151
|
Dooner HK, He L. Maize genome structure variation: interplay between retrotransposon polymorphisms and genic recombination. THE PLANT CELL 2008; 20:249-58. [PMID: 18296625 PMCID: PMC2276454 DOI: 10.1105/tpc.107.057596] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Revised: 02/05/2008] [Accepted: 02/12/2008] [Indexed: 05/18/2023]
Abstract
Although maize (Zea mays) retrotransposons are recombinationally inert, the highly polymorphic structure of maize haplotypes raises questions regarding the local effect of intergenic retrotransposons on recombination. To examine this effect, we compared recombination in the same genetic interval with and without a large retrotransposon cluster. We used three different bz1 locus haplotypes, McC, B73, and W22, in the same genetic background. We analyzed recombination between the bz1 and stc1 markers in heterozygotes that differ by the presence and absence of a 26-kb intergenic retrotransposon cluster. To facilitate the genetic screen, we used Ds and Ac markers that allowed us to identify recombinants by their seed pigmentation. We sequenced 239 recombination junctions and assigned them to a single nucleotide polymorphism-delimited interval in the region. The genetic distance between the markers was twofold smaller in the presence of the retrotransposon cluster. The reduction was seen in bz1 and stc1, but no recombination occurred in the highly polymorphic intergenic region of either heterozygote. Recombination within genes shuffled flanking retrotransposon clusters, creating new chimeric haplotypes and either contracting or expanding the physical distance between markers. Our findings imply that haplotype structure will profoundly affect the correlation between genetic and physical distance for the same interval in maize.
Collapse
Affiliation(s)
- Hugo K Dooner
- Waksman Institute, Rutgers University, Piscataway, New Jersey 08854, USA.
| | | |
Collapse
|
152
|
|
153
|
Kronmiller BA, Wise RP. TEnest: automated chronological annotation and visualization of nested plant transposable elements. PLANT PHYSIOLOGY 2008; 146:45-59. [PMID: 18032588 PMCID: PMC2230558 DOI: 10.1104/pp.107.110353] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2007] [Accepted: 11/15/2007] [Indexed: 05/22/2023]
Abstract
Organisms with a high density of transposable elements (TEs) exhibit nesting, with subsequent repeats found inside previously inserted elements. Nesting splits the sequence structure of TEs and makes annotation of repetitive areas challenging. We present TEnest, a repeat identification and display tool made specifically for highly repetitive genomes. TEnest identifies repetitive sequences and reconstructs separated sections to provide full-length repeats and, for long-terminal repeat (LTR) retrotransposons, calculates age since insertion based on LTR divergence. TEnest provides a chronological insertion display to give an accurate visual representation of TE integration history showing timeline, location, and families of each TE identified, thus creating a framework from which evolutionary comparisons can be made among various regions of the genome. A database of repeats has been developed for maize (Zea mays), rice (Oryza sativa), wheat (Triticum aestivum), and barley (Hordeum vulgare) to illustrate the potential of TEnest software. All currently finished maize bacterial artificial chromosomes totaling 29.3 Mb were analyzed with TEnest to provide a characterization of the repeat insertions. Sixty-seven percent of the maize genome was found to be made up of TEs; of these, 95% are LTR retrotransposons. The rate of solo LTR formation is shown to be dissimilar across retrotransposon families. Phylogenetic analysis of TE families reveals specific events of extreme TE proliferation, which may explain the high quantities of certain TE families found throughout the maize genome. The TEnest software package is available for use on PlantGDB under the tools section (http://www.plantgdb.org/prj/TE_nest/TE_nest.html); the source code is available from (http://wiselab.org).
Collapse
Affiliation(s)
- Brent A Kronmiller
- Bioinformatics and Computational Biology, Department of Plant Pathology and Center for Plant Responses to Environmental Stresses, Iowa State University, Ames, IA 50011-1020, USA
| | | |
Collapse
|
154
|
Velasco R, Zharkikh A, Troggio M, Cartwright DA, Cestaro A, Pruss D, Pindo M, Fitzgerald LM, Vezzulli S, Reid J, Malacarne G, Iliev D, Coppola G, Wardell B, Micheletti D, Macalma T, Facci M, Mitchell JT, Perazzolli M, Eldredge G, Gatto P, Oyzerski R, Moretto M, Gutin N, Stefanini M, Chen Y, Segala C, Davenport C, Demattè L, Mraz A, Battilana J, Stormo K, Costa F, Tao Q, Si-Ammour A, Harkins T, Lackey A, Perbost C, Taillon B, Stella A, Solovyev V, Fawcett JA, Sterck L, Vandepoele K, Grando SM, Toppo S, Moser C, Lanchbury J, Bogden R, Skolnick M, Sgaramella V, Bhatnagar SK, Fontana P, Gutin A, Van de Peer Y, Salamini F, Viola R. A high quality draft consensus sequence of the genome of a heterozygous grapevine variety. PLoS One 2007; 2:e1326. [PMID: 18094749 PMCID: PMC2147077 DOI: 10.1371/journal.pone.0001326] [Citation(s) in RCA: 591] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2007] [Accepted: 11/21/2007] [Indexed: 01/11/2023] Open
Abstract
Background Worldwide, grapes and their derived products have a large market. The cultivated grape species Vitis vinifera has potential to become a model for fruit trees genetics. Like many plant species, it is highly heterozygous, which is an additional challenge to modern whole genome shotgun sequencing. In this paper a high quality draft genome sequence of a cultivated clone of V. vinifera Pinot Noir is presented. Principal Findings We estimate the genome size of V. vinifera to be 504.6 Mb. Genomic sequences corresponding to 477.1 Mb were assembled in 2,093 metacontigs and 435.1 Mb were anchored to the 19 linkage groups (LGs). The number of predicted genes is 29,585, of which 96.1% were assigned to LGs. This assembly of the grape genome provides candidate genes implicated in traits relevant to grapevine cultivation, such as those influencing wine quality, via secondary metabolites, and those connected with the extreme susceptibility of grape to pathogens. Single nucleotide polymorphism (SNP) distribution was consistent with a diffuse haplotype structure across the genome. Of around 2,000,000 SNPs, 1,751,176 were mapped to chromosomes and one or more of them were identified in 86.7% of anchored genes. The relative age of grape duplicated genes was estimated and this made possible to reveal a relatively recent Vitis-specific large scale duplication event concerning at least 10 chromosomes (duplication not reported before). Conclusions Sanger shotgun sequencing and highly efficient sequencing by synthesis (SBS), together with dedicated assembly programs, resolved a complex heterozygous genome. A consensus sequence of the genome and a set of mapped marker loci were generated. Homologous chromosomes of Pinot Noir differ by 11.2% of their DNA (hemizygous DNA plus chromosomal gaps). SNP markers are offered as a tool with the potential of introducing a new era in the molecular breeding of grape.
Collapse
|
155
|
Kapitonov VV, Jurka J. Helitrons on a roll: eukaryotic rolling-circle transposons. Trends Genet 2007; 23:521-9. [PMID: 17850916 DOI: 10.1016/j.tig.2007.08.004] [Citation(s) in RCA: 171] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2007] [Revised: 07/17/2007] [Accepted: 08/30/2007] [Indexed: 10/22/2022]
Abstract
Rolling-circle eukaryotic transposons, known as Helitron transposons, were first discovered in plants (Arabidopsis thaliana and Oryza sativa) and in the nematode Caenorhabditis elegans. To date, Helitrons have been identified in a diverse range of species, from protists to mammals. They represent a major class of eukaryotic transposons and are fundamentally different from classical transposons in terms of their structure and mechanism of transposition. Helitrons seem to have a major role in the evolution of host genomes. They frequently capture diverse host genes, some of which can evolve into novel host genes or become essential for helitron transposition.
Collapse
Affiliation(s)
- Vladimir V Kapitonov
- Genetic Information Research Institute, 1925 Landings Drive, Mountain View, CA 94043, USA.
| | | |
Collapse
|
156
|
Hochholdinger F, Hoecker N. Towards the molecular basis of heterosis. TRENDS IN PLANT SCIENCE 2007; 12:427-32. [PMID: 17720610 DOI: 10.1016/j.tplants.2007.08.005] [Citation(s) in RCA: 182] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2007] [Revised: 05/31/2007] [Accepted: 08/08/2007] [Indexed: 05/16/2023]
Abstract
Heterosis describes the superior performance of heterozygous hybrid plants over their homozygous parental inbred lines. Despite the rediscovery of this phenomenon a century ago and its paramount agronomic importance, the genetic and molecular basis of heterosis remains enigmatic. Recently, various pioneer studies described differences in genome organization and gene expression of hybrids and their parental inbred lines. At the genomic level, a significant loss of colinearity at many loci between different inbred lines of maize was observed. At the level of gene expression, complex transcriptional networks specific for different developmental stages and tissues were monitored in maize (Zea mays), rice (Oryza sativa) and Arabidopsis (Arabidopsis thaliana). Integration of this complex expression data might contribute to improve our understanding of the molecular basis of heterosis.
Collapse
Affiliation(s)
- Frank Hochholdinger
- University of Tuebingen, Center for Plant Molecular Biology, Auf der Morgenstelle 28, 72076 Tuebingen, Germany.
| | | |
Collapse
|
157
|
Gao S, Gu YQ, Wu J, Coleman-Derr D, Huo N, Crossman C, Jia J, Zuo Q, Ren Z, Anderson OD, Kong X. Rapid evolution and complex structural organization in genomic regions harboring multiple prolamin genes in the polyploid wheat genome. PLANT MOLECULAR BIOLOGY 2007; 65:189-203. [PMID: 17629796 DOI: 10.1007/s11103-007-9208-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Accepted: 07/02/2007] [Indexed: 05/04/2023]
Abstract
Genes encoding wheat prolamins belong to complicated multi-gene families in the wheat genome. To understand the structural complexity of storage protein loci, we sequenced and analyzed orthologous regions containing both gliadin and LMW-glutenin genes from the A and B genomes of a tetraploid wheat species, Triticum turgidum ssp. durum. Despite their physical proximity to one another, the gliadin genes and LMW-glutenin genes are organized quite differently. The gliadin genes are found to be more clustered than the LMW-glutenin genes which are separated from each other by much larger distances. The separation of the LMW-glutenin genes is the result of both the insertion of large blocks of repetitive DNA owing to the rapid amplification of retrotransposons and the presence of genetic loci interspersed between them. Sequence comparisons of the orthologous regions reveal that gene movement could be one of the major factors contributing to the violation of microcolinearity between the homoeologous A and B genomes in wheat. The rapid sequence rearrangements and differential insertion of repetitive DNA has caused the gene islands to be not conserved in compared regions. In addition, we demonstrated that the i-type LMW-glutenin originated from a deletion of 33-bps in the 5' coding region of the m-type gene. Our results show that multiple rounds of segmental duplication of prolamin genes have driven the amplification of the omega-gliadin genes in the region; such segmental duplication could greatly increase the repetitive DNA content in the genome depending on the amount of repetitive DNA present in the original duplicate region.
