151
|
Galluccio E, Lymbery RA, Wilson A, Evans JP. Personality, sperm traits and a test for their combined dependence on male condition in guppies. ROYAL SOCIETY OPEN SCIENCE 2022. [PMID: 35706668 DOI: 10.5061/dryad.00000005n] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
There is evidence that animal personality can affect sexual selection, with studies reporting that male behavioural types are associated with success during pre- and post-copulatory sexual selection. Given these links between personality and sexual traits, and the accumulating evidence that their expression can depend on an individual's dietary status (i.e. condition), a novel prediction is that changes in a male's diet should alter both the average expression of personality and sexual traits, and their covariance. We tested these predictions using the guppy Poecilia reticulata, a species previously shown to exhibit strong condition dependence in ejaculate traits and a positive correlation between sperm production and individual variation in boldness. Contrary to expectation, we found that dietary restriction-when administered in mature adult males-did not affect the expression of either behavioural (boldness and activity) or ejaculate traits, although we did find that males subjected to dietary stress exhibited a positive association between sperm velocity and boldness that was not apparent in the unrestricted diet group. This latter finding points to possible context-dependent patterns of covariance between sexually selected traits and personalities, which may have implications for patterns of selection and evolutionary processes under fluctuating environmental conditions.
Collapse
Affiliation(s)
- Edward Galluccio
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, 6009 Western Australia, Australia
| | - Rowan A Lymbery
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, 6009 Western Australia, Australia
| | - Alastair Wilson
- Centre for Ecology and Evolution, University of Exeter, Cornwall Campus, Penryn, UK
| | - Jonathan P Evans
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, 6009 Western Australia, Australia
| |
Collapse
|
152
|
Galluccio E, Lymbery RA, Wilson A, Evans JP. Personality, sperm traits and a test for their combined dependence on male condition in guppies. ROYAL SOCIETY OPEN SCIENCE 2022. [PMID: 35706668 DOI: 10.6084/m9.figshare.c.6002280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
There is evidence that animal personality can affect sexual selection, with studies reporting that male behavioural types are associated with success during pre- and post-copulatory sexual selection. Given these links between personality and sexual traits, and the accumulating evidence that their expression can depend on an individual's dietary status (i.e. condition), a novel prediction is that changes in a male's diet should alter both the average expression of personality and sexual traits, and their covariance. We tested these predictions using the guppy Poecilia reticulata, a species previously shown to exhibit strong condition dependence in ejaculate traits and a positive correlation between sperm production and individual variation in boldness. Contrary to expectation, we found that dietary restriction-when administered in mature adult males-did not affect the expression of either behavioural (boldness and activity) or ejaculate traits, although we did find that males subjected to dietary stress exhibited a positive association between sperm velocity and boldness that was not apparent in the unrestricted diet group. This latter finding points to possible context-dependent patterns of covariance between sexually selected traits and personalities, which may have implications for patterns of selection and evolutionary processes under fluctuating environmental conditions.
Collapse
Affiliation(s)
- Edward Galluccio
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, 6009 Western Australia, Australia
| | - Rowan A Lymbery
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, 6009 Western Australia, Australia
| | - Alastair Wilson
- Centre for Ecology and Evolution, University of Exeter, Cornwall Campus, Penryn, UK
| | - Jonathan P Evans
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, 6009 Western Australia, Australia
| |
Collapse
|
153
|
Diquelou MC, Griffin AS. Does trapping catch sociable, exploratory and innovative mynas preferentially? No, but perhaps less fearful ones. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
154
|
Galluccio E, Lymbery RA, Wilson A, Evans JP. Personality, sperm traits and a test for their combined dependence on male condition in guppies. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220269. [PMID: 35706668 PMCID: PMC9156929 DOI: 10.1098/rsos.220269] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/11/2022] [Indexed: 05/03/2023]
Abstract
There is evidence that animal personality can affect sexual selection, with studies reporting that male behavioural types are associated with success during pre- and post-copulatory sexual selection. Given these links between personality and sexual traits, and the accumulating evidence that their expression can depend on an individual's dietary status (i.e. condition), a novel prediction is that changes in a male's diet should alter both the average expression of personality and sexual traits, and their covariance. We tested these predictions using the guppy Poecilia reticulata, a species previously shown to exhibit strong condition dependence in ejaculate traits and a positive correlation between sperm production and individual variation in boldness. Contrary to expectation, we found that dietary restriction-when administered in mature adult males-did not affect the expression of either behavioural (boldness and activity) or ejaculate traits, although we did find that males subjected to dietary stress exhibited a positive association between sperm velocity and boldness that was not apparent in the unrestricted diet group. This latter finding points to possible context-dependent patterns of covariance between sexually selected traits and personalities, which may have implications for patterns of selection and evolutionary processes under fluctuating environmental conditions.
Collapse
Affiliation(s)
- Edward Galluccio
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, 6009 Western Australia, Australia
| | - Rowan A. Lymbery
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, 6009 Western Australia, Australia
| | - Alastair Wilson
- Centre for Ecology and Evolution, University of Exeter, Cornwall Campus, Penryn, UK
| | - Jonathan P. Evans
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, 6009 Western Australia, Australia
| |
Collapse
|
155
|
Sadoul B, Alfonso S, Goold C, Pratlong M, Rialle S, Geffroy B, Bégout ML. Transcriptomic profiles of consistent risk-taking behaviour across time and contexts in European sea bass. Proc Biol Sci 2022; 289:20220399. [PMID: 35582798 PMCID: PMC9114976 DOI: 10.1098/rspb.2022.0399] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Bolder individuals have greater access to food sources and reproductive partners but are also at increased risk of predation. Boldness is believed to be consistent across time and contexts, but few studies have investigated the stability of this trait across variable environments, such as varying stress loads or long periods of time. Moreover, the underlying molecular components of boldness are poorly studied. Here, we report that boldness of 1154 European sea bass, evaluated using group risk-taking tests, is consistent over seven months and for individuals subjected to multiple environments, including a chronically stressful environment. Differences in risk-taking behaviour were further supported by differences observed in the responses to a novel environment test: shy individuals displayed more group dispersion, more thigmotaxic behaviour and lower activity levels. Transcriptomic analyses performed on extreme phenotypes revealed that bold individuals display greater expression for genes involved in social and exploration behaviours, and memory in the pituitary, and genes involved in immunity and responses to stimuli in the head kidney. This study demonstrates that personality traits come with an underpinning molecular signature, especially in organs involved in the endocrine and immune systems. As such, our results help to depict state-behaviour feedback mechanisms, previously proposed as key in shaping animal personality.
Collapse
Affiliation(s)
- Bastien Sadoul
- MARBEC, University of Montpellier, CNRS, Ifremer, IRD, Palavas-Les-Flots, France,DECOD, Ecosystem Dynamics and Sustainability, Institut Agro, Ifremer, INRAE, Rennes, France
| | - Sébastien Alfonso
- MARBEC, University of Montpellier, CNRS, Ifremer, IRD, Palavas-Les-Flots, France,COISPA Technology and Research, Experimental Station for the Study of Sea Resources, Bari, Italy
| | - Conor Goold
- Faculty of Biological Sciences, University of Leeds, LS2 9JT, UK
| | - Marine Pratlong
- MGX-Montpellier GenomiX, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Stéphanie Rialle
- MGX-Montpellier GenomiX, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Benjamin Geffroy
- MARBEC, University of Montpellier, CNRS, Ifremer, IRD, Palavas-Les-Flots, France
| | - Marie-Laure Bégout
- MARBEC, University of Montpellier, CNRS, Ifremer, IRD, Palavas-Les-Flots, France
| |
Collapse
|
156
|
Carbillet J, Rey B, Palme R, Monestier C, Börger L, Lavabre T, Maublanc ML, Cebe N, Rames JL, Le Loc'h G, Wasniewski M, Rannou B, Gilot-Fromont E, Verheyden H. Covariation between glucocorticoids, behaviour and immunity supports the pace-of-life syndrome hypothesis: an experimental approach. Proc Biol Sci 2022; 289:20220464. [PMID: 35611533 DOI: 10.1098/rspb.2022.0464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The biomedical literature has consistently highlighted that long-term elevation of glucocorticoids might impair immune functions. However, patterns are less clear in wild animals. Here, we re-explored the stress-immunity relationship considering the potential effects of behavioural profiles. Thirteen captive roe deer (Capreolus capreolus) were monitored over an eight-week period encompassing two capture events. We assessed how changes in baseline faecal cortisol metabolite (FCM) concentrations following a standardized capture protocol and an immune challenge using anti-rabies vaccination affected changes in 13 immune parameters of innate and adaptive immunity, and whether these changes in baseline FCM levels and immune parameters related to behavioural profiles. We found that individuals with increased baseline FCM levels also exhibited increased immunity and were characterized by more reactive behavioural profiles (low activity levels, docility to manipulation and neophilia). Our results suggest that the immunity of large mammals may be influenced by glucocorticoids, but also behavioural profiles, as it is predicted by the pace-of-life syndrome hypothesis. Our results highlight the need to consider covariations between behaviour, immunity and glucocorticoids in order to improve our understanding of the among-individual variability in the stress-immunity relationships observed in wildlife, as they may be underpinned by different life-history strategies.
Collapse
Affiliation(s)
- Jeffrey Carbillet
- Université de Toulouse, INRAE, CEFS, Castanet Tolosan 31326, France.,Université de Lyon, VetAgro Sup, Marcy-l'Etoile, France
| | - Benjamin Rey
- Université de Lyon, Université Lyon 1, UMR CNRS 5558, Villeurbanne Cedex, France
| | - Rupert Palme
- Department of Biomedical Sciences, University of Veterinary Medicine, Vienna 1210, Austria
| | | | - Luca Börger
- Department of Biosciences, Swansea University, Singleton Park, Swansea, UK
| | - Typhaine Lavabre
- Equipe de Biologie médicale-Histologie, CREFRE, Inserm-UPS-ENVT, Toulouse, France.,Inovie Vet, Laboratoire d'Analyses et Biologie Vétérinaires, Montpellier, France
| | | | - Nicolas Cebe
- Université de Toulouse, INRAE, CEFS, Castanet Tolosan 31326, France
| | - Jean-Luc Rames
- Université de Toulouse, INRAE, CEFS, Castanet Tolosan 31326, France
| | | | | | - Benoit Rannou
- Université de Lyon, VetAgro Sup, Marcy-l'Etoile, France
| | - Emmanuelle Gilot-Fromont
- Université de Lyon, VetAgro Sup, Marcy-l'Etoile, France.,Université de Lyon, Université Lyon 1, UMR CNRS 5558, Villeurbanne Cedex, France
| | - Hélène Verheyden
- Université de Toulouse, INRAE, CEFS, Castanet Tolosan 31326, France
| |
Collapse
|
157
|
Yang A, Zhu N, Lu HJ, Chang L. Environmental risks, life history strategy, and developmental psychology. Psych J 2022; 11:433-447. [DOI: 10.1002/pchj.561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 04/17/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Anting Yang
- Department of Psychology University of Macau Macau China
| | - Nan Zhu
- Department of Psychology University of Macau Macau China
| | - Hui Jing Lu
- Department of Applied Social Sciences the Hong Kong Polytechnic University Kowloon Hong Kong
| | - Lei Chang
- Department of Psychology University of Macau Macau China
| |
Collapse
|
158
|
Gan L, Bo T, Liu W, Wang D. The Gut Microbiota May Affect Personality in Mongolian Gerbils. Microorganisms 2022; 10:1054. [PMID: 35630496 PMCID: PMC9146877 DOI: 10.3390/microorganisms10051054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/01/2022] [Accepted: 05/03/2022] [Indexed: 12/22/2022] Open
Abstract
The "gut-microbiota-brain axis" reveals that gut microbiota plays a critical role in the orchestrating behavior of the host. However, the correlation between the host personalities and the gut microbiota is still rarely known. To investigate whether the gut microbiota of Mongolian gerbils (Meriones unguiculatus) differs between bold and shy personalities, we compared the gut microbiota of bold and shy gerbils, and then we transplanted the gut microbiota of bold and shy gerbils into middle group gerbils (individuals with less bold and shy personalities). We found a significant overall correlation between host boldness and gut microbiota. Even though there were no significant differences in alpha diversity and beta diversity of gut microbiota between bold and shy gerbils, the Firmicutes/Bacteroidetes phyla and Odoribacter and Blautia genus were higher in bold gerbils, and Escherichia_shigella genus was lower. Furthermore, the fecal microbiota transplantation showed that changes in gut microbiota could not evidently cause the increase or decrease in the gerbil's boldness score, but it increased the part of boldness behaviors by gavaging the "bold fecal microbiota". Overall, these data demonstrated that gut microbiota were significantly correlated with the personalities of the hosts, and alteration of microbiota could alter host boldness to a certain extent.
