151
|
Cheng L, Fan K, Huang Y, Wang D, Leung KS. Full Characterization of Localization Diversity in the Human Protein Interactome. J Proteome Res 2017; 16:3019-3029. [DOI: 10.1021/acs.jproteome.7b00306] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Lixin Cheng
- Department
of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Kaili Fan
- College
of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Yan Huang
- College
of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Dong Wang
- College
of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
- Center
for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Kwong-Sak Leung
- Department
of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| |
Collapse
|
152
|
Vahid A, Šarić A, Idema T. Curvature variation controls particle aggregation on fluid vesicles. SOFT MATTER 2017; 13:4924-4930. [PMID: 28677712 DOI: 10.1039/c7sm00433h] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Cellular membranes exhibit a large variety of shapes, strongly coupled to their function. Many biological processes involve dynamic reshaping of membranes, usually mediated by proteins. This interaction works both ways: while proteins influence the membrane shape, the membrane shape affects the interactions between the proteins. To study these membrane-mediated interactions on closed and anisotropically curved membranes, we use colloids adhered to ellipsoidal membrane vesicles as a model system. We find that two particles on a closed system always attract each other, and tend to align with the direction of largest curvature. Multiple particles form arcs, or, at large enough numbers, a complete ring surrounding the vesicle in its equatorial plane. The resulting vesicle shape resembles a snowman. Our results indicate that these physical interactions on membranes with anisotropic shapes can be exploited by cells to drive macromolecules to preferred regions of cellular or intracellular membranes, and utilized to initiate dynamic processes such as cell division. The same principle could be used to find the midplane of an artificial vesicle, as a first step towards dividing it into two equal parts.
Collapse
Affiliation(s)
- Afshin Vahid
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| | - Anđela Šarić
- Department of Physics and Astronomy, Institute for the Physics of Living Systems, University College London, Gower Street, London, WC1E 6BT, UK.
| | - Timon Idema
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| |
Collapse
|
153
|
Lopez CE, Sheehan HC, Vierra DA, Azzinaro PA, Meedel TH, Howlett NG, Irvine SQ. Proteomic responses to elevated ocean temperature in ovaries of the ascidian Ciona intestinalis. Biol Open 2017; 6:943-955. [PMID: 28500033 PMCID: PMC5550911 DOI: 10.1242/bio.024786] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 05/10/2017] [Indexed: 11/21/2022] Open
Abstract
Ciona intestinalis, a common sea squirt, exhibits lower reproductive success at the upper extreme of the water temperatures it experiences in coastal New England. In order to understand the changes in protein expression associated with elevated temperatures, and possible response to global temperature change, we reared C. intestinalis from embryos to adults at 18°C (a temperature at which they reproduce normally at our collection site in Rhode Island) and 22°C (the upper end of the local temperature range). We then dissected ovaries from animals at each temperature, extracted protein, and measured proteomic levels using shotgun mass spectrometry (LC-MS/MS). 1532 proteins were detected at a 1% false discovery rate present in both temperature groups by our LC-MS/MS method. 62 of those proteins are considered up- or down-regulated according to our statistical criteria. Principal component analysis shows a clear distinction in protein expression pattern between the control (18°C) group and high temperature (22°C) group. Similar to previous studies, cytoskeletal and chaperone proteins are upregulated in the high temperature group. Unexpectedly, we find evidence that proteolysis is downregulated at the higher temperature. We propose a working model for the high temperature response in C. intestinalis ovaries whereby increased temperature induces upregulation of signal transduction pathways involving PTPN11 and CrkL, and activating coordinated changes in the proteome especially in large lipid transport proteins, cellular stress responses, cytoskeleton, and downregulation of energy metabolism.
Collapse
Affiliation(s)
- Chelsea E Lopez
- Departments of Biological Sciences, University of Rhode Island, Kingston, RI 02881, USA
| | - Hannah C Sheehan
- Departments of Biological Sciences, University of Rhode Island, Kingston, RI 02881, USA
| | - David A Vierra
- Cell and Molecular Biology, University of Rhode Island, Kingston, RI 02881, USA
| | - Paul A Azzinaro
- Cell and Molecular Biology, University of Rhode Island, Kingston, RI 02881, USA
| | - Thomas H Meedel
- Biology Department, Rhode Island College, Providence, RI 02908, USA
| | - Niall G Howlett
- Cell and Molecular Biology, University of Rhode Island, Kingston, RI 02881, USA
| | - Steven Q Irvine
- Departments of Biological Sciences, University of Rhode Island, Kingston, RI 02881, USA
| |
Collapse
|
154
|
González-Maciel A, Reynoso-Robles R, Torres-Jardón R, Mukherjee PS, Calderón-Garcidueñas L. Combustion-Derived Nanoparticles in Key Brain Target Cells and Organelles in Young Urbanites: Culprit Hidden in Plain Sight in Alzheimer’s Disease Development. J Alzheimers Dis 2017; 59:189-208. [DOI: 10.3233/jad-170012] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
155
|
Topological organisation of the phosphatidylinositol 4,5-bisphosphate-phospholipase C resynthesis cycle: PITPs bridge the ER-PM gap. Biochem J 2017; 473:4289-4310. [PMID: 27888240 DOI: 10.1042/bcj20160514c] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 09/08/2016] [Accepted: 09/12/2016] [Indexed: 12/13/2022]
Abstract
Phospholipase C (PLC) is a receptor-regulated enzyme that hydrolyses phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) at the plasma membrane (PM) triggering three biochemical consequences, the generation of soluble inositol 1,4,5-trisphosphate (IP3), membrane-associated diacylglycerol (DG) and the consumption of PM PI(4,5)P2 Each of these three signals triggers multiple molecular processes impacting key cellular properties. The activation of PLC also triggers a sequence of biochemical reactions, collectively referred to as the PI(4,5)P2 cycle that culminates in the resynthesis of this lipid. The biochemical intermediates of this cycle and the enzymes that mediate these reactions are topologically distributed across two membrane compartments, the PM and the endoplasmic reticulum (ER). At the PM, the DG formed during PLC activation is rapidly converted into phosphatidic acid (PA) that needs to be transported to the ER where the machinery for its conversion into PI is localised. Conversely, PI from the ER needs to be rapidly transferred to the PM where it can be phosphorylated by lipid kinases to regenerate PI(4,5)P2 Thus, two lipid transport steps between membrane compartments through the cytosol are required for the replenishment of PI(4,5)P2 at the PM. Here, we review the topological constraints in the PI(4,5)P2 cycle and current understanding how these constraints are overcome during PLC signalling. In particular, we discuss the role of lipid transfer proteins in this process. Recent findings on the biochemical properties of a membrane-associated lipid transfer protein of the PITP family, PITPNM proteins (alternative name RdgBα/Nir proteins) that localise to membrane contact sites are discussed. Studies in both Drosophila and mammalian cells converge to provide a resolution to the conundrum of reciprocal transfer of PA and PI during PLC signalling.
Collapse
|
156
|
Khairallah A, Farag AA, Johar D, Bernstein L. Endocrine Imbalance Associated With Proteome Changes in Diabetes. J Cell Biochem 2017; 118:3569-3576. [PMID: 28419534 DOI: 10.1002/jcb.26071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 04/14/2017] [Indexed: 11/06/2022]
Abstract
The dynamics of cellular metabolism involves rapid interactions between proteins and nucleic acids, proteins and proteins, and signaling. These involve the interactions with respect to the sulfur bond, noncovalent electrostatic interactions, protein structure stabilization and protein-ligand binding, weak electrostatic interactions in proteins, oxygen radicals that initiate a change in conformation and a chain of events. We review a development in molecular medicine that is a very promising work in progress. We also review the current and future research methods involving mitochondria. Long-term effects of diabetes include glycation of proteins, for example, glycohemoglobin (HbA1c), increased risk of cardiovascular diseases, atherosclerosis, retinopathy, nephropathy, and neurological dysfunctions. Tissues are exposed to significant quantities of highly reactive chemical species including nitric oxide • NO and reactive oxygen species ROS over months to years, to an extent generated by mitochondrial activities. The reactions of • NO can be broadly discussed with reference to three main processes which control their fate in biological systems: (1) diffusion and intra-cellular consumption; (2) autooxidation to form nitrous anhydride N2 O3 ; and (3) reaction with superoxide O2• - to form peroxynitrite ONOO-. Reactive nitrogen species produced by macrophages and neutrophils in the interstitial space, with emphasis on • NO, N2 O3 , ONOO-, and nitrogen dioxide radicals • NO2 generate protein and DNA damage. Serum thiol (-SH) groups act as an important extracellular scavenger of peroxides and are therefore helpful in protecting the surrounding tissues. The events described here are a homeostatic endocrine imbalance that is associated with proteostasis. The advances we have seen in untangling this web of interactions are sure to continue at a breathtaking pace. J. Cell. Biochem. 118: 3569-3576, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ahmed Khairallah
- Pharmacology Department, Medical Research Division, National Research Center, Dokki, Cairo, Egypt
| | | | - Dina Johar
- Faculty of Women for Arts, Sciences and Education, Department of Biochemistry and Nutrition, Ain Shams University, Heliopolis, Cairo, Egypt.,Rady College of Medicine, Max Rady Faculty of Health Sciences, Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Larry Bernstein
- Triplex Consulting, 54 Firethorn Lane, Northampton, Massachusetts
| |
Collapse
|
157
|
Herpes Simplex Virus 1 UL34 Protein Regulates the Global Architecture of the Endoplasmic Reticulum in Infected Cells. J Virol 2017; 91:JVI.00271-17. [PMID: 28356536 DOI: 10.1128/jvi.00271-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 03/21/2017] [Indexed: 11/20/2022] Open
Abstract
Upon herpes simplex virus 1 (HSV-1) infection, the CD98 heavy chain (CD98hc) is redistributed around the nuclear membrane (NM), where it promotes viral de-envelopment during the nuclear egress of nucleocapsids. In this study, we attempted to identify the factor(s) involved in CD98hc accumulation and demonstrated the following: (i) the null mutation of HSV-1 UL34 caused specific dispersion throughout the cytoplasm of CD98hc and the HSV-1 de-envelopment regulators, glycoproteins B and H (gB and gH); (ii) as observed with CD98hc, gB, and gH, wild-type HSV-1 infection caused redistribution of the endoplasmic reticulum (ER) markers calnexin and ERp57 around the NM, whereas the UL34-null mutation caused cytoplasmic dispersion of these markers; (iii) the ER markers colocalized efficiently with CD98hc, gB, and gH in the presence and absence of UL34 in HSV-1-infected cells; (iv) at the ultrastructural level, wild-type HSV-1 infection caused ER compression around the NM, whereas the UL34-null mutation caused cytoplasmic dispersion of the ER; and (v) the UL34-null mutation significantly decreased the colocalization efficiency of lamin protein markers of the NM with CD98hc and gB. Collectively, these results indicate that HSV-1 infection causes redistribution of the ER around the NM, with resulting accumulation of ER-associated CD98hc, gB, and gH around the NM and that UL34 is required for ER redistribution, as well as for efficient recruitment to the NM of the ER-associated de-envelopment factors. Our study suggests that HSV-1 induces remodeling of the global ER architecture for recruitment of regulators mediating viral nuclear egress to the NM.IMPORTANCE The ER is an important cellular organelle that exists as a complex network extending throughout the cytoplasm. Although viruses often remodel the ER to facilitate viral replication, information on the effects of herpesvirus infections on ER morphological integrity is limited. Here, we showed that HSV-1 infection led to compression of the global ER architecture around the NM, resulting in accumulation of ER-associated regulators associated with nuclear egress of HSV-1 nucleocapsids. We also identified HSV-1 UL34 as a viral factor that mediated ER remodeling. Furthermore, we demonstrated that UL34 was required for efficient targeting of these regulators to the NM. To our knowledge, this is the first report showing that a herpesvirus remodels ER global architecture. Our study also provides insight into the mechanism by which the regulators for HSV-1 nuclear egress are recruited to the NM, where this viral event occurs.
