151
|
Singh R, De Aguiar RB, Naik S, Mani S, Ostadsharif K, Wencker D, Sotoudeh M, Malekzadeh R, Sherwin RS, Mani A. LRP6 enhances glucose metabolism by promoting TCF7L2-dependent insulin receptor expression and IGF receptor stabilization in humans. Cell Metab 2013; 17:197-209. [PMID: 23395167 PMCID: PMC3589523 DOI: 10.1016/j.cmet.2013.01.009] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2012] [Revised: 11/02/2012] [Accepted: 01/17/2013] [Indexed: 01/02/2023]
Abstract
Common genetic variations in Wnt signaling genes have been associated with metabolic syndrome and diabetes by mechanisms that are poorly understood. A rare nonconservative mutation in Wnt coreceptor LRP6 (LRP6(R611C)) has been shown to underlie autosomal dominant early onset coronary artery disease, type 2 diabetes, and metabolic syndrome. We examined the interplay between Wnt and insulin signaling pathways in skeletal muscle and skin fibroblasts of healthy nondiabetic LRP6(R611C) mutation carriers. LRP6 mutation carriers exhibited hyperinsulinemia and reduced insulin sensitivity compared to noncarrier relatives in response to oral glucose ingestion, which correlated with a significant decline in tissue expression of the insulin receptor and insulin signaling activity. Further investigations showed that the LRP6(R611C) mutation diminishes TCF7L2-dependent transcription of the IR while it increases the stability of IGFR and enhances mTORC1 activity. These findings identify the Wnt/LRP6/TCF7L2 axis as a regulator of glucose metabolism and a potential therapeutic target for insulin resistance.
Collapse
Affiliation(s)
- Rajvir Singh
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
152
|
Abstract
Forkhead box O (FOXO) transcription factors are involved in the regulation of the cell cycle, apoptosis and metabolism. In model organisms, FOXO activity also affects stem cell maintenance and lifespan as well as age-related diseases, such as cancer and diabetes. Multiple upstream pathways regulate FOXO activity through post-translational modifications and nuclear-cytoplasmic shuttling of both FOXO and its regulators. The diversity of this upstream regulation and the downstream effects of FOXOs suggest that they function as homeostasis regulators to maintain tissue homeostasis over time and coordinate a response to environmental changes, including growth factor deprivation, metabolic stress (starvation) and oxidative stress.
Collapse
|
153
|
Lavine LC, Hahn LL, Warren IA, Garczynski SF, Dworkin I, Emlen DJ. Cloning and characterization of an mRNA encoding an insulin receptor from the horned scarab beetle Onthophagus nigriventris (Coleoptera: Scarabaeidae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2013; 82:43-57. [PMID: 23136112 DOI: 10.1002/arch.21072] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The insulin signaling pathway is the primary signaling pathway coupling growth with nutritional condition in all animals. Sensitivity to circulating levels of insulin has been shown to regulate the growth of specific traits in a dose-dependent manner in response to environmental conditions in a diversity of insect species. Alternative phenotypes in insects manifest in a variety of morphologies such as the sexually dimorphic and male dimorphic horned beetles. Large males of the sexually dimorphic dung beetle Onthophagus nigriventris develop a thoracic horn up to twice the length of the body whereas small males and females never develop this horn. The regulation of this dimorphism is known to be nutrition dependent for males. We focused on the insulin signaling pathway as a potential regulator of this dimorphism. We sequenced a full-length gene transcript encoding the O. nigriventris insulin receptor (OnInR), which is the receptor for circulating insulin and insulin-like peptides in animals. We show that the predicted OnInR protein is similar in overall amino acid identity to other insulin receptors (InRs) and is most closely related phylogenetically to insect InRs. Expression of the OnInR transcript was found during development of imaginal tissues in both males and females. However, expression of OnInR in the region where a horn would grow of small males and female was significantly higher than in the horn tissues of large males at the end of growth. This variation in OnInR expression between sexes and morphs indicates a role for the InR in polymorphic horn development.
Collapse
Affiliation(s)
- Laura Corley Lavine
- Department of Entomology, Washington State University, Pullman, WA 99164, USA.
| | | | | | | | | | | |
Collapse
|
154
|
Eijkelenboom A, Mokry M, de Wit E, Smits LM, Polderman PE, van Triest MH, van Boxtel R, Schulze A, de Laat W, Cuppen E, Burgering BMT. Genome-wide analysis of FOXO3 mediated transcription regulation through RNA polymerase II profiling. Mol Syst Biol 2013; 9:638. [PMID: 23340844 PMCID: PMC3564262 DOI: 10.1038/msb.2012.74] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 12/10/2012] [Indexed: 12/25/2022] Open
Abstract
Forkhead box O (FOXO) transcription factors are key players in diverse cellular processes affecting tumorigenesis, stem cell maintenance and lifespan. To gain insight into the mechanisms of FOXO-regulated target gene expression, we studied genome-wide effects of FOXO3 activation. Profiling RNA polymerase II changes shows that FOXO3 regulates gene expression through transcription initiation. Correlative analysis of FOXO3 and RNA polymerase II ChIP-seq profiles demonstrates FOXO3 to act as a transcriptional activator. Furthermore, this analysis reveals a significant part of FOXO3 gene regulation proceeds through enhancer regions. FOXO3 binds to pre-existing enhancers and further activates these enhancers as shown by changes in histone acetylation and RNA polymerase II recruitment. In addition, FOXO3-mediated enhancer activation correlates with regulation of adjacent genes and pre-existence of chromatin loops between FOXO3 bound enhancers and target genes. Combined, our data elucidate how FOXOs regulate gene transcription and provide insight into mechanisms by which FOXOs can induce different gene expression programs depending on chromatin architecture.
Collapse
Affiliation(s)
- Astrid Eijkelenboom
- Department of Molecular Cancer Research, University Medical Centre, Utrecht, The Netherlands
| | - Michal Mokry
- Hubrecht Institute for Developmental Biology and Stem Cell Research, KNAW and University Medical Centre, Utrecht, The Netherlands
| | - Elzo de Wit
- Hubrecht Institute for Developmental Biology and Stem Cell Research, KNAW and University Medical Centre, Utrecht, The Netherlands
| | - Lydia M Smits
- Department of Molecular Cancer Research, University Medical Centre, Utrecht, The Netherlands
| | - Paulien E Polderman
- Department of Molecular Cancer Research, University Medical Centre, Utrecht, The Netherlands
| | - Miranda H van Triest
- Department of Molecular Cancer Research, University Medical Centre, Utrecht, The Netherlands
| | - Ruben van Boxtel
- Department of Cell Biology, University Medical Centre, Utrecht, The Netherlands
| | - Almut Schulze
- Gene Expression Analysis Laboratory, Cancer Research UK London Research Institute, London, UK
| | - Wouter de Laat
- Hubrecht Institute for Developmental Biology and Stem Cell Research, KNAW and University Medical Centre, Utrecht, The Netherlands
| | - Edwin Cuppen
- Hubrecht Institute for Developmental Biology and Stem Cell Research, KNAW and University Medical Centre, Utrecht, The Netherlands
| | - Boudewijn M T Burgering
- Department of Molecular Cancer Research, University Medical Centre, Utrecht, The Netherlands
| |
Collapse
|
155
|
W. Bates P, Liang Y, W. Shingleton A. Growth regulation and the insulin signaling pathway. ACTA ACUST UNITED AC 2013. [DOI: 10.3934/nhm.2013.8.65] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
156
|
Danielsen ET, Moeller ME, Rewitz KF. Nutrient Signaling and Developmental Timing of Maturation. Curr Top Dev Biol 2013; 105:37-67. [DOI: 10.1016/b978-0-12-396968-2.00002-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
157
|
NSBP-1 mediates the effects of cholesterol on insulin/IGF-1 signaling in Caenorhabditis elegans. Cell Mol Life Sci 2012; 70:1623-36. [PMID: 23255046 DOI: 10.1007/s00018-012-1221-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 10/30/2012] [Accepted: 11/22/2012] [Indexed: 01/12/2023]
Abstract
Nematode sterol-binding protein 1 (NSBP-1) is a homolog of nucleosome assembly protein 1 in mammals that is expressed widely in Caenorhabditis elegans. NSBP-1 mutants are biologically lethal, demonstrating the significance of the gene in growth and development. We investigated how cholesterol influences the insulin signaling pathway through this novel sterol-binding protein in C. elegans. Here we report that NSBP-1 influences many biological processes mediated by insulin signaling, such as longevity, dauer formation, fat storage, and resistance to oxidative stress. We found that NSBP-1 is phosphorylated by AKT-1 downstream of insulin signaling. In the absence of insulin signaling, NSBP-1 is translocated to the nucleus and binds to DAF-16, a FOXO transcription factor, in a cholesterol-dependent manner. Moreover, NSBP-1 and DAF-16 regulate a common set of genes that can directly modulate fat storage, longevity, and resistance to stress. Together, our results present a new steroid-binding molecule that can connect sterol signaling to insulin signaling through direct interaction with FOXO.
Collapse
|
158
|
Papatheodorou I, Ziehm M, Wieser D, Alic N, Partridge L, Thornton JM. Using answer set programming to integrate RNA expression with signalling pathway information to infer how mutations affect ageing. PLoS One 2012; 7:e50881. [PMID: 23251396 PMCID: PMC3519537 DOI: 10.1371/journal.pone.0050881] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 10/25/2012] [Indexed: 01/03/2023] Open
Abstract
A challenge of systems biology is to integrate incomplete knowledge on pathways with existing experimental data sets and relate these to measured phenotypes. Research on ageing often generates such incomplete data, creating difficulties in integrating RNA expression with information about biological processes and the phenotypes of ageing, including longevity. Here, we develop a logic-based method that employs Answer Set Programming, and use it to infer signalling effects of genetic perturbations, based on a model of the insulin signalling pathway. We apply our method to RNA expression data from Drosophila mutants in the insulin pathway that alter lifespan, in a foxo dependent fashion. We use this information to deduce how the pathway influences lifespan in the mutant animals. We also develop a method for inferring the largest common sub-paths within each of our signalling predictions. Our comparisons reveal consistent homeostatic mechanisms across both long- and short-lived mutants. The transcriptional changes observed in each mutation usually provide negative feedback to signalling predicted for that mutation. We also identify an S6K-mediated feedback in two long-lived mutants that suggests a crosstalk between these pathways in mutants of the insulin pathway, in vivo. By formulating the problem as a logic-based theory in a qualitative fashion, we are able to use the efficient search facilities of Answer Set Programming, allowing us to explore larger pathways, combine molecular changes with pathways and phenotype and infer effects on signalling in in vivo, whole-organism, mutants, where direct signalling stimulation assays are difficult to perform. Our methods are available in the web-service NetEffects: http://www.ebi.ac.uk/thornton-srv/software/NetEffects.
