151
|
Murata K, Ishii N, Takano H, Miura S, Ndhlovu LC, Nose M, Noda T, Sugamura K. Impairment of antigen-presenting cell function in mice lacking expression of OX40 ligand. J Exp Med 2000; 191:365-74. [PMID: 10637280 PMCID: PMC2195745 DOI: 10.1084/jem.191.2.365] [Citation(s) in RCA: 237] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
OX40 expressed on activated T cells is known to be an important costimulatory molecule on T cell activation in vitro. However, the in vivo functional significance of the interaction between OX40 and its ligand, OX40L, is still unclear. To investigate the role of OX40L during in vivo immune responses, we generated OX40L-deficient mice and a blocking anti-OX40L monoclonal antibody, MGP34. OX40L expression was demonstrated on splenic B cells after CD40 and anti-immunoglobulin (Ig)M stimulation, while only CD40 ligation was capable of inducing OX40L on dendritic cells. OX40L-deficient and MGP34-treated mice engendered apparent suppression of the recall reaction of T cells primed with both protein antigens and alloantigens and a significant reduction in keyhole limpet hemocyanin-specific IgG production. The impaired T cell priming was also accompanied by a concomitant reduction of both T helper type 1 (Th1) and Th2 cytokines. Furthermore, antigen-presenting cells (APCs) derived from the mutant mice revealed an impaired intrinsic APC function, demonstrating the importance of OX40L in both the priming and effector phases of T cell activation. Collectively, these results provide convincing evidence that OX40L, expressed on APCs, plays a critical role in antigen-specific T cell responses in vivo.
Collapse
Affiliation(s)
- Kazuko Murata
- Department of Microbiology and Immunology, Tohoku University School of Medicine, Sendai 980-8575, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Corporation, Kawaguchi 332-0012, Japan
| | - Naoto Ishii
- Department of Microbiology and Immunology, Tohoku University School of Medicine, Sendai 980-8575, Japan
| | - Hiroshi Takano
- Department of Cell Biology, Cancer Institute, Toshima-ku, Tokyo 170, Japan
| | - Shigeto Miura
- Department of Microbiology and Immunology, Tohoku University School of Medicine, Sendai 980-8575, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Corporation, Kawaguchi 332-0012, Japan
| | - Lishomwa C. Ndhlovu
- Department of Microbiology and Immunology, Tohoku University School of Medicine, Sendai 980-8575, Japan
| | - Masato Nose
- Second Department of Pathology, Ehime University School of Medicine, Ehime 791-02, Japan
| | - Tetsuo Noda
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Corporation, Kawaguchi 332-0012, Japan
- Department of Cell Biology, Cancer Institute, Toshima-ku, Tokyo 170, Japan
| | - Kazuo Sugamura
- Department of Microbiology and Immunology, Tohoku University School of Medicine, Sendai 980-8575, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Corporation, Kawaguchi 332-0012, Japan
| |
Collapse
|
152
|
Matsuo-Takasaki M, Lim JH, Sato SM. The POU domain gene, XlPOU 2 is an essential downstream determinant of neural induction. Mech Dev 1999; 89:75-85. [PMID: 10559482 DOI: 10.1016/s0925-4773(99)00204-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The POU domain gene, XlPOU 2, acts as a transcriptional activator during mid-gastrulation in Xenopus. Overexpression or misexpression of VP16-POU-GR, a fusion protein consisting of the strong activator domain of VP16 and the POU domain of XlPOU 2, results in ectopic expression of the neural-specific genes, nrp-1, en-2, and beta-tubulin. In contrast, overexpressing a dominant-inhibitory form of XlPOU 2 inhibits the chordin-induced neuralization of uncommitted ectoderm, and results in a loss of nrp-1 and en-2 expression in embryos. Furthermore, in uncommitted ectoderm, XlPOU 2 regulates the developmental neural program that includes a number of pre-pattern genes and at least one proneural gene, X-ngnr-1, thus playing a key role during neural determination.
Collapse
Affiliation(s)
- M Matsuo-Takasaki
- Laboratory of Molecular Genetics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda 20892, USA.
| | | | | |
Collapse
|
153
|
Acampora D, Postiglione MP, Avantaggiato V, Di Bonito M, Vaccarino FM, Michaud J, Simeone A. Progressive impairment of developing neuroendocrine cell lineages in the hypothalamus of mice lacking the Orthopedia gene. Genes Dev 1999; 13:2787-800. [PMID: 10557207 PMCID: PMC317121 DOI: 10.1101/gad.13.21.2787] [Citation(s) in RCA: 147] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/1999] [Accepted: 09/21/1999] [Indexed: 11/24/2022]
Abstract
Development of the neuroendocrine hypothalamus is characterized by a precise series of morphogenetic milestones culminating in terminal differentiation of neurosecretory cell lineages. The homeobox-containing gene Orthopedia (Otp) is expressed in neurons giving rise to the paraventricular (PVN), supraoptic (SON), anterior periventricular (aPV), and arcuate (ARN) nuclei throughout their development. Homozygous Otp(-/-) mice die soon after birth and display progressive impairment of crucial neuroendocrine developmental events such as reduced cell proliferation, abnormal cell migration, and failure in terminal differentiation of the parvocellular and magnocellular neurons of the aPV, PVN, SON, and ARN. Moreover, our data provide evidence that Otp and Sim1, a bHLH-PAS transcription factor that directs terminal differentiation of the PVN, SON, and aPV, act in parallel and are both required to maintain Brn2 expression which, in turn, is required for neuronal cell lineages secreting oxytocin (OT), arginine vasopressin (AVP), and corticotropin-releasing hormone (CRH).
Collapse
Affiliation(s)
- D Acampora
- International Institute of Genetics and Biophysics, Consiglio Nationale delle Ricerche (CNR), 80125 Naples, Italy
| | | | | | | | | | | | | |
Collapse
|
154
|
McEvilly RJ, Rosenfeld MG. The role of POU domain proteins in the regulation of mammalian pituitary and nervous system development. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1999; 63:223-55. [PMID: 10506833 DOI: 10.1016/s0079-6603(08)60724-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
POU domain proteins represent a subfamily of homeodomain-containing transcription factors that are expressed in many animal orders in a number of distinct regions in the developing and adult organism. In mammals, the expression profiles of these factors have suggested roles for class I, class III, and class IV POU domain proteins in the development, maintenance, and function of the endocrine and nervous systems. The genetic characterizations of the functions of these proteins during the generation, differentiation, and maturation of cells comprising these tissues have revealed a requirement for the individual actions of these transcription factors in the development of various elements of the anterior pituitary, the brain, and the somatosensory, vestibular/cochlear, and visual systems.
Collapse
Affiliation(s)
- R J McEvilly
- Department of Medicine, University of California, San Diego, La Jolla 92093, USA
| | | |
Collapse
|
155
|
Abstract
Targeted mutagenesis in mice demonstrates that the POU-domain gene Brn4/Pou3f4 plays a crucial role in the patterning of the mesenchymal compartment of the inner ear. Brn4 is expressed extensively throughout the condensing mesenchyme of the developing inner ear. Mutant animals displayed behavioral anomalies that resulted from functional deficits in both the auditory and vestibular systems, including vertical head bobbing, changes in gait, and hearing loss. Anatomical analyses of the temporal bone, which is derived in part from the otic mesenchyme, demonstrated several dysplastic features in the mutant animals, including enlargement of the internal auditory meatus. Many phenotypic features of the mutant animals resulted from the reduction or thinning of the bony compartment of the inner ear. Histological analyses demonstrated a hypoplasia of those regions of the cochlea derived from otic mesenchyme, including the spiral limbus, the scala tympani, and strial fibrocytes. Interestingly, we observed a reduction in the coiling of the cochlea, which suggests that Brn-4 plays a role in the epithelial-mesenchymal communication necessary for the cochlear anlage to develop correctly. Finally, the stapes demonstrated several malformations, including changes in the size and morphology of its footplate. Because the stapes anlage does not express the Brn4 gene, stapes malformations suggest that the Brn4 gene also plays a role in mesenchymal-mesenchymal signaling. On the basis of these data, we suggest that Brn-4 enhances the survival of mesodermal cells during the mesenchymal remodeling that forms the mature bony labyrinth and regulates inductive signaling mechanisms in the otic mesenchyme.
Collapse
|
156
|
Mihailescu D, Küry P, Monard D. An octamer-binding site is crucial for the activity of an enhancer active at the embryonic met-/mesencephalic junction. Mech Dev 1999; 84:55-67. [PMID: 10473120 DOI: 10.1016/s0925-4773(99)00067-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
An enhancer sequence found in the Protease Nexin-1 (PN-1) gene was shown to drive lacZ expression specifically at the met-/mesencephalic junction in transgenic mouse embryos. A functional study of this enhancer has been performed to better understand the mechanisms regulating isthmic gene expression. An octamer-binding site for POU domain factors was found to be crucial for the activity of the enhancer in vivo. Comparative expression studies of POU domain factors, electrophoretic mobility shift assays and transient transfection experiments, strongly suggest that Brn-1/-2 regulate the enhancer activity in vivo. In addition, in vitro experiments indicated that FGF-8 was required for the maintenance of the enhancer activity, but not for the synthesis of Bn-1/-2. The data represents the first functional evidence for a role of POU factors in the regulation of met-/mesencephalic gene expression. It also implies that at least two regulatory pathways, namely the FGF-8 signaling and the octamer-binding site pathway, synergistically interact to control the PN-1 enhancer activity in vivo.