Collapse
|
158
|
Zhang C, Syed TW, Liu R, Yu J. Role of Endoplasmic Reticulum Stress, Autophagy, and Inflammation in Cardiovascular Disease. Front Cardiovasc Med 2017; 4:29. [PMID: 28553639 PMCID: PMC5427082 DOI: 10.3389/fcvm.2017.00029] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 04/25/2017] [Indexed: 01/07/2023] Open
Abstract
Cardiovascular diseases are a class of heart or blood vessels diseases, which are now considered to be the leading cause of death globally. A number of recent studies have reported key roles for inflammation in the progression of diseased vessels and systematic heart failure. In particular, endoplasmic reticulum (ER) stress, which is mechanistically implicated in inflammation and autophagy, has now been associated with pathophysiological states in the cardiovascular system. Autophagy has also been identified as an important process in the progression of multiple cardiovascular diseases such as in atherosclerosis plaque progression and ischemia and/or reperfusion. In light of the above, it has been proposed that a link between inflammation, autophagy, and ER stress may exist that contribute to diseases of the heart and its supporting vessels. This review highlights current knowledge on the cross talk between these three biological processes, and the potential of targeting this pathway as a therapeutic approach for cardiovascular disorders and its related diseases.
Collapse
Affiliation(s)
- Cheng Zhang
- Center for Metabolic Disease Research, Department of Physiology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Taha Wasim Syed
- Center for Metabolic Disease Research, Department of Physiology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Renjing Liu
- Agnes Ginges Laboratory for Diseases of the Aorta, Centenary Institute, University of Sydney, Camperdown, NSW, Australia,Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Jun Yu
- Center for Metabolic Disease Research, Department of Physiology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA,*Correspondence: Jun Yu,
| |
Collapse
|
159
|
Hoover B, Baena V, Kaelberer MM, Getaneh F, Chinchilla S, Bohórquez DV. The intestinal tuft cell nanostructure in 3D. Sci Rep 2017; 7:1652. [PMID: 28490731 PMCID: PMC5431925 DOI: 10.1038/s41598-017-01520-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 03/29/2017] [Indexed: 11/23/2022] Open
Abstract
Once referred to as “peculiar,” tuft cells are enigmatic epithelial cells. Here, we reasoned that future functional studies could be derived from a complete account of the tuft cell ultrastructure. We identified and documented the volumetric ultrastructure at nanometer resolution (4–5 nm/pixel) of specific intestinal tuft cells. The techniques used were Serial Block-Face (SBF) and Automated Tape-collecting Ultra-Microtome (ATUM) Scanning Electron Microscopy (SEM). Our results exposed a short (~15 µm) basal cytoplasmic process devoid of secretory vesicles. Volume rendering of serial sections unveiled several thin cytospinules (~1 µm). These cytospinules project from the tuft cell into the nuclei of neighboring epithelial cells. Volume rendering also revealed within the tuft cell an elegant network of interconnected tubules. The network forms a passage from the base of the microvilli to the rough endoplasmic reticulum. Based on their location and microanatomy, the tuft cells’ cytospinules, and tubular network, might facilitate the exchange of molecular cargo with nuclei of neighboring cells, and the gut lumen.
Collapse
Affiliation(s)
- Ben Hoover
- School of Medicine, Duke University, Durham, NC, USA
| | - Valentina Baena
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, USA
| | | | - Feven Getaneh
- School of Medicine, Duke University, Durham, NC, USA
| | | | - Diego V Bohórquez
- Department of Medicine, Duke University, Durham, NC, USA. .,Department of Neurobiology, Duke University, Durham, NC, USA.
| |
Collapse
|
160
|
Enyedi B, Niethammer P. Nuclear membrane stretch and its role in mechanotransduction. Nucleus 2017; 8:156-161. [PMID: 28112995 PMCID: PMC5403133 DOI: 10.1080/19491034.2016.1263411] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 11/13/2016] [Accepted: 11/17/2016] [Indexed: 10/20/2022] Open
Abstract
Most research in nuclear mechanotransduction has focused on the nuclear lamina and lamin binding proteins. These structures provide mechanical stability to the nucleus, establish a link between the cytoskeleton and chromatin, and can transmit mechanical signals. At the same time, mechanical perturbations to the nucleus also affect its phospholipid membranes. In this commentary, we discuss how changes in nuclear membrane tension can mediate mechanotransduction.
Collapse
Affiliation(s)
- Balázs Enyedi
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Philipp Niethammer
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
161
|
Reconstitution of the tubular endoplasmic reticulum network with purified components. Nature 2017; 543:257-260. [PMID: 28225760 PMCID: PMC5853125 DOI: 10.1038/nature21387] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/10/2017] [Indexed: 12/22/2022]
Abstract
Organelles display characteristic morphologies that are intimately tied to their cellular function, but how organelles are shaped is poorly understood. The endoplasmic reticulum (ER) is particularly intriguing, as it is comprised of morphologically distinct domains, including a dynamic network of interconnected membrane tubules. Several membrane proteins have been implicated in network formation1–5, but how exactly they mediate network formation and whether they are all required is unclear. Here, we have reconstituted a dynamic tubular membrane network with purified ER proteins. Proteoliposomes containing the membrane-fusing GTPase Sey1p6,7 and the curvature-stabilizing protein Yop1p8,9 from Saccharomyces cerevisiae form a tubular network upon GTP addition. The tubules rapidly fragment when GTP hydrolysis of Sey1p is inhibited, indicating that network maintenance requires continuous membrane fusion and that Yop1p favors the generation of highly curved membrane structures. Sey1p also forms networks with other curvature-stabilizing proteins, including reticulon8 and REEP10 proteins from different species. Atlastin, the vertebrate ortholog of Sey1p6,11, forms a GTP-hydrolysis dependent network on its own, serving as both a fusion and curvature-stabilizing protein. Our results show that organelle shape can be generated by a surprisingly small set of proteins and represents an energy-dependent steady state between formation and disassembly.
Collapse
|
162
|
Curchoe CL, Manor U. Actin Cytoskeleton-Mediated Constriction of Membrane Organelles via Endoplasmic Reticulum Scaffolding. ACS Biomater Sci Eng 2017; 3:2727-2732. [PMID: 29250592 DOI: 10.1021/acsbiomaterials.6b00802] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Intracellular organelles constantly undergo fission to facilitate turnover, transport, and functional changes. The cytoskeleton has long been understood to play a role in these events, and recent work strongly suggests that several conserved molecular players cooperate with the cytoskeleton to mediate the fission process. Membrane curvature-inducing, membrane scission proteins, and force-inducing cytoskeletal proteins all cooperate to drive the fission process. Recent work suggests that the endoplasmic reticulum serves as the linchpin that orchestrates and spatially organizes fission via these curvature-inducing, scission, and force-producing molecules. This all leads us to postulate a "universal theory" of organelle fission with distinct biophysical and biochemical features mediated by a finite number of physical and molecular constraints. This new physical paradigm deserves special attention from those who wish to model these processes, since previous theoretical and experimental attempts to elucidate these fission mechanisms have not included the organizing factor of the endoplasmic reticulum. Here we review the basic concepts of this new model for organelle fission, and explore the implications thereof. Previous studies that didn't include this component can now be interpreted in light of these new data and serve as a useful guide for understanding how this process happens in vivo. Thus, this review provides direction for future modeling and experimental efforts to better understand how these complex systems and processes are regulated in both healthy and diseased biological systems.