Collapse
Affiliation(s)
- Lin Gan
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (L.G.); (T.B.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tingbei Bo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (L.G.); (T.B.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (L.G.); (T.B.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dehua Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (L.G.); (T.B.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Life Sciences, Shandong University, Qingdao 266237, China
| |
Collapse
|
159
|
Tissier ML, Bergeron P, Garant D, Zahn S, Criscuolo F, Réale D. Telomere length positively correlates with pace-of-life in a sex- and cohort-specific way and elongates with age in a wild mammal. Mol Ecol 2022; 31:3812-3826. [PMID: 35575903 DOI: 10.1111/mec.16533] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 05/03/2022] [Accepted: 05/12/2022] [Indexed: 11/26/2022]
Abstract
Understanding ageing and the diversity of life histories is a cornerstone in biology. Telomeres, the protecting caps of chromosomes, are thought to be involved in ageing, cancer risks and life-history strategies. They shorten with cell division and age in somatic tissues of most species, possibly limiting lifespan. The resource allocation trade-off hypothesis predicts that short telomeres have thus co-evolved with early reproduction, proactive behaviour and reduced lifespan, i.e. a fast Pace-of-Life Syndrome (POLS). Conversely, since short telomeres may also reduce the risks of cancer, the anti-cancer hypothesis advances that they should be associated with slow POLS. Conclusion on which hypothesis best supports the role of telomeres as mediators of life-history strategies is hampered by a lack of study on wild short-lived vertebrates, apart from birds. Using seven years of data on wild Eastern chipmunks Tamias striatus, we highlighted that telomeres elongate with age (n = 204 and n = 20) and do not limit lifespan in this species (n = 51). Furthermore, short telomeres correlated with a slow POLS in a sex-specific way (n = 37). Females with short telomeres had a delayed age at first breeding and a lower fecundity rate than females with long telomeres, while we found no differences in males. Our findings support most predictions adapted from the anti-cancer hypothesis, but none of those from the resource allocation trade-off hypothesis. Results are in line with an increasing body of evidence suggesting that other evolutionary forces than resource allocation trade-offs shape the diversity of telomere length in adult somatic cells and the relationships between telomere length and life-histories.
Collapse
Affiliation(s)
- Mathilde L Tissier
- Biological Sciences, Bishop's University, 2600 Rue College, Québec, Canada.,Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, Québec, Canada
| | - Patrick Bergeron
- Biological Sciences, Bishop's University, 2600 Rue College, Québec, Canada
| | - Dany Garant
- Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Sandrine Zahn
- Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France
| | | | - Denis Réale
- Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, Québec, Canada
| |
Collapse
|
160
|
Matsumura K, Sasaki K, Miyatake T. Responses to artificial selection for locomotor activity: A focus on death feigning in red flour beetle. J Evol Biol 2022; 35:855-867. [PMID: 35506566 DOI: 10.1111/jeb.14012] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 04/06/2022] [Accepted: 04/10/2022] [Indexed: 11/27/2022]
Abstract
Whole-organism performance, including locomotor activity, is an important fitness trait in many animals. Locomotor activity is often classified into sprint speed and locomotor endurance and differences in sprint speed and locomotor endurance affect on other traits such as life-history traits. Previous studies found that locomotor endurance, sprint speed and brain dopamine (DA) levels are correlated with artificial selection for death feigning (an anti-predator behaviour that we refer to as 'death-feigning syndrome') in some insect species. Thus, if the syndrome has a genetic basis, death feigning, sprint speed and brain DA levels may be affected by artificial selection for locomotor endurance. We artificially selected for locomotor endurance over 10 generations in the red flour beetle Tribolium castaneum, and established higher (H) and lower activity (L) strains, then compared their death-feigning behaviour, sprint speed and brain DA levels. H-strain beetles exhibited significantly shorter duration of death-feigning, and significantly higher sprint speeds, suggesting variation in death-feigning syndrome. Surprisingly, although brain DA expression affects various animal behaviours, we found no significant differences in the brain DA expressions of H- and L-strain beetles. Thus, our results imply genetic correlations between locomotor endurance, sprint speed and death feigning, but not with brain DA expression, suggesting that differences in the biogenic amine results of our and previous studies may reflect differences in behavioural expression mechanisms.
Collapse
Affiliation(s)
| | - Ken Sasaki
- Graduate School of Agriculture, Tamagawa University, Machida, Japan
| | | |
Collapse
|
161
|
Bangura PB, Tiira K, Niemelä PT, Erkinaro J, Liljeström P, Toikkanen A, Primmer CR. Linking vgll3 genotype and aggressive behaviour in juvenile Atlantic salmon (Salmo salar). JOURNAL OF FISH BIOLOGY 2022; 100:1264-1271. [PMID: 35289932 PMCID: PMC9311142 DOI: 10.1111/jfb.15040] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
We tested the possibility that vgll3, a gene linked with maturation age in Atlantic salmon (Salmo salar), may be associated with behaviour by measuring aggressiveness and feeding activity in 380 juveniles with different vgll3 genotypes. Contrary to our prediction, individuals with the genotype associated with later maturation (vgll3*LL) were significantly more aggressive than individuals with the genotype associated with earlier maturation (vgll3*EE). Individuals with higher aggression were also significantly lighter in colour and had higher feeding activity. Although higher aggression was associated with higher feeding activity, there was no association between feeding activity and vgll3 genotype. Increased aggression of vgll3*LL individuals was independent of their sex and size, and genotypes did not differ in their condition factor. These results imply that aggressive behaviour may have an energetic cost impairing growth and condition, especially when food cannot be monopolized. This may have implications for individual fitness and aquaculture practices.
Collapse
Affiliation(s)
- Paul Bai Bangura
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
- Lammi Biological StationUniversity of HelsinkiLammiFinland
| | - Katriina Tiira
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
| | - Petri T. Niemelä
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
| | | | - Petra Liljeström
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
- Lammi Biological StationUniversity of HelsinkiLammiFinland
| | - Anna Toikkanen
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
| | - Craig R. Primmer
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
- Institute of BiotechnologyHelsinki Institute of Life Science (HiLIFE)HelsinkiFinland
| |
Collapse
|
162
|
Leite T, Branco P, Ferreira MT, Santos JM. Activity, boldness and schooling in freshwater fish are affected by river salinization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 819:153046. [PMID: 35032527 DOI: 10.1016/j.scitotenv.2022.153046] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Rivers are experiencing increasing anthropogenic pressures and salinity has shown to affect freshwater fish behaviour, potentially disrupting ecological processes. In this study, the aim was to determine the sub-lethal effects of salinization on freshwater fish behaviour, using a widespread native cyprinid species, the Iberian barbel (Luciobarbus bocagei) as the model species. Behavioural trials in a mesocosms setting were performed to assess the effects of three levels of a salinity gradient - control (no salt added to the water, 0.8 mS/cm), low (9 mS/cm), and high concentration (18 mS/cm) - on fish routine activity, shoal cohesion and boldness. Upon increasing the salinity levels in the flume-channels, fish showed a significant reduction on their i) swimming activity (76% of searching behaviour in the control vs. 57% in high salinity), and ii) shoal cohesion (0.95 shoal cohesion ratio in the control vs. 0.76 in high salinity), while iii) an increase of bolder individuals, measured by a higher number of attempts to escape the altered environment (106 total jumps in the control vs. 262 in high salinity), was simultaneously observed. Behavioural changes in fish can reflect shifts in ecological condition. Thus, the behavioural responses of fish caused by salinization stress should be further researched, in addition to the interaction with other environmental stressors, in order to understand the true scope of the consequences of salinization for fish species.
Collapse
Affiliation(s)
- Tamara Leite
- Forest Research Centre (CEF), School of Agriculture, University of Lisbon, Lisbon, Portugal.
| | - Paulo Branco
- Forest Research Centre (CEF), School of Agriculture, University of Lisbon, Lisbon, Portugal.
| | - Maria Teresa Ferreira
- Forest Research Centre (CEF), School of Agriculture, University of Lisbon, Lisbon, Portugal.
| | - José Maria Santos
- Forest Research Centre (CEF), School of Agriculture, University of Lisbon, Lisbon, Portugal.
| |
Collapse
|
163
|
Moffett ER, Fryxell DC, Simon KS. Multigenerational exposure to increased temperature reduces metabolic rate but increases boldness in
Gambusia affinis. Ecol Evol 2022; 12:e8853. [PMID: 35462979 PMCID: PMC9019145 DOI: 10.1002/ece3.8853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 03/31/2022] [Accepted: 04/05/2022] [Indexed: 11/08/2022] Open
Abstract
Acute exposure to warming temperatures increases minimum energetic requirements in ectotherms. However, over and within multiple generations, increased temperatures may cause plastic and evolved changes that modify the temperature sensitivity of energy demand and alter individual behaviors. Here, we aimed to test whether populations recently exposed to geothermally elevated temperatures express an altered temperature sensitivity of metabolism and behavior. We expected that long‐term exposure to warming would moderate metabolic rate, reducing the temperature sensitivity of metabolism, with concomitant reductions in boldness and activity. We compared the temperature sensitivity of metabolic rate (acclimation at 20 vs. 30°C) and allometric slopes of routine, standard, and maximum metabolic rates, in addition to boldness and activity behaviors, across eight recently divergent populations of a widespread fish species (Gambusia affinis). Our data reveal that warm‐source populations express a reduced temperature sensitivity of metabolism, with relatively high metabolic rates at cool acclimation temperatures and relatively low metabolic rates at warm acclimation temperatures compared to ambient‐source populations. Allometric scaling of metabolism did not differ with thermal history. Across individuals from all populations combined, higher metabolic rates were associated with higher activity rates at 20°C and bolder behavior at 30°C. However, warm‐source populations displayed relatively bolder behavior at both acclimation temperatures compared to ambient‐source populations, despite their relatively low metabolic rates at warm acclimation temperatures. Overall, our data suggest that in response to warming, multigenerational exposure (e.g., plasticity, adaptation) may not result in trait change directed along a simple “pace‐of‐life syndrome” axis, instead causing relative decreases in metabolism and increases in boldness. Ultimately, our data suggest that multigenerational warming may produce a novel combination of physiological and behavioral traits, with consequences for animal performance in a warming world.