Collapse
Affiliation(s)
- Irene Papatheodorou
- European Molecular Biology Laboratory-European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom.
| | | | | | | | | | | |
Collapse
|
159
|
Jin H, Kim VN, Hyun S. Conserved microRNA miR-8 controls body size in response to steroid signaling in Drosophila. Genes Dev 2012; 26:1427-32. [PMID: 22751499 DOI: 10.1101/gad.192872.112] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Body size determination is a process that is tightly linked with developmental maturation. Ecdysone, an insect maturation hormone, contributes to this process by antagonizing insulin signaling and thereby suppressing juvenile growth. Here, we report that the microRNA miR-8 and its target, u-shaped (USH), a conserved microRNA/target axis that regulates insulin signaling, are critical for ecdysone-induced body size determination in Drosophila. We found that the miR-8 level is reduced in response to ecdysone, while the USH level is up-regulated reciprocally, and that miR-8 is transcriptionally repressed by ecdysone's early response genes. Furthermore, modulating the miR-8 level correlatively changes the fly body size; either overexpression or deletion of miR-8 abrogates ecdysone-induced growth control. Consistently, perturbation of USH impedes ecdysone's effect on body growth. Thus, miR-8 acts as a molecular rheostat that tunes organismal growth in response to a developmental maturation signal.
Collapse
Affiliation(s)
- Hua Jin
- School of Biological Sciences, Seoul National University, Seoul 151-742, Korea
| | - V Narry Kim
- School of Biological Sciences, Seoul National University, Seoul 151-742, Korea
| | - Seogang Hyun
- School of Biological Sciences, Seoul National University, Seoul 151-742, Korea.,School of Biological Sciences, Chung-Ang University, Seoul 156-756, Korea
| |
Collapse
|
160
|
Shingleton AW. The regulation of organ size in Drosophila: physiology, plasticity, patterning and physical force. Organogenesis 2012; 6:76-87. [PMID: 20885854 DOI: 10.4161/org.6.2.10375] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Revised: 10/16/2009] [Accepted: 10/20/2009] [Indexed: 12/19/2022] Open
Abstract
The correct regulation of organ size is a fundamental developmental process, the failure of which can compromise organ function and organismal integrity. Consequently, the mechanisms that regulate organ size have been subject to intense research. This research has highlighted four classes of mechanism that are involved in organ size regulation: physiology, plasticity, patterning and physical force. Nevertheless, how these mechanisms are integrated and converge on the cellular process that regulate organ growth is unknown. One group of animals where this integration is beginning to be achieved is in the insects. Here, I review the different mechanisms that regulate organ size in insects, and describe our current understanding of how these mechanisms interact. The genes and hormones involved are remarkably conserved in all animals, so these studies in insects provide a precedent for future research on organ size regulation in mammals.
Collapse
|
161
|
Emlen DJ, Warren IA, Johns A, Dworkin I, Lavine LC. A mechanism of extreme growth and reliable signaling in sexually selected ornaments and weapons. Science 2012; 337:860-4. [PMID: 22837386 DOI: 10.1126/science.1224286] [Citation(s) in RCA: 325] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Many male animals wield ornaments or weapons of exaggerated proportions. We propose that increased cellular sensitivity to signaling through the insulin/insulin-like growth factor (IGF) pathway may be responsible for the extreme growth of these structures. We document how rhinoceros beetle horns, a sexually selected weapon, are more sensitive to nutrition and more responsive to perturbation of the insulin/IGF pathway than other body structures. We then illustrate how enhanced sensitivity to insulin/IGF signaling in a growing ornament or weapon would cause heightened condition sensitivity and increased variability in expression among individuals--critical properties of reliable signals of male quality. The possibility that reliable signaling arises as a by-product of the growth mechanism may explain why trait exaggeration has evolved so many different times in the context of sexual selection.
Collapse
Affiliation(s)
- Douglas J Emlen
- Division of Biological Sciences, The University of Montana, 104 Health Science Building, Missoula, MT 59812, USA.
| | | | | | | | | |
Collapse
|
162
|
Abstract
The determination of final organ size is a highly coordinated and complex process that relies on the precise regulation of cell number and/or cell size. Perturbation of organ size control contributes to many human diseases, including hypertrophy, degenerative diseases, and cancer. Hippo and TOR are among the key signaling pathways involved in the regulation of organ size through their respective functions in the regulation of cell number and cell size. Here, we review the general mechanisms that regulate organ growth, describe how Hippo and TOR control key aspects of growth, and discuss recent findings that highlight a possible coordination between Hippo and TOR in organ size regulation.
Collapse
|
163
|
Snell-Rood EC, Moczek AP. Insulin signaling as a mechanism underlying developmental plasticity: the role of FOXO in a nutritional polyphenism. PLoS One 2012; 7:e34857. [PMID: 22514679 PMCID: PMC3325941 DOI: 10.1371/journal.pone.0034857] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 03/08/2012] [Indexed: 12/19/2022] Open
Abstract
We investigated whether insulin signaling, known to mediate physiological plasticity in response to changes in nutrition, also facilitates discrete phenotypic responses such as polyphenisms. We test the hypothesis that the gene FOXO--which regulates growth arrest under nutrient stress--mediates a nutritional polyphenism in the horned beetle, Onthophagus nigriventris. Male beetles in the genus Onthophagus vary their mating strategy with body size: large males express horns and fight for access to females while small males invest heavily in genitalia and sneak copulations with females. Given that body size and larval nutrition are linked, we predicted that 1) FOXO expression would differentially scale with body size (nutritional status) between males and females, and 2) manipulation of FOXO expression would affect the nutritional polyphenism in horns and genitalia. First, we found that FOXO expression varied with body size in a tissue- and sex-specific manner, being more highly expressed in the abdominal tissue of large (horned) males, in particular in regions associated with genitalia development. Second, we found that knockdown of FOXO through RNA-interference resulted in the growth of relatively larger copulatory organs compared to control-injected individuals and significant, albeit modest, increases in relative horn length. Our results support the hypothesis that FOXO expression in the abdominal tissue limits genitalia growth, and provides limited support for the hypothesis that FOXO regulates relative horn length through direct suppression of horn growth. Both results support the idea that tissue-specific FOXO expression may play a general role in regulating scaling relationships in nutritional polyphenisms by signaling traits to be relatively smaller.
Collapse
Affiliation(s)
- Emilie C Snell-Rood
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America.
| | | |
Collapse
|
164
|
Li Z, Zhang H, Chen Y, Fan L, Fang J. Forkhead transcription factor FOXO3a protein activates nuclear factor κB through B-cell lymphoma/leukemia 10 (BCL10) protein and promotes tumor cell survival in serum deprivation. J Biol Chem 2012; 287:17737-17745. [PMID: 22474286 DOI: 10.1074/jbc.m111.291708] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
FOXO3a, a member of the Forkhead box O (FoxO) transcription factor family, is believed to be a tumor suppressor because it was found that FOXO3a inactivation promoted cell transformation and tumor progression. There are also a few studies showing that FOXO3a protected cells under stress conditions, including oxidative stress, serum deprivation, and hypoxia. It was reported that FOXO3a promoted invasion of cancer cells. Thus, the role of FOXO3a in cancer is complicated. Here, we report that FOXO3a is a positive regulator of nuclear factor κB (NF-κB) signaling. We found that overexpression of FOXO3a increased and knockdown of FOXO3a repressed NF-κB activities. Mechanistic studies indicate that FOXO3a activated NF-κB via inducing expression of B-cell lymphoma/leukemia 10 (BCL10), an upstream regulator of IκB kinase (IKK)/NF-κB signaling. We found that the serum deprivation activated NF-κB, which was blocked by inhibition of FOXO3a. Knockdown of FOXO3a enhanced cell apoptosis under serum-free conditions, which was inhibited by overexpression of BCL10. These results suggest that FOXO3a promotes cell survival via BCL10/NF-κB in serum starvation. Our findings may add another layer to the complexity of the role of FOXO3a in cancer. Therefore, caution should be taken when FOXO3a is employed as a target for cancer therapy.
Collapse
Affiliation(s)
- Zhaodong Li
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Haisheng Zhang
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ying Chen
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Li Fan
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jing Fang
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
165
|
Gu SH, Yeh WL, Young SC, Lin PL, Li S. TOR signaling is involved in PTTH-stimulated ecdysteroidogenesis by prothoracic glands in the silkworm, Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2012; 42:296-303. [PMID: 22227406 DOI: 10.1016/j.ibmb.2011.12.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 12/12/2011] [Accepted: 12/26/2011] [Indexed: 05/31/2023]
Abstract
The prothoracicotropic hormone (PTTH) is a stimulator of ecdysteroidogenesis in prothoracic gland of larval insects. Our recent studies showed that phosphoinositide 3-kinase (PI3K)/Akt signaling was involved in PTTH-stimulated ecdysteroidogenesis by Bombyx mori prothoracic glands. In the present study, downstream signaling of PI3K/Akt was further investigated. Results showed that PTTH rapidly enhanced the phosphorylation of translational repressor 4E-binding protein (4E-BP) and p70 ribosomal protein S6 kinase (S6K), two known downstream signaling targets of the target of rapamycin complex 1 (TORC1). PTTH stimulated 4E-BP phosphorylation in time- and dose-dependent manners. Injection of PTTH into day-6 last instar larvae greatly increased 4E-BP phosphorylation, verifying the in vitro effect. PTTH-stimulated 4E-BP phosphorylation was blocked by both LY294002 and wortmannin, indicating the involvement of PI3K. Mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) kinase (MEK) inhibitors (PD 98059 and U0126), did not inhibit PTTH-stimulated 4E-BP phosphorylation, implying that ERK signaling is not related to PTTH-stimulated 4E-BP phosphorylation. The phosphorylation of S6K was also stimulated by PTTH both in vitro and in vivo. PI3K signaling appears to be involved in PTTH-stimulated phosphorylation of S6K. Rapamycin, a specific inhibitor of mammalian TOR signaling attenuated PTTH-stimulated phosphorylation of 4E-BP and S6K of the glands, and greatly inhibited PTTH-stimulated ecdysteroidogenesis. Examination of gene expression levels of 4E-BP and S6K showed that PTTH inhibited mRNA levels of both 4E-BP and S6K, indicating that PTTH may exert its action at both the transcriptional and phosphorylation levels. These results suggest that PTTH/PI3K/TOR/4E-BP (S6K) signaling is involved in PTTH-stimulated ecdysteroidogenesis by prothoracic glands in B. mori.
