151
|
Kim CK, Lim HM, Na JK, Choi JW, Sohn SH, Park SC, Kim YH, Kim YK, Kim DY. A multistep screening method to identify genes using evolutionary transcriptome of plants. Evol Bioinform Online 2014; 10:69-78. [PMID: 24812480 PMCID: PMC3999899 DOI: 10.4137/ebo.s14823] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 03/25/2014] [Accepted: 03/28/2014] [Indexed: 11/17/2022] Open
Abstract
We introduced a multistep screening method to identify the genes in plants using microarrays and ribonucleic acid (RNA)-seq transcriptome data. Our method describes the process for identifying genes using the salt-tolerance response pathways of the potato (Solanum tuberosum) plant. Gene expression was analyzed using microarrays and RNA-seq experiments that examined three potato lines (high, intermediate, and low salt tolerance) under conditions of salt stress. We screened the orthologous genes and pathway genes involved in salinity-related biosynthetic pathways, and identified nine potato genes that were candidates for salinity-tolerance pathways. The nine genes were selected to characterize their phylogenetic reconstruction with homologous genes of Arabidopsis thaliana, and a Circos diagram was generated to understand the relationships among the selected genes. The involvement of the selected genes in salt-tolerance pathways was verified by reverse transcription polymerase chain reaction analysis. One candidate potato gene was selected for physiological validation by generating dehydration-responsive element-binding 1 (DREB1)-overexpressing transgenic potato plants. The DREB1 overexpression lines exhibited increased salt tolerance and plant growth when compared to that of the control. Although the nine genes identified by our multistep screening method require further characterization and validation, this study demonstrates the power of our screening strategy after the initial identification of genes using microarrays and RNA-seq experiments.
Collapse
Affiliation(s)
- Chang-Kug Kim
- Genomics Division, National Academy of Agricultural Science (NAAS), Rural Development Administration (RDA), Suwon, Korea
| | - Hye-Min Lim
- Genomics Division, National Academy of Agricultural Science (NAAS), Rural Development Administration (RDA), Suwon, Korea
| | - Jong-Kuk Na
- Molecular Breeding Division, NAAS, RDA, Suwon, Korea
| | - Ji-Weon Choi
- Vegetable Science Division, National Institute of Horticultural and Herbal Science, Suwon, Korea
| | - Seong-Han Sohn
- Genomics Division, National Academy of Agricultural Science (NAAS), Rural Development Administration (RDA), Suwon, Korea
| | | | - Young-Hwan Kim
- Policy Development Office, Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries, Anyang, Korea
| | - Yong-Kab Kim
- School of Electrical Information Communication Engineering, Wonkwang University, Iksan, Korea
| | - Dool-Yi Kim
- Molecular Breeding Division, NAAS, RDA, Suwon, Korea
| |
Collapse
|
152
|
Identification of novel and conserved microRNAs related to drought stress in potato by deep sequencing. PLoS One 2014; 9:e95489. [PMID: 24748226 PMCID: PMC3991665 DOI: 10.1371/journal.pone.0095489] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 03/27/2014] [Indexed: 11/29/2022] Open
Abstract
MicroRNAs (miRNAs) are a group of small, non-coding RNAs that play important roles in plant growth, development and stress response. There have been an increasing number of investigations aimed at discovering miRNAs and analyzing their functions in model plants (such as Arabidopsis thaliana and rice). In this research, we constructed small RNA libraries from both polyethylene glycol (PEG 6,000) treated and control potato samples, and a large number of known and novel miRNAs were identified. Differential expression analysis showed that 100 of the known miRNAs were down-regulated and 99 were up-regulated as a result of PEG stress, while 119 of the novel miRNAs were up-regulated and 151 were down-regulated. Based on target prediction, annotation and expression analysis of the miRNAs and their putative target genes, 4 miRNAs were identified as regulating drought-related genes (miR811, miR814, miR835, miR4398). Their target genes were MYB transcription factor (CV431094), hydroxyproline-rich glycoprotein (TC225721), quaporin (TC223412) and WRKY transcription factor (TC199112), respectively. Relative expression trends of those miRNAs were the same as that predicted by Solexa sequencing and they showed a negative correlation with the expression of the target genes. The results provide molecular evidence for the possible involvement of miRNAs in the process of drought response and/or tolerance in the potato plant.