Collapse
MESH Headings
- Amyloid beta-Protein Precursor
- Animals
- Base Sequence
- Binding Sites
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Central Nervous System/embryology
- Central Nervous System/metabolism
- DNA/metabolism
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Deoxyribonucleases, Type II Site-Specific/genetics
- Deoxyribonucleases, Type II Site-Specific/metabolism
- Enhancer Elements, Genetic
- Female
- Fibroblast Growth Factor 8
- Fibroblast Growth Factors/genetics
- Fibroblast Growth Factors/metabolism
- Gene Expression Regulation, Developmental
- Homeodomain Proteins
- Host Cell Factor C1
- Male
- Mesencephalon/embryology
- Mesencephalon/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Inbred Strains
- Mice, Transgenic
- Molecular Sequence Data
- Nerve Tissue Proteins
- Neuropeptides/genetics
- Neuropeptides/metabolism
- Octamer Transcription Factor-1
- POU Domain Factors
- Promoter Regions, Genetic
- Protease Nexins
- Rats
- Receptors, Cell Surface
- Regulatory Sequences, Nucleic Acid
- Signal Transduction
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Transcription Factors/genetics
- Transcription Factors/metabolism
- beta-Galactosidase/genetics
- beta-Galactosidase/metabolism
Collapse
Affiliation(s)
- D Mihailescu
- Friedrich Miescher Institute, Basel, Switzerland
| | | | | |
Collapse
|
157
|
Kawano H, Fukuda T, Kubo K, Horie M, Uyemura K, Takeuchi K, Osumi N, Eto K, Kawamura K. Pax-6 is required for thalamocortical pathway formation in fetal rats. J Comp Neurol 1999; 408:147-60. [PMID: 10333267 DOI: 10.1002/(sici)1096-9861(19990531)408:2<147::aid-cne1>3.0.co;2-l] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Pax-6, a transcription regulatory factor, has been demonstrated to play important roles in eye, nose, and brain development by analyzing mice, rats, and humans with a Pax-6 gene mutation. We examined the role of Pax-6 with special attention to the formation of efferent and afferent pathways of the cerebral cortex by using the rat Small eye (rSey2), which has a mutation in the Pax-6 gene. In rSey2/rSey2 fetuses, cortical efferent axons develop with normal trajectory, at least within the cortical anlage, when examined with immunohistochemistry of the neuronal cell adhesion molecule TAG-1 and 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI) labeling from the cortical surface. A remarkable disorder was found in the trajectory of dorsal thalamic axons by immunostaining of the neurofilament and the neural cell adhesion molecule L1 and DiI labeling from the dorsal thalamus. In normal rat fetuses, dorsal thalamic axons curved laterally in the ventral thalamus without invading a Pax-6-immunoreactive cell cluster in the ventral part of the ventral thalamus. These axons then coursed up to the cortical anlage, passing just dorsal to another Pax-6-immunoreactive cell cluster in the amygdaloid region. In contrast, in rSey2/rSey2 fetuses, dorsal thalamic axons extended downward to converge in the ventrolateral corner of the ventral thalamus and fanned out in the amygdaloid region without reaching the cortical anlage. These results suggest that Pax-6-expressing cell clusters along the thalamocortical pathway (ventral part of the ventral thalamus and amygdala) are responsible for the determination of the axonal pathfinding of the thalamocortical pathway.
Collapse
Affiliation(s)
- H Kawano
- Department of Anatomy, School of Medicine, Keio University, Tokyo, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
158
|
Sock E, Enderich J, Wegner M. The J domain of papovaviral large tumor antigen is required for synergistic interaction with the POU-domain protein Tst-1/Oct6/SCIP. Mol Cell Biol 1999; 19:2455-64. [PMID: 10082511 PMCID: PMC84038 DOI: 10.1128/mcb.19.4.2455] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Large T antigens from polyomaviruses are multifunctional proteins with roles in transcriptional regulation, viral DNA replication, and cellular transformation. They have been shown to enhance the activity of various cellular transcription factors. In the case of the POU protein Tst-1/Oct6/SCIP, this enhancement involves a direct physical interaction between the POU domain of the transcription factor and the amino-terminal region of large T antigen. Here we have analyzed the structural requirements for synergistic interaction between the two proteins in greater detail. Tst-1/Oct6/SCIP and the related POU protein Brn-1 were both capable of direct physical interaction with large T antigen. Nevertheless, only Tst-1/Oct6/SCIP functioned synergistically with large T antigen. This differential behavior was due to differences in the amino-terminal regions of the proteins, as evident from chimeras between Tst-1/Oct6/SCIP and Brn-1. Synergy was specifically observed for constructs containing the amino-terminal region of Tst-1/Oct6/SCIP. Large T antigen, on the other hand, functioned synergistically with Tst-1/Oct6/SCIP only when the integrity of its J-domain-containing amino terminus was maintained. Mutations that disrupted the J domain concomitantly abolished the ability to enhance the function of Tst-1/Oct6/SCIP. The J domain of T antigen was also responsible for the physical interaction with Tst-1/Oct6/SCIP and could be replaced in this property by other J domains. Intriguingly, a heterologous J domain from a human DnaJ protein partially substituted for the amino terminus of T antigen even with regard to the synergistic enhancement of Tst-1/Oct6/SCIP function. Given the general role of J domains, we propose chaperone activity as the underlying mechanism for synergy between Tst-1/Oct6/SCIP and large T antigens.
Collapse
Affiliation(s)
- E Sock
- Zentrum für Molekulare Neurobiologie, Universität Hamburg, D-20246 Hamburg, Germany
| | | | | |
Collapse
|
159
|
Abstract
Corticotropin-releasing hormone (CRH), the major regulator of hypothalamic-pituitary-adrenal (HPA) axis, was first isolated due to its ability to stimulate the release of adrenocorticotropic hormone from the anterior pituitary. Later, it was also found to have also a wide spectrum of actions within the central nervous system and the periphery. Studies with pharmacological administration of this peptide and/or antagonists and antibody neutralization techniques have yielded important information concerning the physiological relevance of CRH. The development of CRH knockout mice (CRH KO) has been an important tool for addressing the physiologic and pathologic roles of CRH. This review describes the phenotype of CRH-deficient mice, as well as the use of this model to study the roles of CRH on fetal development and postnatal life. The role of CRH in prenatal development and postnatal regulation of the HPA axis, in activation of the reproductive system during stress, and in modulation of the immune function will be discussed. The review concludes with a comparison of CRH KO mice with other models of CRH deficiency.
Collapse
Affiliation(s)
- M Venihaki
- Division of Endocrinology, Children's Hospital, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
160
|
Hagino-Yamagishi K, Minamikawa-Tachino R, Ichikawa M, Yazaki K. Expression of brain-2 in the developing olfactory bulb. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1999; 113:133-7. [PMID: 10064882 DOI: 10.1016/s0165-3806(98)00192-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The expression of Brain-2, a POU domain transcription factor, was examined in the developing olfactory bulb. Brain-2 was expressed mainly in the output neurons, mitral cell and tufted cells in the main olfactory bulb (MOB), and mitral/tufted cells (MT cells) in the accessory olfactory bulb (AOB). It was not expressed in granular cells in either the MOB or the AOB. Our results suggest that Brain-2 was specifically expressed in output neurons but not in interneurons in the developing olfactory bulb. Brain-2 may play a role in the development of these output neurons.
Collapse
Affiliation(s)
- K Hagino-Yamagishi
- Department of Ultrastructural Research, Tokyo Metropolitan Institute of Medical Science, Honkomagome 3-18-22, Bunkyo-ku, Tokyo 113, Japan.
| | | | | | | |
Collapse
|
161
|
Kioussi C, Carrière C, Rosenfeld MG. A model for the development of the hypothalamic-pituitary axis: transcribing the hypophysis. Mech Dev 1999; 81:23-35. [PMID: 10330482 DOI: 10.1016/s0925-4773(98)00229-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mammalian organogenesis involves a sequential program to generate cells with specific fates and phenotypes from a common primordium, which is hypothesized to be the consequence of regulated overlapping patterns of expression of specific sets of transcription factors in a precise spatiotemporal manner. The hypothalamic-pituitary axis is critical for survival and homeostasis, controlling growth, reproduction, metabolism and behavior, and constitutes an ideal model in which to define the molecular markers to emergence of specific cell phenotypes from a common primordium. Development of the anterior pituitary gland is controlled by sequential series of gradients of specific signaling molecules that, in turn, appear to coordinate the expression of specific combinations of transcription factor-encoding genes, many of which as tissue-specific or tissue restricted factors that serially dictate cell-type determination and terminal differentiation events that underlie the differentiated cell phenotype.