Collapse
Affiliation(s)
- Shi-Hong Gu
- Department of Zoology, National Museum of Natural Science, 1 Kuan-Chien Road, Taichung, Taiwan 404, ROC.
| | | | | | | | | |
Collapse
|
166
|
Regulation of neuroblastoma differentiation by forkhead transcription factors FOXO1/3/4 through the receptor tyrosine kinase PDGFRA. Proc Natl Acad Sci U S A 2012; 109:4898-903. [PMID: 22411791 DOI: 10.1073/pnas.1119535109] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Neuroblastoma is a common childhood malignant tumor originated from the neural crest-derived sympathetic nervous system. A crucial early event in neuroblastoma pathogenesis is arrested differentiation of neuroblasts at various stages. Treatment of neuroblastoma with TPA and PDGF-BB leads to terminal differentiation of neuroblastoma cells. However, the signaling pathways that are involved in this process remain largely unknown. Here, we report that inhibition of endogenous FOXO proteins attenuated TPA/PDGF-BB mediated differentiation of neuroblastoma cells. Activated FOXO transcription factors acted on PDGFRA promoter to direct its basal mRNA expression as well as its induction upon serum deprivation. Depletion of endogenous PDGFRA in neuroblastoma cells significantly diminished neurite formation and extension under TPA/PDGF-BB treatment. Furthermore, ectopic expression of PDGFRA abolished the blockage of neuroblastoma differentiation by FOXOs inhibition. These findings define the FOXO-PDGFRA axis as crucial mechanistic components that govern TPA-induced neuroblastoma differentiation.
Collapse
|
167
|
Ortega-Molina A, Efeyan A, Lopez-Guadamillas E, Muñoz-Martin M, Gómez-López G, Cañamero M, Mulero F, Pastor J, Martinez S, Romanos E, Mar Gonzalez-Barroso M, Rial E, Valverde AM, Bischoff JR, Serrano M. Pten positively regulates brown adipose function, energy expenditure, and longevity. Cell Metab 2012; 15:382-94. [PMID: 22405073 DOI: 10.1016/j.cmet.2012.02.001] [Citation(s) in RCA: 265] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 11/16/2011] [Accepted: 01/20/2012] [Indexed: 01/15/2023]
Abstract
Aging in worms and flies is regulated by the PI3K/Akt/Foxo pathway. Here we extend this paradigm to mammals. Pten(tg) mice carrying additional genomic copies of Pten are protected from cancer and present a significant extension of life span that is independent of their lower cancer incidence. Interestingly, Pten(tg) mice have an increased energy expenditure and protection from metabolic pathologies. The brown adipose tissue (BAT) of Pten(tg) mice is hyperactive and presents high levels of the uncoupling protein Ucp1, which we show is a target of Foxo1. Importantly, a synthetic PI3K inhibitor also increases energy expenditure and hyperactivates the BAT in mice. These effects can be recapitulated in isolated brown adipocytes and, moreover, implants of Pten(tg) fibroblasts programmed with Prdm16 and Cebpβ form subcutaneous brown adipose pads more efficiently than wild-type fibroblasts. These observations uncover a role of Pten in promoting energy expenditure, thus decreasing nutrient storage and its associated damage.
Collapse
Affiliation(s)
- Ana Ortega-Molina
- Tumor Suppression Group, Spanish National Cancer Research Center (CNIO), Madrid E28029, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
168
|
Jouaux A, Franco A, Heude-Berthelin C, Sourdaine P, Blin JL, Mathieu M, Kellner K. Identification of Ras, Pten and p70S6K homologs in the Pacific oyster Crassostrea gigas and diet control of insulin pathway. Gen Comp Endocrinol 2012; 176:28-38. [PMID: 22202600 DOI: 10.1016/j.ygcen.2011.12.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 12/05/2011] [Accepted: 12/11/2011] [Indexed: 11/23/2022]
Abstract
Insulin pathways were demonstrated from invertebrates to vertebrates to be involved in the regulation of numerous processes including storage metabolism and reproduction. In addition, insulin system may integrate variations of environmental conditions like dietary restrictions. In the Pacific oyster Crassostrea gigas, reproductive and storage compartments are closely intricated in the gonadal area and their respective development was found to be dependant of trophic conditions. For these reasons, C. gigas is an original and interesting model for investigating the role of insulin control in the balance between storage and reproduction and the integration of environmental parameters. On the basis of sequence conservation, we identified three potential elements of the oyster insulin pathway, Ras, Pten and p70S6K and we investigated their expression levels in various tissues. In the gonadal area, we used laser microdissection in order to precise the targeted contribution of insulin signaling to the restoration of storage tissue and to the control of vitellogenesis. Food deprivation during gametogenesis reinitiation stage led to reduced proliferations of gonia and also to modulate insulin signal by transcriptional activation of insulin pathway elements.
Collapse
Affiliation(s)
- A Jouaux
- CNRS-INEE FRE3484 BioMEA Biologie des Mollusques marins et Ecosystèmes associés IFR146 ICORE, Université de Caen Basse-Normandie, F 14032 Caen Cedex, France.
| | | | | | | | | | | | | |
Collapse
|
169
|
Marshall L, Rideout EJ, Grewal SS. Nutrient/TOR-dependent regulation of RNA polymerase III controls tissue and organismal growth in Drosophila. EMBO J 2012; 31:1916-30. [PMID: 22367393 DOI: 10.1038/emboj.2012.33] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2011] [Accepted: 01/25/2012] [Indexed: 01/26/2023] Open
Abstract
The nutrient/target-of-rapamycin (TOR) pathway has emerged as a key regulator of tissue and organismal growth in metazoans. The signalling components of the nutrient/TOR pathway are well defined; however, the downstream effectors are less understood. Here, we show that the control of RNA polymerase (Pol) III-dependent transcription is an essential target of TOR in Drosophila. We find that TOR activity controls Pol III in growing larvae via inhibition of the repressor Maf1 and, in part, via the transcription factor Drosophila Myc (dMyc). Moreover, we show that loss of the Pol III factor, Brf, leads to reduced tissue and organismal growth and prevents TOR-induced cellular growth. TOR activity in the larval fat body, a tissue equivalent to vertebrate fat or liver, couples nutrition to insulin release from the brain. Accordingly, we find that fat-specific loss of Brf phenocopies nutrient limitation and TOR inhibition, leading to decreased systemic insulin signalling and reduced organismal growth. Thus, stimulation of Pol III is a key downstream effector of TOR in the control of cellular and systemic growth.
Collapse
Affiliation(s)
- Lynne Marshall
- Department of Biochemistry and Molecular Biology, Clark H Smith Brain Tumour Centre, Southern Alberta Cancer Research Institute, University of Calgary, HRIC, Calgary, Alberta, Canada
| | | | | |
Collapse
|
170
|
Muranen T, Selfors LM, Worster DT, Iwanicki MP, Song L, Morales FC, Gao S, Mills GB, Brugge JS. Inhibition of PI3K/mTOR leads to adaptive resistance in matrix-attached cancer cells. Cancer Cell 2012; 21:227-39. [PMID: 22340595 PMCID: PMC3297962 DOI: 10.1016/j.ccr.2011.12.024] [Citation(s) in RCA: 357] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 10/07/2011] [Accepted: 12/20/2011] [Indexed: 02/05/2023]
Abstract
The PI3K/mTOR-pathway is the most commonly dysregulated pathway in epithelial cancers and represents an important target for cancer therapeutics. Here, we show that dual inhibition of PI3K/mTOR in ovarian cancer-spheroids leads to death of inner matrix-deprived cells, whereas matrix-attached cells are resistant. This matrix-associated resistance is mediated by drug-induced upregulation of cellular survival programs that involve both FOXO-regulated transcription and cap-independent translation. Inhibition of any one of several upregulated proteins, including Bcl-2, EGFR, or IGF1R, abrogates resistance to PI3K/mTOR inhibition. These results demonstrate that acute adaptive responses to PI3K/mTOR inhibition in matrix-attached cells resemble well-conserved stress responses to nutrient and growth factor deprivation. Bypass of this resistance mechanism through rational design of drug combinations could significantly enhance PI3K-targeted drug efficacy.
Collapse
Affiliation(s)
- Taru Muranen
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, 02115, USA
| | - Laura M. Selfors
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, 02115, USA
| | - Devin T. Worster
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, 02115, USA
| | - Marcin P. Iwanicki
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, 02115, USA
| | - Loling Song
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, 02115, USA
| | - Fabiana C. Morales
- Department of Systems Biology, MD Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Sizhen Gao
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, 02115, USA
| | - Gordon B. Mills
- Department of Systems Biology, MD Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Joan S. Brugge
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, 02115, USA
- Corresponding author , Department of Cell Biology, 240 Longwood Ave, Boston MA 02115, Phone: 617 432 3974, Fax: 617 432 3969
| |
Collapse
|
171
|
HMGA1 is a novel downstream nuclear target of the insulin receptor signaling pathway. Sci Rep 2012; 2:251. [PMID: 22355763 PMCID: PMC3273854 DOI: 10.1038/srep00251] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 01/18/2012] [Indexed: 02/07/2023] Open
Abstract
High-mobility group AT-hook 1 (HMGA1) protein is an important nuclear factor that activates gene transcription by binding to AT-rich sequences in the promoter region of DNA. We previously demonstrated that HMGA1 is a key regulator of the insulin receptor (INSR) gene and individuals with defects in HMGA1 have decreased INSR expression and increased susceptibility to type 2 diabetes mellitus. In addition, there is evidence that intracellular regulatory molecules that are employed by the INSR signaling system are involved in post-translational modifications of HMGA1, including protein phosphorylation. It is known that phosphorylation of HMGA1 reduces DNA-binding affinity and transcriptional activation. In the present study, we investigated whether activation of the INSR by insulin affected HMGA1 protein phosphorylation and its regulation of gene transcription. Collectively, our findings indicate that HMGA1 is a novel downstream target of the INSR signaling pathway, thus representing a new critical nuclear mediator of insulin action and function.