Collapse
Affiliation(s)
- Emma R. Moffett
- School of Environment The University of Auckland Auckland New Zealand
| | - David C. Fryxell
- School of Environment The University of Auckland Auckland New Zealand
| | - Kevin S. Simon
- School of Environment The University of Auckland Auckland New Zealand
| |
Collapse
|
164
|
Dammhahn M, Lange P, Eccard JA. The landscape of fear has individual layers: an experimental test of among‐individual differences in perceived predation risk during foraging. OIKOS 2022. [DOI: 10.1111/oik.09124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Melanie Dammhahn
- Animal Ecology, Inst. for Biochemistry and Biology, Faculty of Natural Sciences, Univ. of Potsdam Potsdam Germany
| | - Pauline Lange
- Animal Ecology, Inst. for Biochemistry and Biology, Faculty of Natural Sciences, Univ. of Potsdam Potsdam Germany
| | - Jana A. Eccard
- Animal Ecology, Inst. for Biochemistry and Biology, Faculty of Natural Sciences, Univ. of Potsdam Potsdam Germany
| |
Collapse
|
165
|
Abstract
The integration of life-history, behavioural and physiological traits into a ‘pace-of-life syndrome’ is a powerful concept in understanding trait variation in nature. Yet, mechanisms maintaining variation in ‘pace-of-life’ are not well understood. We tested whether decreased thermal performance is an energetic cost of a faster pace-of-life. We characterized the pace-of-life of larvae of the damselfly Ischnura elegans from high-latitude and low-latitude regions when reared at 20°C or 24°C in a common-garden experiment, and estimated thermal performance curves for a set of behavioural, physiological and performance traits. Our results confirm a faster pace-of-life (i.e. faster growth and metabolic rate, more active and bold behaviour) in the low-latitude and in warm-reared larvae, and reveal increased maximum performance, Rmax, but not thermal optimum Topt, in low-latitude larvae. Besides a clear pace-of-life syndrome integration at the individual level, larvae also aligned along a ‘cold–hot’ axis. Importantly, a faster pace-of-life correlated negatively with a high thermal performance (i.e. higher Topt for swimming speed, metabolic rate, activity and boldness), which was consistent across latitudes and rearing temperatures. This trade-off, potentially driven by the energetically costly maintenance of a fast pace-of-life, may be an alternative mechanism contributing to the maintenance of variation in pace-of-life within populations.
Collapse
Affiliation(s)
- Nedim Tüzün
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, KU Leuven, Charles Deberiotstraat 32, 3000 Leuven, Belgium
| | - Robby Stoks
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, KU Leuven, Charles Deberiotstraat 32, 3000 Leuven, Belgium
| |
Collapse
|
166
|
Swaegers J, Sánchez-Guillén RA, Carbonell JA, Stoks R. Convergence of life history and physiology during range expansion toward the phenotype of the native sister species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 816:151530. [PMID: 34762959 DOI: 10.1016/j.scitotenv.2021.151530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/04/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
In our globally changing planet many species show range expansions whereby they encounter new thermal regimes that deviate from those of their source region. Pressing questions are to what extent and through which mechanisms, plasticity and/or evolution, species respond to the new thermal regimes and whether these trait changes are adaptive. Using a common-garden experiment, we tested for plastic and evolutionary trait changes in life history and a set of understudied biochemical/physiological traits during the range expansion of the damselfly Ischnura elegans from France into a warmer region in Spain. To assess the adaptiveness of the trait changes we used the phenotype of its native sister species in Spain, I. graellsii, as proxy for the locally adapted phenotype. While our design cannot fully exclude maternal effects, our results suggest that edge populations adapted to the local conditions in the newly invaded region through the evolution of a faster pace-of-life (faster development and growth rates), a smaller body size, a higher energy budget and increased expression levels of the heat shock gene DnaJ. Notably, based on convergence toward the phenotype of the native sister species and its thermal responses, and the fit with predictions of life history theory these potential evolutionary changes were likely adaptive. Nevertheless, the convergence toward the native sister species is incomplete for thermal plasticity in traits associated with anaerobic metabolism and melanization. Our results highlight that evolution might at least partly contribute in an adaptive way to the persistence of populations during range expansion into new thermal environments and should be incorporated when predicting and understanding species' range expansions.
Collapse
Affiliation(s)
- Janne Swaegers
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Deberiotstraat 32, Leuven B-3000, Belgium.
| | | | - José A Carbonell
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Deberiotstraat 32, Leuven B-3000, Belgium; Department of Zoology, Faculty of Biology, University of Seville, Reina Mercedes, 41012, Seville, Spain
| | - Robby Stoks
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Deberiotstraat 32, Leuven B-3000, Belgium
| |
Collapse
|
167
|
Marasco V, Smith S, Angelier F. How does early-life adversity shape telomere dynamics during adulthood? Problems and paradigms. Bioessays 2022; 44:e2100184. [PMID: 35122449 DOI: 10.1002/bies.202100184] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 01/06/2023]
Abstract
Although early-life adversity has been associated with negative consequences during adulthood, growing evidence shows that such adversity can also lead to subsequent stress resilience and positive fitness outcomes. Telomere dynamics are relevant in this context because of the link with developmental conditions and longevity. However, few studies have assessed whether the effects of early-life adversity on developmental telomere dynamics may relate to adult telomere dynamics. We propose that the potential links between early-life adversity and adult telomere dynamics could be driven by developmental constraints (the Constraint hypothesis), by the nature/severity of developmental adversity (the Resilience hypothesis), or by developmental-mediated changes in individual life-history strategies (the Pace of Life hypothesis). We discuss these non-mutually exclusive hypotheses, explore future research directions, and propose specific studies to test these hypotheses. Our article aims to expand our understanding of the evolutionary role of developmental conditions on adult telomere dynamics, stress resilience and ageing.
Collapse
Affiliation(s)
- Valeria Marasco
- Konrad Lorenz Institute of Ethology (KLIVV), University of Veterinary Medicine Vienna, Vienna, Austria
| | - Steve Smith
- Konrad Lorenz Institute of Ethology (KLIVV), University of Veterinary Medicine Vienna, Vienna, Austria
| | - Frédéric Angelier
- Centre d'Etudes Biologiques de Chizé, Centre National de la Recherche Scientifique (CNRS)-La Rochelle Université (LRU), UMR 7372, Villiers en Bois, France
| |
Collapse
|
168
|
Gavriilidi I, De Meester G, Van Damme R, Baeckens S. How to behave when marooned: the behavioural component of the island syndrome remains underexplored. Biol Lett 2022; 18:20220030. [PMID: 35440235 PMCID: PMC9039784 DOI: 10.1098/rsbl.2022.0030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/25/2022] [Indexed: 12/16/2022] Open
Abstract
Animals on islands typically depart from their mainland relatives in assorted aspects of their biology. Because they seem to occur in concert, and to some extent evolve convergently in disparate taxa, these changes are referred to as the 'island syndrome'. While morphological, physiological and life-history components of the island syndrome have received considerable attention, much less is known about how insularity affects behaviour. In this paper, we argue why changes in personality traits and cognitive abilities can be expected to form part of the island syndrome. We provide an overview of studies that have compared personality traits and cognitive abilities between island and mainland populations, or among islands. Overall, the pickings are remarkably slim. There is evidence that animals on islands tend to be bolder than on the mainland, but effects on other personality traits go either way. The evidence for effects of insularity on cognitive abilities or style is highly circumstantial and very mixed. Finally, we consider the ecological drivers that may induce such changes, and the mechanisms through which they might occur. We conclude that our knowledge of the behavioural and cognitive responses to island environments remains limited, and we encourage behavioural biologists to make more use of these 'natural laboratories for evolution'.
Collapse
Affiliation(s)
- Ioanna Gavriilidi
- Functional Morphology Lab, Department of Biology, University of Antwerp, Wilrijk, Belgium
- Section of Zoology and Marine Biology, Department of Biology, National and Kapodistrian University of Athens, Greece
| | - Gilles De Meester
- Functional Morphology Lab, Department of Biology, University of Antwerp, Wilrijk, Belgium
| | - Raoul Van Damme
- Functional Morphology Lab, Department of Biology, University of Antwerp, Wilrijk, Belgium
| | - Simon Baeckens
- Functional Morphology Lab, Department of Biology, University of Antwerp, Wilrijk, Belgium
- Evolution and Optics of Nanostructures Lab, Department of Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
169
|
Ramos A, Robin JP, Manizan L, Audroin C, Rodriguez E, Kemp YJM, Sueur C. Glucocorticoids of European Bison in Relation to Their Status: Age, Dominance, Social Centrality and Leadership. Animals (Basel) 2022; 12:849. [PMID: 35405836 PMCID: PMC8996974 DOI: 10.3390/ani12070849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/18/2022] [Accepted: 03/24/2022] [Indexed: 02/04/2023] Open
Abstract
Stress is the body's response to cope with the environment and generally better survive unless too much chronic stress persists. While some studies suggest that it would be more stressful to be the dominant individual of the group, others support the opposite hypothesis. Several variables can actually affect this relationship, or even cancel it. This study therefore aims to make the link between social status and the basal level of stress of 14 wild European bison (Bison bonasus, L. 1758) living together. We collected faeces and measured the faecal glucocorticoid metabolites (FGM). We showed that FGM is linked to different variables of social status of European bison, specifically age, dominance rank, eigenvector centrality but also to interactions between the variables. Preferential leaders in bison, i.e., the older and more dominant individuals which are more central ones, are less stressed compared to other group members. Measurement of such variables could thus be a valuable tool to follow and improve the conservation of species by collecting data on FGM and other social variables and adapt group composition or environmental conditions (e.g., supplement in food) according to the FGM concentration of herd individuals.
Collapse
Affiliation(s)
- Amandine Ramos
- Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France; (A.R.); (J.-P.R.); (L.M.); (C.A.)
| | - Jean-Patrice Robin
- Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France; (A.R.); (J.-P.R.); (L.M.); (C.A.)
| | - Lola Manizan
- Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France; (A.R.); (J.-P.R.); (L.M.); (C.A.)
| | - Cyril Audroin
- Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France; (A.R.); (J.-P.R.); (L.M.); (C.A.)
| | - Esther Rodriguez
- PWN Waterleidingbedrijf Noord-Holland, Postbus 2113, 1990 AC Velserbroek, The Netherlands; (E.R.); (Y.J.M.K.)
| | - Yvonne J. M. Kemp
- PWN Waterleidingbedrijf Noord-Holland, Postbus 2113, 1990 AC Velserbroek, The Netherlands; (E.R.); (Y.J.M.K.)
- ARK Nature, Molenveldlaan 43, 6523 RJ Nijmegen, The Netherlands
| | - Cédric Sueur
- Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France; (A.R.); (J.-P.R.); (L.M.); (C.A.)