Collapse
Affiliation(s)
- C Kioussi
- Howard Hughes Medical Institute, Cellular and Molecular Medicine, University of California San Diego, School and Department of Medicine, 9500 Gilman Drive, CMM W. Room 345, La Jolla, CA 92093-0648, USA
| | | | | |
Collapse
|
162
|
Schonemann MD, Ryan AK, Erkman L, McEvilly RJ, Bermingham J, Rosenfeld MG. POU domain factors in neural development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1999; 449:39-53. [PMID: 10026784 DOI: 10.1007/978-1-4615-4871-3_4] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Transcription factors serve critical roles in the progressive development of general body plan, organ commitment, and finally, specific cell types. Comparison of the biological roles of a series of individual members within a family permits some generalizations to be made regarding the developmental events that are likely to be regulated by a particular class of transcription factors. Here, we evidence that the developmental functions of the family of transcription factors characterized by the POU DNA binding motif exerts roles in mammalian development. The POU domain family of transcription factors was defined following the observation that the products of three mammalian genes, Pit-1, Oct-1, and Oct-2, and the protein encoded by the C. elegans gene unc-86, shared a region of homology, known as the POU domain. The POU domain is a bipartite DNA binding domain, consisting of two highly conserved regions, tethered by a variable linker. The approximately 75 amino acid N-terminal region was called the POU-specific domain and the C-terminal 60 amino acid region, the POU-homeodomain. High-affinity site-specific DNA binding by POU domain transcription factors requires both the POU-specific and the POU-homeodomain. Resolution of the crystal structures of Oct-1 and Pit-1 POU domains bound to DNA as a monomer and homodimer, respectively, confirmed several of the in vitro findings regarding interactions of this bipartite DNA binding domain with DNA and has provided important information regarding the flexibility and versatility of POU domain proteins. Overall the crystal structure of a monomer of the Oct-1 POU domain bound to the octamer element was similar to that predicted by the NMR solution structures of the POU-specific domain and the POU-homeodomain in isolation, with the POU-specific domain consists of four alpha helices, with the second and third helices forming a structure similar to the helix-turn-helix motif of the lambda and 434 repressors; several of the DNA base contacts are also conserved. A homodimer of the Pit-1 POU domain was crystallized bound to a Pit-1 dimer DNA element that is closely related to a site in the proximal promoter of the prolactin gene. The structure of the Pit-1 POU domain on DNA is very similar to that of Oct-1, and the Pit-1 POU-homeodomain/DNA structure is strikingly similar to that of other homeodomains, including the Oct-1 POU-homeodomain. The DNA contacts made by the Pit-1 POU-specific domain are also similar to those of Oct-1 and conserved with many made by the prokaryotic repressors. In the Oct-1 crystal, the POU-specific domain recognizes a GCAT half-site, while the corresponding sequence recognized by the Pit-1 POU-specific domain, GTAT, is on the opposing strand. As a result, the orientation of the Pit-1 POU-specific domain relative to the POU-homeodomain is flipped, as compared to the Oct-1 crystal structure, indicating the remarkable flexibility of the POU-specific domain in adapting to variations in sequence within the site. Also in contrast to the Oct-1 monomer structure is the observation that the POU-specific and POU-homeodomain of each Pit-1 molecule make major groove contacts on the same face of the DNA, consistent with the constraints imposed by its 15 amino acid linker. As a result, the Pit-1 POU domain homodimer essentially surrounds its DNA binding site. In the Pit-1 POU domain homodimer the dimerization interface is formed between the C-terminal end of helix 3 of the POU-homeodomain of one Pit-1 molecule and the N-terminus of helix 1 and the loop between helices 3 and 4 of the POU-specific domain of the other Pit-1 molecule. In contrast to other homeodomain crystal structures, the C-terminus of helix 3 in the Pit-1 POU-homeo-domain has an extended structure. (ABSTRACT TRUNCATED)
Collapse
Affiliation(s)
- M D Schonemann
- Howard Hughes Medical Institute, Department and School of Medicine, University of California, San Diego 92093-0648, USA
| | | | | | | | | | | |
Collapse
|
163
|
Burbach JP, van Schaick H, Lopes da Silva S, Asbreuk CH, Smidt MP. Hypothalamic transcription factors and the regulation of the hypothalamo-neurohypophysial system. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1999; 449:29-37. [PMID: 10026783 DOI: 10.1007/978-1-4615-4871-3_3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The transcription factors that confer high level expression and regulate the genes encoding neurohypophysial hormones are largely unknown. A number of different approaches have been taken to identify these factors and to elucidate molecular mechanisms of physiological gene regulation. In this chapter two transcription factor families are considered: homeodomain proteins and nuclear receptors. Their identification in the hypothalamus and actions on the OT gene are addressed here.
Collapse
Affiliation(s)
- J P Burbach
- Rudolf Magnus Institute for Neurosciences, Department of Medical Pharmacology, Utrecht University, The Netherlands
| | | | | | | | | |
Collapse
|
164
|
Shimazaki T, Arsenijevic Y, Ryan AK, Rosenfeld MG, Weiss S. A role for the POU-III transcription factor Brn-4 in the regulation of striatal neuron precursor differentiation. EMBO J 1999; 18:444-56. [PMID: 9889200 PMCID: PMC1171138 DOI: 10.1093/emboj/18.2.444] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Both insulin-like growth factor-I (IGF-I) and brain-derived neurotrophic factor (BDNF) induce the differentiation of post-mitotic neuronal precursors, derived from embryonic day 14 (E14) mouse striatal multipotent stem cells. Here we ask whether this differentiation is mediated by a member of the POU-III class of neural transcription factors. Exposure of stem cell progeny to either IGF-I or BDNF resulted in a rapid upregulation of Brn-4 mRNA and protein. Indirect immunocytochemistry with Brn-4 antiserum showed that the protein was expressed in newly generated neurons. Other POU-III genes, such as Brn-1 and Brn-2, did not exhibit this upregulation. Basic FGF, a mitogen for these neuronal precursors, did not stimulate Brn-4 expression. In the E14 mouse striatum, Brn-4-immunoreactive cells formed a boundary between the nestin-immunoreactive cells of the ventricular zone and the beta-tubulin-immunoreactive neurons migrating into the mantle zone. Loss of Brn-4 function during the differentiation of stem cell-derived or primary E14 striatal neuron precursors, by inclusion of antisense oligonucleotides, caused a reduction in the number of beta-tubulin-immunoreactive neurons. These findings suggest that Brn-4 mediates, at least in part, the actions of epigenetic signals that induce striatal neuron-precursor differentiation.
Collapse
Affiliation(s)
- T Shimazaki
- Department of Cell Biology and Anatomy, University of Calgary Faculty of Medicine, 3330 Hospital Drive N.W., Calgary, AB, Canada T2N 4N1
| | | | | | | | | |
Collapse
|
165
|
Skala H, Porteu A, Thomas M, Szajnert MF, Okazawa H, Kahn A, Phan-Dinh-Tuy F. Upstream elements involved in vivo in activation of the brain-specific rat aldolase C gene. Role of binding sites for POU and winged helix proteins. J Biol Chem 1998; 273:31806-14. [PMID: 9822647 DOI: 10.1074/jbc.273.48.31806] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The rat aldolase C gene encodes a glycolytic enzyme strongly expressed in adult brain. We previously reported that a 115-base pair (bp) promoter fragment was able to ensure the brain-specific expression of the chloramphenicol acetyltransferase (CAT) reporter gene in transgenic mice, but only at a low level (Thomas, M., Makeh, I., Briand, P., Kahn, A., and Skala, H. (1993) Eur. J. Biochem. 218, 143-151). Here we show that in vivo activation of this promoter at a high level requires cooperation between an upstream 0.6-kilobase pair (kb) fragment and far upstream sequences. In the 0.6-kb region, a 28-bp DNA element is shown to include overlapping in vitro binding sites for POU domain regulatory proteins and for the Winged Helix hepatocyte nuclear factor-3beta factor. An hepatocyte nuclear factor-3beta-binding site previously described in the short proximal promoter fragment is also shown to interact in vitro with POU proteins, although with a lower affinity than the 28-bp motif. Additional binding sites for POU factors were detected in the upstream 0.6-kb sequences. Progressive deletion in this region resulted in decreased expression levels of the transgenes in mice, suggesting synergistic interactions between these multiple POU-binding sites. We propose that DNA elements characterized by a dual binding specificity for both POU domain and Winged Helix transcription factors could play an essential role in the brain-specific expression of the aldolase C gene and other neuronal genes.
Collapse
Affiliation(s)
- H Skala
- Institut Cochin de Génétique Moléculaire, INSERM U129, Université René Descartes, 75014 Paris, France.
| | | | | | | | | | | | | |
Collapse
|
166
|
Michaud JL, Rosenquist T, May NR, Fan CM. Development of neuroendocrine lineages requires the bHLH-PAS transcription factor SIM1. Genes Dev 1998; 12:3264-75. [PMID: 9784500 PMCID: PMC317216 DOI: 10.1101/gad.12.20.3264] [Citation(s) in RCA: 289] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/1998] [Accepted: 08/21/1998] [Indexed: 11/25/2022]
Abstract
The bHLH-PAS transcription factor SIM1 is expressed during the development of the hypothalamic-pituitary axis in three hypothalamic nuclei: the paraventricular nucleus (PVN), the anterior periventricular nucleus (aPV), and the supraoptic nucleus (SON). To investigate Sim1 function in the hypothalamus, we produced mice carrying a null allele of Sim1 by gene targeting. Homozygous mutant mice die shortly after birth. Histological analysis shows that the PVN and the SON of these mice are hypocellular. At least five distinct types of secretory neurons, identified by the expression of oxytocin, vasopressin, thyrotropin-releasing hormone, corticotropin-releasing hormone, and somatostatin, are absent in the mutant PVN, aPV, and SON. Moreover, we show that SIM1 controls the development of these secretory neurons at the final stages of their differentiation. A subset of these neuronal lineages in the PVN/SON are also missing in mice bearing a mutation in the POU transcription factor BRN2. We provide evidence that, during development of the Sim1 mutant hypothalamus, the prospective PVN/SON region fails to express Brn2. Our results strongly indicate that SIM1 functions upstream to maintain Brn2 expression, which in turn directs the terminal differentiation of specific neuroendocrine lineages within the PVN/SON.
Collapse
Affiliation(s)
- J L Michaud
- Department of Embryology, Carnegie Institution of Washington, Baltimore, Maryland 21210 USA
| | | | | | | |
Collapse
|
167
|
Murphy D, Si-Hoe SL, Brenner S, Venkatesh B. Something fishy in the rat brain: molecular genetics of the hypothalamo-neurohypophysial system. Bioessays 1998; 20:741-9. [PMID: 9819563 DOI: 10.1002/(sici)1521-1878(199809)20:9<741::aid-bies7>3.0.co;2-j] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The brain peptides vasopressin and oxytocin play crucial roles in the regulation of salt and water balance. The genes encoding these neurohormones are regulated by cell-specific and physiological cues, but the molecular mechanisms remain obscure. New strategies, involving the introduction of rat transgenes into rats, are being used to address these issues, but the complexity of the rat genome has hampered progress. By contrast, the pufferfish, Fugu rubripes, has a "junk-free" genome. The oxytocin homologue from Fugu, isotocin, has been introduced into rats and is expressed in oxytocin neurons, where it is upregulated by physiological perturbations that upregulate the oxytocin gene. The Fugu and rat lineages separated 400 million years ago, yet the mechanisms that regulate the isotocin and oxytocin genes have been conserved. Fugu genome analysis and transgenesis in the physiologically tractable rat host are a powerful combination that will enable the identification of fundamental components of the neural systems that control homeostasis.
