151
|
Worden N, Girke T, Drakakaki G. Endomembrane dissection using chemically induced bioactive clusters. Methods Mol Biol 2014; 1056:159-168. [PMID: 24306872 DOI: 10.1007/978-1-62703-592-7_16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Chemical genomics is a novel approach that allows for the rapid functional analysis of plant proteins, complexes, pathways, and networks. Systematic screens for bioactive small molecules causing specific subcellular phenotypes have been successfully performed in mammalian cells, but thus far, are limited in plants. This protocol describes a systematic chemical screen of plasma membrane recycling markers in plants, using confocal microscopy and the subsequent clustering of subcellular phenotypes, to identify chemicals with desired effects. The method provides an approach to identify novel chemicals for pathway dissection, making chemical genomics more accessible to the scientific community. The matrix of novel chemicals described in this protocol can be expanded and analyzed continuously as more data is collected, increasing our knowledge of the endomembrane system, and accumulating compartment-specific markers and chemical probes that perturb specific aspects of endomembrane trafficking.
Collapse
Affiliation(s)
- Natasha Worden
- Department of Plant Sciences, University of California, Davis, CA, USA
| | | | | |
Collapse
|
152
|
Stigliano E, Faraco M, Neuhaus JM, Montefusco A, Dalessandro G, Piro G, Di Sansebastiano GP. Two glycosylated vacuolar GFPs are new markers for ER-to-vacuole sorting. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 73:337-43. [PMID: 24184454 DOI: 10.1016/j.plaphy.2013.10.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 10/10/2013] [Indexed: 05/02/2023]
Abstract
Vacuolar Sorting Determinants (VSDs) have been extensively studied in plants but the mechanisms for the accumulation of storage proteins in somatic tissues are not yet fully understood. In this work we used two mutated versions of well-documented vacuolar fluorescent reporters, a GFP fusion in frame with the C-terminal VSD of tobacco chitinase (GFPChi) and an N-terminal fusion in frame with the sequence-specific VSD of the barley cysteine protease aleurain (AleuGFP). The GFP sequence was mutated to present an N-glycosylation site at the amino-acid position 133. The reporters were transiently expressed in Nicotiana tabacum protoplasts and agroinfiltrated in Nicotiana benthamiana leaves and their distribution was identical to that of the non-glycosylated versions. With the glycosylated GFPs we could highlight a differential ENDO-H sensitivity and therefore differential glycan modifications. This finding suggests two different and independent routes to the vacuole for the two reporters. BFA also had a differential effect on the two markers and further, inhibition of COPII trafficking by a specific dominant-negative mutant (NtSar1h74l) confirmed that GFPChi transport from the ER to the vacuole is not fully dependent on the Golgi apparatus.
Collapse
Affiliation(s)
- Egidio Stigliano
- Laboratory of Cell and Molecular Biology, University of Neuchâtel, Rue Emile-Argand 11, CH-2000 Neuchâtel, Switzerland; CNR-IGV, Institute of Plant Genetics, Thematic Center for the Preservation of Mediterranean Plant Biodiversity, via Nazionale 44, 75025 Policoro, MT, Italy
| | | | | | | | | | | | | |
Collapse
|
153
|
Huang MD, Chen TLL, Huang AH. Abundant type III lipid transfer proteins in Arabidopsis tapetum are secreted to the locule and become a constituent of the pollen exine. PLANT PHYSIOLOGY 2013; 163:1218-29. [PMID: 24096413 PMCID: PMC3813645 DOI: 10.1104/pp.113.225706] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Accepted: 09/30/2013] [Indexed: 05/17/2023]
Abstract
Lipid transfer proteins (LTPs) are small secretory proteins in plants with defined lipid-binding structures for possible lipid exocytosis. Special groups of LTPs unique to the anther tapetum are abundant, but their functions are unclear. We studied a special group of LTPs, type III LTPs, in Arabidopsis (Arabidopsis thaliana). Their transcripts were restricted to the anther tapetum, with levels peaking at the developmental stage of maximal pollen-wall exine synthesis. We constructed an LTP-Green Fluorescent Protein (LTP-GFP) plasmid, transformed it into wild-type plants, and monitored LTP-GFP in developing anthers with confocal laser scanning microscopy. LTP-GFP appeared in the tapetum and was secreted via the endoplasmic reticulum-trans-Golgi network machinery into the locule. It then moved to the microspore surface and remained as a component of exine. Immuno-transmission electron microscopy of native LTP in anthers confirmed the LTP-GFP observations. The in vivo association of LTP-GFP and exine in anthers was not observed with non-type III or structurally modified type III LTPs or in transformed exine-defective mutant plants. RNA interference knockdown of individual type III LTPs produced no observable mutant phenotypes. RNA interference knockdown of two type III LTPs produced microscopy-observable morphologic changes in the intine underneath the exine (presumably as a consequence of changes in the exine not observed by transmission electron microscopy) and pollen susceptible to dehydration damage. Overall, we reveal a novel transfer pathway of LTPs in which LTPs bound or nonbound to exine precursors are secreted from the tapetum to become microspore exine constituents; this pathway explains the need for plentiful LTPs to incorporate into the abundant exine.
Collapse
|
154
|
Kim HM, Do CH, Lee DH. Combined effects of multiple endoplasmic reticulum stresses on cytokine secretion in macrophage. Biomol Ther (Seoul) 2013; 20:346-51. [PMID: 24130934 PMCID: PMC3794534 DOI: 10.4062/biomolther.2012.20.3.346] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2012] [Revised: 05/15/2012] [Accepted: 05/19/2012] [Indexed: 12/13/2022] Open
Abstract
Cells show various stress signs when they are challenged with severe physiological problems. Majority of such cellular stresses are conveyed to endoplasmic reticulum (ER) and unfolded protein response (UPR) serves as typical defense mechanism against ER stress. This study investigated an interaction between ER stress agents using macropage cell line Raw 264.7. When activated by lipopolysaccharide (LPS), the cell lines showed typical indicators of ER stress. Along with molecular chaperones, the activation process leads to the production of additional infl ammatory mediators. Following activation, the macrophage cell line was further treated with TUN and characterized in terms of chaperone expression and cytokine secretion. When treated with TUN, the activated macrophage cell leads to increased secretion of IL-6 although expression of ER stress markers, GRP94 and GRP78 increased. The secretion of cytokines continued until the addition of BFA which inhibits protein targeting from ER to Golgi. However, secretion of cytokines was ceased upon dual treatments with BFA and TG. This result strongly implies that cells may differently deal with various polypeptides depending on the urgency in cellular function under ER stress. Considering IL-6 is one of the most important signal molecules in macrophage, the molecule might be able to circumvent ER stress and UPR to reach its targeting site.
Collapse
Affiliation(s)
- Hye Min Kim
- Department of Life Sciences, University of Seoul, Seoul 130-743
| | | | | |
Collapse
|
155
|
Kato N, Dong T, Bailey M, Lum T, Ingram D. Triacylglycerol mobilization is suppressed by brefeldin A in Chlamydomonas reinhardtii. PLANT & CELL PHYSIOLOGY 2013; 54:1585-99. [PMID: 23872273 PMCID: PMC4081630 DOI: 10.1093/pcp/pct103] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Brefeldin A suppresses vesicle trafficking by inhibiting exchange of GDP for GTP in ADP-ribosylation factor. We report that brefeldin A suppresses mobilization of triacylglycerols in Chlamydomonas reinhardtii, a model organism of green microalgae. Analyses revealed that brefeldin A causes Chlamydomonas to form lipid droplets in which triacylglycerols accumulate in a dose-dependent manner. Pulse labeling experiment using fluorescent fatty acids suggested that brefeldin A inhibits the cells from degrading fatty acids. The experiment also revealed that the cells transiently form novel compartments that accumulate exogenously added fatty acids in the cytoplasm, designated fatty acid-induced microbodies (FAIMs). Brefeldin A up-regulates the formation of FAIMs, whereas nitrogen deprivation that up-regulates triacylglycerol synthesis in Chlamydomonas does not cause the cells to form FAIMs. These results underscore the role of the vesicle trafficking machinery in triacylglycerol metabolism in green microalgae.
Collapse
Affiliation(s)
- Naohiro Kato
- Department of Biological Sciences, Louisiana State University, 226 Life Sciences Building, Baton Rouge, LA 70803, USA
- *Corresponding author: E-mail: ; Fax: +1-225-578-2597
| | - Trung Dong
- Department of Biological Sciences, Louisiana State University, 226 Life Sciences Building, Baton Rouge, LA 70803, USA
| | - Michael Bailey
- Department of Biological Sciences, Louisiana State University, 226 Life Sciences Building, Baton Rouge, LA 70803, USA
| | - Tony Lum
- Department of Biological Sciences, Louisiana State University, 226 Life Sciences Building, Baton Rouge, LA 70803, USA
| | - Drury Ingram
- Cell Biology & Bioimaging Core, Pennington Biomedical Research Center, 6400 Perkins Rd., Baton Rouge, LA 70808, USA
| |
Collapse
|
156
|
Viotti C, Krüger F, Krebs M, Neubert C, Fink F, Lupanga U, Scheuring D, Boutté Y, Frescatada-Rosa M, Wolfenstetter S, Sauer N, Hillmer S, Grebe M, Schumacher K. The endoplasmic reticulum is the main membrane source for biogenesis of the lytic vacuole in Arabidopsis. THE PLANT CELL 2013; 25:3434-49. [PMID: 24014545 PMCID: PMC3809542 DOI: 10.1105/tpc.113.114827] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 08/13/2013] [Accepted: 08/21/2013] [Indexed: 05/18/2023]
Abstract
Vacuoles are multifunctional organelles essential for the sessile lifestyle of plants. Despite their central functions in cell growth, storage, and detoxification, knowledge about mechanisms underlying their biogenesis and associated protein trafficking pathways remains limited. Here, we show that in meristematic cells of the Arabidopsis thaliana root, biogenesis of vacuoles as well as the trafficking of sterols and of two major tonoplast proteins, the vacuolar H(+)-pyrophosphatase and the vacuolar H(+)-adenosinetriphosphatase, occurs independently of endoplasmic reticulum (ER)-Golgi and post-Golgi trafficking. Instead, both pumps are found in provacuoles that structurally resemble autophagosomes but are not formed by the core autophagy machinery. Taken together, our results suggest that vacuole biogenesis and trafficking of tonoplast proteins and lipids can occur directly from the ER independent of Golgi function.
Collapse
Affiliation(s)
- Corrado Viotti
- Centre for Organismal Studies, Plant Developmental Biology, University of Heidelberg, 69120 Heidelberg, Germany
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90187 Umea, Sweden
| | - Falco Krüger
- Centre for Organismal Studies, Plant Developmental Biology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Melanie Krebs
- Centre for Organismal Studies, Plant Developmental Biology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Christoph Neubert
- Centre for Organismal Studies, Plant Developmental Biology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Fabian Fink
- Centre for Organismal Studies, Plant Developmental Biology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Upendo Lupanga
- Centre for Organismal Studies, Plant Developmental Biology, University of Heidelberg, 69120 Heidelberg, Germany
| | - David Scheuring
- Centre for Organismal Studies, Plant Developmental Biology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Yohann Boutté
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90187 Umea, Sweden
| | - Márcia Frescatada-Rosa
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90187 Umea, Sweden
| | - Susanne Wolfenstetter
- Molecular Plant Physiology, University of Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Norbert Sauer
- Molecular Plant Physiology, University of Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Stefan Hillmer
- Centre for Organismal Studies, Plant Developmental Biology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Markus Grebe
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90187 Umea, Sweden
| | - Karin Schumacher
- Centre for Organismal Studies, Plant Developmental Biology, University of Heidelberg, 69120 Heidelberg, Germany
- Address correspondence to
| |
Collapse
|
157
|
Jiménez-Andrade GY, Ibarra-Sánchez A, González D, Lamas M, González-Espinosa C. Immunoglobulin E induces VEGF production in mast cells and potentiates their pro-tumorigenic actions through a Fyn kinase-dependent mechanism. J Hematol Oncol 2013; 6:56. [PMID: 23915951 PMCID: PMC3750531 DOI: 10.1186/1756-8722-6-56] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 07/18/2013] [Indexed: 12/21/2022] Open
Abstract
Background High concentrations of plasmatic IgE have been related to distinct systemic inflammatory conditions that frequently predispose individuals to hypersensitivity reactions. Although effects of IgE have been suggested to relay on the low-intensity activation of distinct effector elements of the immune system, such as mast cells (MC), experimental evidence on the role of IgE-induced production of inflammatory mediators on specific pathologies is scarce. MC are an important component in tumor microenvironment where they seem to secrete a number of immunomodulatory and angiogenic mediators, such as the Vascular Endothelial Growth Factor (VEGF) by not well-described mechanisms. In this work, we investigated the effect of monomeric IgE (in the absence of antigen) on the production of VEGF in MC, analyzed if monomeric IgE could exacerbate the pro-tumorigenic properties of that cell type and characterized some of the molecular mechanisms behind the effects of IgE on VEGF production and tumor growth. Methods For in vitro studies, murine bone marrow-derived mast cells (BMMCs) were used. Pharmacological inhibitors and phosphorylation of key elements controlling VEGF secretion and protein translation were used to characterize the mechanism of VEGF production triggered by IgE. In vivo, the effect of a single i.v. administration of monomeric IgE on B16 melanoma tumor weight, intratumoral blood vessel formation and tumor-associated MC was assessed in four groups of mice: MC-proficient (WT), MC-deficient (Wsh), Wsh reconstituted with MC derived from WT mice (Wsh Rec WT) and Wsh reconstituted with MC derived from Fyn −/− mice (Wsh Rec Fyn −/−). Results Monomeric IgE induced VEGF secretion through a Fyn kinase-dependent mechanism and modulated de novo protein synthesis modifying the activity of the translational regulator 4E-BP1 in BMMCs. In vivo, monomeric IgE increased melanoma tumor growth, peritumoral MC and blood vessel numbers in WT but not in Wsh mice. The positive effects of IgE on melanoma tumor growth were reproduced after reconstitution of Wsh mice with WT but not with Fyn −/− BMMCs. Conclusion Our data suggest that monomeric IgE, in the absence of antigen, induces VEGF production in MC and in vivo contributes to melanoma tumor growth through a Fyn kinase-dependent mechanism.