- Institut Universitaire de France, 75231 Paris, France
| |
Collapse
|
170
|
Shchipanov NA, Demidova TB. Inter-annual fluctuations of sociability in the common shrew (Sorex araneus L.) as determined by a preference test: A case of balancing selection? Behav Processes 2022; 198:104625. [PMID: 35339631 DOI: 10.1016/j.beproc.2022.104625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 02/16/2022] [Accepted: 03/16/2022] [Indexed: 11/02/2022]
Abstract
The specific aim of our study was to test individual common shrews from a population monitored long-term. In a preference test, we revealed sex-related differences in behavioural traits of young common shrews and consistent individual differences in sociability, boldness and in an exploration pattern that have not been reported previously. More active animals were bolder and more superficial in the exploration of non-social objects as compared to shier shrews. Significant inter-annual differences in sociability, boldness and exploratory activity were observed. When we assessed correlations of sociability with population density, non-residents' abundance, activity shared in space, survivorship and home range size, we found a positive association with shared spatial activity and home range size. Contrary to expectation, sociability did not correlate with the density of residents and survivorship. A significant negative association of sociability with non-residents' abundance was documented. Survivorship was associated only with an exploration pattern. The thoroughness of exploration positively correlated with non-residents' abundance. We regard the inter-annual changes in sociability that we observed in the test as a by-product of survival of shrews with various exploration patterns that are associated with dispersal. We can hypothesise that the personality differences registered in this study are maintained by balancing frequency-dependent selection of animals that is associated with differences in habitat quality throughout the population cycle.
Collapse
Affiliation(s)
- Nikolay A Shchipanov
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninsky pr. 33, Moscow 119071, Russia
| | - Tatiana B Demidova
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninsky pr. 33, Moscow 119071, Russia.
| |
Collapse
|
171
|
Responsiveness to contest experiences is associated with competitive ability but not aggressiveness or boldness. Behav Ecol Sociobiol 2022. [DOI: 10.1007/s00265-022-03151-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
172
|
Dahirel M, Wullschleger M, Berry T, Croci S, Pétillon J. Dispersal syndrome and landscape fragmentation in the salt-marsh specialist spider Erigone longipalpis. Curr Zool 2022; 69:21-31. [PMID: 36974147 PMCID: PMC10039173 DOI: 10.1093/cz/zoac016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/07/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
Dispersal and its evolution play a key role for population persistence in fragmented landscapes where habitat loss and fragmentation increase the cost of between-habitat movements. In such contexts, it is important to know how variation in dispersal and other traits is structured, and whether responses to landscape fragmentation are aligned with underlying dispersal-trait correlations, or dispersal syndromes. We therefore studied trait variation in Erigone longipalpis, a European spider species specialist of (often patchy) salt marshes. We collected spiders in two salt-marsh landscapes differing in habitat availability. We then reared lab-born spiders for two generations in controlled conditions, and measured dispersal and its association with various key traits. E. longipalpis population densities were lower in the more fragmented landscape. Despite this, we found no evidence of differences in dispersal, or any other trait we studied, between the two landscapes. While a dispersal syndrome was present at the among-individual level (dispersers were more fecund and faster growing, among others), there was no indication it was genetically driven: among-family differences in dispersal were not correlated with differences in other traits. Instead, we showed that the observed phenotypic covariations were mostly due to within-family correlations. We hypothesize that the dispersal syndrome is the result of asymmetric food access among siblings, leading to variation in development rates and carrying over to adult traits. Our results show we need to better understand the sources of dispersal variation and syndromes, especially when dispersal may evolve rapidly in response to environmental change.
Collapse
Affiliation(s)
- Maxime Dahirel
- Univ Rennes, UR1, CNRS, ECOBIO (Ecosystèmes, Biodiversité, évolution), UMR 6553, F-35000, Rennes, France
- Department of Biology, Ghent University, B-9000, Ghent, Belgium
| | - Marie Wullschleger
- Univ Rennes, UR1, CNRS, ECOBIO (Ecosystèmes, Biodiversité, évolution), UMR 6553, F-35000, Rennes, France
| | - Tristan Berry
- Univ Rennes, UR1, CNRS, ECOBIO (Ecosystèmes, Biodiversité, évolution), UMR 6553, F-35000, Rennes, France
- Syndicat Mixte de Gestion des Milieux Naturels, Réserve Naturelle Nationale de l’Étang Noir, F-40510, Seignosse, France
| | - Solène Croci
- CNRS, Université de Rennes 2, EPHE-PSL, Université d’Angers, Université de Bretagne Occidentale, Université de Caen Normandie, Université de Nantes, UMR LETG, F-35043, Rennes, France
| | - Julien Pétillon
- Univ Rennes, UR1, CNRS, ECOBIO (Ecosystèmes, Biodiversité, évolution), UMR 6553, F-35000, Rennes, France
- Institute for Coastal and Marine Research, Nelson Mandela University, Port Elizabeth, South Africa
| |
Collapse
|
173
|
Hämäläinen A, Kiljunen M, Koskela E, Koteja P, Mappes T, Rajala M, Tiainen K. Artificial selection for predatory behaviour results in dietary niche differentiation in an omnivorous mammal. Proc Biol Sci 2022; 289:20212510. [PMID: 35259986 PMCID: PMC8905149 DOI: 10.1098/rspb.2021.2510] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The diet of an individual is a result of the availability of dietary items and the individual's foraging skills and preferences. Behavioural differences may thus influence diet variation, but the evolvability of diet choice through behavioural evolution has not been studied. We used experimental evolution combined with a field enclosure experiment to test whether behavioural selection leads to dietary divergence. We analysed the individual dietary niche via stable isotope ratios of nitrogen (δ15N) and carbon (δ13C) in the hair of an omnivorous mammal, the bank vole, from four lines selected for predatory behaviour and four unselected control lines. Predatory voles had higher hair δ15N values than control voles, supporting our hypothesis that predatory voles would consume a higher trophic level diet (more animal versus plant foods). This difference was significant in the early but not the late summer season. The δ13C values also indicated a seasonal change in the consumed plant matter and a difference in food sources among selection lines in the early summer. These results imply that environmental factors interact with evolved behavioural tendencies to determine dietary niche heterogeneity. Behavioural selection thus has potential to contribute to the evolution of diet choice and ultimately the species' ecological niche breadth.
Collapse
Affiliation(s)
- Anni Hämäläinen
- Institute of Environmental Sciences, Jagiellonian University, Cracow, Poland.,Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Mikko Kiljunen
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Esa Koskela
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Pawel Koteja
- Institute of Environmental Sciences, Jagiellonian University, Cracow, Poland
| | - Tapio Mappes
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Milla Rajala
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Katariina Tiainen
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
174
|
Gharnit E, Dammhahn M, Garant D, Réale D. Resource Availability, Sex, and Individual Differences in Exploration Drive Individual Diet Apecialization. Am Nat 2022; 200:1-16. [DOI: 10.1086/719669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
175
|
Patrick SC, Réale D, Potts JR, Wilson AJ, Doutrelant C, Teplitsky C, Charmantier A. Differences in the temporal scale of reproductive investment across the slow-fast continuum in a passerine. Ecol Lett 2022; 25:1139-1151. [PMID: 35235709 PMCID: PMC9541748 DOI: 10.1111/ele.13982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/07/2022] [Accepted: 01/12/2022] [Indexed: 11/29/2022]
Abstract
Life-history strategies differ with respect to investment in current versus 'future' reproduction, but when is this future? Under the novel 'temporality in reproductive investment hypothesis', we postulate variation should exist in the time frame over which reproductive costs are paid. Slow-paced individuals should pay reproductive costs over short (e.g. inter-annual) time scales to prevent reproductive costs accumulating, whereas fast-paced individuals should allow costs to accumulate (i.e. senescence). Using Fourier transforms, we quantify adjustments in clutch size with age, across four populations of blue tits (Cyanistes caeruleus). Fast populations had more prevalent and stronger long-term changes in reproductive investment, whereas slower populations had more prevalent short-term adjustments. Inter-annual environmental variation partly accounted for short-, but not long-term changes in reproductive investment. Our study reveals individuals differ in when they pay the cost of reproduction and that failure to partition this variation across different temporal scales and environments could underestimate reproductive trade-offs.
Collapse
Affiliation(s)
- Samantha C Patrick
- School of Environmental Sciences, University of Liverpool, Liverpool, UK
| | - Denis Réale
- Département des Sciences Biologiques, Université du Québec A Montréal, Québec, Canada
| | - Jonathan R Potts
- School of Mathematics and Statistics, University of Sheffield, Sheffield, UK
| | - Alastair J Wilson
- Centre for Ecology and Conservation, University of Exeter (Penryn Campus), Cornwall, UK
| | | | | | | |
Collapse
|
176
|
McKee G, Hornsby RL, Fischer F, Dunlop ES, Mackereth R, Pratt TC, Rennie M. Alternative migratory strategies related to life history differences in the Walleye (Sander vitreus). MOVEMENT ECOLOGY 2022; 10:10. [PMID: 35236408 PMCID: PMC8892756 DOI: 10.1186/s40462-022-00308-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND While Pace of Life Syndrome predicts behavioural differences between individuals with differential growth and survival, testing these predictions in nature is challenging due to difficulties with measuring individual behaviour in the field. However, recent advances in acoustic telemetry technology have facilitated measurements of individual behaviour at scales not previously possible in aquatic ecosystems. METHODS Using a Walleye (Sander vitreus) population inhabiting Black Bay, Lake Superior, we examine whether life history characteristics differ between more and less mobile individuals as predicted by Pace of Life Syndrome. We tracked the movement of 192 individuals from 2016 to 2019 using an acoustic telemetry study, relating patterns in annual migratory behaviour to individual growth, and seasonal changes in optimal thermal-optical habitat. RESULTS We observed two consistent movement patterns in our study population-migratory individuals left Black Bay during late summer to early fall before returning to the bay, whereas residents remained within the bay year-round. The average maximum length of migrant Walleye was 5.5 cm longer than residents, and the sex ratios of Walleye caught during fall surveys was increasingly female-biased towards the mouth of Black Bay, suggesting that a majority of migrants were females. Further, Walleye occupancy outside of Black Bay was positively associated with increasing thermal-optical habitat. CONCLUSIONS Walleye in Black Bay appear to conform to Pace of Life Syndrome, with migrant individuals gaining increased fitness through increased maximum size, which, given size-dependent fecundity in this species, likely results in greater reproductive success (via greater egg deposition vs. non-migrants). Further, apparent environmental (thermal) controls on migration suggest that migratory Walleye (more so than residents) may be more sensitive to changing environmental conditions (e.g., warming climate) than residents.
