMID: 22975326 DOI: 10.1016/j.devcel.2012.08.002] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 04/06/2012] [Accepted: 08/04/2012] [Indexed: 01/26/2023]
Abstract
The glycosphingolipid GM1 binds cholera toxin (CT) on host cells and carries it retrograde from the plasma membrane (PM) through endosomes, the trans-Golgi (TGN), and the endoplasmic reticulum (ER) to induce toxicity. To elucidate how a membrane lipid can specify trafficking in these pathways, we synthesized GM1 isoforms with alternate ceramide domains and imaged their trafficking in live cells. Only GM1 with unsaturated acyl chains sorted efficiently from PM to TGN and ER. Toxin binding, which effectively crosslinks GM1 lipids, was dispensable, but membrane cholesterol and the lipid raft-associated proteins actin and flotillin were required. The results implicate a protein-dependent mechanism of lipid sorting by ceramide structure and provide a molecular explanation for the diversity and specificity of retrograde trafficking by CT in host cells.
Collapse
Affiliation(s)
- Daniel J-F Chinnapen
- Division of Gastroenterology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
175
|
de Jong DH, Lopez CA, Marrink SJ. Molecular view on protein sorting into liquid-ordered membrane domains mediated by gangliosides and lipid anchors. Faraday Discuss 2013; 161:347-63; discussion 419-59. [DOI: 10.1039/c2fd20086d] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
176
|
Kolter T. Ganglioside biochemistry. ISRN BIOCHEMISTRY 2012; 2012:506160. [PMID: 25969757 PMCID: PMC4393008 DOI: 10.5402/2012/506160] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 10/09/2012] [Indexed: 01/21/2023]
Abstract
Gangliosides are sialic acid-containing glycosphingolipids. They occur especially on the cellular surfaces of neuronal cells, where they form a complex pattern, but are also found in many other cell types. The paper provides a general overview on their structures, occurrence, and metabolism. Key functional, biochemical, and pathobiochemical aspects are summarized.
Collapse
Affiliation(s)
- Thomas Kolter
- Program Unit Membrane Biology & Lipid Biochemistry, LiMES, University of Bonn, Gerhard-Domagk Straße 1, 53121 Bonn, Germany
| |
Collapse
|
177
|
Molecular Modelling and Molecular Dynamics studies of GD1A, GD1B and their complexes with BoNT/B – Perspectives in interaction and specificity. J Struct Biol 2012; 180:497-508. [DOI: 10.1016/j.jsb.2012.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 08/14/2012] [Indexed: 11/23/2022]
|
178
|
Aureli M, Bassi R, Loberto N, Regis S, Prinetti A, Chigorno V, Aerts JM, Boot RG, Filocamo M, Sonnino S. Cell surface associated glycohydrolases in normal and Gaucher disease fibroblasts. J Inherit Metab Dis 2012; 35:1081-91. [PMID: 22526844 DOI: 10.1007/s10545-012-9478-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 03/05/2012] [Accepted: 03/07/2012] [Indexed: 12/15/2022]
Abstract
Gaucher disease (GD) is the most common lysosomal disorder and is caused by an inherited autosomal recessive deficiency in β-glucocerebrosidase. This enzyme, like other glycohydrolases involved in glycosphingolipid (GSL) metabolism, is present in both plasma membrane (PM) and intracellular fractions. We analyzed the activities of CBE-sensitive β-glucosidase (GBA1) and AMP-DNM-sensitive β-glucosidase (GBA2) in total cell lysates and PM of human fibroblast cell lines from control (normal) subjects and from patients with GD clinical types 1, 2, and 3. GBA1 activities in both total lysate and PM of GD fibroblasts were low, and their relative percentages were similar to those of control cells. In contrast, GBA2 activities were higher in GD cells than in control cells, and the degree of increase differed among the three GD types. The increase of GBA2 enzyme activity was correlated with increased expression of GBA2 protein as evaluated by QRT-PCR. Activities of β-galactosidase and β-hexosaminidase in PM were significantly higher for GD cells than for control cells and also showed significant differences among the three GD types, suggesting the occurrence of cross-talk among the enzymes involved in GSL metabolism. Our findings indicate that the profiles of glycohydrolase activities in PM may provide a valuable tool to refine the classification of GD into distinct clinical types.