Collapse
Affiliation(s)
- Shuangcheng Gao
- Key Laboratory of Crop Germplasm & Biotechnology, MOA, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Zhongguancun, Beijing, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
158
|
Springer NM, Stupar RM. Allele-specific expression patterns reveal biases and embryo-specific parent-of-origin effects in hybrid maize. THE PLANT CELL 2007; 19:2391-402. [PMID: 17693532 PMCID: PMC2002603 DOI: 10.1105/tpc.107.052258] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
We employed allele-specific expression (ASE) analyses to document biased allelic expression in maize (Zea mays). A set of 316 quantitative ASE assays were used to profile the relative allelic expression in seedling tissue derived from five maize hybrids. The different hybrids included in this study exhibit a range of heterosis levels; however, we did not observe differences in the frequencies of allelic bias. Allelic biases in gene expression were consistently observed for approximately 50% of the genes assayed in hybrid seedlings. The relative proportion of genes that exhibit cis- or trans-acting regulatory variation was very similar among the different genotypes. The cis-acting regulatory variation was more prevalent and resulted in greater expression differences than trans-acting regulatory variation for these genes. The ASE assays were further used to compare the relative expression of the B73 and Mo17 alleles in three tissue types (seedling, immature ear, and embryo) derived from reciprocal hybrids. These comparisons provided evidence for tissue-specific cis-acting variation and for a slight maternal expression bias in approximately 20% of genes in embryo tissue. Collectively, these data provide evidence for prevalent cis-acting regulatory variation that contributes to biased allelic expression between genotypes and between tissues.
Collapse
Affiliation(s)
- Nathan M Springer
- Department of Plant Biology, Microbial and Plant Genomics Institute, University of Minesota, St. Paul, Minnesota 55108, USA.
| | | |
Collapse
|
159
|
Shi J, Wang H, Schellin K, Li B, Faller M, Stoop JM, Meeley RB, Ertl DS, Ranch JP, Glassman K. Embryo-specific silencing of a transporter reduces phytic acid content of maize and soybean seeds. Nat Biotechnol 2007; 25:930-7. [PMID: 17676037 DOI: 10.1038/nbt1322] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Accepted: 07/09/2007] [Indexed: 12/29/2022]
Abstract
Phytic acid in cereal grains and oilseeds is poorly digested by monogastric animals and negatively affects animal nutrition and the environment. However, breeding programs involving mutants with less phytic acid and more inorganic phosphate (P(i)) have been frustrated by undesirable agronomic characteristics associated with the phytic acid-reducing mutations. We show that maize lpa1 mutants are defective in a multidrug resistance-associated protein (MRP) ATP-binding cassette (ABC) transporter that is expressed most highly in embryos, but also in immature endosperm, germinating seed and vegetative tissues. Silencing expression of this transporter in an embryo-specific manner produced low-phytic-acid, high-Pi transgenic maize seeds that germinate normally and do not show any significant reduction in seed dry weight. This dominant transgenic approach obviates the need for incorporating recessive lpa1 mutations to create maize hybrids with reduced phytic acid. Suppressing the homologous soybean MRP gene also generated low-phytic-acid seed, suggesting that the strategy might be feasible for many crops.
Collapse
Affiliation(s)
- Jinrui Shi
- Crop Genetics Research and Development, Pioneer Hi-Bred International, A DuPont Company, Johnston, Iowa 50131, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Makarevitch I, Stupar RM, Iniguez AL, Haun WJ, Barbazuk WB, Kaeppler SM, Springer NM. Natural variation for alleles under epigenetic control by the maize chromomethylase zmet2. Genetics 2007; 177:749-60. [PMID: 17660570 PMCID: PMC2034640 DOI: 10.1534/genetics.107.072702] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The contribution of epigenetic alterations to natural variation for gene transcription levels remains unclear. In this study, we investigated the functional targets of the maize chromomethylase ZMET2 in multiple inbred lines to determine whether epigenetic changes conditioned by this chromomethylase are conserved or variable within the species. Gene expression microarrays were hybridized with RNA samples from the inbred lines B73 and Mo17 and from near-isogenic derivatives containing the loss-of-function allele zmet2-m1. A set of 126 genes that displayed statistically significant differential expression in zmet2 mutants relative to wild-type plants in at least one of the two genetic backgrounds was identified. Analysis of the transcript levels in both wild-type and mutant individuals revealed that only 10% of these genes were affected in zmet2 mutants in both B73 and Mo17 genetic backgrounds. Over 80% of the genes with expression patterns affected by zmet2 mutations display variation for gene expression between wild-type B73 and Mo17 plants. Further analysis was performed for 7 genes that were transcriptionally silent in wild-type B73, but expressed in B73 zmet2-m1, wild-type Mo17, and Mo17 zmet2-m1 lines. Mapping experiments confirmed that the expression differences in wild-type B73 relative to Mo17 inbreds for these genes were caused by cis-acting regulatory variation. Methylation-sensitive PCR and bisulfite sequencing demonstrated that for 5 of these genes the CpNpG methylation in the wild-type B73 genetic background was substantially decreased in the B73 zmet2-m1 mutant and in wild-type Mo17. A survey of eight maize inbreds reveals that each of these 5 genes exhibit transcriptionally silent and methylated states in some inbred lines and unmethylated, expressed states in other inbreds, providing evidence for natural variation in epigenetic states for some maize genes.
Collapse
Affiliation(s)
- Irina Makarevitch
- Department of Plant Biology, Microbial and Plant Genomics Institute, University of Minnesota, Saint Paul, Minnesota 55108, USA
| | | | | | | | | | | | | |
Collapse
|
161
|
Liu R, Vitte C, Ma J, Mahama AA, Dhliwayo T, Lee M, Bennetzen JL. A GeneTrek analysis of the maize genome. Proc Natl Acad Sci U S A 2007; 104:11844-9. [PMID: 17615239 PMCID: PMC1913904 DOI: 10.1073/pnas.0704258104] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Indexed: 11/18/2022] Open
Abstract
Analysis of the sequences of 74 randomly selected BACs demonstrated that the maize nuclear genome contains approximately 37,000 candidate genes with homologues in other plant species. An additional approximately 5,500 predicted genes are severely truncated and probably pseudogenes. The distribution of genes is uneven, with approximately 30% of BACs containing no genes. BAC gene density varies from 0 to 7.9 per 100 kb, whereas most gene islands contain only one gene. The average number of genes per gene island is 1.7. Only 72% of these genes show collinearity with the rice genome. Particular LTR retrotransposon families (e.g., Gyma) are enriched on gene-free BACs, most of which do not come from pericentromeres or other large heterochromatic regions. Gene-containing BACs are relatively enriched in different families of LTR retrotransposons (e.g., Ji). Two major bursts of LTR retrotransposon activity in the last 2 million years are responsible for the large size of the maize genome, but only the more recent of these is well represented in gene-containing BACs, suggesting that LTR retrotransposons are more efficiently removed in these domains. The results demonstrate that sample sequencing and careful annotation of a few randomly selected BACs can provide a robust description of a complex plant genome.
Collapse
Affiliation(s)
- Renyi Liu
- *Department of Genetics, University of Georgia, Athens, GA 30602; and
| | - Clémentine Vitte
- *Department of Genetics, University of Georgia, Athens, GA 30602; and
| | - Jianxin Ma
- *Department of Genetics, University of Georgia, Athens, GA 30602; and
| | | | - Thanda Dhliwayo
- Department of Agronomy, Iowa State University, Ames, IA 50011
| | - Michael Lee
- Department of Agronomy, Iowa State University, Ames, IA 50011
| | | |
Collapse
|
162
|
Zhang S, Gu YQ, Singh J, Coleman-Derr D, Brar DS, Jiang N, Lemaux PG. New insights into Oryza genome evolution: high gene colinearity and differential retrotransposon amplification. PLANT MOLECULAR BIOLOGY 2007; 64:589-600. [PMID: 17534720 DOI: 10.1007/s11103-007-9178-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2007] [Accepted: 04/26/2007] [Indexed: 05/15/2023]
Abstract
An approximately 247-kb genomic region from FF genome of wild rice Oryza brachyantha, possessing the smallest Oryza genome, was compared to the orthologous approximately 450-kb region from AA genome, O. sativa L. ssp. japonica. 37 of 38 genes in the orthologous regions are shared between japonica and O. brachyantha. Analyses of nucleotide substitution in coding regions suggest the two genomes diverged approximately 10 million years ago. Comparisons of transposable elements (TEs) reveal that the density of DNA TEs in O. brachyantha is comparable to O. sativa; however, the density of RNA TEs is dramatically lower. The genomic fraction of RNA TEs in japonica is two times greater than in O. brachyantha. Differences, particularly in RNA TEs, in this region and in BAC end sequences from five wild and two cultivated Oryza species explain major genome size differences between sativa and brachyantha. Gene expression analyses of three ObDREB1 genes in the sequenced region indicate orthologous genes retain similar expression patterns following cold stress. Our results demonstrate that size and number of RNA TEs play a major role in genomic differentiation and evolution in Oryza. Additionally, distantly related O. brachyantha shares colinearity with O. sativa, offering opportunities to use comparative genomics to explore the genetic diversity of wild species to improve cultivated rice.
Collapse
Affiliation(s)
- Shibo Zhang
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | | | | | | | | | | | | |
Collapse
|
163
|
Abstract
Background Individuals in the same species are assumed to share the same genomic set. However, it is not unusual to find an orthologous gene only in small subset of the species, and recent genomic studies suggest that structural rearrangements are very frequent between genomes in the same species. Two recently sequenced rice genomes Oryza sativa L. var. Nipponbare and O. sativa L. var. 93-11 provide an opportunity to systematically investigate the extent of the gene repertoire polymorphism, even though the genomic data of 93-11 derived from whole-short-gun sequencing is not yet as complete as that of Nipponbare. Results We compared gene contents and the genomic locations between two rice genomes. Our conservative estimates suggest that at least 10% of the genes in the genomes were either under presence/absence polymorphism (5.2%) or asymmetrically located between genomes (4.7%). The proportion of these "asymmetric genes" varied largely among gene groups, in which disease resistance (R) genes and the RLK kinase gene group had 11.6 and 7.8 times higher proportion of asymmetric genes than housekeeping genes (Myb and MADS). The significant difference in the proportion of asymmetric genes among gene groups suggests that natural selection is responsible for maintaining genomic asymmetry. On the other hand, the nucleotide diversity in 17 R genes under presence/absence polymorphism was generally low (average nucleotide diversity = 0.0051). Conclusion The genomic symmetry was disrupted by 10% of asymmetric genes, which could cause genetic variation through more unequal crossing over, because these genes had no allelic counterparts to pair and then they were free to pair with homologues at non-allelic loci, during meiosis in heterozygotes. It might be a consequence of diversifying selection that increased the structural divergence among genomes, and of purifying selection that decreased nucleotide divergence in each R gene locus.
