151
|
Phillips LS, Pao CI, Villafuerte BC. Molecular regulation of insulin-like growth factor-I and its principal binding protein, IGFBP-3. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1998; 60:195-265. [PMID: 9594576 DOI: 10.1016/s0079-6603(08)60894-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The insulin-like growth factors (IGFs) have diverse anabolic cellular functions, and structure similar to that of proinsulin. The distribution of IGFs and their receptors in a wide variety of organs and tissues enables the IGFs to exert endocrine, paracrine, and autocrine effects on cell proliferation and differentiation, caloric storage, and skeletal elongation. IGF-I exhibits particular metabolic responsiveness, and circulating IGF-I originates predominantly in the liver. Hepatic IGF-I production is controlled at the level of gene transcription, and transcripts are initiated largely in exon 1. Hepatic IGF-I gene transcription is reduced in conditions of protein malnutrition and diabetes mellitus, and our laboratory has used in vitro transcription to study mechanisms related to diabetes. We find that the presence of sequences downstream from the major transcription initiation sites in exon 1 is necessary for the diabetes-induced decrease in IGF-I transcription. Six nuclear factor binding sites have been identified within the exon 1 downstream region, and footprint sites III and V appear to be necessary for metabolic regulation; region V probes exhibit a decrease in nuclear factor binding with hepatic nuclear extracts from diabetic animals. IGFs in biological fluids are associated with IGF binding proteins, and IGFs circulate as a 150-kDa complex that consists of an IGF, an IGFBP-3, and an acid-labile subunit. Circulating IGFBP-3 originates mainly in hepatic nonparenchymal cells, where IGF-I increases IGFBP-3 mRNA stability, but insulin increases IGFBP-3 gene transcription. Regulation of IGFBP-3 gene transcription by insulin appears to be mediated by an insulin-responsive element, which recognizes insulin-responsive nuclear factors in both gel mobility shift assays and southwestern blots. Studies of mechanisms underlying the modulation of IGF-I and IGFBP-3 gene transcription, and identification of critical nuclear proteins involved, should lead to new understanding of the role and regulation of these important growth factors in diabetes mellitus and other metabolic disorders.
Collapse
Affiliation(s)
- L S Phillips
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | |
Collapse
|
152
|
Bateman E. Autoregulation of eukaryotic transcription factors. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1998; 60:133-68. [PMID: 9594574 DOI: 10.1016/s0079-6603(08)60892-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The structures of several promoters regulating the expression of eukaryotic transcription factors have in recent years been examined. In many cases there is good evidence for autoregulation, in which a given factor binds to its own promoter and either activates or represses transcription. Autoregulation occurs in all eukaryotes and is an important component in controlling expression of basal, cell cycle specific, inducible response and cell type-specific factors. The basal factors are autoregulatory, being strictly necessary for their own expression, and as such must be epigenetically inherited. Autoregulation of stimulus response factors typically serves to amplify cellular signals transiently and also to attenuate the response whether or not a given inducer remains. Cell cycle-specific transcription factors are positively and negatively autoregulatory, but this frequently depends on interlocking circuits among family members. Autoregulation of cell type-specific factors results in a form of cellular memory that can contribute, or define, a determined state. Autoregulation of transcription factors provides a simple circuitry, useful in many cellular circumstances, that does not require the involvement of additional factors, which, in turn, would need to be subject to another hierarchy of regulation. Autoregulation additionally can provide a direct means to sense and control the cellular conce]ntration of a given factor. However, autoregulatory loops are often dependent on cellular pathways that create the circumstances under which autoregulation occurs.
Collapse
Affiliation(s)
- E Bateman
- Department of Microbiology and Molecular Genetics, Markey Center for Molecular Genetics, University of Vermont, Burlington 05405, USA
| |
Collapse
|
153
|
Migliaccio AR, Migliaccio G. The making of an erythroid cell. Molecular control of hematopoiesis. BIOTHERAPY (DORDRECHT, NETHERLANDS) 1998; 10:251-68. [PMID: 9592014 DOI: 10.1007/bf02678546] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The number of circulating red cells is regulated by the daily balance between two processes: the destruction of the old red cells in the liver and the generation of new cells in the bone marrow. The process during which hematopoietic stem cells generate new red cells is called erythropoiesis. This manuscript will describe the molecular mechanisms involved in the process of erythroid differentiation as we understand them today. In particular it will review how erythroid specific growth factor-receptor interactions activate specific transcription factors to turn on the expression of the genes responsible for the establishment of the erythroid phenotype.
Collapse
Affiliation(s)
- A R Migliaccio
- Laboratorio di Biologia Cellulare, Istituto Superiore di Sanitá, Rome, Italy
| | | |
Collapse
|
154
|
Blobel GA, Nakajima T, Eckner R, Montminy M, Orkin SH. CREB-binding protein cooperates with transcription factor GATA-1 and is required for erythroid differentiation. Proc Natl Acad Sci U S A 1998; 95:2061-6. [PMID: 9482838 PMCID: PMC19248 DOI: 10.1073/pnas.95.5.2061] [Citation(s) in RCA: 288] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The transcription factor GATA-1 coordinates multiple events during terminal erythroid cell maturation. GATA-1 participates in the transcription of virtually all erythroid-specific genes, blocks apoptosis of precursor cells, and controls the balance between proliferation and cell cycle arrest. Prior studies suggest that the function of GATA-1 is mediated in part through association with transcriptional cofactors. CREB-binding protein (CBP) and its close relative p300 serve as coactivators for a variety of transcription factors involved in growth control and differentiation. We report here that CBP markedly stimulates GATA-1's transcriptional activity in transient transfection experiments in nonhematopoietic cells. GATA-1 and CBP also coimmunoprecipitate from nuclear extracts of erythroid cells. Interaction mapping pinpoints contact sites to the zinc finger region of GATA-1 and to the E1A-binding region of CBP. Expression of a conditional form of adenovirus E1A in murine erythroleukemia cells blocks differentiation and expression of endogenous GATA-1 target genes, whereas mutant forms of E1A unable to bind CBP/p300 have no effect. Our findings add GATA-1, and very likely other members of the GATA family, to the growing list of molecules implicated in the complex regulatory network surrounding CBP/p300.
Collapse
Affiliation(s)
- G A Blobel
- Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
155
|
Lawson MA, Buhain AR, Jovenal JC, Mellon PL. Multiple factors interacting at the GATA sites of the gonadotropin-releasing hormone neuron-specific enhancer regulate gene expression. Mol Endocrinol 1998; 12:364-77. [PMID: 9514154 DOI: 10.1210/mend.12.3.0082] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Neuron-specific expression of the GnRH gene is dependent on an upstream multicomponent enhancer. This enhancer is functional in a small population of GnRH-producing hypothalamic neurons which, through the secretion of GnRH, mediates central nervous system control of reproductive function. GnRH enhancer function requires activation by the GATA family of transcription factors that act through tandem consensus GATA-binding motifs, GATA-A and GATA-B. Here we show that two newly identified DNA-binding factors, termed GBF-A1/A2 and GBF-B1, bind the GnRH enhancer at sites overlapping the GATA factor-binding motifs. In vitro bindings of GATA, GBF-A1/A2, and GBF-B1 to the GnRH enhancer sequences are independent. Specific mutation of either the consensus GATA motif or the GBF-B1 site of GATA-B does not alter binding of the overlapping factor in vitro. Utilizing a GnRH-expressing neuronal cell line as a model system, we show by transient transfection that GBF-B1 is necessary for enhancer activity and independently activates the GnRH promoter. Transactivation of the GnRH enhancer in GT1 cells and in NIH 3T3 cells by GATA-4 is modulated by GBF-B1 binding, suggesting GBF-B1 interferes with GATA factor binding through a steric mechanism.
Collapse
Affiliation(s)
- M A Lawson
- Department of Reproductive Medicine, Center for Molecular Genetics, University of California, San Diego, La Jolla 92093-0674, USA.
| | | | | | | |
Collapse
|
156
|
Feng ZM, Wu AZ, Chen CL. Testicular GATA-1 factor up-regulates the promoter activity of rat inhibin alpha-subunit gene in MA-10 Leydig tumor cells. Mol Endocrinol 1998; 12:378-90. [PMID: 9514155 DOI: 10.1210/mend.12.3.0079] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We have previously demonstrated that the basal transcription of rat inhibin alpha-subunit gene in a mouse testicular Leydig tumor cell line, MA-10, depends upon a 67-bp DNA fragment at the position of -163 to -97. Within this promoter region two GATA motifs were observed. In this study, we investigated the possible role of GATA-binding proteins in the regulation of inhibin alpha-subunit gene transcription in testicular cells. Northern blot and RT-PCR analyses showed that mRNAs encoding GATA-binding proteins, GATA-1 and GATA-4, were detected in mouse and rat testis and in MA-10 and rat Sertoli cells. Testis-specific GATA-1 mRNA, which is transcribed from a promoter 8 kb upstream to the erythroid exon I of mouse GATA-1 gene, was also identified in MA-10 cells. Mutations of GATA sequences in alpha-subunit promoter markedly decreased the transcriptional activity of alpha-subunit gene when measured by their ability of transient expression of a bacterial reporter gene, chloramphenicol acetyltransferase (CAT), in MA-10 cells. Cotransfection of alphaCAT chimeric construct with cDNA expression plasmid coding for mouse GATA-1 or GATA-4 protein revealed that GATA-1 but not GATA-4 can transactivate alpha-subunit promoter in a dose-dependent manner. The transactivation by GATA-1 was inhibited if GATA sequences in alpha-subunit promoter were mutated. Furthermore, electrophoretic mobility shift assay demonstrated that GATA-binding proteins present in nuclear extracts of MA-10 cells and rat testis interacted with the GATA motifs in alpha-subunit promoter, and the GATA-1 in these nuclear extracts formed a supershifted immunocomplex with antibody raised against mouse GATA-1 protein. We therefore concluded that the basal transcription of inhibin alpha-subunit gene in testicular MA-10 cells is up-regulated by testicular GATA-1 but not GATA-4 through its interaction with the GATA motifs in alpha-subunit promoter. In summary, we have provided the first evidence of the functional role of a GATA-binding protein in the regulation of testicular gene expression.
