151
|
Microvesicles containing miRNAs promote muscle cell death in cancer cachexia via TLR7. Proc Natl Acad Sci U S A 2014; 111:4525-9. [PMID: 24616506 DOI: 10.1073/pnas.1402714111] [Citation(s) in RCA: 183] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
MicroRNAs (miRNAs) are small, noncoding RNAs that regulate gene expression and, in cancers, are often packaged within secreted microvesicles. The cachexia syndrome is a debilitating state of cancer that predominantly results from the loss of skeletal muscle mass, which is in part associated with apoptosis. How tumors promote apoptosis in distally located skeletal muscles has not been explored. Using both tumor cell lines and patient samples, we show that tumor-derived microvesicles induce apoptosis of skeletal muscle cells. This proapoptotic activity is mediated by a microRNA cargo, miR-21, which signals through the Toll-like 7 receptor (TLR7) on murine myoblasts to promote cell death. Furthermore, tumor microvesicles and miR-21 require c-Jun N-terminal kinase activity to regulate this apoptotic response. Together, these results describe a unique pathway by which tumor cells promote muscle loss, which might provide a great insight into elucidating the causes and treatment options of cancer cachexia.
Collapse
|
152
|
Cianferotti L, Brandi ML. Muscle-bone interactions: basic and clinical aspects. Endocrine 2014; 45:165-77. [PMID: 23990248 DOI: 10.1007/s12020-013-0026-8] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 07/25/2013] [Indexed: 12/19/2022]
Abstract
Muscle and bone are anatomically and functionally closely connected. The traditional concept that skeletal muscles serve to load bone and transform skeletal segments into a system of levers has been further refined into the mechanostat theory, according to which striated muscle is essential for bone development and maintenance, modelling and remodelling. Besides biomechanical function, skeletal muscle and bone are endocrine organs able to secrete factors capable of modulating biological function within their microenvironment, in nearby tissues or in distant organs. The endocrine properties of muscle and bone may serve to sense and transduce biomechanical signals such as loading, unloading or exercise, or systemic hormonal stimuli into biochemical signals. Nonetheless, given the close anatomical relationship between skeletal muscle and bone, paracrine interactions particularly at the periosteal interface can be hypothesized. These mechanisms can assume particular importance during bone and muscle healing after musculoskeletal injury. Basic studies in vitro and in rodents have helped to dissect the multiple influences of skeletal muscle on bone and/or expression of inside-organ metabolism and have served to explain clinical observations linking muscle-to-bone quality. Recent evidences pinpoint that also bone tissue is able to modulate directly or indirectly skeletal muscle metabolism, thus empowering the crosstalk hypothesis to be further tested in humans in vivo.
Collapse
Affiliation(s)
- Luisella Cianferotti
- Unit of Bone and Mineral Metabolism, Department of Surgery and Translational Medicine, Section of Endocrinology and Metabolism, School of Human Health Sciences, University of Florence, Viale Pieraccini, 6, 50139, Florence, Italy
| | | |
Collapse
|
153
|
Iyer CC, McGovern VL, Wise DO, Glass DJ, Burghes AHM. Deletion of atrophy enhancing genes fails to ameliorate the phenotype in a mouse model of spinal muscular atrophy. Neuromuscul Disord 2014; 24:436-44. [PMID: 24656734 DOI: 10.1016/j.nmd.2014.02.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 01/16/2014] [Accepted: 02/11/2014] [Indexed: 11/25/2022]
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive disease causing degeneration of lower motor neurons and muscle atrophy. One therapeutic avenue for SMA is targeting signaling pathways in muscle to ameliorate atrophy. Muscle Atrophy F-box, MAFbx, and Muscle RING Finger 1, MuRF1, are muscle-specific ubiquitin ligases upregulated in skeletal and cardiac muscle during atrophy. Homozygous knock-out of MAFbx or MuRF1 causes muscle sparing in adult mice subjected to atrophy by denervation. We wished to determine whether blockage of the major muscle atrophy pathways by deletion of MAFbx or MuRF1 in a mouse model of SMA would improve the phenotype. Deletion of MAFbx in the Δ7 SMA mouse model had no effect on the weight and the survival of the mice while deletion of MuRF1 was deleterious. MAFbx(-/-)-SMA mice showed a significant alteration in fiber size distribution tending towards larger fibers. In skeletal and cardiac tissue MAFbx and MuRF1 transcripts were upregulated whereas MuRF2 and MuRF3 levels were unchanged in Δ7 SMA mice. We conclude that deletion of the muscle ubiquitin ligases does not improve the phenotype of a Δ7 SMA mouse. Furthermore, it seems unlikely that the beneficial effect of HDAC inhibitors is mediated through inhibition of MAFbx and MuRF1.
Collapse
Affiliation(s)
- Chitra C Iyer
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Vicki L McGovern
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Dawnne O Wise
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH, USA
| | - David J Glass
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Arthur H M Burghes
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH, USA; Department of Neurology, The Ohio State University, Columbus, OH, USA; Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
154
|
He WA, Berardi E, Cardillo VM, Acharyya S, Aulino P, Thomas-Ahner J, Wang J, Bloomston M, Muscarella P, Nau P, Shah N, Butchbach MER, Ladner K, Adamo S, Rudnicki MA, Keller C, Coletti D, Montanaro F, Guttridge DC. NF-κB-mediated Pax7 dysregulation in the muscle microenvironment promotes cancer cachexia. J Clin Invest 2014; 123:4821-35. [PMID: 24084740 DOI: 10.1172/jci68523] [Citation(s) in RCA: 259] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Accepted: 08/06/2013] [Indexed: 01/09/2023] Open
Abstract
Cachexia is a debilitating condition characterized by extreme skeletal muscle wasting that contributes significantly to morbidity and mortality. Efforts to elucidate the underlying mechanisms of muscle loss have predominantly focused on events intrinsic to the myofiber. In contrast, less regard has been given to potential contributory factors outside the fiber within the muscle microenvironment. In tumor-bearing mice and patients with pancreatic cancer, we found that cachexia was associated with a type of muscle damage resulting in activation of both satellite and nonsatellite muscle progenitor cells. These muscle progenitors committed to a myogenic program, but were inhibited from completing differentiation by an event linked with persistent expression of the self-renewing factor Pax7. Overexpression of Pax7 was sufficient to induce atrophy in normal muscle, while under tumor conditions, the reduction of Pax7 or exogenous addition of its downstream target, MyoD, reversed wasting by restoring cell differentiation and fusion with injured fibers. Furthermore, Pax7 was induced by serum factors from cachectic mice and patients, in an NF-κB-dependent manner, both in vitro and in vivo. Together, these results suggest that Pax7 responds to NF-κB by impairing the regenerative capacity of myogenic cells in the muscle microenvironment to drive muscle wasting in cancer.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Aged, 80 and over
- Animals
- Cachexia/etiology
- Cachexia/metabolism
- Cachexia/pathology
- Case-Control Studies
- Cell Line, Tumor
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Male
- Mice
- Mice, Inbred mdx
- Mice, Nude
- Mice, Transgenic
- Microscopy, Electron, Transmission
- Middle Aged
- Muscle Development
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Myoblasts, Skeletal/metabolism
- Myoblasts, Skeletal/pathology
- NF-kappa B/metabolism
- PAX7 Transcription Factor/genetics
- PAX7 Transcription Factor/metabolism
- Pancreatic Neoplasms/complications
- Pancreatic Neoplasms/metabolism
- Satellite Cells, Skeletal Muscle/metabolism
- Satellite Cells, Skeletal Muscle/pathology
- Tumor Microenvironment
- Young Adult
Collapse
|
155
|
D'Orlando C, Marzetti E, François S, Lorenzi M, Conti V, di Stasio E, Rosa F, Brunelli S, Doglietto GB, Pacelli F, Bossola M. Gastric cancer does not affect the expression of atrophy-related genes in human skeletal muscle. Muscle Nerve 2014; 49:528-33. [PMID: 23835743 DOI: 10.1002/mus.23945] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 06/24/2013] [Accepted: 06/25/2013] [Indexed: 11/09/2022]
Abstract
INTRODUCTION We evaluated the gene expression levels of atrogin-1, MuRF1, myostatin, follistatin, activin A, and inhibin alpha in skeletal muscle samples of patients with gastric cancer and controls. METHODS We studied 38 cancer patients and 12 controls who underwent surgery for gastric adenocarcinoma and benign abdominal diseases, respectively. A biopsy specimen was obtained from the rectus abdominis muscle from all participants. The relative gene expression of atrogin-1, MuRF1, myostatin, follistatin, activin A, and inhibin alpha was determined by quantitative real-time polymerase chain reaction analysis. RESULTS Atrogin-1 and MuRF1 mRNA expression was similar between cancer patients and controls and was unaffected by the disease stage or the severity of body weight loss. Transcript levels of myostatin and follistatin did not differ between cases and controls and were similar across disease stages and categories of weight loss. Finally, no differences were detected in activin A and inhibin alpha gene expression between cancer patients and controls. CONCLUSIONS In skeletal muscle, the gene expression of atrogin-1, MuRF1, myostatin, follistatin, activin A, and inhibin alpha is not affected by the presence of cancer. The expression of atrophy-related genes is unaffected by the disease stage and the degree of weight loss.
Collapse
|
156
|
MacDonald EM, Andres-Mateos E, Mejias R, Simmers JL, Mi R, Park JS, Ying S, Hoke A, Lee SJ, Cohn RD. Denervation atrophy is independent from Akt and mTOR activation and is not rescued by myostatin inhibition. Dis Model Mech 2014; 7:471-81. [PMID: 24504412 PMCID: PMC3974457 DOI: 10.1242/dmm.014126] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The purpose of our study was to compare two acquired muscle atrophies and the use of myostatin inhibition for their treatment. Myostatin naturally inhibits skeletal muscle growth by binding to ActRIIB, a receptor on the cell surface of myofibers. Because blocking myostatin in an adult wild-type mouse induces profound muscle hypertrophy, we applied a soluble ActRIIB receptor to models of disuse (limb immobilization) and denervation (sciatic nerve resection) atrophy. We found that treatment of immobilized mice with ActRIIB prevented the loss of muscle mass observed in placebo-treated mice. Our results suggest that this protection from disuse atrophy is regulated by serum and glucocorticoid-induced kinase (SGK) rather than by Akt. Denervation atrophy, however, was not protected by ActRIIB treatment, yet resulted in an upregulation of the pro-growth factors Akt, SGK and components of the mTOR pathway. We then treated the denervated mice with the mTOR inhibitor rapamycin and found that, despite a reduction in mTOR activation, there is no alteration of the atrophy phenotype. Additionally, rapamycin prevented the denervation-induced upregulation of the mTORC2 substrates Akt and SGK. Thus, our studies show that denervation atrophy is not only independent from Akt, SGK and mTOR activation but also has a different underlying pathophysiological mechanism than disuse atrophy.
Collapse
Affiliation(s)
- Elizabeth M MacDonald
- McKusick-Nathans Institute of Genetic Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
157
|
Liu H, Li X, Sun L, Wang H, Zhang R, Yang C, Li L, Wang J, He H, Krumm C. Effects of the regulation of follistatin mRNA expression by IGF-1 in duck (Anas platyrhynchos) skeletal muscle. Growth Horm IGF Res 2014; 24:35-41. [PMID: 24429073 DOI: 10.1016/j.ghir.2013.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 11/01/2013] [Accepted: 12/19/2013] [Indexed: 10/25/2022]
Abstract
The IGF-1 and TGF-β pathways have been shown to be involved in regulating muscle development. Many mediators that are associated with the regulation of muscle development have been found to participate in the cross-talk between these two pathways. To research the relationships between IGF-1 and the follistatin-mediated TGF-β pathways in duck skeletal muscle development, a series of studies were conducted. The results showed that follistatin had similar expression patterns to IGF-1 during duck embryonic muscle development. The in ovo feeding of IGF-1 to duck eggs was shown to increase follistatin expression in the duck skeletal muscle. Thus, IGF-1 may induce the mRNA expression of follistatin. These results suggest that follistatin may be a key regulator of multiple signaling cascades responding to the cross-talk between the IGF-1 and TGF-β pathways.