Collapse
Affiliation(s)
- Graydon McKee
- Department of Biology, Lakehead University, Thunder Bay, ON, P7B5E1 , Canada.
| | - Rachael L Hornsby
- Upper Great Lakes Management Unit, Ontario Ministry of Natural Resources and Forestry, Thunder Bay, ON, P7E6S7, Canada
| | - Friedrich Fischer
- Upper Great Lakes Management Unit, Ontario Ministry of Natural Resources and Forestry, Thunder Bay, ON, P7E6S7, Canada
| | - Erin S Dunlop
- Aquatic Research and Monitoring Section, Ontario Ministry of Natural Resources, Peterborough, ON, K0L0G2, Canada
| | - Robert Mackereth
- Center for Northern Forest Ecosystem Research, Ontario Ministry of Natural Resources and Forestry, Thunder Bay, ON, P7E2V6, Canada
| | - Thomas C Pratt
- Great Lakes Laboratory for Fisheries and Aquatic Sciences, Fisheries and Oceans Canada, Sault Ste. Marie, ON, P6A2E5, Canada
| | - Michael Rennie
- Department of Biology, Lakehead University, Thunder Bay, ON, P7B5E1 , Canada
- International Institute for Sustainable Development Experimental Lakes Area, Winnipeg, MB, R3B0Y4, Canada
| |
Collapse
|
177
|
Loftus JC, Harel R, Núñez CL, Crofoot MC. Ecological and social pressures interfere with homeostatic sleep regulation in the wild. eLife 2022; 11:73695. [PMID: 35229719 PMCID: PMC8887896 DOI: 10.7554/elife.73695] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/18/2022] [Indexed: 12/12/2022] Open
Abstract
Sleep is fundamental to the health and fitness of all animals. The physiological importance of sleep is underscored by the central role of homeostasis in determining sleep investment – following periods of sleep deprivation, individuals experience longer and more intense sleep bouts. Yet, most sleep research has been conducted in highly controlled settings, removed from evolutionarily relevant contexts that may hinder the maintenance of sleep homeostasis. Using triaxial accelerometry and GPS to track the sleep patterns of a group of wild baboons (Papio anubis), we found that ecological and social pressures indeed interfere with homeostatic sleep regulation. Baboons sacrificed time spent sleeping when in less familiar locations and when sleeping in proximity to more group-mates, regardless of how long they had slept the prior night or how much they had physically exerted themselves the preceding day. Further, they did not appear to compensate for lost sleep via more intense sleep bouts. We found that the collective dynamics characteristic of social animal groups persist into the sleep period, as baboons exhibited synchronized patterns of waking throughout the night, particularly with nearby group-mates. Thus, for animals whose fitness depends critically on avoiding predation and developing social relationships, maintaining sleep homeostasis may be only secondary to remaining vigilant when sleeping in risky habitats and interacting with group-mates during the night. Our results highlight the importance of studying sleep in ecologically relevant contexts, where the adaptive function of sleep patterns directly reflects the complex trade-offs that have guided its evolution.
Collapse
Affiliation(s)
- J Carter Loftus
- Department of Anthropology, University of California, Davis, Davis, United States.,Department for the Ecology of Animal Societies, Max Planck Institute of Animal Behavior, Konstanz, Germany.,Department of Biology, University of Konstanz, Konstanz, Germany.,Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany.,Mpala Research Centre, Nanyuki, Kenya.,Animal Behavior Graduate Group, University of California, Davis, Davis, United States
| | - Roi Harel
- Department for the Ecology of Animal Societies, Max Planck Institute of Animal Behavior, Konstanz, Germany.,Mpala Research Centre, Nanyuki, Kenya
| | - Chase L Núñez
- Department for the Ecology of Animal Societies, Max Planck Institute of Animal Behavior, Konstanz, Germany.,Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany.,Mpala Research Centre, Nanyuki, Kenya
| | - Margaret C Crofoot
- Department of Anthropology, University of California, Davis, Davis, United States.,Department for the Ecology of Animal Societies, Max Planck Institute of Animal Behavior, Konstanz, Germany.,Department of Biology, University of Konstanz, Konstanz, Germany.,Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany.,Mpala Research Centre, Nanyuki, Kenya.,Animal Behavior Graduate Group, University of California, Davis, Davis, United States
| |
Collapse
|
178
|
Bright Ross JG, Newman C, Buesching CD, Macdonald DW. Preserving identity in capture–mark–recapture studies: increasing the accuracy of minimum number alive (MNA) estimates by incorporating inter-census trapping efficiency variation. Mamm Biol 2022. [DOI: 10.1007/s42991-021-00210-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
AbstractQuantifying abundance is often key to understanding ecological and evolutionary processes in wild populations. Despite shortcomings in producing accurate abundance estimates, minimum number alive (MNA) remains a widely used tool, due to its intuitive computation, reliable performance as an abundance indicator, and linkage to individual life-histories. Here, we propose a novel “efficiency-modified” MNA (eMNA) metric, which aims to preserve MNA’s favourable aspects while remedying its flaws, by incorporating (a) growth correlates to back-age individuals first captured as adults, and (b) estimates of undetected persistence beyond last capture based on time-varying capture efficiency. We evaluate eMNA through samplings of a simulated baseline population parameterised using data from a long-term demographic study of European badgers (Meles meles), under three different levels of capture efficiency (low; intermediate/“real” based on badger field data; high). We differentiate between eMNA’s performance as an abundance estimator—how well it approximates true abundance (accuracy)—and as an abundance indicator—how tightly it correlates with population abundance and changes thereof (precision). eMNA abundance estimates were negatively biased at all capture efficiencies. However, this bias was negligible at intermediate-to-high capture efficiency, particularly once low-information terminal sampling years (the first year and final three years of simulated studies) were removed. Excluding these years, eMNA under-estimated abundance by only 3.5 badgers (1.5% of population) at intermediate (real) capture efficiencies, and performed as a precise abundance indicator, with half the standard deviation of Cormack–Jolly–Seber probabilistic estimates and proving robust to inter-sampling variation in capture efficiency. Using undetected persistence probabilities to parameterise survival regression, we recreated baseline age-based survival relationships, albeit with some negative bias for under-represented ages. We offer considerations on the continued limitations of using eMNA for abundance estimates, minimum study duration for reliability, the metric’s benefits when individual identity is required, and potential for further improvement.
Collapse
|
179
|
Houslay TM, Earley RL, White SJ, Lammers W, Grimmer AJ, Travers LM, Johnson EL, Young AJ, Wilson A. Genetic integration of behavioural and endocrine components of the stress response. eLife 2022; 11:67126. [PMID: 35144728 PMCID: PMC8837200 DOI: 10.7554/elife.67126] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 01/29/2022] [Indexed: 01/09/2023] Open
Abstract
The vertebrate stress response comprises a suite of behavioural and physiological traits that must be functionally integrated to ensure organisms cope adaptively with acute stressors. Natural selection should favour functional integration, leading to a prediction of genetic integration of these traits. Despite the implications of such genetic integration for our understanding of human and animal health, as well as evolutionary responses to natural and anthropogenic stressors, formal quantitative genetic tests of this prediction are lacking. Here, we demonstrate that acute stress response components in Trinidadian guppies are both heritable and integrated on the major axis of genetic covariation. This integration could either facilitate or constrain evolutionary responses to selection, depending upon the alignment of selection with this axis. Such integration also suggests artificial selection on the genetically correlated behavioural responses to stress could offer a viable non-invasive route to the improvement of health and welfare in captive animal populations.
Collapse
Affiliation(s)
- Thomas M Houslay
- Centre for Ecology and Conservation, University of Exeter (Penryn Campus), Penryn, United Kingdom
| | - Ryan L Earley
- Department of Biological Sciences, University of Alabama, Tuscaloosa, United States
| | - Stephen J White
- Centre for Ecology and Conservation, University of Exeter (Penryn Campus), Penryn, United Kingdom
| | - Wiebke Lammers
- Centre for Ecology and Conservation, University of Exeter (Penryn Campus), Penryn, United Kingdom
| | - Andrew J Grimmer
- Centre for Ecology and Conservation, University of Exeter (Penryn Campus), Penryn, United Kingdom
| | - Laura M Travers
- Centre for Ecology and Conservation, University of Exeter (Penryn Campus), Penryn, United Kingdom
| | - Elizabeth L Johnson
- Department of Biological Sciences, University of Alabama, Tuscaloosa, United States
| | - Andrew J Young
- Centre for Ecology and Conservation, University of Exeter (Penryn Campus), Penryn, United Kingdom
| | - Alastair Wilson
- Centre for Ecology and Conservation, University of Exeter (Penryn Campus), Penryn, United Kingdom
| |
Collapse
|
180
|
Garnham LC, Boddington R, Løvlie H. Variation in inhibitory control does not influence social rank, foraging efficiency, or risk taking, in red junglefowl females. Anim Cogn 2022; 25:867-879. [PMID: 35122185 PMCID: PMC9334373 DOI: 10.1007/s10071-022-01598-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/17/2021] [Accepted: 01/09/2022] [Indexed: 12/15/2022]
Abstract
Individual variation in cognition, seen in many taxa, is not well understood, despite its potential evolutionary consequences. Inhibitory control is an aspect of cognition which differs between individuals. However, how selection could act on this variation remains unclear. First, individual consistency over time of behaviours affected by inhibitory control, and how these behaviours relate to each other, is not well understood. Second, consequences in ecologically relevant contexts of variation in behaviours affected by inhibitory control, are scarcely investigated. Therefore, we explored the temporal consistency and inter-relatedness of two behaviours influenced by inhibitory control (impulsive action and persistence) and how these link to social rank, foraging efficiency, and risk taking in adult female red junglefowl (Gallus gallus). We measured impulsive action in a detour test, and persistence in both a detour test and a foraging test. Impulsive action and persistence, measured in a detour test, were moderately consistent over time, and positively correlated. This implies that selection could act on inhibitory control via these behaviours, and selection on one behaviour could affect the other. However, we found no evidence of links between inhibitory control and social rank, foraging efficiency, or risk taking. This implies that selection may not act on inhibitory control via these measures, and that, in general, there may be a lack of strong selection on inhibitory control. This, in turn, could help explain individual variation in this aspect of cognition. Future research should explore the specificity of when inhibitory control has implications for individuals, and continue to investigate how variation in cognitive traits influences how individuals behave in contexts with potential evolutionary implications.
Collapse
Affiliation(s)
- Laura Clare Garnham
- Department of Physics, Chemistry and Biology, IFM Biology, Linköping University, 581 83, Linköping, Sweden.
| | - Robert Boddington
- Department of Physics, Chemistry and Biology, IFM Biology, Linköping University, 581 83, Linköping, Sweden.,School of Biological Sciences, University of Manchester, Manchester, M13 9PL, UK
| | - Hanne Løvlie
- Department of Physics, Chemistry and Biology, IFM Biology, Linköping University, 581 83, Linköping, Sweden
| |
Collapse
|
181
|
Wu NC, Seebacher F. Physiology can predict animal activity, exploration, and dispersal. Commun Biol 2022; 5:109. [PMID: 35115649 PMCID: PMC8814174 DOI: 10.1038/s42003-022-03055-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/12/2022] [Indexed: 12/29/2022] Open
Abstract
Physiology can underlie movement, including short-term activity, exploration of unfamiliar environments, and larger scale dispersal, and thereby influence species distributions in an environmentally sensitive manner. We conducted meta-analyses of the literature to establish, firstly, whether physiological traits underlie activity, exploration, and dispersal by individuals (88 studies), and secondly whether physiological characteristics differed between range core and edges of distributions (43 studies). We show that locomotor performance and metabolism influenced individual movement with varying levels of confidence. Range edges differed from cores in traits that may be associated with dispersal success, including metabolism, locomotor performance, corticosterone levels, and immunity, and differences increased with increasing time since separation. Physiological effects were particularly pronounced in birds and amphibians, but taxon-specific differences may reflect biased sampling in the literature, which also focussed primarily on North America, Europe, and Australia. Hence, physiology can influence movement, but undersampling and bias currently limits general conclusions.