Collapse
Affiliation(s)
- Massimo Aureli
- Department of Medical Chemistry, Biochemistry and Biotechnology, University of Milan, 20090, Segrate, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
179
|
Fanzani A, Zanola A, Faggi F, Papini N, Venerando B, Tettamanti G, Sampaolesi M, Monti E. Implications for the mammalian sialidases in the physiopathology of skeletal muscle. Skelet Muscle 2012; 2:23. [PMID: 23114189 PMCID: PMC3534598 DOI: 10.1186/2044-5040-2-23] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 10/02/2012] [Indexed: 12/11/2022] Open
Abstract
The family of mammalian sialidases is composed of four distinct versatile enzymes that remove negatively charged terminal sialic acid residues from gangliosides and glycoproteins in different subcellular areas and organelles, including lysosomes, cytosol, plasma membrane and mitochondria. In this review we summarize the growing body of data describing the important role of sialidases in skeletal muscle, a complex apparatus involved in numerous key functions and whose functional integrity can be affected by various conditions, such as aging, chronic diseases, cancer and neuromuscular disorders. In addition to supporting the proper catabolism of glycoconjugates, sialidases can affect different signaling pathways by desialylation of many receptors and modulation of ganglioside content in cell membranes, thus actively participating in myoblast proliferation, differentiation and hypertrophy, insulin responsiveness and skeletal muscle architecture.
Collapse
Affiliation(s)
- Alessandro Fanzani
- Department of Biomedical Sciences and Biotechnologies and Interuniversitary Institute of Myology (IIM), University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
180
|
Leonhard V, Alasino RV, Bianco ID, Garro AG, Heredia V, Beltramo DM. Self-assembled micelles of monosialogangliosides as nanodelivery vehicles for taxanes. J Control Release 2012; 162:619-27. [PMID: 22877735 DOI: 10.1016/j.jconrel.2012.07.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 07/19/2012] [Accepted: 07/20/2012] [Indexed: 10/28/2022]
Abstract
We demonstrate herein that taxanes (paclitaxel (Ptx) and docetaxel (Dtx)) can be spontaneously loaded into ganglioside nanomicelles. The efficiency of gangliosides to solubilize taxanes was highly dependent on their self-aggregating structure. Thus, GM3 that forms unilamellar vesicles was less efficient to solubilize taxanes than gangliosides that form micelles (i.e. GM1 and GM2). Sialic acid cyclization of GM1 by acid treatment led to an important reduction in its capacity to solubilize taxanes, as also did the replacement of the fatty acid of ceramide by a dicholoracetyl group. Water solubility of paclitaxel (Ptx) is less than 1 μg mL⁻¹ and increased up to 6.3mg.mL⁻¹ upon its association with GM1 micelles. The incorporation of Ptx in GM1 reached an optimum at GM1/Ptx 20/1 molar ratio when performed at room temperature. An increase in the solubilization capacity of GM1 micelles was observed upon dehydration of their polar head group by pre-treatment at 55 °C. Loading of Ptx into the micelle induced a structural reorganization that led to an important protection of Ptx reducing its hydrolysis at alkaline pH. Diffusion of either GM1 or Ptx was restricted upon mixed-micelle formation indicating that they are kinetically more stable than pure ganglioside micelles. X-ray powder diffraction of lyophilized GM1 micelles with Ptx showed a change in their internal structure from a crystalline state to completely amorphous. Taxane-ganglioside mixed micelles were stable in solution for at least 4months and also upon freeze-thawing or lyophilization-solubilization cycles. Upon mixing with human blood constituents, GM1/Ptx micelles did not induce hemolysis or platelet aggregation and were spontaneously covered with human serum albumin (HSA), which could aid in the delivery of micellar content to tumors. In vitro antimitotic activity of GM1/Ptx mixed micelles was qualitatively equivalent to that of free drug in DMSO solution.