Collapse
Affiliation(s)
- Hehe Liu
- Institute of Animal Breeding and Genetics, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China
| | - Xinxin Li
- Institute of Animal Breeding and Genetics, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China
| | - Lingli Sun
- Institute of Animal Breeding and Genetics, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China
| | - Haohan Wang
- Institute of Animal Breeding and Genetics, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China
| | - Rongping Zhang
- Institute of Animal Breeding and Genetics, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China
| | - Chao Yang
- Institute of Animal Breeding and Genetics, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China
| | - Liang Li
- Institute of Animal Breeding and Genetics, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China
| | - Jiwen Wang
- Institute of Animal Breeding and Genetics, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China.
| | - Hua He
- Institute of Animal Breeding and Genetics, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China
| | - Christopher Krumm
- Institute of Animal Breeding and Genetics, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China
| |
Collapse
|
158
|
Piccirillo R, Demontis F, Perrimon N, Goldberg AL. Mechanisms of muscle growth and atrophy in mammals and Drosophila. Dev Dyn 2014; 243:201-15. [PMID: 24038488 PMCID: PMC3980484 DOI: 10.1002/dvdy.24036] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 08/01/2013] [Accepted: 08/01/2013] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The loss of skeletal muscle mass (atrophy) that accompanies disuse and systemic diseases is highly debilitating. Although the pathogenesis of this condition has been primarily studied in mammals, Drosophila is emerging as an attractive system to investigate some of the mechanisms involved in muscle growth and atrophy. RESULTS In this review, we highlight the outstanding unsolved questions that may benefit from a combination of studies in both flies and mammals. In particular, we discuss how different environmental stimuli and signaling pathways influence muscle mass and strength and how a variety of disease states can cause muscle wasting. CONCLUSIONS Studies in Drosophila and mammals should help identify molecular targets for the treatment of muscle wasting in humans.
Collapse
Affiliation(s)
- Rosanna Piccirillo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
- Department of Oncology, IRCCS - Mario Negri Institute for Pharmacological Research, Milano, Italy
| | - Fabio Demontis
- Department of Genetics, Harvard Medical School, Boston, MA 02115
- Department of Developmental Neurobiology, Division of Developmental Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105
| | - Norbert Perrimon
- Department of Genetics, Harvard Medical School, Boston, MA 02115
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115
| | | |
Collapse
|
159
|
Sato S, Ogura Y, Kumar A. TWEAK/Fn14 Signaling Axis Mediates Skeletal Muscle Atrophy and Metabolic Dysfunction. Front Immunol 2014; 5:18. [PMID: 24478779 PMCID: PMC3902304 DOI: 10.3389/fimmu.2014.00018] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 01/14/2014] [Indexed: 01/07/2023] Open
Abstract
Tumor necrosis factor-like weak inducer of apoptosis (TWEAK) through binding to its receptor fibroblast growth factor inducible 14 (Fn14) has been shown to regulate many cellular responses including proliferation, differentiation, apoptosis, inflammation, and fibrosis, under both physiological and pathological conditions. Emerging evidence suggests that TWEAK is also a major muscle wasting cytokine. TWEAK activates nuclear factor-κB signaling and proteolytic pathways such as ubiquitin–proteasome system, autophagy, and caspases to induce muscle proteolysis in cultured myotubes. Fn14 is dormant or expressed in minimal amounts in normal healthy muscle. However, specific atrophic conditions, such as denervation, immobilization, and starvation stimulate the expression of Fn14 leading to activation of TWEAK/Fn14 signaling and eventually skeletal muscle atrophy. TWEAK also causes slow- to fast-type fiber transition in skeletal muscle. Furthermore, recent studies suggest that TWEAK diminishes mitochondrial content and represses skeletal muscle oxidative phosphorylation capacity. TWEAK mediates these effects through affecting the expression of a number of genes and microRNAs. In this review article, we have discussed the recent advancements toward understanding the role and mechanisms of action of TWEAK/Fn14 signaling in skeletal muscle with particular reference to different models of atrophy and oxidative metabolism.
Collapse
Affiliation(s)
- Shuichi Sato
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine , Louisville, KY , USA
| | - Yuji Ogura
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine , Louisville, KY , USA
| | - Ashok Kumar
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine , Louisville, KY , USA
| |
Collapse
|
160
|
Jespersen JG, Mikkelsen UR, Nedergaard A, Thorlund JB, Schjerling P, Suetta C, Christensen PA, Aagaard P. Alterations in molecular muscle mass regulators after 8 days immobilizing Special Forces mission. Scand J Med Sci Sports 2014; 25:175-83. [PMID: 24422600 DOI: 10.1111/sms.12170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2013] [Indexed: 01/01/2023]
Abstract
In military operations, declined physical capacity can endanger the life of soldiers. During special support and reconnaissance (SSR) missions, Special Forces soldiers sustain 1-2 weeks full-body horizontal immobilization, which impairs muscle strength and performance. Adequate muscle mass and strength are necessary in combat or evacuation situations, which prompt for improved understanding of muscle mass modulation during SSR missions. To explore the molecular regulation of myofiber size during a simulated SSR operation, nine male Special Forces soldiers were biopsied in m. vastus lateralis pre and post 8 days immobilizing restricted prone position. After immobilization, total mammalian target of rapamycin protein was reduced by 42% (P < 0.05), whereas total and phosphorylated protein levels of Akt, ribosomal protein S6k, 4E-BP1, and glycogen synthase kinase3β were unchanged. Messenger RNA (mRNA) levels of the atrogenes forkhead box O3 (FoxO3), atrogin1, and muscle ring finger protein1 (MuRF1) increased by 36%, 53%, and 71% (P < 0.01), MuRF1 protein by 51% (P = 0.05), whereas FoxO1 and peroxisome proliferator-activated receptor γ coactivator-1 β mRNAs decreased by 29% and 40% (P < 0.01). In conclusion, occupational immobilization in Special Forces soldiers led to modulations in molecular muscle mass regulators during 8 days prone SSR mission, which likely contribute to muscle loss observed in such operations. The present data expand our knowledge of human muscle mass regulation during short-term immobilization.
Collapse
Affiliation(s)
- J G Jespersen
- Institute of Sports Medicine, Department of Orthopedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
161
|
Johns N, Hatakeyama S, Stephens NA, Degen M, Degen S, Frieauff W, Lambert C, Ross JA, Roubenoff R, Glass DJ, Jacobi C, Fearon KCH. Clinical classification of cancer cachexia: phenotypic correlates in human skeletal muscle. PLoS One 2014; 9:e83618. [PMID: 24404136 PMCID: PMC3880262 DOI: 10.1371/journal.pone.0083618] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 11/05/2013] [Indexed: 12/18/2022] Open
Abstract
Background Cachexia affects the majority of patients with advanced cancer and is associated with a reduction in treatment tolerance, response to therapy, and duration of survival. One impediment towards the effective treatment of cachexia is a validated classification system. Methods 41 patients with resectable upper gastrointestinal (GI) or pancreatic cancer underwent characterisation for cachexia based on weight-loss (WL) and/or low muscularity (LM). Four diagnostic criteria were used >5%WL, >10%WL, LM, and LM+>2%WL. All patients underwent biopsy of the rectus muscle. Analysis included immunohistochemistry for fibre size and type, protein and nucleic acid concentration, Western blots for markers of autophagy, SMAD signalling, and inflammation. Findings Compared with non-cachectic cancer patients, patients with LM or LM+>2%WL, mean muscle fibre diameter was reduced by about 25% (p = 0.02 and p = 0.001 respectively). No significant difference in fibre diameter was observed if patients had WL alone. Regardless of classification, there was no difference in fibre number or proportion of fibre type across all myosin heavy chain isoforms. Mean muscle protein content was reduced and the ratio of RNA/DNA decreased in patients with either >5%WL or LM+>2%WL. Compared with non-cachectic patients, SMAD3 protein levels were increased in patients with >5%WL (p = 0.022) and with >10%WL, beclin (p = 0.05) and ATG5 (p = 0.01) protein levels were increased. There were no differences in phospho-NFkB or phospho-STAT3 levels across any of the groups. Conclusion Muscle fibre size, biochemical composition and pathway phenotype can vary according to whether the diagnostic criteria for cachexia are based on weight loss alone, a measure of low muscularity alone or a combination of the two. For intervention trials where the primary end-point is a change in muscle mass or function, use of combined diagnostic criteria may allow identification of a more homogeneous patient cohort, reduce the sample size required and enhance the time scale within which trials can be conducted.
Collapse
Affiliation(s)
- Neil Johns
- Department of Clinical and Surgical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Shinji Hatakeyama
- Novartis Institutes for BioMedical Research Basel, Novartis Pharma AG, Basel, Switzerland
| | - Nathan A. Stephens
- Department of Clinical and Surgical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Martin Degen
- Novartis Institutes for BioMedical Research Basel, Novartis Pharma AG, Basel, Switzerland
| | - Simone Degen
- Novartis Institutes for BioMedical Research Basel, Novartis Pharma AG, Basel, Switzerland
| | - Wilfried Frieauff
- Novartis Institutes for BioMedical Research Basel, Novartis Pharma AG, Basel, Switzerland
| | - Christian Lambert
- Novartis Institutes for BioMedical Research Basel, Novartis Pharma AG, Basel, Switzerland
| | - James A. Ross
- Department of Clinical and Surgical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Ronenn Roubenoff
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - David J. Glass
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Carsten Jacobi
- Novartis Institutes for BioMedical Research Basel, Novartis Pharma AG, Basel, Switzerland
| | - Kenneth C. H. Fearon
- Department of Clinical and Surgical Sciences, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail:
| |
Collapse
|
162
|
Tajrishi MM, Zheng TS, Burkly LC, Kumar A. The TWEAK-Fn14 pathway: a potent regulator of skeletal muscle biology in health and disease. Cytokine Growth Factor Rev 2013; 25:215-25. [PMID: 24444596 DOI: 10.1016/j.cytogfr.2013.12.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Accepted: 12/15/2013] [Indexed: 12/24/2022]
Abstract
TNF-like weak inducer of apoptosis (TWEAK), a TNF superfamily ligand, and its bona fide receptor, the TNF receptor superfamily member fibroblast growth factor-inducible 14 (Fn14), represent a pivotal axis for shaping both physiological and pathological tissue responses to acute or chronic injury and disease. In recent years significant advances have been made in delineating the prominent role of TWEAK-Fn14 dyad in regulating skeletal muscle mass and metabolism. Also emerging from the broad study of tissue injury in skeletal muscle and other organs is the role of the TWEAK-Fn14 pathway in promoting fibrosis. This review article highlights recent advancements toward understanding how the TWEAK-Fn14 pathway regulates the response to various skeletal muscle insults and, more broadly, engages multiple mechanisms to drive tissue fibrosis.
Collapse
Affiliation(s)
- Marjan M Tajrishi
- Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40202, United States
| | - Timothy S Zheng
- Department of Immunology, Biogen Idec, 12 Cambridge Center, Cambridge, MA 02142, United States
| | - Linda C Burkly
- Department of Immunology, Biogen Idec, 12 Cambridge Center, Cambridge, MA 02142, United States.
| | - Ashok Kumar
- Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40202, United States.
| |
Collapse
|
163
|
Hindi SM, Mishra V, Bhatnagar S, Tajrishi MM, Ogura Y, Yan Z, Burkly LC, Zheng TS, Kumar A. Regulatory circuitry of TWEAK-Fn14 system and PGC-1α in skeletal muscle atrophy program. FASEB J 2013; 28:1398-411. [PMID: 24327607 DOI: 10.1096/fj.13-242123] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Skeletal muscle wasting attributed to inactivity has significant adverse functional consequences. Accumulating evidence suggests that peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) and TNF-like weak inducer of apoptosis (TWEAK)-Fn14 system are key regulators of skeletal muscle mass in various catabolic states. While the activation of TWEAK-Fn14 signaling causes muscle wasting, PGC-1α preserves muscle mass in several conditions, including functional denervation and aging. However, it remains unknown whether there is any regulatory interaction between PGC-1α and TWEAK-Fn14 system during muscle atrophy. Here we demonstrate that TWEAK significantly reduces the levels of PGC-1α and mitochondrial content (∼50%) in skeletal muscle. Levels of PGC-1α are significantly increased in skeletal muscle of TWEAK-knockout (KO) and Fn14-KO mice compared to wild-type mice on denervation. Transgenic (Tg) overexpression of PGC-1α inhibited progressive muscle wasting in TWEAK-Tg mice. PGC-1α inhibited the TWEAK-induced activation of NF-κB (∼50%) and dramatically reduced (∼90%) the expression of atrogenes such as MAFbx and MuRF1. Intriguingly, muscle-specific overexpression of PGC-1α also prevented the inducible expression of Fn14 in denervated skeletal muscle. Collectively, our study demonstrates that TWEAK induces muscle atrophy through repressing the levels of PGC-1α. Overexpression of PGC-1α not only blocks the TWEAK-induced atrophy program but also diminishes the expression of Fn14 in denervated skeletal muscle.