Collapse
Affiliation(s)
- Carol Lynn Curchoe
- Waitt Advanced Biophotonics Center, The Salk Institute for Biological Studies, 10010 N Torrey Pines Rd., La Jolla, CA 92037
| | - Uri Manor
- Waitt Advanced Biophotonics Center, The Salk Institute for Biological Studies, 10010 N Torrey Pines Rd., La Jolla, CA 92037
| |
Collapse
|
163
|
Organelle Communication at Membrane Contact Sites (MCS): From Curiosity to Center Stage in Cell Biology and Biomedical Research. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 997:1-12. [DOI: 10.1007/978-981-10-4567-7_1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
164
|
Abstract
The most widely accepted hypothesis to explain the pathogenesis of Alzheimer disease (AD) is the amyloid cascade, in which the accumulation of extraneuritic plaques and intracellular tangles plays a key role in driving the course and progression of the disease. However, there are other biochemical and morphological features of AD, including altered calcium, phospholipid, and cholesterol metabolism and altered mitochondrial dynamics and function that often appear early in the course of the disease, prior to plaque and tangle accumulation. Interestingly, these other functions are associated with a subdomain of the endoplasmic reticulum (ER) called mitochondria-associated ER membranes (MAM). MAM, which is an intracellular lipid raft-like domain, is closely apposed to mitochondria, both physically and biochemically. These MAM-localized functions are, in fact, increased significantly in various cellular and animal models of AD and in cells from AD patients, which could help explain the biochemical and morphological alterations seen in the disease. Based on these and other observations, a strong argument can be made that increased ER-mitochondria connectivity and increased MAM function are fundamental to AD pathogenesis.
Collapse
|
165
|
Cellular Reorganization during Mitotic Entry. Trends Cell Biol 2017; 27:26-41. [DOI: 10.1016/j.tcb.2016.07.004] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 07/14/2016] [Accepted: 07/18/2016] [Indexed: 12/27/2022]
|
166
|
Bone LN, Dayam RM, Lee M, Kono N, Fairn GD, Arai H, Botelho RJ, Antonescu CN. The acyltransferase LYCAT controls specific phosphoinositides and related membrane traffic. Mol Biol Cell 2016; 28:161-172. [PMID: 28035047 PMCID: PMC5221620 DOI: 10.1091/mbc.e16-09-0668] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 10/24/2016] [Accepted: 11/01/2016] [Indexed: 11/18/2022] Open
Abstract
Phosphoinositides (PIPs) control membrane traffic. PIPs have an acyl profile unique among phospholipids. The acyltransferase LYCAT localizes to phosphatidylinositol synthase vesicles, selectively regulates levels and locale of PIPs, and controls related membrane traffic, indicating that dynamic acyl remodeling selectively controls certain PIPs. Phosphoinositides (PIPs) are key regulators of membrane traffic and signaling. The interconversion of PIPs by lipid kinases and phosphatases regulates their functionality. Phosphatidylinositol (PI) and PIPs have a unique enrichment of 1-stearoyl-2-arachidonyl acyl species; however, the regulation and function of this specific acyl profile remains poorly understood. We examined the role of the PI acyltransferase LYCAT in control of PIPs and PIP-dependent membrane traffic. LYCAT silencing selectively perturbed the levels and localization of phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2] and phosphatidylinositol-3-phosphate and the membrane traffic dependent on these specific PIPs but was without effect on phosphatidylinositol-4-phosphate or biosynthetic membrane traffic. The acyl profile of PI(4,5)P2 was selectively altered in LYCAT-deficient cells, whereas LYCAT localized with phosphatidylinositol synthase. We propose that LYCAT remodels the acyl chains of PI, which is then channeled into PI(4,5)P2. Our observations suggest that the PIP acyl chain profile may exert broad control of cell physiology.
Collapse
Affiliation(s)
- Leslie N Bone
- Department of Chemistry and Biology, Ryerson University, Toronto, ON M5B 2K3, Canada.,Graduate Program in Molecular Science, Ryerson University, Toronto, ON M5B 2K3, Canada
| | - Roya M Dayam
- Department of Chemistry and Biology, Ryerson University, Toronto, ON M5B 2K3, Canada.,Graduate Program in Molecular Science, Ryerson University, Toronto, ON M5B 2K3, Canada
| | - Minhyoung Lee
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Nozomu Kono
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan
| | - Gregory D Fairn
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada.,Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, ON M5B 1W8, Canada
| | - Hiroyuki Arai
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan.,Japan Agency for Medical Research and Development-Core Research for Evolutionary Science and Technology, Tokyo 113-0033, Japan
| | - Roberto J Botelho
- Department of Chemistry and Biology, Ryerson University, Toronto, ON M5B 2K3, Canada .,Graduate Program in Molecular Science, Ryerson University, Toronto, ON M5B 2K3, Canada
| | - Costin N Antonescu
- Department of Chemistry and Biology, Ryerson University, Toronto, ON M5B 2K3, Canada .,Graduate Program in Molecular Science, Ryerson University, Toronto, ON M5B 2K3, Canada.,Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, ON M5B 1W8, Canada
| |
Collapse
|
167
|
Santos JC, Enninga J. At the crossroads: communication of bacteria-containing vacuoles with host organelles. Cell Microbiol 2016; 18:330-9. [PMID: 26762760 DOI: 10.1111/cmi.12567] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 01/08/2016] [Accepted: 01/12/2016] [Indexed: 02/06/2023]
Abstract
Invasive bacterial pathogens are engulfed upon host cell entry in a vacuolar environment called the bacteria-containing vacuole (BCV). BCVs directly contact with numerous host compartments, mainly vesicles of the endocytic pathway, such as endosomes or lysosomes. In addition, they also interact with the endoplasmic reticulum and endomembranes of the secretory pathway. These connections between the pathogen and the host occur either through heterotypic membrane fusions or through membrane contact sites. The precise regulation of BCV contacts with host compartments defines the constitution of the intracellular bacterial niche. It emerges that the associated pathways may control the stability of the BCV resulting either in vacuolar or cytoplasmically growing bacteria. Here, we will portray how the usage of novel proteomics and imaging technologies allows comparison of the communication of different host cell compartments with four relevant intracellular human pathogens, namely Salmonella enterica, Legionella pneumophila, Shigella flexneri and Francisella tularensis. The first two remain mainly within the BCV, and the latter two escape into the cytoplasm.
Collapse
Affiliation(s)
- José Carlos Santos
- Unit "Dynamics of Host-Pathogen Interactions", Institut Pasteur, Paris, France
| | - Jost Enninga
- Unit "Dynamics of Host-Pathogen Interactions", Institut Pasteur, Paris, France
| |
Collapse
|
168
|
Li X, Kang Y, Jiao B, Xia M, Wu Y, Sun L. Autophagy eliminates ER membrane reorganization induced by Bcl-2 inhibitor in HeLa cells. Oncol Rep 2016; 36:3353-3362. [DOI: 10.3892/or.2016.5209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 08/04/2016] [Indexed: 11/06/2022] Open
|
169
|
Laurinyecz B, Péter M, Vedelek V, Kovács AL, Juhász G, Maróy P, Vígh L, Balogh G, Sinka R. Reduced expression of CDP-DAG synthase changes lipid composition and leads to male sterility in Drosophila. Open Biol 2016; 6:50169. [PMID: 26791243 PMCID: PMC4736822 DOI: 10.1098/rsob.150169] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Drosophila spermatogenesis is an ideal system to study the effects of changes in lipid composition, because spermatid elongation and individualization requires extensive membrane biosynthesis and remodelling. The bulk of transcriptional activity is completed with the entry of cysts into meiotic division, which makes post-meiotic stages of spermatogenesis very sensitive to even a small reduction in gene products. In this study, we describe the effect of changes in lipid composition during spermatogenesis using a hypomorphic male sterile allele of the Drosophila CDP-DAG synthase (CdsA) gene. We find that the CdsA mutant shows defects in spermatid individualization and enlargement of mitochondria and the axonemal sheath of the spermatids. Furthermore, we could genetically rescue the male sterile phenotype by overexpressing Phosphatidylinositol synthase (dPIS) in a CdsA mutant background. The results of lipidomic and genetic analyses of the CdsA mutant highlight the importance of correct lipid composition during sperm development and show that phosphatidic acid levels are crucial in late stages of spermatogenesis.
Collapse
Affiliation(s)
| | - Mária Péter
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Viktor Vedelek
- Department of Genetics, University of Szeged, Szeged, Hungary
| | - Attila L Kovács
- Department of Anatomy, Eötvös Loránd University, Budapest, Hungary
| | - Gábor Juhász
- Department of Anatomy, Eötvös Loránd University, Budapest, Hungary
| | - Péter Maróy
- Department of Genetics, University of Szeged, Szeged, Hungary
| | - László Vígh
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Gábor Balogh
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Rita Sinka
- Department of Genetics, University of Szeged, Szeged, Hungary
| |
Collapse
|
170
|
Moore AS, Wong YC, Simpson CL, Holzbaur ELF. Dynamic actin cycling through mitochondrial subpopulations locally regulates the fission-fusion balance within mitochondrial networks. Nat Commun 2016; 7:12886. [PMID: 27686185 PMCID: PMC5056443 DOI: 10.1038/ncomms12886] [Citation(s) in RCA: 175] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 08/12/2016] [Indexed: 01/07/2023] Open
Abstract
Mitochondria form interconnected networks that dynamically remodel in response to cellular needs. Using live-cell imaging, we investigate the role of the actin cytoskeleton in regulating mitochondrial fission and fusion. We identify cycling of actin filaments onto and off of subsets of cellular mitochondria. The association of actin filaments with mitochondrial subpopulations is transient; actin quickly disassembles, then reassembles around a distinct subpopulation, efficiently cycling through all cellular mitochondria within 14 min. The focal assembly of actin induces local, Drp1-dependent fragmentation of the mitochondrial network. On actin disassembly, fragmented mitochondria undergo rapid fusion, leading to regional recovery of the tubular mitochondrial network. Cycling requires dynamic actin polymerization and is blocked by inhibitors of both Arp2/3 and formins. We propose that cyclic assembly of actin onto mitochondria modulates the fission/fusion balance, promotes network remodelling and content mixing, and thus may serve as an essential mechanism regulating mitochondrial network homeostasis. Mitochondria are dynamic organelles that can undergo fission and fusion. Here the authors identify a novel pathway in which actin dynamically assembles in an Arp2/3- and formin-dependent manner around a subset of cellular mitochondria, promoting localized Drp1-dependent fission and impeding fusion.