Collapse
Affiliation(s)
- Victoria Leonhard
- Centro de Excelencia en Productos y Procesos de Córdoba-CEPROCOR, Argentina
| | | | | | | | | | | |
Collapse
|
181
|
Venkateshwari S, Veluraja K. Conformational analysis of GT1B ganglioside and its interaction with botulinum neurotoxin type B: a study by molecular modeling and molecular dynamics. J Biomol Struct Dyn 2012; 30:255-68. [DOI: 10.1080/07391102.2012.680027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
182
|
Hicks DA, Nalivaeva NN, Turner AJ. Lipid rafts and Alzheimer's disease: protein-lipid interactions and perturbation of signaling. Front Physiol 2012; 3:189. [PMID: 22737128 PMCID: PMC3381238 DOI: 10.3389/fphys.2012.00189] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 05/21/2012] [Indexed: 12/16/2022] Open
Abstract
Lipid rafts are membrane domains, more ordered than the bulk membrane and enriched in cholesterol and sphingolipids. They represent a platform for protein-lipid and protein–protein interactions and for cellular signaling events. In addition to their normal functions, including membrane trafficking, ligand binding (including viruses), axonal development and maintenance of synaptic integrity, rafts have also been implicated in the pathogenesis of several neurodegenerative diseases including Alzheimer’s disease (AD). Lipid rafts promote interaction of the amyloid precursor protein (APP) with the secretase (BACE-1) responsible for generation of the amyloid β peptide, Aβ. Rafts also regulate cholinergic signaling as well as acetylcholinesterase and Aβ interaction. In addition, such major lipid raft components as cholesterol and GM1 ganglioside have been directly implicated in pathogenesis of the disease. Perturbation of lipid raft integrity can also affect various signaling pathways leading to cellular death and AD. In this review, we discuss modulation of APP cleavage by lipid rafts and their components, while also looking at more recent findings on the role of lipid rafts in signaling events.
Collapse
Affiliation(s)
- David A Hicks
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds Leeds, UK
| | | | | |
Collapse
|
183
|
Abstract
The plasma membrane of vertebrate hair bundles interacts intimately with the bundle cytoskeleton to support mechanotransduction and homeostasis. To determine the membrane composition of bundles, we used lipid mass spectrometry with purified chick vestibular bundles. While the bundle glycerophospholipids and acyl chains resemble those of other endomembranes, bundle ceramide and sphingomyelin nearly exclusively contain short-chain, saturated acyl chains. Confocal imaging of isolated bullfrog vestibular hair cells shows that the bundle membrane segregates spatially into at least three large structural and functional domains. One membrane domain, including the stereocilia basal tapers and ∼1 μm of the shaft, the location of the ankle links, is enriched in the lipid phosphatase PTPRQ (protein tyrosine phosphatase Q) and polysialylated gangliosides. The taper domain forms a sharp boundary with the shaft domain, which contains the plasma membrane Ca(2+)-ATPase isoform 2 (PMCA2) and phosphatidylinositol 4,5-bisphosphate [PI(4,5)P(2)]; moreover, a tip domain has elevated levels of cholesterol, PMCA2, and PI(4,5)P(2). Protein mass spectrometry shows that bundles from chick vestibular hair cells contain a complete set of proteins that transport, synthesize, and degrade PI(4,5)P(2). The membrane domains have functional significance; radixin, essential for hair-bundle stability, is activated at the taper-shaft boundary in a PI(4,5)P(2)-dependent manner, allowing assembly of protein complexes at that site. Membrane domains within stereocilia thus define regions within hair bundles that allow compartmentalization of Ca(2+) extrusion and assembly of protein complexes at discrete locations.