Collapse
|
172
|
Bolukbasi E, Vass S, Cobbe N, Nelson B, Simossis V, Dunbar DR, Heck MMS. Drosophila poly suggests a novel role for the Elongator complex in insulin receptor-target of rapamycin signalling. Open Biol 2012; 2:110031. [PMID: 22645656 PMCID: PMC3352090 DOI: 10.1098/rsob.110031] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 12/21/2011] [Indexed: 01/06/2023] Open
Abstract
Multi-cellular organisms need to successfully link cell growth and metabolism to environmental cues during development. Insulin receptor-target of rapamycin (InR-TOR) signalling is a highly conserved pathway that mediates this link. Herein, we describe poly, an essential gene in Drosophila that mediates InR-TOR signalling. Loss of poly results in lethality at the third instar larval stage, but only after a stage of extreme larval longevity. Analysis in Drosophila demonstrates that Poly and InR interact and that poly mutants show an overall decrease in InR-TOR signalling, as evidenced by decreased phosphorylation of Akt, S6K and 4E-BP. Metabolism is altered in poly mutants, as revealed by microarray expression analysis and a decreased triglyceride : protein ratio in mutant animals. Intriguingly, the cellular distribution of Poly is dependent on insulin stimulation in both Drosophila and human cells, moving to the nucleus with insulin treatment, consistent with a role in InR-TOR signalling. Together, these data reveal that Poly is a novel, conserved (from flies to humans) mediator of InR signalling that promotes an increase in cell growth and metabolism. Furthermore, homology to small subunits of Elongator demonstrates a novel, unexpected role for this complex in insulin signalling.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Margarete M. S. Heck
- University of Edinburgh, Queen's Medical
Research Institute, University/BHF Centre for
Cardiovascular Science, 47 Little France Crescent, Edinburgh EH16
4TJ, UK
| |
Collapse
|
173
|
Young SC, Yeh WL, Gu SH. Transcriptional regulation of the PTTH receptor in prothoracic glands of the silkworm, Bombyx mori. JOURNAL OF INSECT PHYSIOLOGY 2012; 58:102-109. [PMID: 22085674 DOI: 10.1016/j.jinsphys.2011.10.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 10/15/2011] [Accepted: 10/19/2011] [Indexed: 05/31/2023]
Abstract
The present study investigated transcriptional regulation of the prothoracicotropic hormone (PTTH) receptor (Torso) gene in prothoracic glands (PGs) of the silkworm, Bombyx mori. The results showed that PTTH treatment in vitro time-dependently affected Torso mRNA levels, with an inhibitory effect being detected after 1- and 2-h periods of incubation. When methoprene, a juvenile hormone analogue (JHA), was applied to newly ecdysed last instar larvae, a decline in Torso mRNA levels during the early last larval instar was delayed compared to those treated with acetone. Injection of 20-hydroxyecdysone appeared to have a stimulatory effect on Torso mRNA levels. Torso mRNA levels were also shown to be nutrition-sensitive. From these results, it was suggested that Torso mRNA levels of the PGs appear to be hormonally regulated and nutrition-sensitive, and the endogenous precisely coordinated regulation of Torso mRNA levels may play a role in regulating ecdysteroidogenesis by PGs during development.
Collapse
Affiliation(s)
- Shun-Chieh Young
- Department of Zoology, National Museum of Natural Science, 1 Kuan-Chien Road, Taichung, Taiwan 404, ROC.
| | | | | |
Collapse
|
174
|
Zhang W, Thompson BJ, Hietakangas V, Cohen SM. MAPK/ERK signaling regulates insulin sensitivity to control glucose metabolism in Drosophila. PLoS Genet 2011; 7:e1002429. [PMID: 22242005 PMCID: PMC3248469 DOI: 10.1371/journal.pgen.1002429] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 11/04/2011] [Indexed: 01/12/2023] Open
Abstract
The insulin/IGF-activated AKT signaling pathway plays a crucial role in regulating tissue growth and metabolism in multicellular animals. Although core components of the pathway are well defined, less is known about mechanisms that adjust the sensitivity of the pathway to extracellular stimuli. In humans, disturbance in insulin sensitivity leads to impaired clearance of glucose from the blood stream, which is a hallmark of diabetes. Here we present the results of a genetic screen in Drosophila designed to identify regulators of insulin sensitivity in vivo. Components of the MAPK/ERK pathway were identified as modifiers of cellular insulin responsiveness. Insulin resistance was due to downregulation of insulin-like receptor gene expression following persistent MAPK/ERK inhibition. The MAPK/ERK pathway acts via the ETS-1 transcription factor Pointed. This mechanism permits physiological adjustment of insulin sensitivity and subsequent maintenance of circulating glucose at appropriate levels. Insulin signaling is an important and conserved physiological regulator of growth, metabolism, and longevity in multicellular animals. Disturbance in insulin signaling is common in human metabolic disorders. For example insulin resistance is a hallmark of diabetes and metabolic syndrome. While the core components of the insulin signaling pathway have been well established, the mechanisms that adjust the insulin responsiveness are only known to a limited extent. Here we present results from a genetic screen in Drosophila that was designed to identify regulators of cellular insulin sensitivity in an in vivo context. Surprisingly, we discovered cross-talk between the epidermal growth factor receptor (EGFR)–activated MAPK/ERK and insulin signaling pathways. This regulatory mechanism, which involves transcriptional control of insulin-like receptor gene, is utilized in vivo to maintain circulating glucose at appropriate levels. We provide evidence for a regulatory feed-forward mechanism that allows for dynamic transient responsiveness as well as more stable, long-lasting modulation of insulin responsiveness by growth factor receptor signaling. The combination of these mechanisms may contribute to robustness, allowing metabolism to be appropriately responsive to physiological inputs while mitigating the effects of biological noise.
Collapse
Affiliation(s)
- Wei Zhang
- Institute of Molecular and Cell Biology, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Barry J. Thompson
- London Research Institute, Cancer Research UK, London, United Kingdom
| | - Ville Hietakangas
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
- * E-mail: (VH); (SMC)
| | - Stephen M. Cohen
- Institute of Molecular and Cell Biology, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- * E-mail: (VH); (SMC)
| |
Collapse
|
175
|
Abstract
The PI3K-Akt pathway is a major survival pathway activated in cancer. Efforts to develop targeted therapies have not been fully successful, mainly because of extensive internal intrapathway or external interpathway negative feedback loops or because of networking between pathway suppressors. The PTEN tumor suppressor is the major brake of the pathway and a common target for inactivation in somatic cancers. This review will highlight the networking of PTEN with other inhibitors of the pathway, relevant to cancer progression. PTEN constitutes the main node of the inhibitory network, and a series of convergences at different levels in the PI3K-Akt pathway, starting from those with growth factor receptors, will be described. As PTEN exerts enzymatic activity as a phosphatidylinositol-3,4,5-trisphosphate (PIP(3)) phosphatase, thus opposing the activity of PI3K, the concerted actions to increase the availability of PIP(3) in cancer cells, relying either on other phosphoinositide enzymes or on the intrinsic regulation of PTEN activity by other molecules, will be discussed. In particular, the synergy between PTEN and the circle of its direct interacting proteins will be brought forth in an attempt to understand both the activation of the PI3K-Akt pathway and the connections with other parallel oncogenic pathways. The understanding of the interplay between the modulators of the PI3K-Akt pathway in cancer should eventually lead to the design of therapeutic approaches with increased efficacy in the clinic.
Collapse
|
176
|
Ryuda M, Tsuzuki S, Matsumoto H, Oda Y, Tanimura T, Hayakawa Y. Identification of a novel gene, anorexia, regulating feeding activity via insulin signaling in Drosophila melanogaster. J Biol Chem 2011; 286:38417-38426. [PMID: 21917925 DOI: 10.1074/jbc.m111.267344] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Feeding activities of animals, including insects, are influenced by various signals from the external environment, internal energy status, and physiological conditions. Full understanding of how such signals are integrated to regulate feeding activities has, however, been hampered by a lack of knowledge about the genes involved. Here, we identified an anorexic Drosophila melanogaster mutant (GS1189) in which the expression of a newly identified gene, Anorexia (Anox), is mutated. In Drosophila larvae, Anox encodes an acyl-CoA binding protein with an ankyrin repeat domain that is expressed in the cephalic chemosensory organs and various neurons in the central nervous system (CNS). Loss of its expression or disturbance of neural transmission in Anox-expressing cells decreased feeding activity. Conversely, overexpression of Anox in the CNS increased food intake. We further found that Anox regulates expression of the insulin receptor gene (dInR); overexpression and knockdown of Anox in the CNS, respectively, elevated and repressed dInR expression, which altered larval feeding activity in parallel with Anox expression levels. Anox mutant adults also showed significant repression of sugar-induced nerve responses and feeding potencies. Although Anox expression levels did not depend on the fasting and feeding states cycle, stressors such as high temperature and desiccation significantly repressed its expression levels. These results strongly suggest that Anox is essential for gustatory sensation and food intake of Drosophila through regulation of the insulin signaling activity that is directly regulated by internal nutrition status. Therefore, the mutant strain lacking Anox expression cannot enhance feeding potencies even under starvation.
Collapse
Affiliation(s)
- Masasuke Ryuda
- Department of Applied Biological Sciences, Saga University, Saga 840-8502, Japan
| | - Seiji Tsuzuki
- Department of Applied Biological Sciences, Saga University, Saga 840-8502, Japan
| | - Hitoshi Matsumoto
- Department of Applied Biological Sciences, Saga University, Saga 840-8502, Japan
| | - Yasunori Oda
- Department of Applied Biological Sciences, Saga University, Saga 840-8502, Japan
| | - Teiichi Tanimura
- Department of Biology, Graduate School of Sciences, Kyushu University, Hakozaki 812-8581, Japan
| | - Yoichi Hayakawa
- Department of Applied Biological Sciences, Saga University, Saga 840-8502, Japan.
| |
Collapse
|
177
|
Storelli G, Defaye A, Erkosar B, Hols P, Royet J, Leulier F. Lactobacillus plantarum promotes Drosophila systemic growth by modulating hormonal signals through TOR-dependent nutrient sensing. Cell Metab 2011; 14:403-14. [PMID: 21907145 DOI: 10.1016/j.cmet.2011.07.012] [Citation(s) in RCA: 563] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 06/24/2011] [Accepted: 07/14/2011] [Indexed: 02/08/2023]
Abstract
There is growing evidence that intestinal bacteria are important beneficial partners of their metazoan hosts. Recent observations suggest a strong link between commensal bacteria, host energy metabolism, and metabolic diseases such as diabetes and obesity. As a consequence, the gut microbiota is now considered a "host" factor that influences energy uptake. However, the impact of intestinal bacteria on other systemic physiological parameters still remains unclear. Here, we demonstrate that Drosophila microbiota promotes larval growth upon nutrient scarcity. We reveal that Lactobacillus plantarum, a commensal bacterium of the Drosophila intestine, is sufficient on its own to recapitulate the natural microbiota growth-promoting effect. L. plantarum exerts its benefit by acting genetically upstream of the TOR-dependent host nutrient sensing system controlling hormonal growth signaling. Our results indicate that the intestinal microbiota should also be envisaged as a factor that influences the systemic growth of its host.