Collapse
Affiliation(s)
- Andrew S Moore
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, 638A Clinical Research Building, 415 Curie Boulevard, Philadelphia, Pennsylvania 19104, USA
| | - Yvette C Wong
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, 638A Clinical Research Building, 415 Curie Boulevard, Philadelphia, Pennsylvania 19104, USA
| | - Cory L Simpson
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, 638A Clinical Research Building, 415 Curie Boulevard, Philadelphia, Pennsylvania 19104, USA.,Department of Dermatology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Erika L F Holzbaur
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, 638A Clinical Research Building, 415 Curie Boulevard, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
171
|
Wang S, Tukachinsky H, Romano FB, Rapoport TA. Cooperation of the ER-shaping proteins atlastin, lunapark, and reticulons to generate a tubular membrane network. eLife 2016; 5. [PMID: 27619977 PMCID: PMC5021524 DOI: 10.7554/elife.18605] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 07/28/2016] [Indexed: 12/29/2022] Open
Abstract
In higher eukaryotes, the endoplasmic reticulum (ER) contains a network of membrane tubules, which transitions into sheets during mitosis. Network formation involves curvature-stabilizing proteins, including the reticulons (Rtns), as well as the membrane-fusing GTPase atlastin (ATL) and the lunapark protein (Lnp). Here, we have analyzed how these proteins cooperate. ATL is needed to not only form, but also maintain, the ER network. Maintenance requires a balance between ATL and Rtn, as too little ATL activity or too high Rtn4a concentrations cause ER fragmentation. Lnp only affects the abundance of three-way junctions and tubules. We suggest a model in which ATL-mediated fusion counteracts the instability of free tubule ends. ATL tethers and fuses tubules stabilized by the Rtns, and transiently sits in newly formed three-way junctions. Lnp subsequently moves into the junctional sheets and forms oligomers. Lnp is inactivated by mitotic phosphorylation, which contributes to the tubule-to-sheet conversion of the ER.
Collapse
Affiliation(s)
- Songyu Wang
- Howard Hughes Medical Institute, Harvard Medical School, Boston, United States.,Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Hanna Tukachinsky
- Howard Hughes Medical Institute, Harvard Medical School, Boston, United States.,Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Fabian B Romano
- Howard Hughes Medical Institute, Harvard Medical School, Boston, United States.,Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Tom A Rapoport
- Howard Hughes Medical Institute, Harvard Medical School, Boston, United States.,Department of Cell Biology, Harvard Medical School, Boston, United States
| |
Collapse
|
172
|
Lee ZY, Prouteau M, Gotta M, Barral Y. Compartmentalization of the endoplasmic reticulum in the early C. elegans embryos. J Cell Biol 2016; 214:665-76. [PMID: 27597753 PMCID: PMC5021094 DOI: 10.1083/jcb.201601047] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 08/01/2016] [Indexed: 11/22/2022] Open
Abstract
Lee et al. show that the ER in the C. elegans embryo is continuous, but its membrane is compartmentalized, as found in budding yeast and mouse NSCs. This compartmentalization plays a potential role in the polarity of the early embryo. The one-cell Caenorhabditis elegans embryo is polarized to partition fate determinants between the cell lineages generated during its first division. Using fluorescence loss in photobleaching, we find that the endoplasmic reticulum (ER) of the C. elegans embryo is physically continuous throughout the cell, but its membrane is compartmentalized shortly before nuclear envelope breakdown into an anterior and a posterior domain, indicating that a diffusion barrier forms in the ER membrane between these two domains. Using mutants with disorganized ER, we show that ER compartmentalization is independent of the morphological transition that the ER undergoes in mitosis. In contrast, compartmentalization takes place at the position of the future cleavage plane in a par-3–dependent manner. Together, our data indicate that the ER membrane is compartmentalized in cells as diverse as budding yeast, mouse neural stem cells, and the early C. elegans embryo.
Collapse
Affiliation(s)
- Zuo Yen Lee
- Department of Biology, Institute of Biochemistry, Swiss Federal Institute of Technology Zürich, CH-8093 Zürich, Switzerland
| | - Manoël Prouteau
- Department of Cell Physiology and Metabolism, University of Geneva Medical School, CH-1211 Geneva, Switzerland
| | - Monica Gotta
- Department of Cell Physiology and Metabolism, University of Geneva Medical School, CH-1211 Geneva, Switzerland
| | - Yves Barral
- Department of Biology, Institute of Biochemistry, Swiss Federal Institute of Technology Zürich, CH-8093 Zürich, Switzerland
| |
Collapse
|
173
|
Sharoar MG, Shi Q, Ge Y, He W, Hu X, Perry G, Zhu X, Yan R. Dysfunctional tubular endoplasmic reticulum constitutes a pathological feature of Alzheimer's disease. Mol Psychiatry 2016; 21:1263-71. [PMID: 26619807 PMCID: PMC4887420 DOI: 10.1038/mp.2015.181] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 09/11/2015] [Accepted: 09/24/2015] [Indexed: 12/27/2022]
Abstract
Pathological features in Alzheimer's brains include mitochondrial dysfunction and dystrophic neurites (DNs) in areas surrounding amyloid plaques. Using a mouse model that overexpresses reticulon 3 (RTN3) and spontaneously develops age-dependent hippocampal DNs, here we report that DNs contain both RTN3 and REEPs, topologically similar proteins that can shape tubular endoplasmic reticulum (ER). Importantly, ultrastructural examinations of such DNs revealed gradual accumulation of tubular ER in axonal termini, and such abnormal tubular ER inclusion is found in areas surrounding amyloid plaques in biopsy samples from Alzheimer's disease (AD) brains. Functionally, abnormally clustered tubular ER induces enhanced mitochondrial fission in the early stages of DN formation and eventual mitochondrial degeneration at later stages. Furthermore, such DNs are abrogated when RTN3 is ablated in aging and AD mouse models. Hence, abnormally clustered tubular ER can be pathogenic in brain regions: disrupting mitochondrial integrity, inducing DNs formation and impairing cognitive function in AD and aging brains.
Collapse
Affiliation(s)
- Md. Golam Sharoar
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Qi Shi
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Yingying Ge
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Wanxia He
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Xiangyou Hu
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - George Perry
- The University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249
| | - Xiongwei Zhu
- Department of Pathology, Case Western University School of Medicine, Cleveland, OH
| | - Riqiang Yan
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| |
Collapse
|
174
|
Hatakeyama J, Wald JH, Rafidi H, Cuevas A, Sweeney C, Carraway KL. The ER structural protein Rtn4A stabilizes and enhances signaling through the receptor tyrosine kinase ErbB3. Sci Signal 2016; 9:ra65. [PMID: 27353365 DOI: 10.1126/scisignal.aaf1604] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
ErbB3 and ErbB4 are receptor tyrosine kinases that are activated by the neuregulin (NRG) family of growth factors. These receptors govern various developmental processes, and their dysregulation contributes to several human disease states. The abundance of ErbB3 and ErbB4, and thus signaling through these receptors, is limited by the E3 ubiquitin ligase Nrdp1, which targets ErbB3 and ErbB4 for degradation. Reticulons are proteins that influence the morphology of the endoplasmic reticulum (ER) by promoting the formation of tubules, a response of cells to some stressors. We found that the ER structural protein reticulon 4A (Rtn4A, also known as Nogo-A) increased ErbB3 abundance and proliferative signaling by suppressing Nrdp1 function. Rtn4A interacted with Nrdp1 and stabilized ErbB3 in an Nrdp1-dependent manner. Rtn4A overexpression induced the redistribution of Nrdp1 from a cytosolic or perinuclear localization to ER tubules. Rtn4A knockdown in human breast tumor cells decreased ErbB3 abundance, NRG-stimulated signaling, and cellular proliferation and migration. Because proteins destined for the plasma membrane are primarily synthesized in the sheet portions of the ER, our observations suggest that Rtn4A counteracts the Nrdp1-mediated degradation of ErbB3 by sequestering the ubiquitin ligase into ER tubules. The involvement of a reticulon suggests a molecular link between ER structure and the sensitivity of cells to receptor tyrosine kinase-mediated survival signals at the cell surface.
Collapse
Affiliation(s)
- Jason Hatakeyama
- Department of Biochemistry and Molecular Medicine, and UC Davis Comprehensive Cancer Center, UC Davis School of Medicine, Sacramento, CA 95817, USA
| | - Jessica H Wald
- Department of Biochemistry and Molecular Medicine, and UC Davis Comprehensive Cancer Center, UC Davis School of Medicine, Sacramento, CA 95817, USA
| | - Hanine Rafidi
- Department of Biochemistry and Molecular Medicine, and UC Davis Comprehensive Cancer Center, UC Davis School of Medicine, Sacramento, CA 95817, USA
| | - Antonio Cuevas
- Department of Biochemistry and Molecular Medicine, and UC Davis Comprehensive Cancer Center, UC Davis School of Medicine, Sacramento, CA 95817, USA
| | - Colleen Sweeney
- Department of Biochemistry and Molecular Medicine, and UC Davis Comprehensive Cancer Center, UC Davis School of Medicine, Sacramento, CA 95817, USA
| | - Kermit L Carraway
- Department of Biochemistry and Molecular Medicine, and UC Davis Comprehensive Cancer Center, UC Davis School of Medicine, Sacramento, CA 95817, USA.
| |
Collapse
|
175
|
Asymmetric partitioning of transfected DNA during mammalian cell division. Proc Natl Acad Sci U S A 2016; 113:7177-82. [PMID: 27298340 DOI: 10.1073/pnas.1606091113] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Foreign DNA molecules and chromosomal fragments are generally eliminated from proliferating cells, but we know little about how mammalian cells prevent their propagation. Here, we show that dividing human and canine cells partition transfected plasmid DNA asymmetrically, preferentially into the daughter cell harboring the young centrosome. Independently of how they entered the cell, most plasmids clustered in the cytoplasm. Unlike polystyrene beads of similar size, these clusters remained relatively immobile and physically associated to endoplasmic reticulum-derived membranes, as revealed by live cell and electron microscopy imaging. At entry of mitosis, most clusters localized near the centrosomes. As the two centrosomes split to assemble the bipolar spindle, predominantly the old centrosome migrated away, biasing the partition of the plasmid cluster toward the young centrosome. Down-regulation of the centrosomal proteins Ninein and adenomatous polyposis coli abolished this bias. Thus, we suggest that DNA clustering, cluster immobilization through association to the endoplasmic reticulum membrane, initial proximity between the cluster and centrosomes, and subsequent differential behavior of the two centrosomes together bias the partition of plasmid DNA during mitosis. This process leads to their progressive elimination from the proliferating population and might apply to any kind of foreign DNA molecule in mammalian cells. Furthermore, the functional difference of the centrosomes might also promote the asymmetric partitioning of other cellular components in other mammalian and possibly stem cells.