Collapse
Affiliation(s)
- Sajedah M Hindi
- 2Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, 500 South Preston St., Louisville, KY 40202, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
164
|
Muscle biopsies off-set normal cellular signaling in surrounding musculature. Neuromuscul Disord 2013; 23:981-5. [DOI: 10.1016/j.nmd.2013.09.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 09/01/2013] [Accepted: 09/23/2013] [Indexed: 11/19/2022]
|
165
|
Jiang H, Ge X. MEAT SCIENCE AND MUSCLE BIOLOGY SYMPOSIUM--mechanism of growth hormone stimulation of skeletal muscle growth in cattle. J Anim Sci 2013; 92:21-9. [PMID: 24166991 DOI: 10.2527/jas.2013-7095] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Growth hormone, also called somatotropin (ST), is a polypeptide hormone produced by the anterior pituitary. The major functions of GH include stimulating bone and skeletal muscle growth, lipolysis, milk production, and expression of the IGF-I gene in the liver. Based on these functions, recombinant bovine ST (bST) and recombinant porcine ST (pST) have been used to improve milk production in dairy cows and lean tissue growth in pigs, respectively. However, despite these applications, the mechanisms of action of GH are not fully understood. Indeed, there has been a lot of controversy over the role of liver-derived circulating IGF-I and locally produced IGF-I in mediating the growth-stimulatory effect of GH during the last 15 yr. It is in this context that we have conducted studies to further understand how GH stimulates skeletal muscle growth in cattle. Our results do not support a role of skeletal muscle-derived IGF-I in GH-stimulated skeletal muscle growth in cattle. Our results indicate that GH stimulates skeletal muscle growth in cattle, in part, by stimulating protein synthesis in muscle through a GH receptor-mediated, IGF-I-independent mechanism. In this review, besides discussing these results, we also argue that liver-derived circulating IGF-I should be still considered as the major mechanism that mediates the growth-stimulatory effect of GH on skeletal muscle in cattle and other domestic animals.
Collapse
Affiliation(s)
- H Jiang
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg 24060
| | | |
Collapse
|
166
|
Rudolf R, Khan MM, Lustrino D, Labeit S, Kettelhut IC, Navegantes LCC. Alterations of cAMP-dependent signaling in dystrophic skeletal muscle. Front Physiol 2013; 4:290. [PMID: 24146652 PMCID: PMC3797997 DOI: 10.3389/fphys.2013.00290] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 09/24/2013] [Indexed: 12/19/2022] Open
Abstract
Autonomic regulation processes in striated muscles are largely mediated by cAMP/PKA-signaling. In order to achieve specificity of signaling its spatial-temporal compartmentation plays a critical role. We discuss here how specificity of cAMP/PKA-signaling can be achieved in skeletal muscle by spatio-temporal compartmentation. While a microdomain containing PKA type I in the region of the neuromuscular junction (NMJ) is important for postsynaptic, activity-dependent stabilization of the nicotinic acetylcholine receptor (AChR), PKA type I and II microdomains in the sarcomeric part of skeletal muscle are likely to play different roles, including the regulation of muscle homeostasis. These microdomains are due to specific A-kinase anchoring proteins, like rapsyn and myospryn. Importantly, recent evidence indicates that compartmentation of the cAMP/PKA-dependent signaling pathway and pharmacological activation of cAMP production are aberrant in different skeletal muscles disorders. Thus, we discuss here their potential as targets for palliative treatment of certain forms of dystrophy and myasthenia. Under physiological conditions, the neuropeptide, α-calcitonin-related peptide, as well as catecholamines are the most-mentioned natural triggers for activating cAMP/PKA signaling in skeletal muscle. While the precise domains and functions of these first messengers are still under investigation, agonists of β2-adrenoceptors clearly exhibit anabolic activity under normal conditions and reduce protein degradation during atrophic periods. Past and recent studies suggest direct sympathetic innervation of skeletal muscle fibers. In summary, the organization and roles of cAMP-dependent signaling in skeletal muscle are increasingly understood, revealing crucial functions in processes like nerve-muscle interaction and muscle trophicity.
Collapse
Affiliation(s)
- Rüdiger Rudolf
- Institute of Molecular and Cell Biology, University of Applied Sciences Mannheim , Mannheim, Germany ; Institute of Toxicology and Genetics, Karlsruhe Institute of Technology , Eggenstein-Leopoldshafen, Germany
| | | | | | | | | | | |
Collapse
|
167
|
Gene expression profiling identifies molecular pathways associated with collagen VI deficiency and provides novel therapeutic targets. PLoS One 2013; 8:e77430. [PMID: 24223098 PMCID: PMC3819505 DOI: 10.1371/journal.pone.0077430] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 09/02/2013] [Indexed: 12/25/2022] Open
Abstract
Ullrich congenital muscular dystrophy (UCMD), caused by collagen VI deficiency, is a common congenital muscular dystrophy. At present, the role of collagen VI in muscle and the mechanism of disease are not fully understood. To address this we have applied microarrays to analyse the transcriptome of UCMD muscle and compare it to healthy muscle and other muscular dystrophies. We identified 389 genes which are differentially regulated in UCMD relative to controls. In addition, there were 718 genes differentially expressed between UCMD and dystrophin deficient muscle. In contrast, only 29 genes were altered relative to other congenital muscular dystrophies. Changes in gene expression were confirmed by real-time PCR. The set of regulated genes was analysed by Gene Ontology, KEGG pathways and Ingenuity Pathway analysis to reveal the molecular functions and gene networks associated with collagen VI defects. The most significantly regulated pathways were those involved in muscle regeneration, extracellular matrix remodelling and inflammation. We characterised the immune response in UCMD biopsies as being mainly mediated via M2 macrophages and the complement pathway indicating that anti-inflammatory treatment may be beneficial to UCMD as for other dystrophies. We studied the immunolocalisation of ECM components and found that biglycan, a collagen VI interacting proteoglycan, was reduced in the basal lamina of UCMD patients. We propose that biglycan reduction is secondary to collagen VI loss and that it may be contributing towards UCMD pathophysiology. Consequently, strategies aimed at over-expressing biglycan and restore the link between the muscle cell surface and the extracellular matrix should be considered.
Collapse
|
168
|
Simvastatin reduces wasting and improves cardiac function as well as outcome in experimental cancer cachexia. Int J Cardiol 2013; 168:3412-8. [DOI: 10.1016/j.ijcard.2013.04.150] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 01/29/2013] [Accepted: 04/17/2013] [Indexed: 11/22/2022]
|
169
|
Rudolf R, Bogomolovas J, Strack S, Choi KR, Khan MM, Wagner A, Brohm K, Hanashima A, Gasch A, Labeit D, Labeit S. Regulation of nicotinic acetylcholine receptor turnover by MuRF1 connects muscle activity to endo/lysosomal and atrophy pathways. AGE (DORDRECHT, NETHERLANDS) 2013; 35:1663-1674. [PMID: 22956146 PMCID: PMC3776120 DOI: 10.1007/s11357-012-9468-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 08/20/2012] [Indexed: 06/01/2023]
Abstract
Muscle atrophy is a process of muscle wasting induced under a series of catabolic stress conditions, such as denervation, disuse, cancer cachexia, heart and renal failure, AIDS, and aging. Neuromuscular junctions (NMJs), the synapses between motor neurons and muscle fibers undergo major changes in atrophying muscles, ranging from mild morphological alterations to complete disintegration. In this study, we hypothesized that remodeling of NMJs and muscle atrophy could be linked together. To test this, we examined if a major atrophy-promoting E3 ubiquitin ligase, MuRF1, is involved in the maintenance of NMJs. Immunofluorescence revealed that MuRF1 is highly enriched close to the NMJ. Affinity precipitation and in vivo imaging showed that MuRF1 interacts in endocytic structures with both, acetylcholine receptor, the primary postsynaptic protein of the NMJ, as well as with Bif-1, an autophagy- and endocytosis-regulating factor. In vivo imaging, radio labeling, and weighing approaches demonstrated that metabolic destabilization of acetylcholine receptors and muscle atrophy induced by denervation were significantly rescued in MuRF1-KO animals. Notably, interaction with Bif-1, and the rescue of AChR lifetime and muscle atrophy were specific to MuRF1 but not MuRF2. Our data demonstrate an involvement of MuRF1 in membrane protein-turnover, including the degradation of AChRs at the NMJ under atrophying conditions where MuRF1 also interacts and associates with Bif-1.
Collapse
Affiliation(s)
- Rüdiger Rudolf
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Institute of Molecular and Cell Biology, University of Applied Sciences Mannheim, Windeckstrasse 110, 68163 Mannheim, Germany
- Institute of Medical Technology, University of Heidelberg and University of Applied Sciences Mannheim, Paul-Wittsack-Strasse 10, 68163 Mannheim, Germany
| | - Julius Bogomolovas
- Department for Integrative Pathophysiology, Universitätsmedizin Mannheim, Theodor-Kutzer-Ufer, 68167 Mannheim, Germany
| | - Siegfried Strack
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Kyeong-Rok Choi
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Muzamil Majid Khan
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Anika Wagner
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Kathrin Brohm
- Department for Integrative Pathophysiology, Universitätsmedizin Mannheim, Theodor-Kutzer-Ufer, 68167 Mannheim, Germany
| | - Akira Hanashima
- Department for Integrative Pathophysiology, Universitätsmedizin Mannheim, Theodor-Kutzer-Ufer, 68167 Mannheim, Germany
| | - Alexander Gasch
- Department for Integrative Pathophysiology, Universitätsmedizin Mannheim, Theodor-Kutzer-Ufer, 68167 Mannheim, Germany
| | - Dittmar Labeit
- Department for Integrative Pathophysiology, Universitätsmedizin Mannheim, Theodor-Kutzer-Ufer, 68167 Mannheim, Germany
| | - Siegfried Labeit
- Department for Integrative Pathophysiology, Universitätsmedizin Mannheim, Theodor-Kutzer-Ufer, 68167 Mannheim, Germany
| |
Collapse
|
170
|
Myostatin/activin pathway antagonism: Molecular basis and therapeutic potential. Int J Biochem Cell Biol 2013; 45:2333-47. [DOI: 10.1016/j.biocel.2013.05.019] [Citation(s) in RCA: 198] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 05/17/2013] [Accepted: 05/18/2013] [Indexed: 11/21/2022]
|
171
|
Hibernation: The search for treatments to prevent disuse-induced skeletal muscle atrophy. Exp Neurol 2013; 248:129-35. [DOI: 10.1016/j.expneurol.2013.06.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Revised: 05/29/2013] [Accepted: 06/03/2013] [Indexed: 12/25/2022]
|
172
|
Tarantino U, Baldi J, Celi M, Rao C, Liuni FM, Iundusi R, Gasbarra E. Osteoporosis and sarcopenia: the connections. Aging Clin Exp Res 2013; 25 Suppl 1:S93-5. [PMID: 24046056 DOI: 10.1007/s40520-013-0097-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Accepted: 07/12/2013] [Indexed: 11/28/2022]
Abstract
Osteoporosis and sarcopenia are the most frequent musculoskeletal disorders affecting older people. Osteoporosis is a widespread disorder affecting millions of individuals of all ethnic backgrounds worldwide, particularly among older women. It is characterized by reduced bone mass and microarchitectural deterioration of bone tissue, with a consequent increase in the risk of fracture. Sarcopenia is considered to be one of the major factors responsible for functional limitations and motor dependency in elderly persons. In age-related muscle atrophy, a decrease in muscle fiber size and number, and a preferential loss of type II fibers have been reported. A decrease in the circulating levels of specific hormones (e.g., estrogen, testosterone, growth hormone, and insulin-like growth factor-1) has been shown to be associated with sarcopenia and this appears to play an important role in its pathogenesis.