Collapse
Affiliation(s)
- Gilles Storelli
- Institut de Biologie du Développement de Marseille-Luminy, CNRS UMR 6216/Aix-Marseille Universités, 13288 Marseille, France
| | | | | | | | | | | |
Collapse
|
178
|
Yang JY, Hung MC. Deciphering the role of forkhead transcription factors in cancer therapy. Curr Drug Targets 2011; 12:1284-90. [PMID: 21443462 PMCID: PMC3149891 DOI: 10.2174/138945011796150299] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 06/15/2010] [Indexed: 01/28/2023]
Abstract
Forkhead O transcription factors (FOXO) are critical for the regulation of cell cycle arrest, cell death, and DNA damage repair. Inactivation of FOXO proteins may be associated with tumorigenesis, including breast cancer, prostate cancer, glioblastoma, rhabdomyosarcoma, and leukemia. Accumulated evidence shows that activation of oncogenic pathways such as phosphoinositide-3-kinase/AKT/IKK or RAS/mitogen-activated protein kinase suppresses FOXO transcriptional activity through the phosphorylation of FOXOs at different sites that ultimately leads to nuclear exclusion and degradation of FOXOs. In addition, posttranslational modifications of FOXOs such as acetylation, methylation and ubiquitination also contribute to modulating FOXO3a functions. Several anti-cancer drugs like paclitaxel, imatinib, and doxorubicin activate FOXO3a by counteracting those oncogenic pathways which restrain FOXOs functions. In this review, we will illustrate the regulation of FOXOs and reveal potential therapeutics that target FOXOs for cancer treatment.
Collapse
Affiliation(s)
- Jer-Yen Yang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
- Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan, 40447
- Graduate Institute of Cancer Biology, China Medical University, Taichung, Taiwan, 40402
| |
Collapse
|
179
|
Alic N, Andrews TD, Giannakou ME, Papatheodorou I, Slack C, Hoddinott MP, Cochemé HM, Schuster EF, Thornton JM, Partridge L. Genome-wide dFOXO targets and topology of the transcriptomic response to stress and insulin signalling. Mol Syst Biol 2011; 7:502. [PMID: 21694719 PMCID: PMC3159968 DOI: 10.1038/msb.2011.36] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Accepted: 05/17/2011] [Indexed: 01/15/2023] Open
Abstract
FoxO transcription factors, inhibited by insulin/insulin-like growth factor signalling (IIS), are crucial players in numerous organismal processes including lifespan. Using genomic tools, we uncover over 700 direct dFOXO targets in adult female Drosophila. dFOXO is directly required for transcription of several IIS components and interacting pathways, such as TOR, in the wild-type fly. The genomic locations occupied by dFOXO in adults are different from those observed in larvae or cultured cells. These locations remain unchanged upon activation by stresses or reduced IIS, but the binding is increased and additional targets activated upon genetic reduction in IIS. We identify the part of the IIS transcriptional response directly controlled by dFOXO and the indirect effects and show that parts of the transcriptional response to IIS reduction do not require dfoxo. Promoter analyses revealed GATA and other forkhead factors as candidate mediators of the indirect and dfoxo-independent effects. We demonstrate genome-wide evolutionary conservation of dFOXO targets between the fly and the worm Caenorhabditis elegans, enriched for a second tier of regulators including the dHR96/daf-12 nuclear hormone receptor.
Collapse
Affiliation(s)
- Nazif Alic
- Institute of Healthy Ageing, and GEE, University College London, London, UK
| | - T Daniel Andrews
- EMBL—European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Maria E Giannakou
- Institute of Healthy Ageing, and GEE, University College London, London, UK
| | - Irene Papatheodorou
- Institute of Healthy Ageing, and GEE, University College London, London, UK
- EMBL—European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Cathy Slack
- Institute of Healthy Ageing, and GEE, University College London, London, UK
| | - Matthew P Hoddinott
- Institute of Healthy Ageing, and GEE, University College London, London, UK
- Max-Planck Institute for the Biology of Ageing, ZMMK Forschungsgebäude, Köln, Germany
| | - Helena M Cochemé
- Institute of Healthy Ageing, and GEE, University College London, London, UK
| | - Eugene F Schuster
- Institute of Healthy Ageing, and GEE, University College London, London, UK
| | - Janet M Thornton
- EMBL—European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Linda Partridge
- Institute of Healthy Ageing, and GEE, University College London, London, UK
- Max-Planck Institute for the Biology of Ageing, ZMMK Forschungsgebäude, Köln, Germany
| |
Collapse
|
180
|
Rosa SC, Rufino AT, Judas F, Tenreiro C, Lopes MC, Mendes AF. Expression and function of the insulin receptor in normal and osteoarthritic human chondrocytes: modulation of anabolic gene expression, glucose transport and GLUT-1 content by insulin. Osteoarthritis Cartilage 2011; 19:719-27. [PMID: 21324373 DOI: 10.1016/j.joca.2011.02.004] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 02/01/2011] [Accepted: 02/02/2011] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Chondrocytes respond to insulin, but the presence and role of the specific high affinity insulin receptor (InsR) has never been demonstrated. This study determined whether human chondrocytes express the InsR and compared its abundance and function in normal and osteoarthritis (OA) human chondrocytes. DESIGN Cartilage sections were immunostained for detection of the InsR. Non-proliferating chondrocyte cultures from normal and OA human cartilage were treated with 1nM or 10nM insulin for various periods. InsR, insulin-like growth factor receptor (IGFR), aggrecan and collagen II mRNA levels were assessed by real time RT-PCR. InsR, glucose transporter (GLUT)-1, phospho-InsRbeta and phospho-Akt were evaluated by western blot and immunofluorescence. Glucose transport was measured as the uptake of [3H]-2-Deoxy-d-Glucose (2-DG). RESULTS Chondrocytes staining positively for the InsR were scattered throughout the articular cartilage. The mRNA and protein levels of the InsR in OA chondrocytes were approximately 33% and 45%, respectively, of those found in normal chondrocytes. Insulin induced the phosphorylation of the InsRbeta subunit. Akt phosphorylation and 2-DG uptake increased more intensely in normal than OA chondrocytes. Collagen II mRNA expression increased similarly in normal and OA chondrocytes while aggrecan expression remained unchanged. The Phosphoinositol-3 Kinase (PI3K)/Akt pathway was required for both basal and insulin-induced collagen II expression. CONCLUSIONS Human chondrocytes express functional InsR that respond to physiologic insulin concentrations. The InsR seems to be more abundant in normal than in OA chondrocytes, but these still respond to physiologic insulin concentrations, although some responses are impaired while others appear fully activated. Understanding the mechanisms that regulate the expression and function of the InsR in normal and OA chondrocytes can disclose new targets for the development of innovative therapies for OA.
Collapse
Affiliation(s)
- S C Rosa
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | | | | | | | | | | |
Collapse
|
181
|
Schiesari L, Kyriacou CP, Costa R. The hormonal and circadian basis for insect photoperiodic timing. FEBS Lett 2011; 585:1450-60. [PMID: 21354417 DOI: 10.1016/j.febslet.2011.02.026] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 02/07/2011] [Accepted: 02/21/2011] [Indexed: 01/17/2023]
Abstract
Daylength perception in temperate zones is a critical feature of insect life histories, and leads to developmental changes for resisting unfavourable seasons. The role of the neuroendocrine axis in the photoperiodic response of insects is discussed in relation to the key organs and molecules that are involved. We also discuss the controversial issue of the possible involvement of the circadian clock in photoperiodicity. Drosophila melanogaster has a shallow photoperiodic response that leads to reproductive arrest in adults, yet the unrivalled molecular genetic toolkit available for this model insect should allow the systematic molecular and neurobiological dissection of this complex phenotype.
Collapse
|
182
|
Söderberg JAE, Birse RT, Nässel DR. Insulin production and signaling in renal tubules of Drosophila is under control of tachykinin-related peptide and regulates stress resistance. PLoS One 2011; 6:e19866. [PMID: 21572965 PMCID: PMC3091884 DOI: 10.1371/journal.pone.0019866] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Accepted: 04/12/2011] [Indexed: 12/18/2022] Open
Abstract
The insulin-signaling pathway is evolutionarily conserved in animals and regulates growth, reproduction, metabolic homeostasis, stress resistance and life span. In Drosophila seven insulin-like peptides (DILP1-7) are known, some of which are produced in the brain, others in fat body or intestine. Here we show that DILP5 is expressed in principal cells of the renal tubules of Drosophila and affects survival at stress. Renal (Malpighian) tubules regulate water and ion homeostasis, but also play roles in immune responses and oxidative stress. We investigated the control of DILP5 signaling in the renal tubules by Drosophila tachykinin peptide (DTK) and its receptor DTKR during desiccative, nutritional and oxidative stress. The DILP5 levels in principal cells of the tubules are affected by stress and manipulations of DTKR expression in the same cells. Targeted knockdown of DTKR, DILP5 and the insulin receptor dInR in principal cells or mutation of Dilp5 resulted in increased survival at either stress, whereas over-expression of these components produced the opposite phenotype. Thus, stress seems to induce hormonal release of DTK that acts on the renal tubules to regulate DILP5 signaling. Manipulations of S6 kinase and superoxide dismutase (SOD2) in principal cells also affect survival at stress, suggesting that DILP5 acts locally on tubules, possibly in oxidative stress regulation. Our findings are the first to demonstrate DILP signaling originating in the renal tubules and that this signaling is under control of stress-induced release of peptide hormone.
