151
|
McCarthy JK, Smith SR, McCrow JP, Tan M, Zheng H, Beeri K, Roth R, Lichtle C, Goodenough U, Bowler CP, Dupont CL, Allen AE. Nitrate Reductase Knockout Uncouples Nitrate Transport from Nitrate Assimilation and Drives Repartitioning of Carbon Flux in a Model Pennate Diatom. THE PLANT CELL 2017; 29:2047-2070. [PMID: 28765511 PMCID: PMC5590495 DOI: 10.1105/tpc.16.00910] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 06/06/2017] [Accepted: 07/29/2017] [Indexed: 05/03/2023]
Abstract
The ecological prominence of diatoms in the ocean environment largely results from their superior competitive ability for dissolved nitrate (NO3-). To investigate the cellular and genetic basis of diatom NO3- assimilation, we generated a knockout in the nitrate reductase gene (NR-KO) of the model pennate diatom Phaeodactylum tricornutum In NR-KO cells, N-assimilation was abolished although NO3- transport remained intact. Unassimilated NO3- accumulated in NR-KO cells, resulting in swelling and associated changes in biochemical composition and physiology. Elevated expression of genes encoding putative vacuolar NO3- chloride channel transporters plus electron micrographs indicating enlarged vacuoles suggested vacuolar storage of NO3- Triacylglycerol concentrations in the NR-KO cells increased immediately following the addition of NO3-, and these increases coincided with elevated gene expression of key triacylglycerol biosynthesis components. Simultaneously, induction of transcripts encoding proteins involved in thylakoid membrane lipid recycling suggested more abrupt repartitioning of carbon resources in NR-KO cells compared with the wild type. Conversely, ribosomal structure and photosystem genes were immediately deactivated in NR-KO cells following NO3- addition, followed within hours by deactivation of genes encoding enzymes for chlorophyll biosynthesis and carbon fixation and metabolism. N-assimilation pathway genes respond uniquely, apparently induced simultaneously by both NO3- replete and deplete conditions.
Collapse
Affiliation(s)
- James K McCarthy
- Microbial and Environmental Genomics, J. Craig Venter Institute, La Jolla, California 92037
| | - Sarah R Smith
- Microbial and Environmental Genomics, J. Craig Venter Institute, La Jolla, California 92037
- Integrative Oceanography Division, Scripps Institution of Oceanography, UC San Diego, La Jolla, California 92037
| | - John P McCrow
- Microbial and Environmental Genomics, J. Craig Venter Institute, La Jolla, California 92037
| | - Maxine Tan
- Microbial and Environmental Genomics, J. Craig Venter Institute, La Jolla, California 92037
| | - Hong Zheng
- Microbial and Environmental Genomics, J. Craig Venter Institute, La Jolla, California 92037
| | - Karen Beeri
- Microbial and Environmental Genomics, J. Craig Venter Institute, La Jolla, California 92037
| | - Robyn Roth
- Department of Biology, Washington University, St. Louis, Missouri 63130
| | - Christian Lichtle
- Institut de Biologie de l'École Normale Supérieure, École Normale Supérieure, Paris Sciences et Lettres Research University, CNRS UMR8197 INSERM U1024, 75005 Paris, France
| | - Ursula Goodenough
- Department of Biology, Washington University, St. Louis, Missouri 63130
| | - Chris P Bowler
- Institut de Biologie de l'École Normale Supérieure, École Normale Supérieure, Paris Sciences et Lettres Research University, CNRS UMR8197 INSERM U1024, 75005 Paris, France
| | - Christopher L Dupont
- Microbial and Environmental Genomics, J. Craig Venter Institute, La Jolla, California 92037
| | - Andrew E Allen
- Microbial and Environmental Genomics, J. Craig Venter Institute, La Jolla, California 92037
- Integrative Oceanography Division, Scripps Institution of Oceanography, UC San Diego, La Jolla, California 92037
| |
Collapse
|
152
|
Xue LL, Chen HH, Jiang JG. Implications of glycerol metabolism for lipid production. Prog Lipid Res 2017; 68:12-25. [PMID: 28778473 DOI: 10.1016/j.plipres.2017.07.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 07/06/2017] [Accepted: 07/31/2017] [Indexed: 12/13/2022]
Abstract
Triacylglycerol (TAG) is an important product in oil-producing organisms. Biosynthesis of TAG can be completed through either esterification of fatty acids to glycerol backbone, or through esterification of 2-monoacylglycerol. This review will focus on the former pathway in which two precursors, fatty acid and glycerol-3-phosphate (G3P), are required for TAG formation. Tremendous progress has been made about the enzymes or genes that regulate the biosynthetic pathway of TAG. However, much attention has been paid to the fatty acid provision and the esterification process, while the possible role of G3P is largely neglected. Glycerol is extensively studied on its usage as carbon source for value-added products, but the modification of glycerol metabolism, which is directly associated with G3P synthesis, is seldom recognized in lipid investigations. The relevance among glycerol metabolism, G3P synthesis and lipid production is described, and the role of G3P in glycerol metabolism and lipid production are discussed in detail with an emphasis on how G3P affects lipid production through the modulation of glycerol metabolism. Observations of lipid metabolic changes due to glycerol related disruption in mammals, plants, and microorganisms are introduced. Altering glycerol metabolism results in the changes of final lipid content. Possible regulatory mechanisms concerning the relationship between glycerol metabolism and lipid production are summarized.
Collapse
Affiliation(s)
- Lu-Lu Xue
- (a)College of Food and Bioengineering, South China University of Technology, Guangzhou 510640, China; (b)Industrial Crops Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Hao-Hong Chen
- (a)College of Food and Bioengineering, South China University of Technology, Guangzhou 510640, China
| | - Jian-Guo Jiang
- (a)College of Food and Bioengineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
153
|
Driver T, Trivedi DK, McIntosh OA, Dean AP, Goodacre R, Pittman JK. Two Glycerol-3-Phosphate Dehydrogenases from Chlamydomonas Have Distinct Roles in Lipid Metabolism. PLANT PHYSIOLOGY 2017; 174:2083-2097. [PMID: 28588114 PMCID: PMC5543956 DOI: 10.1104/pp.17.00491] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 06/04/2017] [Indexed: 05/03/2023]
Abstract
The metabolism of glycerol-3-phosphate (G3P) is important for environmental stress responses by eukaryotic microalgae. G3P is an essential precursor for glycerolipid synthesis and the accumulation of triacylglycerol (TAG) in response to nutrient starvation. G3P dehydrogenase (GPDH) mediates G3P synthesis, but the roles of specific GPDH isoforms are currently poorly understood. Of the five GPDH enzymes in the model alga Chlamydomonas reinhardtii, GPD2 and GPD3 were shown to be induced by nutrient starvation and/or salt stress. Heterologous expression of GPD2, a putative chloroplastic GPDH, and GPD3, a putative cytosolic GPDH, in a yeast gpd1Δ mutant demonstrated the functionality of both enzymes. C. reinhardtii knockdown mutants for GPD2 and GPD3 showed no difference in growth but displayed significant reduction in TAG concentration compared with the wild type in response to phosphorus or nitrogen starvation. Overexpression of GPD2 and GPD3 in C. reinhardtii gave distinct phenotypes. GPD2 overexpression lines showed only subtle metabolic phenotypes and no significant alteration in growth. In contrast, GPD3 overexpression lines displayed significantly inhibited growth and chlorophyll concentration, reduced glycerol concentration, and changes to lipid composition compared with the wild type, including increased abundance of phosphatidic acids but reduced abundance of diglycerides, triglycerides, and phosphatidylglycerol lipids. This may indicate a block in the downstream glycerolipid metabolism pathway in GPD3 overexpression lines. Thus, lipid engineering by GPDH modification may depend on the activities of other downstream enzyme steps. These results also suggest that GPD2 and GPD3 GPDH isoforms are important for nutrient starvation-induced TAG accumulation but have distinct metabolic functions.
Collapse
Affiliation(s)
- Thomas Driver
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Drupad K Trivedi
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester M1 7DN, United Kingdom
| | - Owen A McIntosh
- School of Earth and Environmental Sciences, Faculty of Science and Engineering, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Andrew P Dean
- School of Science and the Environment, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M1 5GD, United Kingdom
| | - Royston Goodacre
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester M1 7DN, United Kingdom
| | - Jon K Pittman
- School of Earth and Environmental Sciences, Faculty of Science and Engineering, University of Manchester, Manchester M13 9PT, United Kingdom
| |
Collapse
|
154
|
Voshall A, Kim EJ, Ma X, Yamasaki T, Moriyama EN, Cerutti H. miRNAs in the alga Chlamydomonas reinhardtii are not phylogenetically conserved and play a limited role in responses to nutrient deprivation. Sci Rep 2017; 7:5462. [PMID: 28710366 PMCID: PMC5511227 DOI: 10.1038/s41598-017-05561-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 05/30/2017] [Indexed: 12/17/2022] Open
Abstract
The unicellular alga Chlamydomonas reinhardtii contains many types of small RNAs (sRNAs) but the biological role(s) of bona fide microRNAs (miRNAs) remains unclear. To address their possible function(s) in responses to nutrient availability, we examined miRNA expression in cells cultured under different trophic conditions (mixotrophic in the presence of acetate or photoautotrophic in the presence or absence of nitrogen). We also reanalyzed miRNA expression data in Chlamydomonas subject to sulfur or phosphate deprivation. Several miRNAs were differentially expressed under the various trophic conditions. However, in transcriptome analyses, the majority of their predicted targets did not show expected changes in transcript abundance, suggesting that they are not subject to miRNA-mediated RNA degradation. Mutant strains, defective in sRNAs or in ARGONAUTE3 (a key component of sRNA-mediated gene silencing), did not display major phenotypic defects when grown under multiple nutritional regimes. Additionally, Chlamydomonas miRNAs were not conserved, even in algae of the closely related Volvocaceae family, and many showed features resembling those of recently evolved, species-specific miRNAs in the genus Arabidopsis. Our results suggest that, in C. reinhardtii, miRNAs might be subject to relatively fast evolution and have only a minor, largely modulatory role in gene regulation under diverse trophic states.
Collapse
Affiliation(s)
- Adam Voshall
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Eun-Jeong Kim
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Xinrong Ma
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Tomohito Yamasaki
- Division of Environmental Photobiology, National Institute for Basic Biology, Okazaki, Aichi Prefecture, Japan
| | - Etsuko N Moriyama
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Heriberto Cerutti
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA.
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska, USA.
| |
Collapse
|
155
|
Plouviez M, Wheeler D, Shilton A, Packer MA, McLenachan PA, Sanz-Luque E, Ocaña-Calahorro F, Fernández E, Guieysse B. The biosynthesis of nitrous oxide in the green alga Chlamydomonas reinhardtii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:45-56. [PMID: 28333392 DOI: 10.1111/tpj.13544] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 02/27/2017] [Accepted: 03/17/2017] [Indexed: 05/13/2023]
Abstract
Over the last decades, several studies have reported emissions of nitrous oxide (N2 O) from microalgal cultures and aquatic ecosystems characterized by a high level of algal activity (e.g. eutrophic lakes). As N2 O is a potent greenhouse gas and an ozone-depleting pollutant, these findings suggest that large-scale cultivation of microalgae (and possibly, natural eutrophic ecosystems) could have a significant environmental impact. Using the model unicellular microalga Chlamydomonas reinhardtii, this study was conducted to investigate the molecular basis of microalgal N2 O synthesis. We report that C. reinhardtii supplied with nitrite (NO2- ) under aerobic conditions can reduce NO2- into nitric oxide (NO) using either a mitochondrial cytochrome c oxidase (COX) or a dual enzymatic system of nitrate reductase (NR) and amidoxime-reducing component, and that NO is subsequently reduced into N2 O by the enzyme NO reductase (NOR). Based on experimental evidence and published literature, we hypothesize that when nitrate (NO3- ) is the main Nitrogen source and the intracellular concentration of NO2- is low (i.e. under physiological conditions), microalgal N2 O synthesis involves the reduction of NO3- to NO2- by NR followed by the reduction of NO2- to NO by the dual system involving NR. This microalgal N2 O pathway has broad implications for environmental science and algal biology because the pathway of NO3- assimilation is conserved among microalgae, and because its regulation may involve NO.
Collapse
Affiliation(s)
- Maxence Plouviez
- School of Engineering and Advanced Technology, Massey University, Private Bag 11222, Palmerston North, New Zealand
| | - David Wheeler
- Institute of Fundamental Sciences, Massey University, Private Bag 11222, Palmerston North, New Zealand
| | - Andy Shilton
- School of Engineering and Advanced Technology, Massey University, Private Bag 11222, Palmerston North, New Zealand
| | - Michael A Packer
- Cawthron Institute, 98 Halifax Street, Nelson, 7010, New Zealand
| | - Patricia A McLenachan
- Institute of Fundamental Sciences, Massey University, Private Bag 11222, Palmerston North, New Zealand
| | - Emanuel Sanz-Luque
- Department of Biochemistry and Molecular Biology, University of Cordoba, Campus de Rabanales, Campus de excelencia internacional (CeiA3), Edif. Severo Ochoa, Córdoba, 14071, Spain
| | - Francisco Ocaña-Calahorro
- Department of Biochemistry and Molecular Biology, University of Cordoba, Campus de Rabanales, Campus de excelencia internacional (CeiA3), Edif. Severo Ochoa, Córdoba, 14071, Spain
| | - Emilio Fernández
- Department of Biochemistry and Molecular Biology, University of Cordoba, Campus de Rabanales, Campus de excelencia internacional (CeiA3), Edif. Severo Ochoa, Córdoba, 14071, Spain
| | - Benoit Guieysse
- School of Engineering and Advanced Technology, Massey University, Private Bag 11222, Palmerston North, New Zealand
| |
Collapse
|
156
|
Ajjawi I, Verruto J, Aqui M, Soriaga LB, Coppersmith J, Kwok K, Peach L, Orchard E, Kalb R, Xu W, Carlson TJ, Francis K, Konigsfeld K, Bartalis J, Schultz A, Lambert W, Schwartz AS, Brown R, Moellering ER. Lipid production in Nannochloropsis gaditana is doubled by decreasing expression of a single transcriptional regulator. Nat Biotechnol 2017. [DOI: 10.1038/nbt.3865] [Citation(s) in RCA: 268] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
157
|
Siegler H, Valerius O, Ischebeck T, Popko J, Tourasse NJ, Vallon O, Khozin-Goldberg I, Braus GH, Feussner I. Analysis of the lipid body proteome of the oleaginous alga Lobosphaera incisa. BMC PLANT BIOLOGY 2017; 17:98. [PMID: 28587627 PMCID: PMC5461629 DOI: 10.1186/s12870-017-1042-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 05/22/2017] [Indexed: 05/03/2023]
Abstract
BACKGROUND Lobosphaera incisa (L. incisa) is an oleaginous microalga that stores triacylglycerol (TAG) rich in arachidonic acid in lipid bodies (LBs). This organelle is gaining attention in algal research, since evidence is accumulating that proteins attached to its surface fulfill important functions in TAG storage and metabolism. RESULTS Here, the composition of the LB proteome in L incisa was investigated by comparing different cell fractions in a semiquantitative proteomics approach. After applying stringent filters to the proteomics data in order to remove contaminating proteins from the list of possible LB proteins (LBPs), heterologous expression of candidate proteins in tobacco pollen tubes, allowed us to confirm 3 true LBPs: A member of the algal Major Lipid Droplet Protein family, a small protein of unknown function and a putative lipase. In addition, a TAG lipase that belongs to the SUGAR DEPENDENT 1 family of TAG lipases known from oilseed plants was identified. Its activity was verified by functional complementation of an Arabidopsis thaliana mutant lacking the major seed TAG lipases. CONCLUSIONS Here we describe 3 LBPs as well as a TAG lipase from the oleaginous microalga L. incisa and discuss their possible involvement in LB metabolism. This study highlights the importance of filtering LB proteome datasets and verifying the subcellular localization one by one, so that contaminating proteins can be recognized as such. Our dataset can serve as a valuable resource in the identification of additional LBPs, shedding more light on the intriguing roles of LBs in microalgae.