Collapse
|
184
|
Zhang J, Ren Y, Huang B, Tao B, Ransborg Pedersen M, Li D. Determination of disialoganglioside GD3 and monosialoganglioside GM3 in infant formulas and whey protein concentrates by ultra-performance liquid chromatography/electrospray ionization tandem mass spectrometry. J Sep Sci 2012; 35:937-46. [PMID: 22589154 DOI: 10.1002/jssc.201101039] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jingshun Zhang
- Department of Food Science and Nutrition; College of Biosystems Engineering and Food Science; Zhejiang University; Hangzhou Zhejiang P. R. China
| | - Yiping Ren
- Zhejiang Provincial Center for Disease Prevention and Control; Hangzhou Zhejiang P. R. China
| | - Baifen Huang
- Zhejiang Provincial Center for Disease Prevention and Control; Hangzhou Zhejiang P. R. China
| | - Baohua Tao
- Zhejiang Beingmate Scientific-Industrial-Trade Share Co., Ltd.; Hangzhou Zhejiang P. R. China
| | | | - Duo Li
- Department of Food Science and Nutrition; College of Biosystems Engineering and Food Science; Zhejiang University; Hangzhou Zhejiang P. R. China
| |
Collapse
|
185
|
Kabaso D, Bobrovska N, Góźdź W, Gongadze E, Kralj-Iglič V, Zorec R, Iglič A. The transport along membrane nanotubes driven by the spontaneous curvature of membrane components. Bioelectrochemistry 2012; 87:204-10. [PMID: 22502994 DOI: 10.1016/j.bioelechem.2012.02.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 02/20/2012] [Accepted: 02/28/2012] [Indexed: 12/11/2022]
Abstract
Intercellular membrane nanotubes (ICNs) serve as a very specific transport system between neighboring cells. The underlying mechanisms responsible for the transport of membrane components and vesicular dilations along the ICNs are not clearly understood. The present study investigated the spatial distribution of anisotropic membrane components of tubular shapes and isotropic membrane components of spherical shapes. Experimental results revealed the preferential distribution of CTB (cholera toxin B)-GM1 complexes mainly on the spherical cell membrane, and cholesterol-sphingomyelin at the membrane leading edge and ICNs. In agreement with previous studies, we here propose that the spatial distribution of CTB-GM1 complexes and cholesterol-sphingomyelin rafts were due to their isotropic and anisotropic shapes, respectively. To elucidate the relationship between a membrane component shape and its spatial distribution, a two-component computational model was constructed. The minimization of the membrane bending (free) energy revealed the enrichment of the anisotropic component along the ICN and the isotropic component in the parent cell membrane, which was due to the curvature mismatch between the ICN curvature and the spontaneous curvature of the isotropic component. The equations of motion, derived from the differentiation of the membrane free energy, revealed a curvature-dependent flux of the isotropic component and a curvature-dependent force exerted on a vesicular dilation along the ICN. Finally, the effects of possible changes in the orientational ordering of the anisotropic component attendant to the transport of the vesicular dilation were discussed with connection to the propagation of electrical and chemical signals.
Collapse
Affiliation(s)
- Doron Kabaso
- Laboratory of Biophysics, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia.