Collapse
|
153
|
A systematic proteomic analysis of NaCl-stressed germinating maize seeds. Mol Biol Rep 2014; 41:3431-43. [PMID: 24700167 DOI: 10.1007/s11033-014-3205-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Accepted: 01/27/2014] [Indexed: 10/25/2022]
Abstract
Salt (NaCl) is a common physiological stressor of plants. To better understand how germinating seeds respond to salt stress, we examined the changes that occurred in the proteome of maize seeds during NaCl-treated germination. Phenotypically, salt concentrations less than 0.2 M appear to delay germination, while higher concentrations disrupt development completely, leading to seed death. The identities of 96 proteins with expression levels altered by NaCl-incubation were established using 2-DE-MALDI-TOF-MS and 2-DE-MALDI-TOF-MS/MS. Of these 96 proteins, 79 were altered greater than twofold when incubated with a 0.2 M salt solution, while 51 were altered when incubated with a 0.1 M salt solution. According to their functional annotations in the Swiss-Prot protein-sequence databases, these proteins are mainly involved in seed storage, energy metabolism, stress response, and protein metabolism. Notably, the expression of proteins that respond to abscisic acid signals increased in response to salt stress. The results of this study provide important clues as to how NaCl stresses the physiology of germinating maize seeds.
Collapse
|
154
|
Gupta B, Huang B. Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int J Genomics 2014; 2014:701596. [PMID: 24804192 PMCID: PMC3996477 DOI: 10.1155/2014/701596] [Citation(s) in RCA: 581] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 02/16/2014] [Accepted: 02/20/2014] [Indexed: 01/30/2023] Open
Abstract
Salinity is a major abiotic stress limiting growth and productivity of plants in many areas of the world due to increasing use of poor quality of water for irrigation and soil salinization. Plant adaptation or tolerance to salinity stress involves complex physiological traits, metabolic pathways, and molecular or gene networks. A comprehensive understanding on how plants respond to salinity stress at different levels and an integrated approach of combining molecular tools with physiological and biochemical techniques are imperative for the development of salt-tolerant varieties of plants in salt-affected areas. Recent research has identified various adaptive responses to salinity stress at molecular, cellular, metabolic, and physiological levels, although mechanisms underlying salinity tolerance are far from being completely understood. This paper provides a comprehensive review of major research advances on biochemical, physiological, and molecular mechanisms regulating plant adaptation and tolerance to salinity stress.
Collapse
Affiliation(s)
- Bhaskar Gupta
- Department of Biological Sciences (Section Biotechnology), Presidency University, 86/1 College Street, Kolkata 700073, India
| | - Bingru Huang
- Department of Plant Biology and Pathology, Rutgers University, New Brunswick, NJ 08901, USA
| |
Collapse
|
155
|
Hwang JE, Hwang SG, Kim SH, Lee KJ, Jang CS, Kim JB, Kim SH, Ha BK, Ahn JW, Kang SY, Kim DS. Transcriptome profiling in response to different types of ionizing radiation and identification of multiple radio marker genes in rice. PHYSIOLOGIA PLANTARUM 2014; 150:604-19. [PMID: 24164326 DOI: 10.1111/ppl.12121] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 10/01/2013] [Accepted: 10/22/2013] [Indexed: 05/24/2023]
Abstract
Ionizing radiation (IR) affects gene expression from plant genomes. To monitor the genome-wide transcriptional changes induced by three types of IR, we used the rice Affymetrix GeneChip microarray to identify genes that are up- or down-regulated by gamma rays (GAs), cosmic rays (CRs) and ion beams (IBs). The overall expression patterns in rice seedlings generated from seeds exposed to GAs and IBs were similar but differed for CRs exposure. Expression profiles of genes involved in metabolic pathways and cellular response were identified using MapMan analysis. This result revealed that IRs induced gene expression related to sucrose-starch metabolisms; sugar and starch accumulation was significantly increased in response to three types of IR in rice. In addition, we compared the genes commonly up- or down-regulated by exposure to three types of IR and identified 53 candidate radio marker genes (RMGs) that were differentially regulated by radiation exposure but not by other stresses. Among these genes, we selected six RMGs commonly applicable to different types of IR by specific coexpression networks using the algorithm for the reconstruction of accurate cellular networks (aracne) and confirmed the expression of these genes by reverse transcription-polymerase chain reaction (RT-PCR) analysis. Our results provided insight into the mechanisms of the responses to different types of IR and identified multiple marker genes to predict sensitivity to three types of IR.