Collapse
Affiliation(s)
- D Murphy
- Department of Medicine, University of Bristol, Bristol Royal Infirmary, UK
| | | | | | | |
Collapse
|
168
|
Josephson R, Müller T, Pickel J, Okabe S, Reynolds K, Turner PA, Zimmer A, McKay RD. POU transcription factors control expression of CNS stem cell-specific genes. Development 1998; 125:3087-100. [PMID: 9671582 DOI: 10.1242/dev.125.16.3087] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Multipotential stem cells throughout the developing central nervous system have common properties. Among these is expression of the intermediate filament protein nestin and the brain fatty acid binding protein (B-FABP). To determine if common mechanisms control transcription in CNS stem cells, the regulatory elements of these two genes were mapped in transgenic mice. A 257 basepair enhancer of the rat nestin gene is sufficient for expression throughout the embryonic neuroepithelium. This enhancer contains two sites bound by the class III POU proteins Brn-1, Brn-2, Brn-4, and Tst-1. Only one of the two POU sites is required for CNS expression. An adjacent hormone response element is necessary for expression in the dorsal midbrain and forebrain. The regulatory sites of the B-FABP gene are strikingly similar to those of the nestin gene. A hybrid POU/Pbx binding site is recognized in vitro by Pbx-1, Brn-1 and Brn-2. This site is essential for expression in most of the CNS. In addition, a hormone response element is necessary for forebrain expression. Both the nestin and B-FABP genes therefore depend on POU binding sites for general CNS expression, with hormone response elements additionally required for activity in the anterior CNS. These data indicate that regulation by POU proteins and hormone receptors is a general mechanism for CNS stem cell-specific transcription.
Collapse
Affiliation(s)
- R Josephson
- Laboratory of Molecular Biology, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892-4157, USA
| | | | | | | | | | | | | | | |
Collapse
|
169
|
Muñoz-Mármol AM, Casali A, Miralles A, Bueno D, Bayascas JR, Romero R, Saló E. Characterization of platyhelminth POU domain genes: ubiquitous and specific anterior nerve cell expression of different epitopes of GtPOU-1. Mech Dev 1998; 76:127-40. [PMID: 9767147 DOI: 10.1016/s0925-4773(98)00113-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
POU domain proteins are a large family of transcription factors that have been identified in a variety of metazoans, from freshwater sponges, planarians and nematodes to arthropods, echinoderms and vertebrates. Many of these proteins are implicated in the development and establishment of the nervous system. In this paper we describe the identification of the planarian genes GtPOU-1, GtPOU-3 and GtPOU-4, which belong to the subclasses III and IV of POU-domain genes. Their similarity with other members of the POU family is restricted to the POU and homeo domains, plus some peptide sequences scattered in the linker and flanking regions. As with other subclass III POU genes, GtPOU-1 is devoid of introns. Axial transcript distribution by RT-PCR and immunohistochemical assays, performed with a polyclonal antibody raised against the GtPOU-1 fusion protein, indicate that both the GtPOU-1 transcript and protein are continuously expressed along the antero-posterior axis. A monoclonal antibody raised against the same fusion protein indicates that a GtPOU-1-specific epitope, probably obtained by post-translational modification, is present in neural cells from both the central and peripheral nerve systems of the adult planarian's anterior third. Moreover, the GtPOU-1-specific epitope shows a dynamic expression pattern during regeneration, always marking the most anterior region of the planarian nervous system. Both the rapid and general GtPOU-1-specific epitope modification, during posterior regeneration, indicate that regeneration is a global process involving all planarian regions, including those that are far from the wound, by a combination of morphallactic and epimorphic mechanisms.
Collapse
Affiliation(s)
- A M Muñoz-Mármol
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Diagonal 645, 08071, Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
170
|
Hagino-Yamagishi K, Saijoh Y, Yamazaki Y, Yazaki K, Hamada H. Transcriptional regulatory region of Brn-2 required for its expression in developing olfactory epithelial cells. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1998; 109:77-86. [PMID: 9706393 DOI: 10.1016/s0165-3806(98)00064-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Brain-2 is a class III POU transcription factor expressed in developing nervous system. In this study, we have examined the transcriptional regulatory region of Brn-2. Expression of Brn-2 is activated when P19 embryonal carcinoma cells are induced to differentiate into neural cells with retinoic acid (RA). In P19 cells, the 0.5 kb upstream region of Brn-2 was sufficient for the transcriptional activation during RA-induced differentiation. Deletion analysis of the 0.5 kb region located a proximal enhancer (between -422 and -379 with respect to the translational initiation codon), which was essential for the activation. By gel shift assay and methylation interference assay, a specific binding factor was detected that recognized a core sequence GAGCCAAT found within the proximal enhancer. To examine whether the 0.5 kb upstream region can function in embryos, transgenic mice were generated that contained LacZ gene driven by the 0.5 kb upstream region. In these transgenic mice, LacZ was expressed in developing olfactory epithelial cells between embryonic day 12.5 and 14.5. Immunostaining with an anti-Brain-2 antibody demonstrated the expression of Brain-2 in the olfactory epithelium (most likely olfactory receptor neurons) at similar developmental stages. These results suggest that the 0.5 kb upstream region of Brn-2 is sufficient for the expression in the developing olfactory cells and that the DNA binding factor recognizing the proximal enhancer may be involved in the olfactory cell specific expression.
Collapse
Affiliation(s)
- K Hagino-Yamagishi
- Department of the Ultrastructural Research, Tokyo Metropolitan Institute of Medical Science, Japan.
| | | | | | | | | |
Collapse
|
171
|
Raynal JF, Dugast C, Le Van Thaï A, Weber MJ. Winged helix hepatocyte nuclear factor 3 and POU-domain protein brn-2/N-oct-3 bind overlapping sites on the neuronal promoter of human aromatic L-amino acid decarboxylase gene. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1998; 56:227-37. [PMID: 9602135 DOI: 10.1016/s0169-328x(98)00048-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The neuronal promoter of human aromatic l-amino acid decarboxylase gene has been analysed to elucidate the mechanisms of neuron type-specific expression. The (-560/+92) promoter segment was sufficient to direct luciferase expression at a higher level in SK-N-BE neuroblastoma cells, than in CHP126 neuroepithelia, HepG2 hepatoma or SK-Hep1 epithelioma cells. Deletions experiments showed that this segment contained a neuronal-specific (element T1) and a SK-N-BE-specific (element N1) cis-activating sequences. Element T1 (-72/-36) bound Sp1 and NF-Y proteins, and unidentified neuronal-specific factors. Element N1 (-102/-72) bound cell-specific factors, identified as HNF-3, N-Oct-3/Brn-2 and N-Oct-2. HNF-3 proteins recognized the sequence TCAGTAAATA that matches the consensus motif. Oct-1, N-Oct-2 and N-Oct-3 bound the AAATAATGC sequence that overlaps the HNF-3 binding site. In addition, we show that the HNF-3 binding sites from aldolase C and HNF-3beta gene promoters also bind N-Oct-2 and N-Oct-3 proteins. These data suggest a functional interplay of winged helix/forkhead and POU-domain transcription factors on a variety of neuronal gene promoters.
Collapse
Affiliation(s)
- J F Raynal
- Laboratoire de Biologie Moléculaire Eucaryote, CNRS UPR 9006, 118 route de Narbonne, F31062 Toulouse Cedex, France
| | | | | | | |
Collapse
|
172
|
Acampora D, Mazan S, Tuorto F, Avantaggiato V, Tremblay JJ, Lazzaro D, di Carlo A, Mariano A, Macchia PE, Corte G, Macchia V, Drouin J, Brûlet P, Simeone A. Transient dwarfism and hypogonadism in mice lacking Otx1 reveal prepubescent stage-specific control of pituitary levels of GH, FSH and LH. Development 1998; 125:1229-39. [PMID: 9477321 DOI: 10.1242/dev.125.7.1229] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Genetic and molecular approaches have enabled the identification of regulatory genes critically involved in determining cell types in the pituitary gland and/or in the hypothalamus. Here we report that Otx1, a homeobox-containing gene of the Otx gene family, is postnatally transcribed and translated in the pituitary gland. Cell culture experiments indicate that Otx1 may activate transcription of the growth hormone (GH), follicle-stimulating hormone (betaFSH), luteinizing hormone (betaLH) and alpha-glycoprotein subunit (alphaGSU) genes. Analysis of Otx1 null mice indicates that, at the prepubescent stage, they exhibit transient dwarfism and hypogonadism due to low levels of pituitary GH, FSH and LH hormones which, in turn, dramatically affect downstream molecular and organ targets. Nevertheless, Otx1−/− mice gradually recover from most of these abnormalities, showing normal levels of pituitary hormones with restored growth and gonadal function at 4 months of age. Expression patterns of related hypothalamic and pituitary cell type restricted genes, growth hormone releasing hormone (GRH), gonadotropin releasing hormone (GnRH) and their pituitary receptors (GRHR and GnRHR) suggest that, in Otx1−/− mice, hypothalamic and pituitary cells of the somatotropic and gonadotropic lineages appear unaltered and that the ability to synthesize GH, FSH and LH, rather than the number of cells producing these hormones, is affected. Our data indicate that Otx1 is a new pituitary transcription factor involved at the prepubescent stage in the control of GH, FSH and LH hormone levels and suggest that a complex regulatory mechanism might exist to control the physiological need for pituitary hormones at specific postnatal stages.
Collapse
Affiliation(s)
- D Acampora
- International Institute of Genetics and Biophysics, CNR, Naples, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
173
|
Wyatt S, Ensor L, Begbie J, Ernfors P, Reichardt LF, Latchman DS. NT-3 regulates expression of Brn3a but not Brn3b in developing mouse trigeminal sensory neurons. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1998; 55:254-64. [PMID: 9582431 DOI: 10.1016/s0169-328x(98)00006-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We have used a quantitative RT-PCR approach to determine the levels of Brn3a and Brn3b POU domain transcription factor mRNAs in the developing mouse trigeminal ganglion from E10 to E18. Using low density neuronal cultures, we have shown that NT-3 can regulate the expression of Brn3a mRNA in trigeminal neurons during the periods that they are differentiating and innervating their peripheral and central targets. In contrast to Brn3a, Brn3b mRNA is expressed at extremely low levels in the early trigeminal ganglion. Trigeminal neurons from early ganglia express low levels of Brn3b mRNA in culture and do not up-regulate Brn3b mRNA in response to a number of growth factors and experimental conditions. However, at later ages, when in vivo levels of Brn3b mRNA are high, FGF2, TGFbeta1 and retinoic acid all up-regulate Brn3b mRNA expression in cultured trigeminal neurons. Since NT-3 regulates the developmental expression of Brn3a, Brn3a may mediate some of the effects that NT-3 exerts on sensory neurons and their progenitors. Similarly, Brn3b may mediate some of the effects that FGF2, TGFbeta1 and retinoic acid have on neurons.