Collapse
Affiliation(s)
- Nicholas C Wu
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Frank Seebacher
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
182
|
Eccard JA, Herde A, Schuster AC, Liesenjohann T, Knopp T, Heckel G, Dammhahn M. Fitness, risk taking, and spatial behavior covary with boldness in experimental vole populations. Ecol Evol 2022; 12:e8521. [PMID: 35154645 PMCID: PMC8829380 DOI: 10.1002/ece3.8521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 10/12/2021] [Accepted: 10/21/2021] [Indexed: 11/17/2022] Open
Abstract
Individuals of a population may vary along a pace-of-life syndrome from highly fecund, short-lived, bold, dispersive "fast" types at one end of the spectrum to less fecund, long-lived, shy, plastic "slow" types at the other end. Risk-taking behavior might mediate the underlying life history trade-off, but empirical evidence supporting this hypothesis is still ambiguous. Using experimentally created populations of common voles (Microtus arvalis)-a species with distinct seasonal life history trajectories-we aimed to test whether individual differences in boldness behavior covary with risk taking, space use, and fitness. We quantified risk taking, space use (via automated tracking), survival, and reproductive success (via genetic parentage analysis) in 8 to 14 experimental, mixed-sex populations of 113 common voles of known boldness type in large grassland enclosures over a significant part of their adult life span and two reproductive events. Populations were assorted to contain extreme boldness types (bold or shy) of both sexes. Bolder individuals took more risks than shyer ones, which did not affect survival. Bolder males but not females produced more offspring than shy conspecifics. Daily home range and core area sizes, based on 95% and 50% Kernel density estimates (20 ± 10 per individual, n = 54 individuals), were highly repeatable over time. Individual space use unfolded differently for sex-boldness type combinations over the course of the experiment. While day ranges decreased for shy females, they increased for bold females and all males. Space use trajectories may, hence, indicate differences in coping styles when confronted with a novel social and physical environment. Thus, interindividual differences in boldness predict risk taking under near-natural conditions and have consequences for fitness in males, which have a higher reproductive potential than females. Given extreme inter- and intra-annual fluctuations in population density in the study species and its short life span, density-dependent fluctuating selection operating differently on the sexes might maintain (co)variation in boldness, risk taking, and pace-of-life.
Collapse
Affiliation(s)
- Jana A Eccard
- Animal Ecology Institute of Biochemistry and Biology University of Potsdam Potsdam Germany
| | - Antje Herde
- Animal Ecology Institute of Biochemistry and Biology University of Potsdam Potsdam Germany
- Animal Behaviour Faculty of Biology University of Bielefeld Bielefeld Germany
| | - Andrea C Schuster
- Animal Ecology Institute of Biochemistry and Biology University of Potsdam Potsdam Germany
- Institute of Ecology and Evolution University of Bern Bern Switzerland
| | - Thilo Liesenjohann
- Animal Ecology Institute of Biochemistry and Biology University of Potsdam Potsdam Germany
- BioConsult SH GmbH & Co. KG Husum Germany
| | - Tatjana Knopp
- Animal Ecology Institute of Biochemistry and Biology University of Potsdam Potsdam Germany
| | - Gerald Heckel
- Institute of Ecology and Evolution University of Bern Bern Switzerland
| | - Melanie Dammhahn
- Animal Ecology Institute of Biochemistry and Biology University of Potsdam Potsdam Germany
| |
Collapse
|
183
|
Kim S, Álvarez‐Quintero N, Metcalfe NB. Does the match between individual and group behavior matter in shoaling sticklebacks? Ecol Evol 2022; 12:e8581. [PMID: 35222959 PMCID: PMC8844133 DOI: 10.1002/ece3.8581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/04/2021] [Accepted: 01/12/2022] [Indexed: 11/15/2022] Open
Abstract
In animals living in groups, the social environment is fundamental to shaping the behaviors and life histories of an individual. A mismatch between individual and group behavior patterns may have disadvantages if the individual is incapable of flexibly changing its state in response to the social environment that influences its energy gain and expenditure. We used different social groups of juvenile three-spined sticklebacks (Gasterosteus aculeatus) with experimentally manipulated compositions of individual sociability to study the feedback between individual and group behaviors and to test how the social environment shapes behavior, metabolic rate, and growth. Experimentally created unsociable groups, containing a high proportion of less sociable fish, showed bolder collective behaviors during feeding than did corresponding sociable groups. Fish within groups where the majority of members had a level of sociability similar to their own gained more mass than did those within mismatched groups. Less sociable individuals within sociable groups tended to have a relatively low mass but a high standard metabolic rate. A mismatch between the sociability of an individual and that of the majority of the group in which it is living confers a growth disadvantage probably due to the expression of nonadaptive behaviors that increase energetic costs.
Collapse
Affiliation(s)
- Sin‐Yeon Kim
- Grupo Ecoloxía AnimalTorre CACTICentro de Investigación MariñaUniversidade de VigoVigoSpain
| | | | - Neil B. Metcalfe
- Institute of Biodiversity, Animal Health and Comparative MedicineUniversity of GlasgowGlasgowUK
| |
Collapse
|
184
|
Tait C, Naug D. Interindividual variation in the use of social information during learning in honeybees. Proc Biol Sci 2022; 289:20212501. [PMID: 35078365 PMCID: PMC8790335 DOI: 10.1098/rspb.2021.2501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/04/2022] [Indexed: 01/28/2023] Open
Abstract
Slow-fast differences in cognition among individuals have been proposed to be an outcome of the speed-accuracy trade-off in decision-making. Based on the different costs associated with acquiring information via individual and social learning, we hypothesized that slow-fast cognitive differences would also be tied to the adoption of these different learning modes. Since foragers in honeybee colonies likely have both these information acquisition modes available to them, we chose to test them for interindividual differences in individual and social learning. By measuring performance on a learning task with and without a social cue and quantifying learning rate and maximum accuracy in these two tasks, our results show the existence of a speed-accuracy trade-off in both the individual and the social learning contexts. However, the trade-off is steeper during individual learning, which was slower than social learning but led to higher accuracy. Most importantly, our results also show that bees that attained high accuracy on the individual learning task had low accuracy on the social learning task and vice versa. We discuss how these two information acquisition strategies tie to slow-fast differences in cognitive phenotypes and how they might contribute to division of labour and social behaviour.
Collapse
Affiliation(s)
- Catherine Tait
- Department of Biology, Colorado State University, 1878 Campus Delivery, Fort Collins, CO 80523, USA
| | - Dhruba Naug
- Department of Biology, Colorado State University, 1878 Campus Delivery, Fort Collins, CO 80523, USA
| |
Collapse
|
185
|
Bold and bright: shy and supple? The effect of habitat type on personality-cognition covariance in the Aegean wall lizard (Podarcis erhardii). Anim Cogn 2022; 25:745-767. [PMID: 35037121 DOI: 10.1007/s10071-021-01587-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 11/04/2021] [Accepted: 11/24/2021] [Indexed: 12/27/2022]
Abstract
Animals exhibit considerable and consistent among-individual variation in cognitive abilities, even within a population. Recent studies have attempted to address this variation using insights from the field of animal personality. Generally, it is predicted that animals with "faster" personalities (bolder, explorative, and neophilic) should exhibit faster but less flexible learning. However, the empirical evidence for a link between cognitive style and personality is mixed. One possible reason for such conflicting results may be that personality-cognition covariance changes along ecological conditions, a hypothesis that has rarely been investigated so far. In this study, we tested the effect of habitat complexity on multiple aspects of animal personality and cognition, and how this influenced their relationship, in five populations of the Aegean wall lizard (Podarcis erhardii). Overall, lizards from both habitat types did not differ in average levels of personality or cognition, with the exception that lizards from more complex habitats performed better on a spatial learning task. Nevertheless, we found an intricate interplay between ecology, cognition, and personality, as behavioral associations were often habitat- but also year-dependent. In general, behavioral covariance was either independent of habitat, or found exclusively in the simple, open environments. Our results highlight that valuable insights may be gained by taking ecological variation into account while studying the link between personality and cognition.
Collapse
|
186
|
Arumäe K, Mõttus R, Vainik U. Beyond BMI: Personality traits' associations with adiposity and metabolic rate. Physiol Behav 2022; 246:113703. [PMID: 35031345 DOI: 10.1016/j.physbeh.2022.113703] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 11/28/2022]
Abstract
Various personality traits are known to correlate with body mass index (BMI). However, this index of adiposity conflates fat mass with lean body mass and may therefore lead to biased estimates of correlations. Yet, rarely have studies looked beyond BMI to understand how adiposity and other physiological characteristics relate to these psychological traits. Using previously validated formulas, we calculated an improved measure of adiposity (relative fat mass, RFM), as well as basal metabolic rate (BMR); explored their associations with various personality traits; and assessed how personality traits' associations with RFM differ from their associations with BMI. In a subsample of the Estonian Biobank (N = 3535), we compared how the five domains and 30 facets of NEO Personality Inventory-3 correlated with RFM, BMI, and BMR. Various traits, notably Openness to Experience and its facets, were associated with RFM above and beyond BMI; these traits may relate to lower adiposity through eating habits. Assertiveness, a facet of Extraversion, correlated more strongly with BMI than with RFM and also correlated with BMR. These correlations mirror associations of metabolic rate with conceptually similar traits in non-human animals and are consistent with Assertiveness being based on biological processes. Finally, BMI-personality trait correlations appeared to conflate personality traits' associations with fat mass and lean mass; the use of BMI as an indicator of adiposity can lead to both attenuated and inflated estimates of personality trait-adiposity associations.
Collapse
Affiliation(s)
- Kadri Arumäe
- Institute of Psychology, University of Tartu, Näituse 2, 50409, Tartu, Estonia.
| | - René Mõttus
- Institute of Psychology, University of Tartu, Näituse 2, 50409, Tartu, Estonia; Department of Psychology, University of Edinburgh, Scotland, United Kingdom
| | - Uku Vainik
- Institute of Psychology, University of Tartu, Näituse 2, 50409, Tartu, Estonia; Montreal Neurological Institute, McGill University, Canada
| |
Collapse
|
187
|
Culumber ZW. Variation in behavioral traits across a broad latitudinal gradient in a livebearing fish. Evol Ecol 2022. [DOI: 10.1007/s10682-021-10146-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
188
|
Allegue H, Guinet C, Patrick SC, Hindell MA, McMahon CR, Réale D. Sex, body size, and boldness shape the seasonal foraging habitat selection in southern elephant seals. Ecol Evol 2022; 12:e8457. [PMID: 35127010 PMCID: PMC8796948 DOI: 10.1002/ece3.8457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/22/2021] [Accepted: 11/25/2021] [Indexed: 12/04/2022] Open
Abstract
Selecting foraging habitat is a fundamental behavior in the life of organisms as it directly links resource acquisition to fitness. Differences in habitat selection among individuals may arise from several intrinsic and extrinsic factors, and yet, their interaction has been given little attention in the study of wild populations. We combine sex, body size, and boldness to explain individual differences in the seasonal foraging habitat selection of southern elephant seals (Mirounga leonina) from the Kerguelen Archipelago. We hypothesize that habitat selection is linked to the trade-off between resource acquisition and risk, and that individuals differ in their position along this trade-off because of differences in reproductive strategies, life stages, and metabolic requirements. Before the post-molt foraging trip, we used a novel object approach test to quantify the boldness of 28 subadult and adult females and 42 subadult males and equipped them with data loggers to track their movements at sea. Subadult males selected neritic and oceanic habitats, whereas females mostly selected less productive oceanic habitats. Both sexes showed a seasonal shift from Antarctic habitats in the south in the summer to the free of ice subantarctic and subtropical habitats in the north in the winter. Males avoided oceanic habitats and selected more productive neritic and Antarctic habitats with body size mostly in the winter. Bolder males selected northern warmer waters in winter, while shyer ones selected the Kerguelen plateau and southern colder oceanic waters. Bolder females selected the Kerguelen plateau in the summer when prey profitability is assumed to be the highest. This study not only provides new insights into the spatiotemporal foraging ecology of elephant seals in relation to personality but also emphasizes the relevance of combining several intrinsic and extrinsic factors in understanding among-individual variation in space use essential in wildlife management and conservation.