Collapse
Affiliation(s)
- Z M Feng
- Population Council, New York, New York 10021, USA
| | | | | |
Collapse
|
157
|
Haenlin M, Cubadda Y, Blondeau F, Heitzler P, Lutz Y, Simpson P, Ramain P. Transcriptional activity of pannier is regulated negatively by heterodimerization of the GATA DNA-binding domain with a cofactor encoded by the u-shaped gene of Drosophila. Genes Dev 1997; 11:3096-108. [PMID: 9367990 PMCID: PMC316702 DOI: 10.1101/gad.11.22.3096] [Citation(s) in RCA: 155] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The genes pannier (pnr) and u-shaped (ush) are required for the regulation of achaete-scute during establishment of the bristle pattern in Drosophila. pnr encodes a protein belonging to the GATA family of transcription factors, whereas ush encodes a novel zinc finger protein. Genetic interactions between dominant pnr mutants bearing lesions situated in the amino-terminal zinc finger of the GATA domain and ush mutants have been described. We show here that both wild-type Pannier and the dominant mutant form activate transcription from the heterologous alpha globin promoter when transfected into chicken embryonic fibroblasts. Furthermore, Pnr and Ush are found to heterodimerize through the amino-terminal zinc finger of Pnr and when associated with Ush, the transcriptional activity of Pnr is lost. In contrast, the mutant pnr protein with lesions in this finger associates only poorly with Ush and activates transcription even when cotransfected with Ush. These interactions have been investigated in vivo by overexpression of the mutant and wild-type proteins. The results suggest an antagonistic effect of Ush on Pnr function and reveal a new mode of regulation of GATA factors during development.
Collapse
Affiliation(s)
- M Haenlin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique/Institut National de la Santé et de la Recherche Médicale/Université Louis Pasteur, 67404 Illkirch Cedex, France
| | | | | | | | | | | | | |
Collapse
|
158
|
Zhu J, Hill RJ, Heid PJ, Fukuyama M, Sugimoto A, Priess JR, Rothman JH. end-1 encodes an apparent GATA factor that specifies the endoderm precursor in Caenorhabditis elegans embryos. Genes Dev 1997; 11:2883-96. [PMID: 9353257 PMCID: PMC316658 DOI: 10.1101/gad.11.21.2883] [Citation(s) in RCA: 179] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The endoderm in the nematode Caenorhabditis elegans is clonally derived from the E founder cell. We identified a single genomic region (the endoderm-determining region, or EDR) that is required for the production of the entire C. elegans endoderm. In embryos lacking the EDR, the E cell gives rise to ectoderm and mesoderm instead of endoderm and appears to adopt the fate of its cousin, the C founder cell. end-1, a gene from the EDR, restores endoderm production in EDR deficiency homozygotes. end-1 transcripts are first detectable specifically in the E cell, consistent with a direct role for end-1 in endoderm development. The END-1 protein is an apparent zinc finger-containing GATA transcription factor. As GATA factors have been implicated in endoderm development in other animals, our findings suggest that endoderm may be specified by molecularly conserved mechanisms in triploblastic animals. We propose that end-1, the first zygotic gene known to be involved in the specification of germ layer and founder cell identity in C. elegans, may link maternal genes that regulate the establishment of the endoderm to downstream genes responsible for endoderm differentiation.
Collapse
Affiliation(s)
- J Zhu
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | | | | | |
Collapse
|
159
|
Surinya KH, Cox TC, May BK. Transcriptional regulation of the human erythroid 5-aminolevulinate synthase gene. Identification of promoter elements and role of regulatory proteins. J Biol Chem 1997; 272:26585-94. [PMID: 9334239 DOI: 10.1074/jbc.272.42.26585] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have characterized the 5'-flanking region of the human erythroid-specific 5-amino levulinate synthase (ALAS) gene (the ALAS2 gene) and shown that the first 300 base pairs of promoter sequence gives maximal expression in erythroid cells. Transcription factor binding sites clustered within this promoter sequence include GATA motifs and CACCC boxes, critical regulatory sequences of many erythroid cell-expressed genes. GATA sites at -126/-121 (on the noncoding strand) and -102/-97 were each recognized by GATA-1 protein in vitro using erythroid cell nuclear extracts. Promoter mutagenesis and transient expression assays in erythroid cells established that both GATA-1 binding sites were functional and exogenously expressed GATA-1 increased promoter activity through these sites in transactivation experiments. A noncanonical TATA sequence at the expected TATA box location (-30/-23) bound GATA-1- or TATA-binding protein (TBP) in vitro. Conversion of this sequence to a canonical TATA box reduced expression in erythroid cells, suggesting a specific role for GATA-1 at this site. However, expression was also markedly reduced when the -30/-23 sequence was converted to a consensus GATA-1 sequence (that did not bind TBP in vitro), suggesting that a functional interaction of both factors with this sequence is important. A sequence comprising two overlapping CACCC boxes at -59/-48 (on the noncoding strand) was demonstrated by mutagenesis to be functionally important. This CACCC sequence bound Sp1, erythroid Krüppel-like factor, and basic Krüppel-like factor in vitro, while in transactivation experiments erythroid Krüppel-like factor activated ALAS2 promoter expression through this sequence. A sequence at -49/-39 with a 9/11 match to the consensus for the erythroid specific factor NF-E2 was not functional. Promoter constructs with 5'-flanking sequence from 293 base pairs to 10.3 kilobase pairs expressed efficiently in COS-1 cells as well as in erythroid cells, indicating that an enhancer sequence located elsewhere or native chromatin structure may be required for the tissue-restricted expression of the gene in vivo.
Collapse
MESH Headings
- 5-Aminolevulinate Synthetase/genetics
- 5-Aminolevulinate Synthetase/metabolism
- Binding Sites
- Gene Expression Regulation, Enzymologic
- Genes, Reporter
- Humans
- Leukemia, Erythroblastic, Acute/enzymology
- Leukemia, Erythroblastic, Acute/pathology
- Mutagenesis, Site-Directed
- Promoter Regions, Genetic
- Transcription Factors/metabolism
- Transcription, Genetic
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- K H Surinya
- Department of Biochemistry, University of Adelaide, South Australia, 5005 Australia
| | | | | |
Collapse
|
160
|
McDevitt MA, Fujiwara Y, Shivdasani RA, Orkin SH. An upstream, DNase I hypersensitive region of the hematopoietic-expressed transcription factor GATA-1 gene confers developmental specificity in transgenic mice. Proc Natl Acad Sci U S A 1997; 94:7976-81. [PMID: 9223298 PMCID: PMC21540 DOI: 10.1073/pnas.94.15.7976] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/1997] [Indexed: 02/04/2023] Open
Abstract
The transcription factor GATA-1, which is expressed in several hematopoietic lineages and multipotential progenitors, is required for the development of red blood cells and platelets. To identify control elements of the mouse GATA-1 gene, we analyzed DNase I hypersensitivity of the locus in erythroid chromatin and the expression of GATA-1/Escherichia coli beta-galactosidase (lacZ) transgenes in mice. Transgenes with 2.7 kb of promoter sequences are expressed infrequently and only within adult (definitive) erythroid cells. We show that inclusion of an upstream hypersensitive site (HS I) markedly enhances the frequency of expressing transgenic lines and activates expression in primitive erythroid cells. This pattern recapitulates the proper pattern of GATA-1 expression during development. By breeding a GATA-1/lacZ transgene into a GATA-1(-) background, we also have shown that the activation or maintenance of GATA-1 expression does not require the presence of GATA-1 itself, thereby excluding simple models of positive autoregulation. The transgene cassette reported here should be useful in directing expression of foreign sequences at the onset of hematopoiesis in the embryo and may assist in the identification of upstream regulators of the GATA-1 gene.
Collapse
Affiliation(s)
- M A McDevitt
- Department of Medicine, Harvard Medical School, Boston MA 02115, USA
| | | | | | | |
Collapse
|
161
|
|
162
|
|
163
|
McDevitt MA, Shivdasani RA, Fujiwara Y, Yang H, Orkin SH. A "knockdown" mutation created by cis-element gene targeting reveals the dependence of erythroid cell maturation on the level of transcription factor GATA-1. Proc Natl Acad Sci U S A 1997; 94:6781-5. [PMID: 9192642 PMCID: PMC21235 DOI: 10.1073/pnas.94.13.6781] [Citation(s) in RCA: 181] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The hematopoietic-restricted transcription factor GATA-1 is required for both mammalian erythroid cell and megakaryocyte differentiation. To define the mechanisms governing its transcriptional regulation, we replaced upstream sequences including a DNase I hypersensitive (HS) region with a neomycin-resistance cassette by homologous recombination in mouse embryonic stem cells and generated mice either harboring this mutation (neoDeltaHS) or lacking the selection cassette (DeltaneoDeltaHS). Studies of the consequences of these targeted mutations provide novel insights into GATA-1 function in erythroid cells. First, the neoDeltaHS mutation leads to a marked impairment in the rate or efficiency of erythroid cell maturation due to a modest (4- to 5-fold) decrease in GATA-1 expression. Hence, erythroid differentiation is dose-dependent with respect to GATA-1. Second, since expression of GATA-1 from the DeltaneoDeltaHS allele in erythroid cells is largely restored, transcription interference imposed by the introduced cassette must account for the "knockdown" effect of the mutation. Finally, despite the potency of the upstream sequences in conferring high-level, developmentally appropriate expression of transgenes in mice, other cis-regulatory elements within the GATA-1 compensate for its absence in erythroid cells. Our work illustrates the usefulness of targeted mutations to create knockdown mutations that may uncover important quantitative contributions of gene function not revealed by conventional knockouts.