Collapse
Affiliation(s)
- Guillermina Yanek Jiménez-Andrade
- Departamento de Farmacobiología, Cinvestav, IPN, Sede Sur, Calzada de los Tenorios 235, Col. Granjas Coapa, Tlalpan CP 14330, Mexico City, Mexico
| | | | | | | | | |
Collapse
|
158
|
Day KJ, Staehelin LA, Glick BS. A three-stage model of Golgi structure and function. Histochem Cell Biol 2013; 140:239-49. [PMID: 23881164 DOI: 10.1007/s00418-013-1128-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2013] [Indexed: 12/12/2022]
Abstract
The Golgi apparatus contains multiple classes of cisternae that differ in structure, composition, and function, but there is no consensus about the number and definition of these classes. A useful way to classify Golgi cisternae is according to the trafficking pathways by which the cisternae import and export components. By this criterion, we propose that Golgi cisternae can be divided into three classes that correspond to functional stages of maturation. First, cisternae at the cisternal assembly stage receive COPII vesicles from the ER and recycle components to the ER in COPI vesicles. At this stage, new cisternae are generated. Second, cisternae at the carbohydrate synthesis stage exchange material with one another via COPI vesicles. At this stage, most of the glycosylation and polysaccharide synthesis reactions occur. Third, cisternae at the carrier formation stage produce clathrin-coated vesicles and exchange material with endosomes. At this stage, biosynthetic cargo proteins are packaged into various transport carriers, and the cisternae ultimately disassemble. Discrete transitions occur as a cisterna matures from one stage to the next. Within each stage, the structure and composition of a cisterna can evolve, but the trafficking pathways remain unchanged. This model offers a unified framework for understanding the properties of the Golgi in diverse organisms.
Collapse
Affiliation(s)
- Kasey J Day
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 920 East 58th Street, Chicago, IL, 60615, USA
| | | | | |
Collapse
|
159
|
Seehafer K, Rominger F, Helmchen G, Langhans M, Robinson DG, Özata B, Brügger B, Strating JRPM, van Kuppeveld FJM, Klein CD. Synthesis and biological properties of novel brefeldin A analogues. J Med Chem 2013; 56:5872-84. [PMID: 23805957 DOI: 10.1021/jm400615g] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
New brefeldin A (1) analogues were obtained by introducing a variety of substituents at C15. Most of the analogues exhibited significant biological activity. (15R)-Trifluoromethyl-nor-brefeldin A (3), (15R)-vinyl-nor-brefeldin A (5), their epimers 4 and 6 as well as (15S)-ethyl-nor-brefeldin A (2) were prepared from the key building blocks 12 or 24 by Julia-Kocienski olefination with tetrazolyl sulfones and subsequent macrolactonization. The vinyl derivative 5 allowed analogues to be synthesized by hydroboration and Suzuki-Miyaura coupling. The following biological properties were assessed: (a) inhibition of cell growth of human cancer cells (NCI), (b) induction of morphological changes of the Golgi apparatus of plant and mammalian cells, and (c) influence on the replication of the enterovirus CVB3. Furthermore, conformational aspects were studied by X-ray crystal structure analysis and molecular mechanics calculations, including docking of the analogues into the brefeldin A binding site of an Arf1/Sec7-complex.
Collapse
Affiliation(s)
- Kai Seehafer
- Institute of Organic Chemistry, University of Heidelberg , Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Ung N, Brown MQ, Hicks GR, Raikhel NV. An approach to quantify endomembrane dynamics in pollen utilizing bioactive chemicals. MOLECULAR PLANT 2013; 6:1202-13. [PMID: 23118478 PMCID: PMC7105205 DOI: 10.1093/mp/sss092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 08/05/2012] [Indexed: 05/03/2023]
Abstract
Tip growth of pollen tubes and root hairs occurs via rapid polar growth. These rapidly elongating cells require tip-focused endomembrane trafficking for the deposition and recycling of proteins, membranes, and cell wall materials. Most of the image-based data published to date are subjective and non-quantified. Quantitative and comparative descriptors of these highly dynamic processes have been a major challenge, but are highly desirable for genetic and chemical genomics approaches to dissect this biological network. To address this problem, we screened for small molecules that perturbed the localization of a marker for the Golgi Ras-like monomeric G-protein RAB2:GFP expressed in transgenic tobacco pollen. Semi-automated high-throughput imaging and image analysis resulted in the identification of novel compounds that altered pollen tube development and endomembrane trafficking. Six compounds that caused mislocalization and varying degrees of altered movement of RAB2:GFP-labeled endomembrane bodies were used to generate a training set of image data from which to quantify vesicle dynamics. The area, velocity, straightness, and intensity of each body were quantified using semi-automated image analysis tools revealing quantitative differences in the phenotype caused by each compound. A score was then given to each compound enabling quantitative comparisons between compounds. Our results demonstrate that image analysis can be used to quantitatively evaluate dynamic subcellular endomembrane phenotypes induced by bioactive chemicals, mutations, or other perturbing agents as part of a strategy to quantitatively dissect the endomembrane network.
Collapse
Affiliation(s)
- Nolan Ung
- Center for Plant Cell Biology and Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | | | | | | |
Collapse
|
161
|
Powers-Fletcher MV, Feng X, Krishnan K, Askew DS. Deletion of the sec4 homolog srgA from Aspergillus fumigatus is associated with an impaired stress response, attenuated virulence and phenotypic heterogeneity. PLoS One 2013; 8:e66741. [PMID: 23785510 PMCID: PMC3681910 DOI: 10.1371/journal.pone.0066741] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 05/10/2013] [Indexed: 01/04/2023] Open
Abstract
Small GTPases of the Rab family are master regulators of membrane trafficking, responsible for coordinating the sorting, packaging and delivery of membrane-bound vesicles to specific sites within eukaryotic cells. The contribution of these proteins to the biology of the human pathogenic fungus Aspergillus fumigatus has not been explored. In this study, we characterized the srgA gene, encoding a Rab GTPase closely related to Sec4. We found that a GFP-SrgA fusion protein accumulated preferentially at hyphal tips and mature condiophores. The radial growth of a ΔsrgA mutant was impaired on both rich and minimal medium, consistent with a role for SrgA in filamentous growth. In addition, the ΔsrgA mutant revealed dysmorphic conidiophores that produced conidia with heterogeneous morphology. The ΔsrgA mutant was hypersensitive to brefeldin A-mediated inhibition of vesicular trafficking and showed increased temperature sensitivity relative to wild type A. fumigatus. However, the most striking phenotype of this mutant was its phenotypic heterogeneity. Individual colonies isolated from the original ΔsrgA mutant showed variable morphology with colony sectoring. In addition, each isolate of the ΔsrgA mutant displayed divergent phenotypes with respect to thermotolerance, in vitro stress response and virulence in a Galleria mellonella infection model. Taken together, these results indicate that SrgA contributes to the asexual development and filamentous growth of A. fumigatus. However, the discordant phenotypes observed among individual isolates of the ΔsrgA mutant suggest that the absence of srgA exerts selective pressure for the acquisition of compensatory changes, such as second-site suppressor mutations.
Collapse
Affiliation(s)
- Margaret V. Powers-Fletcher
- Department of Pathology & Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Xizhi Feng
- Department of Pathology & Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Karthik Krishnan
- Department of Pathology & Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - David S. Askew
- Department of Pathology & Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
162
|
The plasma membrane proton pump PMA-1 is incorporated into distal parts of the hyphae independently of the Spitzenkörper in Neurospora crassa. EUKARYOTIC CELL 2013; 12:1097-105. [PMID: 23729384 DOI: 10.1128/ec.00328-12] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Most models for fungal growth have proposed a directional traffic of secretory vesicles to the hyphal apex, where they temporarily aggregate at the Spitzenkörper before they fuse with the plasma membrane (PM). The PM H(+)-translocating ATPase (PMA-1) is delivered via the classical secretory pathway (endoplasmic reticulum [ER] to Golgi) to the cell surface, where it pumps H(+) out of the cell, generating a large electrochemical gradient that supplies energy to H(+)-coupled nutrient uptake systems. To characterize the traffic and delivery of PMA-1 during hyphal elongation, we have analyzed by laser scanning confocal microscopy (LSCM) strains of Neurospora crassa expressing green fluorescent protein (GFP)-tagged versions of the protein. In conidia, PMA-1-GFP was evenly distributed at the PM. During germination and germ tube elongation, PMA-1-GFP was found all around the conidial PM and extended to the germ tube PM, but fluorescence was less intense or almost absent at the tip. Together, the data indicate that the electrochemical gradient driving apical nutrient uptake is generated from early developmental stages. In mature hyphae, PMA-1-GFP localized at the PM at distal regions (>120 μm) and in completely developed septa, but not at the tip, indicative of a distinct secretory route independent of the Spitzenkörper occurring behind the apex.
Collapse
|
163
|
Wei H, Wang F, Wang X, Yang J, Li Z, Cong X, Chen X. Lysophosphatidic acid promotes secretion of VEGF by increasing expression of 150-kD Oxygen-regulated protein (ORP150) in mesenchymal stem cells. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:1426-34. [PMID: 23707263 DOI: 10.1016/j.bbalip.2013.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 04/18/2013] [Accepted: 05/13/2013] [Indexed: 01/16/2023]
Abstract
We previously reported that transplantation of lysophosphatidic acid (LPA) treated mesenchymal stem cells (MSCs) enhances capillary density in the myocardium and improves myocardial function in the ischemic heart. This effect may be mediated through the release of paracrine factors by MSC and potentially involves pro-angiogenic molecules such as vascular endothelial growth factor (VEGF). In this study, we examined the pharmacological and molecular regulation of VEGF secretion induced by LPA in rat MSCs. We showed that LPA stimulated VEGF secretion in MSCs but not in cardiomyocytes or cardiac fibroblasts. LPA-induced VEGF secretion occurred at the post-transcriptional levels and was mediated through the classical ER/Golgi-dependent protein secretory route. LPA also increased ORP150 protein expression. Inhibition of ORP150 upregulation by siRNA knockdown attenuated LPA-induced VEGF secretion. On the other hand, diazoxide, an activator of KATP channel, markedly inhibited LPA-induced ORP150 expression and VEGF secretion. Meanwhile, ATP concentration dependently increased VEGF secretion. In addition, l-Glutamate and NH4Cl significantly reduced VEGF secretion. Furthermore, inhibition of two major subtypes of LPA receptors by Ki16425 and specific siRNA for LPA receptors prevented LPA-induced VEGF secretion and ORP150 expression. Lastly, inhibition of Gi protein that couples with LPA receptors by PTX and siRNA knockdown had no effect on LPA-induced VEGF secretion. Taken together, our findings demonstrate that LPA promotes VEGF secretion at the post-translation level by up-regulating ORP150 expression. Both LPA1 and LPA3 are involved in the LPA-induced VEGF secretion that is independent of Gi protein coupling but associated with the inactivation of KATP channels and inhibition of Na(+)/K(+)-ATPase activity.