Collapse
|
164
|
Kelleher CT, Chiu R, Shin H, Bosdet IE, Krzywinski MI, Fjell CD, Wilkin J, Yin T, DiFazio SP, Ali J, Asano JK, Chan S, Cloutier A, Girn N, Leach S, Lee D, Mathewson CA, Olson T, O'connor K, Prabhu AL, Smailus DE, Stott JM, Tsai M, Wye NH, Yang GS, Zhuang J, Holt RA, Putnam NH, Vrebalov J, Giovannoni JJ, Grimwood J, Schmutz J, Rokhsar D, Jones SJM, Marra MA, Tuskan GA, Bohlmann J, Ellis BE, Ritland K, Douglas CJ, Schein JE. A physical map of the highly heterozygous Populus genome: integration with the genome sequence and genetic map and analysis of haplotype variation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 50:1063-78. [PMID: 17488239 DOI: 10.1111/j.1365-313x.2007.03112.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
As part of a larger project to sequence the Populus genome and generate genomic resources for this emerging model tree, we constructed a physical map of the Populus genome, representing one of the few such maps of an undomesticated, highly heterozygous plant species. The physical map, consisting of 2802 contigs, was constructed from fingerprinted bacterial artificial chromosome (BAC) clones. The map represents approximately 9.4-fold coverage of the Populus genome, which has been estimated from the genome sequence assembly to be 485 +/- 10 Mb in size. BAC ends were sequenced to assist long-range assembly of whole-genome shotgun sequence scaffolds and to anchor the physical map to the genome sequence. Simple sequence repeat-based markers were derived from the end sequences and used to initiate integration of the BAC and genetic maps. A total of 2411 physical map contigs, representing 97% of all clones assigned to contigs, were aligned to the sequence assembly (JGI Populus trichocarpa, version 1.0). These alignments represent a total coverage of 384 Mb (79%) of the entire poplar sequence assembly and 295 Mb (96%) of linkage group sequence assemblies. A striking result of the physical map contig alignments to the sequence assembly was the co-localization of multiple contigs across numerous regions of the 19 linkage groups. Targeted sequencing of BAC clones and genetic analysis in a small number of representative regions showed that these co-aligning contigs represent distinct haplotypes in the heterozygous individual sequenced, and revealed the nature of these haplotype sequence differences.
Collapse
Affiliation(s)
- Colin T Kelleher
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
165
|
Settles AM, Holding DR, Tan BC, Latshaw SP, Liu J, Suzuki M, Li L, O'Brien BA, Fajardo DS, Wroclawska E, Tseung CW, Lai J, Hunter CT, Avigne WT, Baier J, Messing J, Hannah LC, Koch KE, Becraft PW, Larkins BA, McCarty DR. Sequence-indexed mutations in maize using the UniformMu transposon-tagging population. BMC Genomics 2007; 8:116. [PMID: 17490480 PMCID: PMC1878487 DOI: 10.1186/1471-2164-8-116] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2006] [Accepted: 05/09/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Gene knockouts are a critical resource for functional genomics. In Arabidopsis, comprehensive knockout collections were generated by amplifying and sequencing genomic DNA flanking insertion mutants. These Flanking Sequence Tags (FSTs) map each mutant to a specific locus within the genome. In maize, FSTs have been generated using DNA transposons. Transposable elements can generate unstable insertions that are difficult to analyze for simple knockout phenotypes. Transposons can also generate somatic insertions that fail to segregate in subsequent generations. RESULTS Transposon insertion sites from 106 UniformMu FSTs were tested for inheritance by locus-specific PCR. We confirmed 89% of the FSTs to be germinal transposon insertions. We found no evidence for somatic insertions within the 11% of insertion sites that were not confirmed. Instead, this subset of insertion sites had errors in locus-specific primer design due to incomplete or low-quality genomic sequences. The locus-specific PCR assays identified a knockout of a 6-phosphogluconate dehydrogenase gene that co-segregates with a seed mutant phenotype. The mutant phenotype linked to this knockout generates novel hypotheses about the role for the plastid-localized oxidative pentose phosphate pathway during grain-fill. CONCLUSION We show that FSTs from the UniformMu population identify stable, germinal insertion sites in maize. Moreover, we show that these sequence-indexed mutations can be readily used for reverse genetic analysis. We conclude from these data that the current collection of 1,882 non-redundant insertion sites from UniformMu provide a genome-wide resource for reverse genetics.
Collapse
Affiliation(s)
- A Mark Settles
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - David R Holding
- Department of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Bao Cai Tan
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - Susan P Latshaw
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - Juan Liu
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Masaharu Suzuki
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - Li Li
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - Brent A O'Brien
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - Diego S Fajardo
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - Ewa Wroclawska
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - Chi-Wah Tseung
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - Jinsheng Lai
- Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA
| | - Charles T Hunter
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - Wayne T Avigne
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - John Baier
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - Joachim Messing
- Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA
| | - L Curtis Hannah
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - Karen E Koch
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - Philip W Becraft
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Brian A Larkins
- Department of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Donald R McCarty
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
166
|
Ballvora A, Jöcker A, Viehöver P, Ishihara H, Paal J, Meksem K, Bruggmann R, Schoof H, Weisshaar B, Gebhardt C. Comparative sequence analysis of Solanum and Arabidopsis in a hot spot for pathogen resistance on potato chromosome V reveals a patchwork of conserved and rapidly evolving genome segments. BMC Genomics 2007; 8:112. [PMID: 17474978 PMCID: PMC3225836 DOI: 10.1186/1471-2164-8-112] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2006] [Accepted: 05/02/2007] [Indexed: 11/10/2022] Open
Abstract
Background Quantitative phenotypic variation of agronomic characters in crop plants is controlled by environmental and genetic factors (quantitative trait loci = QTL). To understand the molecular basis of such QTL, the identification of the underlying genes is of primary interest and DNA sequence analysis of the genomic regions harboring QTL is a prerequisite for that. QTL mapping in potato (Solanum tuberosum) has identified a region on chromosome V tagged by DNA markers GP21 and GP179, which contains a number of important QTL, among others QTL for resistance to late blight caused by the oomycete Phytophthora infestans and to root cyst nematodes. Results To obtain genomic sequence for the targeted region on chromosome V, two local BAC (bacterial artificial chromosome) contigs were constructed and sequenced, which corresponded to parts of the homologous chromosomes of the diploid, heterozygous genotype P6/210. Two contiguous sequences of 417,445 and 202,781 base pairs were assembled and annotated. Gene-by-gene co-linearity was disrupted by non-allelic insertions of retrotransposon elements, stretches of diverged intergenic sequences, differences in gene content and gene order. The latter was caused by inversion of a 70 kbp genomic fragment. These features were also found in comparison to orthologous sequence contigs from three homeologous chromosomes of Solanum demissum, a wild tuber bearing species. Functional annotation of the sequence identified 48 putative open reading frames (ORF) in one contig and 22 in the other, with an average of one ORF every 9 kbp. Ten ORFs were classified as resistance-gene-like, 11 as F-box-containing genes, 13 as transposable elements and three as transcription factors. Comparing potato to Arabidopsis thaliana annotated proteins revealed five micro-syntenic blocks of three to seven ORFs with A. thaliana chromosomes 1, 3 and 5. Conclusion Comparative sequence analysis revealed highly conserved collinear regions that flank regions showing high variability and tandem duplicated genes. Sequence annotation revealed that the majority of the ORFs were members of multiple gene families. Comparing potato to Arabidopsis thaliana annotated proteins suggested fragmented structural conservation between these distantly related plant species.
Collapse
Affiliation(s)
- Agim Ballvora
- Max-Planck Institut für Züchtungsforschung, Carl von Linné Weg 10, 50829 Köln, Germany
| | - Anika Jöcker
- Max-Planck Institut für Züchtungsforschung, Carl von Linné Weg 10, 50829 Köln, Germany
| | - Prisca Viehöver
- Max-Planck Institut für Züchtungsforschung, Carl von Linné Weg 10, 50829 Köln, Germany
- Institut für Genomforschung, Universität Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | - Hirofumi Ishihara
- Institut für Genomforschung, Universität Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany
- Southern Illinois University at Carbondale, Dept. of Plant, Soil and General Agriculture, Carbondale, IL62901-4415, USA
| | - Jürgen Paal
- Max-Planck Institut für Züchtungsforschung, Carl von Linné Weg 10, 50829 Köln, Germany
| | - Khalid Meksem
- Southern Illinois University at Carbondale, Dept. of Plant, Soil and General Agriculture, Carbondale, IL62901-4415, USA
| | - Rémy Bruggmann
- GSF Forschungszentrum für Umwelt und Gesundheit, Institut für Bioinformatik, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Heiko Schoof
- Max-Planck Institut für Züchtungsforschung, Carl von Linné Weg 10, 50829 Köln, Germany
| | - Bernd Weisshaar
- Max-Planck Institut für Züchtungsforschung, Carl von Linné Weg 10, 50829 Köln, Germany
- Institut für Genomforschung, Universität Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | - Christiane Gebhardt
- Max-Planck Institut für Züchtungsforschung, Carl von Linné Weg 10, 50829 Köln, Germany
| |
Collapse
|
167
|
Lawrence CJ, Schaeffer ML, Seigfried TE, Campbell DA, Harper LC. MaizeGDB's new data types, resources and activities. Nucleic Acids Res 2007; 35:D895-900. [PMID: 17202174 PMCID: PMC1899092 DOI: 10.1093/nar/gkl1048] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
MaizeGDB is the Maize Genetics and Genomics Database. Available at MaizeGDB are diverse data that support maize research including maps, gene product information, loci and their various alleles, phenotypes (both naturally occurring and as a result of directed mutagenesis), stocks, sequences, molecular markers, references and contact information for maize researchers worldwide. Also available through MaizeGDB are various community support service bulletin boards including the Editorial Board's list of high-impact papers, information about the Annual Maize Genetics Conference and the Jobs board where employment opportunities are posted. Reported here are data updates, improvements to interfaces and changes to standard operating procedures that have been made during the past 2 years. MaizeGDB is freely available and can be accessed online at http://www.maizegdb.org.
Collapse
Affiliation(s)
- Carolyn J Lawrence
- USDA-ARS Corn Insects and Crop Genetics Research Unit, Ames, IA 50011-3260, USA.
| | | | | | | | | |
Collapse
|
168
|
Lamb JC, Meyer JM, Birchler JA. A hemicentric inversion in the maize line knobless Tama flint created two sites of centromeric elements and moved the kinetochore-forming region. Chromosoma 2007; 116:237-47. [PMID: 17256108 DOI: 10.1007/s00412-007-0096-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Revised: 12/30/2006] [Accepted: 01/07/2007] [Indexed: 12/16/2022]
Abstract
A maize line, knobless Tama flint (KTF), was found to contain a version of chromosome 8 with two spatially distinct regions of centromeric elements, one at the original genetic position and the other at a novel location on the long arm. The new site of centromeric elements functions as the kinetochore-forming region resulting in a change of arm length ratio. Examination of fluorescence in situ hybridization markers on chromosome 8 revealed an inversion between the two centromere sites relative to standard maize lines, indicating that this chromosome 8 resulted from a hemicentric inversion with one breakpoint approximately 20 centi-McClintocks (cMc) on the long arm (20% of the total arm length from the centromere) and the other in the original cluster of centromere repeats. This inversion moved the kinetochore-forming region but left the remainder of the centromere repeats. In a hybrid between a standard line (Mo17) and KTF, both chromosome 8 homologues were completely synapsed at pachytene despite the inversion. Although the homologous centromeres were not paired, they were always correctly oriented at anaphase and migrated to opposite poles. Additionally, recombination on 8L was severely repressed in the hybrid.