Collapse
Affiliation(s)
- M A McDevitt
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
164
|
Takahashi S, Onodera K, Motohashi H, Suwabe N, Hayashi N, Yanai N, Nabesima Y, Yamamoto M. Arrest in primitive erythroid cell development caused by promoter-specific disruption of the GATA-1 gene. J Biol Chem 1997; 272:12611-5. [PMID: 9139715 DOI: 10.1074/jbc.272.19.12611] [Citation(s) in RCA: 143] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
To elucidate the in vivo function of GATA-1 during hematopoiesis, we specifically disrupted the erythroid promoter of the GATA-1 gene in embryonic stem cells and generated germ line chimeras. Male offspring of chimeras bearing the targeted mutation were found to die by 12.5 days post coitus due to severe anemia while heterozygous females displayed characteristics ranging from severe anemia to normal erythropoiesis. When female heterozygotes were crossed with transgenic males carrying a reporter gene, which specifically marks primitive erythroid progenitors, massive accumulation of undifferentiated erythroid cells were observed in the yolk sacs of the GATA-1-mutant embryos, demonstrating that GATA-1 is required for the terminal differentiation of primitive erythroid cells in vivo.
Collapse
Affiliation(s)
- S Takahashi
- Center for Tsukuba Advanced Research Alliance and Institute of Basic Medical Sciences, University of Tsukuba, Tennodai, Tsukuba 305, Japan
| | | | | | | | | | | | | | | |
Collapse
|
165
|
Onodera K, Takahashi S, Nishimura S, Ohta J, Motohashi H, Yomogida K, Hayashi N, Engel JD, Yamamoto M. GATA-1 transcription is controlled by distinct regulatory mechanisms during primitive and definitive erythropoiesis. Proc Natl Acad Sci U S A 1997; 94:4487-92. [PMID: 9114016 PMCID: PMC20749 DOI: 10.1073/pnas.94.9.4487] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Transcription factor GATA-1 is required for the terminal differentiation of both the primitive and definitive erythroid cell lineages, and yet the regulatory mechanisms of GATA-1 itself are not well understood. To clarify how the GATA-1 gene is transcriptionally controlled in vivo, presumptive regulatory regions of the gene were tested by fusion to a reporter gene and then examined in transgenic mice. We found that a transcriptional control element located between -3.9 and -2.6 kb 5' to the erythroid first exon serves as an activating element and that this sequence alone is sufficient to recapitulate the expression of GATA-1 (but uniquely in primitive erythroid cells). Addition of sequences from the GATA-1 first intron to this upstream element provides a necessary and sufficient condition for complete recapitulation of GATA-1 expression in both primitive and definitive erythroid cells. The first intron element does not possess intrinsic transcriptional activation potential when linked to the GATA-1 gene promoter but rather requires the upstream activating element for its activity. These experiments show that GATA-1 gene expression is regulated by discrete transcriptional control elements during definitive and primitive erythropoiesis: The 5' element displays properties anticipated for a primitive erythroid cell-specific activating element, and the novel element within the GATA-1 first intron specifically augments this activity in definitive erythroid cells.
Collapse
Affiliation(s)
- K Onodera
- Department of Biochemistry, Tohoku University School of Medicine, Sendai 980-77, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
166
|
Abstract
Abstract
Hematopoiesis in the mouse conceptus begins in the visceral yolk (VYS), with primitive erythroblasts first evident in blood islands at the headfold stage (E8.0). VYS erythropoiesis is decreased or abrogated by targeted disruption of the hematopoietic transcription factors tal-1, rbtn2, GATA-1, and GATA-2. To better understand the potential roles of these genes, and to trace the initial temporal and spatial development of mammalian embryonic hematopoiesis, we examined their expression patterns, and that of βH1-globin, in normal mouse conceptuses by means of in situ hybridization. Attention was focused on the 36-hour period from mid-primitive streak to early somite stages (E7.25 to E8.5), when the conceptus undergoes rapid morphologic changes with formation of the yolk sac and blood islands. Each of these genes was expressed in extraembryonic mesoderm, from which blood islands are derived. This VYS expression occurred in a defined temporal sequence: tal-1 and rbtn2 transcripts were detected earlier than the others, followed by GATA-2 and GATA-1, and then by βH1-globin. Transcripts for all of these genes were present in VYS mesoderm cell masses at the neural plate stage (E7.5), indicating commitment of these cells to the erythroid lineage before the appearance of morphologically recognizable erythroblasts. By early somite stages (E8.5), GATA-2 mRNA expression is downregulated in VYS blood islands as terminal primitive erythroid differentiation proceeds. We conclude that primitive mammalian erythropoiesis arises during gastrulation through the ordered temporal expression of tal-1, rbtn2, GATA2, and GATA-1 in a subset of extraembryonic mesoderm cells. During the stages analyzed, tal-1 and rbtn2 expression was also present in posterior embryonic mesoderm, while GATA-1 and GATA-2 expression was evident in extraembryonic tissues of ectodermal origin.
Collapse
|
167
|
Moroni E, Cairns L, Ottolenghi S, Giglioni B, Ashihara E, Migliaccio G, Migliaccio AR. Expression in hematopoietic cells of GATA-1 transcripts from the alternative "testis" promoter during development and cell differentiation. Biochem Biophys Res Commun 1997; 231:299-304. [PMID: 9070267 DOI: 10.1006/bbrc.1997.6088] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
GATA-1 is a transcription factor expressed both in the hematopoietic system and in the Sertoli cells of the testis, and is essential for correct erythropoiesis. Hematopoietic and Sertoli cells transcribe GATA-1 from two different promoters: the proximal (erythroid) is active in hematopoietic cells; the distal (testis) is active in Sertoli cells. We investigated by RT-PCR the possibility that GATA-1 might be transcribed from the testis promoter also in hematopoietic cells. Testis promoter-derived transcripts are present at low levels in vivo at all stages of hematopoietic development. Purified multipotent progenitors, fractionated into populations expressing low or high levels of GATA-1, do not contain any "testis" transcripts. However, when grown in vitro, they rapidly express GATA-1 from the testis promoter in the presence of Erythropoietin (Epo) but not in that of other growth factors. This result reflects an Epo-dependent differentiation event, rather than a direct effect of Epo. Indeed, immortalized progenitor cell lines which respond to both Epo and SCF, continue to express testis-derived transcripts when switched from Epo to SCF.
Collapse
Affiliation(s)
- E Moroni
- Centro di Studio sulla Patologia Cellulare, CNR, Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
168
|
Delhase M, Castrillo JL, de la Hoya M, Rajas F, Hooghe-Peters EL. AP-1 and Oct-1 transcription factors down-regulate the expression of the human PIT1/GHF1 gene. J Biol Chem 1996; 271:32349-58. [PMID: 8943298 DOI: 10.1074/jbc.271.50.32349] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The pituitary-specific transcription factor Pit-1/GHF-1 is a member of the POU domain family of regulatory proteins. It is involved in the commitment and expansion of the somatotropic cell lineage and activates the transcription of a set of anterior pituitary genes. We have cloned the human PIT1/GHF1 gene and characterized the regulatory mechanisms controlling its promoter activation and regulation. A minimal promoter region (-102 to +15) contains the cis-acting elements that confer to the human PIT1/GHF1 gene a high basal transcriptional activity, the tissue-specific expression, and the autoregulation by Pit-1/GHF-1 protein. The upstream promoter region contains a multiplicity of Pit-1/GHF-1 binding sites that do not show any synergistic interaction with the minimal promoter. The transcriptional activity is negatively regulated by Oct-1 and mediated by an octamer-binding site (OTF). In addition, we have also identified a 12-O-tetradecanoylphorbol-13-acetate-responsive element, which overlaps with a Pit-1/GHF-1 binding site. A mutually exclusive binding of the activator protein-1 (AP-1) and Pit-1/GHF-1 has been observed on this composite site, and AP-1 was shown to down-regulate PIT1/GHF1 transcription.
Collapse
Affiliation(s)
- M Delhase
- Pharmacology Department, Medical School, Free University of Brussels (VUB), Laarbeeklaan 103, B-1090 Brussels, Belgium.
| | | | | | | | | |
Collapse
|
169
|
Briegel K, Bartunek P, Stengl G, Lim KC, Beug H, Engel JD, Zenke M. Regulation and function of transcription factor GATA-1 during red blood cell differentiation. Development 1996; 122:3839-50. [PMID: 9012505 DOI: 10.1242/dev.122.12.3839] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The tissue-specific transcription factor GATA-1 is a key regulator of red blood cell differentiation. One seemingly contradictory aspect of GATA-1 function is that, while it is abundant in erythroid progenitor cells prior to the onset of overt differentiation, it does not significantly activate known GATA-1 target genes in those cells. To investigate the mechanisms underlying GATA-1 function during the transition from early to late erythropoiesis, we have examined its expression and activity in normal avian erythroid progenitor cells before and after induction of differentiation. In these primary progenitor cells, GATA-1 protein was predominantly located in the cytoplasm, while induction of differentiation caused its rapid relocalization to the nucleus, suggesting that nuclear translocation constitutes an important regulatory step in GATA-1 activation. As an alternative way of addressing the same question, we also ectopically expressed a GATA-1/estrogen receptor fusion protein (GATA-1/ER) in red blood cell progenitors, where nuclear translocation of, and transcriptional activation by, this hybrid factor are conditionally controlled by estrogen. We found that hormone-activated GATA-1/ER protein accelerated red blood cell differentiation, and concomitantly suppressed cell proliferation. These phenotypic effects were accompanied by a simultaneous suppression of c-myb and GATA-2 transcription, two genes thought to be involved in the proliferative capacity of hematopoietic progenitor cells. Thus, GATA-1 appears to promote differentiation in committed erythroid progenitor cells both by inducing differentiation-specific genes and by simultaneously suppressing genes involved in cell proliferation.