Collapse
|
176
|
Epand RM. Features of the Phosphatidylinositol Cycle and its Role in Signal Transduction. J Membr Biol 2016; 250:353-366. [PMID: 27278236 DOI: 10.1007/s00232-016-9909-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 05/26/2016] [Indexed: 01/03/2023]
Abstract
The phosphatidylinositol cycle (PI-cycle) has a central role in cell signaling. It is the major pathway for the synthesis of phosphatidylinositol and its phosphorylated forms. In addition, some lipid intermediates of the PI-cycle, including diacylglycerol and phosphatidic acid, are also important lipid signaling agents. The PI-cycle has some features that are important for the understanding of its role in the cell. As a cycle, the intermediates will be regenerated. The PI-cycle requires a large amount of metabolic energy. There are different steps of the cycle that occur in two different membranes, the plasma membrane and the endoplasmic reticulum. In order to complete the PI-cycle lipid must be transferred between the two membranes. The role of the Nir proteins in the process has recently been elucidated. The lipid intermediates of the PI-cycle are normally highly enriched with 1-stearoyl-2-arachidonoyl molecular species in mammals. This enrichment will be retained as long as the intermediates are segregated from other lipids of the cell. However, there is a significant fraction (>15 %) of lipids in the PI-cycle of normal cells that have other acyl chains. Phosphatidylinositol largely devoid of arachidonoyl chains are found in cancer cells. Phosphatidylinositol species with less unsaturation will not be as readily converted to phosphatidylinositol-3,4,5-trisphosphate, the lipid required for the activation of Akt with resulting effects on cell proliferation. Thus, the cyclical nature of the PI-cycle, its dependence on acyl chain composition and its requirement for lipid transfer between two membranes, explain many of the biological properties of this cycle.
Collapse
Affiliation(s)
- Richard M Epand
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada.
| |
Collapse
|
177
|
Endoplasmic Reticulum: The Favorite Intracellular Niche for Viral Replication and Assembly. Viruses 2016; 8:v8060160. [PMID: 27338443 PMCID: PMC4926180 DOI: 10.3390/v8060160] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 05/23/2016] [Accepted: 05/26/2016] [Indexed: 02/07/2023] Open
Abstract
The endoplasmic reticulum (ER) is the largest intracellular organelle. It forms a complex network of continuous sheets and tubules, extending from the nuclear envelope (NE) to the plasma membrane. This network is frequently perturbed by positive-strand RNA viruses utilizing the ER to create membranous replication factories (RFs), where amplification of their genomes occurs. In addition, many enveloped viruses assemble progeny virions in association with ER membranes, and viruses replicating in the nucleus need to overcome the NE barrier, requiring transient changes of the NE morphology. This review first summarizes some key aspects of ER morphology and then focuses on the exploitation of the ER by viruses for the sake of promoting the different steps of their replication cycles.
Collapse
|
178
|
Abstract
PURPOSE OF REVIEW In this article, we summarize the present information related to the export of LDL-derived cholesterol from late endosomes, with a focus on Nieman-Pick disease, type C1 (NPC1) cholesterol delivery toward the endoplasmic reticulum (ER). We review data suggesting that several pathways may operate in parallel, including membrane transport routes and membrane contact sites (MCSs). RECENT FINDINGS There is increasing appreciation that MCSs provide an important mechanism for intermembrane lipid transfer. In late endosome-ER contacts, three protein bridges involving oxysterol binding protein related protein (ORP)1L-vesicle associated membrane protein-associated protein (VAP), steroidogenic acute regulatory protein (StAR)D3-VAP and ORP5-NPC1 proteins have been reported. How much they contribute to the flux of LDL-cholesterol to the ER is currently open. Studies for lipid transfer via MCSs have been most advanced in Saccharomyces cerevisiae. Recently, a new sterol-binding protein family conserved between yeast and man was identified. Its members localize at MCSs and were named lipid transfer protein anchored at membrane contact sites (Lam) proteins. In yeast, sterol transfer between the ER and the yeast lysosome may be facilitated by a Lam protein. SUMMARY Increasing insights into the role of MCSs in directional sterol delivery between membranes propose that they might provide routes for LDL-cholesterol transfer to the ER. Future work should reveal which specific contacts may operate for this, and how they are controlled by cholesterol homeostatic machineries.
Collapse
Affiliation(s)
- Simon G Pfisterer
- Department of Anatomy and Research Programs Unit, Faculty of Medicine, University of Helsinki, Finland and Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | | | | |
Collapse
|
179
|
Affiliation(s)
- Katsuki Eto
- a Department of Biofunctional Science and Technology , Graduate School of Biosphere Science, Hiroshima University , Hiroshima , Japan
| | - Hiroto Denda
- a Department of Biofunctional Science and Technology , Graduate School of Biosphere Science, Hiroshima University , Hiroshima , Japan
| | - Kouichi Funato
- a Department of Biofunctional Science and Technology , Graduate School of Biosphere Science, Hiroshima University , Hiroshima , Japan
| |
Collapse
|
180
|
Hua R, Kim PK. Multiple paths to peroxisomes: Mechanism of peroxisome maintenance in mammals. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:881-91. [DOI: 10.1016/j.bbamcr.2015.09.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 09/18/2015] [Accepted: 09/21/2015] [Indexed: 12/19/2022]
|
181
|
Somerharju P. Is Spontaneous Translocation of Polar Lipids Between Cellular Organelles Negligible? Lipid Insights 2016; 8:87-93. [PMID: 27147824 PMCID: PMC4849424 DOI: 10.4137/lpi.s31616] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 02/21/2016] [Accepted: 02/22/2016] [Indexed: 01/23/2023] Open
Abstract
In most reviews addressing intracellular lipid trafficking, spontaneous diffusion of lipid monomers between the cellular organelles is considered biologically irrelevant because it is thought to be far too slow to significantly contribute to organelle biogenesis. This view is based on intervesicle transfer experiments carried out in vitro with few lipids as well as on the view that lipids are highly hydrophobic and thus cannot undergo spontaneous intermembrane diffusion at a significant rate. However, besides that single-chain lipids can translocate between vesicles in seconds, it has been demonstrated that the rate of spontaneous transfer of two-chain polar lipids can vary even 1000-fold, depending on the number of carbons and double bonds in the acyl chains. In addition, the rate of spontaneous lipid transfer can strongly depend on the experimental conditions such as vesicle composition and concentration. This review examines the studies suggesting that spontaneous lipid transfer is probably more relevant to intracellular trafficking of amphipathic lipids than commonly thought.
Collapse
Affiliation(s)
- Pentti Somerharju
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
182
|
Jaross W. Are Molecular Vibration Patterns of Cell Structural Elements Used for Intracellular Signalling? Open Biochem J 2016; 10:12-6. [PMID: 27073582 PMCID: PMC4807408 DOI: 10.2174/1874091x01610010012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 09/04/2015] [Accepted: 09/22/2015] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND To date the manner in which information reaches the nucleus on that part within the three-dimensional structure where specific restorative processes of structural components of the cell are required is unknown. The soluble signalling molecules generated in the course of destructive and restorative processes communicate only as needed. HYPOTHESIS All molecules show temperature-dependent molecular vibration creating a radiation in the infrared region. Each molecule species has in its turn a specific frequency pattern under given specific conditions. Changes in their structural composition result in modified frequency patterns of the molecules in question. The main structural elements of the cell membrane, of the endoplasmic reticulum, of the Golgi apparatus, and of the different microsomes representing the great variety of polar lipids show characteristic frequency patterns with peaks in the region characterised by low water absorption. These structural elements are very dynamic, mainly caused by the creation of signal molecules and transport containers. By means of the characteristic radiation, the area where repair or substitution services are needed could be identified; this spatial information complements the signalling of the soluble signal molecules. Based on their resonance properties receptors located on the outer leaflet of the nuclear envelope should be able to read typical frequencies and pass them into the nucleus. Clearly this physical signalling must be blocked by the cell membrane to obviate the flow of information into adjacent cells. CONCLUSION If the hypothesis can be proved experimentally, it should be possible to identify and verify characteristic infrared frequency patterns. The application of these signal frequencies onto cells would open entirely new possibilities in medicine and all biological disciplines specifically to influence cell growth and metabolism. Similar to this intracellular system, an extracellular signalling system with many new therapeutic options has to be discussed.
Collapse
Affiliation(s)
- Werner Jaross
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| |
Collapse
|
183
|
Hariri H, Ugrankar R, Liu Y, Henne WM. Inter-organelle ER-endolysosomal contact sites in metabolism and disease across evolution. Commun Integr Biol 2016; 9:e1156278. [PMID: 27489577 PMCID: PMC4951168 DOI: 10.1080/19420889.2016.1156278] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 02/13/2016] [Indexed: 12/29/2022] Open
Abstract
Since their initial observation, contact sites formed between different organelles have transitioned from ignored curiosities to recognized centers for the exchange of metabolites and lipids. Contact formed between the ER and endomembrane system (eg. the plasma membrane, endosomes, and lysosomes) is of particular biomedical interest, as it governs aspects of lipid metabolism, organelle identity, and cell signaling. Here, we review the field of ER-endolysosomal communication from the perspective of three model systems: budding yeast, the fruit fly D. melanogaster, and mammals. From this broad perspective, inter-organelle communication displays a consistent role in metabolic regulation that was differentially tuned during the development of complex metazoan life. We also examine the current state of understanding of lipid exchange between organelles, and discuss molecular mechanisms by which this occurs.