Collapse
Affiliation(s)
- Heike Siegler
- University of Goettingen, Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Biochemistry, Goettingen, Germany
| | - Oliver Valerius
- University of Goettingen, Institute for Microbiology and Genetics, Department of Molecular Microbiology and Genetics, Goettingen, Germany
| | - Till Ischebeck
- University of Goettingen, Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Biochemistry, Goettingen, Germany
| | - Jennifer Popko
- University of Goettingen, Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Biochemistry, Goettingen, Germany
| | - Nicolas J. Tourasse
- UMR7141, CNRS/Université Pierre et Marie Curie, Paris, France
- Present address: Laboratoire ARNA, INSERM U1212, CNRS UMR5320, Université Bordeaux 2; Institut Européen de Chimie et Biologie (IECB), 2 rue Robert Escarpit, 33607 Pessac, France
| | - Olivier Vallon
- UMR7141, CNRS/Université Pierre et Marie Curie, Paris, France
| | - Inna Khozin-Goldberg
- Ben-Gurion University of the Negev, Microalgal Biotechnology Laboratory, Beer-Sheva, Israel
| | - Gerhard H. Braus
- University of Goettingen, Institute for Microbiology and Genetics, Department of Molecular Microbiology and Genetics, Goettingen, Germany
- University of Goettingen, Goettingen Center for Molecular Biosciences (GZMB), Goettingen, Germany
| | - Ivo Feussner
- University of Goettingen, Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Biochemistry, Goettingen, Germany
- University of Goettingen, Goettingen Center for Molecular Biosciences (GZMB), Goettingen, Germany
- University of Goettingen, International Center for Advanced Studies of Energy Conversion (ICASEC), Goettingen, Germany
| |
Collapse
|
158
|
Morales-Sánchez D, Kim Y, Terng EL, Peterson L, Cerutti H. A multidomain enzyme, with glycerol-3-phosphate dehydrogenase and phosphatase activities, is involved in a chloroplastic pathway for glycerol synthesis in Chlamydomonas reinhardtii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:1079-1092. [PMID: 28273364 DOI: 10.1111/tpj.13530] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 02/06/2017] [Accepted: 02/28/2017] [Indexed: 05/20/2023]
Abstract
Understanding the unique features of algal metabolism may be necessary to realize the full potential of algae as feedstock for the production of biofuels and biomaterials. Under nitrogen deprivation, the green alga C. reinhardtii showed substantial triacylglycerol (TAG) accumulation and up-regulation of a gene, GPD2, encoding a multidomain enzyme with a putative phosphoserine phosphatase (PSP) motif fused to glycerol-3-phosphate dehydrogenase (GPD) domains. Canonical GPD enzymes catalyze the synthesis of glycerol-3-phosphate (G3P) by reduction of dihydroxyacetone phosphate (DHAP). G3P forms the backbone of TAGs and membrane glycerolipids and it can be dephosphorylated to yield glycerol, an osmotic stabilizer and compatible solute under hypertonic stress. Recombinant Chlamydomonas GPD2 showed both reductase and phosphatase activities in vitro and it can work as a bifunctional enzyme capable of synthesizing glycerol directly from DHAP. In addition, GPD2 and a gene encoding glycerol kinase were up-regulated in Chlamydomonas cells exposed to high salinity. RNA-mediated silencing of GPD2 revealed that the multidomain enzyme was required for TAG accumulation under nitrogen deprivation and for glycerol synthesis under high salinity. Moreover, a GPD2-mCherry fusion protein was found to localize to the chloroplast, supporting the existence of a GPD2-dependent plastid pathway for the rapid synthesis of glycerol in response to hyperosmotic stress. We hypothesize that the reductase and phosphatase activities of PSP-GPD multidomain enzymes may be modulated by post-translational modifications/mechanisms, allowing them to synthesize primarily G3P or glycerol depending on environmental conditions and/or metabolic demands in algal species of the core Chlorophytes.
Collapse
Affiliation(s)
- Daniela Morales-Sánchez
- School of Biological Sciences and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Yeongho Kim
- School of Biological Sciences and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Ee Leng Terng
- School of Biological Sciences and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Laura Peterson
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Heriberto Cerutti
- School of Biological Sciences and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| |
Collapse
|
159
|
Koo KM, Jung S, Lee BS, Kim JB, Jo YD, Choi HI, Kang SY, Chung GH, Jeong WJ, Ahn JW. The Mechanism of Starch Over-Accumulation in Chlamydomonas reinhardtii High-Starch Mutants Identified by Comparative Transcriptome Analysis. Front Microbiol 2017; 8:858. [PMID: 28588557 PMCID: PMC5440458 DOI: 10.3389/fmicb.2017.00858] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 04/27/2017] [Indexed: 11/24/2022] Open
Abstract
The focus of this study was the mechanism of starch accumulation in Chlamydomonas reinhardtii high-starch mutants. Three C. reinhardtii mutants showing high-starch content were generated using gamma irradiation. When grown under nitrogen-deficient conditions, these mutants had more than twice as much starch than a wild-type control. The mechanism of starch over-accumulation in these mutants was studied with comparative transcriptome analysis. In all mutants, induction of phosphoglucomutase 1 (PGM1) expression was detected; PGM1 catalyzes the inter-conversion of glucose 1-phosphate and glucose 6-phosphate in both starch biosynthetic and glycolytic pathway. Interestingly, transcript levels of phosphoglucose isomerase 1 (PGI1), fructose 1,6-bisphosphate aldolase 1 and 2 (FBA1 and FBA2) were down-regulated in all mutants; PGI1, FBA1, and FBA2 act on downstream of glucose 6-phosphate conversion in glycolytic pathway. Therefore, down-regulations of PGI1, FBA1, and FBA2 may lead to accumulation of upstream metabolites, notably glucose 6-phosphate, resulting in induction of PGM1 expression through feed-forward regulation and that PGM1 overexpression caused starch over-accumulation in mutants. These results suggest that PGI1, FBA1, FBA2, and PGM1 correlate with each other in terms of coordinated transcriptional regulation and play central roles for starch over-accumulation in C. reinhardtii.
Collapse
Affiliation(s)
- Kwang M Koo
- Advanced Radiation Technology Institute, Korea Atomic Energy Research InstituteJeongeup, South Korea.,Department of Biological Sciences, Chonbuk National UniversityJeonju, South Korea
| | - Sera Jung
- Advanced Radiation Technology Institute, Korea Atomic Energy Research InstituteJeongeup, South Korea
| | - Beom S Lee
- Advanced Radiation Technology Institute, Korea Atomic Energy Research InstituteJeongeup, South Korea
| | - Jin-Baek Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research InstituteJeongeup, South Korea
| | - Yeong D Jo
- Advanced Radiation Technology Institute, Korea Atomic Energy Research InstituteJeongeup, South Korea
| | - Hong-Il Choi
- Advanced Radiation Technology Institute, Korea Atomic Energy Research InstituteJeongeup, South Korea
| | - Si-Yong Kang
- Advanced Radiation Technology Institute, Korea Atomic Energy Research InstituteJeongeup, South Korea
| | - Gook-H Chung
- Department of Biological Sciences, Chonbuk National UniversityJeonju, South Korea
| | - Won-Joong Jeong
- Molecular Biofarming Research Center, Korea Research Institute of Bioscience and BiotechnologyDaejeon, South Korea
| | - Joon-Woo Ahn
- Advanced Radiation Technology Institute, Korea Atomic Energy Research InstituteJeongeup, South Korea
| |
Collapse
|
160
|
Esquível MG, Matos A.R, Marques Silva J. Rubisco mutants of Chlamydomonas reinhardtii display divergent photosynthetic parameters and lipid allocation. Appl Microbiol Biotechnol 2017; 101:5569-5580. [DOI: 10.1007/s00253-017-8322-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 04/19/2017] [Accepted: 04/29/2017] [Indexed: 11/29/2022]
|
161
|
Matthijs M, Fabris M, Obata T, Foubert I, Franco-Zorrilla JM, Solano R, Fernie AR, Vyverman W, Goossens A. The transcription factor bZIP14 regulates the TCA cycle in the diatom Phaeodactylum tricornutum. EMBO J 2017; 36:1559-1576. [PMID: 28420744 DOI: 10.15252/embj.201696392] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/14/2017] [Accepted: 03/15/2017] [Indexed: 11/09/2022] Open
Abstract
Diatoms are amongst the most important marine microalgae in terms of biomass, but little is known concerning the molecular mechanisms that regulate their versatile metabolism. Here, the pennate diatom Phaeodactylum tricornutum was studied at the metabolite and transcriptome level during nitrogen starvation and following imposition of three other stresses that impede growth. The coordinated upregulation of the tricarboxylic acid (TCA) cycle during the nitrogen stress response was the most striking observation. Through co-expression analysis and DNA binding assays, the transcription factor bZIP14 was identified as a regulator of the TCA cycle, also beyond the nitrogen starvation response, namely in diurnal regulation. Accordingly, metabolic and transcriptional shifts were observed upon overexpression of bZIP14 in transformed P. tricornutum cells. Our data indicate that the TCA cycle is a tightly regulated and important hub for carbon reallocation in the diatom cell during nutrient starvation and that bZIP14 is a conserved regulator of this cycle.
Collapse
Affiliation(s)
- Michiel Matthijs
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,Center for Plant Systems Biology, VIB, Ghent, Belgium.,Laboratory of Protistology and Aquatic Ecology, Department of Biology, Ghent University, Ghent, Belgium
| | - Michele Fabris
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,Center for Plant Systems Biology, VIB, Ghent, Belgium.,Laboratory of Protistology and Aquatic Ecology, Department of Biology, Ghent University, Ghent, Belgium
| | - Toshihiro Obata
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Imogen Foubert
- Research Unit Food & Lipids, Department of Molecular and Microbial Systems Kulak, Leuven Food Science and Nutrition Research Centre (LFoRCe), Kortrijk, Belgium
| | | | - Roberto Solano
- Genomics Unit, Centro Nacional de Biotecnología-CSIC, Madrid, Spain.,Department of Plant Molecular Genetics, Centro Nacional de Biotecnología-CSIC, Madrid, Spain
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Wim Vyverman
- Laboratory of Protistology and Aquatic Ecology, Department of Biology, Ghent University, Ghent, Belgium
| | - Alain Goossens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium .,Center for Plant Systems Biology, VIB, Ghent, Belgium
| |
Collapse
|
162
|
Gargouri M, Bates PD, Park JJ, Kirchhoff H, Gang DR. Functional photosystem I maintains proper energy balance during nitrogen depletion in Chlamydomonas reinhardtii, promoting triacylglycerol accumulation. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:89. [PMID: 28413444 PMCID: PMC5390395 DOI: 10.1186/s13068-017-0774-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 04/05/2017] [Indexed: 05/11/2023]
Abstract
BACKGROUND Nutrient deprivation causes significant stress to the unicellular microalga, Chlamydomonas reinhardtii, which responds by significantly altering its metabolic program. Following N deprivation, the accumulation of starch and triacylglycerols (TAGs) is significantly altered following massive reprogramming of cellular metabolism. One protein that was found to change dramatically and early to this stress was TAB2, a photosystem I (PSI) translation initiation factor, whose transcript and protein levels increased significantly after only 30 min of N deprivation. A detailed physiological and omics-based analysis of an insertional mutant of Chlamydomonas with reduced TAB2 function was conducted to determine what role the functional PSI plays in regulating the cellular response to N deprivation. RESULTS The tab2 mutant displayed increased acetate assimilation and elevated starch levels during the first 6 h of N deprivation, followed by a shift toward altered amino acid synthesis, reduced TAG content and altered fatty acid profiles. These results suggested a central role for PSI in controlling cellular metabolism and its implication in regulation of lipid/starch partitioning. Time course analyses of the tab2 mutant versus wild type under N-deprived versus N replete conditions revealed changes in the ATP/NADPH ratio and suggested that TAG biosynthesis may be associated with maintaining the redox state of the cell during N deprivation. The loss of ability to accumulate TAG in the tab2 mutant co-occurred with an up-regulation of photo-protective mechanisms, suggesting that the synthesis of TAG in the wild type occurs not only as a temporal energy sink, but also as a protective electron sink. CONCLUSIONS By exploiting the tab2 mutation in the cells of C. reinhardtii cultured under autotrophic, mixotrophic, and heterotrophic conditions during nitrogen replete growth and for the first 8 days of nitrogen deprivation, we showed that TAG accumulation and lipid/starch partitioning are dynamically regulated by alterations in PSI function, which concomitantly alters the immediate ATP/NADPH demand. This occurs even without removal of nitrogen from the medium, but sufficient external carbon must nevertheless be available. Efforts to increase lipid accumulation in algae such as Chlamydomonas need to consider carefully how the energy balance of the cell is involved in or affected by such efforts and that numerous layers of metabolic and genetic regulatory control are likely to interfere with such efforts to control oil biosynthesis. Such knowledge will enable synthetic biology approaches to alter the response to the N depletion stress, leading to rewiring of the regulatory networks so that lipid accumulation could be turned on in the absence of N deprivation, allowing for the development of algal production strains with highly enhanced lipid accumulation profiles.