Collapse
Affiliation(s)
- Jung Eun Hwang
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 1266 Sinjeong, Jeongeup, Jeonbuk 580-185, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
156
|
Maiti RK, Satya P. Research advances in major cereal crops for adaptation to abiotic stresses. GM CROPS & FOOD 2014; 5:259-79. [PMID: 25523172 PMCID: PMC5033336 DOI: 10.4161/21645698.2014.947861] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 07/07/2014] [Accepted: 07/09/2014] [Indexed: 01/14/2023]
Abstract
With devastating increase in population there is a great necessity to increase crop productivity of staple crops but the productivity is greatly affected by various abiotic stress factors such as drought, salinity. An attempt has been made a brief account on abiotic stress resistance of major cereal crops viz. In spite of good successes obtained on physiological and use molecular biology, the benefits of this high cost technology are beyond the reach of developing countries. This review discusses several morphological, anatomical, physiological, biochemical and molecular mechanisms of major cereal crops related to the adaptation of these crop to abiotic stress factors. It discusses the effect of abiotic stresses on physiological processes such as flowering, grain filling and maturation and plant metabolisms viz. photosynthesis, enzyme activity, mineral nutrition, and respiration. Though significant progress has been attained on the physiological, biochemical basis of resistance to abiotic stress factors, very little progress has been achieved to increase productivity under sustainable agriculture. Therefore, there is a great necessity of inter-disciplinary research to address this issue and to evolve efficient technology and its transfer to the farmers' fields.
Collapse
Key Words
- ABA, abscisic acid
- AM, arbuscular mycorrhiza
- APRI, alternate partial root zone irrigation
- ASI, anthesis-silking interval
- CAT, catalase
- CGR, crop growth rate
- DRI, drought resistance index
- GA, gibberelic acid
- GPX, glutathione peroxidase
- GR, glutathione reductase
- GST, glutathione-S transferase
- HSP, heat shock protein
- LWP, leaf water potential
- MAS, marker assisted selection
- MDA, malonaldehyde
- MT, more tillage
- MnSOD, manganese superoxide dismutase
- NAR, net assimilation rate
- NDVI, normalized difference vegetation index
- NT, no tillage
- OA, osmotic adjustment
- PEG, poly-ethylene glycol
- POX, peroxidase
- QTL, quantitative trait loci
- ROS, reactive oxygen species
- RUE, radiation use efficiency
- SA, salicylic acid
- SPAW, soil plant air water
- TE, transpiration efficiency
- TTC, triphenyltetrazolium chloride
- VDAC, voltage dependent anion channel
- WSI, water stress index
- WUE, water use efficiency
- abiotic stress
- biochemical mechanism
- cereals
- molecular mechanism
- physiology
- tolerance
Collapse
Affiliation(s)
- RK Maiti
- Chemistry and Biology Faculty; Universidad de las Americas; Choulula; Santa Catarina Martir; Puebla Fracc; Valle de las Flores; San Nicolas de las Garza; Nuevo Leon, Mexico
| | - Pratik Satya
- Central Research Institute for Jute and Allied Fibres; Barrackpore; Kolkata, India
| |
Collapse
|
157
|
Expression analysis of transcripts responsive to osmotic stress in Deschampsia antarctica Desv. Genes Genomics 2014. [DOI: 10.1007/s13258-013-0166-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
158
|
Hussein Z, Dryanova A, Maret D, Gulick PJ. Gene expression analysis in the roots of salt-stressed wheat and the cytogenetic derivatives of wheat combined with the salt-tolerant wheatgrass, Lophopyrum elongatum. PLANT CELL REPORTS 2014; 33:189-201. [PMID: 24141639 DOI: 10.1007/s00299-013-1522-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 10/01/2013] [Accepted: 10/02/2013] [Indexed: 06/02/2023]
Abstract
Using microarray analysis, we identified regulatory and signaling-related genes with differential expression in three genotypes with varying degrees of salt tolerance, Triticum aestivum , the amphiploid, and the wheat substitution line DS3E(3A). Lophopyrum elongatum is among one of the most salt-tolerant members of the Triticeae; important genetic stocks developed from crosses between wheat and L. elongatum provide a unique opportunity to compare gene expression in response to salt stress between these highly related species. The octaploid amphiploid contains the entire genome of T. aestivum and L. elongatum, and the disomic substitution line DS3E(3A) has chromosome 3A of wheat replaced by chromosome 3E of L. elongatum. In this study, microarray analysis was used to characterize gene expression profiles in the roots of three genotypes, Triticum aestivum, the octaploid amphiploid, and the wheat DS3E(3A) substitution line, in response to salt stress. We first examined changes in gene expression in wheat over a time course of 3 days of salt stress, and then compared changes in gene expression in wheat, the T. aestivum × L. elongatum amphiploid, and in the DS3E(3A) substitution line after 3 days of salt stress. In the time course experiment, 237 genes had 1.5 fold or greater change at least one out of three time points assayed in the experiment. The comparison between the three genotypes revealed 304 genes with significant differences in changes of expression between the genotypes. Forty-two of these genes had at least a twofold change in expression in response to salt treatment; 18 of these genes have signaling or regulatory function. Genes with significant differences in induction or repression between genotypes included transcription factors, protein kinases, ubiquitin ligases and genes related to phospholipid signaling.