Collapse
Affiliation(s)
- Umberto Tarantino
- Department of Orthopedics and Traumatology, University of Rome "Tor Vergata", "PoliclinicoTor Vergata" Foundation, V.le Oxford 81, 00133, Rome, Italy,
| | | | | | | | | | | | | |
Collapse
|
173
|
Cobalt triggers necrotic cell death and atrophy in skeletal C2C12 myotubes. Toxicol Appl Pharmacol 2013; 271:196-205. [DOI: 10.1016/j.taap.2013.05.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 05/01/2013] [Accepted: 05/04/2013] [Indexed: 12/14/2022]
|
174
|
Op den Kamp CM, Langen RC, Snepvangers FJ, de Theije CC, Schellekens JM, Laugs F, Dingemans AMC, Schols AM. Nuclear transcription factor κ B activation and protein turnover adaptations in skeletal muscle of patients with progressive stages of lung cancer cachexia. Am J Clin Nutr 2013; 98:738-48. [PMID: 23902785 DOI: 10.3945/ajcn.113.058388] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Experimental models of cancer cachexia have indicated that systemic inflammation induces muscle-protein breakdown and wasting via muscular nuclear transcription factor κB (NF-κB) activation. This process may limit the efficacy of nutritional intervention. OBJECTIVES We assessed muscle NF-κB activity and protein turnover signaling in progressive stages of clinical lung cancer cachexia and assessed whether circulating factors can induce muscular NF-κB activity. DESIGN Patients with lung cancer precachexia (n = 10) and cachexia (n = 16) were cross-sectionally compared with 22 healthy control subjects. mRNA transcripts of muscle proteolytic (ubiquitin proteasome system and autophagy lysosomal pathway) and myogenic markers and protein expression of PI3K/Akt, myostatin, and autophagy signaling were measured. A multiplex analysis showed the systemic inflammatory status, whereas plasma exposure to stable NF-κB-luciferase-reporter muscle cells revealed NF-κB inducibility. RESULTS Compared with healthy control subjects, cachectic patients had reduced (appendicular) muscle mass (-10%), muscle fiber atrophy (-27%), and decreased quadriceps strength (-31%). Subtle alterations in the muscle morphology were also detectable in precachectic patients, without changes in body composition. Despite increased Akt phosphorylation, downstream phosphosubstrates glycogen synthase kinase 3β, mammalian target of rapamycin, and Forkhead box protein were unaltered. The expression of autophagy effectors B cell lymphoma 2/adenovirus E1B 19-kDa protein-interacting protein 3 and microtubule-associated proteins 1A/1B light chain 3B gradually increased from precachectic to cachectic patients, without differences in E3 ubiquitin ligases. Systemic and local inflammation was evident in cachexia and intermediate in precachexia, but the plasma of both patients groups caused ex vivo muscle NF-κB activation. CONCLUSIONS In lung cancer, muscular NF-κB activity is induced by factors contained within the circulation. Autophagy may contribute to increased muscle proteolysis in lung cancer cachexia, whereas the absence of downstream changes in phosphosubstrates despite increased Akt phosphorylation suggests impaired anabolic signaling that may require targeted nutritional intervention.
Collapse
Affiliation(s)
- Céline M Op den Kamp
- Department of Respiratory Medicine, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Centre, Maastricht, Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
175
|
Shaarani SR, O'Hare C, Quinn A, Moyna N, Moran R, O'Byrne JM. Effect of prehabilitation on the outcome of anterior cruciate ligament reconstruction. Am J Sports Med 2013; 41:2117-27. [PMID: 23845398 DOI: 10.1177/0363546513493594] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Prehabilitation is defined as preparing an individual to withstand a stressful event through enhancement of functional capacity. HYPOTHESIS We hypothesized that a preoperative exercise program would enhance postoperative outcomes after anterior cruciate ligament reconstruction (ACLR). STUDY DESIGN Randomized controlled clinical trial; Level of evidence, 1. METHODS Twenty volunteers awaiting ACLR were randomly assigned to a control or exercise intervention group. The exercise group completed a 6-week gym- and home-based exercise program. Assessments include single-legged hop test; quadriceps and hamstring peak torque and magnetic resonance imaging cross-sectional area (CSA); Modified Cincinnati Knee Rating System score; and muscle biopsy of the vastus lateralis muscle completed at baseline, preoperatively, and 12 weeks postoperatively. Myosin heavy chain (MHC) isoforms protein and messenger RNA (mRNA) expression were determined with SDS-PAGE (sodium dodecyl sulfate polyacrylamide gel electrophoresis) and RT-PCR (real-time polymerase chain reaction), respectively; IGF-1 (insulin-like growth factor 1), MuRF-1 (muscle RING-finger protein-1), and MAFbx (muscle atrophy f-box) mRNA expression were determined with quantitative RT-PCR. RESULTS Following 6 weeks of exercise intervention, the single-legged hop test results improved significantly in the exercise-injured limb compared with baseline (P = .001). Quadriceps peak torque in the injured limb improved with similar gains in CSA compared with baseline (P = .001). However, this was not significantly increased compared with the control group. Quadriceps and vastus medialis CSA were also larger in the exercise group than in controls (P = .0024 and P = .015, respectively). The modified Cincinnati score was better in the exercise-injured limb compared with baseline. At 12 weeks postoperatively, the rate of decline in the single-legged hop test was reduced in the exercise group compared with controls (P = .001). Similar trends were not seen for quadriceps peak torque and CSA. The vastus medialis CSA had regressed to similar levels as the control group (P = .008). The modified Cincinnati score continued to increase in the exercise group compared with controls (P = .004). The expression of the hypertrophic IGF-1 gene was significantly increased after the exercise intervention (P = .028), with a decrease back to baseline 12 weeks postoperatively (P = .012). Atrophic MuRF-1 gene expression was decreased after intervention compared with baseline (P = .05) but increased again at 12 weeks postoperatively (P = .03). The MAFbx levels did not change significantly in either group and within each time point. On the mRNA level, there was a shift from MHC-IIx isoform to MHC-IIa after exercise, with significant changes compared with control preoperatively (P = .028). Protein testing was able to reproduce this increase for MHC-IIa isoform expression only. CONCLUSION The 6-week progressive prehabilitation program for subjects undergoing ACLR led to improved knee function based on the single-legged hop test and self-reported assessment using the modified Cincinnati score. These effects were sustained at 12 weeks postoperatively. This study supports prehabilitation as a consideration for patients awaiting ACLR; however, further studies are warranted.
Collapse
Affiliation(s)
- Shahril R Shaarani
- Cappagh National Orthopaedic Hospital, Finglas, Dublin 11, Republic of Ireland.
| | | | | | | | | | | |
Collapse
|
176
|
Springer J, Tschirner A, Haghikia A, von Haehling S, Lal H, Grzesiak A, Kaschina E, Palus S, Pötsch M, von Websky K, Hocher B, Latouche C, Jaisser F, Morawietz L, Coats AJS, Beadle J, Argiles JM, Thum T, Földes G, Doehner W, Hilfiker-Kleiner D, Force T, Anker SD. Prevention of liver cancer cachexia-induced cardiac wasting and heart failure. Eur Heart J 2013; 35:932-41. [PMID: 23990596 DOI: 10.1093/eurheartj/eht302] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
AIMS Symptoms of cancer cachexia (CC) include fatigue, shortness of breath, and impaired exercise capacity, which are also hallmark symptoms of heart failure (HF). Herein, we evaluate the effects of drugs commonly used to treat HF (bisoprolol, imidapril, spironolactone) on development of cardiac wasting, HF, and death in the rat hepatoma CC model (AH-130). METHODS AND RESULTS Tumour-bearing rats showed a progressive loss of body weight and left-ventricular (LV) mass that was associated with a progressive deterioration in cardiac function. Strikingly, bisoprolol and spironolactone significantly reduced wasting of LV mass, attenuated cardiac dysfunction, and improved survival. In contrast, imidapril had no beneficial effect. Several key anabolic and catabolic pathways were dysregulated in the cachectic hearts and, in addition, we found enhanced fibrosis that was corrected by treatment with spironolactone. Finally, we found cardiac wasting and fibrotic remodelling in patients who died as a result of CC. In living cancer patients, with and without cachexia, serum levels of brain natriuretic peptide and aldosterone were elevated. CONCLUSION Systemic effects of tumours lead not only to CC but also to cardiac wasting, associated with LV-dysfunction, fibrotic remodelling, and increased mortality. These adverse effects of the tumour on the heart and on survival can be mitigated by treatment with either the β-blocker bisoprolol or the aldosterone antagonist spironolactone. We suggest that clinical trials employing these agents be considered to attempt to limit this devastating complication of cancer.
Collapse
Affiliation(s)
- Jochen Springer
- Applied Cachexia Research, Department of Cardiology, Charité Medical School, Campus Virchow-Klinikum, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
177
|
Proserpio V, Fittipaldi R, Ryall JG, Sartorelli V, Caretti G. The methyltransferase SMYD3 mediates the recruitment of transcriptional cofactors at the myostatin and c-Met genes and regulates skeletal muscle atrophy. Genes Dev 2013; 27:1299-312. [PMID: 23752591 DOI: 10.1101/gad.217240.113] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Elucidating the epigenetic mechanisms underlying muscle mass determination and skeletal muscle wasting holds the potential of identifying molecular pathways that constitute possible drug targets. Here, we report that the methyltransferase SMYD3 modulates myostatin and c-Met transcription in primary skeletal muscle cells and C2C12 myogenic cells. SMYD3 targets the myostatin and c-Met genes and participates in the recruitment of the bromodomain protein BRD4 to their regulatory regions through protein-protein interaction. By recruiting BRD4, SMYD3 favors chromatin engagement of the pause-release factor p-TEFb (positive transcription elongation factor) and elongation of Ser2-phosphorylated RNA polymerase II (PolIISer2P). Reducing SMYD3 decreases myostatin and c-Met transcription, thus protecting from glucocorticoid-induced myotube atrophy. Supporting functional relevance of the SMYD3/BRD4 interaction, BRD4 pharmacological blockade by the small molecule JQ1 prevents dexamethasone-induced myostatin and atrogene up-regulation and spares myotube atrophy. Importantly, in a mouse model of dexamethasone-induced skeletal muscle atrophy, SMYD3 depletion prevents muscle loss and fiber size decrease. These findings reveal a mechanistic link between SMYD3/BRD4-dependent transcriptional regulation, muscle mass determination, and skeletal muscle atrophy and further encourage testing of small molecules targeting specific epigenetic regulators in animal models of muscle wasting.