Collapse
Affiliation(s)
- K Briegel
- Max-Delbruck-Center for Molecular Medicine, MDC, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
170
|
Dang Q, Taylor J. In vivo footprinting analysis of the hepatic control region of the human apolipoprotein E/C-I/C-IV/C-II gene locus. J Biol Chem 1996; 271:28667-76. [PMID: 8910501 DOI: 10.1074/jbc.271.45.28667] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Expression of both the apolipoprotein (apo)E and apoC-I genes in the liver is specified by a 319-nucleotide hepatic control region (HCR-1) that is located 15 kilobase pairs downstream of the apoE gene and 5 kilobase pairs downstream of the apoC-I gene. In vivo footprint analysis of HCR-1 in intact nuclei revealed several liver-specific protein-binding sites that were not detectable by in vitro methods. In addition to three previously identified in vitro footprints, four in vivo footprints were identified in a region of HCR-1 that is required for directing gene expression to hepatocytes. Prominent liver-specific DNase I-hypersensitive sites were associated with these footprints. Liver-specific nuclear protein binding to these sites was confirmed by oligonucleotide gel-retention assays. The in vivo analysis also identified a cluster of nuclear protein-binding sites in the Alu family repeat segment adjacent to the domain required for liver expression. Micrococcal nuclease digestion indicated the presence of a nucleosome in the central domain of HCR-1 in liver chromatin that was in phase with the nucleosome location in tissues that did not express the transgene. These results suggest that HCR-1 functions in a highly structured chromatin environment requiring a complex interaction of liver-enriched transcription factors.
Collapse
Affiliation(s)
- Q Dang
- Gladstone Institute of Cardiovascular Disease, University of California, San Francisco, California 94141-9100, USA
| | | |
Collapse
|
171
|
Ohyashiki K, Ohyashiki JH, Shimamoto T, Toyama K. Pattern of expression and their clinical implications of the GATA family, stem cell leukemia gene, and EVI1 in leukemia and myelodysplastic syndromes. Leuk Lymphoma 1996; 23:431-6. [PMID: 9031072 DOI: 10.3109/10428199609054850] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Transcription factors play a key role in controlling the cellular differentiation of hematopoietic cells. Among the known transcription factors, both GATA-1 and SCL play roles in the cellular differentiation of erythrocytic and megakaryocytic lineages, while GATA-2 is thought to maintain and promote the proliferation of early hematopoietic progenitors. In this review, the clinical implications of expression of the GATA family, SCL, and EVI1 gene in various types of human leukemia are discussed. De novo acute myeloid leukemia (AML) patients may be subdivided into three categories depending on the expression pattern of transcription factors, i.e., GATA-1(+)SCL(+), GATA-1(+)SCL(-), and GATA-1(-)SCL(-). AML patients with both GATA-1 and SCL expression have a poor prognosis and have some characteristic clinical and hematologic features. The EVI1 gene may be expressed through at least two pathways in hematologic malignancies; one is related to chromosomal changes at 3q26, while the other is related to myelodysplasia regardless of chromosomal changes at 3q26 region. These findings suggest that the pattern of expression in transcription factors in abnormal hematopoietic cells is reflected in the malignant phenotype and play a role in the pathogenesis of the disease.
Collapse
Affiliation(s)
- K Ohyashiki
- First Department of Internal Medicine, Tokyo Medical College, Japan
| | | | | | | |
Collapse
|
172
|
Southwood CM, Downs KM, Bieker JJ. Erythroid Krüppel-like factor exhibits an early and sequentially localized pattern of expression during mammalian erythroid ontogeny. Dev Dyn 1996; 206:248-59. [PMID: 8896981 DOI: 10.1002/(sici)1097-0177(199607)206:3<248::aid-aja3>3.0.co;2-i] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Erythroid Krüppel-like factor (EKLF) is an erythroid cell-specific transcription factor that mediates activation via binding to a 9 base pair sequence that encompasses the CACCC element, one of a trio of evolutionarily conserved sequence motifs that are functionally important for transcription of red cell-specific genes. Molecular analyses have delineated the specificity of its interaction and activation through the CAC site at the adult beta-globin promoter. However, its expression and distribution during murine ontogeny have not been established. To address these issues, we have focused on biological aspects of EKLF expression by examining the onset and localization of its mRNA during murine development by using reverse transcription/polymerase chain reaction (RT/PCR) analysis of differentiating embryonic stem cells and in situ analyses of normal developing embryos. In addition, we have monitored the presence of EKLF protein by blot analysis of whole-cell extracts derived from circulating cells and embryonic tissue. Our studies show that EKLF mRNA is first expressed at the neural plate stage (day 7.5) within primitive erythroid cells at the very beginning of blood island formation in the yolk sac. EKLF is then expressed by day 9 in the hepatic primordia and remains high in the liver, which becomes the sole source of EKLF mRNA in the 14.5 day fetus. Concomitantly with EKLF mRNA, EKLF protein is also expressed in primitive erythroid cells and in the fetal liver. Finally, EKLF expression in the adult spleen is strictly localized to the red pulp. These studies demonstrate that EKLF is a specific, early marker of erythroid differentiation consistent with its requirement for later globin (and possibly other red cell gene-specific) expression. In addition, EKLF exhibits alternate, sequentially active sites of expression within regions known to harbor hematopoietic precursors during murine ontogeny. Thus, EKLF expression exhibits biological properties that, in addition to previous molecular and more recent genetic studies, augment the evidence in favor of its important role in erythroid cell-specific expression.
Collapse
Affiliation(s)
- C M Southwood
- Brookdale Center for Molecular Biology, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | |
Collapse
|
173
|
Chen H, Zhang P, Radomska HS, Hetherington CJ, Zhang DE, Tenen DG. Octamer binding factors and their coactivator can activate the murine PU.1 (spi-1) promoter. J Biol Chem 1996; 271:15743-52. [PMID: 8663022 DOI: 10.1074/jbc.271.26.15743] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
PU.1 (spi-1), a member of the Ets transcription factor family, is predominantly expressed in myeloid and B cells, activates many B cell and myeloid genes, and is critical for development of both of these lineages. Our previous studies (Chen, H. M., Ray-Gallet, D., Zhang, P., Hetherington, C. J., Gonzalez, D. A., Zhang, D.-E., Moreau-Gachelin, F., and Tenen, D. G. (1995) Oncogene 11, 1549-1560) demonstrate that the PU.1 promoter directs cell type-specific reporter gene expression in myeloid cell lines, and that PU.1 activates its own promoter in an autoregulatory loop. Here we show that the murine PU.1 promoter is also specifically and highly functional in B cell lines as well. Oct-1 and Oct-2 can bind specifically to a site at base pair -55 in vitro, and this site is specifically protected in B cells in vivo. We also demonstrate that two other sites contribute to promoter activity in B cells; an Sp1 binding site adjacent to the octamer site, and the PU.1 autoregulatory site. Finally, we show that the B cell coactivator OBF-1/Bob1/OCA-B is only expressed in B cells and not in myeloid cells, and that OBF-1/Bob1/OCA-B can transactivate the PU.1 promoter in HeLa and myeloid cells. This B cell restricted coactivator may be responsible for the B cell specific expression of PU.1 mediated by the octamer site.
Collapse
Affiliation(s)
- H Chen
- Hematology/Oncology Division, Department of Medicine, Beth Israel Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | |
Collapse
|
174
|
Trainor CD, Omichinski JG, Vandergon TL, Gronenborn AM, Clore GM, Felsenfeld G. A palindromic regulatory site within vertebrate GATA-1 promoters requires both zinc fingers of the GATA-1 DNA-binding domain for high-affinity interaction. Mol Cell Biol 1996; 16:2238-47. [PMID: 8628290 PMCID: PMC231211 DOI: 10.1128/mcb.16.5.2238] [Citation(s) in RCA: 186] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
GATA-1, a transcription factor essential for the development of the erythroid lineage, contains two adjacent highly conserved zinc finger motifs. The carboxy-terminal finger is necessary and sufficient for specific binding to the consensus GATA recognition sequence: mutant proteins containing only the amino-terminal finger do not bind. Here we identify a DNA sequence (GATApal) for which the GATA-1 amino-terminal finger makes a critical contribution to the strength of binding. The site occurs in the GATA-1 gene promoters of chickens, mice, and humans but occurs very infrequently in other vertebrate genes known to be regulated by GATA proteins. GATApal is a palindromic site composed of one complete [(A/T)GATA(A/G)] and one partial (GAT) canonical motif. Deletion of the partial motif changes the site to a normal GATA site and also reduces by as much as eightfold the activity of the GATA-1 promoter in an erythroid precursor cell. We propose that GATApal is important for positive regulation of GATA-1 expression in erythroid cells.
Collapse
Affiliation(s)
- C D Trainor
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
175
|
Blobel GA, Orkin SH. Estrogen-induced apoptosis by inhibition of the erythroid transcription factor GATA-1. Mol Cell Biol 1996; 16:1687-94. [PMID: 8657144 PMCID: PMC231155 DOI: 10.1128/mcb.16.4.1687] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Steroid hormones regulate diverse biological functions, including programmed cell death (apoptosis). Although steroid receptors have been studied extensively, relatively little is known regarding the cellular targets through which apoptosis is triggered. We show here that the ligand-activated estrogen receptor (ER) induces apoptosis in an erythroid cell line by binding to, and consequently inhibiting the activity of, GATA-1, an erythroid transcription factor essential for the survival and maturation of erythroid precursor cells. GATA-1 inhibition is reflected in the downregulation of presumptive GATA-1 target genes. Constitutive overexpression of a GATA-binding protein resistant to the effects of the ER partially rescues ER-induced apoptosis. Induction of apoptosis by a mutant ER defective in binding to the estrogen response element but active in GATA-1 inhibition suggests that ER-mediated inhibition of GATA-1 is direct and does not require estrogen response element-dependent transcriptional activation. Thus, a lineage-restricted transcription factor, such as GATA-1, constitutes one cellular target through which steroid hormones may control apoptosis. As GATA-binding proteins are evolutionarily conserved, we speculate that members of the steroid receptor family may exert some of their diverse biological functions in different cellular contexts through interference with the function of GATA-binding proteins.