Collapse
Affiliation(s)
| | - Ryan T. Birse
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Dick R. Nässel
- Department of Zoology, Stockholm University, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
183
|
Kloet DEA, Burgering BMT. The PKB/FOXO switch in aging and cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:1926-37. [PMID: 21539865 DOI: 10.1016/j.bbamcr.2011.04.003] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 03/01/2011] [Accepted: 04/13/2011] [Indexed: 12/23/2022]
Abstract
Aging is characterized by the general decline in tissue and body function and the increased susceptibility to age-related pathologies, such as cancer. To maintain optimal tissue and body function, organisms have developed complex mechanisms for tissue homeostasis. Importantly, it is becoming apparent that these same mechanisms when deregulated also result in the development of age-related disease. The build in fail safe mechanisms of homeostasis, which prevent skewing toward disease, themselves contribute to aspects of aging. Thus, longevity is limited by an intrinsic trade-off between optimal tissue function and disease. Consequently, aging and age-related diseases, such as cancer and diabetes are driven by the same genetic determinants. Illustrative in this respect is the insulin/IGF-1 signaling pathway acting through PI3K/PKB and FOXO. Loss of PKB signaling contributes to diabetes, whereas gain of function of PKB drives cancer. Enhanced FOXO activity, at least in model organism contributes to extended lifespan and acts as a tumor suppressive mechanism. Here, we focus on the linkage between PKB and FOXO as a central switch in contributing to tissue homeostasis and age-related diseases in particular cancer. This article is part of a Special Issue entitled: P13K-AKT-FoxO axis in cancer and aging.
Collapse
Affiliation(s)
- David E A Kloet
- Medical Cancer Research, University Medical Center Utrecht, The Netherlands
| | | |
Collapse
|
184
|
Jordan SD, Krüger M, Willmes DM, Redemann N, Wunderlich FT, Brönneke HS, Merkwirth C, Kashkar H, Olkkonen VM, Böttger T, Braun T, Seibler J, Brüning JC. Obesity-induced overexpression of miRNA-143 inhibits insulin-stimulated AKT activation and impairs glucose metabolism. Nat Cell Biol 2011; 13:434-46. [PMID: 21441927 DOI: 10.1038/ncb2211] [Citation(s) in RCA: 422] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Accepted: 01/11/2011] [Indexed: 02/07/2023]
Abstract
The contribution of altered post-transcriptional gene silencing to the development of insulin resistance and type 2 diabetes mellitus so far remains elusive. Here, we demonstrate that expression of microRNA (miR)-143 and 145 is upregulated in the liver of genetic and dietary mouse models of obesity. Induced transgenic overexpression of miR-143, but not miR-145, impairs insulin-stimulated AKT activation and glucose homeostasis. Conversely, mice deficient for the miR-143-145 cluster are protected from the development of obesity-associated insulin resistance. Quantitative-mass-spectrometry-based analysis of hepatic protein expression in miR-143-overexpressing mice revealed miR-143-dependent downregulation of oxysterol-binding-protein-related protein (ORP) 8. Reduced ORP8 expression in cultured liver cells impairs the ability of insulin to induce AKT activation, revealing an ORP8-dependent mechanism of AKT regulation. Our experiments provide direct evidence that dysregulated post-transcriptional gene silencing contributes to the development of obesity-induced insulin resistance, and characterize the miR-143-ORP8 pathway as a potential target for the treatment of obesity-associated diabetes.
Collapse
Affiliation(s)
- Sabine D Jordan
- Department of Mouse Genetics and Metabolism, Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, University Hospital Cologne, Max Planck Institute for Neurological Research, Zülpicher Strasse 47, D-50674 Cologne, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
185
|
Obesity-induced overexpression of miRNA-143 inhibits insulin-stimulated AKT activation and impairs glucose metabolism. Nat Cell Biol 2011. [PMID: 21441927 DOI: 10.1038/ncb2211;] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The contribution of altered post-transcriptional gene silencing to the development of insulin resistance and type 2 diabetes mellitus so far remains elusive. Here, we demonstrate that expression of microRNA (miR)-143 and 145 is upregulated in the liver of genetic and dietary mouse models of obesity. Induced transgenic overexpression of miR-143, but not miR-145, impairs insulin-stimulated AKT activation and glucose homeostasis. Conversely, mice deficient for the miR-143-145 cluster are protected from the development of obesity-associated insulin resistance. Quantitative-mass-spectrometry-based analysis of hepatic protein expression in miR-143-overexpressing mice revealed miR-143-dependent downregulation of oxysterol-binding-protein-related protein (ORP) 8. Reduced ORP8 expression in cultured liver cells impairs the ability of insulin to induce AKT activation, revealing an ORP8-dependent mechanism of AKT regulation. Our experiments provide direct evidence that dysregulated post-transcriptional gene silencing contributes to the development of obesity-induced insulin resistance, and characterize the miR-143-ORP8 pathway as a potential target for the treatment of obesity-associated diabetes.
Collapse
|
186
|
Schuster E, McElwee JJ, Tullet JMA, Doonan R, Matthijssens F, Reece-Hoyes JS, Hope IA, Vanfleteren JR, Thornton JM, Gems D. DamID in C. elegans reveals longevity-associated targets of DAF-16/FoxO. Mol Syst Biol 2011; 6:399. [PMID: 20706209 PMCID: PMC2950082 DOI: 10.1038/msb.2010.54] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Accepted: 06/15/2010] [Indexed: 11/09/2022] Open
Abstract
Insulin/IGF-1 signaling controls metabolism, stress resistance and aging in Caenorhabditis elegans by regulating the activity of the DAF-16/FoxO transcription factor (TF). However, the function of DAF-16 and the topology of the transcriptional network that it crowns remain unclear. Using chromatin profiling by DNA adenine methyltransferase identification (DamID), we identified 907 genes that are bound by DAF-16. These were enriched for genes showing DAF-16-dependent upregulation in long-lived daf-2 insulin/IGF-1 receptor mutants (P=1.4e−11). Cross-referencing DAF-16 targets with these upregulated genes (daf-2 versus daf-16; daf-2) identified 65 genes that were DAF-16 regulatory targets. These 65 were enriched for signaling genes, including known determinants of longevity, but not for genes specifying somatic maintenance functions (e.g. detoxification, repair). This suggests that DAF-16 acts within a relatively small transcriptional subnetwork activating (but not suppressing) other regulators of stress resistance and aging, rather than directly regulating terminal effectors of longevity. For most genes bound by DAF-16∷DAM, transcriptional regulation by DAF-16 was not detected, perhaps reflecting transcriptionally non-functional TF ‘parking sites'. This study demonstrates the efficacy of DamID for chromatin profiling in C. elegans.
Collapse
Affiliation(s)
- Eugene Schuster
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
187
|
Puig O, Mattila J. Understanding Forkhead box class O function: lessons from Drosophila melanogaster. Antioxid Redox Signal 2011; 14:635-47. [PMID: 20618068 DOI: 10.1089/ars.2010.3407] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Drosophila melanogaster is one of the most widely used model organisms. About 77% of known human disease genes have an ortholog in Drosophila, and many of the cellular signaling pathways are common between fruit flies and mammals. For example, a key signaling pathway in the regulation of growth and metabolism, the insulin/insulin-like growth factor 1 signaling pathway, is well conserved between flies and humans. Downstream effectors of this pathway are the Forkhead box class O (FOXO) family of transcription factors, with four members in mammals and a single FOXO protein in Drosophila, dFOXO. Research in Drosophila has been critical to elucidate the molecular mechanisms by which FOXO transcription factors regulate insulin signaling. In this review, we summarize the studies leading to dFOXO identification and its characterization as a central regulator of metabolism, life span, cell cycle, growth, and stress resistance.
Collapse
Affiliation(s)
- Oscar Puig
- Molecular Profiling Research Informatics, Merck Research Laboratories, Rahway, New Jersey 07065, USA.
| | | |
Collapse
|
188
|
Abstract
The evolutionarily conserved Forkhead box O (FOXO) family of transcription factors regulates multiple transcriptional targets involved in various cellular processes, including proliferation, stress resistance, apoptosis, and metabolism. Target gene regulation appears to be controlled in a cell-type-specific manner due to association of FOXO isoforms with specific cofactors. Many of the cellular processes modulated by FOXO are themselves deregulated in tumorigenesis, and deletion of Foxo genes has demonstrated that these transcription factors function as tumor suppressors. Our understanding of the regulation of FOXO activity, and defining specific transcriptional targets, may provide clues to the molecular mechanisms controlling cell fate decisions. In this review we describe the functional consequences of FOXO activation based on our current knowledge of transcriptional targets.
Collapse
Affiliation(s)
- Kristan E van der Vos
- Molecular Immunology Lab, Department of Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | |
Collapse
|
189
|
Abstract
Forkhead box O (FOXO) transcription factors are at the center of an emerging paradigm that links longevity, cell fate, and tumor development. Key to these processes is the ability of FOXO to regulate, and be regulated by, oxidative stress. Perturbation of the mechanisms that tightly couple reactive oxygen species (ROS) production, oxidative stress signaling, and FOXO activity to the subsequent cellular response is a pivotal step in cancer development and progression. Consequently, the ROS-FOXO pathway is a major therapeutic target in cancer, not only as it mediates the cellular response to chemotherapy, but also because it underpins drug resistance. As the intimate and reciprocal relation between FOXO and ROS is being unravelled, new opportunities arise to develop more-effective cancer treatments that circumvent resistance to the conventional cytotoxic drugs.
Collapse
Affiliation(s)
- Stephen S Myatt
- Cancer Research-UK Labs, Department of Surgery and Cancer, Imperial College London, Hammersmith Campus, London, England, United Kingdom
| | | | | |
Collapse
|
190
|
Cheng Z, White MF. Targeting Forkhead box O1 from the concept to metabolic diseases: lessons from mouse models. Antioxid Redox Signal 2011; 14:649-61. [PMID: 20615072 PMCID: PMC3025764 DOI: 10.1089/ars.2010.3370] [Citation(s) in RCA: 159] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Forkhead box O (FOXO) transcription factors have been implicated in regulating the metabolism, cellular proliferation, stress resistance, apoptosis, and longevity. Through the insulin receptor substrate → phosphoinositide 3-kinase → Akt signal cascade, FOXO integrates insulin action with the systemic nutrient and energy homeostasis. Activation of FOXO1 in liver induces gluconeogenesis via phosphoenolpyruvate carboxykinase (PEPCK)/glucose 6-phosphate pathway, and disrupts mitochondrial metabolism and lipid metabolism via heme oxygenase 1/sirtuin 1/Ppargc1α pathway. In skeletal muscle, FOXO1 activation underpins the carbohydrate/lipid switch during fasting state. Inhibition of FOXO1 under physiological conditions accounts for maintenance of skeletal muscle mass/function and adipose differentiation. In pancreatic β-cells, nuclear translocation of FOXO1 antagonizes pancreatic and duodenal homeobox 1 and attenuates β-cells proliferation and insulin secretion. Regardless, FOXO1 promotes the proliferation of β-cells through induction of Cyclin D1 in low nutrition, and elicits antioxidant mechanism to protect against β-cell failure during oxidative insults. In the brain, FOXO1 controls food intake through transcriptional regulation of the orexigenic neuropeptide Y, agouti-related protein, and carboxypeptidase E. In this article, we review the role of FOXO1 in the regulation of metabolism and energy expenditure based on recent findings from mouse models, and discuss the therapeutic value of targeting FOXO1 in metabolic diseases.