| | | | | | | | | | | | | |
Collapse
|
186
|
Bionaz M, Periasamy K, Rodriguez-Zas SL, Everts RE, Lewin HA, Hurley WL, Loor JJ. Old and new stories: revelations from functional analysis of the bovine mammary transcriptome during the lactation cycle. PLoS One 2012; 7:e33268. [PMID: 22428004 PMCID: PMC3299771 DOI: 10.1371/journal.pone.0033268] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 02/08/2012] [Indexed: 11/29/2022] Open
Abstract
The cow mammary transcriptome was explored at −30, −15, 1, 15, 30, 60, 120, 240, and 300 d relative to parturition. A total of 6,382 differentially expressed genes (DEG) at a false discovery rate ≤0.001 were found throughout lactation. The greatest number of DEG (>3,500 DEG) was observed at 60 and 120 d vs. −30 d with the largest change between consecutive time points observed at −15 vs. 1 d and 120 vs. 240 d. Functional analysis of microarray data was performed using the Dynamic Impact Approach (DIA). The DIA analysis of KEGG pathways uncovered as the most impacted and induced ‘Galactose metabolism’, ‘Glycosylphosphatidylinositol (GPI)-anchor biosynthesis’, and ‘PPAR signaling’; whereas, ‘Antigen processing and presentation’ was among the most inhibited. The integrated interpretation of the results suggested an overall increase in metabolism during lactation, particularly synthesis of carbohydrates and lipid. A marked degree of utilization of amino acids as energy source, an increase of protein export, and a decrease of the protein synthesis machinery as well cell cycle also were suggested by the DIA analysis. The DIA analysis of Gene Ontology and other databases uncovered an induction of Golgi apparatus and angiogenesis, and the inhibition of both immune cell activity/migration and chromosome modifications during lactation. All of the highly-impacted and activated functions during lactation were evidently activated at the onset of lactation and inhibited when milk production declined. The overall analysis indicated that the bovine mammary gland relies heavily on a coordinated transcriptional regulation to begin and end lactation. The functional analysis using DIA underscored the importance of genes associated with lactose synthesis, lipid metabolism, protein synthesis, Golgi, transport, cell cycle/death, epigenetic regulation, angiogenesis, and immune function during lactation.
Collapse
Affiliation(s)
- Massimo Bionaz
- Department of Animal Sciences, University of Illinois, Urbana, Illinois, United States of America
- Institute for Genomic Biology, University of Illinois, Urbana, Illinois, United States of America
- * E-mail: (MB); (JJL)
| | - Kathiravan Periasamy
- Department of Animal Sciences, University of Illinois, Urbana, Illinois, United States of America
- Animal Production and Health Section, Seibersdorf Laboratories Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture International Atomic Energy Agency, Vienna, Austria
| | - Sandra L. Rodriguez-Zas
- Department of Animal Sciences, University of Illinois, Urbana, Illinois, United States of America
- Institute for Genomic Biology, University of Illinois, Urbana, Illinois, United States of America
| | - Robin E. Everts
- Department of Animal Sciences, University of Illinois, Urbana, Illinois, United States of America
| | - Harris A. Lewin
- Department of Animal Sciences, University of Illinois, Urbana, Illinois, United States of America
- Institute for Genomic Biology, University of Illinois, Urbana, Illinois, United States of America
| | - Walter L. Hurley
- Department of Animal Sciences, University of Illinois, Urbana, Illinois, United States of America
| | - Juan J. Loor
- Department of Animal Sciences, University of Illinois, Urbana, Illinois, United States of America
- Division of Nutritional Sciences, University of Illinois, Urbana, Illinois, United States of America
- * E-mail: (MB); (JJL)
| |
Collapse
|
187
|
Immunoreactivity of the 14F7 Mab (Raised against N-Glycolyl GM3 Ganglioside) as a Positive Prognostic Factor in Non-Small-Cell Lung Cancer. PATHOLOGY RESEARCH INTERNATIONAL 2012; 2012:235418. [PMID: 22482082 PMCID: PMC3317082 DOI: 10.1155/2012/235418] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 11/20/2011] [Indexed: 12/25/2022]
Abstract
Lung carcinoma is the leading cause of cancer-related mortality worldwide. Therefore, numerous studies are focusing on the assessment of other biological and molecular prognostic factors in these tumors. We evaluated the relationship between 14F7 Mab reactivity, pathological features, DNA-content and S-phase fraction (SPF), and their impact in the survival of NSCLC patients. Hematoxylin and eosin staining and immunohistochemistry optical microscopy assays as well as DNA content and SPF measuring using flow cytometry were performed. The 14F7 reactivity was widely observed in NSCLC sections, no depending of the clinicopathological characteristics. We also obtained differences in the intensity of reaction with 14F7 as well as in the SPF between diploid and aneuploid carcinomas. Patients with diploid tumors showing higher SPF and 14F7 reaction joint to a low mitotic index displayed higher survival rates. Our results are in agreement with the assumption of the possible positive prognostic value of 14F7 staining in NSCLC.