Collapse
Affiliation(s)
- G A Blobel
- Division of Hematology/Oncology, Children's Hospital, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
176
|
Crossley M, Whitelaw E, Perkins A, Williams G, Fujiwara Y, Orkin SH. Isolation and characterization of the cDNA encoding BKLF/TEF-2, a major CACCC-box-binding protein in erythroid cells and selected other cells. Mol Cell Biol 1996; 16:1695-705. [PMID: 8657145 PMCID: PMC231156 DOI: 10.1128/mcb.16.4.1695] [Citation(s) in RCA: 189] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
CACCC boxes are among the critical sequences present in regulatory elements of genes expressed in erythroid cells, as well as in selected other cell types. While an erythroid cell-specific CACCC-box-binding protein, EKLF, has been shown to be required in vivo for proper expression of the adult beta-globin gene, it is dispensable for the regulation of several other globin and nonglobin erythroid cell-expressed genes. In the work described here, we searched for additional CACCC-box transcription factors that might be active in murine erythroid cells. We identified a major gel shift activity (termed BKLF), present in yolk sac and fetal liver erythroid cells, that could be distinguished from EKLF by specific antisera. Through relaxed-stringency hybridization, we obtained the cDNA encoding BKLF, a highly basic, novel zinc finger protein that is related to EKLF and other Krüppel-like members in its DNA-binding domain but unrelated elsewhere. BKLF, which is widely but not ubiquitously expressed in cell lines, is highly expressed in the midbrain region of embryonic mice and appears to correspond to the gel shift activity TEF-2, a transcriptional activator implicated in regulation of the simian virus 40 enhancer and other CACCC-box-containing regulatory elements. Because BKLF binds with high affinity and preferentially over Sp1 to many CACCC sequences of erythroid cell expressed genes, it is likely to participate in the control of many genes whose expression appears independent of the action of EKLF.
Collapse
Affiliation(s)
- M Crossley
- Division of Hematology-Oncology, Children's Hospital, Dana Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
177
|
Zhang DE, Hohaus S, Voso MT, Chen HM, Smith LT, Hetherington CJ, Tenen DG. Function of PU.1 (Spi-1), C/EBP, and AML1 in early myelopoiesis: regulation of multiple myeloid CSF receptor promoters. Curr Top Microbiol Immunol 1996; 211:137-47. [PMID: 8585944 DOI: 10.1007/978-3-642-85232-9_14] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Our studies of the promoters of the myeloid CSF receptors (M, GM, and G) in cell lines have led to the findings that the promoters are small, and are all activated by the PU.1 and C/EBP proteins. To date, we have only found evidence for involvement of C/EBP alpha, although further experiments will be needed to exclude the role of C/EBP beta and C/EBP delta in receptor gene expression. These studies suggest a model of hematopoiesis (Fig. 2) in which the lineage commitment decisions of multipotential cells are made by the alternative patterns of expression of certain transcription factors, which then activate growth factor receptors which allow those cells to respond to the appropriate growth factor to proliferate and survive. For example, expression of GATA-1 activates its own expression, as well as that of the erythropoietin receptor, inducing these cells to be capable of responding to erythropoietin. Similarly, expression of PU.1 activates its own promoter, and turns on the three myeloid CSF receptors (M, GM, and G), pushing these cells along the pathway of myeloid differentiation. C/EBP proteins, particularly C/EBP alpha, are also critical for myeloid receptor promoter function, and may also act via autoregulatory mechanisms. Murine C/EBP alpha has a C/EBP binding site in its own promoter. Human C/EBP alpha autoregulates its own expression in adipocytes by activating the USF transcription factor. Myeloid genes expressed later during differentiation, such as CD11b, are also activated by PU.1, which is expressed at highest levels in mature myeloid cells, but not by C/EBP alpha, which is downregulated in a differentiated murine myeloid cell line. Consistent with this model are the findings that overexpression of PU.1 in erythroid cells blocks erythroid differentiation, leading to erythroleukemia, and overexpression of GATA-1 in a myeloid line blocks myeloid differentiation. While these findings have provided some framework for understanding myeloid gene regulation, there are a number of critical questions to be addressed in the near future: What is the pattern of expression of the C/EBP proteins during the course of myeloid differentiation and activation of human CD34+ cells? What is the effect of targeted disruption and other mutations of the C/EBP and AML1 proteins on myeloid development and receptor expression? What are the interactions among these three different types of factors (ets, basic region-zipper, and Runt domain proteins) to activate the promoters? What is the effect of translocations, mutations, and alterations in expression of these factors, particularly in different forms of AML?
Collapse
Affiliation(s)
- D E Zhang
- Hematology/Oncology Division, Beth Israel Hospital, Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | | | | | | |
Collapse
|
178
|
Lossky M, Wensink PC. Regulation of Drosophila yolk protein genes by an ovary-specific GATA factor. Mol Cell Biol 1995; 15:6943-52. [PMID: 8524261 PMCID: PMC230949 DOI: 10.1128/mcb.15.12.6943] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The divergently transcribed yolk protein genes (Yp1 and Yp2) of Drosophila melanogaster are expressed only in adult females, in fat body tissue and in ovarian follicle cells. Using an in vitro transcription assay, we have identified a single 12-bp DNA element that activates transcription from the promoters of both Yp genes. In vivo, this regulatory element is tissue specific: it activates transcription of Yp1 and Yp2 reporter genes in follicle cells but has no detectable effect in fat body or other tissues. The sequence of the element consists of two recognition sites for the GATA family of transcription factors. We show that among the Drosophila genes known to encode GATA factors, only dGATAb is expressed in ovaries. The single transcript that we detect in ovaries is alternatively spliced or initiated to produce an ovary-specific isoform of the protein. Bacterially expressed dGATAb binds to the 12-bp element; a similar binding activity is also present in the Kc0 nuclear extracts used for in vitro transcription assays. These in vitro and in vivo results lead us to propose that dGATAb makes several developmentally regulated products, one of which is a follicle cell-specific protein activating transcription of Yp1 and Yp2 from a known regulatory element.
Collapse
Affiliation(s)
- M Lossky
- Rosenstiel Center, Brandeis University, Waltham, Massachusetts 02254-9110, USA
| | | |
Collapse
|
179
|
Okabe M, Kunieda Y, Shoji M, Nakane S, Kurosawa M, Tanaka J, Hansen SR, Asaka M. Megakaryocytic differentiation of a leukemic cell line, MC3, by phorbol ester: induction of glycoprotein IIb/IIIa and effects on expression of IL-6, IL-6 receptor, mpl and GATA genes. Leuk Res 1995; 19:933-43. [PMID: 8632663 DOI: 10.1016/0145-2126(95)00039-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We investigated megakaryocytic differentiation in a newly-established Ph1-positive leukemic cell line, MC3, which showed tri-lineage immunophenotypes (myeloid antigens2+, CD19(1+) and CD41a1+) and was positive for CD34 and CD38. TPA induced MC3 cells to differentiate to an early stage of megakaryocyte lineage exhibiting an increase in the expression of platelet glycoproteins (GP) IIb/IIIa (CD41a), and an increase in cell size and nuclear ploidy. TPA treatment also enhanced the expression of GPIIb mRNA, and induced the expression of interleukin-6 (IL-6) and its receptor mRNAs, while it did not induce transcripts of the genes IL-11 and mpl ligand, and further decreased the transcript of the mpl gene. Consistent with these findings, MC3 cells treated with TPA showed an increased expression of GATA-1, but not GATA-3 transcripts, whereas those without TPA treatment expressed only the GATA-2 transcript. These results provide an insight into the study for the regulatory mechanism of megakaryocytopoiesis and leukemic cell differentiation.
Collapse
MESH Headings
- Antigens, CD/metabolism
- Base Sequence
- Blotting, Northern
- Cell Differentiation/drug effects
- DNA-Binding Proteins/genetics
- Erythroid-Specific DNA-Binding Factors
- GATA1 Transcription Factor
- GATA2 Transcription Factor
- Gene Expression Regulation, Leukemic/drug effects
- Humans
- Interleukin-6/metabolism
- Leukemia/genetics
- Leukemia/metabolism
- Leukemia/pathology
- Megakaryocytes/drug effects
- Megakaryocytes/metabolism
- Megakaryocytes/pathology
- Molecular Sequence Data
- Neoplasm Proteins
- Platelet Glycoprotein GPIIb-IIIa Complex/metabolism
- Polymerase Chain Reaction
- Proto-Oncogene Proteins/metabolism
- Receptors, Cytokine
- Receptors, Interleukin/metabolism
- Receptors, Interleukin-6
- Receptors, Thrombopoietin
- Tetradecanoylphorbol Acetate/pharmacology
- Transcription Factors/genetics
- Tumor Cells, Cultured/drug effects
- Tumor Cells, Cultured/metabolism
- Tumor Cells, Cultured/pathology
Collapse
Affiliation(s)
- M Okabe
- Third Department of Internal Medicine, Hokkaido University School of Medicine, Sapporo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
180
|
Pao CI, Zhu JL, Robertson DG, Lin KW, Farmer PK, Begovic S, Wu GJ, Phillips LS. Transcriptional regulation of the rat insulin-like growth factor-I gene involves metabolism-dependent binding of nuclear proteins to a downstream region. J Biol Chem 1995; 270:24917-23. [PMID: 7559617 DOI: 10.1074/jbc.270.42.24917] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Insulin-like growth factor-I (IGF-I) gene transcription is mediated largely via exon 1. In an initial search for regulatory regions, rat hepatocytes were transfected with IGF-I constructs. Since omission of downstream sequences led to reduced expression, we then used in vitro transcription to evaluate potential metabolic regulation via downstream regions. With templates including 219 base pairs of downstream sequence, transcriptional activity was reduced 70-90% with hepatic nuclear extracts from diabetic versus normal rats. However, activity was comparable with templates lacking downstream sequences. The downstream region contained six DNase I footprints, and templates with deletion of either region III or V no longer provided reduced transcriptional activity with nuclear extracts from diabetic rats. Nuclear protein binding to regions III and V appeared to be metabolically regulated, as shown by reduced DNase I protection and activity in gel mobility shift assays with nuclear extracts from diabetic rats. Southwestern blotting probes corresponding to regions III and V recognized a approximately 65-kDa nuclear factor present at reduced levels in diabetic rats. These findings indicate that a downstream region in exon 1 may be important for both IGF-I expression and metabolic regulation. Altered concentration or activity of a transcription factor(s) binding to this region may contribute to reduced IGF-I gene transcription associated with diabetes mellitus.