Collapse
Affiliation(s)
- Hua Wei
- Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
164
|
Sun Z, Zhang S, Xie L, Zhu Q, Tan Z, Bian J, Sun L, Chen J. The secretory pathway and the actomyosin motility system are required for plasmodesmatal localization of the P7-1 of rice black-streaked dwarf virus. Arch Virol 2013; 158:1055-64. [PMID: 23271163 DOI: 10.1007/s00705-012-1585-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 11/19/2012] [Indexed: 10/27/2022]
Abstract
Rice black-streaked dwarf virus (RBSDV), a plant-infecting reovirus (genus Fijivirus), generally induces virus-containing tubules in infected cells. The nonstructural protein P7-1, encoded by the first open reading frame of segment 7, is involved in forming the structural matrix of these tubules. In experiments to investigate the subcellular localization of P7-1 in Nicotiana benthamiana epidermal cells, fluorescence of P7-1:eGFP was observed in the nucleus, cytoplasm and cell periphery, and in punctate points along the cell wall of plasmolyzed cells. Co-localization with plasmodesmata-located protein 1 showed that P7-1 formed the punctate points at plasmodesmata. Mutational analysis demonstrated that transmembrane domain 1 and adjacent residues were necessary and sufficient for P7-1 to form punctate structures at the cell wall in the plasmolyzed cells. Chemical drug and protein inhibitor treatments indicated that P7-1 utilized the ER-to-Golgi secretory pathway and the actomyosin motility system for its intracellular transport. The plasmodesmatal localization of RBSDV P7-1 is therefore dependent on the secretory pathway and the actomyosin motility system.
Collapse
Affiliation(s)
- Zongtao Sun
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Ministry of Agriculture Key Laboratory of Biotechnology in Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
165
|
Li J, Mu J, Bai J, Fu F, Zou T, An F, Zhang J, Jing H, Wang Q, Li Z, Yang S, Zuo J. Paraquat Resistant1, a Golgi-localized putative transporter protein, is involved in intracellular transport of paraquat. PLANT PHYSIOLOGY 2013; 162:470-83. [PMID: 23471133 PMCID: PMC3641224 DOI: 10.1104/pp.113.213892] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 03/06/2013] [Indexed: 05/02/2023]
Abstract
Paraquat is one of the most widely used herbicides worldwide. In green plants, paraquat targets the chloroplast by transferring electrons from photosystem I to molecular oxygen to generate toxic reactive oxygen species, which efficiently induce membrane damage and cell death. A number of paraquat-resistant biotypes of weeds and Arabidopsis (Arabidopsis thaliana) mutants have been identified. The herbicide resistance in Arabidopsis is partly attributed to a reduced uptake of paraquat through plasma membrane-localized transporters. However, the biochemical mechanism of paraquat resistance remains poorly understood. Here, we report the identification and characterization of an Arabidopsis paraquat resistant1 (par1) mutant that shows strong resistance to the herbicide without detectable developmental abnormalities. PAR1 encodes a putative l-type amino acid transporter protein localized to the Golgi apparatus. Compared with the wild-type plants, the par1 mutant plants show similar efficiency of paraquat uptake, suggesting that PAR1 is not directly responsible for the intercellular uptake of paraquat. However, the par1 mutation caused a reduction in the accumulation of paraquat in the chloroplast, suggesting that PAR1 is involved in the intracellular transport of paraquat into the chloroplast. We identified a PAR1-like gene, OsPAR1, in rice (Oryza sativa). Whereas the overexpression of OsPAR1 resulted in hypersensitivity to paraquat, the knockdown of its expression using RNA interference conferred paraquat resistance on the transgenic rice plants. These findings reveal a unique mechanism by which paraquat is actively transported into the chloroplast and also provide a practical approach for genetic manipulations of paraquat resistance in crops.
Collapse
Affiliation(s)
| | | | | | - Fuyou Fu
- State Key Laboratory of Plant Physiology and Biochemistry and National Plant Gene Research Center, College of Biological Sciences (J.L., S.Y.), and State Key Laboratory of Animal Nutrition, College of Animal Sciences and Technology (T.Z., Z.L.), China Agricultural University, Beijing 100193, China
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (J.M., J.B., F.F., F.A., J.Zh., H.J., Q.W., J.Zu.); and
- Graduate School, Chinese Academy of Sciences, Beijing 100049, China (J.B., H.J.)
| | - Tingting Zou
- State Key Laboratory of Plant Physiology and Biochemistry and National Plant Gene Research Center, College of Biological Sciences (J.L., S.Y.), and State Key Laboratory of Animal Nutrition, College of Animal Sciences and Technology (T.Z., Z.L.), China Agricultural University, Beijing 100193, China
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (J.M., J.B., F.F., F.A., J.Zh., H.J., Q.W., J.Zu.); and
- Graduate School, Chinese Academy of Sciences, Beijing 100049, China (J.B., H.J.)
| | - Fengying An
- State Key Laboratory of Plant Physiology and Biochemistry and National Plant Gene Research Center, College of Biological Sciences (J.L., S.Y.), and State Key Laboratory of Animal Nutrition, College of Animal Sciences and Technology (T.Z., Z.L.), China Agricultural University, Beijing 100193, China
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (J.M., J.B., F.F., F.A., J.Zh., H.J., Q.W., J.Zu.); and
- Graduate School, Chinese Academy of Sciences, Beijing 100049, China (J.B., H.J.)
| | - Jian Zhang
- State Key Laboratory of Plant Physiology and Biochemistry and National Plant Gene Research Center, College of Biological Sciences (J.L., S.Y.), and State Key Laboratory of Animal Nutrition, College of Animal Sciences and Technology (T.Z., Z.L.), China Agricultural University, Beijing 100193, China
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (J.M., J.B., F.F., F.A., J.Zh., H.J., Q.W., J.Zu.); and
- Graduate School, Chinese Academy of Sciences, Beijing 100049, China (J.B., H.J.)
| | - Hongwei Jing
- State Key Laboratory of Plant Physiology and Biochemistry and National Plant Gene Research Center, College of Biological Sciences (J.L., S.Y.), and State Key Laboratory of Animal Nutrition, College of Animal Sciences and Technology (T.Z., Z.L.), China Agricultural University, Beijing 100193, China
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (J.M., J.B., F.F., F.A., J.Zh., H.J., Q.W., J.Zu.); and
- Graduate School, Chinese Academy of Sciences, Beijing 100049, China (J.B., H.J.)
| | - Qing Wang
- State Key Laboratory of Plant Physiology and Biochemistry and National Plant Gene Research Center, College of Biological Sciences (J.L., S.Y.), and State Key Laboratory of Animal Nutrition, College of Animal Sciences and Technology (T.Z., Z.L.), China Agricultural University, Beijing 100193, China
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (J.M., J.B., F.F., F.A., J.Zh., H.J., Q.W., J.Zu.); and
- Graduate School, Chinese Academy of Sciences, Beijing 100049, China (J.B., H.J.)
| | - Zhen Li
- State Key Laboratory of Plant Physiology and Biochemistry and National Plant Gene Research Center, College of Biological Sciences (J.L., S.Y.), and State Key Laboratory of Animal Nutrition, College of Animal Sciences and Technology (T.Z., Z.L.), China Agricultural University, Beijing 100193, China
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (J.M., J.B., F.F., F.A., J.Zh., H.J., Q.W., J.Zu.); and
- Graduate School, Chinese Academy of Sciences, Beijing 100049, China (J.B., H.J.)
| | - Shuhua Yang
- State Key Laboratory of Plant Physiology and Biochemistry and National Plant Gene Research Center, College of Biological Sciences (J.L., S.Y.), and State Key Laboratory of Animal Nutrition, College of Animal Sciences and Technology (T.Z., Z.L.), China Agricultural University, Beijing 100193, China
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (J.M., J.B., F.F., F.A., J.Zh., H.J., Q.W., J.Zu.); and
- Graduate School, Chinese Academy of Sciences, Beijing 100049, China (J.B., H.J.)
| | | |
Collapse
|
166
|
Holst B, Madsen KL, Jansen AM, Jin C, Rickhag M, Lund VK, Jensen M, Bhatia V, Sørensen G, Madsen AN, Xue Z, Møller SK, Woldbye D, Qvortrup K, Huganir R, Stamou D, Kjærulff O, Gether U. PICK1 deficiency impairs secretory vesicle biogenesis and leads to growth retardation and decreased glucose tolerance. PLoS Biol 2013; 11:e1001542. [PMID: 23630454 PMCID: PMC3635866 DOI: 10.1371/journal.pbio.1001542] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 03/12/2013] [Indexed: 01/02/2023] Open
Abstract
Two lipid membrane sculpting BAR domain proteins, PICK1 and ICA69, play a key role early in the biogenesis of peptide hormone secretory vesicles and are critical for normal growth and metabolic homeostasis. Secretory vesicles in endocrine cells store hormones such as growth hormone (GH) and insulin before their release into the bloodstream. The molecular mechanisms governing budding of immature secretory vesicles from the trans-Golgi network (TGN) and their subsequent maturation remain unclear. Here, we identify the lipid binding BAR (Bin/amphiphysin/Rvs) domain protein PICK1 (protein interacting with C kinase 1) as a key component early in the biogenesis of secretory vesicles in GH-producing cells. Both PICK1-deficient Drosophila and mice displayed somatic growth retardation. Growth retardation was rescued in flies by reintroducing PICK1 in neurosecretory cells producing somatotropic peptides. PICK1-deficient mice were characterized by decreased body weight and length, increased fat accumulation, impaired GH secretion, and decreased storage of GH in the pituitary. Decreased GH storage was supported by electron microscopy showing prominent reduction in secretory vesicle number. Evidence was also obtained for impaired insulin secretion associated with decreased glucose tolerance. PICK1 localized in cells to immature secretory vesicles, and the PICK1 BAR domain was shown by live imaging to associate with vesicles budding from the TGN and to possess membrane-sculpting properties in vitro. In mouse pituitary, PICK1 co-localized with the BAR domain protein ICA69, and PICK1 deficiency abolished ICA69 protein expression. In the Drosophila brain, PICK1 and ICA69 co-immunoprecipitated and showed mutually dependent expression. Finally, both in a Drosophila model of type 2 diabetes and in high-fat-diet-induced obese mice, we observed up-regulation of PICK1 mRNA expression. Our findings suggest that PICK1, together with ICA69, is critical during budding of immature secretory vesicles from the TGN and thus for vesicular storage of GH and possibly other hormones. The data link two BAR domain proteins to membrane remodeling processes in the secretory pathway of peptidergic endocrine cells and support an important role of PICK1/ICA69 in maintenance of metabolic homeostasis. Regulated secretion of peptide hormones, such as growth hormone (GH) and insulin, represents a fundamental process in controlling physiological homeostasis. In endocrine cells, hormone-containing vesicles bud from the Golgi apparatus to enable storage and regulated release into the blood stream. Here we show that two proteins with a lipid membrane-shaping BAR domain, PICK1 and ICA69, work together in the pituitary gland and the pancreas to facilitate the budding of early secretory vesicle from the Golgi apparatus. The physiological significance of our findings was borne out by showing that mice and Drosophila flies lacking the PICK1 encoding gene have marked growth retardation. PICK1-deficient mice showed increased fat accumulation, reduced body weight and length, as well as reduced glucose clearance from the blood stream. Consistent with these findings, we observed a severe reduction in GH storage in the pituitary and impaired secretion of both insulin and GH in response to physiological stimuli. Finally, we found that PICK1 expression levels were raised in a fly model of type 2 diabetes and in high-fat-diet-induced obese mice. These results indicate that alteration of PICK1 expression might play a role in pathophysiological processes of metabolic diseases and/or in a protective compensatory mechanism.