Collapse
Affiliation(s)
- S Wyatt
- Department of Molecular Pathology, University College London Medical School, The Windeyer Building, 46 Cleveland Street, London, WIP 6DB, UK.
| | | | | | | | | | | |
Collapse
|
174
|
Abstract
The single-copy genes encoding the vasopressin and oxytocin prepropeptides are closely linked in mouse genome, being separated by an intergenic region of only 3 kbp. These genes are expressed in anatomically defined hypothalamic neurons--in the adult rodent, vasopressin is synthesised in the paraventricular nucleus and the supraoptic nucleus, and in the dorsomedial region of the suprachiasmatic nucleus, whilst oxytocin is expressed in the supraoptic nucleus and paraventricular nucleus, but not in the suprachiasmatic nucleus. The molecular mechanisms that mediate the cell-specific and developmental expression patterns of the two transcription units within the vasopressin-oxytocin locus remain to be elucidated. As a first step in this process, we have used in situ hybridisation to study the expression of the RNAs encoded by the linked vasopressin and oxytocin genes during the development of the mouse hypothalamus. We have revealed a hierarchy of gene activation events, with vasopressin first being observed in presumptive supraoptic nucleus at day 13.5, and in the paraventricular at day 14.5. Oxytocin is seen first in the paraventricular at day 15.5; expression in the supraoptic nucleus is clearly seen at day 18.5. As early as day 15.5, the vasopressin and oxytocin RNAs are expressed in different groups of neurons.
Collapse
Affiliation(s)
- X Jing
- Neuropeptide Laboratory, Institute of Molecular and Cell Biology, Singapore, Republic of Singapore
| | | | | |
Collapse
|
175
|
Waller SJ, Ratty A, Burbach JP, Murphy D. Transgenic and transcriptional studies on neurosecretory cell gene expression. Cell Mol Neurobiol 1998; 18:149-71. [PMID: 9535288 DOI: 10.1023/a:1022512819023] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
1. Studies of the regulation of neurosecretory cell gene expression suffer from the lack of suitable cell lines. Two approaches have been used to overcome this deficit: transfection of neuropeptide genes into heterologous cell lines and generation of transgenic animals. 2. Studies with heterologous cell lines have revealed the potential involvement of nuclear hormone receptors, POU proteins, and fos/jun/ATF family members in the regulation of the vasopressin and oxytocin genes. Although limited in their scope, these studies have contributed greatly to the dissection of basic properties of elements in the vasopressin and oxytocin gene promoters. 3. Transgenic mice, and more recently rats, have been used to elucidate genomic regions governing cell specificity and physiological regulation of neurosecretory gene expression. The genes encoding the neuropeptides vasopressin and oxytocin have been used in many transgenic studies, due to the well-defined expression patterns and physiology of the endogenous neuropeptides. Cell-specific and physiologically regulated expression of these transgenes has been achieved, demonstrating the action of putative repressor elements and regulation of the expression of one gene by sequences present in the other gene. 4. Appropriate expression and translation of transgenes have resulted in the production of several useful systems. Expression of oncogene sequences in gonadotropin-releasing hormone neurons has allowed the development of cell lines from the resulting tumors, overproduction of corticotropin-releasing factor has produced animal models of anxiety and obesity, and directed ectopic expression of growth hormone has generated a potentially useful rat model of dwarfism. These and other animal models of human disease will provide important avenues for the development of therapeutic strategies.
Collapse
Affiliation(s)
- S J Waller
- Neuropeptide Laboratory, Institute of Molecular and Cell Biology, Singapore, Republic of Singapore
| | | | | | | |
Collapse
|
176
|
Donahue LM, Reinhart AJ. POU domain genes are differentially expressed in the early stages after lineage commitment of the PNS-derived stem cell line, RT4-AC. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1998; 106:1-12. [PMID: 9554933 DOI: 10.1016/s0165-3806(97)00154-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
RT4 is a family of cell lines derived from a rat peripheral neurotumor and consists of a multipotential stem cell which spontaneously gives rise to a glial derivative and two neuronal derivatives. To begin to understand the role(s) of transcription factors in neural differentiation, we examined the expression of ten transcription factor genes (MASH1, REST/NRSF, Oct-1, Oct-2, Tst-1/SCIP, Brn-1, Brn-2, Brn-3.0, Brn-4, Brn-5) in the RT4 cell lines. We report here that all of the RT4 cells express REST/NRSF, Oct-1 and Brn-5, but do not express MASH1, Brn-3.0 or Brn-4. Furthermore, Brn-2 and Tst-1/SCIP expression was restricted to the RT4 stem cell line and glial derivative, while Oct-2 was expressed predominantly by the RT4 stem cell line and neuronal derivatives. We propose that the lack of expression of MASH1 (which is expressed relatively early in autonomic neuron differentiation) and Brn-3.0 (which is expressed early in sensory neuron differentiation), in combination with the presence of REST/NRSF (a repressor of neuronal gene expression), in all of the RT4 cell lines, establishes the RT4 system as a unique model for examining very early events in neuronal versus glial cell fate determination.
Collapse
Affiliation(s)
- L M Donahue
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock 79430, USA.
| | | |
Collapse
|
177
|
Huang S, Sato S. Progenitor cells in the adult zebrafish nervous system express a Brn-1-related POU gene, tai-ji. Mech Dev 1998; 71:23-35. [PMID: 9507055 DOI: 10.1016/s0925-4773(97)00199-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The adult fish brain undergoes continuous neurogenesis and retains the capacity to regenerate. However, the cellular and molecular basis of this process is not well understood. We report on the cloning and characterization of a Brain-1-related, class III POU domain gene, tai-ji, in the developing and adult zebrafish, as well as in a human cell line, hNT2. During development, as differentiation occurs, the expression of tai-ji is downregulated in the notochord, muscle, nervous system and dorsal fin. Similarly, tai-ji is expressed in the human neuronal precursor cell, hNT2, but is downregulated upon differentiation with retinoic acid. In the adult zebrafish nervous system, tai-ji persists in germinal zones, including cells in the germinal zone of the retina, the basal cells of the olfactory epithelium and cells of the subependymal zones in the optic tectum and telencephalon. Subsets of the tai-ji-expressing cells in these regions incorporate BrdU. Most of the tai-ji-expressing cells within these regions of the zebrafish brain are not differentiated and do not express a marker for post-mitotic neurons, acetylated tubulin nor do they express a marker of glial cells, glial acidic fibrillary protein (GFAP). We propose that the majority of the tai-ji-expressing cells are neural stem or progenitor cell populations that may represent the cellular basis for continuous growth in the adult nervous system.
Collapse
Affiliation(s)
- S Huang
- Genetics and Biochemistry Branch, NIDDK, NIH, Bethesda, MD 20892-1766, USA
| | | |
Collapse
|
178
|
Schreiber J, Enderich J, Sock E, Schmidt C, Richter-Landsberg C, Wegner M. Redundancy of class III POU proteins in the oligodendrocyte lineage. J Biol Chem 1997; 272:32286-93. [PMID: 9405434 DOI: 10.1074/jbc.272.51.32286] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Class III POU proteins are prominent regulators of neural development. Tst-1/Oct6/SCIP, for instance, is essential for terminal differentiation of myelinating Schwann cells in the peripheral nervous system. Although Tst-1/Oct6/SCIP is also expressed in the myelin forming oligodendrocytes of the central nervous system, targeted deletion of Tst-1/Oct6/SCIP failed to reveal a gross alteration of myelination in the central nervous system. To better understand this apparent discrepancy, we examined the expression of POU proteins in both cultured primary oligodendrocytes and in the oligodendrocyte-like CG-4 cell line. These cells expressed Tst-1/Oct6/SCIP, Brn-1, and Brn-2 in significant amounts, indicating that Brn-1 and Brn-2 might have the capacity to compensate loss of Tst-1/Oct6/SCIP. We show that Tst-1/Oct6/SCIP, Brn-1, and Brn-2 were all down-regulated during the early phases of oligodendrocyte development both on RNA and protein level. All three POU proteins exhibited similar DNA binding characteristics. When promoters consisting of a single POU protein-binding site adjacent to a TATA box were used as reporters in transient transfections, Brn-1 proved to be a weaker transcriptional activator than Tst-1/Oct6/SCIP. In agreement with this, we found the transactivation domain of Brn-1, which we mapped between amino acids 119 and 237, significantly weaker than the transactivation domain of Tst-1/Oct6/SCIP. Taken together, our data imply a partial, but not complete redundancy between POU proteins in oligodendrocytes.
Collapse
Affiliation(s)
- J Schreiber
- Zentrum für Molekulare Neurobiologie, Universität Hamburg, Martinistrasse 52, D-20246 Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
179
|
van Schaick HS, Smidt MP, Rovescalli AC, Luijten M, van der Kleij AA, Asoh S, Kozak CA, Nirenberg M, Burbach JP. Homeobox gene Prx3 expression in rodent brain and extraneural tissues. Proc Natl Acad Sci U S A 1997; 94:12993-8. [PMID: 9371788 PMCID: PMC24251 DOI: 10.1073/pnas.94.24.12993] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Different cDNA clones encoding a rat homeobox gene and the mouse homologue OG-12 were cloned from adult rat brain and mouse embryo mRNA, respectively. The predicted amino acid sequences of the proteins belong to the paired-related subfamily of homeodomain proteins (Prx homeodomains). Hence, the gene was named Prx3 and the mouse and rat genes are indicated as mPrx3 and rPrx3, respectively. In the mouse as well as in the rat, the predicted Prx3 proteins share the homeodomain but have three different N termini, a 12-aa residue variation in the C terminus, and contain a 14-aa residue motif common to a subset of homeodomain proteins, termed the "aristaless domain." Genetic mapping of Prx3 in the mouse placed this gene on chromosome 3. In situ hybridization on whole mount 12.5-day-old mouse embryos and sections of rat embryos at 14.5 and 16.5 days postcoitum revealed marked neural expression in discrete regions in the lateral and medial geniculate complex, superior and inferior colliculus, the superficial gray layer of the superior colliculus, pontine reticular formation, and inferior olive. In rat and mouse embryos, nonneuronal structures around the oral cavity and in hip and shoulder regions also expressed the Prx3 gene. In the adult rat brain, Prx3 gene expression was restricted to thalamic, tectal, and brainstem structures that include relay nuclei of the visual and auditory systems as well as other ascending systems conveying somatosensory information. Prx3 may have a role in specifying neural systems involved in processing somatosensory information, as well as in face and body structure formation.