Collapse
Affiliation(s)
- Hassen Allegue
- Département des Sciences BiologiquesUniversité du Québec à MontréalMontréalQCCanada
| | | | | | - Mark A. Hindell
- Institute for Marine and Antarctic StudiesBattery PointTASAustralia
- Antarctic Climate and Ecosystems Cooperative Research CentreUniversity of TasmaniaHobartTASAustralia
| | - Clive R. McMahon
- Institute for Marine and Antarctic StudiesBattery PointTASAustralia
- Sydney Institute of Marine ScienceSydneyNSWAustralia
- Department of Biological SciencesMacquarie UniversitySydneyNSWAustralia
| | - Denis Réale
- Département des Sciences BiologiquesUniversité du Québec à MontréalMontréalQCCanada
| |
Collapse
|
189
|
Doherty CLJ, Fisk AT, Cooke SJ, Pitcher TE, Raby GD. Exploring relationships between oxygen consumption and biologger-derived estimates of heart rate in two warmwater piscivores. JOURNAL OF FISH BIOLOGY 2022; 100:99-106. [PMID: 34636030 DOI: 10.1111/jfb.14923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 09/26/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
Estimating metabolic rate in wild, free-swimming fish is inherently challenging. Here, we explored using surgically implanted heart rate biologgers to estimate metabolic rate in two warmwater piscivores, bowfin Amia calva (Linneaus 1766) and largemouth bass Micropterus salmoides (Lacepède 1802). Fish were surgically implanted with heart rate loggers, allowed to recover for 24 h, exposed to a netting and air exposure challenge, and then placed into respirometry chambers so that oxygen consumption rate (ṀO2 ) could be measured in parallel to heart rate (fH ) for a minimum of 20 h (ca. 20 estimates of ṀO2 ). Heart rate across the duration of the experiment (at 19°C) was significantly higher in largemouth bass (mean ± s.d., 45 ± 14 beats min-1 , range 18-86) than in bowfin (27 ± 9 bpm, range 16-98). Standard metabolic rate was also higher in largemouth bass (1.06 ± 0.19 mg O2 kg-1 min-1 , range 0.46-1.36) than in bowfin (0.89 ± 0.17 mg O2 kg-1 min-1 , range 0.61-1.28). There were weak relationships between fH and ṀO2 , with heart rate predicting 28% of the variation in oxygen consumption in bowfin and 23% in largemouth bass. The shape of the relationship differed somewhat between the two species, which is perhaps unsurprising given their profound differences in physiology and life history, illustrating the need to carry out species-specific validations. Both species showed some potential for a role of fH in efforts to estimate field metabolic rates, although further validation experiments with a wider range of conditions (e.g., digestive states, swimming activity) would likely help improve the strength of the ṀO2 -fH relationship for use in field applications.
Collapse
Affiliation(s)
- Claire L J Doherty
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario, Canada
| | - Aaron T Fisk
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario, Canada
- School of the Environment, University of Windsor, Windsor, Ontario, Canada
| | - Steven J Cooke
- Department of Biology and Institute of Environmental and Interdisciplinary Science, Carleton University, Ottawa, Ontario, Canada
| | - Trevor E Pitcher
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario, Canada
- Department of Integrative Biology, University of Windsor, Windsor, Ontario, Canada
| | - Graham D Raby
- Department of Biology, Trent University, Peterborough, Ontario, Canada
| |
Collapse
|
190
|
Bolstad GH, Karlsson S, Hagen IJ, Fiske P, Urdal K, Sægrov H, Florø-Larsen B, Sollien VP, Østborg G, Diserud OH, Jensen AJ, Hindar K. Introgression from farmed escapees affects the full life cycle of wild Atlantic salmon. SCIENCE ADVANCES 2021; 7:eabj3397. [PMID: 34936452 PMCID: PMC8694624 DOI: 10.1126/sciadv.abj3397] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 11/03/2021] [Indexed: 05/28/2023]
Abstract
After a half a century of salmon farming, we have yet to understand how the influx of genes from farmed escapees affects the full life history of Atlantic salmon (Salmo salar L.) in the wild. Using scale samples of over 6900 wild adult salmon from 105 rivers, we document that increased farmed genetic ancestry is associated with increased growth throughout life and a younger age at both seaward migration and sexual maturity. There was large among-population variation in the effects of introgression. Most saliently, the increased growth at sea following introgression declined with the population’s average growth potential. Variation at two major-effect loci associated with age at maturity was little affected by farmed genetic ancestry and could not explain the observed phenotypic effects of introgression. Our study provides knowledge crucial for predicting the ecological and evolutionary consequences of increased aquaculture production worldwide.
Collapse
Affiliation(s)
- Geir H. Bolstad
- Norwegian Institute for Nature Research (NINA), NO-7485 Trondheim, Norway
| | - Sten Karlsson
- Norwegian Institute for Nature Research (NINA), NO-7485 Trondheim, Norway
| | - Ingerid J. Hagen
- Norwegian Institute for Nature Research (NINA), NO-7485 Trondheim, Norway
| | - Peder Fiske
- Norwegian Institute for Nature Research (NINA), NO-7485 Trondheim, Norway
| | - Kurt Urdal
- Rådgivende Biologer, NO-5059 Bergen, Norway
| | | | | | | | - Gunnel Østborg
- Norwegian Institute for Nature Research (NINA), NO-7485 Trondheim, Norway
| | - Ola H. Diserud
- Norwegian Institute for Nature Research (NINA), NO-7485 Trondheim, Norway
| | - Arne J. Jensen
- Norwegian Institute for Nature Research (NINA), NO-7485 Trondheim, Norway
| | - Kjetil Hindar
- Norwegian Institute for Nature Research (NINA), NO-7485 Trondheim, Norway
| |
Collapse
|
191
|
Raffard A, Bestion E, Cote J, Haegeman B, Schtickzelle N, Jacob S. Dispersal syndromes can link intraspecific trait variability and meta-ecosystem functioning. Trends Ecol Evol 2021; 37:322-331. [PMID: 34952726 DOI: 10.1016/j.tree.2021.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 11/24/2021] [Accepted: 12/01/2021] [Indexed: 10/19/2022]
Abstract
Dispersal mediates the flow of organisms in meta-communities and subsequently energy and material flows in meta-ecosystems. Individuals within species often vary in dispersal tendency depending on their phenotypic traits (i.e., dispersal syndromes), but the implications of dispersal syndromes for meta-ecosystems have been rarely studied. Using empirical examples on vertebrates, arthropods, and microbes, we highlight that key functional traits can be linked to dispersal. We argue that this coupling between dispersal and functional traits can have consequences for meta-ecosystem functioning, mediating flows of functional traits and thus the spatial heterogeneity of ecosystem functions. As dispersal syndromes may be genetically determined, the spatial heterogeneity of functional traits may be further carried over across generations and link meta-ecosystem functioning to evolutionary dynamics.
Collapse
Affiliation(s)
- Allan Raffard
- Université Catholique de Louvain, Earth and Life Institute, Biodiversity Research Centre, Louvain-la-Neuve, Belgium.
| | - Elvire Bestion
- Station d'Écologie Théorique et Expérimentale du CNRS à Moulis, Moulis, France
| | - Julien Cote
- CNRS, UPS, IRD, Laboratoire Évolution et Diversité Biologique, UAR 5174, 31062, Cedex 9 Toulouse, France
| | - Bart Haegeman
- Station d'Écologie Théorique et Expérimentale du CNRS à Moulis, Moulis, France
| | - Nicolas Schtickzelle
- Université Catholique de Louvain, Earth and Life Institute, Biodiversity Research Centre, Louvain-la-Neuve, Belgium
| | - Staffan Jacob
- Station d'Écologie Théorique et Expérimentale du CNRS à Moulis, Moulis, France
| |
Collapse
|
192
|
Naug D, Tait C. Slow-Fast Cognitive Phenotypes and Their Significance for Social Behavior: What Can We Learn From Honeybees? Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.766414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cognitive variation is proposed to be the fundamental underlying factor that drives behavioral variation, yet it is still to be fully integrated with the observed variation at other phenotypic levels that has recently been unified under the common pace-of-life framework. This cognitive and the resulting behavioral diversity is especially significant in the context of a social group, the performance of which is a collective outcome of this diversity. In this review, we argue about the utility of classifying cognitive traits along a slow-fast continuum in the larger context of the pace-of-life framework. Using Tinbergen’s explanatory framework for different levels of analyses and drawing from the large body of knowledge about honeybee behavior, we discuss the observed interindividual variation in cognitive traits and slow-fast cognitive phenotypes from an adaptive, evolutionary, mechanistic and developmental perspective. We discuss the challenges in this endeavor and suggest possible next steps in terms of methodological, statistical and theoretical approaches to move the field forward for an integrative understanding of how slow-fast cognitive differences, by influencing collective behavior, impact social evolution.
Collapse
|
193
|
Sbragaglia V, Klamser PP, Romanczuk P, Arlinghaus R. Evolutionary impact of size-selective harvesting on shoaling behavior: Individual-level mechanisms and possible consequences for natural and fishing mortality. Am Nat 2021; 199:480-495. [DOI: 10.1086/718591] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
194
|
Yarwood E, Drees C, Niven JE, Schuett W. Sex-specific covariance between metabolic rate, behaviour and morphology in the ground beetle Carabus hortensis. PeerJ 2021; 9:e12455. [PMID: 35003913 PMCID: PMC8684319 DOI: 10.7717/peerj.12455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 10/18/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Individuals within the same species often differ in their metabolic rates, which may covary with behavioural traits (such as exploration), that are consistent across time and/or contexts, and morphological traits. Yet, despite the frequent occurrence of sexual dimorphisms in morphology and behaviour, few studies have assessed whether and how sexes differ in metabolic trait covariances. METHODS We investigated sex-specific relationships among resting or active metabolic rate (RMR and AMR, respectively) with exploratory behaviour, measured independently of metabolic rate in a novel environment, body size and body mass, in Carabus hortensis ground beetles. RESULTS RMR, AMR and exploratory behaviour were repeatable among individuals across time, except for male RMR which was unrepeatable. Female RMR neither correlated with exploratory behaviour nor body size/body mass. In contrast, AMR was correlated with both body size and exploratory behaviour. Males with larger body sizes had higher AMR, whereas females with larger body sizes had lower AMR. Both male and female AMR were significantly related to exploratory behaviour, though the relationships between AMR and exploration were body mass-dependent in males and temperature-dependent in females. DISCUSSION Differences between sexes exist in the covariances between metabolic rate, body size and exploratory behaviour. This suggests that selection acts differently on males and females to produce these trait covariances with potentially important consequences for individual fitness.