Collapse
|
178
|
Hanson AM, Harrison BC, Young MH, Stodieck LS, Ferguson VL. Longitudinal characterization of functional, morphologic, and biochemical adaptations in mouse skeletal muscle with hindlimb suspension. Muscle Nerve 2013; 48:393-402. [DOI: 10.1002/mus.23753] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2012] [Indexed: 11/11/2022]
Affiliation(s)
- Andrea M. Hanson
- Aerospace Engineering Sciences, BioServe Space Technologies; University of Colorado; Boulder Colorado USA
| | - Brooke C. Harrison
- Molecular, Cellular, and Developmental Biology; University of Colorado; Boulder Colorado USA
| | - Mary H. Young
- Aerospace Engineering Sciences, BioServe Space Technologies; University of Colorado; Boulder Colorado USA
| | - Louis S. Stodieck
- Aerospace Engineering Sciences, BioServe Space Technologies; University of Colorado; Boulder Colorado USA
| | - Virginia L. Ferguson
- Department of Mechanical Engineering; University of Colorado; UCB 427 Boulder Colorado 80309 USA
| |
Collapse
|
179
|
Song Y, Pillow JJ. Developmental regulation of molecular signalling in fetal and neonatal diaphragm protein metabolism. Exp Biol Med (Maywood) 2013; 238:913-22. [DOI: 10.1177/1535370213494562] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Structural and functional immaturity of the preterm diaphragm predisposes the preterm baby to respiratory muscle weakness and consequent impaired efficiency of spontaneous respiration, potentially necessitating mechanical respiratory support. The ontogeny of several proteolytic genes (calpain, caspase-3, MAFbx and MuRF-1) changes dynamically with gestational and early postnatal development. We aimed to define the molecular signal cascades and triggers responsible for the dynamic changes in the proteolytic pathways during in utero and early postnatal development. Costal diaphragm was obtained immediately following euthanasia of fetal and newborn lambs from 75 to 200 days postconceptional age (term = 150 days). Gene expression of insulin-like growth factor 1 (IGF-1), tumour necrosis factor α (TNF-α) and myostatin decreased steadily in utero from 75 to 145 days ( P < 0.05) and the transcripts increased again after birth except of myostatin. Rapid activation of the fork-head transcriptional factors of the O class (FOXO1) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathways was observed at 24 h of postnatal age. Diaphragm reactive oxygen species (ROS) production increased over 29-fold at 24 h postnatal age, compared with the 145 days fetus ( P < 0.01). Local (diaphragmatic) ROS accumulation occurred earlier and was more predominant than systemic (plasma) ROS. There were positive correlations between signalling transduction molecules (FOXO1 and NF-κB) and antioxidant gene expression (superoxide dismutase and glutathione peroxidase 1). We conclude that anabolic (IGF-1) and catabolic (TNF-α and myostatin) factors have a similar developmental pattern with a decreasing trend toward full term. This may reflect in utero integration of cellular events into low protein metabolism as the diaphragm matures in late gestation. On initiation of spontaneous breathing, ROS accumulated and potentially activated cascade of FOXO and NF-κB signal transduction. The finding provides new insights into developmental regulation of protein metabolism within development. The implication of these postnatal events for diaphragm adaptation to the ex utero environment needs further investigation.
Collapse
Affiliation(s)
- Yong Song
- Centre for Neonatal Research and Education, The University of Western Australia, Crawley 6009, Western Australia, Australia
- School of Women’s and Infants’ Health, The University of Western Australia, Crawley 6009, Western Australia, Australia
| | - J Jane Pillow
- Centre for Neonatal Research and Education, The University of Western Australia, Crawley 6009, Western Australia, Australia
- School of Women’s and Infants’ Health, The University of Western Australia, Crawley 6009, Western Australia, Australia
- Women and Newborns Health Service, c/-King Edward Memorial and Princess Margaret Hospitals, Subiaco, Perth 6008, Western Australia, Australia
| |
Collapse
|
180
|
Bodine SC. Disuse-induced muscle wasting. Int J Biochem Cell Biol 2013; 45:2200-8. [PMID: 23800384 DOI: 10.1016/j.biocel.2013.06.011] [Citation(s) in RCA: 245] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 06/11/2013] [Accepted: 06/12/2013] [Indexed: 12/17/2022]
Abstract
Loss of skeletal muscle mass occurs frequently in clinical settings in response to joint immobilization and bed rest, and is induced by a combination of unloading and inactivity. Disuse-induced atrophy will likely affect every person in his or her lifetime, and can be debilitating especially in the elderly. Currently there are no good therapies to treat disuse-induced muscle atrophy, in part, due to a lack of understanding of the cellular and molecular mechanisms responsible for the induction and maintenance of muscle atrophy. Our current understanding of disuse atrophy comes from the investigation of a variety of models (joint immobilization, hindlimb unloading, bed rest, spinal cord injury) in both animals and humans. Under conditions of unloading, it is widely accepted that there is a decrease in protein synthesis, however, the role of protein degradation, especially in humans, is debated. This review will examine the current understanding of the molecular and cellular mechanisms regulating muscle loss under disuse conditions, discussing the similarities and areas of dispute between the animal and human literature. This article is part of a Directed Issue entitled: Molecular basis of muscle wasting.
Collapse
Affiliation(s)
- Sue C Bodine
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States.
| |
Collapse
|
181
|
McIntire KL, Chen Y, Sood S, Rabkin R. Acute uremia suppresses leucine-induced signal transduction in skeletal muscle. Kidney Int 2013; 85:374-82. [PMID: 23783244 DOI: 10.1038/ki.2013.216] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 04/02/2013] [Accepted: 04/11/2013] [Indexed: 12/30/2022]
Abstract
Adequate nutrient intake in acute uremia is a key part of patient management especially as food utilization is usually impaired. Leucine is important as it comprises about one-fifth of essential amino acid needs and, apart from serving as a substrate, it directly activates the mTOR signaling pathway stimulating protein synthesis and inhibiting autophagy. Here we tested whether leucine activation of the mTOR signaling pathway in muscle is severely disrupted in acute uremia. Several abnormalities were identified in bilateral ureteral ligated (model of acute uremia) compared to sham-operated pair-fed control rats. Levels of several signaling proteins increased significantly while leucine-induced phosphorylation of mTOR and downstream proteins, 4e-BP1 and S6K1, was completely suppressed. Levels of LC3B-II, a specific autophagosomal membrane-associated protein used as a marker of autophagy, increased threefold in uremia. Furthermore, while leucine suppressed LC3B-II levels in controls, it failed to do so in uremic rats. Muscle IL-6 mRNA levels increased, while IGF-1 mRNA levels decreased in uremia. These findings establish that, in acute uremia, severe resistance to leucine-induced activation of the mTOR anabolic signaling pathway develops. Thus, leucine resistance, together with the reduction in IGF-1 and increase in IL-6 expression, may explain why the anabolic effect of nutritional therapy is diminished in acute uremic patients.
Collapse
Affiliation(s)
- Kevin L McIntire
- 1] Research Service, Veterans Affairs Palo Alto Health Care System (VAPAHCS), Palo Alto, California, USA [2] Renal Division, Department of Medicine, Stanford University, Stanford, California, USA
| | - Yu Chen
- 1] Research Service, Veterans Affairs Palo Alto Health Care System (VAPAHCS), Palo Alto, California, USA [2] Renal Division, Department of Medicine, Stanford University, Stanford, California, USA
| | - Sumita Sood
- 1] Research Service, Veterans Affairs Palo Alto Health Care System (VAPAHCS), Palo Alto, California, USA [2] Renal Division, Department of Medicine, Stanford University, Stanford, California, USA
| | - Ralph Rabkin
- 1] Research Service, Veterans Affairs Palo Alto Health Care System (VAPAHCS), Palo Alto, California, USA [2] Renal Division, Department of Medicine, Stanford University, Stanford, California, USA
| |
Collapse
|
182
|
Johns N, Stephens NA, Fearon KCH. Muscle wasting in cancer. Int J Biochem Cell Biol 2013; 45:2215-29. [PMID: 23770121 DOI: 10.1016/j.biocel.2013.05.032] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 05/23/2013] [Accepted: 05/27/2013] [Indexed: 01/06/2023]
Abstract
Skeletal muscle loss appears to be the most significant clinical event in cancer cachexia and is associated with a poor outcome. With regard to such muscle loss, despite extensive study in a range of models, there is ongoing debate as to whether a reduction in protein synthesis, an increase in degradation or a combination of both is the more relevant. Each model differs in terms of key mediators and the pathways activated in skeletal muscle. Certain models do suggest that decreased synthesis accompanied by enhanced protein degradation via the ubiquitin proteasome pathway (UPP) is important. Murine models tend to involve rapid development of cachexia and may represent more acute muscle atrophy rather than the chronic wasting observed in humans. There is a paucity of human data both at a basic descriptive level and at a molecular/mechanism level. Progress in treating the human form of cancer cachexia can only move forwards through carefully designed large randomised controlled clinical trials of specific therapies with validated biomarkers of relevance to underlying mechanisms. This article is part of a Directed Issue entitled: Molecular basis of muscle wasting.
Collapse
Affiliation(s)
- N Johns
- Department of Clinical and Surgical Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | | | | |
Collapse
|
183
|
Faure C, Morio B, Chafey P, Le Plénier S, Noirez P, Randrianarison-Huetz V, Cynober L, Aussel C, Moinard C. Citrulline enhances myofibrillar constituents expression of skeletal muscle and induces a switch in muscle energy metabolism in malnourished aged rats. Proteomics 2013; 13:2191-201. [PMID: 23592530 DOI: 10.1002/pmic.201200262] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 03/01/2013] [Accepted: 03/30/2013] [Indexed: 11/07/2022]
Abstract
Citrulline (Cit) actions on muscle metabolism remain unclear. Those latter were investigated using a proteomic approach on Tibialis muscles from male Sprague-Dawley rats. At 23 months of age, rats were either fed ad libitum (AL group) or subjected to dietary restriction for 12 weeks. At the end of the restriction period, one group of rats was euthanized (R group) and two groups were refed for one week with a standard diet supplemented with nonessential amino acids group or Cit (CIT group). Results of the proteomic approach were validated using targeted Western blot analysis and assessment of gene expression of the related genes. Maximal activities of the key enzymes involved in mitochondrial functioning were also determined. Cit supplementation results in a significant increase in the protein expression of the main myofibrillar constituents and of a few enzymes involved in glycogenolysis and glycolysis (CIT vs. AL and R, p < 0.05). Conversely, the expression of oxidative enzymes from Krebs cycle and mitochondrial respiratory chain was significantly decreased (CIT vs. AL, p < 0.05). However, maximal activities of key enzymes of mitochondrial metabolism were not significantly affected, except for complex 1 which presented an increased activity (CIT vs. AL and R, p < 0.05). In conclusion, Cit supplementation increases expression of the main myofibrillar proteins and seems to induce a switch in muscle energy metabolism, from aerobia toward anaerobia.
Collapse
Affiliation(s)
- Cécile Faure
- Département de Biologie Expérimentale, Métabolique et Clinique (EA 4466), Faculté de pharmacie, Université Paris Descartes, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
184
|
Roberts EW, Deonarine A, Jones JO, Denton AE, Feig C, Lyons SK, Espeli M, Kraman M, McKenna B, Wells RJ, Zhao Q, Caballero OL, Larder R, Coll AP, O’Rahilly S, Brindle KM, Teichmann SA, Tuveson DA, Fearon DT. Depletion of stromal cells expressing fibroblast activation protein-α from skeletal muscle and bone marrow results in cachexia and anemia. J Exp Med 2013; 210:1137-51. [PMID: 23712428 PMCID: PMC3674708 DOI: 10.1084/jem.20122344] [Citation(s) in RCA: 318] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 04/29/2013] [Indexed: 12/15/2022] Open
Abstract
Fibroblast activation protein-α (FAP) identifies stromal cells of mesenchymal origin in human cancers and chronic inflammatory lesions. In mouse models of cancer, they have been shown to be immune suppressive, but studies of their occurrence and function in normal tissues have been limited. With a transgenic mouse line permitting the bioluminescent imaging of FAP(+) cells, we find that they reside in most tissues of the adult mouse. FAP(+) cells from three sites, skeletal muscle, adipose tissue, and pancreas, have highly similar transcriptomes, suggesting a shared lineage. FAP(+) cells of skeletal muscle are the major local source of follistatin, and in bone marrow they express Cxcl12 and KitL. Experimental ablation of these cells causes loss of muscle mass and a reduction of B-lymphopoiesis and erythropoiesis, revealing their essential functions in maintaining normal muscle mass and hematopoiesis, respectively. Remarkably, these cells are altered at these sites in transplantable and spontaneous mouse models of cancer-induced cachexia and anemia. Thus, the FAP(+) stromal cell may have roles in two adverse consequences of cancer: their acquisition by tumors may cause failure of immunosurveillance, and their alteration in normal tissues contributes to the paraneoplastic syndromes of cachexia and anemia.