Collapse
Affiliation(s)
- Birgitte Holst
- Laboratory for Molecular Pharmacology, Novo Nordisk Foundation Center for Basic Metabolic Research, The Faculty of Health Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
- Department of Neuroscience and Pharmacology, The Faculty of Health Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
- * E-mail: (BH); (OK); (UG)
| | - Kenneth L. Madsen
- Department of Neuroscience and Pharmacology, The Faculty of Health Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
- Molecular Neuropharmacology Laboratory, The Faculty of Health Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Anna M. Jansen
- Department of Neuroscience and Pharmacology, The Faculty of Health Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
- Molecular Neuropharmacology Laboratory, The Faculty of Health Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Chunyu Jin
- Laboratory for Molecular Pharmacology, Novo Nordisk Foundation Center for Basic Metabolic Research, The Faculty of Health Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
- Department of Neuroscience and Pharmacology, The Faculty of Health Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Mattias Rickhag
- Department of Neuroscience and Pharmacology, The Faculty of Health Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
- Molecular Neuropharmacology Laboratory, The Faculty of Health Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Viktor K. Lund
- Department of Neuroscience and Pharmacology, The Faculty of Health Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Morten Jensen
- Laboratory for Molecular Pharmacology, Novo Nordisk Foundation Center for Basic Metabolic Research, The Faculty of Health Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
- Department of Neuroscience and Pharmacology, The Faculty of Health Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Vikram Bhatia
- Department of Neuroscience and Pharmacology, The Faculty of Health Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
- BioNano Laboratory, The Faculty of Health Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Gunnar Sørensen
- Department of Neuroscience and Pharmacology, The Faculty of Health Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
- Molecular Neuropharmacology Laboratory, The Faculty of Health Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Andreas N. Madsen
- Laboratory for Molecular Pharmacology, Novo Nordisk Foundation Center for Basic Metabolic Research, The Faculty of Health Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
- Department of Neuroscience and Pharmacology, The Faculty of Health Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Zhichao Xue
- Laboratory for Molecular Pharmacology, Novo Nordisk Foundation Center for Basic Metabolic Research, The Faculty of Health Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
- Department of Neuroscience and Pharmacology, The Faculty of Health Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Siri K. Møller
- Department of Neuroscience and Pharmacology, The Faculty of Health Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
- Molecular Neuropharmacology Laboratory, The Faculty of Health Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - David Woldbye
- Department of Neuroscience and Pharmacology, The Faculty of Health Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Klaus Qvortrup
- Core Facility for Integrated Microscopy, Department of Biomedical Science, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Richard Huganir
- Department of Neuroscience, The Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Dimitrios Stamou
- Department of Neuroscience and Pharmacology, The Faculty of Health Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
- BioNano Laboratory, The Faculty of Health Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Ole Kjærulff
- Department of Neuroscience and Pharmacology, The Faculty of Health Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
- * E-mail: (BH); (OK); (UG)
| | - Ulrik Gether
- Department of Neuroscience and Pharmacology, The Faculty of Health Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
- Molecular Neuropharmacology Laboratory, The Faculty of Health Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
- * E-mail: (BH); (OK); (UG)
| |
Collapse
|
167
|
Wang J, Shen J, Cai Y, Robinson DG, Jiang L. Successful transport to the vacuole of heterologously expressed mung bean 8S globulin occurs in seed but not in vegetative tissues. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:1587-601. [PMID: 23382549 PMCID: PMC3617825 DOI: 10.1093/jxb/ert014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
This study investigated the subcellular location of mung bean (Vigna radiata) 8S globulin in transient expression systems as well as in tobacco (Nicotiana tabacum) BY-2 cells and different tissues from a transgenic Arabidopsis (Arabidopsis thaliana) line stably expressing this storage globulin. When transiently expressed in protoplasts from both BY-2 cells and Arabidopsis suspension cultured cells, the 8S globulin located to structures that were neither Golgi nor pre-vacuolar compartments (PVCs). Immunogold electron microscopy of the transgenics reveals the 8S globulin-positive structures to be small, spherical, ribosome-covered endoplasmic reticulum (ER)-derived bodies. In BY-2 cells and all vegetative cells, the 8S globulin was present as a pro-form. However, in Arabidopsis embryos, with the onset of endogenous storage protein synthesis, the 8S globulin exited the ER and passed through the PVC to the protein storage vacuole where it was processed to its smaller mature form. These results clearly demonstrated that, when taken out of context and expressed in vegetative cells, the mung bean 8S storage globulin cannot exit the ER, and indicate that natural targeting of storage proteins to the vacuole should be better studied in the maturing seed.
Collapse
Affiliation(s)
- Junqi Wang
- School of Life Sciences, Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, PR China
- Department of Biology, South University of Science and Technology of China, Shenzhen, PR China
| | - Jinbo Shen
- School of Life Sciences, Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, PR China
| | - Yi Cai
- School of Life Sciences, Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, PR China
| | - David G. Robinson
- Department of Plant Cell Biology, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, PR China
| |
Collapse
|
168
|
Mishev K, Dejonghe W, Russinova E. Small Molecules for Dissecting Endomembrane Trafficking: A Cross-Systems View. ACTA ACUST UNITED AC 2013; 20:475-86. [DOI: 10.1016/j.chembiol.2013.03.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 03/19/2013] [Accepted: 03/20/2013] [Indexed: 01/31/2023]
|
169
|
Drakakaki G, Dandekar A. Protein secretion: how many secretory routes does a plant cell have? PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 203-204:74-8. [PMID: 23415330 DOI: 10.1016/j.plantsci.2012.12.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 12/18/2012] [Accepted: 12/26/2012] [Indexed: 05/19/2023]
Abstract
Conventional protein secretion is mediated by the endomembrane system. Secreted proteins are inserted into the endomembrane system through a N-terminal signal peptide and follow the endoplasmic reticulum to the Golgi trafficking pathway en route to the plasma membrane or the extracellular apoplastic space. In mammalian and yeast cells, unconventional secretion has been identified and relatively well studied. Also in plants, evidence of unconventional secretion mechanisms is accumulating. The ever-increasing number of leaderless proteins identified in proteomic studies indicates the importance of unconventional protein secretion in plants. Novel approaches, such as chemical genomics and vesicle proteomics might be able to provide new insights into unconventional protein secretion in plants.
Collapse
Affiliation(s)
- Georgia Drakakaki
- Department of Plant Sciences, University of California, Davis 95616, USA
| | | |
Collapse
|
170
|
Del Duca S, Faleri C, Iorio RA, Cresti M, Serafini-Fracassini D, Cai G. Distribution of transglutaminase in pear pollen tubes in relation to cytoskeleton and membrane dynamics. PLANT PHYSIOLOGY 2013; 161:1706-21. [PMID: 23396835 PMCID: PMC3613450 DOI: 10.1104/pp.112.212225] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Transglutaminases (TGases) are ubiquitous enzymes that take part in a variety of cellular functions. In the pollen tube, cytoplasmic TGases are likely to be involved in the incorporation of primary amines at selected peptide-bound glutamine residues of cytosolic proteins (including actin and tubulin), while cell wall-associated TGases are believed to regulate pollen tube growth. Using immunological probes, we identified TGases associated with different subcellular compartments (cytosol, membranes, and cell walls). Binding of cytosolic TGase to actin filaments was shown to be Ca(2+) dependent. The membrane TGase is likely associated with both Golgi-derived structures and the plasma membrane, suggesting a Golgi-based exocytotic delivery of TGase. Association of TGase with the plasma membrane was also confirmed by immunogold transmission electron microscopy. Immunolocalization of TGase indicated that the enzyme was present in the growing region of pollen tubes and that the enzyme colocalizes with cell wall markers. Bidimensional electrophoresis indicated that different TGase isoforms were present in distinct subcellular compartments, suggesting either different roles or different regulatory mechanisms of enzyme activity. The application of specific inhibitors showed that the distribution of TGase in different subcellular compartments was regulated by both membrane dynamics and cytoskeleton integrity, suggesting that delivery of TGase to the cell wall requires the transport of membranes along cytoskeleton filaments. Taken together, these data indicate that a cytoplasmic TGase interacts with the cytoskeleton, while a different TGase isoform, probably delivered via a membrane/cytoskeleton-based transport system, is secreted in the cell wall of pear (Pyrus communis) pollen tubes, where it might play a role in the regulation of apical growth.
Collapse
|
171
|
Abiodun MO, Matsuoka K. Evidence that proliferation of golgi apparatus depends on both de novo generation from the endoplasmic reticulum and formation from pre-existing stacks during the growth of tobacco BY-2 cells. PLANT & CELL PHYSIOLOGY 2013; 54:541-54. [PMID: 23361898 DOI: 10.1093/pcp/pct014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
In higher plants, the numbers of cytoplasmic-distributed Golgi stacks differ based on function, age and cell type. It has not been clarified how the numbers are controlled, whether all the Golgi apparatus in a cell function equally and whether the increase in Golgi number is a result of the de novo formation from the endoplasmic reticulum (ER) or fission of pre-existing stacks. A tobacco prolyl 4-hydroxylase (NtP4H1.1), which is a cis-Golgi-localizing type II membrane protein, was tagged with a photoconvertible fluorescent protein, mKikGR (monomeric Kikume green red), and expressed in tobacco bright yellow 2 (BY-2) cells. Transformed cells were exposed to purple light to convert the fluorescence from green to red. A time-course analysis after the conversion revealed a progressive increase in green puncta and a decrease in the red puncta. From 3 to 6 h, we observed red, yellow and green fluorescent puncta corresponding to pre-existing Golgi; Golgi containing both pre-existing and newly synthesized protein; and newly synthesized Golgi. Analysis of the number and fluorescence of Golgi at different phases of the cell cycle suggested that an increase in Golgi number with both division and de novo synthesis occurred concomitantly with DNA replication. Investigation with different inhibitors suggested that the formation of new Golgi and the generation of Golgi containing both pre-existing and newly synthesized protein are mediated by different machineries. These results and modeling based on quantified results indicate that the Golgi apparatuses in tobacco BY-2 cells are not uniform and suggest that both de novo synthesis from the ER and Golgi division contribute almost equally to the increase in proliferating cells.
Collapse
Affiliation(s)
- Moses Olabiyi Abiodun
- Laboratory of Plant Nutrition, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, 812-8581 Japan
| | | |
Collapse
|
172
|
Lim HS, Lee MY, Moon JS, Moon JK, Yu YM, Cho IS, Bae H, deBoer M, Ju H, Hammond J, Jackson AO. Actin Cytoskeleton and Golgi Involvement in Barley stripe mosaic virus Movement and Cell Wall Localization of Triple Gene Block Proteins. THE PLANT PATHOLOGY JOURNAL 2013; 29:17-30. [PMID: 25288925 PMCID: PMC4174794 DOI: 10.5423/ppj.oa.09.2012.0144] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 10/08/2012] [Accepted: 10/10/2012] [Indexed: 05/29/2023]
Abstract
Barley stripe mosaic virus (BSMV) induces massive actin filament thickening at the infection front of infected Nicotiana benthamiana leaves. To determine the mechanisms leading to actin remodeling, fluorescent protein fusions of the BSMV triple gene block (TGB) proteins were coexpressed in cells with the actin marker DsRed: Talin. TGB ectopic expression experiments revealed that TGB3 is a major elicitor of filament thickening, that TGB2 resulted in formation of intermediate DsRed:Talin filaments, and that TGB1 alone had no obvious effects on actin filament structure. Latrunculin B (LatB) treatments retarded BSMV cell-to-cell movement, disrupted actin filament organization, and dramatically decreased the proportion of paired TGB3 foci appearing at the cell wall (CW). BSMV infection of transgenic plants tagged with GFP-KDEL exhibited membrane proliferation and vesicle formation that were especially evident around the nucleus. Similar membrane proliferation occurred in plants expressing TGB2 and/or TGB3, and DsRed: Talin fluorescence in these plants colocalized with the ER vesicles. TGB3 also associated with the Golgi apparatus and overlapped with cortical vesicles appearing at the cell periphery. Brefeldin A treatments disrupted Golgi and also altered vesicles at the CW, but failed to interfere with TGB CW localization. Our results indicate that actin cytoskeleton interactions are important in BSMV cell-to-cell movement and for CW localization of TGB3.