Collapse
Affiliation(s)
- H S van Schaick
- Rudolf Magnus Institute for Neurosciences, Department of Medical Pharmacology, Medical Faculty, Utrecht University, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
180
|
Shibata H, Toyama K, Shioya H, Ito M, Hirota M, Hasegawa S, Matsumoto H, Takano H, Akiyama T, Toyoshima K, Kanamaru R, Kanegae Y, Saito I, Nakamura Y, Shiba K, Noda T. Rapid colorectal adenoma formation initiated by conditional targeting of the Apc gene. Science 1997; 278:120-3. [PMID: 9311916 DOI: 10.1126/science.278.5335.120] [Citation(s) in RCA: 458] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Familial adenomatous polyposis coli (FAP) is a disease characterized by the development of multiple colorectal adenomas, and affected individuals carry germline mutations in the APC gene. With the use of a conditional gene targeting system, a mouse model of FAP was created that circumvents the embryonic lethality of Apc deficiency and directs Apc inactivation specifically to the colorectal epithelium. loxP sites were inserted into the introns around Apc exon 14, and the resultant mutant allele (Apc580S) was introduced into the mouse germline. Mice homozygous for Apc580S were normal; however, upon infection of the colorectal region with an adenovirus encoding the Cre recombinase, the mice developed adenomas within 4 weeks. The adenomas showed deletion of Apc exon 14, indicating that the loss of Apc function was caused by Cre-loxP-mediated recombination.
Collapse
Affiliation(s)
- H Shibata
- Department of Cell Biology, Cancer Institute, Toshima-ku, Tokyo 170, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
181
|
Kitamura K, Miura H, Yanazawa M, Miyashita T, Kato K. Expression patterns of Brx1 (Rieg gene), Sonic hedgehog, Nkx2.2, Dlx1 and Arx during zona limitans intrathalamica and embryonic ventral lateral geniculate nuclear formation. Mech Dev 1997; 67:83-96. [PMID: 9347917 DOI: 10.1016/s0925-4773(97)00110-x] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The Brx1 homeobox gene has been isolated and shown to be expressed in the zona limitans intrathalamica (ZLI) of the mouse embryo. Brx1 is a member of the Brx gene family and comprises the genes for Brx1a and Brx1b, which differ in the sequence in the region located on the 5'-terminal side of the homeobox. The complete amino acid sequences of the open reading frame of Brx1a and Brx1b were determined and each was found to be similar to that of Rgs, the mouse homologue of the Rieger syndrome associated human RIEG gene (RGS), to the extent that the sequence of Rgs has been clarified. Brx1 was strongly expressed in the mammillary area as well as in the ZLI of the mouse embryonic brain. Homologues of Brx1a and Brx1b were isolated in chick in which the expression of Brx1 in the ventral diencephalon was well conserved. The expression of Brx1 along with that of Sonic hedgehog (Shh), Nkx2.2, Dlx1 and Arx was examined at the time of the formation of ZLI in mouse embryos. The expression of Shh was initially noted in the ventricular zone of the presumptive ZLI and was then replaced by that of Brx1 at the time of radial migration of the neuroepithelial cells. Nkx2.2 was widely expressed in the ventricular zone of presumptive ZLI and also as a narrow band in the mantle zone. The expression of Dlx1 and Arx in the presumptive ventral thalamus extended as far as ZLI and overlapped with that of Brx1. The Dlx1- and Arx-expressing cells in ZLI, which extended towards the lateral (pial) surface of the diencephalic wall, differed from those expressing Nkx2.2 and Brx1. The embryonic ventral lateral geniculate nucleus present in the visual pathway was eventually formed from these cells. Each homeobox gene was also expressed regionally in the nucleus, suggesting that the nucleus is comprised of subdivisions.
Collapse
Affiliation(s)
- K Kitamura
- Mitsubishi Kasei Institute of Life Sciences, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
182
|
Xiang M, Gan L, Li D, Chen ZY, Zhou L, O'Malley BW, Klein W, Nathans J. Essential role of POU-domain factor Brn-3c in auditory and vestibular hair cell development. Proc Natl Acad Sci U S A 1997; 94:9445-50. [PMID: 9256502 PMCID: PMC23217 DOI: 10.1073/pnas.94.17.9445] [Citation(s) in RCA: 251] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The Brn-3 subfamily of POU-domain transcription factor genes consists of three highly homologous members-Brn-3a, Brn-3b, and Brn-3c-that are expressed in sensory neurons and in a small number of brainstem nuclei. This paper describes the role of Brn-3c in auditory and vestibular system development. In the inner ear, the Brn-3c protein is found only in auditory and vestibular hair cells, and the Brn-3a and Brn-3b proteins are found only in subsets of spiral and vestibular ganglion neurons. Mice carrying a targeted deletion of the Brn-3c gene are deaf and have impaired balance. These defects reflect a complete loss of auditory and vestibular hair cells during the late embryonic and early postnatal period and a secondary loss of spiral and vestibular ganglion neurons. Together with earlier work demonstrating a loss of trigeminal ganglion neurons and retinal ganglion cells in mice carrying targeted disruptions in the Brn-3a and Brn-3b genes, respectively, the Brn-3c phenotype reported here demonstrates that each of the Brn-3 genes plays distinctive roles in the somatosensory, visual, and auditory/vestibular systems.
Collapse
Affiliation(s)
- M Xiang
- Center for Advanced Biotechnology and Medicine, Department of Pediatrics, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | | | | | | | | | | | | | | |
Collapse
|
183
|
Veenstra GJ, van der Vliet PC, Destrée OH. POU domain transcription factors in embryonic development. Mol Biol Rep 1997; 24:139-55. [PMID: 9291088 DOI: 10.1023/a:1006855632268] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- G J Veenstra
- Hubrecht Laboratory, Netherlands Institute for Developmental Biology, Utrecht, The Netherlands
| | | | | |
Collapse
|
184
|
Cui H, Bulleit RF. Expression of the POU transcription factor Brn-5 inhibits proliferation of NG108-15 cells. Biochem Biophys Res Commun 1997; 236:693-6. [PMID: 9245715 DOI: 10.1006/bbrc.1997.6996] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The POU domain transcription factors are a subgroup of homeodomain proteins that appears to control cellular phenotypes. The expression of the POU protein Brn-5 occurs selectively in postmitotic CNS neurons. Ectopic expression of Brn-5 in dividing NG108-15 cells reduces the level of RNA encoding the proliferating cell nuclear antigen (PCNA). This ectopic expression also inhibits DNA synthesis as measured by the incorporation of bromodeoxyuridine (BrdU). Thus, Brn-5 may inhibit the continued proliferation of these cells. A potential function of Brn-5 may be to suppress the action of proliferative signals in postmitotic neurons and thus prevents them from reentering the cell cycle.
Collapse
Affiliation(s)
- H Cui
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore 21201, USA
| | | |
Collapse
|
185
|
Pearse RV, Drolet DW, Kalla KA, Hooshmand F, Bermingham JR, Rosenfeld MG. Reduced fertility in mice deficient for the POU protein sperm-1. Proc Natl Acad Sci U S A 1997; 94:7555-60. [PMID: 9207130 PMCID: PMC23860 DOI: 10.1073/pnas.94.14.7555] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Members of the POU-homeodomain gene family encode transcriptional regulatory molecules that play important roles in terminal differentiation of many organ systems. Sperm-1 (Sprm-1) is a POU domain factor that is exclusively expressed in the differentiating male germ cell. We show here that the Sprm-1 protein is expressed in the haploid spermatid and that 129/Sv Sprm-1(-/-) mice are subfertile when compared with wild-type or heterozygous littermates yet exhibit normal testicular morphology and produce normal numbers of mobile spermatozoa. Our data suggest that the Sprm-1 protein plays a discrete regulatory function in the haploid spermatid, which is required for the optimal function, but not the terminal differentiation, of the male germ cell.
Collapse
Affiliation(s)
- R V Pearse
- Eukaryotic Regulatory Biology Program, Howard Hughes Medical Institute, Cellular and Molecular Medicine, University of California, San Diego, CA 92093-0648, USA
| | | | | | | | | | | |
Collapse
|
186
|
Niki M, Okada H, Takano H, Kuno J, Tani K, Hibino H, Asano S, Ito Y, Satake M, Noda T. Hematopoiesis in the fetal liver is impaired by targeted mutagenesis of a gene encoding a non-DNA binding subunit of the transcription factor, polyomavirus enhancer binding protein 2/core binding factor. Proc Natl Acad Sci U S A 1997; 94:5697-702. [PMID: 9159135 PMCID: PMC20841 DOI: 10.1073/pnas.94.11.5697] [Citation(s) in RCA: 158] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The Pebpb2 gene encodes a non-DNA binding subunit of the heterodimeric transcription factor, polyomavirus enhancer binding protein 2/core binding factor (PEBP2/CBF), and is rearranged in inversion of chromosome 16 associated with human acute myeloid leukemia. To investigate its physiological function, Pebpb2 was mutated by a targeting strategy to generate a null mutant. The homozygous mutation in mice proved lethal in embryos around embryonic day 12.5, apparently due to massive hemorrhaging in the central nervous system. In addition, definitive hematopoiesis in the liver was severely impaired. The observed phenotype was indistinguishable from that reported for homozygous disruption of AML1, which encodes a DNA binding subunit of PEBP2/CBF. Thus, the results indicate that the two subunits function together as a heterodimeric PEBP2/CBF in vivo and that PEBP2/CBF plays an essential role in the development of definitive hematopoiesis.