Collapse
|
188
|
Ganglioside GM1 induces phosphorylation of mutant huntingtin and restores normal motor behavior in Huntington disease mice. Proc Natl Acad Sci U S A 2012; 109:3528-33. [PMID: 22331905 DOI: 10.1073/pnas.1114502109] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Huntington disease (HD) is a progressive neurodegenerative monogenic disorder caused by expansion of a polyglutamine stretch in the huntingtin (Htt) protein. Mutant huntingtin triggers neural dysfunction and death, mainly in the corpus striatum and cerebral cortex, resulting in pathognomonic motor symptoms, as well as cognitive and psychiatric decline. Currently, there is no effective treatment for HD. We report that intraventricular infusion of ganglioside GM1 induces phosphorylation of mutant huntingtin at specific serine amino acid residues that attenuate huntingtin toxicity, and restores normal motor function in already symptomatic HD mice. Thus, our studies have identified a potential therapy for HD that targets a posttranslational modification of mutant huntingtin with critical effects on disease pathogenesis.
Collapse
|
189
|
|
190
|
Sekimoto J, Kabayama K, Gohara K, Inokuchi JI. Dissociation of the insulin receptor from caveolae during TNFα-induced insulin resistance and its recovery byd-PDMP. FEBS Lett 2011; 586:191-5. [DOI: 10.1016/j.febslet.2011.12.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 12/14/2011] [Indexed: 12/01/2022]
|
191
|
Zamfir AD, Serb A, Vukeli Ž, Flangea C, Schiopu C, Fabris D, Kalanj-Bognar S, Capitan F, Sisu E. Assessment of the molecular expression and structure of gangliosides in brain metastasis of lung adenocarcinoma by an advanced approach based on fully automated chip-nanoelectrospray mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2011; 22:2145-2159. [PMID: 22002228 DOI: 10.1007/s13361-011-0250-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 09/12/2011] [Accepted: 09/12/2011] [Indexed: 05/31/2023]
Abstract
Gangliosides (GGs), sialic acid-containing glycosphingolipids, are known to be involved in the invasive/metastatic behavior of brain tumor cells. Development of modern methods for determination of the variations in GG expression and structure during neoplastic cell transformation is a priority in the field of biomedical analysis. In this context, we report here on the first optimization and application of chip-based nanoelectrospray (NanoMate robot) mass spectrometry (MS) for the investigation of gangliosides in a secondary brain tumor. In our work a native GG mixture extracted and purified from brain metastasis of lung adenocarcinoma was screened by NanoMate robot coupled to a quadrupole time-of-flight MS. A native GG mixture from an age-matched healthy brain tissue, sampled and analyzed under identical conditions, served as a control. Comparative MS analysis demonstrated an evident dissimilarity in GG expression in the two tissue types. Brain metastasis is characterized by many species having a reduced N-acetylneuraminic acid (Neu5Ac) content, however, modified by fucosylation or O-acetylation such as Fuc-GM4, Fuc-GM3, di-O-Ac-GM1, O-Ac-GM3. In contrast, healthy brain tissue is dominated by longer structures exhibiting from mono- to hexasialylated sugar chains. Also, significant differences in ceramide composition were discovered. By tandem MS using collision-induced dissociation at low energies, brain metastasis-associated GD3 (d18:1/18:0) species as well as an uncommon Fuc-GM1 (d18:1/18:0) detected in the normal brain tissue could be structurally characterized. The novel protocol was able to provide a reliable compositional and structural characterization with high analysis pace and at a sensitivity situated in the fmol range.