Collapse
Affiliation(s)
- C I Pao
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | | | | | | | |
Collapse
|
181
|
Lin WH, Huang LH, Yeh JY, Hoheisel J, Lehrach H, Sun YH, Tsai SF. Expression of a Drosophila GATA transcription factor in multiple tissues in the developing embryos. Identification of homozygous lethal mutants with P-element insertion at the promoter region. J Biol Chem 1995; 270:25150-8. [PMID: 7559649 DOI: 10.1074/jbc.270.42.25150] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
GATA transcription factors are DNA-binding proteins that recognize the core consensus sequence, WGATAR. Previous studies indicated that GATA factors play ann important role in the development of tissue-specific functions in vertebrates. Here we report the identification of a new Drosophila melanogaster GATA factor, dGATAc, which displays a distinct expression pattern in embryos. The local concentration of dGATAc transcripts varies at different stages, being most prominent in the procephalic region at stages 6-10 and in the posterior spiracles, the gut, and the central nervous system at stages 11-13. On the basis of its predicted sequence, DNA-binding assays were performed to confirm that the dGATAc gene encodes a zinc finger protein that can bind the GATA consensus motif with predicted specificity. Two independent mutants carrying a P-element insertion at the dGATAc gene promoter region were identified that are homozygous lethal at the embryonic stage. Using a genetic scheme, it was demonstrated that the lack of dGATAc function can block normal embryonic development. Our results suggest that the dGATAc protein is a tissue-specific transcription factor that is vital to the development of multiple organ systems in D. melanogaster.
Collapse
Affiliation(s)
- W H Lin
- Institute of Genetics, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | | | | | | | | | | | | |
Collapse
|
182
|
Siegel MD, Zhang DH, Ray P, Ray A. Activation of the interleukin-5 promoter by cAMP in murine EL-4 cells requires the GATA-3 and CLE0 elements. J Biol Chem 1995; 270:24548-55. [PMID: 7592673 DOI: 10.1074/jbc.270.41.24548] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Interleukin-5 (IL-5) plays a central role in the growth and differentiation of eosinophils and contributes to several disease states including asthma. Accumulating evidence suggests a role for cAMP as an immunomodulator; agents that increase intracellular cAMP levels have been shown to inhibit production of cytokines predominantly produced by T helper (Th) 1 cells such as IL-2 and interferon gamma (IFN-gamma). In contrast, the production of IL-5, predominantly produced by Th2 cells, is actually enhanced by these agents. In this report, we have performed transient transfection experiments with IL-5 promoter-reporter gene constructs, DNase I footprinting assays, and electrophoretic mobility shift assays to investigate the key regulatory regions necessary for activation of the IL-5 promoter by dibutyryl cAMP and phorbol esters in the mouse thymoma line EL-4. Taken together, our data demonstrate the critical importance of two sequences within the IL-5 5'-flanking region for activation by these agents in EL-4 cells: one, a highly conserved 15-base pair element present in genes expressed by Th2 cells, called the conserved lymphokine element 0 (CLE0; located between -53 and -39 in the IL-5 promoter), and the other, two overlapping binding sites for the transcription factor GATA-3 (but not GATA-4) between -70 and -59. Taken together, our data suggest that activation via the unique sequence combination GATA/CLE0 results in selective expression of the IL-5 gene in response to elevated levels of intracellular cAMP.
Collapse
Affiliation(s)
- M D Siegel
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | |
Collapse
|
183
|
Moens U, Johansen T, Johnsen JI, Seternes OM, Traavik T. Noncoding control region of naturally occurring BK virus variants: sequence comparison and functional analysis. Virus Genes 1995; 10:261-75. [PMID: 8560788 DOI: 10.1007/bf01701816] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The human polyomavirus BK (BKV) has a proven oncogenic potential, but its contribution to tumorigenesis under natural conditions remains undetermined. As for other primate polyomaviruses, the approximately 5.2 kbp double-stranded circular genome of BKV has three functional regions: the coding regions for the two early (T, t antigens) and four late (agno, capsid proteins; VP1-3) genes separated by a noncoding control region (NCCR). The NCCR contains the origin of replication as well as a promoter/enhancer with a mosaic of cis-acting elements involved in the regulation of both early and late transcription. Since the original isolation of BKV in 1971, a number of other strains have been identified. Most strains reveal a strong sequence conservation in the protein coding regions of the genome, while the NCCR exhibits considerable variation between different BKV isolates. This variation is due to deletions, duplications, and rearrangements of a basic set of sequence blocks. Comparative studies have proven that the anatomy of the NCCR may determine the transcriptional activities governed by the promoter/enhancer, the host cell tropism and permissivity, as well as the oncogenic potential of a given BKV strain. In most cases, however, the NCCR sequence of new isolates was determined after the virus had been passaged several times in more or less arbitrarily chosen cell cultures, a process known to predispose for NCCR rearrangements. Following the development of the polymerase chain reaction (PCR), it has become feasible to obtain naturally occurring BKV NCCRs, and their sequences, in samples taken directly from infected human individuals. Hence, the biological significance of BKV NCCR variation may be studied without prior propagation of the virus in cell culture. Such variation has general interest, because the BKV NCCRs represent typical mammalian promoter/enhancers, with a large number of binding motifs for cellular transacting factors, which can be conveniently handled for experimental purposes. This communication reviews the naturally occurring BKV NCCR variants, isolated and sequenced directly from human samples, that have been reported so far. The sequences of the different NCCRs are compared and analyzed for the presence of proven and putative cellular transcription factor binding sites. Differences in biological properties between BKV variants are discussed in light of their aberrant NCCR anatomies and the potentially modifying influence of transacting factors.
Collapse
Affiliation(s)
- U Moens
- Department of Virology, University of Tromsø, Norway
| | | | | | | | | |
Collapse
|
184
|
Joulin V, Richard-Foy H. A new approach to isolate genomic control regions. Application to the GATA transcription factor family. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 232:620-6. [PMID: 7556215 DOI: 10.1111/j.1432-1033.1995.620zz.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We have designed a new strategy to isolate unknown DNA regions interacting with one or several related regulatory proteins. It involves trapping such DNAs by their cognate binding proteins followed by PCR amplification, as described previously [Kinzler, K. & Vogelstein, B. (1989) Nucleic Acids Res. 17, 3645-3653]. To overcome the inability of such a procedure to discriminate between functional and non-functional binding sites as well as to specifically trap short DNA motifs from the whole higher eukaryotic genome, we have used as starting material DNA isolated from transcriptionally competent chromatin fractions, instead of total genomic DNA. To test our strategy, we selected human DNA sequences that bind members of the GATA family, known to recognize similar WGATAR motifs. These proteins are expressed in different cell types in which they regulate the transcription of different sets of genes; thus, transcriptionally active chromatin containing GATA motifs should differ according to the cell type. We have trapped and analyzed DNA fragments isolated from an active chromatin fraction, from erythroid cells and lymphoid cells, using GATA-1 and GATA-3 proteins, respectively. We show that regulatory GATA sequences known to be in open chromatin in erythroid cells (typified by the HSIII fragment of the beta-globin locus control region) or in lymphoid cells (typified by a fragment of the CD2 locus control region) are dramatically enriched in a cell-specific manner, demonstrating the potency of the method. The sequences of the erythroid or lymphoid DNA fragments isolated through the procedure described here were determined and display subset-site preference for GATA-1 and GATA-3.
Collapse
Affiliation(s)
- V Joulin
- Institut National de la Santé et de la Recherche Médicale Unité 33, Bicêtre, France
| | | |
Collapse
|
185
|
Hawkins MG, McGhee JD. elt-2, a second GATA factor from the nematode Caenorhabditis elegans. J Biol Chem 1995; 270:14666-71. [PMID: 7782329 DOI: 10.1074/jbc.270.24.14666] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We have previously shown that a tandem pair of (A/T)GATA(A/G) sequences in the promoter region of the Caenorhabditis elegans gut esterase gene (ges-1) controls the tissue specificity of ges-1 expression in vivo. The ges-1 GATA region was used as a probe to screen a C. elegans cDNA expression library, and a gene for a new C. elegans GATA-factor (named elt-2) was isolated. The longest open reading frame in the elt-2 cDNA codes for a protein of M(r) 47,000 with a single zinc finger domain, similar (approximately 75% amino acid identity) to the C-terminal fingers of all other two-fingered GATA factors isolated to date. A similar degree of relatedness is found with the single-finger DNA binding domains of GATA factors identified in invertebrates. An upstream region in the ELT-2 protein with the sequence C-X2-C-X16-C-X2-C has some of the characteristics of a zinc finger domain but is highly diverged from the zinc finger domains of other GATA factors. The elt-2 gene is expressed as an SL1 trans-spliced message, which can be detected at all stages of development except oocytes; however, elt-2 message levels are 5-10-fold higher in embryos than in other stages. The genomic clone for elt-2 has been characterized and mapped near the center of the C. elegans X chromosome, ELT-2 protein, produced by in vitro transcription-translation, binds to ges-1 GATA-containing oligonucleotides similar to a factor previously identified in C. elegans embryo extracts, both as assayed by electrophoretic migration and by competition with wild type and mutant oligonucleotides. However, there is as yet no direct evidence that elt-2 does or does not control ges-1.