Collapse
Affiliation(s)
- M Niki
- Department of Molecular Immunology, Institute of Development, Aging, and Cancer, Tohoku University, Seiryo-machi, Aoba-ku, Sendai 980, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
187
|
Ryan AK, Rosenfeld MG. POU domain family values: flexibility, partnerships, and developmental codes. Genes Dev 1997; 11:1207-25. [PMID: 9171367 DOI: 10.1101/gad.11.10.1207] [Citation(s) in RCA: 404] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- A K Ryan
- Howard Hughes Medical Institute, Department and School of Medicine, University of California at San Diego, La Jolla 92093-0648, USA
| | | |
Collapse
|
188
|
Labosky PA, Winnier GE, Jetton TL, Hargett L, Ryan AK, Rosenfeld MG, Parlow AF, Hogan BL. The winged helix gene, Mf3, is required for normal development of the diencephalon and midbrain, postnatal growth and the milk-ejection reflex. Development 1997; 124:1263-74. [PMID: 9118797 DOI: 10.1242/dev.124.7.1263] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The mouse Mf3 gene, also known as Fkh5 and HFH-e5.1, encodes a winged helix/forkhead transcription factor. In the early embryo, transcripts for Mf3 are restricted to the presomitic mesoderm and anterior neurectoderm and mesoderm. By 9.5 days post coitum, expression in the nervous system is predominantly in the diencephalon, midbrain and neural tube. After midgestation, the highest level of mRNA is in the mammillary bodies, the posterior-most part of the hypothalamus. Mice homozygous for a deletion of the mf3 locus on a [129 × Black Swiss] background display variable phenotypes consistent with a requirement for the gene at several stages of embryonic and postnatal development. Approximately six percent of the mf3−/− embryos show an open neural tube in the diencephalon and midbrain region, and another five percent show a severe reduction of the posterior body axis; both these classes of affected embryos die in utero. Surviving homozygotes have an apparently normal phenotype at birth. Postnatally, however, mf3−/− pups are severely growth retarded and approximately one third die before weaning. This growth defect is not a direct result of lack of circulating growth hormone or thyrotropin. Mice that survive to weaning are healthy, but they show an abnormal clasping of the hindfeet when suspended by the tail. Although much smaller than normal, the mice are fertile. However, mf3−/− females cannot eject their milk supply to feed their pups. This nursing defect can be corrected with interperitoneal injections of oxytocin. These results provide evidence that Mf3 is required for normal hypothalamus development and suggest that Mf3 may play a role in postnatal growth and lactation.
Collapse
Affiliation(s)
- P A Labosky
- Department of Cell Biology, Vanderbilt University Medical School, Nashville, Tennessee 37232, USA.
| | | | | | | | | | | | | | | |
Collapse
|
189
|
Hagino-Yamagishi K, Saijoh Y, Ikeda M, Ichikawa M, Minamikawa-Tachino R, Hamada H. Predominant expression of Brn-2 in the postmitotic neurons of the developing mouse neocortex. Brain Res 1997; 752:261-8. [PMID: 9106466 DOI: 10.1016/s0006-8993(96)01472-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The expression of Brn-2, a central nervous systems (CNS)-specific POU domain transcription factor, in the developing mouse neocortex was examined with an anti-Brn-2 antibody. Brn-2 protein was first detected in CNS on embryonic day (E) 11.5, and remained strong until E15.5. From E11.5 to postnatal day (P) 0, a high level of Brn-2 expression was observed in the subventricular zone, the intermediate zone, and the outer layer of the neocortex, but not in the ventricular zone. In the double-staining experiments, most of the Brn-2 positive cells were also positive for NCAM-H, an adhesion molecule specific to post-mitotic neurons. Furthermore, BrdU-labeling experiments demonstrated the presence of Brn-2 protein exclusively in postmitotic cells. These results indicated that, in the developing neocortex, Brn-2 expression is up-regulated after the final cell division. Therefore, this transcription factor may be involved in the migration and/or maturation process of the immature neuronal cells.
Collapse
Affiliation(s)
- K Hagino-Yamagishi
- Department of the Ultrastructural Research, Tokyo Metropolitan Institute of Medical Science, Bunkyo-ku, Japan
| | | | | | | | | | | |
Collapse
|
190
|
Abstract
XIPOU 2, a member of the class III POU-domain family, is expressed initially at mid-blastula transition (MBT) and during gastrulation in the entire marginal zone mesoderm, including Spemann's Organizer (the Organizer). To identify potential targets of XIPOU 2, the interaction of XIPOU 2 with other genes co-expressed in the Organizer was examined by microinjecting XIPOU 2's mRNA into the lineage of cells that contributes to the Organizer, head mesenchyme and prechordal plate. XIPOU 2 suppresses the expression of a number of dorsal mesoderm-specific genes, including gsc, Xlim-1, Xotx2, noggin and chordin, but not Xnot. As a consequence of the suppression of dorsal mesoderm gene expression, bone morphogenetic factor-4 (Bmp-4), a potent inducer of ventral mesoderm, is activated in the Organizer. Gsc is a potential target of XIPOU 2. XIPOU 2 is capable of binding a class III POU protein binding site (CATTAAT) that is located within the gsc promoter, in the activin-inducible (distal) element. Furthermore, XIPOU 2 suppresses the activation of the gsc promoter by activin signaling. At the neurula and tailbud stages, dorsoanterior structures are affected: embryos displayed micropthalmia and the loss of the first branchial arch, as detected by the expression of pax-6, Xotx2 and en-2. By examining events downstream from the Wnt and chordin pathways, we determined that XIPOU 2, when overexpressed, acts specifically in the Organizer, downstream from GSK-3beta of the Wnt pathway and upstream from chordin. The interference in dorsalizing events caused by XIPOU 2 was rescued by chordin. Thus, in addition to its direct neuralizing ability, in a different context, XIPOU 2 has the potential to antagonize dorsalizing events in the Organizer.
Collapse
Affiliation(s)
- S E Witta
- Genetics and Biochemistry Branch, NIDDK, NIH, Bethesda, MD 20892-1766, USA
| | | |
Collapse
|
191
|
Morin X, Cremer H, Hirsch MR, Kapur RP, Goridis C, Brunet JF. Defects in sensory and autonomic ganglia and absence of locus coeruleus in mice deficient for the homeobox gene Phox2a. Neuron 1997; 18:411-23. [PMID: 9115735 DOI: 10.1016/s0896-6273(00)81242-8] [Citation(s) in RCA: 260] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Phox2a is a vertebrate homeodomain protein expressed in subsets of differentiating neurons. Here, we show that it is essential for proper development of the locus coeruleus, a subset of sympathetic and parasympathetic ganglia and the VIIth, IXth, and Xth cranial sensory ganglia. In the sensory ganglia, we have identified two differentiation blocks in Phox2a-/- mice. First, the transient expression of dopamine-beta-hydroxylase in neuroblasts is abolished, providing evidence that Phox2a controls noradrenergic traits in vivo. Second, the expression of the GDNF receptor subunit Ret is dramatically reduced, and there is a massive increase in apoptosis of ganglion cells, which are known to depend on GDNF in vivo. Therefore, Phox2a appears to regulate conventional differentiation traits and the ability of neurons to respond to essential survival factors.
Collapse
Affiliation(s)
- X Morin
- Institut de Biologie du Développement de Marseille, CNRS/INSERM/Université de la Mediterranée, France
| | | | | | | | | | | |
Collapse
|
192
|
Wierman ME, Xiong X, Kepa JK, Spaulding AJ, Jacobsen BM, Fang Z, Nilaver G, Ojeda SR. Repression of gonadotropin-releasing hormone promoter activity by the POU homeodomain transcription factor SCIP/Oct-6/Tst-1: a regulatory mechanism of phenotype expression? Mol Cell Biol 1997; 17:1652-65. [PMID: 9032292 PMCID: PMC231890 DOI: 10.1128/mcb.17.3.1652] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
POU domain transcription factors are required for neuropeptide expression in selected subsets of hypothalamic neuroendocrine neurons. We now report that expression of the gonadotropin-releasing hormone (GnRH) gene, which controls sexual development, is regulated by the POU protein SCIP/Oct-6/Tst-1. Reverse transcriptase PCR cloning and RNase protection assays demonstrated the presence of SCIP/Oct-6/Tst-1 mRNA in the GnRH-producing neuronal cell line GT1-7. The physiological relevance of this regulatory activity was suggested by the detection of SCIP/Oct-6/Tst-1 mRNA in a subset of GnRH neurons in the hypothalamus of prepubertal female rats. Coexpression of SCIP/Oct-6/Tst-1 in neuronal cells inhibited rat GnRH (rGnRH) promoter activity via three regions of the proximal rGnRH promoter containing SCIP/Oct-6/Tst-1 binding sites. DNase I footprinting, gel shift assays, and DNA and protein mutagenesis studies indicated that both direct DNA binding and protein-protein interactions are required for SCIP/Oct-6/Tst-1 modulation of GnRH gene expression. Activation of SCIP/Oct-6/Tst-1 expression in terminally differentiated GnRH neurons may be a factor determining the ratio of phenotypically "inactive" versus "active" GnRH neurons during postnatal life.
Collapse
Affiliation(s)
- M E Wierman
- Department of Medicine, University of Colorado Health Science Center, Denver 80220, USA.
| | | | | | | | | | | | | | | |
Collapse
|
193
|
The expression pattern of the transcription factor Phox2 delineates synaptic pathways of the autonomic nervous system. J Neurosci 1997. [PMID: 8922421 DOI: 10.1523/jneurosci.16-23-07649.1996] [Citation(s) in RCA: 206] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Many transcription factors, and most prominently among them, homeodomain proteins, are expressed in specific groups of cells in the developing nervous system in patterns that suggest their involvement in neural fate determination. How various aspects of neural identity are controlled by such transcription factors, or sets of them, is still mostly unknown. It has been shown previously that Phox2 is such a homeodomain protein, expressed exclusively in differentiated groups of neurons or their precursors, and that its expression correlated with that of the noradrenaline synthesis enzyme dopamine-beta-hydroxylase. Here we confirm this striking correlation at the single-cell level with the use of an anti-Phox2 antibody. Moreover, we uncover a second, nonmutually exclusive correlative clue to the Phox2 expression pattern: a high proportion of Phox2-expressing cells are involved in, or located in areas involved in, synaptic circuits, i.e., that of the medullary control reflexes of autonomic functions. This suggests that Phox2 could be involved in the establishment of these circuits.