Collapse
Affiliation(s)
- Edward W. Roberts
- Department of Medicine; Cambridge Institute for Medical Research, Wellcome Trust/Medical Research Council (MRC) Building; and Institute of Metabolic Sciences; Addenbrooke’s Hospital; Cancer Research UK Cambridge Institute, Li Ka Shing Centre; and MRC Laboratory of Molecular Biology; University of Cambridge, Cambridge CB2 2QH, England, UK
| | - Andrew Deonarine
- Department of Medicine; Cambridge Institute for Medical Research, Wellcome Trust/Medical Research Council (MRC) Building; and Institute of Metabolic Sciences; Addenbrooke’s Hospital; Cancer Research UK Cambridge Institute, Li Ka Shing Centre; and MRC Laboratory of Molecular Biology; University of Cambridge, Cambridge CB2 2QH, England, UK
| | - James O. Jones
- Department of Medicine; Cambridge Institute for Medical Research, Wellcome Trust/Medical Research Council (MRC) Building; and Institute of Metabolic Sciences; Addenbrooke’s Hospital; Cancer Research UK Cambridge Institute, Li Ka Shing Centre; and MRC Laboratory of Molecular Biology; University of Cambridge, Cambridge CB2 2QH, England, UK
| | - Alice E. Denton
- Department of Medicine; Cambridge Institute for Medical Research, Wellcome Trust/Medical Research Council (MRC) Building; and Institute of Metabolic Sciences; Addenbrooke’s Hospital; Cancer Research UK Cambridge Institute, Li Ka Shing Centre; and MRC Laboratory of Molecular Biology; University of Cambridge, Cambridge CB2 2QH, England, UK
| | - Christine Feig
- Department of Medicine; Cambridge Institute for Medical Research, Wellcome Trust/Medical Research Council (MRC) Building; and Institute of Metabolic Sciences; Addenbrooke’s Hospital; Cancer Research UK Cambridge Institute, Li Ka Shing Centre; and MRC Laboratory of Molecular Biology; University of Cambridge, Cambridge CB2 2QH, England, UK
| | - Scott K. Lyons
- Department of Medicine; Cambridge Institute for Medical Research, Wellcome Trust/Medical Research Council (MRC) Building; and Institute of Metabolic Sciences; Addenbrooke’s Hospital; Cancer Research UK Cambridge Institute, Li Ka Shing Centre; and MRC Laboratory of Molecular Biology; University of Cambridge, Cambridge CB2 2QH, England, UK
| | - Marion Espeli
- Department of Medicine; Cambridge Institute for Medical Research, Wellcome Trust/Medical Research Council (MRC) Building; and Institute of Metabolic Sciences; Addenbrooke’s Hospital; Cancer Research UK Cambridge Institute, Li Ka Shing Centre; and MRC Laboratory of Molecular Biology; University of Cambridge, Cambridge CB2 2QH, England, UK
| | - Matthew Kraman
- Department of Medicine; Cambridge Institute for Medical Research, Wellcome Trust/Medical Research Council (MRC) Building; and Institute of Metabolic Sciences; Addenbrooke’s Hospital; Cancer Research UK Cambridge Institute, Li Ka Shing Centre; and MRC Laboratory of Molecular Biology; University of Cambridge, Cambridge CB2 2QH, England, UK
| | - Brendan McKenna
- Department of Medicine; Cambridge Institute for Medical Research, Wellcome Trust/Medical Research Council (MRC) Building; and Institute of Metabolic Sciences; Addenbrooke’s Hospital; Cancer Research UK Cambridge Institute, Li Ka Shing Centre; and MRC Laboratory of Molecular Biology; University of Cambridge, Cambridge CB2 2QH, England, UK
| | - Richard J.B. Wells
- Department of Medicine; Cambridge Institute for Medical Research, Wellcome Trust/Medical Research Council (MRC) Building; and Institute of Metabolic Sciences; Addenbrooke’s Hospital; Cancer Research UK Cambridge Institute, Li Ka Shing Centre; and MRC Laboratory of Molecular Biology; University of Cambridge, Cambridge CB2 2QH, England, UK
| | - Qi Zhao
- Ludwig Collaborative Laboratory, Johns Hopkins University School of Medicine, Baltimore, MD 21231
| | - Otavia L. Caballero
- Ludwig Collaborative Laboratory, Johns Hopkins University School of Medicine, Baltimore, MD 21231
| | - Rachel Larder
- Department of Medicine; Cambridge Institute for Medical Research, Wellcome Trust/Medical Research Council (MRC) Building; and Institute of Metabolic Sciences; Addenbrooke’s Hospital; Cancer Research UK Cambridge Institute, Li Ka Shing Centre; and MRC Laboratory of Molecular Biology; University of Cambridge, Cambridge CB2 2QH, England, UK
| | - Anthony P. Coll
- Department of Medicine; Cambridge Institute for Medical Research, Wellcome Trust/Medical Research Council (MRC) Building; and Institute of Metabolic Sciences; Addenbrooke’s Hospital; Cancer Research UK Cambridge Institute, Li Ka Shing Centre; and MRC Laboratory of Molecular Biology; University of Cambridge, Cambridge CB2 2QH, England, UK
| | - Stephen O’Rahilly
- Department of Medicine; Cambridge Institute for Medical Research, Wellcome Trust/Medical Research Council (MRC) Building; and Institute of Metabolic Sciences; Addenbrooke’s Hospital; Cancer Research UK Cambridge Institute, Li Ka Shing Centre; and MRC Laboratory of Molecular Biology; University of Cambridge, Cambridge CB2 2QH, England, UK
| | - Kevin M. Brindle
- Department of Medicine; Cambridge Institute for Medical Research, Wellcome Trust/Medical Research Council (MRC) Building; and Institute of Metabolic Sciences; Addenbrooke’s Hospital; Cancer Research UK Cambridge Institute, Li Ka Shing Centre; and MRC Laboratory of Molecular Biology; University of Cambridge, Cambridge CB2 2QH, England, UK
| | - Sarah A. Teichmann
- Department of Medicine; Cambridge Institute for Medical Research, Wellcome Trust/Medical Research Council (MRC) Building; and Institute of Metabolic Sciences; Addenbrooke’s Hospital; Cancer Research UK Cambridge Institute, Li Ka Shing Centre; and MRC Laboratory of Molecular Biology; University of Cambridge, Cambridge CB2 2QH, England, UK
| | - David A. Tuveson
- Department of Medicine; Cambridge Institute for Medical Research, Wellcome Trust/Medical Research Council (MRC) Building; and Institute of Metabolic Sciences; Addenbrooke’s Hospital; Cancer Research UK Cambridge Institute, Li Ka Shing Centre; and MRC Laboratory of Molecular Biology; University of Cambridge, Cambridge CB2 2QH, England, UK
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Douglas T. Fearon
- Department of Medicine; Cambridge Institute for Medical Research, Wellcome Trust/Medical Research Council (MRC) Building; and Institute of Metabolic Sciences; Addenbrooke’s Hospital; Cancer Research UK Cambridge Institute, Li Ka Shing Centre; and MRC Laboratory of Molecular Biology; University of Cambridge, Cambridge CB2 2QH, England, UK
| |
Collapse
|
185
|
Seiliez I, Taty Taty GC, Bugeon J, Dias K, Sabin N, Gabillard JC. Myostatin induces atrophy of trout myotubes through inhibiting the TORC1 signaling and promoting Ubiquitin-Proteasome and Autophagy-Lysosome degradative pathways. Gen Comp Endocrinol 2013; 186:9-15. [PMID: 23458288 DOI: 10.1016/j.ygcen.2013.02.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 02/04/2013] [Accepted: 02/14/2013] [Indexed: 10/27/2022]
Abstract
Myostatin (MSTN) is well known as a potent inhibitor of muscle growth in mammals and has been shown to both inhibit the growth promoting TORC1 signaling pathway and promote Ubiquitin-Proteasomal and Autophagy-Lysosomal degradative routes. In contrast, in non-mammalian species, despite high structural conservation of MSTN sequence, functional conservation is only assumed. Here, we show that treatment of cultured trout myotubes with human recombinant MSTN (huMSTN) resulted in a significant decrease of their diameter by up to 20%, validating the use of heterologous huMSTN in our in vitro model to monitor the processes by which this growth factor promotes muscle wasting in fish. Accordingly, huMSTN stimulation prevented the full activation by IGF1 of the TORC1 signaling pathway, as revealed by the analysis of the phosphorylation status of 4E-BP1. Moreover, the levels of the proteasome-dependent protein Atrogin1 exhibited an increase in huMSTN treated cells. Likewise, we observed a stimulatory effect of huMSTN treatment on the levels of LC3-II, the more reliable marker of the Autophagy-Lysosomal degradative system. Overall, these results show for the first time in a piscine species the effect of MSTN on several atrophic and hypertrophic pathways and support a functional conservation of this growth factor between lower and higher vertebrates.
Collapse
Affiliation(s)
- Iban Seiliez
- INRA, UMR1067 Nutrition Métabolisme et Aquaculture, Pôle d'hydrobiologie, CD918, F-64310 St-Pée-sur-Nivelle, France.
| | | | | | | | | | | |
Collapse
|
186
|
Al-Qusairi L, Prokic I, Amoasii L, Kretz C, Messaddeq N, Mandel JL, Laporte J. Lack of myotubularin (MTM1) leads to muscle hypotrophy through unbalanced regulation of the autophagy and ubiquitin-proteasome pathways. FASEB J 2013; 27:3384-94. [PMID: 23695157 DOI: 10.1096/fj.12-220947] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Mutations in the phosphoinositide phosphatase myotubularin (MTM1) results in X-linked myotubular/centronuclear myopathy (XLMTM), characterized by a severe decrease in muscle mass and strength in patients and murine models. However, the molecular mechanism involved in the muscle hypotrophy is unclear. Here we show that the IGF1R/Akt pathway is affected in Mtm1-deficient murine muscles, characterized by an increase in IGF1 receptor and Akt levels in both the presymptomatic and symptomatic phases. Moreover, up-regulation of atrogenes was observed in the presymptomatic phase of the myopathy, supporting overactivation of the ubiquitin-proteasome pathway. In parallel, the autophagy machinery was affected as indicated by the increase in the number of autophagosomes and of autophagy markers, such as LC3 and P62. However, phosphorylation of FOXO3a and mTOR were abnormal at late but not at early stages of the disease, suggesting that myotubularin acts both upstream in the IGF1R/Akt pathway and downstream on the balance between the autophagy and ubiquitin-proteasome pathways in vivo. Adeno-associated virus-mediated delivery of Mtm1 into Mtm1-null muscles rescued muscle mass and normalized the expression levels of IGF1 receptor, the ubiquitin-proteasome pathway, and autophagy markers. These data support the hypothesis that the unbalanced regulation of the ubiquitin proteasome pathway and the autophagy machinery is a primary cause of the XLMTM pathogenesis.
Collapse
Affiliation(s)
- Lama Al-Qusairi
- Department of Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
| | | | | | | | | | | | | |
Collapse
|
187
|
An CI, Ganio E, Hagiwara N. Trip12, a HECT domain E3 ubiquitin ligase, targets Sox6 for proteasomal degradation and affects fiber type-specific gene expression in muscle cells. Skelet Muscle 2013; 3:11. [PMID: 23663701 PMCID: PMC3666947 DOI: 10.1186/2044-5040-3-11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 04/08/2013] [Indexed: 11/30/2022] Open
Abstract
Background A sophisticated level of coordinated gene expression is necessary for skeletal muscle fibers to obtain their unique functional identities. We have previously shown that the transcription factor Sox6 plays an essential role in coordinating muscle fiber type differentiation by acting as a transcriptional suppressor of slow fiber-specific genes. Currently, mechanisms regulating the activity of Sox6 in skeletal muscle and how these mechanisms affect the fiber phenotype remain unknown. Methods Yeast two-hybrid screening was used to identify binding partners of Sox6 in muscle. Small interfering RNA (siRNA)-mediated knockdown of one of the Sox6 binding proteins, Trip12, was used to determine its effect on Sox6 activity in C2C12 myotubes using quantitative analysis of fiber type-specific gene expression. Results We found that the E3 ligase Trip12, a HECT domain E3 ubiquitin ligase, recognizes and polyubiquitinates Sox6. Inhibiting Trip12 or the 26S proteasome activity resulted in an increase in Sox6 protein levels in C2C12 myotubes. This control of Sox6 activity in muscle cells via Trip12 ubiquitination has significant phenotypic outcomes. Knockdown of Trip12 in C2C12 myotubes led to upregulation of Sox6 protein levels and concurrently to a decrease in slow fiber-specific Myh7 expression coupled with an increased expression in fast fiber-specific Myh4. Therefore, regulation of Sox6 cellular levels by the ubiquitin-proteasome system can induce identity-changing alterations in the expression of fiber type-specific genes in muscle cells. Conclusions Based on our data, we propose that in skeletal muscle, E3 ligases have a significant role in regulating fiber type-specific gene expression, expanding their importance in muscle beyond their well-established role in atrophy.