Collapse
Affiliation(s)
- Hanaa Hariri
- Department of Cell Biology, UT Southwestern Medical Center , Dallas, TX, USA
| | - Rupali Ugrankar
- Department of Cell Biology, UT Southwestern Medical Center , Dallas, TX, USA
| | - Yang Liu
- Department of Cell Biology, UT Southwestern Medical Center , Dallas, TX, USA
| | - W Mike Henne
- Department of Cell Biology, UT Southwestern Medical Center , Dallas, TX, USA
| |
Collapse
|
184
|
Sidik SM, Hortua Triana MA, Paul AS, El Bakkouri M, Hackett CG, Tran F, Westwood NJ, Hui R, Zuercher WJ, Duraisingh MT, Moreno SNJ, Lourido S. Using a Genetically Encoded Sensor to Identify Inhibitors of Toxoplasma gondii Ca2+ Signaling. J Biol Chem 2016; 291:9566-80. [PMID: 26933036 PMCID: PMC4850295 DOI: 10.1074/jbc.m115.703546] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Indexed: 11/27/2022] Open
Abstract
The life cycles of apicomplexan parasites progress in accordance with fluxes in cytosolic Ca2+. Such fluxes are necessary for events like motility and egress from host cells. We used genetically encoded Ca2+ indicators (GCaMPs) to develop a cell-based phenotypic screen for compounds that modulate Ca2+ signaling in the model apicomplexan Toxoplasma gondii. In doing so, we took advantage of the phosphodiesterase inhibitor zaprinast, which we show acts in part through cGMP-dependent protein kinase (protein kinase G; PKG) to raise levels of cytosolic Ca2+. We define the pool of Ca2+ regulated by PKG to be a neutral store distinct from the endoplasmic reticulum. Screening a library of 823 ATP mimetics, we identify both inhibitors and enhancers of Ca2+ signaling. Two such compounds constitute novel PKG inhibitors and prevent zaprinast from increasing cytosolic Ca2+. The enhancers identified are capable of releasing intracellular Ca2+ stores independently of zaprinast or PKG. One of these enhancers blocks parasite egress and invasion and shows strong antiparasitic activity against T. gondii. The same compound inhibits invasion of the most lethal malaria parasite, Plasmodium falciparum. Inhibition of Ca2+-related phenotypes in these two apicomplexan parasites suggests that depletion of intracellular Ca2+ stores by the enhancer may be an effective antiparasitic strategy. These results establish a powerful new strategy for identifying compounds that modulate the essential parasite signaling pathways regulated by Ca2+, underscoring the importance of these pathways and the therapeutic potential of their inhibition.
Collapse
Affiliation(s)
- Saima M Sidik
- From the Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142
| | - Miryam A Hortua Triana
- the Center for Tropical and Emerging Global Diseases, Department of Cellular Biology, University of Georgia, Athens, Georgia 30602
| | - Aditya S Paul
- the Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115
| | - Majida El Bakkouri
- the Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Caroline G Hackett
- From the Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142
| | - Fanny Tran
- the School of Chemistry and Biomedical Sciences Research Complex, University of St. Andrews and EaStCHEM, North Haugh, St. Andrews, Fife KY16 9ST, Scotland, United Kingdom, and
| | - Nicholas J Westwood
- the School of Chemistry and Biomedical Sciences Research Complex, University of St. Andrews and EaStCHEM, North Haugh, St. Andrews, Fife KY16 9ST, Scotland, United Kingdom, and
| | - Raymond Hui
- the Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - William J Zuercher
- the Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Manoj T Duraisingh
- the Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115
| | - Silvia N J Moreno
- the Center for Tropical and Emerging Global Diseases, Department of Cellular Biology, University of Georgia, Athens, Georgia 30602
| | - Sebastian Lourido
- From the Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142,
| |
Collapse
|
185
|
Extended-Synaptotagmins (E-Syts); the extended story. Pharmacol Res 2016; 107:48-56. [PMID: 26926095 DOI: 10.1016/j.phrs.2016.01.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 01/24/2016] [Accepted: 01/24/2016] [Indexed: 12/29/2022]
Abstract
The Extended-Synaptotagmin (E-Syt) membrane proteins were only recently discovered, but have already been implicated in a range of interrelated cellular functions, including calcium and receptor signaling, and membrane lipid transport. However, despite their evolutionary conservation and detailed studies of their molecular actions, we still have little idea of how and when these proteins are required in cellular and organism physiology. Here we review our present understanding of the E-Syts and discuss the molecular functions and in vivo requirements for these proteins.
Collapse
|
186
|
Summerville JB, Faust JF, Fan E, Pendin D, Daga A, Formella J, Stern M, McNew JA. The effects of ER morphology on synaptic structure and function in Drosophila melanogaster. J Cell Sci 2016; 129:1635-48. [PMID: 26906425 DOI: 10.1242/jcs.184929] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/17/2016] [Indexed: 01/21/2023] Open
Abstract
Hereditary spastic paraplegia (HSP) is a set of genetic diseases caused by mutations in one of 72 genes that results in age-dependent corticospinal axon degeneration accompanied by spasticity and paralysis. Two genes implicated in HSPs encode proteins that regulate endoplasmic reticulum (ER) morphology. Atlastin 1 (ATL1, also known as SPG3A) encodes an ER membrane fusion GTPase and reticulon 2 (RTN2, also known as SPG12) helps shape ER tube formation. Here, we use a new fluorescent ER marker to show that the ER within wild-type Drosophila motor nerve terminals forms a network of tubules that is fragmented and made diffuse upon loss of the atlastin 1 ortholog atl. atl or Rtnl1 loss decreases evoked transmitter release and increases arborization. Similar to other HSP proteins, Atl inhibits bone morphogenetic protein (BMP) signaling, and loss of atl causes age-dependent locomotor deficits in adults. These results demonstrate a crucial role for ER in neuronal function, and identify mechanistic links between ER morphology, neuronal function, BMP signaling and adult behavior.
Collapse
Affiliation(s)
- James B Summerville
- Department of BioSciences, Program in Biochemistry and Cell Biology, Rice University, Houston, TX 77005, USA
| | - Joseph F Faust
- Department of BioSciences, Program in Biochemistry and Cell Biology, Rice University, Houston, TX 77005, USA
| | - Ethan Fan
- Department of BioSciences, Program in Biochemistry and Cell Biology, Rice University, Houston, TX 77005, USA
| | - Diana Pendin
- CNR, Neuroscience Institute, 35121 Padova, Italy
| | - Andrea Daga
- E. Medea Scientific Institute, 31015 Conegliano, Italy
| | - Joseph Formella
- Department of BioSciences, Program in Biochemistry and Cell Biology, Rice University, Houston, TX 77005, USA
| | - Michael Stern
- Department of BioSciences, Program in Biochemistry and Cell Biology, Rice University, Houston, TX 77005, USA
| | - James A McNew
- Department of BioSciences, Program in Biochemistry and Cell Biology, Rice University, Houston, TX 77005, USA
| |
Collapse
|
187
|
Schwarz DS, Blower MD. The endoplasmic reticulum: structure, function and response to cellular signaling. Cell Mol Life Sci 2016; 73:79-94. [PMID: 26433683 PMCID: PMC4700099 DOI: 10.1007/s00018-015-2052-6] [Citation(s) in RCA: 908] [Impact Index Per Article: 113.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 09/21/2015] [Accepted: 09/22/2015] [Indexed: 02/06/2023]
Abstract
The endoplasmic reticulum (ER) is a large, dynamic structure that serves many roles in the cell including calcium storage, protein synthesis and lipid metabolism. The diverse functions of the ER are performed by distinct domains; consisting of tubules, sheets and the nuclear envelope. Several proteins that contribute to the overall architecture and dynamics of the ER have been identified, but many questions remain as to how the ER changes shape in response to cellular cues, cell type, cell cycle state and during development of the organism. Here we discuss what is known about the dynamics of the ER, what questions remain, and how coordinated responses add to the layers of regulation in this dynamic organelle.
Collapse
Affiliation(s)
- Dianne S Schwarz
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- New England Biolabs, Ipswich, MA, 01938, USA
| | - Michael D Blower
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, 02114, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
188
|
Jahed Z, Soheilypour M, Peyro M, Mofrad MRK. The LINC and NPC relationship – it's complicated! J Cell Sci 2016; 129:3219-29. [DOI: 10.1242/jcs.184184] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
ABSTRACT
The genetic information of eukaryotic cells is enclosed within a double-layered nuclear envelope, which comprises an inner and outer nuclear membrane. Several transmembrane proteins locate to the nuclear envelope; however, only two integral protein complexes span the nuclear envelope and connect the inside of the nucleus to the cytoplasm. The nuclear pore complex (NPC) acts as a gateway for molecular exchange between the interior of the nucleus and the cytoplasm, whereas so-called LINC complexes physically link the nucleoskeleton and the cytoskeleton. In this Commentary, we will discuss recent studies that have established direct functional associations between these two complexes. The assembly of NPCs and their even distribution throughout the nuclear envelope is dependent on components of the LINC complex. Additionally, LINC complex formation is dependent on the successful localization of inner nuclear membrane components of LINC complexes and their transport through the NPC. Furthermore, the architecture of the nuclear envelope depends on both protein complexes. Finally, we will present recent evidence showing that LINC complexes can affect nucleo-cytoplasmic transport through the NPC, further highlighting the importance of understanding the associations of these essential complexes at the nuclear envelope.