Collapse
Affiliation(s)
- Zhiyong Cheng
- Division of Endocrinology, Howard Hughes Medical Institute, Harvard Medical School, Children's Hospital Boston, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
191
|
Abstract
Globally, developed nations spend a significant amount of their resources on health care initiatives that poorly translate into increased population life expectancy. As an example, the United States devotes 16% of its gross domestic product to health care, the highest level in the world, but falls behind other nations that enjoy greater individual life expectancy. These observations point to the need for pioneering avenues of drug discovery to increase life span with controlled costs. In particular, innovative drug development for metabolic disorders such as diabetes mellitus becomes increasingly critical given that the number of diabetic people will increase exponentially over the next 20 years. This article discusses the elucidation and targeting of novel cellular pathways that are intimately tied to oxidative stress in diabetes mellitus for new treatment strategies. Pathways that involve wingless, β-nicotinamide adenine dinucleotide (NAD(+)) precursors, and cytokines govern complex biological pathways that determine both cell survival and longevity during diabetes mellitus and its complications. Furthermore, the role of these entities as biomarkers for disease can further enhance their utility irrespective of their treatment potential. Greater understanding of the intricacies of these unique cellular mechanisms will shape future drug discovery for diabetes mellitus to provide focused clinical care with limited or absent long-term complications.
Collapse
Affiliation(s)
- Kenneth Maiese
- Department of Neurology, 8C-1 UHC, Wayne State University School of Medicine, 4201 St. Antoine, Detroit, MI 48201, USA.
| | | | | | | |
Collapse
|
192
|
Maiese K, Hou J, Chong ZZ, Shang YC. A fork in the path: Developing therapeutic inroads with FoxO proteins. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2011; 2:119-29. [PMID: 20592766 PMCID: PMC2763237 DOI: 10.4161/oxim.2.3.8916] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Revised: 04/23/2009] [Accepted: 04/27/2009] [Indexed: 12/13/2022]
Abstract
Advances in clinical care for disorders involving any system of the body necessitates novel therapeutic strategies that can focus upon the modulation of cellular proliferation, metabolism, inflammation and longevity. In this respect, members of the mammalian forkhead transcription factors of the O class (FoxOs) that include FoxO1, FoxO3, FoxO4 and FoxO6 are increasingly being recognized as exciting prospects for multiple disorders. These transcription factors govern development, proliferation, survival and longevity during multiple cellular environments that can involve oxidative stress. Furthermore, these transcription factors are closely integrated with several novel signal transduction pathways, such as erythropoietin and Wnt proteins, that may influence the ability of FoxOs to act as a “double-edge sword” to sometimes promote cell survival, but at other times lead to cell injury. Here we discuss the fascinating but complex role of FoxOs during cellular injury and oxidative stress, progenitor cell development, fertility, angiogenesis, cardiovascular function, cellular metabolism and diabetes, cell longevity, immune surveillance and cancer.
Collapse
Affiliation(s)
- Kenneth Maiese
- Division of Cellular and Molecular Cerebral Ischemia, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | | | | | | |
Collapse
|
193
|
Chandarlapaty S, Sawai A, Scaltriti M, Rodrik-Outmezguine V, Grbovic-Huezo O, Serra V, Majumder PK, Baselga J, Rosen N. AKT inhibition relieves feedback suppression of receptor tyrosine kinase expression and activity. Cancer Cell 2011; 19:58-71. [PMID: 21215704 PMCID: PMC3025058 DOI: 10.1016/j.ccr.2010.10.031] [Citation(s) in RCA: 793] [Impact Index Per Article: 56.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2010] [Revised: 07/16/2010] [Accepted: 10/14/2010] [Indexed: 11/26/2022]
Abstract
Activation of the PI3K-AKT pathway in tumors is modulated by negative feedback, including mTORC1-mediated inhibition of upstream signaling. We now show that AKT inhibition induces the expression and phosphorylation of multiple receptor tyrosine kinases (RTKs). In a wide spectrum of tumor types, inhibition of AKT induces a conserved set of RTKs, including HER3, IGF-1R, and insulin receptor. This is in part due to mTORC1 inhibition and in part secondary to a FOXO-dependent activation of receptor expression. PI3K-AKT inhibitors relieve this feedback and activate RTK signaling; this may attenuate their antitumor activity. Consistent with this model, we find that, in tumors in which AKT suppresses HER3 expression, combined inhibition of AKT and HER kinase activity is more effective than either alone.
Collapse
MESH Headings
- Animals
- Benzylamines/pharmacology
- Benzylamines/therapeutic use
- Breast Neoplasms/drug therapy
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/pathology
- Cell Line, Tumor
- Drug Therapy, Combination
- Feedback, Physiological/drug effects
- Feedback, Physiological/physiology
- Female
- Forkhead Transcription Factors/antagonists & inhibitors
- Forkhead Transcription Factors/genetics
- Forkhead Transcription Factors/metabolism
- Gefitinib
- Gene Expression/drug effects
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Expression Regulation, Neoplastic/physiology
- Humans
- Lapatinib
- Mechanistic Target of Rapamycin Complex 1
- Mice
- Mice, Nude
- Models, Biological
- Multiprotein Complexes
- Neoplasms/metabolism
- Phosphorylation/drug effects
- Promoter Regions, Genetic/genetics
- Protein Binding/drug effects
- Protein Binding/genetics
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Proteins/antagonists & inhibitors
- Proto-Oncogene Proteins c-akt/antagonists & inhibitors
- Proto-Oncogene Proteins c-akt/genetics
- Proto-Oncogene Proteins c-akt/metabolism
- Quinazolines/pharmacology
- Quinazolines/therapeutic use
- Quinoxalines/pharmacology
- Quinoxalines/therapeutic use
- RNA, Small Interfering/genetics
- Receptor Protein-Tyrosine Kinases/antagonists & inhibitors
- Receptor Protein-Tyrosine Kinases/genetics
- Receptor Protein-Tyrosine Kinases/metabolism
- Receptor, ErbB-2/antagonists & inhibitors
- Receptor, ErbB-2/metabolism
- Receptor, ErbB-3/genetics
- Receptor, ErbB-3/metabolism
- Receptor, IGF Type 1/genetics
- Receptor, IGF Type 1/metabolism
- Receptor, Insulin/genetics
- Receptor, Insulin/metabolism
- Signal Transduction/drug effects
- Signal Transduction/physiology
- TOR Serine-Threonine Kinases
- Up-Regulation/genetics
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Sarat Chandarlapaty
- Program in Molecular Pharmacology, Memorial Sloan-Kettering Cancer Center (MSKCC), New York, NY, USA
- Department of Medicine, MSKCC, New York, NY, USA
| | - Ayana Sawai
- Program in Molecular Pharmacology, Memorial Sloan-Kettering Cancer Center (MSKCC), New York, NY, USA
| | | | | | - Olivera Grbovic-Huezo
- Program in Molecular Pharmacology, Memorial Sloan-Kettering Cancer Center (MSKCC), New York, NY, USA
| | - Violeta Serra
- Vall d’Hebron University Hospital Research Institute, Barcelona, Spain
| | | | - Jose Baselga
- Vall d’Hebron University Hospital Research Institute, Barcelona, Spain
| | - Neal Rosen
- Program in Molecular Pharmacology, Memorial Sloan-Kettering Cancer Center (MSKCC), New York, NY, USA
- Department of Medicine, MSKCC, New York, NY, USA
| |
Collapse
|
194
|
Sykiotis GP, Habeos IG, Samuelson AV, Bohmann D. The role of the antioxidant and longevity-promoting Nrf2 pathway in metabolic regulation. Curr Opin Clin Nutr Metab Care 2011; 14:41-8. [PMID: 21102319 PMCID: PMC3092636 DOI: 10.1097/mco.0b013e32834136f2] [Citation(s) in RCA: 170] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
PURPOSE OF REVIEW The vertebrate cap'n'collar family transcription factor Nrf2 and its invertebrate homologues SKN-1 (in worms) and CncC (in flies) function as master mediators of antioxidant and detoxification responses and regulators of the cellular redox state. Nrf2 controls gene expression programs that defend various tissues against diverse electrophilic stressors and oxidative insults, thus protecting the organism from disorders that are caused or exacerbated by such stresses. Moreover, studies on model organisms implicate the Nrf2 pathway in the prevention of aging-related diseases and suggest that SKN-1-regulated and CncC-regulated gene expression can promote longevity. These facets of Nrf2 signaling have been thoroughly reviewed. This article discusses another aspect of the Nrf2 pathway's function that has not yet received the same degree of attention, but emerges as a topic of increasing interest and potential clinical impact: its role in metabolic regulation and its interaction with central signaling systems that respond to nutritional inputs. RECENT FINDINGS Recent evidence identifies Nrf2 signaling as a mediator of the salutary effects of caloric restriction. Nrf2 signaling also crosstalks with metabolic signaling systems such as the insulin/Akt pathway as well as with the metabolism of lipids. Moreover, Nrf2 has a protective role in models of diabetic nephropathy. SUMMARY The emerging role of Nrf2 as an effector of metabolic and longevity signals offers new therapeutic perspectives. The potential impact of pharmacological manipulation of Nrf2 signaling as a strategy for the prevention and treatment of metabolic disease can be envisioned.