Collapse
Affiliation(s)
- Mahmoud Gargouri
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164 USA
- Laboratory of Plant Molecular Physiology, Center of Biotechnology of Borj Cedria, P.O. Box 901, 2050 Hammam-Lif, Tunisia
| | - Philip D. Bates
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164 USA
- Department of Chemistry and Biochemistry, The University of Southern Mississippi, Hattiesburg, MS 39406 USA
| | - Jeong-Jin Park
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164 USA
| | - Helmut Kirchhoff
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164 USA
| | - David R. Gang
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164 USA
| |
Collapse
|
163
|
Shang C, Zhu S, Wang Z, Qin L, Alam MA, Xie J, Yuan Z. Proteome response of Dunaliella parva induced by nitrogen limitation. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.01.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
164
|
Moudříková Š, Nedbal L, Solovchenko A, Mojzeš P. Raman microscopy shows that nitrogen-rich cellular inclusions in microalgae are microcrystalline guanine. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.02.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
165
|
Degraeve-Guilbault C, Bréhélin C, Haslam R, Sayanova O, Marie-Luce G, Jouhet J, Corellou F. Glycerolipid Characterization and Nutrient Deprivation-Associated Changes in the Green Picoalga Ostreococcus tauri. PLANT PHYSIOLOGY 2017; 173:2060-2080. [PMID: 28235892 PMCID: PMC5373045 DOI: 10.1104/pp.16.01467] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 02/23/2017] [Indexed: 05/23/2023]
Abstract
The picoalga Ostreococcus tauri is a minimal photosynthetic eukaryote that has been used as a model system. O. tauri is known to efficiently produce docosahexaenoic acid (DHA). We provide a comprehensive study of the glycerolipidome of O. tauri and validate this species as model for related picoeukaryotes. O. tauri lipids displayed unique features that combined traits from the green and the chromalveolate lineages. The betaine lipid diacylglyceryl-hydroxymethyl-trimethyl-β-alanine and phosphatidyldimethylpropanethiol, both hallmarks of chromalveolates, were identified as presumed extraplastidial lipids. DHA was confined to these lipids, while plastidial lipids of prokaryotic type were characterized by the overwhelming presence of ω-3 C18 polyunsaturated fatty acids (FAs), 18:5 being restricted to galactolipids. C16:4, an FA typical of green microalgae galactolipids, also was a major component of O. tauri extraplastidial lipids, while the 16:4-coenzyme A (CoA) species was not detected. Triacylglycerols (TAGs) displayed the complete panel of FAs, and many species exhibited combinations of FAs diagnostic for plastidial and extraplastidial lipids. Importantly, under nutrient deprivation, 16:4 and ω-3 C18 polyunsaturated FAs accumulated into de novo synthesized TAGs while DHA-TAG species remained rather stable, indicating an increased contribution of FAs of plastidial origin to TAG synthesis. Nutrient deprivation further severely down-regulated the conversion of 18:3 to 18:4, resulting in obvious inversion of the 18:3/18:4 ratio in plastidial lipids, TAGs, as well as acyl-CoAs. The fine-tuned and dynamic regulation of the 18:3/18:4 ratio suggested an important physiological role of these FAs in photosynthetic membranes. Acyl position in structural and storage lipids together with acyl-CoA analysis further help to determine mechanisms possibly involved in glycerolipid synthesis.
Collapse
Affiliation(s)
- Charlotte Degraeve-Guilbault
- Laboratoire de Biogenèse Membranaire, Unité Mixte de Recherche 5200, Centre National de la Recherche Scientifique, Université de Bordeaux BP81, F-33882 Villenave D'Ornon, France (C.D.-G., C.B., G.M.-L., F.C.)
- Rothamsted Research, Biological, Chemistry, Harpenden AL5 2JQ, United Kingdom (R.H., O.S.); and
- Laboratoire de Biologie Cellulaire et Végétale, Unité Mixte de Recherche 5168, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Institut National de la Recherche Agronomique, Université Grenoble Alpes, BIG, Commissariat à l'Energie Atomique-Grenoble, 38054 Grenoble cedex 9, France (J.J.)
| | - Claire Bréhélin
- Laboratoire de Biogenèse Membranaire, Unité Mixte de Recherche 5200, Centre National de la Recherche Scientifique, Université de Bordeaux BP81, F-33882 Villenave D'Ornon, France (C.D.-G., C.B., G.M.-L., F.C.)
- Rothamsted Research, Biological, Chemistry, Harpenden AL5 2JQ, United Kingdom (R.H., O.S.); and
- Laboratoire de Biologie Cellulaire et Végétale, Unité Mixte de Recherche 5168, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Institut National de la Recherche Agronomique, Université Grenoble Alpes, BIG, Commissariat à l'Energie Atomique-Grenoble, 38054 Grenoble cedex 9, France (J.J.)
| | - Richard Haslam
- Laboratoire de Biogenèse Membranaire, Unité Mixte de Recherche 5200, Centre National de la Recherche Scientifique, Université de Bordeaux BP81, F-33882 Villenave D'Ornon, France (C.D.-G., C.B., G.M.-L., F.C.)
- Rothamsted Research, Biological, Chemistry, Harpenden AL5 2JQ, United Kingdom (R.H., O.S.); and
- Laboratoire de Biologie Cellulaire et Végétale, Unité Mixte de Recherche 5168, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Institut National de la Recherche Agronomique, Université Grenoble Alpes, BIG, Commissariat à l'Energie Atomique-Grenoble, 38054 Grenoble cedex 9, France (J.J.)
| | - Olga Sayanova
- Laboratoire de Biogenèse Membranaire, Unité Mixte de Recherche 5200, Centre National de la Recherche Scientifique, Université de Bordeaux BP81, F-33882 Villenave D'Ornon, France (C.D.-G., C.B., G.M.-L., F.C.)
- Rothamsted Research, Biological, Chemistry, Harpenden AL5 2JQ, United Kingdom (R.H., O.S.); and
- Laboratoire de Biologie Cellulaire et Végétale, Unité Mixte de Recherche 5168, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Institut National de la Recherche Agronomique, Université Grenoble Alpes, BIG, Commissariat à l'Energie Atomique-Grenoble, 38054 Grenoble cedex 9, France (J.J.)
| | - Glawdys Marie-Luce
- Laboratoire de Biogenèse Membranaire, Unité Mixte de Recherche 5200, Centre National de la Recherche Scientifique, Université de Bordeaux BP81, F-33882 Villenave D'Ornon, France (C.D.-G., C.B., G.M.-L., F.C.)
- Rothamsted Research, Biological, Chemistry, Harpenden AL5 2JQ, United Kingdom (R.H., O.S.); and
- Laboratoire de Biologie Cellulaire et Végétale, Unité Mixte de Recherche 5168, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Institut National de la Recherche Agronomique, Université Grenoble Alpes, BIG, Commissariat à l'Energie Atomique-Grenoble, 38054 Grenoble cedex 9, France (J.J.)
| | - Juliette Jouhet
- Laboratoire de Biogenèse Membranaire, Unité Mixte de Recherche 5200, Centre National de la Recherche Scientifique, Université de Bordeaux BP81, F-33882 Villenave D'Ornon, France (C.D.-G., C.B., G.M.-L., F.C.)
- Rothamsted Research, Biological, Chemistry, Harpenden AL5 2JQ, United Kingdom (R.H., O.S.); and
- Laboratoire de Biologie Cellulaire et Végétale, Unité Mixte de Recherche 5168, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Institut National de la Recherche Agronomique, Université Grenoble Alpes, BIG, Commissariat à l'Energie Atomique-Grenoble, 38054 Grenoble cedex 9, France (J.J.)
| | - Florence Corellou
- Laboratoire de Biogenèse Membranaire, Unité Mixte de Recherche 5200, Centre National de la Recherche Scientifique, Université de Bordeaux BP81, F-33882 Villenave D'Ornon, France (C.D.-G., C.B., G.M.-L., F.C.);
- Rothamsted Research, Biological, Chemistry, Harpenden AL5 2JQ, United Kingdom (R.H., O.S.); and
- Laboratoire de Biologie Cellulaire et Végétale, Unité Mixte de Recherche 5168, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Institut National de la Recherche Agronomique, Université Grenoble Alpes, BIG, Commissariat à l'Energie Atomique-Grenoble, 38054 Grenoble cedex 9, France (J.J.)
| |
Collapse
|
166
|
Guan X, Okazaki Y, Lithio A, Li L, Zhao X, Jin H, Nettleton D, Saito K, Nikolau BJ. Discovery and Characterization of the 3-Hydroxyacyl-ACP Dehydratase Component of the Plant Mitochondrial Fatty Acid Synthase System. PLANT PHYSIOLOGY 2017; 173:2010-2028. [PMID: 28202596 PMCID: PMC5373057 DOI: 10.1104/pp.16.01732] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 02/08/2017] [Indexed: 05/06/2023]
Abstract
We report the characterization of the Arabidopsis (Arabidopsis thaliana) 3-hydroxyacyl-acyl carrier protein dehydratase (mtHD) component of the mitochondrial fatty acid synthase (mtFAS) system, encoded by AT5G60335. The mitochondrial localization and catalytic capability of mtHD were demonstrated with a green fluorescent protein transgenesis experiment and by in vivo complementation and in vitro enzymatic assays. RNA interference (RNAi) knockdown lines with reduced mtHD expression exhibit traits typically associated with mtFAS mutants, namely a miniaturized morphological appearance, reduced lipoylation of lipoylated proteins, and altered metabolomes consistent with the reduced catalytic activity of lipoylated enzymes. These alterations are reversed when mthd-rnai mutant plants are grown in a 1% CO2 atmosphere, indicating the link between mtFAS and photorespiratory deficiency due to the reduced lipoylation of glycine decarboxylase. In vivo biochemical feeding experiments illustrate that sucrose and glycolate are the metabolic modulators that mediate the alterations in morphology and lipid accumulation. In addition, both mthd-rnai and mtkas mutants exhibit reduced accumulation of 3-hydroxytetradecanoic acid (i.e. a hallmark of lipid A-like molecules) and abnormal chloroplastic starch granules; these changes are not reversible by the 1% CO2 atmosphere, demonstrating two novel mtFAS functions that are independent of photorespiration. Finally, RNA sequencing analysis revealed that mthd-rnai and mtkas mutants are nearly equivalent to each other in altering the transcriptome, and these analyses further identified genes whose expression is affected by a functional mtFAS system but independent of photorespiratory deficiency. These data demonstrate the nonredundant nature of the mtFAS system, which contributes unique lipid components needed to support plant cell structure and metabolism.
Collapse
MESH Headings
- Amino Acid Sequence
- Arabidopsis/enzymology
- Arabidopsis/genetics
- Arabidopsis Proteins/genetics
- Arabidopsis Proteins/metabolism
- Blotting, Western
- Carbon Dioxide/metabolism
- Fatty Acid Synthase, Type II/genetics
- Fatty Acid Synthase, Type II/metabolism
- Fatty Acid Synthases/genetics
- Fatty Acid Synthases/metabolism
- Gene Expression Regulation, Plant
- Glycolates/metabolism
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Hydro-Lyases/genetics
- Hydro-Lyases/metabolism
- Metabolomics/methods
- Microscopy, Confocal
- Microscopy, Electron, Transmission
- Mitochondria/enzymology
- Mitochondria/ultrastructure
- Mutation
- Myristic Acids/metabolism
- Plants, Genetically Modified
- RNA Interference
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Analysis, RNA/methods
- Sequence Homology, Amino Acid
- Sucrose/metabolism
Collapse
Affiliation(s)
- Xin Guan
- Department of Biochemistry, Biophysics, and Molecular Biology (X.G., H.J., B.J.N.), National Science Foundation Engineering Research Center for Biorenewable Chemicals (X.G., B.J.N.), Department of Statistics (A.L., D.N.), Department of Genetics, Development, and Cellular Biology (L.L.), Laurence H. Baker Center for Bioinformatics and Biological Statistics (X.Z.), and Center for Metabolic Biology (B.J.N.), Iowa State University, Ames, Iowa 50011
- Metabolomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan (Y.O., K.S.); and
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan (K.S.)
| | - Yozo Okazaki
- Department of Biochemistry, Biophysics, and Molecular Biology (X.G., H.J., B.J.N.), National Science Foundation Engineering Research Center for Biorenewable Chemicals (X.G., B.J.N.), Department of Statistics (A.L., D.N.), Department of Genetics, Development, and Cellular Biology (L.L.), Laurence H. Baker Center for Bioinformatics and Biological Statistics (X.Z.), and Center for Metabolic Biology (B.J.N.), Iowa State University, Ames, Iowa 50011
- Metabolomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan (Y.O., K.S.); and
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan (K.S.)
| | - Andrew Lithio
- Department of Biochemistry, Biophysics, and Molecular Biology (X.G., H.J., B.J.N.), National Science Foundation Engineering Research Center for Biorenewable Chemicals (X.G., B.J.N.), Department of Statistics (A.L., D.N.), Department of Genetics, Development, and Cellular Biology (L.L.), Laurence H. Baker Center for Bioinformatics and Biological Statistics (X.Z.), and Center for Metabolic Biology (B.J.N.), Iowa State University, Ames, Iowa 50011
- Metabolomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan (Y.O., K.S.); and
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan (K.S.)
| | - Ling Li
- Department of Biochemistry, Biophysics, and Molecular Biology (X.G., H.J., B.J.N.), National Science Foundation Engineering Research Center for Biorenewable Chemicals (X.G., B.J.N.), Department of Statistics (A.L., D.N.), Department of Genetics, Development, and Cellular Biology (L.L.), Laurence H. Baker Center for Bioinformatics and Biological Statistics (X.Z.), and Center for Metabolic Biology (B.J.N.), Iowa State University, Ames, Iowa 50011
- Metabolomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan (Y.O., K.S.); and
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan (K.S.)
| | - Xuefeng Zhao
- Department of Biochemistry, Biophysics, and Molecular Biology (X.G., H.J., B.J.N.), National Science Foundation Engineering Research Center for Biorenewable Chemicals (X.G., B.J.N.), Department of Statistics (A.L., D.N.), Department of Genetics, Development, and Cellular Biology (L.L.), Laurence H. Baker Center for Bioinformatics and Biological Statistics (X.Z.), and Center for Metabolic Biology (B.J.N.), Iowa State University, Ames, Iowa 50011
- Metabolomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan (Y.O., K.S.); and
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan (K.S.)
| | - Huanan Jin
- Department of Biochemistry, Biophysics, and Molecular Biology (X.G., H.J., B.J.N.), National Science Foundation Engineering Research Center for Biorenewable Chemicals (X.G., B.J.N.), Department of Statistics (A.L., D.N.), Department of Genetics, Development, and Cellular Biology (L.L.), Laurence H. Baker Center for Bioinformatics and Biological Statistics (X.Z.), and Center for Metabolic Biology (B.J.N.), Iowa State University, Ames, Iowa 50011
- Metabolomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan (Y.O., K.S.); and
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan (K.S.)
| | - Dan Nettleton
- Department of Biochemistry, Biophysics, and Molecular Biology (X.G., H.J., B.J.N.), National Science Foundation Engineering Research Center for Biorenewable Chemicals (X.G., B.J.N.), Department of Statistics (A.L., D.N.), Department of Genetics, Development, and Cellular Biology (L.L.), Laurence H. Baker Center for Bioinformatics and Biological Statistics (X.Z.), and Center for Metabolic Biology (B.J.N.), Iowa State University, Ames, Iowa 50011
- Metabolomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan (Y.O., K.S.); and
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan (K.S.)
| | - Kazuki Saito
- Department of Biochemistry, Biophysics, and Molecular Biology (X.G., H.J., B.J.N.), National Science Foundation Engineering Research Center for Biorenewable Chemicals (X.G., B.J.N.), Department of Statistics (A.L., D.N.), Department of Genetics, Development, and Cellular Biology (L.L.), Laurence H. Baker Center for Bioinformatics and Biological Statistics (X.Z.), and Center for Metabolic Biology (B.J.N.), Iowa State University, Ames, Iowa 50011
- Metabolomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan (Y.O., K.S.); and
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan (K.S.)