Collapse
Affiliation(s)
- M G Hawkins
- Department of Medical Biochemistry, University of Calgary, Alberta, Canada
| | | |
Collapse
|
186
|
Busfield SJ, Spadaccini A, Riches KJ, Tilbrook PA, Klinken SP. The Major Erythroid DNA-binding Protein GATA-1 is Stimulated by Erythropoietin but not by Chemical Inducers of Erythroid Differentiation. ACTA ACUST UNITED AC 1995. [DOI: 10.1111/j.1432-1033.1995.tb20585.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
187
|
Perkins AC, Sharpe AH, Orkin SH. Lethal beta-thalassaemia in mice lacking the erythroid CACCC-transcription factor EKLF. Nature 1995; 375:318-22. [PMID: 7753195 DOI: 10.1038/375318a0] [Citation(s) in RCA: 504] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Globin genes are regulated in a tissue-specific and developmental stage-specific manner, with the beta-globin gene being the last to be activated in the beta-gene cluster. CACCC-nucleotide sequences, which bind multiple nuclear proteins, including ubiquitously expressed Sp1 and erythroid Krüppel-like factor (EKLF), are among the cis-regulatory sequences critical for transcription of globin and non-globin erythroid-expressed genes. To determine the function of EKLF in vivo, we created mice deficient in EKLF by gene targeting. These embryos die of anaemia during fetal liver erythropoiesis and show the molecular and haematological features of beta-globin deficiency, found in beta-thalassaemia. Although it is expressed at all stages, EKLF is not required for yolk sac erythropoiesis, erythroid commitment or expression of other potential target genes. Its stage-specific and beta-globin-gene-specific requirement suggests that EKLF may facilitate completion of the fetal-to-adult (haemoglobin gamma to beta) switch in humans.
Collapse
Affiliation(s)
- A C Perkins
- Division of Hematology/oncology, Children's Hospital, Boston, Massachusetts, USA
| | | | | |
Collapse
|
188
|
Kulessa H, Frampton J, Graf T. GATA-1 reprograms avian myelomonocytic cell lines into eosinophils, thromboblasts, and erythroblasts. Genes Dev 1995; 9:1250-62. [PMID: 7758949 DOI: 10.1101/gad.9.10.1250] [Citation(s) in RCA: 343] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The transcription factor GATA-1 is expressed in early hematopoietic progenitors and specifically down-regulated in myelomonocytic cells during lineage determination. Our earlier observation that the differentiation of Myb-Ets-transformed chicken hematopoietic progenitors into myeloblasts likewise involves a GATA-1 down-regulation, whereas expression is maintained in erythroid, thrombocytic, and eosinophilic derivatives, prompted us to study the effect of forced GATA-1 expression in Myb-Ets-transformed myeloblasts. We found that the factor rapidly suppresses myelomonocytic markers and induces a reprogramming of myeloblasts into cells resembling either transformed eosinophils or thromboblasts. In addition, we observed a correlation between the level of GATA-1 expression and the phenotype of the cell, intermediate levels of the factor being expressed by eosinophils and high levels by thromboblasts, suggesting a dosage effect of the factor. GATA-1 can also induce the formation of erythroblasts when expressed in a myelomonocytic cell line transformed with a Myb-Ets mutant containing a lesion in Ets. These cells mature into erythrocytes following temperature-inactivation of the Ets protein. Finally, the factor can reprogram a v-Myc-transformed macrophage cell line into myeloblasts, eosinophils, and erythroblasts, showing that the effects of GATA-1 are not limited to Myb-Ets-transformed myeloblasts. Our results suggest that GATA-1 is a lineage-determining transcription factor in transformed hematopoietic cells, which not only activates lineage-specific genetic programs but also suppresses myelomonocytic differentiation. They also point to a high degree of plasticity of transformed hematopoietic cells.
Collapse
Affiliation(s)
- H Kulessa
- Differentiation Programme, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | |
Collapse
|
189
|
Skoda RC, Tsai SF, Orkin SH, Leder P. Expression of c-MYC under the control of GATA-1 regulatory sequences causes erythroleukemia in transgenic mice. J Exp Med 1995; 181:1603-13. [PMID: 7722440 PMCID: PMC2191979 DOI: 10.1084/jem.181.5.1603] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
To study oncogenesis in the erythroid lineage, we have generated transgenic mice carrying the human c-MYC proto-oncogene under the control of mouse GATA-1 regulatory sequences. Six transgenic lines expressed the transgene and displayed a clear oncogenic phenotype. Of these, five developed an early onset, rapidly progressive erythroleukemia that resulted in death of the founder animals 30-50 d after birth. Transgenic progeny of the sixth founder, while also expressing the transgene, remained asymptomatic for more than 8 mo, whereupon members of this line began to develop late onset erythroleukemia. The primary leukemic cells were transplantable into nude mice and syngeneic hosts. Cell lines were established from five of the six leukemic animals and these lines, designated erythroleukemia/c-MYC (EMY), displayed proerythroblast morphology and expressed markers characteristic of the erythroid lineage, including the erythropoietin receptor and beta-globin. Moreover, they also manifested a limited potential to differentiate in response to erythropoietin. Studies in the surviving transgenic line indicated that, contrary to our expectations, the transgene was not expressed in the mast cell lineage. That, coupled with the exclusive occurrence of erythroleukemia in all the transgenic lines, suggests that the GATA-1 promoter construct we have used includes regulatory sequences necessary for in vivo erythroid expression only. Additional sequences would appear to be required for expression in mast cells. Further, our results show that c-MYC can efficiently transform erythroid precursors if expressed at a vulnerable stage of their development.
Collapse
Affiliation(s)
- R C Skoda
- Howard Hughes Medical Institute, Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | |
Collapse
|
190
|
Labbaye C, Valtieri M, Barberi T, Meccia E, Masella B, Pelosi E, Condorelli GL, Testa U, Peschle C. Differential expression and functional role of GATA-2, NF-E2, and GATA-1 in normal adult hematopoiesis. J Clin Invest 1995; 95:2346-58. [PMID: 7738198 PMCID: PMC295853 DOI: 10.1172/jci117927] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We have explored the expression of the transcription factors GATA-1, GATA-2, and NF-E2 in purified early hematopoietic progenitor cells (HPCs) induced to gradual unilineage erythroid or granulocytic differentiation by growth factor stimulus. GATA-2 mRNA and protein, already expressed in quiescent HPCs, is rapidly induced as early as 3 h after growth factor stimulus, but then declines in advanced erythroid and granulocytic differentiation and maturation. NF-E2 and GATA-1 mRNAs and proteins, though not detected in quiescent HPCs, are gradually induced at 24-48 h in both erythroid and granulocytic culture. Beginning at late differentiation/early maturation stage, both transcription factors are further accumulated in the erythroid pathway, whereas they are suppressed in the granulopoietic series. Similarly, the erythropoietin receptor (EpR) is induced and sustainedly expressed during erythroid differentiation, although beginning at later times (i.e., day 5), whereas it is barely expressed in the granulopoietic pathway. In the first series of functional studies, HPCs were treated with antisense oligomers targeted to transcription factor mRNA: inhibition of GATA-2 expression caused a decreased number of both erythroid and granulocyte-monocytic clones, whereas inhibition of NF-E2 or GATA-1 expression induced a selective impairment of erythroid colony formation. In a second series of functional studies, HPCs treated with retinoic acid were induced to shift from erythroid to granulocytic differentiation (Labbaye et al. 1994. Blood. 83:651-656); this was coupled with abrogation of GATA-1, NF-E2, and EpR expression and conversely enhanced GATA-2 levels. These results indicate the expression and key role of GATA-2 in the early stages of HPC proliferation/differentiation. Conversely, NF-E2 and GATA-1 expression and function are apparently restricted to erythroid differentiation and maturation: their expression precedes that of the EpR, and their function may be in part mediated via the EpR.
Collapse
Affiliation(s)
- C Labbaye
- Department of Hematology and Oncology, Istituto Superiore di Sanità, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
191
|
Abstract
This review focuses on the roles of transcription factors in hematopoietic lineage commitment. A brief introduction to lineage commitment and asymmetric cell division is followed by a discussion of several methods used to identify transcription factors important in specifying hematopoietic cell types. Next is presented a discussion of the use of embryonic stem cells in the analysis of hematopoietic gene expression and the use of targeted gene disruption to analyze the role of transcription factors in hematopoiesis. Finally, the status of our current knowledge concerning the roles of transcription factors in the commitment to erythroid, myeloid and lymphoid cell types is summarized.
Collapse
Affiliation(s)
- J H Kehrl
- B Cell Molecular Immunology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
192
|
Dirks RP, Jansen HJ, van Gerven B, Onnekink C, Bloemers HP. In vivo footprinting and functional analysis of the human c-sis/PDGF B gene promoter provides evidence for two binding sites for transcriptional activators. Nucleic Acids Res 1995; 23:1119-26. [PMID: 7739890 PMCID: PMC306819 DOI: 10.1093/nar/23.7.1119] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
By in vivo DMS footprint and reporter gene analyses we identified two transcription factor binding sites in the human c-sis/PDGF B gene promoter. The low basal activity of the PDGF B promoter in HeLa and undifferentiated K562 cells, which express low PDGF B mRNA levels, and in PC3 cells, which express a high PDGF B mRNA level, results from binding of a weak transcriptional activator between positions -64 and -61 relative to the transcription start site. Cytotrophoblast-like JEG-3 cells, which do not express the 3.5 kb PDGF B mRNA, contain a transcriptional activator directed at the -64/-61 sequence, but DNA methylation may render the endogenous promoter inaccessible to this activator. A CCACCCAC element at position -61/-54 was identified as the in vivo binding site for a strong transcriptional activator in phorbol ester-treated megakaryocytic K562 cells, which express a high PDGF B mRNA level. Primary human fibroblasts, which do not transcribe the PDGF B gene, contain a transcriptional activator that recognizes an element between positions -60 and -45 but does not bind to the endogenous unmethylated promoter. Our results show that the complex expression pattern of the human PDGF B gene involves the cell type-specific expression of weak and strong transcriptional activators and regulation of promoter accessibility to these factors.