Collapse
Affiliation(s)
- Gerasimos P Sykiotis
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, New York, USA
| | | | | | | |
Collapse
|
195
|
Alvarez-Ponce D, Aguadé M, Rozas J. Comparative genomics of the vertebrate insulin/TOR signal transduction pathway: a network-level analysis of selective pressures. Genome Biol Evol 2010; 3:87-101. [PMID: 21149867 PMCID: PMC3030423 DOI: 10.1093/gbe/evq084] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Complexity of biological function relies on large networks of interacting molecules. However, the evolutionary properties of these networks are not fully understood. It has been shown that selective pressures depend on the position of genes in the network. We have previously shown that in the Drosophila insulin/target of rapamycin (TOR) signal transduction pathway there is a correlation between the pathway position and the strength of purifying selection, with the downstream genes being most constrained. In this study, we investigated the evolutionary dynamics of this well-characterized pathway in vertebrates. More specifically, we determined the impact of natural selection on the evolution of 72 genes of this pathway. We found that in vertebrates there is a similar gradient of selective constraint in the insulin/TOR pathway to that found in Drosophila. This feature is neither the result of a polarity in the impact of positive selection nor of a series of factors affecting selective constraint levels (gene expression level and breadth, codon bias, protein length, and connectivity). We also found that pathway genes encoding physically interacting proteins tend to evolve under similar selective constraints. The results indicate that the architecture of the vertebrate insulin/TOR pathway constrains the molecular evolution of its components. Therefore, the polarity detected in Drosophila is neither specific nor incidental of this genus. Hence, although the underlying biological mechanisms remain unclear, these may be similar in both vertebrates and Drosophila.
Collapse
Affiliation(s)
- David Alvarez-Ponce
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | | | | |
Collapse
|
196
|
Liu Y, Zhou S, Ma L, Tian L, Wang S, Sheng Z, Jiang RJ, Bendena WG, Li S. Transcriptional regulation of the insulin signaling pathway genes by starvation and 20-hydroxyecdysone in the Bombyx fat body. JOURNAL OF INSECT PHYSIOLOGY 2010; 56:1436-1444. [PMID: 20197069 DOI: 10.1016/j.jinsphys.2010.02.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 02/12/2010] [Accepted: 02/12/2010] [Indexed: 05/28/2023]
Abstract
Genetic studies in the fruitfly, Drosophila melanogaster, have uncovered a conserved insulin/insulin growth factor signaling (IIS) pathway that regulates nutrition-dependent growth rates of insects. From the silkworm, Bombyx mori, we have identified and characterized several key genes involved in the IIS pathway, including InR, IRS, PI3K110, PI3K60, PTEN, PDK, and Akt. Tissue distribution analysis showed that most of these genes were highly expressed in the fat body implying that the IIS pathway is functionally important within insect adipose tissue. Developmental profile studies revealed that the expression levels of InR, IRS, PI3K110, and PDK were elevated in the fat body during molting and pupation, periods when animals ceased feeding and hemolymph levels of 20-hydroxyecdysone (20E) were high. Starvation rapidly up-regulated the mRNA levels of these same genes in the fat body, while 20E slowly induced their transcription. We conclude that 20E slowly reduces food consumption and then indirectly induces a state of starvation resulting in the elevation of the mRNA levels of InR, IRS, PI3K110, and PDK in the Bombyx fat body during molting and pupation.
Collapse
Affiliation(s)
- Yan Liu
- Key Laboratory of Insect Developmental Biology and Evolution, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | | | | | | | | | | | | | | | | |
Collapse
|
197
|
van Heemst D. Insulin, IGF-1 and longevity. Aging Dis 2010; 1:147-157. [PMID: 22396862 PMCID: PMC3295030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 08/23/2010] [Accepted: 08/24/2010] [Indexed: 05/31/2023] Open
Abstract
It has been demonstrated in invertebrate species that the evolutionarily conserved insulin and insulin-like growth factor (IGF) signaling (IIS) pathway plays a major role in the control of longevity. In the roundworm Caenorhabditis elegans, single mutations that diminish insulin/IGF-1 signaling can increase lifespan more than twofold and cause the animal to remain active and youthful much longer than normal. Likewise, substantial increases in lifespan are associated with mutations that reduce insulin/IGF-1 signaling in the fruit fly Drosophila melanogaster. In invertebrates, multiple insulin-like ligands exist that bind to a common single insulin/IGF-1 like receptor. In contrast, in mammals, different receptors exist that bind insulin, IGF-1 and IGF-2 with different affinities. In several mouse models, mutations that are associated with decreased GH/IGF-1 signaling or decreased insulin signaling have been associated with enhanced lifespan. However, the increased complexity of the mammalian insulin/IGF-1 system has made it difficult to separate the roles of insulin, GH and IGF-1 in mammalian longevity. Likewise, the relevance of reduced insulin and IGF-1 signaling in human longevity remains controversial. However, studies on the genetic and metabolic characteristics that are associated with healthy longevity and old age survival suggest that the conserved ancient IIS pathway may also play a role in human longevity.
Collapse
Affiliation(s)
- Diana van Heemst
- Department of Gerontology and Geriatrics, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, the Netherlands
| |
Collapse
|
198
|
Kamagate A, Kim DH, Zhang T, Slusher S, Gramignoli R, Strom SC, Bertera S, Ringquist S, Dong HH. FoxO1 links hepatic insulin action to endoplasmic reticulum stress. Endocrinology 2010; 151:3521-35. [PMID: 20501674 PMCID: PMC2940535 DOI: 10.1210/en.2009-1306] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Accepted: 04/29/2010] [Indexed: 12/15/2022]
Abstract
Forkhead box O1 (FoxO1) is a transcription factor that mediates the inhibitory effect of insulin on target genes in hepatic metabolism. Hepatic FoxO1 activity is up-regulated to promote glucose production during fasting and is suppressed to limit postprandial glucose excursion after meals. Increased FoxO1 activity augments the expression of insulin receptor (IR) and IR substrate (IRS)2, which in turn inhibits FoxO1 activity in response to reduced insulin action. To address the underlying physiology of such a feedback loop for regulating FoxO1 activity, we delivered FoxO1-ADA by adenovirus-mediated gene transfer into livers of adult mice. FoxO1-ADA is a constitutively active allele that is refractory to insulin inhibition, allowing us to determine the metabolic effect of a dislodged FoxO1 feedback loop in mice. We show that hepatic FoxO1-ADA production resulted in significant induction of IR and IRS2 expression. Mice with increased FoxO1-ADA production exhibited near glycogen depletion. Unexpectedly, hepatic FoxO1-ADA production elicited a profound unfolded protein response, culminating in the induction of hepatic glucose-regulated protein 78 (GRP78) expression. These findings were recapitulated in primary human and mouse hepatocytes. FoxO1 targeted GRP78 gene for trans-activation via selective binding to an insulin responsive element in the GRP78 promoter. This effect was counteracted by insulin. Our studies underscore the importance of an IR and IRS2-dependent feedback loop to keep FoxO1 activity in check for maintaining hepatic glycogen homeostasis and promoting adaptive unfolded protein response in response to altered metabolism and insulin action. Excessive FoxO1 activity, resulting from a dislodged FoxO1 feedback loop in insulin resistant liver, is attributable to hepatic endoplasmic reticulum stress and metabolic abnormalities in diabetes.
Collapse
Affiliation(s)
- Adama Kamagate
- Rangos Research Center, Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15224, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
199
|
Villa-Cuesta E, Sage BT, Tatar M. A role for Drosophila dFoxO and dFoxO 5'UTR internal ribosomal entry sites during fasting. PLoS One 2010; 5:e11521. [PMID: 20634900 PMCID: PMC2901383 DOI: 10.1371/journal.pone.0011521] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Accepted: 06/16/2010] [Indexed: 11/18/2022] Open
Abstract
One way animals may cope with nutrient deprivation is to broadly repress translation by inhibiting 5'-cap initiation. However, under these conditions specific proteins remain essential to survival during fasting. Such peptides may be translated through initiation at 5'UTR Internal Ribosome Entry Sites (IRES). Here we show that the Drosophila melanogaster Forkhead box type O (dFoxO) transcription factor is required for adult survival during fasting, and that the 5'UTR of dfoxO has the ability to initiate IRES-mediated translation in cell culture. Previous work has shown that insulin negatively regulates dFoxO through AKT-mediated phosphorylation while dFoxO itself induces transcription of the insulin receptor dInR, which also harbors IRES. Here we report that IRES-mediated translation of both dFoxO and dInR is activated in fasted Drosophila S2 cells at a time when cap-dependent translation is reduced. IRES mediated translation of dFoxO and dInR may be essential to ensure function and sensitivity of the insulin signaling pathway during fasting.
Collapse
Affiliation(s)
- Eugenia Villa-Cuesta
- Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island, United States of America.
| | | | | |
Collapse
|
200
|
Plagemann A, Roepke K, Harder T, Brunn M, Harder A, Wittrock-Staar M, Ziska T, Schellong K, Rodekamp E, Melchior K, Dudenhausen JW. Epigenetic malprogramming of the insulin receptor promoter due to developmental overfeeding. J Perinat Med 2010; 38:393-400. [PMID: 20443665 DOI: 10.1515/jpm.2010.051] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
AIM Prenatal and neonatal overfeeding programs a permanent obesity and diabetes disposition, e.g., due to induction of hypothalamic insulin resistance. We investigated acquired alterations of the DNA methylation pattern of the hypothalamic insulin receptor promoter (IRP) which might be an underlying molecular mechanism. METHODS Neonatal overfeeding was induced by rearing Wistar rats in small litters (SL). Methylation of CpG-dinucleotides of the hypothalamic IRP was mapped using bisulfite sequencing. RESULTS Neonatal overfeeding led to rapid early weight gain, resulting in a metabolic syndrome phenotype, i.e., obesity, hyperleptinemia, hyperglycemia, hyperinsulinemia, and increased insulin/glucose-ratio. The proportion of animals carrying any methylated CpG residue in the 322 bp CpG island of the IRP was increased in neonatally overfed SL rats (n=8), as compared to controls (n=8; P=0.04). Moreover, the mean percentage of methylated CpG positions was also higher in SL rats (P=0.01). Over both groups, neonatal blood glucose levels were positively correlated to the extent of promoter methylation (r=0.52; P=0.04). CONCLUSIONS This study characterizes for the first time the IRP epigenomically in any species and tissue. Our data reveal that the IRP is vulnerable to hypermethylation due to overnutrition, probably especially glucose-dependent in a dose-response manner. This paradigmatically indicates the impact of nutrient-dependent epigenetic malprogramming, leading to a "diabesity" disposition which may become pathogenic throughout life.
Collapse
Affiliation(s)
- Andreas Plagemann
- Division of "Experimental Obstetrics", Clinic of Obstetrics, Charité - University Medicine Berlin, Campus Virchow-Klinikum, Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|