| | - Basil J Nikolau
- Department of Biochemistry, Biophysics, and Molecular Biology (X.G., H.J., B.J.N.), National Science Foundation Engineering Research Center for Biorenewable Chemicals (X.G., B.J.N.), Department of Statistics (A.L., D.N.), Department of Genetics, Development, and Cellular Biology (L.L.), Laurence H. Baker Center for Bioinformatics and Biological Statistics (X.Z.), and Center for Metabolic Biology (B.J.N.), Iowa State University, Ames, Iowa 50011;
- Metabolomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan (Y.O., K.S.); and
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan (K.S.)
| |
Collapse
|
167
|
Responses of the picoprasinophyte Micromonas commoda to light and ultraviolet stress. PLoS One 2017; 12:e0172135. [PMID: 28278262 PMCID: PMC5344333 DOI: 10.1371/journal.pone.0172135] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Accepted: 01/31/2017] [Indexed: 11/19/2022] Open
Abstract
Micromonas is a unicellular marine green alga that thrives from tropical to polar ecosystems. We investigated the growth and cellular characteristics of acclimated mid-exponential phase Micromonas commoda RCC299 over multiple light levels and over the diel cycle (14:10 hour light:dark). We also exposed the light:dark acclimated M. commoda to experimental shifts from moderate to high light (HL), and to HL plus ultraviolet radiation (HL+UV), 4.5 hours into the light period. Cellular responses of this prasinophyte were quantified by flow cytometry and changes in gene expression by qPCR and RNA-seq. While proxies for chlorophyll a content and cell size exhibited similar diel variations in HL and controls, with progressive increases during day and decreases at night, both parameters sharply decreased after the HL+UV shift. Two distinct transcriptional responses were observed among chloroplast genes in the light shift experiments: i) expression of transcription and translation-related genes decreased over the time course, and this transition occurred earlier in treatments than controls; ii) expression of several photosystem I and II genes increased in HL relative to controls, as did the growth rate within the same diel period. However, expression of these genes decreased in HL+UV, likely as a photoprotective mechanism. RNA-seq also revealed two genes in the chloroplast genome, ycf2-like and ycf1-like, that had not previously been reported. The latter encodes the second largest chloroplast protein in Micromonas and has weak homology to plant Ycf1, an essential component of the plant protein translocon. Analysis of several nuclear genes showed that the expression of LHCSR2, which is involved in non-photochemical quenching, and five light-harvesting-like genes, increased 30 to >50-fold in HL+UV, but was largely unchanged in HL and controls. Under HL alone, a gene encoding a novel nitrite reductase fusion protein (NIRFU) increased, possibly reflecting enhanced N-assimilation under the 625 μmol photons m-2 s-1 supplied in the HL treatment. NIRFU’s domain structure suggests it may have more efficient electron transfer than plant NIR proteins. Our analyses indicate that Micromonas can readily respond to abrupt environmental changes, such that strong photoinhibition was provoked by combined exposure to HL and UV, but a ca. 6-fold increase in light was stimulatory.
Collapse
|
168
|
Lin Z, Wang Z, Zhang X, Liu Z, Li G, Wang S, Ding Y. Complementary Proteome and Transcriptome Profiling in Developing Grains of a Notched-Belly Rice Mutant Reveals Key Pathways Involved in Chalkiness Formation. PLANT & CELL PHYSIOLOGY 2017; 58:560-573. [PMID: 28158863 PMCID: PMC5444571 DOI: 10.1093/pcp/pcx001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 01/02/2017] [Indexed: 05/03/2023]
Abstract
Rice grain chalkiness is a highly complex trait involved in multiple metabolic pathways and controlled by polygenes and growth conditions. To uncover novel aspects of chalkiness formation, we performed an integrated profiling of gene activity in the developing grains of a notched-belly rice mutant. Using exhaustive tandem mass spectrometry-based shotgun proteomics and whole-genome RNA sequencing to generate a nearly complete catalog of expressed mRNAs and proteins, we reliably identified 38,476 transcripts and 3,840 proteins. Comparison between the translucent part and chalky part of the notched-belly grains resulted in only a few differently express genes (240) and differently express proteins (363), thus making it possible to focus on 'core' genes or common pathways. Several novel key pathways were identified as of relevance to chalkiness formation, in particular the shift of C and N metabolism, the down-regulation of ribosomal proteins and the resulting low abundance of storage proteins especially the 13 kDa prolamin subunit, and the suppressed photosynthetic capacity in the pericarp of the chalky part. Further, genes and proteins as transporters for carbohydrates, amino acid/peptides, proteins, lipids and inorganic ions showed an increasing expression pattern in the chalky part of the notched-belly grains. Similarly, transcripts and proteins of receptors for auxin, ABA, ethylene and brassinosteroid were also up-regulated. In summary, this joint analysis of transcript and protein profiles provides a comprehensive reference map of gene activity regarding the physiological state in the chalky endosperm.
Collapse
Affiliation(s)
- Zhaomiao Lin
- College of Agronomy, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zunxin Wang
- College of Agronomy, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xincheng Zhang
- College of Agronomy, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zhenghui Liu
- College of Agronomy, Nanjing Agricultural University, Nanjing 210095, PR China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing 210095, PR China
- Corresponding author: E-mail, ; Fax, +86-25-84395313
| | - Ganghua Li
- College of Agronomy, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Shaohua Wang
- College of Agronomy, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yanfeng Ding
- College of Agronomy, Nanjing Agricultural University, Nanjing 210095, PR China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing 210095, PR China
| |
Collapse
|
169
|
Garibay-Hernández A, Barkla BJ, Vera-Estrella R, Martinez A, Pantoja O. Membrane Proteomic Insights into the Physiology and Taxonomy of an Oleaginous Green Microalga. PLANT PHYSIOLOGY 2017; 173:390-416. [PMID: 27837088 PMCID: PMC5210721 DOI: 10.1104/pp.16.01240] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 11/03/2016] [Indexed: 05/22/2023]
Abstract
Ettlia oleoabundans is a nonsequenced oleaginous green microalga. Despite the significant biotechnological interest in producing value-added compounds from the acyl lipids of this microalga, a basic understanding of the physiology and biochemistry of oleaginous microalgae is lacking, especially under nitrogen deprivation conditions known to trigger lipid accumulation. Using an RNA sequencing-based proteomics approach together with manual annotation, we are able to provide, to our knowledge, the first membrane proteome of an oleaginous microalga. This approach allowed the identification of novel proteins in E. oleoabundans, including two photoprotection-related proteins, Photosystem II Subunit S and Maintenance of Photosystem II under High Light1, which were considered exclusive to higher photosynthetic organisms, as well as Retinitis Pigmentosa Type 2-Clathrin Light Chain, a membrane protein with a novel domain architecture. Free-flow zonal electrophoresis of microalgal membranes coupled to liquid chromatography-tandem mass spectrometry proved to be a useful technique for determining the intracellular location of proteins of interest. Carbon-flow compartmentalization in E. oleoabundans was modeled using this information. Molecular phylogenetic analyses of protein markers and 18S ribosomal DNA support the reclassification of E. oleoabundans within the trebouxiophycean microalgae, rather than with the Chlorophyceae class, in which it is currently classified, indicating that it may not be closely related to the model green alga Chlamydomonas reinhardtii A detailed survey of biological processes taking place in the membranes of nitrogen-deprived E. oleoabundans, including lipid metabolism, provides insights into the basic biology of this nonmodel organism.
Collapse
Affiliation(s)
- Adriana Garibay-Hernández
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210 Mexico (A.G.-H., R.V.-E., A.M., O.P.); and
- Southern Cross Plant Science, Southern Cross University, Lismore, 2480 New South Wales, Australia (B.J.B.)
| | - Bronwyn J Barkla
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210 Mexico (A.G.-H., R.V.-E., A.M., O.P.); and
- Southern Cross Plant Science, Southern Cross University, Lismore, 2480 New South Wales, Australia (B.J.B.)
| | - Rosario Vera-Estrella
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210 Mexico (A.G.-H., R.V.-E., A.M., O.P.); and
- Southern Cross Plant Science, Southern Cross University, Lismore, 2480 New South Wales, Australia (B.J.B.)
| | - Alfredo Martinez
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210 Mexico (A.G.-H., R.V.-E., A.M., O.P.); and
- Southern Cross Plant Science, Southern Cross University, Lismore, 2480 New South Wales, Australia (B.J.B.)
| | - Omar Pantoja
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210 Mexico (A.G.-H., R.V.-E., A.M., O.P.); and
- Southern Cross Plant Science, Southern Cross University, Lismore, 2480 New South Wales, Australia (B.J.B.)
| |
Collapse
|
170
|
Roustan V, Bakhtiari S, Roustan PJ, Weckwerth W. Quantitative in vivo phosphoproteomics reveals reversible signaling processes during nitrogen starvation and recovery in the biofuel model organism Chlamydomonas reinhardtii. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:280. [PMID: 29209414 PMCID: PMC5704542 DOI: 10.1186/s13068-017-0949-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 11/01/2017] [Indexed: 05/22/2023]
Abstract
BACKGROUND Nitrogen deprivation and replenishment induces massive changes at the physiological and molecular level in the green alga Chlamydomonas reinhardtii, including reversible starch and lipid accumulation. Stress signal perception and acclimation involves transient protein phosphorylation. This study aims to provide the first experimental phosphoprotein dataset for the adaptation of C. reinhardtii during nitrogen depletion and recovery growth phases and its impact on lipid accumulation. RESULTS To decipher the signaling pathways involved in this dynamic process, we applied a label-free in vivo shotgun phosphoproteomics analysis on nitrogen-depleted and recovered samples. 1227 phosphopeptides belonging to 732 phosphoproteins were identified and quantified. 470 phosphopeptides showed a significant change across the experimental set-up. Multivariate statistics revealed the reversible phosphorylation process and the time/condition-dependent dynamic rearrangement of the phosphoproteome. Protein-protein interaction analysis of differentially regulated phosphoproteins identified protein kinases and phosphatases, such as DYRKP and an AtGRIK1 orthologue, called CDPKK2, as central players in the coordination of translational, photosynthetic, proteomic and metabolomic activity. Phosphorylation of RPS6, ATG13, and NNK1 proteins points toward a specific regulation of the TOR pathway under nitrogen deprivation. Differential phosphorylation pattern of several eukaryotic initiation factor proteins (EIF) suggests a major control on protein translation and turnover. CONCLUSION This work provides the first phosphoproteomics dataset obtained for Chlamydomonas responses to nitrogen availability, revealing multifactorial signaling pathways and their regulatory function for biofuel production. The reproducibility of the experimental set-up allows direct comparison with proteomics and metabolomics datasets and refines therefore the current model of Chlamydomonas acclimation to various nitrogen levels. Integration of physiological, proteomics, metabolomics, and phosphoproteomics data reveals three phases of acclimation to N availability: (i) a rapid response triggering starch accumulation as well as energy metabolism while chloroplast structure is conserved followed by (ii) chloroplast degradation combined with cell autophagy and lipid accumulation and finally (iii) chloroplast regeneration and cell growth activation after nitrogen replenishment. Plastid development seems to be further interconnected with primary metabolism and energy stress signaling in order to coordinate cellular mechanism to nitrogen availability stress.
Collapse
Affiliation(s)
- Valentin Roustan
- Department of Ecogenomics and Systems Biology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Shiva Bakhtiari
- Department of Ecogenomics and Systems Biology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Pierre-Jean Roustan
- Department of Ecogenomics and Systems Biology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Wolfram Weckwerth
- Department of Ecogenomics and Systems Biology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
- Vienna Metabolomics Center (VIME), University of Vienna, Vienna, Austria
| |
Collapse
|
171
|
Zhang H, Mittal N, Leamy LJ, Barazani O, Song B. Back into the wild-Apply untapped genetic diversity of wild relatives for crop improvement. Evol Appl 2017; 10:5-24. [PMID: 28035232 PMCID: PMC5192947 DOI: 10.1111/eva.12434] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 09/07/2016] [Indexed: 12/18/2022] Open
Abstract
Deleterious effects of climate change and human activities, as well as diverse environmental stresses, present critical challenges to food production and the maintenance of natural diversity. These challenges may be met by the development of novel crop varieties with increased biotic or abiotic resistance that enables them to thrive in marginal lands. However, considering the diverse interactions between crops and environmental factors, it is surprising that evolutionary principles have been underexploited in addressing these food and environmental challenges. Compared with domesticated cultivars, crop wild relatives (CWRs) have been challenged in natural environments for thousands of years and maintain a much higher level of genetic diversity. In this review, we highlight the significance of CWRs for crop improvement by providing examples of CWRs that have been used to increase biotic and abiotic stress resistance/tolerance and overall yield in various crop species. We also discuss the surge of advanced biotechnologies, such as next-generation sequencing technologies and omics, with particular emphasis on how they have facilitated gene discovery in CWRs. We end the review by discussing the available resources and conservation of CWRs, including the urgent need for CWR prioritization and collection to ensure continuous crop improvement for food sustainability.
Collapse
Affiliation(s)
- Hengyou Zhang
- Department of Biological SciencesUniversity of North Carolina at CharlotteCharlotteNCUSA
| | - Neha Mittal
- Department of Biological SciencesUniversity of North Carolina at CharlotteCharlotteNCUSA
| | - Larry J. Leamy
- Department of Biological SciencesUniversity of North Carolina at CharlotteCharlotteNCUSA
| | - Oz Barazani
- The Institute for Plant SciencesIsrael Plant Gene BankAgricultural Research OrganizationBet DaganIsrael
| | - Bao‐Hua Song
- Department of Biological SciencesUniversity of North Carolina at CharlotteCharlotteNCUSA
| |
Collapse
|
172
|
van Lis R, Popek M, Couté Y, Kosta A, Drapier D, Nitschke W, Atteia A. Concerted Up-regulation of Aldehyde/Alcohol Dehydrogenase (ADHE) and Starch in Chlamydomonas reinhardtii Increases Survival under Dark Anoxia. J Biol Chem 2016; 292:2395-2410. [PMID: 28007962 DOI: 10.1074/jbc.m116.766048] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 12/21/2016] [Indexed: 11/06/2022] Open
Abstract
Aldehyde/alcohol dehydrogenases (ADHEs) are bifunctional enzymes that commonly produce ethanol from acetyl-CoA with acetaldehyde as intermediate and play a key role in anaerobic redox balance in many fermenting bacteria. ADHEs are also present in photosynthetic unicellular eukaryotes, where their physiological role and regulation are, however, largely unknown. Herein we provide the first molecular and enzymatic characterization of the ADHE from the photosynthetic microalga Chlamydomonas reinhardtii Purified recombinant ADHE catalyzed the reversible NADH-mediated interconversions of acetyl-CoA, acetaldehyde, and ethanol but seemed to be poised toward the production of ethanol from acetaldehyde. Phylogenetic analysis of the algal fermentative enzyme supports a vertical inheritance from a cyanobacterial-related ancestor. ADHE was located in the chloroplast, where it associated in dimers and higher order oligomers. Electron microscopy analysis of ADHE-enriched stromal fractions revealed fine spiral structures, similar to bacterial ADHE spirosomes. Protein blots showed that ADHE is regulated under oxic conditions. Up-regulation is observed in cells exposed to diverse physiological stresses, including zinc deficiency, nitrogen starvation, and inhibition of carbon concentration/fixation capacity. Analyses of the overall proteome and fermentation profiles revealed that cells with increased ADHE abundance exhibit better survival under dark anoxia. This likely relates to the fact that greater ADHE abundance appeared to coincide with enhanced starch accumulation, which might reflect ADHE-mediated anticipation of anaerobic survival.