Collapse
Affiliation(s)
- Zina Hussein
- Biology Department, Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke W., Montreal, QC, H4B 1R6, Canada
| | | | | | | |
Collapse
|
159
|
Do PT, Drechsel O, Heyer AG, Hincha DK, Zuther E. Changes in free polyamine levels, expression of polyamine biosynthesis genes, and performance of rice cultivars under salt stress: a comparison with responses to drought. FRONTIERS IN PLANT SCIENCE 2014; 5:182. [PMID: 24847340 PMCID: PMC4021140 DOI: 10.3389/fpls.2014.00182] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 04/17/2014] [Indexed: 05/05/2023]
Abstract
Soil salinity affects a large proportion of rural area and limits agricultural productivity. To investigate differential adaptation to soil salinity, we studied salt tolerance of 18 varieties of Oryza sativa using a hydroponic culture system. Based on visual inspection and photosynthetic parameters, cultivars were classified according to their tolerance level. Additionally, biomass parameters were correlated with salt tolerance. Polyamines have frequently been demonstrated to be involved in plant stress responses and therefore soluble leaf polyamines were measured. Under salinity, putrescine (Put) content was unchanged or increased in tolerant, while dropped in sensitive cultivars. Spermidine (Spd) content was unchanged at lower NaCl concentrations in all, while reduced at 100 mM NaCl in sensitive cultivars. Spermine (Spm) content was increased in all cultivars. A comparison with data from 21 cultivars under long-term, moderate drought stress revealed an increase of Spm under both stress conditions. While Spm became the most prominent polyamine under drought, levels of all three polyamines were relatively similar under salt stress. Put levels were reduced under both, drought and salt stress, while changes in Spd were different under drought (decrease) or salt (unchanged) conditions. Regulation of polyamine metabolism at the transcript level during exposure to salinity was studied for genes encoding enzymes involved in the biosynthesis of polyamines and compared to expression under drought stress. Based on expression profiles, investigated genes were divided into generally stress-induced genes (ADC2, SPD/SPM2, SPD/SPM3), one generally stress-repressed gene (ADC1), constitutively expressed genes (CPA1, CPA2, CPA4, SAMDC1, SPD/SPM1), specifically drought-induced genes (SAMDC2, AIH), one specifically drought-repressed gene (CPA3) and one specifically salt-stress repressed gene (SAMDC4), revealing both overlapping and specific stress responses under these conditions.