Collapse
Affiliation(s)
- R P Dirks
- Department of Biochemistry, University of Nijmegen, The Netherlands
| | | | | | | | | |
Collapse
|
193
|
Wu Y, Fraizer GC, Saunders GF. GATA-1 transactivates the WT1 hematopoietic specific enhancer. J Biol Chem 1995; 270:5944-9. [PMID: 7890725 DOI: 10.1074/jbc.270.11.5944] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The Wilms' tumor gene, WT1, is believed to play a role in hematopoiesis as it is expressed in the spleen and in immature leukemias in addition to the developing genitourinary system. WT1 is down-regulated in differentiated leukemia cells both in vivo and in vitro and is up-regulated in fetal spleen and immature leukemia cells. The modulation of WT1 expression was examined in many cell types, and a hematopoietic-specific enhancer element has been identified. Here we describe the transcriptional response of this enhancer to hematopoietic-specific transcription factors. We found co-expression of WT1 and GATA-1 mRNA in K562 cells and in mouse spleen, suggesting potential interactions between these two transcription factors. We find that the activity of the 3' WT1 enhancer is positively correlated with the expression of GATA-1. Gel shift competition experiments and transactivation studies revealed that this functional activity is mediated via binding at a GATA-binding site in the WT1 enhancer. The transactivation of the WT1 enhancer by GATA-1 implies that GATA-1 plays a role in the regulation of WT1 during hematopoiesis.
Collapse
Affiliation(s)
- Y Wu
- Department of Biochemistry and Molecular Biology, University of Texas M.D. Anderson Cancer Center, Houston 77030
| | | | | |
Collapse
|
194
|
Rai R, Daugherty JR, Cooper TG. UASNTR functioning in combination with other UAS elements underlies exceptional patterns of nitrogen regulation in Saccharomyces cerevisiae. Yeast 1995; 11:247-60. [PMID: 7785325 DOI: 10.1002/yea.320110307] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
UASNTR, the UAS responsible for nitrogen catabolite repression-sensitive transcriptional activation of many nitrogen catabolic genes in Saccharomyces cerevisiae, has been previously thought to operate only as a pair of closely related dodecanucleotide sites each containing the sequence GATAA at its core. Here we show that a single UASNTR the unrelated cis-acting element was TTTGTTTAC situated upstream of GLN1, while in another the cis-acting element was the one previously shown to bind the PUT3 protein. When a UASNTR site functions in combination with an unrelated site, the regulatory responses observed are a hybrid consisting of characteristics derived from both the UASNTR site and the unrelated site as well. These observations resolve several significant inconsistencies that have plagued studies focused on elucidation of the mechanisms involved in the global regulation of nitrogen catabolism.
Collapse
Affiliation(s)
- R Rai
- Department of Microbiology and Immunology, University of Tennessee, Memphis 38163, USA
| | | | | |
Collapse
|
195
|
Yang HY, Evans T. Homotypic interactions of chicken GATA-1 can mediate transcriptional activation. Mol Cell Biol 1995; 15:1353-63. [PMID: 7862128 PMCID: PMC230359 DOI: 10.1128/mcb.15.3.1353] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We used a one-hybrid system to replace precisely the finger II chicken GATA-1 DNA-binding domain with the binding domain of bacterial repressor protein LexA. The LexA DNA-binding domain lacks amino acids that function for transcriptional activation, nuclear localization, or protein dimerization. This allowed us to analyze activities of GATA-1 sequences distinct from DNA binding. We found that strong transcriptional activating sequences that function independently of finger II are present in GATA-1. Sequences including finger I contain an independent nuclear localizing function. Our data are consistent with cooperative binding of two LexA-GATA-1 hybrid proteins on a palindromic operator. The sensitivity of our transcription assay provides the first evidence that GATA-1 can make homotypic interactions in vivo. The ability of a non-DNA-binding form of GATA-1 to activate gene expression by targeting to a bound GATA-1 derivative further supports the notion that GATA-1-GATA-1 interactions may have functional consequences. A coimmunoprecipitation assay was used to demonstrate that GATA-1 multimeric complexes form in solution by protein-protein interaction. The novel ability of GATA-1 to interact homotypically may be important for the formation of higher-order structures among distant regulatory elements that share binding sites for this transcription factor. We also used the system to test the ability of GATA-1 to interact heterotypically with other activators.
Collapse
Affiliation(s)
- H Y Yang
- Department of Biological Sciences, University of Pittsburgh, Pennsylvania 15260
| | | |
Collapse
|
196
|
Visvader JE, Crossley M, Hill J, Orkin SH, Adams JM. The C-terminal zinc finger of GATA-1 or GATA-2 is sufficient to induce megakaryocytic differentiation of an early myeloid cell line. Mol Cell Biol 1995; 15:634-41. [PMID: 7823932 PMCID: PMC231921 DOI: 10.1128/mcb.15.2.634] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The GATA-1 and GATA-2 transcription factors, which each contain two homologous zinc fingers, are important hematopoietic regulators expressed within the erythroid, mast cell, and megakaryocytic lineages. Enforced expression of either factor in the primitive myeloid line 416B induces megakaryocytic differentiation. The features of their structure required for this activity have been explored. The ability of 12 GATA-1 mutants to promote 416B maturation was compared with their DNA-binding activity and transactivation potential. Differentiation did not require any of the seven serine residues that are phosphorylated in vivo, an N-terminal region bearing the major transactivation domain, or a C-terminal segment beyond the fingers. Removal of a consensus nuclear localization signal following the second finger did not block differentiation or nuclear translocation. The N-terminal finger was also dispensable, although its removal attenuated differentiation. In contrast, the C-terminal finger was essential, underscoring its distinct function. Remarkably, only 69 residues spanning the C-terminal finger were required to induce limited megakaryocytic differentiation. Analysis of three GATA-2 mutants led to the same conclusion. Endogenous GATA-1 mRNA was induced by most mutants and may contribute to differentiation. Because the GATA-1 C-terminal finger could bind its target site but not transactivate a minimal reporter, it may direct megakaryocytic maturation by derepressing specific genes and/or by interacting with another protein which provides the transactivation function.
Collapse
Affiliation(s)
- J E Visvader
- Walter and Eliza Hall Institute of Medical Research, Royal Melbourne Hospital, Victoria, Australia
| | | | | | | | | |
Collapse
|
197
|
Coffman JA, el Berry HM, Cooper TG. The URE2 protein regulates nitrogen catabolic gene expression through the GATAA-containing UASNTR element in Saccharomyces cerevisiae. J Bacteriol 1994; 176:7476-83. [PMID: 8002570 PMCID: PMC197203 DOI: 10.1128/jb.176.24.7476-7483.1994] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Many of the gene products that participate in nitrogen metabolism are sensitive to nitrogen catabolite repression (NCR), i.e., their expression is decreased to low levels when readily used nitrogen sources such as asparagine are provided. Previous work has shown this NCR sensitivity requires the cis-acting UASNTR element and trans-acting GLN3. Here, we extend the analysis to include the response of their expression to deletion of the URE2 locus. The expression of these nitrogen catabolic genes becomes, to various degrees, NCR insensitive in the ure2 deletion. This response is shown to be mediated through the GATAA-containing UASNTR element and supports the current idea that the NCR regulatory circuit involves the following steps: environmental signal-->URE2-->GLN3-->UASNTR operation-->NCR-sensitive gene expression. The various responses of the nitrogen catabolic genes' expression to deletion of the URE2 locus also indicate that not all NCR is mediated through URE2.
Collapse
Affiliation(s)
- J A Coffman
- Department of Microbiology and Immunology, University of Tennessee, Memphis 38163
| | | | | |
Collapse
|
198
|
Novak JP, Necas E. Proliferation-differentiation pathways of murine haemopoiesis: correlation of lineage fluxes. Cell Prolif 1994. [DOI: 10.1111/j.1365-2184.1994.tb01377.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
199
|
Tsai FY, Keller G, Kuo FC, Weiss M, Chen J, Rosenblatt M, Alt FW, Orkin SH. An early haematopoietic defect in mice lacking the transcription factor GATA-2. Nature 1994; 371:221-6. [PMID: 8078582 DOI: 10.1038/371221a0] [Citation(s) in RCA: 1083] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Blood cell development relies on the expansion and maintenance of haematopoietic stem and progenitor cells in the embryo. By gene targeting in mouse embryonic stem cells, we demonstrate that the transcription factor GATA-2 plays a critical role in haematopoiesis, particularly of an adult type. We propose that GATA-2 regulates genes controlling growth factor responsiveness or the proliferative capacity of early haematopoietic cells.
Collapse
Affiliation(s)
- F Y Tsai
- Division of Hematology-Oncology, Children's Hospital, Boston, Massachusetts
| | | | | | | | | | | | | | | |
Collapse
|
200
|
George KM, Leonard MW, Roth ME, Lieuw KH, Kioussis D, Grosveld F, Engel JD. Embryonic expression and cloning of the murine GATA-3 gene. Development 1994; 120:2673-86. [PMID: 7956841 DOI: 10.1242/dev.120.9.2673] [Citation(s) in RCA: 166] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We describe the embryonic expression pattern as well as the cloning and initial transcriptional regulatory analysis of the murine (m) GATA-3 gene. In situ hybridization shows that mGATA-3 mRNA accumulation is temporally and spatially regulated during early development: although found most abundantly in the placenta prior to 10 days of embryogenesis, mGATA-3 expression becomes restricted to specific cells within the embryonic central nervous system (in the mesencephalon, diencephalon, pons and inner ear) later in gestation. GATA-3 also shows a restricted expression pattern in the peripheral nervous system, including terminally differentiating cells in the cranial and sympathetic ganglia. In addition to this distinct pattern in the nervous system, mGATA-3 is also expressed in the embryonic kidney and the thymic rudiment, and further analysis showed that it is expressed throughout T lymphocyte differentiation. To begin to investigate how this complex gene expression pattern is elicited, cloning and transcriptional regulatory analyses of the mGATA-3 gene were initiated. At least two regulatory elements (one positive and one negative) appear to be required for appropriate tissue-restricted regulation after transfection of mGATA-3-directed reporter genes into cells that naturally express GATA-3 (T lymphocytes and neuroblastoma cells). Furthermore, this same region of the locus confers developmentally appropriate expression in transgenic mice, but only in a subset of the tissues that naturally express the gene.
Collapse
Affiliation(s)
- K M George
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, Il 60208-3500
| | | | | | | | | | | | | |
Collapse
|