Collapse
Affiliation(s)
- Jonathan C Lamb
- Division of Biological Sciences, University of Missouri-Columbia, 117 Tucker Hall, Columbia, MO 65211, USA
| | | | | |
Collapse
|
169
|
Springer NM, Stupar RM. Allelic variation and heterosis in maize: how do two halves make more than a whole? Genome Res 2007; 17:264-75. [PMID: 17255553 DOI: 10.1101/gr.5347007] [Citation(s) in RCA: 213] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In this review, we discuss the recent research on allelic variation in maize and possible implications of this work toward our understanding of heterosis. Heterosis, or hybrid vigor, is the increased performance of a hybrid relative to the parents, and is a result of the variation that is present within a species. Intraspecific comparisons of sequence and expression levels in maize have documented a surprisingly high level of allelic variation, which includes variation for the content of genic fragments, variation in repetitive elements surrounding genes, and variation in gene expression levels. There is evidence that transposons and repetitive DNA play a major role in the generation of this allelic diversity. The combination of allelic variants provides a more comprehensive suite of alleles in the hybrid that may be involved in novel allelic interactions. A major unresolved question is how the combined allelic variation and interactions in a hybrid give rise to heterotic phenotypes. An understanding of allelic variation present in maize provides an opportunity to speculate on mechanisms that might lead to heterosis. Variation for the presence of genes, the presence of novel beneficial alleles, and modified levels of gene expression in hybrids may all contribute to the heterotic phenotypes.
Collapse
Affiliation(s)
- Nathan M Springer
- Cargill Center for Microbial and Plant Genomics, Department of Plant Biology, University of Minnesota, Saint Paul, Minnesota 55108, USA.
| | | |
Collapse
|
170
|
Lamb JC, Danilova T, Bauer MJ, Meyer JM, Holland JJ, Jensen MD, Birchler JA. Single-gene detection and karyotyping using small-target fluorescence in situ hybridization on maize somatic chromosomes. Genetics 2007; 175:1047-58. [PMID: 17237520 PMCID: PMC1840074 DOI: 10.1534/genetics.106.065573] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Combined with a system for identifying each of the chromosomes in a genome, visualizing the location of individual genetic loci by fluorescence in situ hybridization (FISH) would aid in assembling physical and genetic maps. Previously, large genomic clones have been successfully used as FISH probes onto somatic chromosomes but this approach is complicated in species with abundant repetitive elements. In this study, repeat-free portions of sequences that were anchored to particular chromosomes including genes, gene clusters, large cDNAs, and portions of BACs obtained from public databases were used to label the corresponding physical location using FISH. A collection of probes that includes at least one marker on each chromosome in the maize complement was assembled, allowing a small-target karyotyping system to be developed. This set provides the foundation onto which additional loci could be added to strengthen further the ability to perform chromosomal identification in maize and its relatives. The probes were demonstrated to produce signals in several wild relatives of maize, including Zea luxurians, Z. diploperennis, and Tripsacum dactyloides.
Collapse
Affiliation(s)
- Jonathan C Lamb
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211, USA
| | | | | | | | | | | | | |
Collapse
|
171
|
Sherman-Broyles S, Boggs N, Farkas A, Liu P, Vrebalov J, Nasrallah ME, Nasrallah JB. S locus genes and the evolution of self-fertility in Arabidopsis thaliana. THE PLANT CELL 2007; 19:94-106. [PMID: 17237349 PMCID: PMC1820967 DOI: 10.1105/tpc.106.048199] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Loss of self-incompatibility (SI) in Arabidopsis thaliana was accompanied by inactivation of genes required for SI, including S-LOCUS RECEPTOR KINASE (SRK) and S-LOCUS CYSTEINE-RICH PROTEIN (SCR), coadapted genes that constitute the SI specificity-determining S haplotype. Arabidopsis accessions are polymorphic for PsiSRK and PsiSCR, but it is unknown if the species harbors structurally different S haplotypes, either representing relics of ancestral functional and structurally heteromorphic S haplotypes or resulting from decay concomitant with or subsequent to the switch to self-fertility. We cloned and sequenced the S haplotype from C24, in which self-fertility is due solely to S locus inactivation, and show that this haplotype was produced by interhaplotypic recombination. The highly divergent organization and sequence of the C24 and Columbia-0 (Col-0) S haplotypes demonstrate that the A. thaliana S locus underwent extensive structural remodeling in conjunction with a relaxation of selective pressures that once preserved the integrity and linkage of coadapted SRK and SCR alleles. Additional evidence for this process was obtained by assaying 70 accessions for the presence of C24- or Col-0-specific sequences. Furthermore, analysis of SRK and SCR polymorphisms in these accessions argues against the occurrence of a selective sweep of a particular allele of SCR, as previously proposed.
Collapse
Affiliation(s)
- Sue Sherman-Broyles
- Department of Plant Biology, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | | | | | |
Collapse
|
172
|
Lim KY, Kovarik A, Matyasek R, Chase MW, Clarkson JJ, Grandbastien MA, Leitch AR. Sequence of events leading to near-complete genome turnover in allopolyploid Nicotiana within five million years. THE NEW PHYTOLOGIST 2007; 175:756-763. [PMID: 17688590 DOI: 10.1111/j.1469-8137.2007.02121.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Analyses of selected bacterial artificial chromosomes (BACs) clones suggest that the retrotransposon component of angiosperm genomes can be amplified or deleted, leading to genome turnover. Here, Nicotiana allopolyploids were used to characterize the nature of sequence turnover across the whole genome in allopolyploids known to be of different ages. Using molecular-clock analyses, the likely age of Nicotiana allopolyploids was estimated. Genomic in situ hybridization (GISH) and tandem repeat characterization were used to determine how the parental genomic compartments of these allopolyploids have diverged over time. Paternal genome sequence losses, retroelement activity and intergenomic translocation have been reported in early Nicotiana tabacum evolution (up to 200,000 yr divergence). Here it is shown that within 1 million years of allopolyploid divergence there is considerable exchange of repeats between parental chromosome sets. After c. 5 million years of divergence GISH fails. This GISH failure may represent near-complete genome turnover, probably involving the replacement of nongenic sequences with new, or previously rare sequence types, all occurring within a conserved karyotype structure. This mode of evolution may influence or be influenced by long-term diploidization processes that characterize angiosperm polyploidy-diploid evolutionary cycles.
Collapse
Affiliation(s)
- K Yoong Lim
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Ales Kovarik
- Institute of Biophysics Academy of Sciences of the Czech Republic, CZ-61265 Brno, Czech Republic
| | - Roman Matyasek
- Institute of Biophysics Academy of Sciences of the Czech Republic, CZ-61265 Brno, Czech Republic
| | - Mark W Chase
- Jodrell Laboratory, Royal Botanic Gardens Kew, Richmond, Surrey TW9 3DS, UK
| | - James J Clarkson
- Jodrell Laboratory, Royal Botanic Gardens Kew, Richmond, Surrey TW9 3DS, UK
| | - M A Grandbastien
- Laboratoire de Biologie Cellulaire, INRA - Centre de Versailles, F-78026 Versailles, France
| | - Andrew R Leitch
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| |
Collapse
|
173
|
Jia J, Fu J, Zheng J, Zhou X, Huai J, Wang J, Wang M, Zhang Y, Chen X, Zhang J, Zhao J, Su Z, Lv Y, Wang G. Annotation and expression profile analysis of 2073 full-length cDNAs from stress-induced maize (Zea mays L.) seedlings. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 48:710-27. [PMID: 17076806 DOI: 10.1111/j.1365-313x.2006.02905.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Full-length cDNAs are very important for genome annotation and functional analysis of genes. The number of full-length cDNAs from maize (Zea mays L.) remains limited. Here we report the construction of a full-length enriched cDNA library from osmotically stressed maize seedlings by using the modified CAP trapper method. From this library, 2073 full-length cDNAs were collected and further analyzed by sequencing from both the 5'- and 3'-ends. A total of 1728 (83.4%) sequences did not match known maize mRNA and full-length cDNA sequences in the GenBank database and represent new full-length genes. After alignment of the 2073 full-length cDNAs with 448 maize BAC sequences, it was found that 84 full-length cDNAs could be mapped to the BACs. Of these, 43 genes (51.2%) have been correctly annotated from the BAC clones, 37 genes (44.0%) have been annotated with a different exon-intron structure from our cDNA, and four genes (4.76%) had no annotations in the TIGR database. Expression analysis of 2073 full-length maize cDNAs using a cDNA macroarray led to the identification of 79 genes upregulated by stress treatments and 329 downregulated genes. Of the 79 stress-inducible genes, 30 genes contain ABRE, DRE, MYB, MYC core sequences or other abiotic-responsive cis-acting elements in their promoters. These results suggest that these cis-acting elements and the corresponding transcription factors take part in plant responses to osmotic stress either cooperatively or independently. Additionally, the data suggest that an ethylene signaling pathway may be involved in the maize response to drought stress.
Collapse
Affiliation(s)
- Jinping Jia
- State Key Laboratory of Agrobiotechnology and National Center for Maize Improvement, China Agricultural University, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
174
|
Emrich SJ, Li L, Wen TJ, Yandeau-Nelson MD, Fu Y, Guo L, Chou HH, Aluru S, Ashlock DA, Schnable PS. Nearly identical paralogs: implications for maize (Zea mays L.) genome evolution. Genetics 2006; 175:429-39. [PMID: 17110490 PMCID: PMC1774996 DOI: 10.1534/genetics.106.064006] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
As an ancient segmental tetraploid, the maize (Zea mays L.) genome contains large numbers of paralogs that are expected to have diverged by a minimum of 10% over time. Nearly identical paralogs (NIPs) are defined as paralogous genes that exhibit > or = 98% identity. Sequence analyses of the "gene space" of the maize inbred line B73 genome, coupled with wet lab validation, have revealed that, conservatively, at least approximately 1% of maize genes have a NIP, a rate substantially higher than that in Arabidopsis. In most instances, both members of maize NIP pairs are expressed and are therefore at least potentially functional. Of evolutionary significance, members of many NIP families also exhibit differential expression. The finding that some families of maize NIPs are closely linked genetically while others are genetically unlinked is consistent with multiple modes of origin. NIPs provide a mechanism for the maize genome to circumvent the inherent limitation that diploid genomes can carry at most two "alleles" per "locus." As such, NIPs may have played important roles during the evolution and domestication of maize and may contribute to the success of long-term selection experiments in this important crop species.