Collapse
Affiliation(s)
- Phuc T. Do
- Infrastructure Group Transcript Profiling, Max-Planck-Institute of Molecular Plant PhysiologyPotsdam, Germany
| | - Oliver Drechsel
- Infrastructure Group Transcript Profiling, Max-Planck-Institute of Molecular Plant PhysiologyPotsdam, Germany
| | - Arnd G. Heyer
- Department of Plant Biotechnology, Institute of Biology, University of StuttgartStuttgart, Germany
| | - Dirk K. Hincha
- Infrastructure Group Transcript Profiling, Max-Planck-Institute of Molecular Plant PhysiologyPotsdam, Germany
| | - Ellen Zuther
- Infrastructure Group Transcript Profiling, Max-Planck-Institute of Molecular Plant PhysiologyPotsdam, Germany
- *Correspondence: Ellen Zuther, Infrastructure Group Transcript Profiling, Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam, Germany e-mail:
| |
Collapse
|
160
|
Des Marais DL, Hernandez KM, Juenger TE. Genotype-by-Environment Interaction and Plasticity: Exploring Genomic Responses of Plants to the Abiotic Environment. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2013. [DOI: 10.1146/annurev-ecolsys-110512-135806] [Citation(s) in RCA: 256] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- David L. Des Marais
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas 78712;
| | - Kyle M. Hernandez
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas 78712;
| | - Thomas E. Juenger
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas 78712;
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712
| |
Collapse
|
161
|
Pacheco CM, Pestana-Calsa MC, Gozzo FC, Mansur Custodio Nogueira RJ, Menossi M, Calsa T. Differentially delayed root proteome responses to salt stress in sugar cane varieties. J Proteome Res 2013; 12:5681-95. [PMID: 24251627 DOI: 10.1021/pr400654a] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Soil salinity is a limiting factor to sugar cane crop development, although in general plants present variable mechanisms of tolerance to salinity stress. The molecular basis underlying these mechanisms can be inferred by using proteomic analysis. Thus, the objective of this work was to identify differentially expressed proteins in sugar cane plants submitted to salinity stress. For that, a greenhouse experiment was established with four sugar cane varieties and two salt conditions, 0 mM (control) and 200 mM NaCl. Physiological and proteomics analyses were performed after 2 and 72 h of stress induction by salt. Distinct physiological responses to salinity stress were observed in the varieties and linked to tolerance mechanisms. In proteomic analysis, the roots soluble protein fraction was extracted, quantified, and analyzed through bidimensional electrophoresis. Gel images analyses were done computationally, where in each contrast only one variable was considered (salinity condition or variety). Differential spots were excised, digested by trypsin, and identified via mass spectrometry. The tolerant variety RB867515 showed the highest accumulation of proteins involved in growth, development, carbohydrate and energy metabolism, reactive oxygen species metabolization, protein protection, and membrane stabilization after 2 h of stress. On the other hand, the presence of these proteins in the sensitive variety was verified only in stress treatment after 72 h. These data indicate that these stress responses pathways play a role in the tolerance to salinity in sugar cane, and their effectiveness for phenotypical tolerance depends on early stress detection and activation of the coding genes expression.
Collapse
Affiliation(s)
- Cinthya Mirella Pacheco
- Laboratory of Plant Genomics and Proteomics, Department of Genetics, Center for Biological Sciences, Universidade Federal de Pernambuco , Recife, PE, Brazil
| | | | | | | | | | | |
Collapse
|
162
|
Zhang LM, Liu XG, Qu XN, Yu Y, Han SP, Dou Y, Xu YY, Jing HC, Hao DY. Early transcriptomic adaptation to Na₂CO₃ stress altered the expression of a quarter of the total genes in the maize genome and exhibited shared and distinctive profiles with NaCl and high pH stresses. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2013; 55:1147-65. [PMID: 24034274 DOI: 10.1111/jipb.12100] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 08/16/2013] [Indexed: 05/22/2023]
Abstract
Sodium carbonate (Na₂CO₃) presents a huge challenge to plants by the combined damaging effects of Na⁺, high pH, and CO₃²⁻. Little is known about the cellular responses to Na₂CO₃ stress. In this study, the transcriptome of maize (Zea mays L. cv. B73) roots exposed to Na₂CO₃ stress for 5 h was compared with those of NaCl and NaOH stresses. The expression of 8,319 genes, representing over a quarter of the total number of genes in the maize genome, was altered by Na₂CO₃ stress, and the downregulated genes (5,232) outnumbered the upregulated genes (3,087). The effects of Na₂CO₃ differed from those of NaCl and NaOH, primarily by downregulating different categories of genes. Pathways commonly altered by Na₂CO₃, NaCl, and NaOH were enriched in phenylpropanoid biosynthesis, oxidation of unsaturated fatty acids, ATP-binding cassette (ABC) transporters, as well as the metabolism of secondary metabolites. Genes for brassinosteroid biosynthesis were specifically upregulated by Na₂CO₃, while genes involved in ascorbate and aldarate metabolism, protein processing in the endoplasmic reticulum and by N-glycosylation, fatty acid biosynthesis, and the circadian rhythm were downregulated. This work provides the first holistic picture of early transcriptomic adaptation to Na₂CO₃ stress, and highlights potential molecular pathways that could be manipulated to improve tolerance in maize.