Collapse
Affiliation(s)
- Chung-Il An
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Edward Ganio
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Nobuko Hagiwara
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
188
|
Abstract
PURPOSE OF REVIEW Nuclear factor-kappaB (NF-κB) activation is associated with a wide range of muscle-related diseases. Here, we review the evidence implicating specific NF-κB components in different disease pathologies and discuss therapies designed to target aberrant NF-κB signaling for the treatment of those pathologies. RECENT FINDINGS Many components of the NF-κB signaling pathway contribute to muscle pathologies, presumably through activation of the transcription factor. In addition, an increasing number of upstream factors have been connected to disease progression. Genetic models and therapeutic approaches affecting these upstream targets associate with ameliorating disease progression. SUMMARY Dissecting the crosstalk between NF-κB, its upstream mediators, and other signaling pathways is vital to our understanding of how activation of this signaling pathway is mediated in various diseases. The strides made in therapeutically inhibiting the NF-κB pathway provide some promise for the treatment of these diseases.
Collapse
Affiliation(s)
- Jonathan Shintaku
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, Ohio 43210, USA
| | | |
Collapse
|
189
|
Abstract
PURPOSE OF REVIEW The balance between the rates of protein synthesis and protein degradation governs the maintenance of muscle mass in the body. The main purpose of this review is to highlight the latest understanding of the various pathways that maintain this balance between muscle atrophy and hypertrophy. RECENT FINDINGS The maintenance of muscle mass is an interplay between anabolic and catabolic pathways that are interconnected at several junctures. The insulin-like growth factor 1/IRS1/PI3K/Akt pathway along with the ubiquitin-proteasome pathway, lysosomal/autophagy pathway and myostatin pathway maintain this homeostasis with the aid of various transcriptional and genetic factors, many of which continue to be discovered and studied in an ongoing fashion. SUMMARY We tried to present, in this short review, a holistic view of the various players, old and new, responsible for the maintenance of this delicate equilibrium between muscle gain and loss. The development of novel therapeutics aimed at the activation or suppression of these described mediators may help the field of medicine in the management of a myriad of clinical conditions, thereby improving mobility and quality of life of affected patients.
Collapse
|
190
|
Abstract
PURPOSE OF REVIEW Skeletal muscle loss appears to be the most significant event in cancer cachexia and is associated with a poor outcome. The balance between mechanisms that control synthesis and degradation is fundamental when designing new therapies. This review aims to highlight the molecular mechanisms that are associated with protein kinetics. RECENT FINDINGS The mechanisms that promote muscle synthesis have been explored in detail recently but moreover they have been the mechanisms behind degradation. Specific advances in cellular signalling molecules related to autophagy pathways including signal transducer and activators of transcription-3, activin type-2 receptor, TRAF6, and transcriptomic research have been given special attention in this review to highlight their roles in degradation and as potential targets for therapeutics. Ways to quantify muscle loss are badly needed for outcome measures; recent research using radiolabelled amino acids has also been discussed in this review. SUMMARY Only by having an appreciation of the complex regulation of muscle protein synthesis and degradation, will potential new therapeutics be able to be developed. This review identifies known targets in molecular pathways of current interest, explores methods used to find novel genes which may be involved in muscle kinetics and also highlights ways in which muscle kinetics may be measured to assess the efficacy of such interventions.
Collapse
|
191
|
MG132-mediated inhibition of the ubiquitin-proteasome pathway ameliorates cancer cachexia. J Cancer Res Clin Oncol 2013; 139:1105-15. [PMID: 23535871 PMCID: PMC7087863 DOI: 10.1007/s00432-013-1412-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 02/28/2013] [Indexed: 01/06/2023]
Abstract
Purpose To evaluate the effect of proteasome inhibitor MG132 in cancer cachexia and to delineate the molecular mechanism underlying. Methods We established an experimental cancer cachexia model by subcutaneously implanting colon 26 cells into the armpits of BALB/c mice. Following administration of MG132 at various time points, body weight, food intake, gastrocnemius muscle weight, spontaneous activity and survival of tumor-bearing mice were examined along with tumor growth. Moreover, cachectic markers including glucose, triglyceride, albumin and total proteins as well as levels of the proinflammatory cytokines TNF-α and IL-6 in serum and gastrocnemius tissue were measured. Finally, mRNA and protein levels of p65, IκBα, and ubiquitin E3 ligases MuRF1 and MAFbx in gastrocnemius muscle were assessed. Results MG132 treatment significantly alleviated cancer cachexia as demonstrated by attenuated weight loss, altered carbohydrate metabolism and muscle atrophy and increased spontaneous activity and survival time of tumor-bearing mice. MG132 reduced tumor growth and the levels of TNF-α and IL-6 in serum and gastrocnemius tissue. NF-κB, MuRF1 and MAFbx were also inhibited by MG132. Unexpectedly, MG132 was more efficient when administrated during the early stages of cachexia. MG132 had no effect on food intake of tumor-bearing mice. Conclusion Our results demonstrate that MG132-induced inhibition of the ubiquitin–proteasome pathway in cancer cachexia decreased the activity of NF-κB and the degradation of IκBα, and reduced the levels of TNF-α and IL-6 in serum and gastrocnemius tissue, accompanied by downregulation of MuRF1 and MAFbx. These data suggest that MG132 is a potential therapeutic and preventive agent for cancer cachexia.
Collapse
|
192
|
Moreira CCL, Cassolla P, Dornellas APS, de Morais H, de Souza CO, Borba-Murad GR, Bazotte RB, de Souza HM. Changes in liver gluconeogenesis during the development of Walker-256 tumour in rats. Int J Exp Pathol 2013; 94:47-55. [PMID: 23317353 DOI: 10.1111/iep.12002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 09/13/2012] [Indexed: 01/02/2023] Open
Abstract
Few studies have investigated liver gluconeogenesis in cancer and there is no agreement as to whether the activity of this pathway is increased or decreased in this disease. The aim of this study was to evaluate gluconeogenesis from alanine, pyruvate and glycerol, and related metabolic parameters in perfused liver from Walker-256 tumour-bearing rats on days 5 (WK5 group), 8 (WK8 group) and 12 (WK12 group) of tumour development. There was reduction (P < 0.05) of liver glucose production from alanine and pyruvate in WK5, WK8 and WK12 groups, which was accompanied by a decrease (P < 0.05) in oxygen consumption. Moreover, there was higher (P < 0.05) pyruvate and lactate production from alanine in the WK5 group and a marked reduction (P < 0.05) of pyruvate and urea production from alanine in the WK12 group. In addition, liver glucose production and oxygen consumption from glycerol were not reduced in WK5, WK8 and WK12 groups. Thus the, the results show inhibition of hepatic gluconeogenesis from alanine and pyruvate, but not from glycerol, on days 5, 8 and 12 of Walker-256 tumour development, which can be attributed to the metabolic step in which the substrate enters the gluconeogenic pathway.
Collapse
|
193
|
Terracciano C, Celi M, Lecce D, Baldi J, Rastelli E, Lena E, Massa R, Tarantino U. Differential features of muscle fiber atrophy in osteoporosis and osteoarthritis. Osteoporos Int 2013; 24:1095-100. [PMID: 22535191 PMCID: PMC3572370 DOI: 10.1007/s00198-012-1990-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 03/26/2012] [Indexed: 11/25/2022]
Abstract
UNLABELLED We demonstrated that osteoporosis is associated with a preferential type II muscle fiber atrophy, which correlates with bone mineral density and reduced levels of Akt, a major regulator of muscle mass. In osteoarthritis, muscle atrophy is of lower extent and related to disease duration and severity. INTRODUCTION Osteoarthritis (OA) and osteoporosis (OP) are associated with loss of muscle bulk and power. In these diseases, morphological studies on muscle tissue are lacking, and the underlying mechanisms of muscle atrophy are not known. The aim of our study was to evaluate the OP- or OA-related muscle atrophy and its correlation with severity of disease. Muscle levels of Akt protein, a component of IGF-1/PI3K/Akt pathway, the main regulator of muscle mass, have been determined. METHODS We performed muscle biopsy in 15 women with OP and in 15 women with OA (age range, 60-85 years). Muscle fibers were counted, measured, and classified by ATPase reaction. By statistical analysis, fiber-type atrophy was correlated with bone mineral density (BMD) in the OP group and with Harris Hip Score (HHS) and disease duration in the OA group. Akt protein levels were evaluated by Western blot analysis. RESULTS Our findings revealed in OP a preferential type II fiber atrophy that inversely correlated with patients' BMD. In OA, muscle atrophy was of lower extent, homogeneous among fiber types and related to disease duration and HHS. Moreover, in OP muscle, the Akt level was significantly reduced as compared to OA muscles. CONCLUSIONS This study shows that in OP, there is a preferential and diffuse type II fiber atrophy, proportional to the degree of bone loss, whereas in OA, muscle atrophy is connected to the functional impairment caused by the disease. A reduction of Akt seems to be one of the mechanisms involved in OP-related muscle atrophy.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Biopsy
- Bone Density/physiology
- Female
- Humans
- Middle Aged
- Muscle Fibers, Fast-Twitch/metabolism
- Muscle Fibers, Fast-Twitch/pathology
- Muscle Fibers, Slow-Twitch/metabolism
- Muscle Fibers, Slow-Twitch/pathology
- Muscular Atrophy/etiology
- Muscular Atrophy/pathology
- Muscular Atrophy/physiopathology
- Osteoarthritis, Hip/complications
- Osteoarthritis, Hip/pathology
- Osteoarthritis, Hip/physiopathology
- Osteoporosis, Postmenopausal/complications
- Osteoporosis, Postmenopausal/pathology
- Osteoporosis, Postmenopausal/physiopathology
- Proto-Oncogene Proteins c-akt/metabolism
Collapse
Affiliation(s)
- C Terracciano
- Department of Neurosciences, Tor Vergata University of Rome, Via Montpellier, 1, 00133 Rome, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
194
|
|
195
|
Levine S, Bashir MH, Clanton TL, Powers SK, Singhal S. COPD elicits remodeling of the diaphragm and vastus lateralis muscles in humans. J Appl Physiol (1985) 2012; 114:1235-45. [PMID: 23264538 DOI: 10.1152/japplphysiol.01121.2012] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
A profound remodeling of the diaphragm and vastus lateralis (VL) occurs in patients with moderate-to-severe chronic obstructive pulmonary disease (COPD). In this mini-review, we discuss the following costal diaphragm remodeling features noted in patients with moderate-to-severe COPD: 1) deletion of serial sarcomeres, 2) increased proportion of slow-twitch fibers, 3) fast-to-slow isoform shift in sarco(endo)plasmic reticulum Ca(2+)-ATPase, 4) increased capacity of oxidative metabolism, 5) oxidative stress, and 6) myofiber atrophy. We then present the sole feature of diaphragm remodeling noted in mild-to-moderate COPD under the heading "MyHC and contractile remodeling noted in mild-to-moderate COPD." The importance of VL remodeling in COPD patients as a prognostic indicator as well as a major determinant of the ability to carry out activities of daily living is well accepted. We present the remodeling of the VL noted in COPD patients under the following headings: 1) Decrease in proportion of slow-twitch fibers, 2) Decreased activity of oxidative pathways, 3) Oxidative and nitrosative stress, and 4) Myofiber atrophy. For each of the remodeling features noted in both the VL and costal diaphragm of COPD patients, we present mechanisms that are currently thought to mediate these changes as well as the pathophysiology of each remodeling feature. We hope that our mechanistic presentation stimulates research in this area that focuses on improving the ability of COPD patients to carry out increased activities of daily living.