Collapse
Affiliation(s)
- Zeinab Jahed
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, CA 94720, USA
| | - Mohammad Soheilypour
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, CA 94720, USA
| | - Mohaddeseh Peyro
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, CA 94720, USA
| | - Mohammad R. K. Mofrad
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
189
|
Santiana M, Takvorian PM, Altan-Bonnet N, Cali A. A Novel Fluorescent Labeling Method Enables Monitoring of Spatio-Temporal Dynamics of Developing Microsporidia. J Eukaryot Microbiol 2015; 63:318-25. [PMID: 26567000 DOI: 10.1111/jeu.12281] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 10/28/2015] [Accepted: 11/02/2015] [Indexed: 12/01/2022]
Abstract
The microsporidium, Anncaliia algerae (Brachiola algerae), is a eukaryotic obligate intracellular parasite first isolated from mosquitoes and is an important opportunistic human pathogen that can cause morbidity and mortality among immune-compromised individuals including patients with AIDS and those undergoing chemotherapy. There is little known about the Microsporidia-host cell interface in living host cells, due to current approaches being limited by the lack of fluorescent reporters for detecting the parasite lifecycle. Here, we have developed and applied novel vital fluorescent parasite labeling methodologies in conjunction with fluorescent protein-tagged reporters to track simultaneously the dynamics of both parasite and host cell specific components, including the secretory and endocytic trafficking pathways, during the entire infection time period. We have found dramatic changes in the dynamics of host secretory trafficking organelles during the course of infection. The Golgi compartment is gradually disassembled and regenerated into mini-Golgi structures in parallel with cellular microtubule depolymerization. Importantly, we find that Microsporidia progeny are associated with these de novo formed mini-Golgi structures. These host structures appear to create a membrane bound niche environment for parasite development. Our studies presented here provide novel imaging tools and methodologies that will facilitate in understanding the biology of microsporidial parasites in the living host.
Collapse
Affiliation(s)
- Marianita Santiana
- Federated Department of Biological Sciences, Rutgers University, Newark, New Jersey, 07102.,Laboratory of Host-Pathogen Dynamics, Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Peter M Takvorian
- Federated Department of Biological Sciences, Rutgers University, Newark, New Jersey, 07102
| | - Nihal Altan-Bonnet
- Laboratory of Host-Pathogen Dynamics, Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Ann Cali
- Federated Department of Biological Sciences, Rutgers University, Newark, New Jersey, 07102
| |
Collapse
|
190
|
Cholesterol Flux Is Required for Endosomal Progression of African Swine Fever Virions during the Initial Establishment of Infection. J Virol 2015; 90:1534-43. [PMID: 26608317 DOI: 10.1128/jvi.02694-15] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 11/16/2015] [Indexed: 12/30/2022] Open
Abstract
UNLABELLED African swine fever virus (ASFV) is a major threat for porcine production that has been slowly spreading in Eastern Europe since its first appearance in the Caucasus in 2007. ASFV enters the cell by endocytosis and gains access to the cytosol to start replication from late endosomes and multivesicular bodies. Cholesterol associated with low-density lipoproteins entering the cell by endocytosis also follows a trafficking pathway similar to that of ASFV. Here we show that cholesterol plays an essential role in the establishment of infection as the virus traffics through the endocytic pathway. In contrast to the case for other DNA viruses, such as vaccinia virus or adenovirus 5, cholesterol efflux from endosomes is required for ASFV release/entry to the cytosol. Accumulation of cholesterol in endosomes impairs fusion, resulting in retention of virions inside endosomes. ASFV also remodels intracellular cholesterol by increasing its cellular uptake and redistributes free cholesterol to viral replication sites. Our analysis reveals that ASFV manipulates cholesterol dynamics to ensure an appropriate lipid flux to establish productive infection. IMPORTANCE Since its appearance in the Caucasus in 2007, African swine fever (ASF) has been spreading westwards to neighboring European countries, threatening porcine production. Due to the lack of an effective vaccine, ASF control relies on early diagnosis and widespread culling of infected animals. We investigated early stages of ASFV infection to identify potential cellular targets for therapeutic intervention against ASF. The virus enters the cell by endocytosis, and soon thereafter, viral decapsidation occurs in the acid pH of late endosomes. We found that ASFV infection requires and reorganizes the cellular lipid cholesterol. ASFV requires cholesterol to exit the endosome to gain access to the cytoplasm to establish productive replication. Our results indicate that there is a differential requirement for cholesterol efflux for vaccinia virus or adenovirus 5 compared to ASFV.
Collapse
|
191
|
van Bergeijk P, Hoogenraad CC, Kapitein LC. Right Time, Right Place: Probing the Functions of Organelle Positioning. Trends Cell Biol 2015; 26:121-134. [PMID: 26541125 DOI: 10.1016/j.tcb.2015.10.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 09/30/2015] [Accepted: 10/01/2015] [Indexed: 10/22/2022]
Abstract
The proper spatial arrangement of organelles underlies many cellular processes including signaling, polarization, and growth. Despite the importance of local positioning, the precise connection between subcellular localization and organelle function is often not fully understood. To address this, recent studies have developed and employed different strategies to directly manipulate organelle distributions, such as the use of (light-sensitive) heterodimerization to control the interaction between selected organelles and specific motor proteins, adaptor molecules, or anchoring factors. We review here the importance of subcellular localization as well as tools to control local organelle positioning. Because these approaches allow spatiotemporal control of organelle distribution, they will be invaluable tools to unravel local functioning and the mechanisms that control positioning.
Collapse
Affiliation(s)
- Petra van Bergeijk
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Casper C Hoogenraad
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Lukas C Kapitein
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands.
| |
Collapse
|
192
|
Cobb MM, Austin DC, Sack JT, Trimmer JS. Cell Cycle-dependent Changes in Localization and Phosphorylation of the Plasma Membrane Kv2.1 K+ Channel Impact Endoplasmic Reticulum Membrane Contact Sites in COS-1 Cells. J Biol Chem 2015; 290:29189-201. [PMID: 26442584 DOI: 10.1074/jbc.m115.690198] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Indexed: 12/22/2022] Open
Abstract
The plasma membrane (PM) comprises distinct subcellular domains with diverse functions that need to be dynamically coordinated with intracellular events, one of the most impactful being mitosis. The Kv2.1 voltage-gated potassium channel is conditionally localized to large PM clusters that represent specialized PM:endoplasmic reticulum membrane contact sites (PM:ER MCS), and overexpression of Kv2.1 induces more exuberant PM:ER MCS in neurons and in certain heterologous cell types. Localization of Kv2.1 at these contact sites is dynamically regulated by changes in phosphorylation at one or more sites located on its large cytoplasmic C terminus. Here, we show that Kv2.1 expressed in COS-1 cells undergoes dramatic cell cycle-dependent changes in its PM localization, having diffuse localization in interphase cells, and robust clustering during M phase. The mitosis-specific clusters of Kv2.1 are localized to PM:ER MCS, and M phase clustering of Kv2.1 induces more extensive PM:ER MCS. These cell cycle-dependent changes in Kv2.1 localization and the induction of PM:ER MCS are accompanied by increased mitotic Kv2.1 phosphorylation at several C-terminal phosphorylation sites. Phosphorylation of exogenously expressed Kv2.1 is significantly increased upon metaphase arrest in COS-1 and CHO cells, and in a pancreatic β cell line that express endogenous Kv2.1. The M phase clustering of Kv2.1 at PM:ER MCS in COS-1 cells requires the same C-terminal targeting motif needed for conditional Kv2.1 clustering in neurons. The cell cycle-dependent changes in localization and phosphorylation of Kv2.1 were not accompanied by changes in the electrophysiological properties of Kv2.1 expressed in CHO cells. Together, these results provide novel insights into the cell cycle-dependent changes in PM protein localization and phosphorylation.
Collapse
Affiliation(s)
- Melanie M Cobb
- From the Departments of Neurobiology, Physiology, and Behavior
| | | | - Jon T Sack
- Physiology and Membrane Biology, and Anesthesiology and Pain Medicine, University of California Davis School of Medicine, Davis, California 95616
| | - James S Trimmer
- From the Departments of Neurobiology, Physiology, and Behavior, Physiology and Membrane Biology, and
| |
Collapse
|
193
|
No peroxisome is an island - Peroxisome contact sites. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:1061-9. [PMID: 26384874 DOI: 10.1016/j.bbamcr.2015.09.016] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/10/2015] [Accepted: 09/11/2015] [Indexed: 10/23/2022]
Abstract
In order to optimize their multiple cellular functions, peroxisomes must collaborate and communicate with the surrounding organelles. A common way of communication between organelles is through physical membrane contact sites where membranes of two organelles are tethered, facilitating exchange of small molecules and intracellular signaling. In addition contact sites are important for controlling processes such as metabolism, organelle trafficking, inheritance and division. How peroxisomes rely on contact sites for their various cellular activities is only recently starting to be appreciated and explored and the extent of peroxisomal communication, their contact sites and their functions are less characterized. In this review we summarize the identified peroxisomal contact sites, their tethering complexes and their potential physiological roles. Additionally, we highlight some of the preliminary evidence that exists in the field for unexplored peroxisomal contact sites.
Collapse
|
194
|
Idevall-Hagren O, Lü A, Xie B, De Camilli P. Triggered Ca2+ influx is required for extended synaptotagmin 1-induced ER-plasma membrane tethering. EMBO J 2015. [PMID: 26202220 DOI: 10.15252/embj.201591565] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The extended synaptotagmins (E-Syts) are ER proteins that act as Ca(2+)-regulated tethers between the ER and the plasma membrane (PM) and have a putative role in lipid transport between the two membranes. Ca(2+) regulation of their tethering function, as well as the interplay of their different domains in such function, remains poorly understood. By exposing semi-intact cells to buffers of variable Ca(2+) concentrations, we found that binding of E-Syt1 to the PI(4,5)P2-rich PM critically requires its C2C and C2E domains and that the EC50 of such binding is in the low micromolar Ca(2+) range. Accordingly, E-Syt1 accumulation at ER-PM contact sites occurred only upon experimental manipulations known to achieve these levels of Ca(2+) via its influx from the extracellular medium, such as store-operated Ca(2+) entry in fibroblasts and membrane depolarization in β-cells. We also show that in spite of their very different physiological functions, membrane tethering by E-Syt1 (ER to PM) and by synaptotagmin (secretory vesicles to PM) undergo a similar regulation by plasma membrane lipids and cytosolic Ca(2+).