Collapse
Affiliation(s)
- Li-Min Zhang
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130124, China; Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun, 130012, China; The Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
| | | | | | | | | | | | | | | | | |
Collapse
|
163
|
Sanchez DH. Physiological and biotechnological implications of transcript-level variation under abiotic stress. PLANT BIOLOGY (STUTTGART, GERMANY) 2013; 15:925-930. [PMID: 24033916 DOI: 10.1111/plb.12075] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 06/09/2013] [Indexed: 06/02/2023]
Abstract
The discovery of genes that can be used to increase plant tolerance to environmental stress has practical implications for agriculture, since knowledge at the molecular level can potentially be translated from model plants to crops or from tolerant to sensitive cultivars. For more than a decade, researchers have attempted to identify transcriptional and metabolic pathways involved in stress tolerance using functional genomics tools. In some cases, promising results were obtained when a clear causal link was found between transcripts and tolerance/sensitivity to stress. However, recent reports question the global translational power of functional genomics for biotechnological applications, as one of the main limitations seems to be the large variability in gene expression. Transcript-level variability under stress has not been considered of interest in the scientific literature because it is intuitively obvious, but most reports seem to naively overlook the consequences. Here, three case situations are reviewed (variability between genotypes, variability due to environmental interactions and variability between stressors) in support of the concept that inherent transcript-level variation in biological systems may limit our knowledge of environmental plant tolerance and of functional genomics in molecular stress physiology.
Collapse
Affiliation(s)
- D H Sanchez
- Laboratory of Plant Genetics-Sciences III, University of Geneva, Geneva, Switzerland
| |
Collapse
|
164
|
Ren L, Zhang D, Jiang XN, Gai Y, Wang WM, Reed BM, Shen XH. Peroxidation due to cryoprotectant treatment is a vital factor for cell survival in Arabidopsis cryopreservation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 212:37-47. [PMID: 24094052 DOI: 10.1016/j.plantsci.2013.07.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 07/16/2013] [Accepted: 07/20/2013] [Indexed: 05/25/2023]
Abstract
Cryopreservation can be a safe and cost-effective tool for the long-term storage of plant germplasm. In Arabidopsis, the ability to recover from cryogenic treatment was lost as growth progressed. Growth could be restored in 48-h seedlings, whereas 72-h seedlings died after cryogenic treatment. Why seedling age and survival are negatively correlated is an interesting issue. A comparative transcriptomics was performed to screen differentially expressed genes between 48- and 72-h seedlings after exposure to cryoprotectant. Among differentially expressed genes, oxidative stress response genes played important roles in cryoprotectant treatment, and peroxidation was a key factor related to cell survival. Seedlings underwent more peroxidation at 72-h than at 48-h. A comprehensive analysis indicated that peroxidation injured membrane systems leading to photophosphorylation and oxidative phosphorylation damage. Furthermore, the apoptosis-like events were found in cryogenic treatment of Arabidopsis seedlings. 48- and 72-h seedlings underwent different degrees of membrane lipid peroxidation during cryoprotectant treatment, and reducing the injury of oxidative stress was an important factor to successful cryopreservation. This study provided a novel insight of genetic regulatory mechanisms in cryopreservation, and established an excellent model to test and evaluate the effect of exogenous antioxidants and conventional cryoprotectants in plant cryopreservation.
Collapse
Affiliation(s)
- Li Ren
- Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, No. 800, Rd. Dong Chuan, Shanghai, PR China.