Collapse
Affiliation(s)
- Sanford Levine
- Department of Surgery, University of Pennsylvania, Philadelphia, Pennsylvania 19035, USA.
| | | | | | | | | |
Collapse
|
196
|
Lambertucci AC, Lambertucci RH, Hirabara SM, Curi R, Moriscot AS, Alba-Loureiro TC, Guimarães-Ferreira L, Levada-Pires AC, Vasconcelos DAA, Sellitti DF, Pithon-Curi TC. Glutamine supplementation stimulates protein-synthetic and inhibits protein-degradative signaling pathways in skeletal muscle of diabetic rats. PLoS One 2012; 7:e50390. [PMID: 23239980 PMCID: PMC3519752 DOI: 10.1371/journal.pone.0050390] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 10/24/2012] [Indexed: 11/29/2022] Open
Abstract
In this study, we investigated the effect of glutamine (Gln) supplementation on the signaling pathways regulating protein synthesis and protein degradation in the skeletal muscle of rats with streptozotocin (STZ)-induced diabetes. The expression levels of key regulatory proteins in the synthetic pathways (Akt, mTOR, GSK3 and 4E-BP1) and the degradation pathways (MuRF-1 and MAFbx) were determined using real-time PCR and Western blotting in four groups of male Wistar rats; 1) control, non-supplemented with glutamine; 2) control, supplemented with glutamine; 3) diabetic, non-supplemented with glutamine; and 4) diabetic, supplemented with glutamine. Diabetes was induced by the intravenous injection of 65 mg/kg bw STZ in citrate buffer (pH 4.2); the non-diabetic controls received only citrate buffer. After 48 hours, diabetes was confirmed in the STZ-treated animals by the determination of blood glucose levels above 200 mg/dL. Starting on that day, a solution of 1 g/kg bw Gln in phosphate buffered saline (PBS) was administered daily via gavage for 15 days to groups 2 and 4. Groups 1 and 3 received only PBS for the same duration. The rats were euthanized, and the soleus muscles were removed and homogenized in extraction buffer for the subsequent measurement of protein and mRNA levels. The results demonstrated a significant decrease in the muscle Gln content in the diabetic rats, and this level increased toward the control value in the diabetic rats receiving Gln. In addition, the diabetic rats exhibited a reduced mRNA expression of regulatory proteins in the protein synthesis pathway and increased expression of those associated with protein degradation. A reduction in the skeletal muscle mass in the diabetic rats was observed and was alleviated partially with Gln supplementation. The data suggest that glutamine supplementation is potentially useful for slowing the progression of muscle atrophy in patients with diabetes.
Collapse
Affiliation(s)
- Adriana C. Lambertucci
- Institute of Physical Activity Sciences and Sports, Post-Graduate Program in Human Movement Sciences, Cruzeiro do Sul University, São Paulo, Brazil
| | - Rafael H. Lambertucci
- Institute of Physical Activity Sciences and Sports, Post-Graduate Program in Human Movement Sciences, Cruzeiro do Sul University, São Paulo, Brazil
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Sandro M. Hirabara
- Institute of Physical Activity Sciences and Sports, Post-Graduate Program in Human Movement Sciences, Cruzeiro do Sul University, São Paulo, Brazil
| | - Rui Curi
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Anselmo S. Moriscot
- Department of Cell Biology and Development, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Tatiana C. Alba-Loureiro
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Lucas Guimarães-Ferreira
- Center of Physical Education and Sports, Federal University of Espirito Santo, Espirito Santo, Brazil
| | - Adriana C. Levada-Pires
- Institute of Physical Activity Sciences and Sports, Post-Graduate Program in Human Movement Sciences, Cruzeiro do Sul University, São Paulo, Brazil
| | - Diogo A. A. Vasconcelos
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Donald F. Sellitti
- Department of Medicine, Uniformed Services University of Health Sciences, Bethesda, Maryland, United States of America
| | - Tania C. Pithon-Curi
- Institute of Physical Activity Sciences and Sports, Post-Graduate Program in Human Movement Sciences, Cruzeiro do Sul University, São Paulo, Brazil
| |
Collapse
|
197
|
Laser capture microdissection of metachromatically stained skeletal muscle allows quantification of fiber type specific gene expression. Mol Cell Biochem 2012. [PMID: 23196635 DOI: 10.1007/s11010-012-1538-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Skeletal muscle contains various myofiber types closely associated with satellite stem cells, vasculature, and neurons, thus making it difficult to perform genetic or proteomic expression analysis with sufficient cellular specificity to resolve differences at the individual cell or myofiber type level. Here, we describe the combination of a simple histochemical method capable of simultaneously identifying Type I, IIA, IIB, and IIC myofibers followed by laser capture micro-dissection (LCM) to compare the expression profiles of individual fiber types, myonuclear domains, and satellite cells in frozen muscle sections of control and atrophied muscle. Quantitative RT-PCR (qPCR) was used to verify the integrity of the cell-specific RNAs harvested after histologic staining, while qPCR for specific genes of interest was used to quantify atrophy-associated changes in mRNA. Our data demonstrate that the differential myofiber atrophy previously described by histologic means is related to differential expression of atrophy-related genes, such as MuRF1 and MAFbx (a.k.a. Atrogin-1), within different myofiber type populations. This spatially resolved molecular pathology (SRMP) technique allowed quantitation of atrophy-related gene products within individual fiber types that could not be resolved by expression analysis of the whole muscle. The present study demonstrates the importance of fiber type specific expression profiling in understanding skeletal muscle biology especially during muscle atrophy and provides a practical method of performing such research.
Collapse
|
198
|
Andres-Mateos E, Brinkmeier H, Burks TN, Mejias R, Files DC, Steinberger M, Soleimani A, Marx R, Simmers JL, Lin B, Finanger Hedderick E, Marr TG, Lin BM, Hourdé C, Leinwand LA, Kuhl D, Föller M, Vogelsang S, Hernandez-Diaz I, Vaughan DK, Alvarez de la Rosa D, Lang F, Cohn RD. Activation of serum/glucocorticoid-induced kinase 1 (SGK1) is important to maintain skeletal muscle homeostasis and prevent atrophy. EMBO Mol Med 2012; 5:80-91. [PMID: 23161797 PMCID: PMC3569655 DOI: 10.1002/emmm.201201443] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 09/25/2012] [Accepted: 09/28/2012] [Indexed: 12/18/2022] Open
Abstract
Maintaining skeletal muscle mass is essential for general health and prevention of disease progression in various neuromuscular conditions. Currently, no treatments are available to prevent progressive loss of muscle mass in any of these conditions. Hibernating mammals are protected from muscle atrophy despite prolonged periods of immobilization and starvation. Here, we describe a mechanism underlying muscle preservation and translate it to non-hibernating mammals. Although Akt has an established role in skeletal muscle homeostasis, we find that serum- and glucocorticoid-inducible kinase 1 (SGK1) regulates muscle mass maintenance via downregulation of proteolysis and autophagy as well as increased protein synthesis during hibernation. We demonstrate that SGK1 is critical for the maintenance of skeletal muscle homeostasis and function in non-hibernating mammals in normal and atrophic conditions such as starvation and immobilization. Our results identify a novel therapeutic target to combat loss of skeletal muscle mass associated with muscle degeneration and atrophy.
Collapse
Affiliation(s)
- Eva Andres-Mateos
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
199
|
Cornford AS, Barkan AL, Hinko A, Horowitz JF. Suppression in growth hormone during overeating ameliorates the increase in insulin resistance and cardiovascular disease risk. Am J Physiol Endocrinol Metab 2012; 303:E1264-72. [PMID: 23011065 PMCID: PMC3517632 DOI: 10.1152/ajpendo.00320.2012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Previously, we reported that overeating for only a few days markedly suppressed the secretion of growth hormone (GH). The purpose of the present study was to determine the role of this reduction in GH concentration on key metabolic adaptations that occur during 2 wk of overeating. Nine nonobese, healthy adults were admitted to the hospital for 2 wk, during which time they ate ∼4,000 kcal/day (70 kcal·kg fat-free mass(-1)·day(-1); 50% carbohydrate, 35% fat, and 15% protein), and their plasma GH concentration was allowed to decline naturally (control). An additional eight subjects underwent the same overeating intervention and received exogenous GH treatment (GHT) administered in four daily injections to mimic physiological GH secretion throughout the 2-wk overeating period. We measured plasma insulin and glucose concentrations in the fasting and postprandial state as well as fasting lipolytic rate, proteolytic rate, and fractional synthetic rate (FSR) using stable-isotope tracer methods. GHT prevented the fall in plasma GH concentration, maintaining plasma GH concentration at baseline levels (1.2 ± 0.2 ng/ml), which increased fasting and postprandial assessments of insulin resistance (P < 0.05) and increased fasting lipidemia (all P < 0.05 vs. control). In addition, preventing the suppression in GH with overeating also blunted the increase in systemic proteolysis (P < 0.05 GHT vs. control). However, GHT did not alter lipolysis or FSR in response to overeating. In conclusion, our main findings suggest that the suppression in GH secretion that naturally occurs during the early stages of overeating may help attenuate the insulin resistance and hyperlipidemia that typically accompany overeating.
Collapse
Affiliation(s)
- Andrea S Cornford
- School of Kinesiology, Univ. of Michigan, Ann Arbor, MI 48109-2214, USA
| | | | | | | |
Collapse
|
200
|
Andres-Mateos E, Mejias R, Soleimani A, Lin BM, Burks TN, Marx R, Lin B, Zellars RC, Zhang Y, Huso DL, Marr TG, Leinwand LA, Merriman DK, Cohn RD. Impaired skeletal muscle regeneration in the absence of fibrosis during hibernation in 13-lined ground squirrels. PLoS One 2012; 7:e48884. [PMID: 23155423 PMCID: PMC3498346 DOI: 10.1371/journal.pone.0048884] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Accepted: 10/02/2012] [Indexed: 02/06/2023] Open
Abstract
Skeletal muscle atrophy can occur as a consequence of immobilization and/or starvation in the majority of vertebrates studied. In contrast, hibernating mammals are protected against the loss of muscle mass despite long periods of inactivity and lack of food intake. Resident muscle-specific stem cells (satellite cells) are known to be activated by muscle injury and their activation contributes to the regeneration of muscle, but whether satellite cells play a role in hibernation is unknown. In the hibernating 13-lined ground squirrel we show that muscles ablated of satellite cells were still protected against atrophy, demonstrating that satellite cells are not involved in the maintenance of skeletal muscle during hibernation. Additionally, hibernating skeletal muscle showed extremely slow regeneration in response to injury, due to repression of satellite cell activation and myoblast differentiation caused by a fine-tuned interplay of p21, myostatin, MAPK, and Wnt signaling pathways. Interestingly, despite long periods of inflammation and lack of efficient regeneration, injured skeletal muscle from hibernating animals did not develop fibrosis and was capable of complete recovery when animals emerged naturally from hibernation. We propose that hibernating squirrels represent a new model system that permits evaluation of impaired skeletal muscle remodeling in the absence of formation of tissue fibrosis.
Collapse
Affiliation(s)
- Eva Andres-Mateos
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Rebeca Mejias
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Arshia Soleimani
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Brian M. Lin
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Tyesha N. Burks
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Ruth Marx
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Benjamin Lin
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Richard C. Zellars
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Yonggang Zhang
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - David L. Huso
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Tom G. Marr
- Hiberna Corporation, Boulder, Colorado, United States of America
| | - Leslie A. Leinwand
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado, United States of America
| | - Dana K. Merriman
- Department of Biology and Microbiology, University of Wisconsin, Oshkosh, Wisconsin, United States of America
| | - Ronald D. Cohn
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|