Collapse
Affiliation(s)
- Scott J Emrich
- Interdepartmental Bioinformatics and Computational Biology Graduate Program, Iowa State University, Ames, Iowa 50011, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
175
|
Wang Q, Dooner HK. Remarkable variation in maize genome structure inferred from haplotype diversity at the bz locus. Proc Natl Acad Sci U S A 2006; 103:17644-9. [PMID: 17101975 PMCID: PMC1693800 DOI: 10.1073/pnas.0603080103] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Maize is probably the most diverse of all crop species. Unexpectedly large differences among haplotypes were first revealed in a comparison of the bz genomic regions of two different inbred lines, McC and B73. Retrotransposon clusters, which comprise most of the repetitive DNA in maize, varied markedly in makeup, and location relative to the genes in the region and genic sequences, later shown to be carried by two helitron transposons, also differed between the inbreds. Thus, the allelic bz regions of these Corn Belt inbreds shared only a minority of the total sequence. To investigate further the variation caused by retrotransposons, helitrons, and other insertions, we have analyzed the organization of the bz genomic region in five additional cultivars selected because of their geographic and genetic diversity: the inbreds A188, CML258, and I137TN, and the land races Coroico and NalTel. This vertical comparison has revealed the existence of several new helitrons, new retrotransposons, members of every superfamily of DNA transposons, numerous miniature elements, and novel insertions flanked at either end by TA repeats, which we call TAFTs (TA-flanked transposons). The extent of variation in the region is remarkable. In pairwise comparisons of eight bz haplotypes, the percentage of shared sequences ranges from 25% to 84%. Chimeric haplotypes were identified that combine retrotransposon clusters found in different haplotypes. We propose that recombination in the common gene space greatly amplifies the variability produced by the retrotransposition explosion in the maize ancestry, creating the heterogeneity in genome organization found in modern maize.
Collapse
Affiliation(s)
- Qinghua Wang
- *The Waksman Institute, Rutgers, The State University of New Jersey, Piscataway, NJ 08855; and
| | - Hugo K. Dooner
- *The Waksman Institute, Rutgers, The State University of New Jersey, Piscataway, NJ 08855; and
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
176
|
Maize haplotype with a helitron-amplified cytidine deaminase gene copy. BMC Genet 2006; 7:52. [PMID: 17094807 PMCID: PMC1657028 DOI: 10.1186/1471-2156-7-52] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2006] [Accepted: 11/09/2006] [Indexed: 12/23/2022] Open
Abstract
Background Genetic maps are based on recombination of orthologous gene sequences between different strains of the same species. Therefore, it was unexpected to find extensive non-collinearity of genes between different inbred strains of maize. Interestingly, disruption of gene collinearity can be caused among others by a rolling circle-type copy and paste mechanism facilitated by Helitrons. However, understanding the role of this type of gene amplification has been hampered by the lack of finding intact gene sequences within Helitrons. Results By aligning two haplotypes of the z1C1 locus of maize we found a Helitron that contains two genes, one encoding a putative cytidine deaminase and one a hypothetical protein with part of a 40S ribosomal protein. The cytidine deaminase gene, called ZmCDA3, has been copied from the ZmCDA1 gene on maize chromosome 7 about 4.5 million years ago (mya) after maize was formed by whole-genome duplication from two progenitors. Inbred lines contain gene copies of both progenitors, the ZmCDA1 and ZmCDA2 genes. Both genes diverged when the progenitors of maize split and are derived from the same progenitor as the rice OsCDA1 gene. The ZmCDA1 and ZmCDA2 genes are both transcribed in leaf and seed tissue, but transcripts of the paralogous ZmCDA3 gene have not been found yet. Based on their protein structure the maize CDA genes encode a nucleoside deaminase that is found in bacterial systems and is distinct from the mammalian RNA and/or DNA modifying enzymes. Conclusion The conservation of a paralogous gene sequence encoding a cytidine deaminase gene over 4.5 million years suggests that Helitrons could add functional gene sequences to new chromosomal positions and thereby create new haplotypes. However, the function of such paralogous gene copies cannot be essential because they are not present in all maize strains. However, it is interesting to note that maize hybrids can outperform their inbred parents. Therefore, certain haplotypes may function only in combination with other haplotypes or under specialized environmental conditions.
Collapse
|
177
|
Saha MC, Cooper JD, Mian MAR, Chekhovskiy K, May GD. Tall fescue genomic SSR markers: development and transferability across multiple grass species. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2006; 113:1449-58. [PMID: 16947059 DOI: 10.1007/s00122-006-0391-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2006] [Accepted: 08/04/2006] [Indexed: 05/11/2023]
Abstract
Simple sequence repeat (SSR) markers are highly informative and widely used for genetic and breeding studies. Currently, a very limited number of SSR markers are available for tall fescue (Festuca arundinacea Schreb.) and other forage grass species. A tall fescue genomic library enriched in (GA/CT)( n ) repeats was used to develop primer pairs (PPs) flanking SSRs and assess PP functionality across different forage, cereal, and turf grass species. A total of 511 PPs were developed and assessed for their utility in six different grass species. The parents and a subset of a tall fescue mapping population were used to select PPs for mapping in tall fescue. Survey results revealed that 48% (in rice) to 66% (in tall fescue) of the PPs produced clean SSR-type amplification products in different grass species. Polymorphism rates were higher in tall fescue (68%) compared to other species (46% ryegrass, 39% wheat, and 34% rice). A set of 194 SSR loci (38%) were identified which amplified across all six species. Loci segregating in the tall fescue mapping population were grouped as loci segregating from the female parent (HD28-56, 37%), the male parent (R43-64, 37%), and both parents (26%). Three percent of the loci that were polymorphic between parents were monomorphic in the pseudo F1 mapping population and the remaining loci segregated. Sequencing of amplified products obtained from PP NFFAG428 revealed a very high level of sequence similarity among the grass species under study. Our results are the first report of genomic SSR marker development from tall fescue and they demonstrate the usefulness of these SSRs for genetic linkage mapping in tall fescue and cross-species amplification.
Collapse
Affiliation(s)
- Malay C Saha
- Forage Improvement Division, The Samuel Roberts Noble Foundation, Inc., 2510 Sam Noble Parkway, Ardmore, OK 73401, USA.
| | | | | | | | | |
Collapse
|
178
|
Gu YQ, Salse J, Coleman-Derr D, Dupin A, Crossman C, Lazo GR, Huo N, Belcram H, Ravel C, Charmet G, Charles M, Anderson OD, Chalhoub B. Types and rates of sequence evolution at the high-molecular-weight glutenin locus in hexaploid wheat and its ancestral genomes. Genetics 2006; 174:1493-504. [PMID: 17028342 PMCID: PMC1667099 DOI: 10.1534/genetics.106.060756] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The Glu-1 locus, encoding the high-molecular-weight glutenin protein subunits, controls bread-making quality in hexaploid wheat (Triticum aestivum) and represents a recently evolved region unique to Triticeae genomes. To understand the molecular evolution of this locus region, three orthologous Glu-1 regions from the three subgenomes of a single hexaploid wheat species were sequenced, totaling 729 kb of sequence. Comparing each Glu-1 region with its corresponding homologous region from the D genome of diploid wheat, Aegilops tauschii, and the A and B genomes of tetraploid wheat, Triticum turgidum, revealed that, in addition to the conservation of microsynteny in the genic regions, sequences in the intergenic regions, composed of blocks of nested retroelements, are also generally conserved, although a few nonshared retroelements that differentiate the homologous Glu-1 regions were detected in each pair of the A and D genomes. Analysis of the indel frequency and the rate of nucleotide substitution, which represent the most frequent types of sequence changes in the Glu-1 regions, demonstrated that the two A genomes are significantly more divergent than the two B genomes, further supporting the hypothesis that hexaploid wheat may have more than one tetraploid ancestor.
Collapse
Affiliation(s)
- Yong Qiang Gu
- United States Department of Agriculture-Agricultural Research Service, Western Regional Research Center, Albany, CA 94710, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
179
|
Bruggmann R, Bharti AK, Gundlach H, Lai J, Young S, Pontaroli AC, Wei F, Haberer G, Fuks G, Du C, Raymond C, Estep MC, Liu R, Bennetzen JL, Chan AP, Rabinowicz PD, Quackenbush J, Barbazuk WB, Wing RA, Birren B, Nusbaum C, Rounsley S, Mayer KF, Messing J. Uneven chromosome contraction and expansion in the maize genome. Genes Dev 2006; 16:1241-51. [PMID: 16902087 PMCID: PMC1581433 DOI: 10.1101/gr.5338906] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Maize (Zea mays or corn), both a major food source and an important cytogenetic model, evolved from a tetraploid that arose about 4.8 million years ago (Mya). As a result, maize has extensive duplicated regions within its genome. We have sequenced the two copies of one such region, generating 7.8 Mb of sequence spanning 17.4 cM of the short arm of chromosome 1 and 6.6 Mb (25.6 cM) from the long arm of chromosome 9. Rice, which did not undergo a similar whole genome duplication event, has only one orthologous region (4.9 Mb) on the short arm of chromosome 3, and can be used as reference for the maize homoeologous regions. Alignment of the three regions allowed identification of syntenic blocks, and indicated that the maize regions have undergone differential contraction in genic and intergenic regions and expansion by the insertion of retrotransposable elements. Approximately 9% of the predicted genes in each duplicated region are completely missing in the rice genome, and almost 20% have moved to other genomic locations. Predicted genes within these regions tend to be larger in maize than in rice, primarily because of the presence of predicted genes in maize with larger introns. Interestingly, the general gene methylation patterns in the maize homoeologous regions do not appear to have changed with contraction or expansion of their chromosomes. In addition, no differences in methylation of single genes and tandemly repeated gene copies have been detected. These results, therefore, provide new insights into the diploidization of polyploid species.