Collapse
Affiliation(s)
- Olof Idevall-Hagren
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT, USA
| | - Alice Lü
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT, USA
| | - Beichen Xie
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Pietro De Camilli
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
195
|
Santos JC, Duchateau M, Fredlund J, Weiner A, Mallet A, Schmitt C, Matondo M, Hourdel V, Chamot-Rooke J, Enninga J. The COPII complex and lysosomal VAMP7 determine intracellular Salmonella localization and growth. Cell Microbiol 2015; 17:1699-720. [PMID: 26084942 DOI: 10.1111/cmi.12475] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 05/22/2015] [Accepted: 06/12/2015] [Indexed: 12/18/2022]
Abstract
Salmonella invades epithelial cells and survives within a membrane-bound compartment, the Salmonella-containing vacuole (SCV). We isolated and determined the host protein composition of the SCV at 30 min and 3 h of infection to identify and characterize novel regulators of intracellular bacterial localization and growth. Quantitation of the SCV protein content revealed 392 host proteins specifically enriched at SCVs, out of which 173 associated exclusively with early SCVs, 124 with maturing SCV and 95 proteins during both time-points. Vacuole interactions with endoplasmic reticulum-derived coat protein complex II vesicles modulate early steps of SCV maturation, promoting SCV rupture and bacterial hyper-replication within the host cytosol. On the other hand, SCV interactions with VAMP7-positive lysosome-like vesicles promote Salmonella-induced filament formation and bacterial growth within the late SCV. Our results reveal that the dynamic communication between the SCV and distinct host organelles affects both intracellular Salmonella localization and growth at successive steps of host cell invasion.
Collapse
Affiliation(s)
- José Carlos Santos
- Unit of Dynamics of Host-Pathogen Interactions, Institut Pasteur, Paris, France.,Graduate Program in Areas of Basic and Applied Biology (GABBA), University of Porto, Porto, Portugal
| | - Magalie Duchateau
- Structural Mass Spectrometry and Proteomics Unit, Institut Pasteur, Paris, France
| | - Jennifer Fredlund
- Unit of Dynamics of Host-Pathogen Interactions, Institut Pasteur, Paris, France
| | - Allon Weiner
- Unit of Dynamics of Host-Pathogen Interactions, Institut Pasteur, Paris, France
| | - Adeline Mallet
- Plate-forme Microscopie Ultrastructurale, Institut Pasteur, Paris, France
| | - Christine Schmitt
- Plate-forme Microscopie Ultrastructurale, Institut Pasteur, Paris, France
| | - Mariette Matondo
- Structural Mass Spectrometry and Proteomics Unit, Institut Pasteur, Paris, France
| | - Véronique Hourdel
- Structural Mass Spectrometry and Proteomics Unit, Institut Pasteur, Paris, France
| | - Julia Chamot-Rooke
- Structural Mass Spectrometry and Proteomics Unit, Institut Pasteur, Paris, France.,CNRS UMR3528, Paris, France
| | - Jost Enninga
- Unit of Dynamics of Host-Pathogen Interactions, Institut Pasteur, Paris, France
| |
Collapse
|
196
|
Lencer WI, DeLuca H, Grey MJ, Cho JA. Innate immunity at mucosal surfaces: the IRE1-RIDD-RIG-I pathway. Trends Immunol 2015; 36:401-9. [PMID: 26093676 PMCID: PMC4490948 DOI: 10.1016/j.it.2015.05.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 05/13/2015] [Accepted: 05/14/2015] [Indexed: 12/25/2022]
Abstract
Recent studies have linked the ER stress sensor IRE1α with the RIG-I pathway, which triggers an inflammatory response upon detection of viral RNAs. In response to ER dysfunction, IRE1α cleaves mRNA into single-strand fragments that lack markers of self, which activate RIG-I. Certain microbial products from mucosal pathogens activate this pathway by binding IRE1α directly, and the discovery that IRE1 is amplified at mucosal surfaces by gene duplication suggests an important role for IRE1 in mucosal immunity. Here, we review evidence in support of this hypothesis, and propose a model wherein IRE1 surveys the integrity of the ER, acting as a guard receptor and a pattern recognition receptor, capable both of sensing cellular stress caused by microbial infection and of responding to pathogens directly.
Collapse
Affiliation(s)
- Wayne I Lencer
- Department of Pediatrics, Harvard Medical School and Boston Children's Hospital, Boston, MA, USA; Harvard Digestive Diseases Center, Boston, MA, USA.
| | - Heidi DeLuca
- Department of Pediatrics, Harvard Medical School and Boston Children's Hospital, Boston, MA, USA
| | - Michael J Grey
- Department of Pediatrics, Harvard Medical School and Boston Children's Hospital, Boston, MA, USA
| | - Jin Ah Cho
- Department of Pediatrics, Harvard Medical School and Boston Children's Hospital, Boston, MA, USA; Harvard Digestive Diseases Center, Boston, MA, USA
| |
Collapse
|
197
|
Conserved SMP domains of the ERMES complex bind phospholipids and mediate tether assembly. Proc Natl Acad Sci U S A 2015; 112:E3179-88. [PMID: 26056272 DOI: 10.1073/pnas.1422363112] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Membrane contact sites (MCS) between organelles are proposed as nexuses for the exchange of lipids, small molecules, and other signals crucial to cellular function and homeostasis. Various protein complexes, such as the endoplasmic reticulum-mitochondrial encounter structure (ERMES), function as dynamic molecular tethers between organelles. Here, we report the reconstitution and characterization of subcomplexes formed by the cytoplasm-exposed synaptotagmin-like mitochondrial lipid-binding protein (SMP) domains present in three of the five ERMES subunits--the soluble protein Mdm12, the endoplasmic reticulum (ER)-resident membrane protein Mmm1, and the mitochondrial membrane protein Mdm34. SMP domains are conserved lipid-binding domains found exclusively in proteins at MCS. We show that the SMP domains of Mdm12 and Mmm1 associate into a tight heterotetramer with equimolecular stoichiometry. Our 17-Å-resolution EM structure of the complex reveals an elongated crescent-shaped particle in which two Mdm12 subunits occupy symmetric but distal positions at the opposite ends of a central ER-anchored Mmm1 homodimer. Rigid body fitting of homology models of these SMP domains in the density maps reveals a distinctive extended tubular structure likely traversed by a hydrophobic tunnel. Furthermore, these two SMP domains bind phospholipids and display a strong preference for phosphatidylcholines, a class of phospholipids whose exchange between the ER and mitochondria is essential. Last, we show that the three SMP-containing ERMES subunits form a ternary complex in which Mdm12 bridges Mmm1 to Mdm34. Our findings highlight roles for SMP domains in ERMES assembly and phospholipid binding and suggest a structure-based mechanism for the facilitated transport of phospholipids between organelles.
Collapse
|
198
|
Abstract
Endoplasmic reticulum (ER) sheet membranes are covered with ribosomes and RNAs that are involved in protein synthesis. A new study reveals that a calcium-activated endoribonuclease of the EndoU protein family promotes the formation of tubular ER networks, contributing to dynamic shaping of the ER in cells.
Collapse
Affiliation(s)
- Guohua Zhao
- Cell Biology Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Building 35, Room 2C-913, 9000 Rockville Pike, Bethesda, MD 20892-3738, USA
| | - Craig Blackstone
- Cell Biology Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Building 35, Room 2C-913, 9000 Rockville Pike, Bethesda, MD 20892-3738, USA.
| |
Collapse
|
199
|
Fox PD, Haberkorn CJ, Akin EJ, Seel PJ, Krapf D, Tamkun MM. Induction of stable ER-plasma-membrane junctions by Kv2.1 potassium channels. J Cell Sci 2015; 128:2096-105. [PMID: 25908859 DOI: 10.1242/jcs.166009] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 04/13/2015] [Indexed: 12/25/2022] Open
Abstract
Junctions between cortical endoplasmic reticulum (cER) and the plasma membrane are a subtle but ubiquitous feature in mammalian cells; however, very little is known about the functions and molecular interactions that are associated with neuronal ER-plasma-membrane junctions. Here, we report that Kv2.1 (also known as KCNB1), the primary delayed-rectifier K(+) channel in the mammalian brain, induces the formation of ER-plasma-membrane junctions. Kv2.1 localizes to dense, cell-surface clusters that contain non-conducting channels, indicating that they have a function that is unrelated to membrane-potential regulation. Accordingly, Kv2.1 clusters function as membrane-trafficking hubs, providing platforms for delivery and retrieval of multiple membrane proteins. Using both total internal reflection fluorescence and electron microscopy we demonstrate that the clustered Kv2.1 plays a direct structural role in the induction of stable ER-plasma-membrane junctions in both transfected HEK 293 cells and cultured hippocampal neurons. Glutamate exposure results in a loss of Kv2.1 clusters in neurons and subsequent retraction of the cER from the plasma membrane. We propose Kv2.1-induced ER-plasma-membrane junctions represent a new macromolecular plasma-membrane complex that is sensitive to excitotoxic insult and functions as a scaffolding site for both membrane trafficking and Ca(2+) signaling.
Collapse
Affiliation(s)
- Philip D Fox
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | | | - Elizabeth J Akin
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Peter J Seel
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - Diego Krapf
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - Michael M Tamkun
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
200
|
Correia SC, Resende R, Moreira PI, Pereira CM. Alzheimer's Disease-Related Misfolded Proteins and Dysfunctional Organelles on Autophagy Menu. DNA Cell Biol 2015; 34:261-73. [DOI: 10.1089/dna.2014.2757] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Sónia C. Correia
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Rosa Resende
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Paula I. Moreira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Laboratory of Physiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Cláudia M. Pereira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Laboratory of Biochemistry, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|