Collapse
Affiliation(s)
- Hyoun-Sub Lim
- Department of Applied Biology, Chungnam National University, Daejeon 305-764, Korea
| | - Mi Yeon Lee
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720 USA
| | - Jae Sun Moon
- Green Bio Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon 305-333, Korea
| | - Jung-Kyung Moon
- National Institute of Crop Science, Suwon, Rural Development Administration, 441-707, Korea
| | - Yong-Man Yu
- Department of Applied Biology, Chungnam National University, Daejeon 305-764, Korea
| | - In Sook Cho
- National Institute of Horticultural & Herbal Science, Rural Development Administration, Suwon 441-440, Korea
| | - Hanhong Bae
- School of Biotechnology, Yeungnam University, Gyeongsan, Korea
| | - Matt deBoer
- Virology Department, Wageningen University, 6709 PD Wageningen, The Netherlands
| | - Hojong Ju
- Department of Agricultural Biology, Chonbuk National University, Jeonju 561-756, Korea
| | - John Hammond
- USDA-ARS, US National Arboretum, Floral and Nursery Plants Research Unit, Beltsville, MD 20705 USA
| | - Andrew O. Jackson
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720 USA
| |
Collapse
|
173
|
Pedrazzini E, Komarova NY, Rentsch D, Vitale A. Traffic Routes and Signals for the Tonoplast. Traffic 2013; 14:622-8. [DOI: 10.1111/tra.12051] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Revised: 01/23/2013] [Accepted: 01/28/2013] [Indexed: 01/17/2023]
Affiliation(s)
- Emanuela Pedrazzini
- Istituto di Biologia e Biotecnologia Agraria; Consiglio Nazionale delle Ricerche; Milano; Italy
| | | | - Doris Rentsch
- Institute of Plant Sciences; University of Bern; Bern; Switzerland
| | - Alessandro Vitale
- Istituto di Biologia e Biotecnologia Agraria; Consiglio Nazionale delle Ricerche; Milano; Italy
| |
Collapse
|
174
|
Dentler W. A role for the membrane in regulating Chlamydomonas flagellar length. PLoS One 2013; 8:e53366. [PMID: 23359798 PMCID: PMC3554728 DOI: 10.1371/journal.pone.0053366] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 11/30/2012] [Indexed: 12/21/2022] Open
Abstract
Flagellar assembly requires coordination between the assembly of axonemal proteins and the assembly of the flagellar membrane and membrane proteins. Fully grown steady-state Chlamydomonas flagella release flagellar vesicles from their tips and failure to resupply membrane should affect flagellar length. To study vesicle release, plasma and flagellar membrane surface proteins were vectorially pulse-labeled and flagella and vesicles were analyzed for biotinylated proteins. Based on the quantity of biotinylated proteins in purified vesicles, steady-state flagella appeared to shed a minimum of 16% of their surface membrane per hour, equivalent to a complete flagellar membrane being released every 6 hrs or less. Brefeldin-A destroyed Chlamydomonas Golgi, inhibited the secretory pathway, inhibited flagellar regeneration, and induced full-length flagella to disassemble within 6 hrs, consistent with flagellar disassembly being induced by a failure to resupply membrane. In contrast to membrane lipids, a pool of biotinylatable membrane proteins was identified that was sufficient to resupply flagella as they released vesicles for 6 hrs in the absence of protein synthesis and to support one and nearly two regenerations of flagella following amputation. These studies reveal the importance of the secretory pathway to assemble and maintain full-length flagella.
Collapse
Affiliation(s)
- William Dentler
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA.
| |
Collapse
|
175
|
Andika IB, Zheng S, Tan Z, Sun L, Kondo H, Zhou X, Chen J. Endoplasmic reticulum export and vesicle formation of the movement protein of Chinese wheat mosaic virus are regulated by two transmembrane domains and depend on the secretory pathway. Virology 2013; 435:493-503. [PMID: 23137810 DOI: 10.1016/j.virol.2012.10.024] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 09/10/2012] [Accepted: 10/15/2012] [Indexed: 12/15/2022]
Abstract
The 37K protein of Chinese wheat mosaic virus (CWMV) belongs to the 30K superfamily of plant virus movement proteins. CWMV 37K trans-complemented the cell-to-cell spread of a movement-defective Potato virus X. CWMV 37K fused to enhanced green fluorescent protein localized to plasmodesmata and formed endoplasmic reticulum (ER)-derived vesicular and large aggregate structures. CWMV 37K has two putative N-terminal transmembrane domains (TMDs). Mutations disrupting TMD1 or TMD2 impaired 37K movement function; those mutants were unable to form ER-derived structures but instead accumulated in the ER. Treatment with Brefeldin A or overexpression of the dominant negative mutant of Sar1 retained 37K in the ER, indicating that ER export of 37K is dependent on the secretory pathway. Moreover, CWMV 37K interacted with pectin methylesterases and mutations in TMD1 or TMD2 impaired this interaction in planta. The results suggest that the two TMDs regulate the movement function and intracellular transport of 37K.
Collapse
Affiliation(s)
- Ida Bagus Andika
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Ministry of Agriculture Key Laboratory of Biotechnology in Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | | | | | | | | | | | | |
Collapse
|
176
|
Hyodo K, Mine A, Taniguchi T, Kaido M, Mise K, Taniguchi H, Okuno T. ADP ribosylation factor 1 plays an essential role in the replication of a plant RNA virus. J Virol 2013; 87:163-76. [PMID: 23097452 PMCID: PMC3536388 DOI: 10.1128/jvi.02383-12] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 10/16/2012] [Indexed: 01/31/2023] Open
Abstract
Eukaryotic positive-strand RNA viruses replicate using the membrane-bound replicase complexes, which contain multiple viral and host components. Virus infection induces the remodeling of intracellular membranes. Virus-induced membrane structures are thought to increase the local concentration of the components that are required for replication and provide a scaffold for tethering the replicase complexes. However, the mechanisms underlying virus-induced membrane remodeling are poorly understood. RNA replication of red clover necrotic mosaic virus (RCNMV), a positive-strand RNA plant virus, is associated with the endoplasmic reticulum (ER) membranes, and ER morphology is perturbed in RCNMV-infected cells. Here, we identified ADP ribosylation factor 1 (Arf1) in the affinity-purified RCNMV RNA-dependent RNA polymerase fraction. Arf1 is a highly conserved, ubiquitous, small GTPase that is implicated in the formation of the coat protein complex I (COPI) vesicles on Golgi membranes. Using in vitro pulldown and bimolecular fluorescence complementation analyses, we showed that Arf1 interacted with the viral p27 replication protein within the virus-induced large punctate structures of the ER membrane. We found that inhibition of the nucleotide exchange activity of Arf1 using the inhibitor brefeldin A (BFA) disrupted the assembly of the viral replicase complex and p27-mediated ER remodeling. We also showed that BFA treatment and the expression of dominant negative Arf1 mutants compromised RCNMV RNA replication in protoplasts. Interestingly, the expression of a dominant negative mutant of Sar1, a key regulator of the biogenesis of COPII vesicles at ER exit sites, also compromised RCNMV RNA replication. These results suggest that the replication of RCNMV depends on the host membrane traffic machinery.
Collapse
Affiliation(s)
- Kiwamu Hyodo
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Akira Mine
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Takako Taniguchi
- Institute for Enzyme Research, University of Tokushima, Tokushima, Japan
| | - Masanori Kaido
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Kazuyuki Mise
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Hisaaki Taniguchi
- Institute for Enzyme Research, University of Tokushima, Tokushima, Japan
| | - Tetsuro Okuno
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
177
|
Abstract
The recent and massive expansion in plant genomics data has generated a large number of gene sequences for which two seemingly simple questions need to be answered: where do the proteins encoded by these genes localize in cells, and what do they do? One widespread approach to answering the localization question has been to use particle bombardment to transiently express unknown proteins tagged with green fluorescent protein (GFP) or its numerous derivatives. Confocal fluorescence microscopy is then used to monitor the localization of the fluorescent protein as it hitches a ride through the cell. The subcellular localization of the fusion protein, if not immediately apparent, can then be determined by comparison to localizations generated by fluorescent protein fusions to known signalling sequences and proteins, or by direct comparison with fluorescent dyes. This review aims to be a tour guide for researchers wanting to travel this hitch-hiker's path, and for reviewers and readers who wish to understand their travel reports. It will describe some of the technology available for visualizing protein localizations, and some of the experimental approaches for optimizing and confirming localizations generated by particle bombardment in onion epidermal cells, the most commonly used experimental system. As the non-conservation of signal sequences in heterologous expression systems such as onion, and consequent mis-targeting of fusion proteins, is always a potential problem, the epidermal cells of the Argenteum mutant of pea are proposed as a model system.
Collapse
Affiliation(s)
- David A Collings
- Biomolecular Interaction Centre, School of Biological Sciences, The University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
178
|
Lynch G, Kramár EA, Babayan AH, Rumbaugh G, Gall CM. Differences between synaptic plasticity thresholds result in new timing rules for maximizing long-term potentiation. Neuropharmacology 2013; 64:27-36. [PMID: 22820276 PMCID: PMC3445784 DOI: 10.1016/j.neuropharm.2012.07.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2012] [Revised: 06/28/2012] [Accepted: 07/01/2012] [Indexed: 01/25/2023]
Abstract
The fundamental observation that the temporal spacing of learning episodes plays a critical role in the efficiency of memory encoding has had little effect on either research on long-term potentiation (LTP) or efforts to develop cognitive enhancers. Here we review recent findings describing a spaced trials phenomenon for LTP that appears to be related to recent evidence that plasticity thresholds differ between synapses in the adult hippocampus. Results of tests with one memory enhancing drug suggest that the compound potently facilitates LTP via effects on 'high threshold' synapses and thus alters the temporally extended timing rules. Possible implications of these results for our understanding of LTP substrates, neurobiological contributors to the distributed practice effect, and the consequences of memory enhancement are discussed. This article is part of a Special Issue entitled 'Cognitive Enhancers'.
Collapse
Affiliation(s)
- Gary Lynch
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92697-4260 USA
- Department of Anatomy and Neurobiology, University of California, Irvine, CA 92697-1275 USA
| | - Enikö A. Kramár
- Department of Anatomy and Neurobiology, University of California, Irvine, CA 92697-1275 USA
| | - Alex H. Babayan
- Department of Anatomy and Neurobiology, University of California, Irvine, CA 92697-1275 USA
| | - Gavin Rumbaugh
- Department of Neuroscience, The Scripps Research Institute, Jupiter FL 33458 USA
| | - Christine M. Gall
- Department of Anatomy and Neurobiology, University of California, Irvine, CA 92697-1275 USA
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697-4450 USA
| |
Collapse
|
179
|
Hassler S, Lemke L, Jung B, Möhlmann T, Krüger F, Schumacher K, Espen L, Martinoia E, Neuhaus HE. Lack of the Golgi phosphate transporter PHT4;6 causes strong developmental defects, constitutively activated disease resistance mechanisms and altered intracellular phosphate compartmentation in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 72:732-44. [PMID: 22788523 DOI: 10.1111/j.1365-313x.2012.05106.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The Golgi-located phosphate exporter PHT4;6 has been described as involved in salt tolerance but further analysis on the physiological impact of PHT4;6 remained elusive. Here we show that PHT4;6-GFP is targeted to the trans-Golgi compartment and that loss of function of this carrier protein has a dramatic impact on plant growth and development. Knockout mutants of pht4;6 exhibit a dwarf phenotype that is complemented by the homologous gene from rice (Oryza sativa). Interestingly, pht4;6 mutants show altered characteristics of several Golgi-related functions, such as an altered abundance of certain N-glycosylated proteins, altered composition of cell-wall hemicelluose, and higher sensitivity to the Golgi α-mannosidase and the retrograde transport inhibitors kifunensine and brefeldin A, respectively. Moreover, pht4;6 mutants exhibit a 'mimic disease' phenotype accompanied by constitutively activated pathogen defense mechanisms and increased resistance against the virulent Pseudomonas syringae strain DC3000. Surprisingly, pht4;6 mutants also exhibit phosphate starvation symptoms, as revealed at the morphological and molecular level, although total Pi levels in wild-type and pht4;6 plants are similar. This suggested that subcellular Pi compartmentation was impaired. By use of nuclear magnetic resonance (NMR), increased Pi concentration was detected in acidic compartments of pht4;6 mutants. We propose that impaired Pi efflux from the trans-Golgi lumen results in accumulation of inorganic phosphate in other internal compartments, leading to low cytoplasmic phosphate levels with detrimental effects on plant performance.