Collapse
Affiliation(s)
- Alina D Zamfir
- Department of Chemical and Biological Sciences, Aurel Vlaicu University of Arad, Revolutiei Blvd. 77, RO-310130, Arad, Romania.
| | | | | | | | | | | | | | | | | |
Collapse
|
192
|
Janas T, Janas T. Membrane oligo- and polysialic acids. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:2923-32. [DOI: 10.1016/j.bbamem.2011.08.036] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 08/29/2011] [Accepted: 08/31/2011] [Indexed: 10/17/2022]
|
193
|
Gangliosides and the multiscale modulation of membrane structure. Chem Phys Lipids 2011; 164:796-810. [DOI: 10.1016/j.chemphyslip.2011.09.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 09/12/2011] [Accepted: 09/13/2011] [Indexed: 02/07/2023]
|
194
|
Thin-layer chromatography, overlay technique and mass spectrometry: A versatile triad advancing glycosphingolipidomics. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1811:875-96. [DOI: 10.1016/j.bbalip.2011.04.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 03/18/2011] [Accepted: 04/10/2011] [Indexed: 12/16/2022]
|
195
|
Pham PH, Duffy TL, Dmytrash AL, Lien VW, Thomson AB, Clandinin M. Estimate of dietary ganglioside intake in a group of healthy Edmontonians based on selected foods. J Food Compost Anal 2011. [DOI: 10.1016/j.jfca.2011.01.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
196
|
Bally M, Gunnarsson A, Svensson L, Larson G, Zhdanov VP, Höök F. Interaction of single viruslike particles with vesicles containing glycosphingolipids. PHYSICAL REVIEW LETTERS 2011; 107:188103. [PMID: 22107678 DOI: 10.1103/physrevlett.107.188103] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Indexed: 05/31/2023]
Abstract
Glycosphingolipids are involved in the first steps of virus-cell interaction, where they mediate specific recognition of the host cell membrane. We have employed total-internal-reflection fluorescence microscopy to explore the interaction kinetics between individual unlabeled noroviruslike particles, which are attached to a glycosphingolipid-containing lipid bilayer, and fluorescent vesicles containing different types and concentrations of glycosphingolipids. Under association equilibrium, the vesicle-binding rate is found to be kinetically limited, yielding information on the corresponding activation energy. The dissociation kinetics are logarithmic over a wide range of time. The latter is explained by the vesicle-size-related distribution of the dissociation activation energy. The biological, pharmaceutical, and diagnostic relevance of the study is briefly discussed.
Collapse
Affiliation(s)
- M Bally
- Department of Applied Physics, Chalmers University of Technology, S-412 96 Göteborg, Sweden
| | | | | | | | | | | |
Collapse
|
197
|
Nimrichter L, Rodrigues ML. Fungal glucosylceramides: from structural components to biologically active targets of new antimicrobials. Front Microbiol 2011; 2:212. [PMID: 22025918 PMCID: PMC3198225 DOI: 10.3389/fmicb.2011.00212] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 09/30/2011] [Indexed: 01/09/2023] Open
Abstract
The first work reporting synthesis of glucosylceramide (cerebrin, GlcCer) by yeasts was published in 1930. During approximately 70 years members of this class of glycosphingolipids (GSL) were considered merely structural components of plasma membrane in fungi. However, in the last decade GlcCer was reported to be involved with fungal growth, differentiation, virulence, immunogenicity, and lipid raft architecture in at least two human pathogens. Fungal GlcCer are structurally distinct from their mammalian counterparts and enriched at the cell wall, which makes this molecule an effective target for antifungal activity of specific ligands (peptides and antibodies to GlcCer). Therefore, GSL are promising targets for new drugs to combat fungal diseases. This review discusses the most recent information on biosynthesis and role of GlcCer in fungal pathogens.