Collapse
Affiliation(s)
- Rémy Bruggmann
- Munich Information Center for Protein Sequences (MIPS), Institute for Bioinformatics, GSF Research Center for Environment and Health, D-85764 Neuherberg, Germany
| | - Arvind K. Bharti
- The Plant Genome Initiative at Rutgers (PGIR), Waksman Institute, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Heidrun Gundlach
- Munich Information Center for Protein Sequences (MIPS), Institute for Bioinformatics, GSF Research Center for Environment and Health, D-85764 Neuherberg, Germany
| | - Jinsheng Lai
- The Plant Genome Initiative at Rutgers (PGIR), Waksman Institute, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Sarah Young
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02141, USA
| | - Ana C. Pontaroli
- Department of Genetics, University of Georgia, Athens, Georgia 30602, USA
| | - Fusheng Wei
- Arizona Genomics Institute (AGI), University of Arizona, Tucson, Arizona 85721, USA
| | - Georg Haberer
- Munich Information Center for Protein Sequences (MIPS), Institute for Bioinformatics, GSF Research Center for Environment and Health, D-85764 Neuherberg, Germany
| | - Galina Fuks
- The Plant Genome Initiative at Rutgers (PGIR), Waksman Institute, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Chunguang Du
- The Plant Genome Initiative at Rutgers (PGIR), Waksman Institute, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Christina Raymond
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02141, USA
| | - Matt C. Estep
- Department of Genetics, University of Georgia, Athens, Georgia 30602, USA
| | - Renyi Liu
- Department of Genetics, University of Georgia, Athens, Georgia 30602, USA
| | | | - Agnes P. Chan
- The Institute for Genomic Research (TIGR), Rockville, Maryland 20850, USA
| | | | - John Quackenbush
- The Institute for Genomic Research (TIGR), Rockville, Maryland 20850, USA
| | - W. Brad Barbazuk
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA
| | - Rod A. Wing
- Arizona Genomics Institute (AGI), University of Arizona, Tucson, Arizona 85721, USA
| | - Bruce Birren
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02141, USA
| | - Chad Nusbaum
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02141, USA
| | - Steve Rounsley
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02141, USA
| | - Klaus F.X. Mayer
- Munich Information Center for Protein Sequences (MIPS), Institute for Bioinformatics, GSF Research Center for Environment and Health, D-85764 Neuherberg, Germany
| | - Joachim Messing
- The Plant Genome Initiative at Rutgers (PGIR), Waksman Institute, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| |
Collapse
|
180
|
Fu Y, Wen TJ, Ronin YI, Chen HD, Guo L, Mester DI, Yang Y, Lee M, Korol AB, Ashlock DA, Schnable PS. Genetic dissection of intermated recombinant inbred lines using a new genetic map of maize. Genetics 2006; 174:1671-83. [PMID: 16951074 PMCID: PMC1667089 DOI: 10.1534/genetics.106.060376] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A new genetic map of maize, ISU-IBM Map4, that integrates 2029 existing markers with 1329 new indel polymorphism (IDP) markers has been developed using intermated recombinant inbred lines (IRILs) from the intermated B73xMo17 (IBM) population. The website http://magi.plantgenomics.iastate.edu provides access to IDP primer sequences, sequences from which IDP primers were designed, optimized marker-specific PCR conditions, and polymorphism data for all IDP markers. This new gene-based genetic map will facilitate a wide variety of genetic and genomic research projects, including map-based genome sequencing and gene cloning. The mosaic structures of the genomes of 91 IRILs, an important resource for identifying and mapping QTL and eQTL, were defined. Analyses of segregation data associated with markers genotyped in three B73/Mo17-derived mapping populations (F2, Syn5, and IBM) demonstrate that allele frequencies were significantly altered during the development of the IBM IRILs. The observations that two segregation distortion regions overlap with maize flowering-time QTL suggest that the altered allele frequencies were a consequence of inadvertent selection. Detection of two-locus gamete disequilibrium provides another means to extract functional genomic data from well-characterized plant RILs.
Collapse
Affiliation(s)
- Yan Fu
- Interdepartmental Genetics Graduate Program, Iowa State University, Ames, Iowa 50011-3467, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
181
|
Guo M, Rupe MA, Yang X, Crasta O, Zinselmeier C, Smith OS, Bowen B. Genome-wide transcript analysis of maize hybrids: allelic additive gene expression and yield heterosis. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2006; 113:831-45. [PMID: 16868764 DOI: 10.1007/s00122-006-0335-x] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2006] [Accepted: 06/03/2006] [Indexed: 05/08/2023]
Abstract
Heterosis, or hybrid vigor, has been widely exploited in plant breeding for many decades, but the molecular mechanisms underlying the phenomenon remain unknown. In this study, we applied genome-wide transcript profiling to gain a global picture of the ways in which a large proportion of genes are expressed in the immature ear tissues of a series of 16 maize hybrids that vary in their degree of heterosis. Key observations include: (1) the proportion of allelic additively expressed genes is positively associated with hybrid yield and heterosis; (2) the proportion of genes that exhibit a bias towards the expression level of the paternal parent is negatively correlated with hybrid yield and heterosis; and (3) there is no correlation between the over- or under-expression of specific genes in maize hybrids with either yield or heterosis. The relationship of the expression patterns with hybrid performance is substantiated by analysis of a genetically improved modern hybrid (Pioneer hybrid 3394) versus a less improved older hybrid (Pioneer hybrid 3306) grown at different levels of plant density stress. The proportion of allelic additively expressed genes is positively associated with the modern high yielding hybrid, heterosis and high yielding environments, whereas the converse is true for the paternally biased gene expression. The dynamic changes of gene expression in hybrids responding to genotype and environment may result from differential regulation of the two parental alleles. Our findings suggest that differential allele regulation may play an important role in hybrid yield or heterosis, and provide a new insight to the molecular understanding of the underlying mechanisms of heterosis.
Collapse
Affiliation(s)
- Mei Guo
- Pioneer Hi-Bred International, Inc., 7250 NW 62nd Avenue, Johnston, IA 50131, USA.
| | | | | | | | | | | | | |
Collapse
|
182
|
Du C, Swigoňová Z, Messing J. Retrotranspositions in orthologous regions of closely related grass species. BMC Evol Biol 2006; 6:62. [PMID: 16914031 PMCID: PMC1560396 DOI: 10.1186/1471-2148-6-62] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2006] [Accepted: 08/16/2006] [Indexed: 11/10/2022] Open
Abstract
Background Retrotransposons are commonly occurring eukaryotic transposable elements (TEs). Among these, long terminal repeat (LTR) retrotransposons are the most abundant TEs and can comprise 50–90% of the genome in higher plants. By comparing the orthologous chromosomal regions of closely related species, the effects of TEs on the evolution of plant genomes can be studied in detail. Results Here, we compared the composition and organization of TEs within five orthologous chromosomal regions among three grass species: maize, sorghum, and rice. We identified a total of 132 full or fragmented LTR retrotransposons in these regions. As a percentage of the total cumulative sequence in each species, LTR retrotransposons occupy 45.1% of the maize, 21.1% of the rice, and 3.7% of the sorghum regions. The most common elements in the maize retrotransposon-rich regions are the copia-like retrotransposons with 39% and the gypsy-like retrotransposons with 37%. Using the contiguous sequence of the orthologous regions, we detected 108 retrotransposons with intact target duplication sites and both LTR termini. Here, we show that 74% of these elements inserted into their host genome less than 1 million years ago and that many retroelements expanded in size by the insertion of other sequences. These inserts were predominantly other retroelements, however, several of them were also fragmented genes. Unforeseen was the finding of intact genes embedded within LTR retrotransposons. Conclusion Although the abundance of retroelements between maize and rice is consistent with their different genome sizes of 2,364 and 389 Mb respectively, the content of retrotransposons in sorghum (790 Mb) is surprisingly low. In all three species, retrotransposition is a very recent activity relative to their speciation. While it was known that genes re-insert into non-orthologous positions of plant genomes, they appear to re-insert also within retrotransposons, potentially providing an important role for retrotransposons in the evolution of gene function.
Collapse
Affiliation(s)
- Chunguang Du
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08854, USA
- Department of Biology & Molecular Biology, Montclair State University, Montclair, NJ 07043, USA
| | - Zuzana Swigoňová
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08854, USA
- Department of Medical Genetics, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Joachim Messing
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
183
|
Tian F, Zhu Z, Zhang B, Tan L, Fu Y, Wang X, Sun CQ. Fine mapping of a quantitative trait locus for grain number per panicle from wild rice (Oryza rufipogon Griff.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2006; 113:619-29. [PMID: 16770601 DOI: 10.1007/s00122-006-0326-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2006] [Accepted: 05/09/2006] [Indexed: 05/10/2023]
Abstract
SIL040, an introgression line (IL) developed by introgressing chromosomal segments from an accession of Oryza rufipogon into an indica cultivar Guichao 2, showed significantly less grains per panicle than the recurrent parent Guichao 2. Quantitative trait locus (QTL) analysis in F2 and F3 generations derived from the cross between SIL040 and Guichao 2 revealed that gpa7, a QTL located on the short arm of chromosome 7, was responsible of this variation. Alleles from O. rufipogon decreased grains per panicle. To fine mapping of gpa7, a high-resolution map with 1,966 F2 plants derived from the cross between SIL040 and Guichao 2 using markers flanking gpa7 was constructed, and detailed quantitative evaluation of the structure of main panicle of each of F3 families derived from recombinants screened was performed. By two-step substitution mapping, gpa7 was finally narrowed down to a 35-kb region that contains five predicted genes in cultivated rice. The fact that QTLs for five panicle traits (length of panicle, primary branches per panicle, secondary branches per panicle, grains on primary branches and grains on secondary branches) were all mapped in the same interval as that for gpa7 suggested that this locus was associated with panicle structure, showing pleiotropic effects. The characterizing of panicle structure of IL SIL040 further revealed that, during the domestication from common wild allele to cultivated rice one at gpa7, not only the number of branches and grains per panicle increased significantly, more importantly, but also the ratio of secondary branches per panicle to total branches per panicle and the ratio of grains on secondary branches per panicle to total grains per panicle increased significantly. All these results reinforced the idea that gpa7 might play an important role in the regulation of grain number per panicle and the ratio of secondary branches per panicle during the domestication of rice panicle.
Collapse
Affiliation(s)
- Feng Tian
- Department of Plant Genetic and Breeding and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100094, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
184
|
Monma K, Moriuchi R, Sagi N, Ichikawa H, Satoh K, Tobe T, Kamata K. Investigation of false-positive reactions for CBH351 maize in screening PCR analysis. Food Hygiene and Safety Science (Shokuhin Eiseigaku Zasshi) 2006; 47:9-14. [PMID: 16619851 DOI: 10.3358/shokueishi.47.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Examination for CBH351 maize was conducted by the qualitative polymerase chain reaction (PCR) method in maize grain and maize processed foods obtained in the Tokyo area. The numbers of samples possibly positive in the screening test were 7 of 22 (31.8%) for maize grain samples, 4 of 14 (28.6%) for semi-processed foods, 11 of 30 (36.7%) for canned products, 3 of 30 (10.0%) for maize snacks, 3 of 4 (75%) for tacos and 1 of 3 (33.3%) for tortillas. However, CBH351 maize was not detected in the confirmation test. Therefore, the results of the screening test were false-positive. Since the reaction might have been caused by the base sequences of the 3'-end of primers CaM03-5' and CBH02-3' used in the screening test, a new primer pair was designed. The PCR products obtained with the new primer pair TMC2-5'--TMS2-3' were specific for CBH351 and were not obtained with barley, wheat, rice, RRS, Bt11, or Event176. Thus, the new primer pair shows high specificity. CBH351 maize was detected from samples containing at least 0.05% CBH 351 maize DNA by using this primer pair.
Collapse
Affiliation(s)
- Kimio Monma
- Tokyo Metropolitan Institute of Public Health, 3-24-1, Hyakunin-cho, Shinjuku-ku, Tokyo 169-0073, Japan
| | | | | | | | | | | | | |
Collapse
|
185
|
Stupar RM, Springer NM. Cis-transcriptional variation in maize inbred lines B73 and Mo17 leads to additive expression patterns in the F1 hybrid. Genetics 2006; 173:2199-210. [PMID: 16702414 PMCID: PMC1569691 DOI: 10.1534/genetics.106.060699] [Citation(s) in RCA: 174] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Microarray analysis of gene expression patterns in immature ear, seedling, and embryo tissues from the maize inbred lines B73 and Mo17 identified numerous genes with variable expression. Some genes had detectable expression in only one of the two inbreds; most of these genes were detected in the genomic DNA of both inbreds, indicating that the expression differences are likely caused by differential regulation rather than by differences in gene content. Gene expression was also monitored in the reciprocal F1 hybrids B73xMo17 and Mo17xB73. The reciprocal F1 hybrid lines did not display parental effects on gene expression levels. Approximately 80% of the differentially expressed genes displayed additive expression patterns in the hybrids relative to the inbred parents. The approximately 20% of genes that display nonadditive expression patterns tend to be expressed at levels within the parental range, with minimal evidence for novel expression levels greater than the high parent or less than the low parent. Analysis of allele-specific expression patterns in the hybrid suggested that intraspecific variation in gene expression levels is largely attributable to cis-regulatory variation in maize. Collectively, our data suggest that allelic cis-regulatory variation between B73 and Mo17 dictates maintenance of inbred allelic expression levels in the F1 hybrid, resulting in additive expression patterns.