Collapse
Affiliation(s)
- Sebastian Hassler
- Plant Physiology, University of Kaiserslautern, Erwin Schrödinger Straße, D-67653 Kaiserslautern, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
180
|
Mohammed AF, Abdul-Wahid A, Huang EHB, Bolewska-Pedyczak E, Cydzik M, Broad AE, Gariépy J. The Pseudomonas aeruginosa exotoxin A translocation domain facilitates the routing of CPP-protein cargos to the cytosol of eukaryotic cells. J Control Release 2012; 164:58-64. [PMID: 23075769 DOI: 10.1016/j.jconrel.2012.10.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 10/05/2012] [Accepted: 10/08/2012] [Indexed: 01/09/2023]
Abstract
The use of cell-penetrating peptides (CPPs), such as polyarginine, has been shown to facilitate the import of drugs and other cargos into cells. However, a major obstacle limiting their use as delivery agents is their entrapment following internalization into endocytic vesicles, leading to either their recycling out of cells or their degradation in lysosomes. To address this challenge, we fused a CPP sequence to the translocation domain of Pseudomonas aeruginosa exotoxin A (ETA) to facilitate the endosomal escape of imported CPP-containing protein constructs. Specifically, a fusion protein incorporating ten arginines linked to residues 253 to 412 of ETA (ETA(253-412)) was tested for its ability to effectively route a protein cargo (enhanced green fluorescent protein, eGFP) to the cytosol of cells. Using flow cytometry and fluorescence live-cell imaging, we observed a 5-fold improvement of cellular uptake as well as a 40-fold increase in cytosolic delivery of the CPP-ETA(253-412)-eGFP construct in relation to CPP-eGFP. Furthermore, analysis of intracellular routing events indicated that the incorporation of ETA(253-412) within the CPP-containing protein fusion construct avoided lysosomal degradation by re-directing the construct from early endosomes to the ER lumen and finally to the cytosol. Studies using inhibitors of vesicular transport confirmed that the ER lumen is a key compartment reached by the CPP-ETA(253-412)-eGFP construct before accessing the cytosol. Together, these findings suggest that incorporating a CPP motif and the ETA translocation domain into protein constructs can facilitate their cytosolic delivery.
Collapse
Affiliation(s)
- Arshiya F Mohammed
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
181
|
Pérez-Henríquez P, Raikhel NV, Norambuena L. Endocytic trafficking towards the vacuole plays a key role in the auxin receptor SCF(TIR)-independent mechanism of lateral root formation in A. thaliana. MOLECULAR PLANT 2012; 5:1195-1209. [PMID: 22848095 DOI: 10.1093/mp/sss066] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Plants' developmental plasticity plays a pivotal role in responding to environmental conditions. One of the most plastic plant organs is the root system. Different environmental stimuli such as nutrients and water deficiency may induce lateral root formation to compensate for a low level of water and/or nutrients. It has been shown that the hormone auxin tunes lateral root development and components for its signaling pathway have been identified. Using chemical biology, we discovered an Arabidopsis thaliana lateral root formation mechanism that is independent of the auxin receptor SCF(TIR). The bioactive compound Sortin2 increased lateral root occurrence by acting upstream from the morphological marker of lateral root primordium formation, the mitotic activity. The compound did not display auxin activity. At the cellular level, Sortin2 accelerated endosomal trafficking, resulting in increased trafficking of plasma membrane recycling proteins to the vacuole. Sortin2 affected Late endosome/PVC/MVB trafficking and morphology. Combining Sortin2 with well-known drugs showed that endocytic trafficking of Late E/PVC/MVB towards the vacuole is pivotal for Sortin2-induced SCF(TIR)-independent lateral root initiation. Our results revealed a distinctive role for endosomal trafficking in the promotion of lateral root formation via a process that does not rely on the auxin receptor complex SCF(TIR).
Collapse
|
182
|
Handford M, Rodríguez-Furlán C, Marchant L, Segura M, Gómez D, Alvarez-Buylla E, Xiong GY, Pauly M, Orellana A. Arabidopsis thaliana AtUTr7 encodes a golgi-localized UDP-glucose/UDP-galactose transporter that affects lateral root emergence. MOLECULAR PLANT 2012; 5:1263-80. [PMID: 22933714 DOI: 10.1093/mp/sss074] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Nucleotide sugar transporters (NSTs) are antiporters comprising a gene family that plays a fundamental role in the biosynthesis of complex cell wall polysaccharides and glycoproteins in plants. However, due to the limited number of related mutants that have observable phenotypes, the biological function(s) of most NSTs in cell wall biosynthesis and assembly have remained elusive. Here, we report the characterization of AtUTr7 from Arabidopsis (Arabidopsis thaliana (L.) Heynh.), which is homologous to multi-specific UDP-sugar transporters from Drosophila melanogaster, humans, and Caenorhabditis elegans. We show that AtUTr7 possesses the common structural characteristics conserved among NSTs. Using a green fluorescent protein (GFP) tagged version, we demonstrate that AtUTr7 is localized in the Golgi apparatus. We also show that AtUTr7 is widely expressed, especially in the roots and in specific floral organs. Additionally, the results of an in vitro nucleotide sugar transport assay carried out with a tobacco and a yeast expression system suggest that AtUTr7 is capable of transferring UDP-Gal and UDP-Glc, but not a range of other UDP- and GDP-sugars, into the Golgi lumen. Mutants lacking expression of AtUTr7 exhibited an early proliferation of lateral roots as well as distorted root hairs when cultivated at high sucrose concentrations. Furthermore, the distribution of homogalacturonan with a low degree of methyl esterification differed in lateral root tips of the mutant compared to wild-type plants, although additional analytical procedures revealed no further differences in the composition of the root cell walls. This evidence suggests that the transport of UDP-Gal and UDP-Glc into the Golgi under conditions of high root biomass production plays a role in lateral root and root hair development.
Collapse
|
183
|
Ding Y, Wang J, Wang J, Stierhof YD, Robinson DG, Jiang L. Unconventional protein secretion. TRENDS IN PLANT SCIENCE 2012; 17:606-15. [PMID: 22784825 DOI: 10.1016/j.tplants.2012.06.004] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Revised: 06/08/2012] [Accepted: 06/12/2012] [Indexed: 05/11/2023]
Abstract
It is generally believed that protein secretion or exocytosis is achieved via a conventional ER (endoplasmic reticulum)-Golgi-TGN (trans-Golgi network)-PM (plasma membrane) pathway in the plant endomembrane system. However, such signal peptide (SP)-dependent protein secretion cannot explain the increasing number of SP-lacking proteins which are found outside of the PM in plant cells. The process by which such leaderless secretory proteins (LSPs) gain access to the cell exterior is termed unconventional protein secretion (UPS) and has been well-studied in animal and yeast cells, but largely ignored by the plant community. Here, we review the evidence for UPS in plants especially in regard to the recently discovered EXPO (exocyst-positive-organelle).
Collapse
Affiliation(s)
- Yu Ding
- School of Life Sciences, Centre for Cell and Developmental Biology, the Chinese University of Hong Kong, Hong Kong, China
| | | | | | | | | | | |
Collapse
|
184
|
Rivera-Serrano EE, Rodriguez-Welsh MF, Hicks GR, Rojas-Pierce M. A small molecule inhibitor partitions two distinct pathways for trafficking of tonoplast intrinsic proteins in Arabidopsis. PLoS One 2012; 7:e44735. [PMID: 22957103 PMCID: PMC3434187 DOI: 10.1371/journal.pone.0044735] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Accepted: 08/07/2012] [Indexed: 01/26/2023] Open
Abstract
Tonoplast intrinsic proteins (TIPs) facilitate the membrane transport of water and other small molecules across the plant vacuolar membrane, and members of this family are expressed in specific developmental stages and tissue types. Delivery of TIP proteins to the tonoplast is thought to occur by vesicle–mediated traffic from the endoplasmic reticulum to the vacuole, and at least two pathways have been proposed, one that is Golgi-dependent and another that is Golgi-independent. However, the mechanisms for trafficking of vacuolar membrane proteins to the tonoplast remain poorly understood. Here we describe a chemical genetic approach to unravel the mechanisms of TIP protein targeting to the vacuole in Arabidopsis seedlings. We show that members of the TIP family are targeted to the vacuole via at least two distinct pathways, and we characterize the bioactivity of a novel inhibitor that can differentiate between them. We demonstrate that, unlike for TIP1;1, trafficking of markers for TIP3;1 and TIP2;1 is insensitive to Brefeldin A in Arabidopsis hypocotyls. Using a chemical inhibitor that may target this BFA-insensitive pathway for membrane proteins, we show that inhibition of this pathway results in impaired root hair growth and enhanced vacuolar targeting of the auxin efflux carrier PIN2 in the dark. Our results indicate that the vacuolar targeting of PIN2 and the BFA-insensitive pathway for tonoplast proteins may be mediated in part by common mechanisms.
Collapse
Affiliation(s)
- Efrain E. Rivera-Serrano
- Department of Plant Biology, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Maria F. Rodriguez-Welsh
- Department of Plant Biology, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Glenn R. Hicks
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, California, United States of America
- Center for Plant Cell Biology, University of California Riverside, Riverside, California, United States of America
| | - Marcela Rojas-Pierce
- Department of Plant Biology, North Carolina State University, Raleigh, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
185
|
Ham BK, Li G, Kang BH, Zeng F, Lucas WJ. Overexpression of Arabidopsis plasmodesmata germin-like proteins disrupts root growth and development. THE PLANT CELL 2012; 24:3630-48. [PMID: 22960910 PMCID: PMC3480292 DOI: 10.1105/tpc.112.101063] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 08/13/2012] [Accepted: 08/18/2012] [Indexed: 05/18/2023]
Abstract
In plants, a population of non-cell-autonomous proteins (NCAPs), including numerous transcription factors, move cell to cell through plasmodesmata (PD). In many cases, the intercellular trafficking of these NCAPs is regulated by their interaction with specific PD components. To gain further insight into the functions of this NCAP pathway, coimmunoprecipitation experiments were performed on a tobacco (Nicotiana tabacum) plasmodesmal-enriched cell wall protein preparation using as bait the NCAP, pumpkin (Cucurbita maxima) PHLOEM PROTEIN16 (Cm-PP16). A Cm-PP16 interaction partner, Nt-PLASMODESMAL GERMIN-LIKE PROTEIN1 (Nt-PDGLP1) was identified and shown to be a PD-located component. Arabidopsis thaliana putative orthologs, PDGLP1 and PDGLP2, were identified; expression studies indicated that, postgermination, these proteins were preferentially expressed in the root system. The PDGLP1 signal peptide was shown to function in localization to the PD by a novel mechanism involving the endoplasmic reticulum-Golgi secretory pathway. Overexpression of various tagged versions altered root meristem function, leading to reduced primary root but enhanced lateral root growth. This effect on root growth was corrected with an inability of these chimeric proteins to form stable PD-localized complexes. PDGLP1 and PDGLP2 appear to be involved in regulating primary root growth by controlling phloem-mediated allocation of resources between the primary and lateral root meristems.
Collapse
Affiliation(s)
- Byung-Kook Ham
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, California 95616
| | - Gang Li
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, California 95616
| | - Byung-Ho Kang
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611
| | - Fanchang Zeng
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, California 95616
| | - William J. Lucas
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, California 95616
| |
Collapse
|
186
|
Grangeon R, Agbeci M, Chen J, Grondin G, Zheng H, Laliberté JF. Impact on the endoplasmic reticulum and Golgi apparatus of turnip mosaic virus infection. J Virol 2012; 86:9255-65. [PMID: 22718813 PMCID: PMC3416146 DOI: 10.1128/jvi.01146-12] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 06/08/2012] [Indexed: 01/10/2023] Open
Abstract
The impact of turnip mosaic virus (TuMV) infection on the endomembranes of the host early secretory pathway was investigated using an infectious clone that has been engineered for tagging viral membrane structures with a fluorescent protein fused to the viral protein 6K(2). TuMV infection led to the amalgamation of the endoplasmic reticulum (ER), Golgi apparatus, COPII coatamers, and chloroplasts into a perinuclear globular structure that also contained viral proteins. One consequence of TuMV infection was that protein secretion was blocked at the ER-Golgi interface. Fluorescence recovery after photobleaching (FRAP) experiments indicated that the perinuclear structure cannot be restocked in viral components but was dynamically connected to the bulk of the Golgi apparatus and the ER. Experiments with 6K(2) fused to photoactivable green fluorescent protein (GFP) showed that production of motile peripheral 6K(2) vesicles was functionally linked to the perinuclear structure. Disruption of the early secretory pathway did not prevent the formation of the perinuclear globular structure, enhanced the clustering of peripheral 6K(2) vesicles with COPII coatamers, and led to inhibition of cell-to-cell virus movement. This suggests that a functional secretory pathway is not required for the formation of the TuMV perinuclear globular structure and peripheral vesicles but is needed for successful viral intercellular propagation.