Collapse
|
194
|
Turner EE. Similar DNA recognition properties of alternatively spliced Drosophila POU factors. Proc Natl Acad Sci U S A 1996; 93:15097-101. [PMID: 8986770 PMCID: PMC26362 DOI: 10.1073/pnas.93.26.15097] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The POU-IV or "Brn-3" class of POU-domain transcription factors is represented in Drosophila by I-POU and twin-of-I-POU, alternative splice products of the I-POU gene. I-POU has been previously reported to inhibit DNA binding by the POU-III class factor drifter/Cf1a via the formation of heterodimeric complexes. Here we report that expression of the I-POU/tI-POU message is maximal late in the embryonic phase of Drosophila development, and I-POU is the preferred splice variant. Although I-POU lacks two basic amino acid residues in the POU-homeodomain found in tI-POU and Brn-3.0, these three POU-IV class proteins exhibit very similar DNA-binding specificity. In contrast to previously published reports, the results presented here show no effect of I-POU on DNA binding by drifter, and no evidence for I-POU/drifter dimerization. These results suggest that the I-POU/tI-POU gene products function by transcriptional mechanisms similar to those of the homologous POU-IV class factors expressed in other species, not by unique inhibitory mechanism.
Collapse
Affiliation(s)
- E E Turner
- Department of Psychiatry, University of California at San Diego, La Jolla 92093-0603, USA.
| |
Collapse
|
195
|
Spaniol P, Bornmann C, Hauptmann G, Gerster T. Class III POU genes of zebrafish are predominantly expressed in the central nervous system. Nucleic Acids Res 1996; 24:4874-81. [PMID: 9016656 PMCID: PMC146339 DOI: 10.1093/nar/24.24.4874] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
POU genes encode a family of transcription factors involved in a wide variety of cell fate decisions and in the regulation of differentiation pathways. We have searched for POU genes in the zebrafish, a popular model organism for the study of early development of vertebrates. Besides five putative pseudogenes we have identified five POU genes that are expressed during embryogenesis. Probes obtained by PCR were used to isolate full-length cDNAs. Four of the isolated genes encode proteins with class III POU domains. Analysis of genomic clones suggests that the fish genes in general do not contain introns, similar to class III genes of mammals. However, the C-termini of two of the encoded proteins vary due to facultative splicing of a short intervening sequence. These two genes show very strong similarities in their sequence. They have probably arisen by gene duplication, possibly as part of a larger scale duplication of part of the zebrafish genome. Analysis of the expression of the class III genes shows that they are predominantly expressed in the central nervous system and that they may play important roles in patterning the embryonic brain.
Collapse
Affiliation(s)
- P Spaniol
- Biozentrum der Universität Basel, Abteilung Zellbiologie, Switzerland
| | | | | | | |
Collapse
|
196
|
Abstract
Development of the anterior pituitary gland ultimately leads to the appearance of five distinct cell types that are defined by the trophic hormones which they produce, providing an instructive model system for elucidating the molecular mechanisms that underlie the determination of distinct cell phenotypes within an organ from a common precursor lineage. The recent identification of several homeodomain transcription factors expressed specifically in the anterior pituitary gland has revealed a transcriptional cascade orchestrating a developmental program that leads to the determination of the five mature cell types. Recent data from gene-targeting experiments in mice further imply that the execution of this program is dependent on inductive signals originating in the floor of the diencephalon.
Collapse
Affiliation(s)
- M Treier
- Howard Hughes Medical Institute, University of California at San Diego, Department and School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093-0648, USA.
| | | |
Collapse
|
197
|
Xiang M, Gan L, Zhou L, Klein WH, Nathans J. Targeted deletion of the mouse POU domain gene Brn-3a causes selective loss of neurons in the brainstem and trigeminal ganglion, uncoordinated limb movement, and impaired suckling. Proc Natl Acad Sci U S A 1996; 93:11950-5. [PMID: 8876243 PMCID: PMC38164 DOI: 10.1073/pnas.93.21.11950] [Citation(s) in RCA: 197] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The Brn-3 subfamily of POU domain genes are expressed in sensory neurons and in select brainstem nuclei. Earlier work has shown that targeted deletion of the Brn-3b and Brn-3c genes produce, respectively, defects in the retina and in the inner ear. We show herein that targeted deletion of the Brn-3a gene results in defective suckling and in uncoordinated limb and trunk movements, leading to early postnatal death. Brn-3a (-/-) mice show a loss of neurons in the trigeminal ganglia, the medial habenula, the red nucleus, and the caudal region of the inferior olivary nucleus but not in the retina and dorsal root ganglia. In the trigeminal and dorsal root ganglia, but not in the retina, there is a marked decrease in the frequency of neurons expressing Brn-3b and Brn-3c, suggesting that Brn-3a positively regulates Brn-3b and Brn-3c expression in somatosensory neurons. Thus, Brn-3a exerts its major developmental effects in somatosensory neurons and in brainstem nuclei involved in motor control. The pheno-types of Brn-3a, Brn-3b, and Brn-3c mutant mice indicate that individual Brn-3 genes have evolved to control development in the auditory, visual, or somatosensory systems and that despite differences between these systems in transduction mechanisms, sensory organ structures, and central information processing, there may be fundamental homologies in the genetic regulatory events that control their development.
Collapse
Affiliation(s)
- M Xiang
- Department of Molecular Biology, Johns Hopkins University School Medicine, Baltimore, MD 21205, USA
| | | | | | | | | |
Collapse
|
198
|
Chandran UR, Attardi B, Friedman R, Zheng ZW, Roberts JL, DeFranco DB. Glucocorticoid repression of the mouse gonadotropin-releasing hormone gene is mediated by promoter elements that are recognized by heteromeric complexes containing glucocorticoid receptor. J Biol Chem 1996; 271:20412-20. [PMID: 8702778 DOI: 10.1074/jbc.271.34.20412] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We have identified two regions of the mouse gonadotropin-releasing hormone (GnRH) promoter, one between -237 and -201 (distal element) and the other between -184 and -150 (proximal element), which are required for glucocorticoid repression in transiently transfected GT1-7 cells. These sequences show no similarity to known positive or negative glucocorticoid response elements (nGREs) and do not function when placed upstream of heterologous viral promoters. The glucocorticoid receptor (GR) does not bind directly to the distal or proximal promoter elements but may participate in glucocorticoid repression of GnRH gene transcription by virtue of its association within multiprotein complexes at these nGREs. Electrophoretic mobility shift assays with GT1-7 nuclear extract demonstrate the presence of GR-containing protein complexes on GnRH nGREs. One protein that co-occupies the distal nGRE in vitro along with GR is the POU domain transcription factor Oct-1. Thus, the tethering of GR to the GnRH distal nGRE, by virtue of a direct or indirect association with DNA-bound Oct-1, could play a role in hormone-dependent transcriptional repression of the GnRH gene. In contrast, Oct-1 does not appear to be a component of the GR-containing protein complex that is bound to the proximal nGRE.
Collapse
Affiliation(s)
- U R Chandran
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | | | | | | | | | |
Collapse
|
199
|
Szeto DP, Ryan AK, O'Connell SM, Rosenfeld MG. P-OTX: a PIT-1-interacting homeodomain factor expressed during anterior pituitary gland development. Proc Natl Acad Sci U S A 1996; 93:7706-10. [PMID: 8755540 PMCID: PMC38811 DOI: 10.1073/pnas.93.15.7706] [Citation(s) in RCA: 211] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
A novel OTX-related homeodomain transcription factor has been identified on the basis of its ability to interact with the transactivation domain of the pituitary-specific POU domain protein, Pit-1. This factor, referred to as P-OTX (pituitary OTX-related factor), is expressed in primordial Rathke's pouch, oral epithelium, first bronchial arch, duodenum, and hindlimb. In the developing anterior pituitary, it is expressed in all regions from which cells with distinct phenotypes will emerge in the mature gland. P-OTX is able to independently activate and to synergize with Pit-1 on pituitary-specific target gene promoters. Therefore, P-OTX may subserve functions in generating both precursor and specific cell phenotypes in the anterior pituitary gland and in several other organs.
Collapse
Affiliation(s)
- D P Szeto
- Biomedical Sciences Graduate Program, Howard Hughes Medical Institute, University of California, San Diego 92093-0648, USA
| | | | | | | |
Collapse
|
200
|
Hauptmann G, Gerster T. Complex expression of the zp-50 pou gene in the embryonic zebrafish brain is altered by overexpression of sonic hedgehog. Development 1996; 122:1769-80. [PMID: 8674416 DOI: 10.1242/dev.122.6.1769] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We report the characterization of the zebrafish zp-50 class III POU domain gene. This gene is first activated in the prospective diencephalon after the end of the gastrula period. During somitogenesis, zp-50 is expressed in a very dynamic and complex fashion in all major subdivisions of the central nervous system. After one day of development, zp-50 transcripts are present in the fore- and midbrain in several distinct cell clusters. In the hindbrain, zp-50 expression is found in two types of domains. Correct zp-50 expression in the ventral fore- and midbrain requires genes known to be involved in dorsoventral patterning of the zebrafish CNS. Transcripts of the sonic hedgehog (shh) gene encoding an intercellular signaling molecule are detected in the forming diencephalon shortly prior to the appearance of zp-50 mRNA. Correct expression in this region of both shh, and zp-50, requires a functional cyclops (cyc) locus: shh and zp-50 transcripts are likewise absent from the ventral rostral brain of mutant cyc−/− embryos. Injection of synthetic shh mRNA into fertilized eggs causes ectopic zp-50 expression at more dorsal positions of the embryonic brain. The close spatial and temporal coincidence of expression in the rostral brain, the similar response to the cyc- mutation, and the ectopic zp-50 expression in the injection experiments all suggest that zp-50 may directly respond to the reception of the Shh signal.
Collapse
Affiliation(s)
- G Hauptmann
- Biozentrum der Universität Basel, Abteilung Zellbiologie, Switzerland
| | | |
Collapse
|