Collapse
Affiliation(s)
- Robert van Lis
- From the Aix Marseille Université, CNRS, BIP-UMR 7281, 13402 Marseille, France.,LBE, INRA, 11100 Narbonne, France
| | - Marion Popek
- From the Aix Marseille Université, CNRS, BIP-UMR 7281, 13402 Marseille, France
| | - Yohann Couté
- the Université Grenoble Alpes, BIG-BGE, 38000 Grenoble, France.,the Commissariat à l'Energie Atomique, BIG-BGE, 38000 Grenoble, France.,INSERM, BGE, 38000 Grenoble, France
| | - Artemis Kosta
- the Microscopy Core Facility, FR3479 Institut de Microbiologie de la Méditerranée, 13402 Marseille cedex 20, France, and
| | - Dominique Drapier
- the Institut de Biologie Physico-Chimique, UMR7141 CNRS-UPMC, 75005 Paris, France
| | - Wolfgang Nitschke
- From the Aix Marseille Université, CNRS, BIP-UMR 7281, 13402 Marseille, France
| | - Ariane Atteia
- From the Aix Marseille Université, CNRS, BIP-UMR 7281, 13402 Marseille, France,
| |
Collapse
|
173
|
Reinecke DL, Zarka A, Leu S, Boussiba S. Cloning, molecular characterization, and phylogeny of two evolutionary distinct glutamine synthetase isoforms in the green microalga Haematococcus pluvialis (Chlorophyceae). JOURNAL OF PHYCOLOGY 2016; 52:961-972. [PMID: 27402429 DOI: 10.1111/jpy.12444] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 05/19/2016] [Indexed: 06/06/2023]
Abstract
Haematococcus pluvialis (Chlorophyta) is a widely used microalga of great economic potential, yet its molecular genetics and evolution are largely unknown. We present new detailed molecular and phylogenetic analysis of two glutamine synthetase (GS) enzymes and genes (gln) under the Astaxanthin-inducing conditions of light- and nitrogen-stress. Structure analysis identified key residues and confirmed two decameric GS2 holoenzymes, a cytoplasmic enzyme, termed GS2c , and a plastidic form, termed GS2p , due to chloroplast-transit peptides at its N-terminus. Gene expression analysis showed dissociation of mRNA, protein, and enzyme activity levels for both GS2 under different growth conditions, indicating the strong post-transcriptional regulation. Data-mining identified novel and specified published gln genes from Prasinophyceae, Chlorophyta, Trebouxiophyceae, Charophyceae, Bryophyta, Lycopodiophyta, Spermatophyta, and Rhodophyta. Phylogenetic analysis found homologues to the cytosolic GS2c of H. pluvialis in all other photo- and non-photosynthetic Eukaryota. The chloroplastic GS2p was restricted to Chlorophyta, Bryophyta, some Proteobacteria and Fungii; no homologues were identified in Spermatophyta or other Eukaryota. This indicates two independent prokaryotic donors for these two gln genes in H. pluvialis. Combined phylogenetic analysis of GS, chl-b synthase, elongation factor, and light harvesting complex homologues project a newly refined model of Viridiplantae evolution. Herein, a GS1 evolved into the cytosolic GS2c and was passed on to all Eukaryota. Later, the chloroplastic GS2p entered the Archaeplastida lineage via a horizontal gene transfer at the divergence of Chlorophyta and Rhodophyta lineages. GS2p persisted in Chlorophyta and Bryophyta, but was lost during Spermatophyta evolution. These data suggest the revision of GS classification and nomenclature, and extend our understanding of the photosynthetic Eukaryota evolution.
Collapse
Affiliation(s)
- Diana L Reinecke
- Food and Bioprocess Engineering Group, Wageningen University, P.O. Box 8129, 6700 EV, Wageningen, the Netherlands
| | - Aliza Zarka
- Microalgal Biotechnology Lab, Blaustein Institutes of Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, Sede-Boqer, 84990, Israel
| | - Stefan Leu
- Microalgal Biotechnology Lab, Blaustein Institutes of Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, Sede-Boqer, 84990, Israel
| | - Sammy Boussiba
- Microalgal Biotechnology Lab, Blaustein Institutes of Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, Sede-Boqer, 84990, Israel
| |
Collapse
|
174
|
Garnier M, Bougaran G, Pavlovic M, Berard JB, Carrier G, Charrier A, Le Grand F, Lukomska E, Rouxel C, Schreiber N, Cadoret JP, Rogniaux H, Saint-Jean B. Use of a lipid rich strain reveals mechanisms of nitrogen limitation and carbon partitioning in the haptophyte Tisochrysis lutea. ALGAL RES 2016. [DOI: 10.1016/j.algal.2016.10.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
175
|
Allen JW, DiRusso CC, Black PN. Carbon and Acyl Chain Flux during Stress-induced Triglyceride Accumulation by Stable Isotopic Labeling of the Polar Microalga Coccomyxa subellipsoidea C169. J Biol Chem 2016; 292:361-374. [PMID: 27903654 DOI: 10.1074/jbc.m116.760843] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/29/2016] [Indexed: 01/06/2023] Open
Abstract
Deriving biofuels and other lipoid products from algae is a promising future technology directly addressing global issues of atmospheric CO2 balance. To better understand the metabolism of triglyceride synthesis in algae, we examined their metabolic origins in the model species, Coccomyxa subellipsoidea C169, using stable isotopic labeling. Labeling patterns arising from [U-13C]glucose, 13CO2, or D2O supplementation were analyzed by GC-MS and/or LC-MS over time courses during nitrogen starvation to address the roles of catabolic carbon recycling, acyl chain redistribution, and de novo fatty acid (FA) synthesis during the expansion of the lipid bodies. The metabolic origin of stress-induced triglyceride was found to be a continuous 8:2 ratio between de novo synthesized FA and acyl chain transfer from pre-stressed membrane lipids with little input from lipid remodeling. Membrane lipids were continually synthesized with associated acyl chain editing during nitrogen stress, in contrast to an overall decrease in total membrane lipid. The incorporation rates of de novo synthesized FA into lipid classes were measured over a time course of nitrogen starvation. The synthesis of triglycerides, phospholipids, and galactolipids followed a two-stage pattern where nitrogen starvation resulted in a 2.5-fold increase followed by a gradual decline. Acyl chain flux into membrane lipids was dominant in the first stage followed by triglycerides. These data indicate that the level of metabolic control that determines acyl chain flux between membrane lipids and triglycerides during nitrogen stress relies primarily on the Kennedy pathway and de novo FA synthesis with limited, defined input from acyl editing reactions.
Collapse
Affiliation(s)
- James W Allen
- From the Department of Biochemistry, University of Nebraska, Lincoln, Nebraska 68588-0664
| | - Concetta C DiRusso
- From the Department of Biochemistry, University of Nebraska, Lincoln, Nebraska 68588-0664
| | - Paul N Black
- From the Department of Biochemistry, University of Nebraska, Lincoln, Nebraska 68588-0664
| |
Collapse
|
176
|
Caron DA, Alexander H, Allen AE, Archibald JM, Armbrust EV, Bachy C, Bell CJ, Bharti A, Dyhrman ST, Guida SM, Heidelberg KB, Kaye JZ, Metzner J, Smith SR, Worden AZ. Probing the evolution, ecology and physiology of marine protists using transcriptomics. Nat Rev Microbiol 2016; 15:6-20. [DOI: 10.1038/nrmicro.2016.160] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
177
|
Lipids rich in ω-3 polyunsaturated fatty acids from microalgae. Appl Microbiol Biotechnol 2016; 100:8667-84. [PMID: 27649964 DOI: 10.1007/s00253-016-7818-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 08/11/2016] [Accepted: 08/15/2016] [Indexed: 10/21/2022]
Abstract
Despite microalgae recently receiving enormous attention as a potential source of biodiesel, their use is still not feasible as an alternative to fossil fuels. Recently, interest in microalgae has focused on the production of bioactive compounds such as polyunsaturated fatty acids (PUFA), which provide microalgae a high added value. Several considerations need to be assessed for optimizing PUFA production from microalgae. Firstly, a microalgae species that produces high PUFA concentrations should be selected, such as Nannochloropsis gaditana, Isochrysis galbana, Phaeodactylum tricornutum, and Crypthecodinium cohnii, with marine species gaining more attention than do freshwater species. Closed cultivation processes, e.g., photobioreactors, are the most appropriate since temperature, pH, and nutrients can be controlled. An airlift column with LEDs or optical fibers to distribute photons into the culture media can be used at small scale to produce inoculum, while tubular and flat panels are used at commercial scale. Depending on the microalgae, a temperature range from 15 to 28 °C and a pH from 7 to 8 can be employed. Relevant conditions for PUFA production are medium light irradiances (50-300 μmol photons m(-2) s(-1)), air enriched with (0-1 % (v/v) CO2, as well as nitrogen and phosphorous limitation. For research purposes, the most appropriate medium for PUFA production is Bold's Basal, whereas mixotrophic cultivation using sucrose or glucose as the carbon source has been reported for industrial processes. For cell harvesting, the use of tangential flow membrane filtration or disk stack centrifugation is advisable at commercial scale. Current researches on PUFA extraction have focused on the use of organic solvents assisted with ultrasound or microwaves, supercritical fluids, and electroporation or are enzyme assisted. Commercial-scale extraction involves mainly physical methods such as bead mills and expeller presses. All these factors should be taken into account when choosing a PUFA production system, as discussed in this review.
Collapse
|
178
|
Wagner H, Fanesi A, Wilhelm C. Title: Freshwater phytoplankton responses to global warming. JOURNAL OF PLANT PHYSIOLOGY 2016; 203:127-134. [PMID: 27344409 DOI: 10.1016/j.jplph.2016.05.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 05/25/2016] [Accepted: 05/30/2016] [Indexed: 06/06/2023]
Abstract
Global warming alters species composition and function of freshwater ecosystems. However, the impact of temperature on primary productivity is not sufficiently understood and water quality models need to be improved in order to assess the quantitative and qualitative changes of aquatic communities. On the basis of experimental data, we demonstrate that the commonly used photosynthetic and water chemistry parameters alone are not sufficient for modeling phytoplankton growth under changing temperature regimes. We present some new aspects of the acclimation process with respect to temperature and how contrasting responses may be explained by a more complete physiological knowledge of the energy flow from photons to new biomass. We further suggest including additional bio-markers/traits for algal growth such as carbon allocation patterns to increase the explanatory power of such models. Although carbon allocation patterns are promising and functional cellular traits for growth prediction under different nutrient and light conditions, their predictive power still waits to be tested with respect to temperature. A great challenge for the near future will be the prediction of primary production efficiencies under the global change scenario using a uniform model for phytoplankton assemblages.
Collapse
Affiliation(s)
- Heiko Wagner
- Leipzig University, Institute of Biology, Department of Plant Physiology, Johannisallee 21-23, D-04103 Leipzig, Germany.
| | - Andrea Fanesi
- Leipzig University, Institute of Biology, Department of Plant Physiology, Johannisallee 21-23, D-04103 Leipzig, Germany
| | - Christian Wilhelm
- Leipzig University, Institute of Biology, Department of Plant Physiology, Johannisallee 21-23, D-04103 Leipzig, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, D-04103 Leipzig, Germany
| |
Collapse
|
179
|
Longworth J, Wu D, Huete-Ortega M, Wright PC, Vaidyanathan S. Proteome response of Phaeodactylum tricornutum, during lipid accumulation induced by nitrogen depletion. ALGAL RES 2016; 18:213-224. [PMID: 27812494 PMCID: PMC5070409 DOI: 10.1016/j.algal.2016.06.015] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 05/08/2016] [Accepted: 06/14/2016] [Indexed: 11/26/2022]
Abstract
Nitrogen stress is a common strategy employed to stimulate lipid accumulation in microalgae, a biofuel feedstock of topical interest. Although widely investigated, the underlying mechanism of this strategy is still poorly understood. We examined the proteome response of lipid accumulation in the model diatom, Phaeodactylum tricornutum (CCAP 1055/1), at an earlier stage of exposure to selective nitrogen exclusion than previously investigated, and at a time point when changes would reflect lipid accumulation more than carbohydrate accumulation. In total 1043 proteins were confidently identified (≥ 2 unique peptides) with 645 significant (p < 0.05) changes observed, in the LC-MS/MS based iTRAQ investigation. Analysis of significant changes in KEGG pathways and individual proteins showed that under nitrogen starvation P. tricornutum reorganizes its proteome in favour of nitrogen scavenging and reduced lipid degradation whilst rearranging the central energy metabolism that deprioritizes photosynthetic pathways. By doing this, this species appears to increase nitrogen availability inside the cell and limit its use to the pathways where it is needed most. Compared to previously published proteomic analysis of nitrogen starvation in Chlamydomonas reinhardtii, central energy metabolism and photosynthesis appear to be affected more in the diatom, whilst the green algae appears to invest its energy in reorganizing respiration and the cellular organization pathways.
Collapse
|
180
|
Regulation of starch, lipids and amino acids upon nitrogen sensing in Chlamydomonas reinhardtii. ALGAL RES 2016. [DOI: 10.1016/j.algal.2016.05.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
181
|
Goncalves EC, Wilkie AC, Kirst M, Rathinasabapathi B. Metabolic regulation of triacylglycerol accumulation in the green algae: identification of potential targets for engineering to improve oil yield. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:1649-60. [PMID: 26801206 PMCID: PMC5066758 DOI: 10.1111/pbi.12523] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 11/13/2015] [Accepted: 11/25/2015] [Indexed: 05/03/2023]
Abstract
The great need for more sustainable alternatives to fossil fuels has increased our research interests in algal biofuels. Microalgal cells, characterized by high photosynthetic efficiency and rapid cell division, are an excellent source of neutral lipids as potential fuel stocks. Various stress factors, especially nutrient-starvation conditions, induce an increased formation of lipid bodies filled with triacylglycerol in these cells. Here we review our knowledge base on glycerolipid synthesis in the green algae with an emphasis on recent studies on carbon flux, redistribution of lipids under nutrient-limiting conditions and its regulation. We discuss the contributions and limitations of classical and novel approaches used to elucidate the algal triacylglycerol biosynthetic pathway and its regulatory network in green algae. Also discussed are gaps in knowledge and suggestions for much needed research both on the biology of triacylglycerol accumulation and possible avenues to engineer improved algal strains.