Collapse
Affiliation(s)
- Romain Grangeon
- INRS-Institut Armand-Frappier, Institut National de la Recherche Scientifique, Laval, Québec, Canada
| | - Maxime Agbeci
- INRS-Institut Armand-Frappier, Institut National de la Recherche Scientifique, Laval, Québec, Canada
| | - Jun Chen
- Department of Biology, McGill University, Montréal, Québec, Canada
| | - Gilles Grondin
- Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Huanquan Zheng
- Department of Biology, McGill University, Montréal, Québec, Canada
| | - Jean-François Laliberté
- INRS-Institut Armand-Frappier, Institut National de la Recherche Scientifique, Laval, Québec, Canada
| |
Collapse
|
187
|
Nishie W, Jackow J, Hofmann SC, Franzke CW, Bruckner-Tuderman L. Coiled coils ensure the physiological ectodomain shedding of collagen XVII. J Biol Chem 2012; 287:29940-8. [PMID: 22761443 PMCID: PMC3436177 DOI: 10.1074/jbc.m112.345454] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 06/12/2012] [Indexed: 11/06/2022] Open
Abstract
α-Helical coiled coils, frequent protein oligomerization motifs, are commonly observed in vital proteins. Here, using collagen XVII as an example, we provide evidence for a novel function of coiled coils in the regulation of ectodomain shedding. Transmembrane collagen XVII, an epithelial cell surface receptor, mediates dermal-epidermal adhesion in the skin, and its dysfunction is linked to human skin blistering diseases. The ectodomain of this collagen is constitutively shed from the cell surface by proteinases of a disintegrin and metalloprotease family; however, the mechanisms regulating shedding remain elusive. Here, we used site-specific mutagenesis to target the coiled-coil heptad repeats within the juxtamembranous, extracellular noncollagenous 16th A (NC16A) domain of collagen XVII. This resulted in a substantial increase of ectodomain shedding, which was not mediated by disintegrin and metalloproteases. Instead, conformational changes induced by the mutation(s) unmasked a furin recognition sequence that was used for cleavage. This study shows that apart from their functions in protein oligomerization, coiled coils can also act as regulators of ectodomain shedding depending on the biological context.
Collapse
Affiliation(s)
- Wataru Nishie
- From the Department of Dermatology, Freiburg University Medical Center, University of Freiburg, 79104 Freiburg, Germany
- the Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo 003-0835, Japan
| | - Joanna Jackow
- From the Department of Dermatology, Freiburg University Medical Center, University of Freiburg, 79104 Freiburg, Germany
| | - Silke C. Hofmann
- From the Department of Dermatology, Freiburg University Medical Center, University of Freiburg, 79104 Freiburg, Germany
- the Department of Dermatology and Allergy, University of Witten/Herdecke, Helios-Klinikum, 47805 Wuppertal, Germany
| | - Claus-Werner Franzke
- From the Department of Dermatology, Freiburg University Medical Center, University of Freiburg, 79104 Freiburg, Germany
| | - Leena Bruckner-Tuderman
- From the Department of Dermatology, Freiburg University Medical Center, University of Freiburg, 79104 Freiburg, Germany
- the Freiburg Institute for Advanced Studies, School of Life Sciences, LifeNet, University of Freiburg, 79104 Freiburg, Germany, and
| |
Collapse
|
188
|
Abstract
The multifunctional protein ß-catenin governs as transcription factor the expression of a wide variety of genes relevant for cell proliferation and cell survival. In addition, ß-catenin is localized at the cell membrane and may influence the function of channels. The present study explored the possibility that ß-catenin participates in the regulation of the HERG K+ channel. To this end, HERG was expressed in Xenopus oocytes with or without ß-catenin and the voltage-gated current determined utilizing the dual electrode voltage clamp. As a result, expression of ß-catenin markedly upregulated HERG channel activity, an effect not sensitive to inhibition of transcription with actinomycin D (10 µM). According to chemiluminescence, ß-catenin may increase HERG channel abundance within the oocyte cell membrane. Following inhibition of channel insertion into the cell membrane by brefeldin A (5 µM) the decay of current was similar in oocytes expressing HERG together with ß-catenin to oocytes expressing HERG alone. The experiments uncover a novel function of APC/ß-catenin, i.e. the regulation of HERG channels.
Collapse
|
189
|
Arpat AB, Magliano P, Wege S, Rouached H, Stefanovic A, Poirier Y. Functional expression of PHO1 to the Golgi and trans-Golgi network and its role in export of inorganic phosphate. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 71:479-91. [PMID: 22449068 DOI: 10.1111/j.1365-313x.2012.05004.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Arabidopsis thaliana PHO1 is primarily expressed in the root vascular cylinder and is involved in the transfer of inorganic phosphate (Pi) from roots to shoots. To analyze the role of PHO1 in transport of Pi, we have generated transgenic plants expressing PHO1 in ectopic A. thaliana tissues using an estradiol-inducible promoter. Leaves treated with estradiol showed strong PHO1 expression, leading to detectable accumulation of PHO1 protein. Estradiol-mediated induction of PHO1 in leaves from soil-grown plants, in leaves and roots of plants grown in liquid culture, or in leaf mesophyll protoplasts, was all accompanied by the specific release of Pi to the extracellular medium as early as 2-3 h after addition of estradiol. Net Pi export triggered by PHO1 induction was enhanced by high extracellular Pi and weakly inhibited by the proton-ionophore carbonyl cyanide m-chlorophenylhydrazone. Expression of a PHO1-GFP construct complementing the pho1 mutant revealed GFP expression in punctate structures in the pericycle cells but no fluorescence at the plasma membrane. When expressed in onion epidermal cells or in tobacco mesophyll cells, PHO1-GFP was associated with similar punctate structures that co-localized with the Golgi/trans-Golgi network and uncharacterized vesicles. However, PHO1-GFP could be partially relocated to the plasma membrane in leaves infiltrated with a high-phosphate solution. Together, these results show that PHO1 can trigger Pi export in ectopic plant cells, strongly indicating that PHO1 is itself a Pi exporter. Interestingly, PHO1-mediated Pi export was associated with its localization to the Golgi and trans-Golgi networks, revealing a role for these organelles in Pi transport.
Collapse
Affiliation(s)
- A Bulak Arpat
- Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland
| | | | | | | | | | | |
Collapse
|
190
|
Mant A, Chinnery F, Elliott T, Williams AP. The pathway of cross-presentation is influenced by the particle size of phagocytosed antigen. Immunology 2012; 136:163-75. [PMID: 22260486 DOI: 10.1111/j.1365-2567.2012.03558.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cross-presentation is the presentation by MHC class I of antigenic peptides from exogenous proteins that have been internalized and processed by professional antigen-presenting cells, e.g. dendritic cells. We have investigated the influence of particle size and antigen load on cross-presentation following antigen delivery on microspheres (MS). Cross-presentation from small particles (0·8-μm) is sensitive to proteasome inhibition and the blockade of endoplasmic reticulum-resident MHC class I complex export, whereas cross-presentation from larger particles (aggregated clumps of 0·8-μm MS) is resistant to these antagonists. This observation may have been overlooked previously, because of the heterogeneity of particle size and MS uptake in unsorted dendritic cell populations. Larger particles carry more antigen, but we show that antigen load does not influence the cross-presentation pathway used. Whereas early endosome autoantigen 1 (EEA1) could be observed in all phagosomes, we observed endoplasmic reticulum SNARE of molecular weight 24 000 (ERS24) and cathepsin S in association with 3·0-μm and aggregated 0·8-μm MS, but not individual 0·8-μm MS. A potential mechanism underlying our observations may be the activation of β-catenin by disruption of E-cadherin-mediated adhesion. Activated β-catenin was detected in the cytoplasm of cells after phagocytosis of MS (highest levels for the largest particles). We propose that particle size can direct the use of different pathways for the cross-presentation of an identical antigen. Furthermore, these pathways have differing yields of MHC class I-peptide complexes, which is an important variable in designing vaccination strategies for maximal antigen expression and CD8(+) T-cell priming.
Collapse
Affiliation(s)
- Alexandra Mant
- Cancer Sciences Division, University of Southampton, Southampton, UK
| | | | | | | |
Collapse
|
191
|
Zwiewka M, Friml J. Fluorescence imaging-based forward genetic screens to identify trafficking regulators in plants. FRONTIERS IN PLANT SCIENCE 2012; 3:97. [PMID: 22654887 PMCID: PMC3359526 DOI: 10.3389/fpls.2012.00097] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2012] [Accepted: 04/25/2012] [Indexed: 05/25/2023]
Abstract
Coordinated, subcellular trafficking of proteins is one of the fundamental properties of the multicellular eukaryotic organisms. Trafficking involves a large diversity of compartments, pathways, cargo molecules, and vesicle-sorting events. It is also crucial in regulating the localization and, thus, the activity of various proteins, but the process is still poorly genetically defined in plants. In the past, forward genetics screens had been used to determine the function of genes by searching for a specific morphological phenotype in the organism population in which mutations had been induced chemically or by irradiation. Unfortunately, these straightforward genetic screens turned out to be limited in identifying new regulators of intracellular protein transport, because mutations affecting essential trafficking pathways often lead to lethality. In addition, the use of these approaches has been restricted by functional redundancy among trafficking regulators. Screens for mutants that rely on the observation of changes in the cellular localization or dynamics of fluorescent subcellular markers enable, at least partially, to circumvent these issues. Hence, such image-based screens provide the possibility to identify either alleles with weak effects or components of the subcellular trafficking machinery that have no strong impact on the plant growth.
Collapse
Affiliation(s)
- Marta Zwiewka
- Department of Plant Systems Biology, VIB Life Sciences Research InstituteGent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent UniversityGent, Belgium
| | - Jiří Friml
- Department of Plant Systems Biology, VIB Life Sciences Research InstituteGent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent UniversityGent, Belgium
| |
Collapse
|
192
|
De Marcos Lousa C, Gershlick DC, Denecke J. Mechanisms and concepts paving the way towards a complete transport cycle of plant vacuolar sorting receptors. THE PLANT CELL 2012; 24:1714-32. [PMID: 22570446 PMCID: PMC3442565 DOI: 10.1105/tpc.112.095679] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Delivery of proteins to the lytic vacuole in plants is a complex cascade of selective interactions that specifically excludes residents of the endoplasmic reticulum and secreted proteins. Vacuolar transport must be highly efficient to avoid mistargeting of hydrolytic enzymes to locations where they could be harmful. While plant vacuolar sorting signals have been well described for two decades, it is only during the last 5 years that a critical mass of data was gathered that begins to reveal how vacuolar sorting receptors (VSRs) may complete a full transport cycle. Yet, the field is far from reaching a consensus regarding the organelles that could be involved in vacuolar sorting, their potential biogenesis, and the ultimate recycling of membranes and protein machinery that maintain this pathway. This review will highlight the important landmarks in our understanding of VSR function and compare recent transport models that have been proposed so that an emerging picture of plant vacuolar sorting mechanisms can be drawn.
Collapse
|
193
|
Regente M, Pinedo M, Elizalde M, de la Canal L. Apoplastic exosome-like vesicles: a new way of protein secretion in plants? PLANT SIGNALING & BEHAVIOR 2012; 7:544-6. [PMID: 22516827 PMCID: PMC3419015 DOI: 10.4161/psb.19675] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The presence of apoplastic proteins without predicted signal peptide in the gene sequence suggests the existence of protein secretion independent of the ER/Golgi classical route. In animals, one of the pathways proposed for alternative protein secretion involves the release of exosomes to the extracellular space. Although this pathway has not been dissected in plants some indirect evidence is emerging. We have reported that apoplastic fractions of sunflower seeds contain exosome-like vesicles. Besides, these vesicles are enriched in the lectin Helja, which is immunolocalized in the extracellular space even if it the protein has no predicted signal peptide. Here we show that Helja is not glycosylated and its secretion is insensitive to brefeldin A, two of the major characteristics to discard ER/Golgi-mediated protein transport. Moreover, the levels of Helja in sunflower extracellular vesicles are not affected by brefeldin A treatment. Our results suggest that Helja could be exported through an exosome-mediated pathway and point out that this mechanism may be responsible for the secretion of at least part of the leaderless proteins detected in the extracellular compartment of plants.