Collapse
Affiliation(s)
- Leonardo Nimrichter
- Laboratório de Estudos Integrados em Bioquímica Microbiana, Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| | | |
Collapse
|
198
|
Santos AXS, Maia JE, Crespo PM, Pettenuzzo LF, Daniotti JL, Barbé-Tuana FM, Martins LM, Trindade VMT, Borojevic R, Guma FCR. GD1a modulates GM-CSF-induced cell proliferation. Cytokine 2011; 56:600-7. [PMID: 21930390 DOI: 10.1016/j.cyto.2011.08.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 07/30/2011] [Accepted: 08/24/2011] [Indexed: 01/13/2023]
Abstract
Gangliosides have been extensively described to be involved in the proliferation and differentiation of various cell types, such including hematopoietic cells. Our previous studies on murine models of stroma-mediated myelopoiesis have shown that gangliosides are required for optimal capacity of stromal cells to support proliferation of myeloid precursor cells, being shed to the supernatant and selectively incorporated into myeloid cell membranes. Here we describe the effect of gangliosides on the specific granulocyte-macrophage colony-stimulating factor (GM-CSF)-induced proliferation. For that, we used the monocytic FDC-P1 cell line, which is dependent upon GM-CSF for survival and proliferation. Cells were cultured in the presence of GM-CSF and exogenous gangliosides (GM3, GD1a or GM1) or in the absence of endogenous ganglioside synthesis by the use of a ceramide-synthase inhibitor, D-PDMP. We observed that exogenous addition of GD1a enhanced the GM-CSF-induced proliferation of the FDC-P1 cells. Also, we detected an increase in the expression of the α isoform of the GM-CSF receptor (GMRα) as well as of the transcription factor C/EBPα. On the contrary, inhibition of glucosylceramide synthesis was accompanied by a decrease in cell proliferation, which was restored upon the addition of exogenous GD1a. We also show a co-localization of GD1a and GMR by immunocytochemistry. Taken together, our results suggest for the first time that ganglioside GD1a play a role on the modulation of GM-CSF-mediated proliferative response, which might be of great interest not only in hematopoiesis, but also in other immunological processes, Alzheimer disease, alveolar proteinosis and wherever GM-CSF exerts its effects.
Collapse
Affiliation(s)
- A X S Santos
- Laboratório de Bioquímica e Biologia Celular de Lipídios, Depto Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
199
|
Aβ42 oligomers, but not fibrils, simultaneously bind to and cause damage to ganglioside-containing lipid membranes. Biochem J 2011; 439:67-77. [DOI: 10.1042/bj20110750] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Aβ (amyloid-β peptide) assembles to form amyloid fibres that accumulate in senile plaques associated with AD (Alzheimer's disease). The major constituent, a 42-residue Aβ, has the propensity to assemble and form soluble and potentially cytotoxic oligomers, as well as ordered stable amyloid fibres. It is widely believed that the cytotoxicity is a result of the formation of transient soluble oligomers. This observed toxicity may be associated with the ability of oligomers to associate with and cause permeation of lipid membranes. In the present study, we have investigated the ability of oligomeric and fibrillar Aβ42 to simultaneously associate with and affect the integrity of biomimetic membranes in vitro. Surface plasmon field-enhanced fluorescence spectroscopy reveals that the binding of the freshly dissolved oligomeric 42-residue peptide binds with a two-step association with the lipid bilayer, and causes disruption of the membrane resulting in leakage from vesicles. In contrast, fibrils bind with a 2-fold reduced avidity, and their addition results in approximately 2-fold less fluorophore leakage compared with oligomeric Aβ. Binding of the oligomers may be, in part, mediated by the GM1 ganglioside receptors as there is a 1.8-fold increase in oligomeric Aβ binding and a 2-fold increase in permeation compared with when GM1 is not present. Atomic force microscopy reveals the formation of defects and holes in response to oligomeric Aβ, but not preformed fibrillar Aβ. The results of the present study indicate that significant membrane disruption arises from association of low-molecular-mass Aβ and this may be mediated by mechanical damage to the membranes by Aβ aggregation. This membrane disruption may play a key role in the mechanism of Aβ-related cell toxicity in AD.
Collapse
|
200
|
Cholesterol depletion-induced inhibition of stretch-activated channels is mediated via actin rearrangement. Biochem Biophys Res Commun 2011; 412:80-5. [DOI: 10.1016/j.bbrc.2011.07.046] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Accepted: 07/11/2011] [Indexed: 11/21/2022]
|