Collapse
Affiliation(s)
- Robert M Stupar
- Center for Plant and Microbial Genomics, Department of Plant Biology, University of Minnesota, Saint Paul, Minnesota 55108, USA
| | | |
Collapse
|
186
|
Lamb JC, Birchler JA. Retroelement genome painting: cytological visualization of retroelement expansions in the genera Zea and Tripsacum. Genetics 2006; 173:1007-21. [PMID: 16582446 PMCID: PMC1526525 DOI: 10.1534/genetics.105.053165] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Divergence of abundant genomic elements among the Zea and Tripsacum genera was examined cytologically and a tool kit established for subsequent studies. The LTR regions from the CRM, Huck, Grande, Prem1, Prem2/Ji, Opie, Cinful-1, and Tekay retroelement families were used as FISH probes on mitotic chromosome spreads from a "trispecies" hybrid containing chromosomes from each of three species: Zea mays (2n = 20), Z. diploperennis (2n = 20), and Tripsacum dactyloides (2n = 36). Except for Tekay, which painted both Zea and Tripsacum chromosomes with nearly equal intensity, the retroelement probes hybridized strongly to the Zea chromosomes, allowing them to be distinguished from those of Tripsacum. Huck and Grande hybridized more intensely to maize than to Z. diploperennis chromosomes. Tripsacum genomic clones containing retroelement sequences were isolated that specifically paint Tripsacum chromosomes. The retroelement paints proved effective for distinguishing different genomes in interspecific hybrids and visualizing alien chromatin from T. dactyloides introgressed into maize lines. Other FISH probes (180-bp knob, TR-1, 5S, NOR, Cent4, CentC, rp1, rp3, and alpha-ZeinA) could be simultaneously visualized with the retroelement probes, emphasizing the value of the retroelement probes for cytogenetic studies of Zea and Tripsacum.
Collapse
Affiliation(s)
- Jonathan C Lamb
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211-7400, USA
| | | |
Collapse
|
187
|
Buckler ES, Gaut BS, McMullen MD. Molecular and functional diversity of maize. CURRENT OPINION IN PLANT BIOLOGY 2006; 9:172-6. [PMID: 16459128 DOI: 10.1016/j.pbi.2006.01.013] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2005] [Accepted: 01/25/2006] [Indexed: 05/06/2023]
Abstract
Over the past 10,000 years, man has used the rich genetic diversity of the maize genome as the raw material for domestication and subsequent crop improvement. Recent research efforts have made tremendous strides toward characterizing this diversity: structural diversity appears to be largely mediated by helitron transposable elements, patterns of diversity are yielding insights into the number and type of genes involved in maize domestication and improvement, and functional diversity experiments are leading to allele mining for future crop improvement. The development of genome sequence and germplasm resources are likely to further accelerate this progress.
Collapse
Affiliation(s)
- Edward S Buckler
- USDA-ARS; Department of Plant Breeding & Genetics, Cornell University, Ithaca, New York 14853, USA.
| | | | | |
Collapse
|
188
|
Messing J, Dooner HK. Organization and variability of the maize genome. CURRENT OPINION IN PLANT BIOLOGY 2006; 9:157-63. [PMID: 16459130 DOI: 10.1016/j.pbi.2006.01.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2005] [Accepted: 01/24/2006] [Indexed: 05/06/2023]
Abstract
With a size approximating that of the human genome, the maize genome is about to become the largest plant genome yet sequenced. Contributing to that size are a whole-genome duplication event and a retrotransposition explosion that produced a large amount of repetitive DNA. This DNA is greatly under-represented in cDNA collections, so analysis of the maize transcriptome has been an expedient way of assessing the gene content of maize. Over 2 million maize cDNA sequences are now available, making maize the third most widely studied organism, behind mouse and man. To date, the sequencing of large-sized DNA clones has been largely driven by the genetic interests of different investigators. The recent construction of a physical map that is anchored to the genetic map will aid immensely in the maize genome-sequencing effort. However, studies showing that the repetitive DNA component is highly polymorphic among maize inbred lines point to the need to sample vertically a few specific regions of the genome to evaluate the extent and importance of this variability.
Collapse
Affiliation(s)
- Joachim Messing
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, 190 Frelinghuysen Road, Piscataway, New Jersey 08854, USA
| | | |
Collapse
|
189
|
Morgante M. Plant genome organisation and diversity: the year of the junk! Curr Opin Biotechnol 2006; 17:168-73. [PMID: 16530402 DOI: 10.1016/j.copbio.2006.03.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2006] [Revised: 02/28/2006] [Accepted: 03/02/2006] [Indexed: 01/21/2023]
Abstract
Having gained a thorough understanding of the structure and organization of model plant genomes, such as those of Arabidopsis thaliana and rice, we have now started to investigate the most interesting aspect of genome structure - its variations. Variation in DNA sequence is responsible for the genetic component of phenotypic variation (i.e. the component upon which both natural and artificial selection act). Recent studies have started to shed light on sequence variation outside of the genic regions, owing mainly to large insertion/deletion (indel) polymorphisms caused by the presence or absence of transposable elements of different classes. In addition to long terminal repeat retrotransposons, DNA transposons have been shown to be responsible for these polymorphisms. These comprise Helitrons, CACTA and Mu-like elements that are capable of acquiring and piecing together fragments of plant genes and are often expressed. Future analyses of the functional roles of intergenic sequence variation will tell us if we will need to pay more attention not only to genes, but also to the 'junk' DNA surrounding them.
Collapse
Affiliation(s)
- Michele Morgante
- Dipartimento di Scienze Agrarie ed Ambientali, Universita' di Udine, Via delle Scienze 208, I-33100 Udine, Italy.
| |
Collapse
|
190
|
Rabinowicz PD, Bennetzen JL. The maize genome as a model for efficient sequence analysis of large plant genomes. CURRENT OPINION IN PLANT BIOLOGY 2006; 9:149-56. [PMID: 16459129 DOI: 10.1016/j.pbi.2006.01.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2006] [Accepted: 01/20/2006] [Indexed: 05/06/2023]
Abstract
The genomes of flowering plants vary in size from about 0.1 to over 100 gigabase pairs (Gbp), mostly because of polyploidy and variation in the abundance of repetitive elements in intergenic regions. High-quality sequences of the relatively small genomes of Arabidopsis (0.14 Gbp) and rice (0.4 Gbp) have now been largely completed. The sequencing of plant genomes that have a more representative size (the mean for flowering plant genomes is 5.6 Gbp) has been seen as a daunting task, partly because of their size and partly because of the numerous highly conserved repeats. Nevertheless, creative strategies and powerful new tools have been generated recently in the plant genetics community, so that sequencing large plant genomes is now a realistic possibility. Maize (2.4-2.7 Gbp) will be the first gigabase-size plant genome to be sequenced using these novel approaches. Pilot studies on maize indicate that the new gene-enrichment, gene-finishing and gene-orientation technologies are efficient, robust and comprehensive. These strategies will succeed in sequencing the gene-space of large genome plants, and in locating all of these genes and adjacent sequences on the genetic and physical maps.
Collapse
Affiliation(s)
- Pablo D Rabinowicz
- The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, Maryland 20850, USA
| | | |
Collapse
|
191
|
Bortiri E, Jackson D, Hake S. Advances in maize genomics: the emergence of positional cloning. CURRENT OPINION IN PLANT BIOLOGY 2006; 9:164-71. [PMID: 16458573 DOI: 10.1016/j.pbi.2006.01.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2005] [Accepted: 01/23/2006] [Indexed: 05/06/2023]
Abstract
Positional cloning has been and remains a powerful method for gene identification in Arabidopsis. With the completion of the rice genome sequence, positional cloning in rice also took off, including the cloning of several quantitative trait loci. Positional cloning in cereals such as maize whose genomes are much larger than that of rice was considered near impossible because of the vast amounts of repetitive DNA. However, conservation of synteny across the cereal genomes, in combination with new maize resources, has now made positional cloning in maize feasible. In fact, a chromosomal walk is usually much faster than the more traditional method of gene isolation in maize by transposon tagging.
Collapse
Affiliation(s)
- Esteban Bortiri
- Plant Gene Expression Center, USDA-ARS, and Plant and Microbial Biology Department, University of California, Berkeley, 800 Buchanan Avenue, Albany, California 94710, USA
| | | | | |
Collapse
|
192
|
Ma J, Morrow DJ, Fernandes J, Walbot V. Comparative profiling of the sense and antisense transcriptome of maize lines. Genome Biol 2006; 7:R22. [PMID: 16542496 PMCID: PMC1557758 DOI: 10.1186/gb-2006-7-3-r22] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2005] [Revised: 01/13/2006] [Accepted: 02/08/2006] [Indexed: 01/08/2023] Open
Abstract
Comparative transcriptome profiling of inbred maize lines demonstrates remarkable similarities and a large number of antisense transcripts. Background There are thousands of maize lines with distinctive normal as well as mutant phenotypes. To determine the validity of comparisons among mutants in different lines, we first address the question of how similar the transcriptomes are in three standard lines at four developmental stages. Results Four tissues (leaves, 1 mm anthers, 1.5 mm anthers, pollen) from one hybrid and one inbred maize line were hybridized with the W23 inbred on Agilent oligonucleotide microarrays with 21,000 elements. Tissue-specific gene expression patterns were documented, with leaves having the most tissue-specific transcripts. Haploid pollen expresses about half as many genes as the other samples. High overlap of gene expression was found between leaves and anthers. Anther and pollen transcript expression showed high conservation among the three lines while leaves had more divergence. Antisense transcripts represented about 6 to 14 percent of total transcriptome by tissue type but were similar across lines. Gene Ontology (GO) annotations were assigned and tabulated. Enrichment in GO terms related to cell-cycle functions was found for the identified antisense transcripts. Microarray results were validated via quantitative real-time PCR and by hybridization to a second oligonucleotide microarray platform. Conclusion Despite high polymorphisms and structural differences among maize inbred lines, the transcriptomes of the three lines displayed remarkable similarities, especially in both reproductive samples (anther and pollen). We also identified potential stage markers for maize anther development. A large number of antisense transcripts were detected and implicated in important biological functions given the enrichment of particular GO classes.