Collapse
Affiliation(s)
- Elton C Goncalves
- Plant Molecular and Cellular Biology Program, Horticultural Sciences Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - Ann C Wilkie
- Soil and Water Science Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - Matias Kirst
- School of Forestry, University of Florida, Gainesville, FL, USA
| | - Bala Rathinasabapathi
- Plant Molecular and Cellular Biology Program, Horticultural Sciences Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| |
Collapse
|
182
|
Rai V, Karthikaichamy A, Das D, Noronha S, Wangikar PP, Srivastava S. Multi-omics Frontiers in Algal Research: Techniques and Progress to Explore Biofuels in the Postgenomics World. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2016; 20:387-99. [DOI: 10.1089/omi.2016.0065] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Vineeta Rai
- Department of Biosciences and Bioengineering, Proteomics Laboratory, Indian Institute of Technology Bombay, Mumbai, India
| | | | - Debasish Das
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, India
- DBT PAN IIT Centre for Bioenergy, Indian Institute of Technology, Bombay, Mumbai, India
| | - Santosh Noronha
- DBT PAN IIT Centre for Bioenergy, Indian Institute of Technology, Bombay, Mumbai, India
- Wadhwani Research Center for Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Pramod P. Wangikar
- DBT PAN IIT Centre for Bioenergy, Indian Institute of Technology, Bombay, Mumbai, India
- Wadhwani Research Center for Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Sanjeeva Srivastava
- Department of Biosciences and Bioengineering, Proteomics Laboratory, Indian Institute of Technology Bombay, Mumbai, India
- DBT PAN IIT Centre for Bioenergy, Indian Institute of Technology, Bombay, Mumbai, India
- Wadhwani Research Center for Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
183
|
|
184
|
Antal T, Kurkela J, Parikainen M, Kårlund A, Hakkila K, Tyystjärvi E, Tyystjärvi T. Roles of Group 2 Sigma Factors in Acclimation of the Cyanobacterium Synechocystis sp. PCC 6803 to Nitrogen Deficiency. PLANT & CELL PHYSIOLOGY 2016; 57:1309-1318. [PMID: 27095737 DOI: 10.1093/pcp/pcw079] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 04/10/2016] [Indexed: 06/05/2023]
Abstract
Acclimation of cyanobacteria to environmental conditions is mainly controlled at the transcriptional level, and σ factors of the RNA polymerase have a central role in this process. The model cyanobacterium Synechocystis sp. PCC 6803 has four non-essential group 2 σ factors (SigB, SigC, SigD and SigE) that regulate global metabolic responses to various adverse environmental conditions. Here we show that although none of the group 2 σ factors is essential for the major metabolic realignments induced by a short period of nitrogen starvation, the quadruple mutant without any group 2 σ factors and triple mutants missing both SigB and SigD grow slowly in BG-11 medium containing only 5% of the nitrate present in standard BG-11. These ΔsigBCDE, ΔsigBCD and ΔsigBDE strains lost PSII activity rapidly in low nitrogen and accumulated less glycogen than the control strain. An abnormally high glycogen content was detected in ΔsigBCE (SigD is active), while the carotenoid content became high in ΔsigCDE (SigB is active), indicating that SigB and SigD regulate the partitioning of carbon skeletons in low nitrogen. Long-term survival and recovery of the cells after nitrogen deficiency was strongly dependent on group 2 σ factors. The quadruple mutant and the ΔsigBDE strain (only SigC is active) recovered more slowly from nitrogen deficiency than the control strain, and ΔsigBCDE in particular lost viability during nitrogen starvation. Nitrogen deficiency-induced changes in the pigment content of the control strain recovered essentially in 1 d in nitrogen-replete medium, but little recovery occurred in ΔsigBCDE and ΔsigBDE.
Collapse
Affiliation(s)
- Taras Antal
- Department of Biochemistry, University of Turku, FI-20014 Turku, Finland Biological Faculty, Moscow State University, Vorobyevi Gory 119992, Moscow, Russia
| | - Juha Kurkela
- Department of Biochemistry, University of Turku, FI-20014 Turku, Finland
| | | | - Anna Kårlund
- Department of Biochemistry, University of Turku, FI-20014 Turku, Finland
| | - Kaisa Hakkila
- Department of Biochemistry, University of Turku, FI-20014 Turku, Finland
| | - Esa Tyystjärvi
- Department of Biochemistry, University of Turku, FI-20014 Turku, Finland
| | - Taina Tyystjärvi
- Department of Biochemistry, University of Turku, FI-20014 Turku, Finland
| |
Collapse
|
185
|
Lu N, Chen JH, Wei D, Chen F, Chen G. Global Metabolic Regulation of the Snow Alga Chlamydomonas nivalis in Response to Nitrate or Phosphate Deprivation by a Metabolome Profile Analysis. Int J Mol Sci 2016; 17:ijms17050694. [PMID: 27171077 PMCID: PMC4881520 DOI: 10.3390/ijms17050694] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 04/29/2016] [Accepted: 04/29/2016] [Indexed: 01/27/2023] Open
Abstract
In the present work, Chlamydomonas nivalis, a model species of snow algae, was used to illustrate the metabolic regulation mechanism of microalgae under nutrient deprivation stress. The seed culture was inoculated into the medium without nitrate or phosphate to reveal the cell responses by a metabolome profile analysis using gas chromatography time-of-flight mass spectrometry (GC/TOF-MS). One hundred and seventy-one of the identified metabolites clustered into five groups by the orthogonal partial least squares discriminant analysis (OPLS-DA) model. Among them, thirty of the metabolites in the nitrate-deprived group and thirty-nine of the metabolites in the phosphate-deprived group were selected and identified as “responding biomarkers” by this metabolomic approach. A significant change in the abundance of biomarkers indicated that the enhanced biosynthesis of carbohydrates and fatty acids coupled with the decreased biosynthesis of amino acids, N-compounds and organic acids in all the stress groups. The up- or down-regulation of these biomarkers in the metabolic network provides new insights into the global metabolic regulation and internal relationships within amino acid and fatty acid synthesis, glycolysis, the tricarboxylic acid cycle (TCA) and the Calvin cycle in the snow alga under nitrate or phosphate deprivation stress.
Collapse
Affiliation(s)
- Na Lu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China.
| | - Jun-Hui Chen
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China.
| | - Dong Wei
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China.
| | - Feng Chen
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China.
- Institute for Food and Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China.
| | - Gu Chen
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China.
| |
Collapse
|
186
|
Goold HD, Nguyen HM, Kong F, Beyly-Adriano A, Légeret B, Billon E, Cuiné S, Beisson F, Peltier G, Li-Beisson Y. Whole Genome Re-Sequencing Identifies a Quantitative Trait Locus Repressing Carbon Reserve Accumulation during Optimal Growth in Chlamydomonas reinhardtii. Sci Rep 2016; 6:25209. [PMID: 27141848 PMCID: PMC4855234 DOI: 10.1038/srep25209] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 04/13/2016] [Indexed: 02/08/2023] Open
Abstract
Microalgae have emerged as a promising source for biofuel production. Massive oil and starch accumulation in microalgae is possible, but occurs mostly when biomass growth is impaired. The molecular networks underlying the negative correlation between growth and reserve formation are not known. Thus isolation of strains capable of accumulating carbon reserves during optimal growth would be highly desirable. To this end, we screened an insertional mutant library of Chlamydomonas reinhardtii for alterations in oil content. A mutant accumulating five times more oil and twice more starch than wild-type during optimal growth was isolated and named constitutive oil accumulator 1 (coa1). Growth in photobioreactors under highly controlled conditions revealed that the increase in oil and starch content in coa1 was dependent on light intensity. Genetic analysis and DNA hybridization pointed to a single insertional event responsible for the phenotype. Whole genome re-sequencing identified in coa1 a >200 kb deletion on chromosome 14 containing 41 genes. This study demonstrates that, 1), the generation of algal strains accumulating higher reserve amount without compromising biomass accumulation is feasible; 2), light is an important parameter in phenotypic analysis; and 3), a chromosomal region (Quantitative Trait Locus) acts as suppressor of carbon reserve accumulation during optimal growth.
Collapse
Affiliation(s)
- Hugh Douglas Goold
- CEA, BIAM, Lab Bioenerget Biotechnol Bacteries &Microalgues, Saint-Paul-lez-Durance, 13108, France.,CNRS, UMR 7265 Biol Veget &Microbiol Environ, Saint-Paul-lez-Durance, 13108, France.,Aix Marseille Université, BVME UMR7265, Marseille, 13284, France.,Faculty of Agriculture and the Environment, University of Sydney, Australia
| | - Hoa Mai Nguyen
- CEA, BIAM, Lab Bioenerget Biotechnol Bacteries &Microalgues, Saint-Paul-lez-Durance, 13108, France.,CNRS, UMR 7265 Biol Veget &Microbiol Environ, Saint-Paul-lez-Durance, 13108, France.,Aix Marseille Université, BVME UMR7265, Marseille, 13284, France
| | - Fantao Kong
- CEA, BIAM, Lab Bioenerget Biotechnol Bacteries &Microalgues, Saint-Paul-lez-Durance, 13108, France.,CNRS, UMR 7265 Biol Veget &Microbiol Environ, Saint-Paul-lez-Durance, 13108, France.,Aix Marseille Université, BVME UMR7265, Marseille, 13284, France
| | - Audrey Beyly-Adriano
- CEA, BIAM, Lab Bioenerget Biotechnol Bacteries &Microalgues, Saint-Paul-lez-Durance, 13108, France.,CNRS, UMR 7265 Biol Veget &Microbiol Environ, Saint-Paul-lez-Durance, 13108, France.,Aix Marseille Université, BVME UMR7265, Marseille, 13284, France
| | - Bertrand Légeret
- CEA, BIAM, Lab Bioenerget Biotechnol Bacteries &Microalgues, Saint-Paul-lez-Durance, 13108, France.,CNRS, UMR 7265 Biol Veget &Microbiol Environ, Saint-Paul-lez-Durance, 13108, France.,Aix Marseille Université, BVME UMR7265, Marseille, 13284, France
| | - Emmanuelle Billon
- CEA, BIAM, Lab Bioenerget Biotechnol Bacteries &Microalgues, Saint-Paul-lez-Durance, 13108, France.,CNRS, UMR 7265 Biol Veget &Microbiol Environ, Saint-Paul-lez-Durance, 13108, France.,Aix Marseille Université, BVME UMR7265, Marseille, 13284, France
| | - Stéphan Cuiné
- CEA, BIAM, Lab Bioenerget Biotechnol Bacteries &Microalgues, Saint-Paul-lez-Durance, 13108, France.,CNRS, UMR 7265 Biol Veget &Microbiol Environ, Saint-Paul-lez-Durance, 13108, France.,Aix Marseille Université, BVME UMR7265, Marseille, 13284, France
| | - Fred Beisson
- CEA, BIAM, Lab Bioenerget Biotechnol Bacteries &Microalgues, Saint-Paul-lez-Durance, 13108, France.,CNRS, UMR 7265 Biol Veget &Microbiol Environ, Saint-Paul-lez-Durance, 13108, France.,Aix Marseille Université, BVME UMR7265, Marseille, 13284, France
| | - Gilles Peltier
- CEA, BIAM, Lab Bioenerget Biotechnol Bacteries &Microalgues, Saint-Paul-lez-Durance, 13108, France.,CNRS, UMR 7265 Biol Veget &Microbiol Environ, Saint-Paul-lez-Durance, 13108, France.,Aix Marseille Université, BVME UMR7265, Marseille, 13284, France
| | - Yonghua Li-Beisson
- CEA, BIAM, Lab Bioenerget Biotechnol Bacteries &Microalgues, Saint-Paul-lez-Durance, 13108, France.,CNRS, UMR 7265 Biol Veget &Microbiol Environ, Saint-Paul-lez-Durance, 13108, France.,Aix Marseille Université, BVME UMR7265, Marseille, 13284, France
| |
Collapse
|
187
|
Saroussi SI, Wittkopp TM, Grossman AR. The Type II NADPH Dehydrogenase Facilitates Cyclic Electron Flow, Energy-Dependent Quenching, and Chlororespiratory Metabolism during Acclimation of Chlamydomonas reinhardtii to Nitrogen Deprivation. PLANT PHYSIOLOGY 2016; 170:1975-88. [PMID: 26858365 PMCID: PMC4825143 DOI: 10.1104/pp.15.02014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 02/05/2016] [Indexed: 05/18/2023]
Abstract
When photosynthetic organisms are deprived of nitrogen (N), the capacity to grow and assimilate carbon becomes limited, causing a decrease in the productive use of absorbed light energy and likely a rise in the cellular reduction state. Although there is a scarcity of N in many terrestrial and aquatic environments, a mechanistic understanding of how photosynthesis adjusts to low-N conditions and the enzymes/activities integral to these adjustments have not been described. In this work, we use biochemical and biophysical analyses of photoautotrophically grown wild-type and mutant strains of Chlamydomonas reinhardtii to determine the integration of electron transport pathways critical for maintaining active photosynthetic complexes even after exposure of cells to N deprivation for 3 d. Key to acclimation is the type II NADPH dehydrogenase, NDA2, which drives cyclic electron flow (CEF), chlororespiration, and the generation of an H(+) gradient across the thylakoid membranes. N deprivation elicited a doubling of the rate of NDA2-dependent CEF, with little contribution from PGR5/PGRL1-dependent CEF The H(+) gradient generated by CEF is essential to sustain nonphotochemical quenching, while an increase in the level of reduced plastoquinone would promote a state transition; both are necessary to down-regulate photosystem II activity. Moreover, stimulation of NDA2-dependent chlororespiration affords additional relief from the elevated reduction state associated with N deprivation through plastid terminal oxidase-dependent water synthesis. Overall, rerouting electrons through the NDA2 catalytic hub in response to photoautotrophic N deprivation sustains cell viability while promoting the dissipation of excess excitation energy through quenching and chlororespiratory processes.
Collapse
Affiliation(s)
- Shai I Saroussi
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305 (S.I.S., T.M.W., A.R.G.); andDepartment of Biology, Stanford University, Stanford, California 94305-5020 (T.M.W.)
| | - Tyler M Wittkopp
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305 (S.I.S., T.M.W., A.R.G.); andDepartment of Biology, Stanford University, Stanford, California 94305-5020 (T.M.W.)
| | - Arthur R Grossman
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305 (S.I.S., T.M.W., A.R.G.); andDepartment of Biology, Stanford University, Stanford, California 94305-5020 (T.M.W.)
| |
Collapse
|
188
|
Légeret B, Schulz-Raffelt M, Nguyen HM, Auroy P, Beisson F, Peltier G, Blanc G, Li-Beisson Y. Lipidomic and transcriptomic analyses of Chlamydomonas reinhardtii under heat stress unveil a direct route for the conversion of membrane lipids into storage lipids. PLANT, CELL & ENVIRONMENT 2016; 39:834-47. [PMID: 26477535 DOI: 10.1111/pce.12656] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/01/2015] [Accepted: 10/06/2015] [Indexed: 05/18/2023]
Abstract
Studying how photosynthetic cells modify membrane lipids in response to heat stress is important to understand how plants and microalgae adapt to daily fluctuations in temperature and to investigate new lipid pathways. Here, we investigate changes occurring in lipid molecular species and lipid metabolism genes during early response to heat stress in the model photosynthetic microorganism Chlamydomonas reinhardtii. Lipid molecular species analyses revealed that, after 60 min at 42 °C, a strong decrease in specific polyunsaturated membrane lipids was observed together with an increase in polyunsaturated triacylglycerols (TAGs) and diacylglycerols (DAGs). The fact that decrease in the major chloroplastic monogalactosyldiacylglycerol sn1-18:3/sn2-16:4 was mirrored by an accumulation of DAG sn1-18:3/sn2-16:4 and TAG sn1-18:3/sn2-16:4/sn3-18:3 indicated that newly accumulated TAGs were formed via direct conversion of monogalactosyldiacylglycerols to DAGs then TAGs. Lipidomic analyses showed that the third fatty acid of a TAG likely originated from a phosphatidylethanolamine or a diacylglyceryl-O-4'-(N,N,N,-trimethyl)-homoserine betaine lipid species. Candidate genes for this TAG synthesis pathway were provided through comparative transcriptomic analysis and included a phospholipase A2 homolog and the DAG acyltransferase DGTT1. This study gives insights into the molecular events underlying changes in membrane lipids during heat stress and reveals an alternative route for TAG synthesis.