Collapse
Affiliation(s)
- Elisabeth Yarwood
- School of Life Sciences, University of Sussex, Brighton, East Sussex, United Kingdom
| | - Claudia Drees
- School of Life Sciences, University of Sussex, Brighton, East Sussex, United Kingdom
- Institute of Zoology, Universität Hamburg, Hamburg, Germany
| | - Jeremy E. Niven
- School of Life Sciences, University of Sussex, Brighton, East Sussex, United Kingdom
| | - Wiebke Schuett
- School of Life Sciences, University of Sussex, Brighton, East Sussex, United Kingdom
| |
Collapse
|
195
|
Gartland LA, Firth JA, Laskowski KL, Jeanson R, Ioannou CC. Sociability as a personality trait in animals: methods, causes and consequences. Biol Rev Camb Philos Soc 2021; 97:802-816. [PMID: 34894041 DOI: 10.1111/brv.12823] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 11/27/2021] [Accepted: 11/30/2021] [Indexed: 02/06/2023]
Abstract
Within animal populations there is variation among individuals in their tendency to be social, where more sociable individuals associate more with other individuals. Consistent inter-individual variation in 'sociability' is considered one of the major axes of personality variation in animals along with aggressiveness, activity, exploration and boldness. Not only is variation in sociability important in terms of animal personalities, but it holds particular significance for, and can be informed by, two other topics of major interest: social networks and collective behaviour. Further, knowledge of what generates inter-individual variation in social behaviour also holds applied implications, such as understanding disorders of social behaviour in humans. In turn, research using non-human animals in the genetics, neuroscience and physiology of these disorders can inform our understanding of sociability. For the first time, this review brings together insights across these areas of research, across animal taxa from primates to invertebrates, and across studies from both the laboratory and field. We show there are mixed results in whether and how sociability correlates with other major behavioural traits. Whether and in what direction these correlations are observed may differ with individual traits such as sex and body condition, as well as ecological conditions. A large body of evidence provides the proximate mechanisms for why individuals vary in their social tendency. Evidence exists for the importance of genes and their expression, chemical messengers, social interactions and the environment in determining an individual's social tendency, although the specifics vary with species and other variables such as age, and interactions amongst these proximate factors. Less well understood is how evolution can maintain consistent variation in social tendencies within populations. Shifts in the benefits and costs of social tendencies over time, as well as the social niche hypothesis, are currently the best supported theories for how variation in sociability can evolve and be maintained in populations. Increased exposure to infectious diseases is the best documented cost of a greater social tendency, and benefits include greater access to socially transmitted information. We also highlight that direct evidence for more sociable individuals being safer from predators is lacking. Variation in sociability is likely to have broad ecological consequences, but beyond its importance in the spread of infectious diseases, direct evidence is limited to a few examples related to dispersal and invasive species biology. Overall, our knowledge of inter-individual variation in sociability is highly skewed towards the proximate mechanisms. Our review also demonstrates, however, that considering research from social networks and collective behaviour greatly enriches our understanding of sociability, highlighting the need for greater integration of these approaches into future animal personality research to address the imbalance in our understanding of sociability as a personality trait.
Collapse
Affiliation(s)
- Lizzy A Gartland
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, U.K
| | - Josh A Firth
- Edward Grey Institute, Department of Zoology, University of Oxford, Oxford, OX1 3SZ, U.K
| | - Kate L Laskowski
- Department of Evolution and Ecology, University of California Davis, Davis, CA, 95616, U.S.A
| | - Raphael Jeanson
- Centre de Recherches sur la Cognition Animale (UMR5169), Centre de Biologie Intégrative, CNRS, UPS, Université de Toulouse, 31062, Toulouse, France
| | - Christos C Ioannou
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, U.K
| |
Collapse
|
196
|
Milles A, Dammhahn M, Jeltsch F, Schlägel U, Grimm V. Fluctuations in density-dependent selection drive the evolution of a pace-of-life-syndrome within and between populations. Am Nat 2021; 199:E124-E139. [DOI: 10.1086/718473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
197
|
Andersson ML, Hulthén K, Blake C, Brönmark C, Nilsson PA. Linking behavioural type with cannibalism in Eurasian perch. PLoS One 2021; 16:e0260938. [PMID: 34860864 PMCID: PMC8641868 DOI: 10.1371/journal.pone.0260938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 11/20/2021] [Indexed: 11/18/2022] Open
Abstract
The propensity to kill and consume conspecifics (cannibalism) varies greatly between and within species, but the underlying mechanisms behind this variation remain poorly understood. A rich literature has documented that consistent behavioural variation is ubiquitous across the animal kingdom. Such inter-individual behavioural differences, sometimes referred to as personality traits, may have far-reaching ecological consequences. However, the link between predator personality traits and the propensity to engage in cannibalistic interactions remains understudied. Here, we first quantified personality in Eurasian perch (Perca fluviatilis), measured as activity (time spent moving) and sociability (time spent near conspecifics). We then gave perch of contrasting behavioural types the option to consume either conspecific or heterospecific (roach, Rutilus rutilus) prey. Individual perch characterized by a social-active behavioural phenotype (n = 5) selected roach before being cannibalistic, while asocial-inactive perch (n = 17) consumed conspecific and heterospecific prey evenly. Thus, asocial-inactive perch expressed significantly higher rates of cannibalism as compared to social-active individuals. Individual variation in cannibalism, linked to behavioural type, adds important mechanistic understanding to complex population and community dynamics, and also provides insight into the diversity and maintenance of animal personality.
Collapse
Affiliation(s)
- Matilda L. Andersson
- Division of Aquatic Ecology, Department of Biology, Lund University, Lund, Sweden
| | - Kaj Hulthén
- Division of Aquatic Ecology, Department of Biology, Lund University, Lund, Sweden
| | - Charlie Blake
- Division of Aquatic Ecology, Department of Biology, Lund University, Lund, Sweden
| | - Christer Brönmark
- Division of Aquatic Ecology, Department of Biology, Lund University, Lund, Sweden
| | - P. Anders Nilsson
- Division of Aquatic Ecology, Department of Biology, Lund University, Lund, Sweden
- Department of Environmental and Life Sciences—Biology, Karlstad University, Karlstad, Sweden
| |
Collapse
|
198
|
Gokcekus S, Firth JA, Regan C, Cole EF, Lamers KP, Sheldon BC. Drivers of passive leadership in wild songbirds: species-level differences and spatio-temporally dependent intraspecific effects. Behav Ecol Sociobiol 2021. [DOI: 10.1007/s00265-021-03103-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Abstract
Collective behaviors are typical for many social species and can have fitness benefits for participating individuals. To maximize the benefits obtained from group living, individuals must coordinate their behaviors to some extent. What are the mechanisms that make certain individuals more likely to initiate collective behaviors, for example, by taking a risk to initially access a resource (i.e., to act as “leaders”)? Here, we examine leading behavior in a natural population of great tits and blue tits. We use automated feeding stations to monitor the feeder visits of tagged individuals within mixed-species flocks, with a small cost (waiting < 2 s) associated with the initial unlocking of the feeder. We find that great tits, males, and individuals with high activity levels were more likely to be leading in each of their feeder visits. Using a null model approach, we demonstrate that the effects of sex and activity on passive leading behavior can be explained by patterns of spatial and temporal occurrence. In other words, these effects can be explained by the times and locations of when individuals visit rather than the actual order of arrival. Hence, an analysis of the causes of leading behavior is needed to separate the effects of different processes. We highlight the importance of understanding the mechanisms behind leading behavior and discuss directions for future experimental work to gain a better understanding of the causes of leadership in natural populations.
Significance statement
Many species are social and engage in collective behaviors. To benefit from group actions, individuals need to fulfill different roles. Here, we examine leading behavior during feeding events; who feeds first when birds arrive at a resource? In mixed-species flocks of passerines, great tits (the larger and more dominant species), males, and individuals with higher levels of activity lead more often than blue tits, females, and individuals with lower levels of activity. While the species effect remains even when we control for the locations and dates of individual feeder visits, the effects of sex and activity are dependent on when and where birds choose to feed.
Collapse
|
199
|
Haave-Audet E, Besson AA, Nakagawa S, Mathot KJ. Differences in resource acquisition, not allocation, mediate the relationship between behaviour and fitness: a systematic review and meta-analysis. Biol Rev Camb Philos Soc 2021; 97:708-731. [PMID: 34859575 DOI: 10.1111/brv.12819] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 11/29/2022]
Abstract
Within populations, individuals often show repeatable variation in behaviour, called 'animal personality'. In the last few decades, numerous empirical studies have attempted to elucidate the mechanisms maintaining this variation, such as life-history trade-offs. Theory predicts that among-individual variation in behavioural traits could be maintained if traits that are positively associated with reproduction are simultaneously associated with decreased survival, such that different levels of behavioural expression lead to the same net fitness outcome. However, variation in resource acquisition may also be important in mediating the relationship between individual behaviour and fitness components (survival and reproduction). For example, if certain phenotypes (e.g. dominance or aggressiveness) are associated with higher resource acquisition, those individuals may have both higher reproduction and higher survival, relative to others in the population. When individuals differ in their ability to acquire resources, trade-offs are only expected to be observed at the within-individual level (i.e. for a given amount of resource, if an individual increases its allocation to reproduction, it comes at the cost of allocation to survival, and vice versa), while among individuals traits that are associated with increased survival may also be associated with increased reproduction. We performed a systematic review and meta-analysis, asking: (i) do among-individual differences in behaviour reflect among-individual differences in resource acquisition and/or allocation, and (ii) is the relationship between behaviour and fitness affected by the type of behaviour and the testing environment? Our meta-analysis consisted of 759 estimates from 193 studies. Our meta-analysis revealed a positive correlation between pairs of estimates using both survival and reproduction as fitness proxies. That is, for a given study, behaviours that were associated with increased reproduction were also associated with increased survival, suggesting that variation in behaviour at the among-individual level largely reflects differences among individuals in resource acquisition. Furthermore, we found the same positive correlation between pairs of estimates using both survival and reproduction as fitness proxies at the phenotypic level. This is significant because we also demonstrated that these phenotypic correlations primarily reflect within-individual correlations. Thus, even when accounting for among-individual differences in resource acquisition, we did not find evidence of trade-offs at the within-individual level. Overall, the relationship between behaviour and fitness proxies was not statistically different from zero at the among-individual, phenotypic, and within-individual levels; this relationship was not affected by behavioural category nor by the testing condition. Our meta-analysis highlights that variation in resource acquisition may be more important in driving the relationship between behaviour and fitness than previously thought, including at the within-individual level. We suggest that this may come about via heterogeneity in resource availability or age-related effects, with higher resource availability and/or age leading to state-dependent shifts in behaviour that simultaneously increase both survival and reproduction. We emphasize that future studies examining the mechanisms maintaining behavioural variation in populations should test the link between behavioural expression and resource acquisition - both within and among individuals. Such work will allow the field of animal personality to develop specific predictions regarding the mediating effect of resource acquisition on the fitness consequences of individual behaviour.
Collapse
Affiliation(s)
- Elène Haave-Audet
- Department of Biological Sciences, University of Alberta, CW 405, Biological Sciences Bldg, Edmonton, AB, T6G 2E9, Canada
| | - Anne A Besson
- Department of Biological Sciences, University of Alberta, CW 405, Biological Sciences Bldg, Edmonton, AB, T6G 2E9, Canada.,Department of Zoology, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand
| | - Shinichi Nakagawa
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Kimberley J Mathot
- Department of Biological Sciences, University of Alberta, CW 405, Biological Sciences Bldg, Edmonton, AB, T6G 2E9, Canada.,Canada Research Chair, Integrative Ecology, Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| |
Collapse
|
200
|
Effects of male and female personality on sexual cannibalism in the springbok mantis. Anim Behav 2021. [DOI: 10.1016/j.anbehav.2021.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|