Collapse
Affiliation(s)
- Jiong Ma
- Department of Biological Sciences, Stanford University, Stanford, CA 94305-5020, USA
| | - Darren J Morrow
- Department of Biological Sciences, Stanford University, Stanford, CA 94305-5020, USA
| | - John Fernandes
- Department of Biological Sciences, Stanford University, Stanford, CA 94305-5020, USA
| | - Virginia Walbot
- Department of Biological Sciences, Stanford University, Stanford, CA 94305-5020, USA
| |
Collapse
|
193
|
Yu J, Buckler ES. Genetic association mapping and genome organization of maize. Curr Opin Biotechnol 2006; 17:155-60. [PMID: 16504497 DOI: 10.1016/j.copbio.2006.02.003] [Citation(s) in RCA: 477] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2005] [Revised: 12/31/2005] [Accepted: 02/15/2006] [Indexed: 11/15/2022]
Abstract
Association mapping, a high-resolution method for mapping quantitative trait loci based on linkage disequilibrium, holds great promise for the dissection of complex genetic traits. The recent assembly and characterization of maize association mapping panels, development of improved statistical methods, and successful association of candidate genes have begun to realize the power of candidate-gene association mapping. Although the complexity of the maize genome poses several significant challenges to the application of association mapping, the ongoing genome sequencing project will ultimately allow for a thorough genome-wide examination of nucleotide polymorphism-trait association.
Collapse
Affiliation(s)
- Jianming Yu
- Institute for Genomic Diversity and United States Department of Agriculture--Agricultural Research Service, Ithaca, NY 14853, USA
| | | |
Collapse
|
194
|
Gonzalo M, Vyn TJ, Holland JB, McIntyre LM. Mapping density response in maize: a direct approach for testing genotype and treatment interactions. Genetics 2006; 173:331-48. [PMID: 16489238 PMCID: PMC1461438 DOI: 10.1534/genetics.105.045757] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Maize yield improvement has been strongly linked to improvements in stress tolerance, particularly to increased interplant competition. As a result, modern hybrids are able to produce kernels at high plant population densities. Identification of the genetic factors responsible for density response in maize requires direct testing of interactions between genetic effects and density and evaluation of that response in multiple traits. In this article we take a broad view of the problem and use a general approach based upon mixed models to analyze data from eight segmental inbred lines in a B73 background and their crosses to the unrelated parent Mo17 (hybrids). We directly test for the interaction between treatment effects and genetic effects instead of the commonly used overlaying of results on a common map. Additionally, we demonstrate one way to handle heteroscedasticity of variances common in stress responses. We find that some SILs are consistently different from the recurrent parent regardless of the density, while others differ from the recurrent parent in one density level but not in the other. Thus, we find positive evidence for both main effects and interaction between genetic loci and density in cases where the approach of overlapping results fails to find significant results. Furthermore, our study clearly identifies segments that respond differently to density depending upon the inbreeding level (inbred/hybrid).
Collapse
Affiliation(s)
- Martin Gonzalo
- Department of Agronomy, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | |
Collapse
|
195
|
Abstract
The economic and scientific importance of the cereals has motivated a rich history of research into their genetics, development, and evolution. The nearly completed sequence of the rice genome is emblematic of a transition to high-throughput genomics and computational biology that has also pervaded study of many other cereals. The relatively close (ca. <50 million years old) relationships among morphologically diverse cereals native to environments that sample much of global geographic diversity make the cereals particularly attractive for comparative studies of plant genome evolution. Extensive germplasm resources, largely a byproduct of their economic importance, together with growing collections of defined mutants, provide foundations for a host of post-genomic studies to shed more light on the relationship between sequence and function in this important group. Using the rapidly growing capabilities of several informatics resources, genomic data from model cereals are likely to be leveraged tremendously in the study and improvement of a wide range of crop plants that sustain much of the world's population, including many which still lack primary genomic resources.
Collapse
Affiliation(s)
- Andrew H Paterson
- Plant Genome Mapping Laboratory, University of Georgia, Athens, Georgia 30602, USA.
| | | | | |
Collapse
|
196
|
Jackson BN, Aluru S, Schnable PS. Consensus genetic maps: a graph theoretic approach. PROCEEDINGS. IEEE COMPUTATIONAL SYSTEMS BIOINFORMATICS CONFERENCE 2006:35-43. [PMID: 16447960 DOI: 10.1109/csb.2005.26] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A genetic map is an ordering of genetic markers constructed from genetic linkage data for use in linkage studies and experimental design. While traditional methods have focused on constructing maps from a single population study, increasingly maps are generated for multiple lines and populations of the same organism. For example, in crop plants, where the genetic variability is high, researchers have created maps for many populations. In the face of these new data, we address the increasingly important problem of generating a consensus map - an ordering of all markers in the various population studies. In our method, each input map is treated as a partial order on a set of markers. To find the most consistent order shared between maps, we model the partial orders as directed graphs. We create an aggregate by merginging the transitive closure of the input graphs and taking the transitive reduction of the result. In this process, cycles may need to be broken to resolve inconsistencies between the inputs. The cycle breaking problem is NP-hard, but the problem size depends upon the scope of the inconsistency between the input graphs, which will be local if the input graphs are from closely related organisms. We present results of running the resulting software on maps generated from seven populations of the crop plant Zea Mays.
Collapse
Affiliation(s)
- Benjamin N Jackson
- Dept. of Electrical and Computer Engineering, Iowa State University, Ames, IA 50010, USA.
| | | | | |
Collapse
|
197
|
Wisser RJ, Balint-Kurti PJ, Nelson RJ. The genetic architecture of disease resistance in maize: a synthesis of published studies. PHYTOPATHOLOGY 2006; 96:120-9. [PMID: 18943914 DOI: 10.1094/phyto-96-0120] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
ABSTRACT Fifty publications on the mapping of maize disease resistance loci were synthesized. These papers reported the locations of 437 quantitative trait loci (QTL) for disease (dQTL), 17 resistance genes (R-genes), and 25 R-gene analogs. A set of rules was devised to enable the placement of these loci on a single consensus map, permitting analysis of the distribution of resistance loci identified across a variety of maize germplasm for a number of different diseases. The confidence intervals of the dQTL were distributed over all 10 chromosomes and covered 89% of the genetic map to which the data were anchored. Visual inspection indicated the presence of clusters of dQTL for multiple diseases. Clustering of dQTL was supported by statistical tests that took into account genome-wide variations in gene density. Several novel clusters of resistance loci were identified. Evidence was also found for the association of dQTL with maturity-related QTL. It was evident from the distinct dQTL distributions for the different diseases that certain breeding schemes may be more suitable for certain diseases. This review provides an up-to-date synthesis of reports on the locations of resistance loci in maize.
Collapse
|
198
|
Devos KM, Ma J, Pontaroli AC, Pratt LH, Bennetzen JL. Analysis and mapping of randomly chosen bacterial artificial chromosome clones from hexaploid bread wheat. Proc Natl Acad Sci U S A 2005; 102:19243-8. [PMID: 16357197 PMCID: PMC1323192 DOI: 10.1073/pnas.0509473102] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The current view of wheat genome composition is that genes are compartmentalized into gene-rich and gene-poor regions. This model can be tested by analyzing randomly selected bacterial artificial chromosome (BAC) clones for gene content, followed by placement of these BACs onto physical and genetic maps. Map localization could be difficult for BACs that consist entirely of repeated elements. We therefore developed a technique where repeat junctions are used to generate unique markers. Four BAC clones from hexaploid wheat variety Chinese Spring were randomly selected and sequenced at 4- to 6-fold redundancy. About 50% of the BAC sequences corresponded to previously identified repeats, mainly LTR-retrotransposons, whereas most of the remaining DNA consisted of sequences with unknown origin or function. The average gene content was <1%, although each BAC contained one or two identified genes. Repeat boundaries were amplified and used to map each clone to a chromosome arm. Extrapolation from wheat-rice comparative knowledge suggests that three of the four BAC clones originate from "gene-rich" regions of the wheat genome. Nevertheless, because these BACs carry only a single gene (two BACs) or two genes (one BAC), the predicted gene density is approximately 1 gene per 75 kb, which is considerably lower than previously estimated gene densities (one gene per 5-20 kb) for gene-rich regions in wheat. This analysis of randomly selected wheat BAC clones suggests that genes are more evenly distributed in wheat than previously believed and substantiates the need for large-scale random BAC sequencing to determine wheat genome organization.
Collapse
Affiliation(s)
- Katrien M Devos
- Department of Crop and Soil Sciences, University of Georgia, Athens, GA 30602, USA.
| | | | | | | | | |
Collapse
|
199
|
Anderson LK, Lai A, Stack SM, Rizzon C, Gaut BS. Uneven distribution of expressed sequence tag loci on maize pachytene chromosomes. Genome Res 2005; 16:115-22. [PMID: 16339046 PMCID: PMC1356135 DOI: 10.1101/gr.4249906] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Examining the relationships among DNA sequence, meiotic recombination, and chromosome structure at a genome-wide scale has been difficult because only a few markers connect genetic linkage maps with physical maps. Here, we have positioned 1195 genetically mapped expressed sequence tag (EST) markers onto the 10 pachytene chromosomes of maize by using a newly developed resource, the RN-cM map. The RN-cM map charts the distribution of crossing over in the form of recombination nodules (RNs) along synaptonemal complexes (SCs, pachytene chromosomes) and allows genetic cM distances to be converted into physical micrometer distances on chromosomes. When this conversion is made, most of the EST markers used in the study are located distally on the chromosomes in euchromatin. ESTs are significantly clustered on chromosomes, even when only euchromatic chromosomal segments are considered. Gene density and recombination rate (as measured by EST and RN frequencies, respectively) are strongly correlated. However, crossover frequencies for telomeric intervals are much higher than was expected from their EST frequencies. For pachytene chromosomes, EST density is about fourfold higher in euchromatin compared with heterochromatin, while DNA density is 1.4 times higher in heterochromatin than in euchromatin. Based on DNA density values and the fraction of pachytene chromosome length that is euchromatic, we estimate that approximately 1500 Mbp of the maize genome is in euchromatin. This overview of the organization of the maize genome will be useful in examining genome and chromosome evolution in plants.
Collapse
Affiliation(s)
- Lorinda K Anderson
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523, USA.
| | | | | | | | | |
Collapse
|
200
|
Bennetzen JL. Transposable elements, gene creation and genome rearrangement in flowering plants. Curr Opin Genet Dev 2005; 15:621-7. [PMID: 16219458 DOI: 10.1016/j.gde.2005.09.010] [Citation(s) in RCA: 227] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2005] [Accepted: 09/27/2005] [Indexed: 01/26/2023]
Abstract
Plant genome structure is largely derived from the differing specificities, abundances and activities of transposable elements. Recent studies indicate that both the amplification and the removal of transposons are rapid processes in plants, accounting for the general lack of intergenic homology between species that last shared a common ancestor more than 10 million years ago. Two newly discovered transposon varieties, Helitrons and Pack-MULEs, acquire and fuse fragments of plant genes, creating the raw material for the evolution of new genes and new genetic functions. Many of these recently assembled, chimeric gene-candidates are expressed, suggesting that some might escape epigenetic silencing and mutational decay, but a proven case of gene creation by any transposable element activity in plants remains to be demonstrated.
Collapse
|