Collapse
Affiliation(s)
- B Légeret
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Environnementale et Biotechnologie, CEA Cadarache, Saint-Paul-lez-Durance, France
- Centre National de la Recherche Scientifique, UMR7265, Saint-Paul-lez-Durance, France
- Aix-Marseille Université, UMR7265, Marseille, France
| | - M Schulz-Raffelt
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Environnementale et Biotechnologie, CEA Cadarache, Saint-Paul-lez-Durance, France
- Centre National de la Recherche Scientifique, UMR7265, Saint-Paul-lez-Durance, France
- Aix-Marseille Université, UMR7265, Marseille, France
| | - H M Nguyen
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Environnementale et Biotechnologie, CEA Cadarache, Saint-Paul-lez-Durance, France
- Centre National de la Recherche Scientifique, UMR7265, Saint-Paul-lez-Durance, France
- Aix-Marseille Université, UMR7265, Marseille, France
| | - P Auroy
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Environnementale et Biotechnologie, CEA Cadarache, Saint-Paul-lez-Durance, France
- Centre National de la Recherche Scientifique, UMR7265, Saint-Paul-lez-Durance, France
- Aix-Marseille Université, UMR7265, Marseille, France
| | - F Beisson
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Environnementale et Biotechnologie, CEA Cadarache, Saint-Paul-lez-Durance, France
- Centre National de la Recherche Scientifique, UMR7265, Saint-Paul-lez-Durance, France
- Aix-Marseille Université, UMR7265, Marseille, France
| | - G Peltier
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Environnementale et Biotechnologie, CEA Cadarache, Saint-Paul-lez-Durance, France
- Centre National de la Recherche Scientifique, UMR7265, Saint-Paul-lez-Durance, France
- Aix-Marseille Université, UMR7265, Marseille, France
| | - G Blanc
- Laboratoire Information Génomique & Structurale, UMR7256 (IMM FR3479) CNRS Aix-Marseille Université, Marseille, France
| | - Y Li-Beisson
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Environnementale et Biotechnologie, CEA Cadarache, Saint-Paul-lez-Durance, France
- Centre National de la Recherche Scientifique, UMR7265, Saint-Paul-lez-Durance, France
- Aix-Marseille Université, UMR7265, Marseille, France
| |
Collapse
|
189
|
NRT2.4 and NRT2.5 Are Two Half-Size Transporters from the Chlamydomonas NRT2 Family. AGRONOMY-BASEL 2016. [DOI: 10.3390/agronomy6010020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
190
|
Bajhaiya AK, Dean AP, Zeef LAH, Webster RE, Pittman JK. PSR1 Is a Global Transcriptional Regulator of Phosphorus Deficiency Responses and Carbon Storage Metabolism in Chlamydomonas reinhardtii. PLANT PHYSIOLOGY 2016; 170:1216-34. [PMID: 26704642 PMCID: PMC4775146 DOI: 10.1104/pp.15.01907] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 12/23/2015] [Indexed: 05/18/2023]
Abstract
Many eukaryotic microalgae modify their metabolism in response to nutrient stresses such as phosphorus (P) starvation, which substantially induces storage metabolite biosynthesis, but the genetic mechanisms regulating this response are poorly understood. Here, we show that P starvation-induced lipid and starch accumulation is inhibited in a Chlamydomonas reinhardtii mutant lacking the transcription factor Pi Starvation Response1 (PSR1). Transcriptomic analysis identified specific metabolism transcripts that are induced by P starvation but misregulated in the psr1 mutant. These include transcripts for starch and triacylglycerol synthesis but also transcripts for photosynthesis-, redox-, and stress signaling-related proteins. To further examine the role of PSR1 in regulating lipid and starch metabolism, PSR1 complementation lines in the psr1 strain and PSR1 overexpression lines in a cell wall-deficient strain were generated. PSR1 expression in the psr1 lines was shown to be functional due to rescue of the psr1 phenotype. PSR1 overexpression lines exhibited increased starch content and number of starch granules per cell, which correlated with a higher expression of specific starch metabolism genes but reduced neutral lipid content. Furthermore, this phenotype was consistent in the presence and absence of acetate. Together, these results identify a key transcriptional regulator in global metabolism and demonstrate transcriptional engineering in microalgae to modulate starch biosynthesis.
Collapse
Affiliation(s)
- Amit K Bajhaiya
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Andrew P Dean
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Leo A H Zeef
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Rachel E Webster
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Jon K Pittman
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| |
Collapse
|
191
|
Identification of gene transcripts involved in lipid biosynthesis in Chlamydomonas reinhardtii under nitrogen, iron and sulfur deprivation. World J Microbiol Biotechnol 2016; 32:55. [DOI: 10.1007/s11274-016-2008-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 01/04/2016] [Indexed: 10/22/2022]
|
192
|
Wang J, Li X, Lu D, Du Y, Ma L, Li W, Chen J, Li F, Fan Y, Hu G, Wang J. Photosynthetic Effect in Selenastrum capricornutum Progeny after Carbon-Ion Irradiation. PLoS One 2016; 11:e0149381. [PMID: 26919351 PMCID: PMC4769097 DOI: 10.1371/journal.pone.0149381] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 02/01/2016] [Indexed: 11/30/2022] Open
Abstract
A large proportion of mutants with altered pigment features have been obtained via exposure to heavy-ion beams, a technique that is efficient for trait improvement in the breeding of plants and algae. However, little is known about the underlying mechanisms by which the photosynthetic pigments are altered by heavy-ion irradiation. In our study, the photosynthetic characteristics of progenies from carbon-ion irradiated Selenastrum capricornutum were investigated. Five progenies deficient in chlorophyll a were isolated after carbon-ion exposure. Photosynthetic characteristics, photoprotection capacity and gene expression of the light-harvesting complex in these progenies were further characterized by the measurement of chlorophyll fluorescence parameters (Fv/Fm, ФPSII, NPQ, ETR), the de-epoxidation state of the xanthophyll cycle, the amount of lutein and quantitative real-time PCR. High maximum quantum yield of photosystem II at day 10 and high thermal dissipation ability were observed in progenies #23 and #37 under normal culture condition. Progenies #18, #19 and #20 showed stronger resistance against high levels of light steps than the control group (612–1077 μmol photons m -2 s -1, p< 0.05). The progenies #20 and #23 exhibited strong photoprotection by thermal dissipation and quenching of 3Chl* after 24 h of high light treatment. The mRNA levels of Lhcb5, Lhcbm5 and Lhcbm1 of the light-harvesting complex revealed markedly differential expression in the five progenies irradiated by carbon-ion beams. This work indicates that photosynthetic efficiency, photoprotection ability and the expression of light-harvesting antennae in unicellular green algae can be markedly influenced by irradiation. To our knowledge, this is the first report on changes in the photosynthetic pigments of green algae after treatment with carbon-ion beams.
Collapse
Affiliation(s)
- Jie Wang
- Gansu Key Laboratory of Space Radiobiology & Microbial Resources and Application, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Xin Li
- Gansu Key Laboratory of Space Radiobiology & Microbial Resources and Application, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, PR China
| | - Dong Lu
- Gansu Key Laboratory of Space Radiobiology & Microbial Resources and Application, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, PR China
| | - Yan Du
- Gansu Key Laboratory of Space Radiobiology & Microbial Resources and Application, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, PR China
| | - Liang Ma
- Gansu Key Laboratory of Space Radiobiology & Microbial Resources and Application, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, PR China
| | - Wenjian Li
- Gansu Key Laboratory of Space Radiobiology & Microbial Resources and Application, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, PR China
| | - Jihong Chen
- Gansu Key Laboratory of Space Radiobiology & Microbial Resources and Application, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, PR China
| | - Fuli Li
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, PR China
| | - Yong Fan
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, PR China
| | - Guangrong Hu
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, PR China
| | - Jufang Wang
- Gansu Key Laboratory of Space Radiobiology & Microbial Resources and Application, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, PR China
- * E-mail:
| |
Collapse
|
193
|
Comparative transcriptome and proteome analysis to reveal the biosynthesis of gold nanoparticles in Arabidopsis. Sci Rep 2016; 6:21733. [PMID: 26902325 PMCID: PMC4763195 DOI: 10.1038/srep21733] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 01/29/2016] [Indexed: 01/18/2023] Open
Abstract
A large number of plants have been tested and exploited in search of a green chemistry approach for the fabrication of gold or other precious metal nanomaterials. Despite the potential of plant based methods, very little is known about the underlying biochemical reactions and genes involved in the biotransformation mechanism of AuCl4 into gold nanoparticles (AuNPs). In this research, we thus focused on studying the effect of Au on growth and nanoparticles formation by analyses of transcriptome, proteome and ionome shift in Arabidopsis. Au exposure favored the growth of Arabidopsis seedling and induced formation of nanoparticles in root and shoot, as indicated by optical and hyperspectral imaging. Root transcriptome analysis demonstrated the differential expression of the members of WRKY, MYB and BHLH gene families, which are involved in the Fe and other essential metals homeostasis. The proteome analysis revealed that Glutathione S-transferases were induced in the shoot and suggested its potential role in the biosynthesis AuNPs. This study also demonstrated the role of plant hormone auxin in determining the Au induced root system architecture. This is the first study using an integrated approach to understand the in planta biotransformation of KAuCl4 into AuNPs.
Collapse
|
194
|
Muranaka LS, Rütgers M, Bujaldon S, Heublein A, Geimer S, Wollman FA, Schroda M. TEF30 Interacts with Photosystem II Monomers and Is Involved in the Repair of Photodamaged Photosystem II in Chlamydomonas reinhardtii. PLANT PHYSIOLOGY 2016; 170:821-40. [PMID: 26644506 PMCID: PMC4734564 DOI: 10.1104/pp.15.01458] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 12/04/2015] [Indexed: 05/03/2023]
Abstract
The remarkable capability of photosystem II (PSII) to oxidize water comes along with its vulnerability to oxidative damage. Accordingly, organisms harboring PSII have developed strategies to protect PSII from oxidative damage and to repair damaged PSII. Here, we report on the characterization of the THYLAKOID ENRICHED FRACTION30 (TEF30) protein in Chlamydomonas reinhardtii, which is conserved in the green lineage and induced by high light. Fractionation studies revealed that TEF30 is associated with the stromal side of thylakoid membranes. By using blue native/Deriphat-polyacrylamide gel electrophoresis, sucrose density gradients, and isolated PSII particles, we found TEF30 to quantitatively interact with monomeric PSII complexes. Electron microscopy images revealed significantly reduced thylakoid membrane stacking in TEF30-underexpressing cells when compared with control cells. Biophysical and immunological data point to an impaired PSII repair cycle in TEF30-underexpressing cells and a reduced ability to form PSII supercomplexes after high-light exposure. Taken together, our data suggest potential roles for TEF30 in facilitating the incorporation of a new D1 protein and/or the reintegration of CP43 into repaired PSII monomers, protecting repaired PSII monomers from undergoing repeated repair cycles or facilitating the migration of repaired PSII monomers back to stacked regions for supercomplex reassembly.
Collapse
Affiliation(s)
- Ligia Segatto Muranaka
- Molekulare Biotechnologie und Systembiologie, Technische Universität Kaiserslautern, D-67663 Kaiserslautern, Germany (L.S.M., M.R., M.S.);Laboratoire de Physiologie Membranaire et Moléculaire du Chloroplaste, Institut de Biologie Physico-Chimique, Unité Mixte de Recherche Centre National de la Recherche Scientifique/Université Pierre et Marie Curie, 7141 Paris, France (S.B., F.-A.W.); andZellbiologie/Elektronenmikroskopie, Universität Bayreuth, D-95440 Bayreuth, Germany (A.H., S.G.)
| | - Mark Rütgers
- Molekulare Biotechnologie und Systembiologie, Technische Universität Kaiserslautern, D-67663 Kaiserslautern, Germany (L.S.M., M.R., M.S.);Laboratoire de Physiologie Membranaire et Moléculaire du Chloroplaste, Institut de Biologie Physico-Chimique, Unité Mixte de Recherche Centre National de la Recherche Scientifique/Université Pierre et Marie Curie, 7141 Paris, France (S.B., F.-A.W.); andZellbiologie/Elektronenmikroskopie, Universität Bayreuth, D-95440 Bayreuth, Germany (A.H., S.G.)
| | - Sandrine Bujaldon
- Molekulare Biotechnologie und Systembiologie, Technische Universität Kaiserslautern, D-67663 Kaiserslautern, Germany (L.S.M., M.R., M.S.);Laboratoire de Physiologie Membranaire et Moléculaire du Chloroplaste, Institut de Biologie Physico-Chimique, Unité Mixte de Recherche Centre National de la Recherche Scientifique/Université Pierre et Marie Curie, 7141 Paris, France (S.B., F.-A.W.); andZellbiologie/Elektronenmikroskopie, Universität Bayreuth, D-95440 Bayreuth, Germany (A.H., S.G.)
| | - Anja Heublein
- Molekulare Biotechnologie und Systembiologie, Technische Universität Kaiserslautern, D-67663 Kaiserslautern, Germany (L.S.M., M.R., M.S.);Laboratoire de Physiologie Membranaire et Moléculaire du Chloroplaste, Institut de Biologie Physico-Chimique, Unité Mixte de Recherche Centre National de la Recherche Scientifique/Université Pierre et Marie Curie, 7141 Paris, France (S.B., F.-A.W.); andZellbiologie/Elektronenmikroskopie, Universität Bayreuth, D-95440 Bayreuth, Germany (A.H., S.G.)
| | - Stefan Geimer
- Molekulare Biotechnologie und Systembiologie, Technische Universität Kaiserslautern, D-67663 Kaiserslautern, Germany (L.S.M., M.R., M.S.);Laboratoire de Physiologie Membranaire et Moléculaire du Chloroplaste, Institut de Biologie Physico-Chimique, Unité Mixte de Recherche Centre National de la Recherche Scientifique/Université Pierre et Marie Curie, 7141 Paris, France (S.B., F.-A.W.); andZellbiologie/Elektronenmikroskopie, Universität Bayreuth, D-95440 Bayreuth, Germany (A.H., S.G.)