Collapse
|
194
|
Abstract
The superiority of spaced vs. massed training is a fundamental feature of learning. Here, we describe unanticipated timing rules for the production of long-term potentiation (LTP) in adult rat hippocampal slices that can account for one temporal segment of the spaced trials phenomenon. Successive bouts of naturalistic theta burst stimulation of field CA1 afferents markedly enhanced previously saturated LTP if spaced apart by 1 h or longer, but were without effect when shorter intervals were used. Analyses of F-actin-enriched spines to identify potentiated synapses indicated that the added LTP obtained with delayed theta trains involved recruitment of synapses that were "missed" by the first stimulation bout. Single spine glutamate-uncaging experiments confirmed that less than half of the spines in adult hippocampus are primed to undergo plasticity under baseline conditions, suggesting that intrinsic variability among individual synapses imposes a repetitive presentation requirement for maximizing the percentage of potentiated connections. We propose that a combination of local diffusion from initially modified spines coupled with much later membrane insertion events dictate that the repetitions be widely spaced. Thus, the synaptic mechanisms described here provide a neurobiological explanation for one component of a poorly understood, ubiquitous aspect of learning.
Collapse
|
195
|
Wan Y, Jasik J, Wang L, Hao H, Volkmann D, Menzel D, Mancuso S, Baluška F, Lin J. The signal transducer NPH3 integrates the phototropin1 photosensor with PIN2-based polar auxin transport in Arabidopsis root phototropism. THE PLANT CELL 2012; 24:551-65. [PMID: 22374399 PMCID: PMC3315232 DOI: 10.1105/tpc.111.094284] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 02/04/2012] [Accepted: 02/13/2012] [Indexed: 05/04/2023]
Abstract
Under blue light (BL) illumination, Arabidopsis thaliana roots grow away from the light source, showing a negative phototropic response. However, the mechanism of root phototropism is still unclear. Using a noninvasive microelectrode system, we showed that the BL sensor phototropin1 (phot1), the signal transducer NONPHOTOTROPIC HYPOCOTYL3 (NPH3), and the auxin efflux transporter PIN2 were essential for BL-induced auxin flux in the root apex transition zone. We also found that PIN2-green fluorescent protein (GFP) localized to vacuole-like compartments (VLCs) in dark-grown root epidermal and cortical cells, and phot1/NPH3 mediated a BL-initiated pathway that caused PIN2 redistribution to the plasma membrane. When dark-grown roots were exposed to brefeldin A (BFA), PIN2-GFP remained in VLCs in darkness, and BL caused PIN2-GFP disappearance from VLCs and induced PIN2-GFP-FM4-64 colocalization within enlarged compartments. In the nph3 mutant, both dark and BL BFA treatments caused the disappearance of PIN2-GFP from VLCs. However, in the phot1 mutant, PIN2-GFP remained within VLCs under both dark and BL BFA treatments, suggesting that phot1 and NPH3 play different roles in PIN2 localization. In conclusion, BL-induced root phototropism is based on the phot1/NPH3 signaling pathway, which stimulates the shootward auxin flux by modifying the subcellular targeting of PIN2 in the root apex transition zone.
Collapse
Affiliation(s)
- Yinglang Wan
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Jan Jasik
- Institute of Cellular and Molecular Botany, University of Bonn, D-53115 Bonn, Germany
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research, D-06466 Gatersleben, Germany
| | - Li Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Huaiqing Hao
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Dieter Volkmann
- Institute of Cellular and Molecular Botany, University of Bonn, D-53115 Bonn, Germany
| | - Diedrik Menzel
- Institute of Cellular and Molecular Botany, University of Bonn, D-53115 Bonn, Germany
| | - Stefano Mancuso
- Department of Plant, Soil, and Environmental Science, University of Florence, 50019 Sesto Fiorentino, Italy
| | - František Baluška
- Institute of Cellular and Molecular Botany, University of Bonn, D-53115 Bonn, Germany
- Institute of Botany, Slovak Academy of Sciences, SK-845 23 Bratislava, Slovak Republic
| | - Jinxing Lin
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| |
Collapse
|
196
|
Hanania R, Sun HS, Xu K, Pustylnik S, Jeganathan S, Harrison RE. Classically activated macrophages use stable microtubules for matrix metalloproteinase-9 (MMP-9) secretion. J Biol Chem 2012; 287:8468-83. [PMID: 22270361 DOI: 10.1074/jbc.m111.290676] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
As major effector cells of the innate immune response, macrophages must adeptly migrate from blood to infected tissues. Endothelial transmigration is accomplished by matrix metalloproteinase (MMP)-induced degradation of basement membrane and extracellular matrix components. The classical activation of macrophages with LPS and IFN-γ causes enhanced microtubule (MT) stabilization and secretion of MMPs. Macrophages up-regulate MMP-9 expression and secretion upon immunological challenge and require its activity for migration during the inflammatory response. However, the dynamics of MMP-9 production and intracellular distribution as well as the mechanisms responsible for its trafficking are unknown. Using immunofluorescent imaging, we localized intracellular MMP-9 to small Golgi-derived cytoplasmic vesicles that contained calreticulin and protein-disulfide isomerase in activated RAW 264.7 macrophages. We demonstrated vesicular organelles of MMP-9 aligned along stable subsets of MTs and showed that selective modulation of MT dynamics contributes to the enhanced trafficking of MMP-9 extracellularly. We found a Rab3D-dependent association of MMP-9 vesicles with the molecular motor kinesin, whose association with the MT network was greatly enhanced after macrophage activation. Finally, we implicated kinesin 5B and 3B isoforms in the effective trafficking of MMP-9 extracellularly.
Collapse
Affiliation(s)
- Raed Hanania
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | | | | | | | | | | |
Collapse
|
197
|
Solovyev AG, Schiemann J, Morozov SY. Microscopic analysis of severe structural rearrangements of the plant endoplasmic reticulum and Golgi caused by overexpression of Poa semilatent virus movement protein. ScientificWorldJournal 2012; 2012:416076. [PMID: 22272174 PMCID: PMC3259505 DOI: 10.1100/2012/416076] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 11/24/2011] [Indexed: 12/29/2022] Open
Abstract
Cell-to-cell transport of plant viruses is mediated by virus-encoded movement proteins and occurs through plasmodesmata interconnecting neighboring cells in plant tissues. Three movement proteins coded by the "triple gene block" (TGB) and named TGBp1, TGBp2 and TGBp3 have distinct functions in viral transport. TGBp1 binds viral genomic RNAs to form ribonucleoprotein complexes representing the transport form of viral genome, while TGBp2 and TGBp3 are necessary for intracellular delivery of such complexes to plasmodesmata. Recently, it was revealed that overexpression of Potato virus X TGBp3 triggers the unfolded protein response mitigating the endoplasmic reticulum (ER) stress leading to cell death if this protein reaches high levels in the ER. Here we report microscopic studies of the influence of the Poa semilatent hordeivirus TGBp3 overexpressed in Nicotiana benthamiana epidermal cells by particle bombardment on cell endomembranes and demonstrate that the protein C-terminal transmembrane segment contains a determinant responsible for vesiculation and coalescence of the endoplasmic reticulum and Golgi presumably accompanying the ER stress that can be induced upon high-level TGBp3 expression.
Collapse
Affiliation(s)
- Andrey G. Solovyev
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
- Institute of Agricultural Biotechnology, Russian Academy of Agricultural Sciences, Timiryazevskaya 42, 127550 Moscow, Russia
| | - Joachim Schiemann
- Julius Kühn Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Biosafety of Genetically Modified Plants, Erwin-Baur-Street 27, 06484 Quedlinburg, Germany
| | - Sergey Y. Morozov
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
- Department of Virology, Biological Faculty, Moscow State University, 119992 Moscow, Russia
| |
Collapse
|
198
|
Wolfenstetter S, Wirsching P, Dotzauer D, Schneider S, Sauer N. Routes to the tonoplast: the sorting of tonoplast transporters in Arabidopsis mesophyll protoplasts. THE PLANT CELL 2012; 24:215-32. [PMID: 22253225 PMCID: PMC3289566 DOI: 10.1105/tpc.111.090415] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 12/22/2011] [Accepted: 12/28/2011] [Indexed: 05/05/2023]
Abstract
Vacuoles perform a multitude of functions in plant cells, including the storage of amino acids and sugars. Tonoplast-localized transporters catalyze the import and release of these molecules. The mechanisms determining the targeting of these transporters to the tonoplast are largely unknown. Using the paralogous Arabidopsis thaliana inositol transporters INT1 (tonoplast) and INT4 (plasma membrane), we performed domain swapping and mutational analyses and identified a C-terminal di-leucine motif responsible for the sorting of higher plant INT1-type transporters to the tonoplast in Arabidopsis mesophyll protoplasts. We demonstrate that this motif can reroute other proteins, such as INT4, SUCROSE TRANSPORTER2 (SUC2), or SWEET1, to the tonoplast and that the position of the motif relative to the transmembrane helix is critical. Rerouted INT4 is functionally active in the tonoplast and complements the growth phenotype of an int1 mutant. In Arabidopsis plants defective in the β-subunit of the AP-3 adaptor complex, INT1 is correctly localized to the tonoplast, while sorting of the vacuolar sucrose transporter SUC4 is blocked in cis-Golgi stacks. Moreover, we demonstrate that both INT1 and SUC4 trafficking to the tonoplast is sensitive to brefeldin A. Our data show that plants possess at least two different Golgi-dependent targeting mechanisms for newly synthesized transporters to the tonoplast.
Collapse
Affiliation(s)
| | | | | | | | - Norbert Sauer
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Molecular Plant Physiology and ECROPS (Erlangen Center of Plant Science), D-91058 Erlangen, Germany
| |
Collapse
|
199
|
Contento AL, Bassham DC. Structure and function of endosomes in plant cells. J Cell Sci 2012; 125:3511-8. [DOI: 10.1242/jcs.093559] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Endosomes are a heterogeneous collection of organelles that function in the sorting and delivery of internalized material from the cell surface and the transport of materials from the Golgi to the lysosome or vacuole. Plant endosomes have some unique features, with an organization distinct from that of yeast or animal cells. Two clearly defined endosomal compartments have been studied in plant cells, the trans-Golgi network (equivalent to the early endosome) and the multivesicular body (equivalent to the late endosome), with additional endosome types (recycling endosome, late prevacuolar compartment) also a possibility. A model has been proposed in which the trans-Golgi network matures into a multivesicular body, which then fuses with the vacuole to release its cargo. In addition to basic trafficking functions, endosomes in plant cells are known to function in maintenance of cell polarity by polar localization of hormone transporters and in signaling pathways after internalization of ligand-bound receptors. These signaling functions are exemplified by the BRI1 brassinosteroid hormone receptor and by receptors for pathogen elicitors that activate defense responses. After endocytosis of these receptors from the plasma membrane, endosomes act as a signaling platform, thus playing an essential role in plant growth, development and defense responses. Here we describe the key features of plant endosomes and their differences from those of other organisms and discuss the role of these organelles in cell polarity and signaling pathways.
Collapse
|
200
|
Patarroyo C, Laliberté JF, Zheng H. Hijack it, change it: how do plant viruses utilize the host secretory pathway for efficient viral replication and spread? FRONTIERS IN PLANT SCIENCE 2012; 3:308. [PMID: 23335933 PMCID: PMC3542527 DOI: 10.3389/fpls.2012.00308] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 12/21/2012] [Indexed: 05/18/2023]
Abstract
The secretory pathway of eukaryotic cells has an elaborated set of endomembrane compartments involved in the synthesis, modification, and sorting of proteins and lipids. The secretory pathway in plant cells shares many features with that in other eukaryotic cells but also has distinct characteristics important for fundamental cell and developmental processes and for proper immune responses. Recently, there has been evidence that the remodeling of this pathway, and often the formation of viral-induced organelles, play an important role in viral replication and spread. The modification of the host secretory pathway seems to be a common feature among most single-stranded positive ss(+)RNA and even some DNA viruses. In this review, we will present the recent advances in the understanding of the organization and dynamics of the plant secretory pathway and the molecular regulation of membrane trafficking in the pathway. We will also discuss how different plant viruses may interact with the host secretory pathway for their efficient replication and spread, with a focus on tobacco mosaic virus and turnip mosaic virus.
Collapse
Affiliation(s)
| | - Jean-François Laliberté
- INRS-Institut Armand-Frappier, Institut National de la Recherche ScientifiqueLaval, QC, Canada
| | - Huanquan Zheng
- Department of Biology, McGill UniversityMontreal, QC, Canada
- *Correspondence: Huanquan Zheng, Department of Biology, McGill University, 1205 Doctor Penfield Avenue, Montreal, QC, Canada H3A 1B1. e-mail:
| |
Collapse
|