| | - Francis-André Wollman
- Molekulare Biotechnologie und Systembiologie, Technische Universität Kaiserslautern, D-67663 Kaiserslautern, Germany (L.S.M., M.R., M.S.);Laboratoire de Physiologie Membranaire et Moléculaire du Chloroplaste, Institut de Biologie Physico-Chimique, Unité Mixte de Recherche Centre National de la Recherche Scientifique/Université Pierre et Marie Curie, 7141 Paris, France (S.B., F.-A.W.); andZellbiologie/Elektronenmikroskopie, Universität Bayreuth, D-95440 Bayreuth, Germany (A.H., S.G.)
| | - Michael Schroda
- Molekulare Biotechnologie und Systembiologie, Technische Universität Kaiserslautern, D-67663 Kaiserslautern, Germany (L.S.M., M.R., M.S.);Laboratoire de Physiologie Membranaire et Moléculaire du Chloroplaste, Institut de Biologie Physico-Chimique, Unité Mixte de Recherche Centre National de la Recherche Scientifique/Université Pierre et Marie Curie, 7141 Paris, France (S.B., F.-A.W.); andZellbiologie/Elektronenmikroskopie, Universität Bayreuth, D-95440 Bayreuth, Germany (A.H., S.G.)
| |
Collapse
|
195
|
Li X, Zhang R, Patena W, Gang SS, Blum SR, Ivanova N, Yue R, Robertson JM, Lefebvre PA, Fitz-Gibbon ST, Grossman AR, Jonikas MC. An Indexed, Mapped Mutant Library Enables Reverse Genetics Studies of Biological Processes in Chlamydomonas reinhardtii. THE PLANT CELL 2016; 28:367-87. [PMID: 26764374 PMCID: PMC4790863 DOI: 10.1105/tpc.15.00465] [Citation(s) in RCA: 239] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 11/30/2015] [Accepted: 01/11/2016] [Indexed: 05/18/2023]
Abstract
The green alga Chlamydomonas reinhardtii is a leading unicellular model for dissecting biological processes in photosynthetic eukaryotes. However, its usefulness has been limited by difficulties in obtaining mutants in specific genes of interest. To allow generation of large numbers of mapped mutants, we developed high-throughput methods that (1) enable easy maintenance of tens of thousands of Chlamydomonas strains by propagation on agar media and by cryogenic storage, (2) identify mutagenic insertion sites and physical coordinates in these collections, and (3) validate the insertion sites in pools of mutants by obtaining >500 bp of flanking genomic sequences. We used these approaches to construct a stably maintained library of 1935 mapped mutants, representing disruptions in 1562 genes. We further characterized randomly selected mutants and found that 33 out of 44 insertion sites (75%) could be confirmed by PCR, and 17 out of 23 mutants (74%) contained a single insertion. To demonstrate the power of this library for elucidating biological processes, we analyzed the lipid content of mutants disrupted in genes encoding proteins of the algal lipid droplet proteome. This study revealed a central role of the long-chain acyl-CoA synthetase LCS2 in the production of triacylglycerol from de novo-synthesized fatty acids.
Collapse
Affiliation(s)
- Xiaobo Li
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
| | - Ru Zhang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
| | - Weronika Patena
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
| | - Spencer S Gang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
| | - Sean R Blum
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
| | - Nina Ivanova
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
| | - Rebecca Yue
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
| | - Jacob M Robertson
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
| | - Paul A Lefebvre
- Department of Plant Biology, University of Minnesota, St. Paul, Minnesota 55108
| | - Sorel T Fitz-Gibbon
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095
| | - Arthur R Grossman
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
| | - Martin C Jonikas
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
| |
Collapse
|
196
|
Ramanan R, Kim BH, Cho DH, Oh HM, Kim HS. Algae-bacteria interactions: Evolution, ecology and emerging applications. Biotechnol Adv 2016; 34:14-29. [PMID: 26657897 DOI: 10.1016/j.biotechadv.2015.12.003] [Citation(s) in RCA: 548] [Impact Index Per Article: 68.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 12/01/2015] [Accepted: 12/02/2015] [Indexed: 11/28/2022]
Abstract
Algae and bacteria have coexisted ever since the early stages of evolution. This coevolution has revolutionized life on earth in many aspects. Algae and bacteria together influence ecosystems as varied as deep seas to lichens and represent all conceivable modes of interactions - from mutualism to parasitism. Several studies have shown that algae and bacteria synergistically affect each other's physiology and metabolism, a classic case being algae-roseobacter interaction. These interactions are ubiquitous and define the primary productivity in most ecosystems. In recent years, algae have received much attention for industrial exploitation but their interaction with bacteria is often considered a contamination during commercialization. A few recent studies have shown that bacteria not only enhance algal growth but also help in flocculation, both essential processes in algal biotechnology. Hence, there is a need to understand these interactions from an evolutionary and ecological standpoint, and integrate this understanding for industrial use. Here we reflect on the diversity of such relationships and their associated mechanisms, as well as the habitats that they mutually influence. This review also outlines the role of these interactions in key evolutionary events such as endosymbiosis, besides their ecological role in biogeochemical cycles. Finally, we focus on extending such studies on algal-bacterial interactions to various environmental and bio-technological applications.
Collapse
Affiliation(s)
- Rishiram Ramanan
- Sustainable Bioresource Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 305-806, Republic of Korea
| | - Byung-Hyuk Kim
- Sustainable Bioresource Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 305-806, Republic of Korea
| | - Dae-Hyun Cho
- Sustainable Bioresource Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 305-806, Republic of Korea
| | - Hee-Mock Oh
- Bioenergy and Biochemical Research Center, KRIBB, Yuseong-gu, Daejeon 305-806, Republic of Korea; Green Chemistry and Environmental Biotechnology, University of Science & Technology, Yuseong-gu, Daejeon 305-806, Republic of Korea
| | - Hee-Sik Kim
- Sustainable Bioresource Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 305-806, Republic of Korea; Green Chemistry and Environmental Biotechnology, University of Science & Technology, Yuseong-gu, Daejeon 305-806, Republic of Korea.
| |
Collapse
|
197
|
Bajhaiya AK, Dean AP, Driver T, Trivedi DK, Rattray NJW, Allwood JW, Goodacre R, Pittman JK. High-throughput metabolic screening of microalgae genetic variation in response to nutrient limitation. Metabolomics 2016; 12:9. [PMID: 26594136 PMCID: PMC4644200 DOI: 10.1007/s11306-015-0878-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 07/29/2015] [Indexed: 11/26/2022]
Abstract
Microalgae produce metabolites that could be useful for applications in food, biofuel or fine chemical production. The identification and development of suitable strains require analytical methods that are accurate and allow rapid screening of strains or cultivation conditions. We demonstrate the use of Fourier transform infrared (FT-IR) spectroscopy to screen mutant strains of Chlamydomonas reinhardtii. These mutants have knockdowns for one or more nutrient starvation response genes, namely PSR1, SNRK2.1 and SNRK2.2. Limitation of nutrients including nitrogen and phosphorus can induce metabolic changes in microalgae, including the accumulation of glycerolipids and starch. By performing multivariate statistical analysis of FT-IR spectra, metabolic variation between different nutrient limitation and non-stressed conditions could be differentiated. A number of mutant strains with similar genetic backgrounds could be distinguished from wild type when grown under specific nutrient limited and replete conditions, demonstrating the sensitivity of FT-IR spectroscopy to detect specific genetic traits. Changes in lipid and carbohydrate between strains and specific nutrient stress treatments were validated by other analytical methods, including liquid chromatography-mass spectrometry for lipidomics. These results demonstrate that the PSR1 gene is an important determinant of lipid and starch accumulation in response to phosphorus starvation but not nitrogen starvation. However, the SNRK2.1 and SNRK2.2 genes are not as important for determining the metabolic response to either nutrient stress. We conclude that FT-IR spectroscopy and chemometric approaches provide a robust method for microalgae screening.
Collapse
Affiliation(s)
- Amit K. Bajhaiya
- />Faculty of Life Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT UK
| | - Andrew P. Dean
- />Faculty of Life Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT UK
- />Department of Geography, University of Sheffield, Sheffield, S10 2TN UK
| | - Thomas Driver
- />Faculty of Life Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT UK
| | - Drupad K. Trivedi
- />School of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN UK
| | - Nicholas J. W. Rattray
- />School of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN UK
| | - J. William Allwood
- />School of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN UK
- />Environmental & Biochemical Sciences Group, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA Scotland, UK
| | - Royston Goodacre
- />School of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN UK
| | - Jon K. Pittman
- />Faculty of Life Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT UK
| |
Collapse
|
198
|
Dobrenel T, Mancera-Martínez E, Forzani C, Azzopardi M, Davanture M, Moreau M, Schepetilnikov M, Chicher J, Langella O, Zivy M, Robaglia C, Ryabova LA, Hanson J, Meyer C. The Arabidopsis TOR Kinase Specifically Regulates the Expression of Nuclear Genes Coding for Plastidic Ribosomal Proteins and the Phosphorylation of the Cytosolic Ribosomal Protein S6. FRONTIERS IN PLANT SCIENCE 2016; 7:1611. [PMID: 27877176 PMCID: PMC5100631 DOI: 10.3389/fpls.2016.01611] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 10/12/2016] [Indexed: 05/05/2023]
Abstract
Protein translation is an energy consuming process that has to be fine-tuned at both the cell and organism levels to match the availability of resources. The target of rapamycin kinase (TOR) is a key regulator of a large range of biological processes in response to environmental cues. In this study, we have investigated the effects of TOR inactivation on the expression and regulation of Arabidopsis ribosomal proteins at different levels of analysis, namely from transcriptomic to phosphoproteomic. TOR inactivation resulted in a coordinated down-regulation of the transcription and translation of nuclear-encoded mRNAs coding for plastidic ribosomal proteins, which could explain the chlorotic phenotype of the TOR silenced plants. We have identified in the 5' untranslated regions (UTRs) of this set of genes a conserved sequence related to the 5' terminal oligopyrimidine motif, which is known to confer translational regulation by the TOR kinase in other eukaryotes. Furthermore, the phosphoproteomic analysis of the ribosomal fraction following TOR inactivation revealed a lower phosphorylation of the conserved Ser240 residue in the C-terminal region of the 40S ribosomal protein S6 (RPS6). These results were confirmed by Western blot analysis using an antibody that specifically recognizes phosphorylated Ser240 in RPS6. Finally, this antibody was used to follow TOR activity in plants. Our results thus uncover a multi-level regulation of plant ribosomal genes and proteins by the TOR kinase.
Collapse
Affiliation(s)
- Thomas Dobrenel
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, AgroParisTech, Centre National de la Recherche Scientifique, Université Paris-SaclayVersailles, France
- Université Paris-Sud–Université Paris-SaclayOrsay, France
- Umeå Plant Science Center, Department of Plant Physiology, Umeå UniversityUmeå, Sweden
| | - Eder Mancera-Martínez
- Institut de Biologie Moléculaire des Plantes, UPR 2357 CNRS, Université de StrasbourgStrasbourg, France
| | - Céline Forzani
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, AgroParisTech, Centre National de la Recherche Scientifique, Université Paris-SaclayVersailles, France
| | - Marianne Azzopardi
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, AgroParisTech, Centre National de la Recherche Scientifique, Université Paris-SaclayVersailles, France
| | | | - Manon Moreau
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, AgroParisTech, Centre National de la Recherche Scientifique, Université Paris-SaclayVersailles, France
- Laboratoire de Génétique et Biophysique des Plantes, UMR 7265, DSV, IBEB, SBVME, CEA, CNRS, Aix-Marseille Université, Faculté des Sciences de LuminyMarseille, France
| | - Mikhail Schepetilnikov
- Institut de Biologie Moléculaire des Plantes, UPR 2357 CNRS, Université de StrasbourgStrasbourg, France
| | - Johana Chicher
- Plateforme Protéomique Strasbourg-Esplanade, CNRS FRC1589, Institut de Biologie Moléculaire et CellulaireStrasbourg, France
| | | | - Michel Zivy
- Plateforme PAPPSO, UMR GQE-Le MoulonGif sur Yvette, France
| | - Christophe Robaglia
- Laboratoire de Génétique et Biophysique des Plantes, UMR 7265, DSV, IBEB, SBVME, CEA, CNRS, Aix-Marseille Université, Faculté des Sciences de LuminyMarseille, France
| | - Lyubov A. Ryabova
- Institut de Biologie Moléculaire des Plantes, UPR 2357 CNRS, Université de StrasbourgStrasbourg, France
| | - Johannes Hanson
- Umeå Plant Science Center, Department of Plant Physiology, Umeå UniversityUmeå, Sweden
| | - Christian Meyer
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, AgroParisTech, Centre National de la Recherche Scientifique, Université Paris-SaclayVersailles, France
- *Correspondence: Christian Meyer,
| |
Collapse
|
199
|
Li X, Jonikas MC. High-Throughput Genetics Strategies for Identifying New Components of Lipid Metabolism in the Green Alga Chlamydomonas reinhardtii. Subcell Biochem 2016; 86:223-247. [PMID: 27023238 DOI: 10.1007/978-3-319-25979-6_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Microalgal lipid metabolism is of broad interest because microalgae accumulate large amounts of triacylglycerols (TAGs) that can be used for biodiesel production (Durrett et al Plant J 54(4):593-607, 2008; Hu et al Plant J 54(4):621-639, 2008). Additionally, green algae are close relatives of land plants and serve as models to understand conserved lipid metabolism pathways in the green lineage. The green alga Chlamydomonas reinhardtii (Chlamydomonas hereafter) is a powerful model organism for understanding algal lipid metabolism. Various methods have been used to screen Chlamydomonas mutants for lipid amount or composition, and for identification of the mutated loci in mutants of interest. In this chapter, we summarize the advantages and caveats for each of these methods with a focus on screens for mutants with perturbed TAG content. We also discuss technical opportunities and new tools that are becoming available for screens of mutants altered in TAG content or perturbed in other processes in Chlamydomonas.
Collapse
Affiliation(s)
- Xiaobo Li
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
| | - Martin C Jonikas
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA.
| |
Collapse
|
200
|
Abstract
Plant and algal oils are some of the most energy-dense renewable compounds provided by nature. Triacylglycerols (TAGs) are the major constituent of plant oils, which can be converted into fatty acid methyl esters commonly known as biodiesel. As one of the most efficient producers of TAGs, photosynthetic microalgae have attracted substantial interest for renewable fuel production. Currently, the big challenge of microalgae based TAGs for biofuels is their high cost compared to fossil fuels. A conundrum is that microalgae accumulate large amounts of TAGs only during stress conditions such as nutrient deprivation and temperature stress, which inevitably will inhibit growth. Thus, a better understanding of why and how microalgae induce TAG biosynthesis under stress conditions would allow the development of engineered microalgae with increased TAG production during conditions optimal for growth. Land plants also synthesize TAGs during stresses and we will compare new findings on environmental stress-induced TAG accumulation in plants and microalgae especially in the well-characterized model alga Chlamydomonas reinhardtii and a biotechnologically relevant genus Nannochloropsis.
Collapse
Affiliation(s)
- Zhi-Yan Du
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Christoph Benning
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|