| | | | | | | | | | | | | |
Collapse
|
165
|
Su Z, Ma X, Guo H, Sukiran NL, Guo B, Assmann SM, Ma H. Flower development under drought stress: morphological and transcriptomic analyses reveal acute responses and long-term acclimation in Arabidopsis. THE PLANT CELL 2013; 25:3785-807. [PMID: 24179129 PMCID: PMC3877795 DOI: 10.1105/tpc.113.115428] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 09/30/2013] [Accepted: 10/14/2013] [Indexed: 05/06/2023]
Abstract
Drought dramatically affects plant growth and crop yield, but previous studies primarily examined responses to drought during vegetative development. Here, to study responses to drought during reproductive development, we grew Arabidopsis thaliana plants with limited water, under conditions that allowed the plants to initiate and complete reproduction. Drought treatment from just after the onset of flowering to seed maturation caused an early arrest of floral development and sterility. After acclimation, plants showed reduced fertility that persisted throughout reproductive development. Floral defects included abnormal anther development, lower pollen viability, reduced filament elongation, ovule abortion, and failure of flowers to open. Drought also caused differential expression of 4153 genes, including flowering time genes flowering locus t, suppressor of overexpression of CO1, and leafy, genes regulating anther and pistil development, and stress-related transcription factors. Mutant phenotypes of hypersensitivity to drought and fewer differentially expressed genes suggest that dehydration response element B1A may have an important function in drought response in flowers. A more severe filament elongation defect under drought in myb21 plants demonstrated that appropriate stamen development requires MYB domain protein 21 under drought conditions. Our study reveals a regulatory cascade in reproductive responses and acclimation under drought.
Collapse
Affiliation(s)
- Zhao Su
- Department of Biology and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Xuan Ma
- Department of Biology and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802
- Intercollege Graduate Program in Cell and Developmental Biology, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Huihong Guo
- Department of Biology and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802
- College of Biological Science and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Noor Liyana Sukiran
- Department of Biology and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Bin Guo
- Department of Biology and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802
- State Key Laboratory of Genetic Engineering and Institute of Plant Biology, Institute of Genetics, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Sarah M. Assmann
- Department of Biology and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Hong Ma
- Department of Biology and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802
- Intercollege Graduate Program in Cell and Developmental Biology, Pennsylvania State University, University Park, Pennsylvania 16802
- State Key Laboratory of Genetic Engineering and Institute of Plant Biology, Institute of Genetics, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| |
Collapse
|
166
|
Ramezani A, Niazi A, Abolimoghadam AA, Zamani Babgohari M, Deihimi T, Ebrahimi M, Akhtardanesh H, Ebrahimie E. Quantitative expression analysis of TaSOS1 and TaSOS4 genes in cultivated and wild wheat plants under salt stress. Mol Biotechnol 2013; 53:189-97. [PMID: 22367644 DOI: 10.1007/s12033-012-9513-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Salt stress is a mixture of ionic, osmotic, and oxidative stresses. The expression of TaSOS1 (a transmembrane Na(+)/H(+) antiporter) and TaSOS4 [a cytoplasmic pyridoxal (PL) kinase] genes were measured in four different salinity levels and different time courses of salinity exposure using qRT-PCR technique. Mahuti (salt tolerant) and Alamut (salt sensitive) cultivars were used as cultivated wheat, and T. boeticum and Aegilops crassa as wild wheat plants. Salt-induced expression of TaSOS1 in these wild wheat plants indicates the presence of active TaSOS1 gene on the genomes A and D. The TaSOS1 and TaSOS4 transcript levels were found to be downregulated after salt treatment in all cultivars except in A. crassa, which was in contrast with its expression pattern in roots that was being upregulated from a very low-basal expression, after salt treatments. Duncan's Multiple Range Test showed a significant difference between expression in the 200-mM NaCl concentration with the 50 and 100 mM for the TaSOS1 gene, and no significant difference for TaSOS4. Lack of significant correlation between the TaSOS1 and TaSOS4 gene expressions confirms the theory that PLP has no significant effect on the expression of the TaSOS1 gene in wheat leaves.
Collapse
Affiliation(s)
- Amin Ramezani
- Biotechnology Institute, Shiraz University, 71441-65186 Bajgah, Shiraz, Iran.
| | | | | | | | | | | | | | | |
Collapse
|
167
|
Fariduddin Q, Khalil RRAE, Mir BA, Yusuf M, Ahmad A. 24-Epibrassinolide regulates photosynthesis, antioxidant enzyme activities and proline content of Cucumis sativus under salt and/or copper stress. ENVIRONMENTAL MONITORING AND ASSESSMENT 2013; 185:7845-56. [PMID: 23443638 DOI: 10.1007/s10661-013-3139-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 02/08/2013] [Indexed: 05/25/2023]
Abstract
Brassinosteroids have been extensively used to overcome various abiotic stresses. But its role in combined stress of salt and excess copper remains unexplored. Seeds of two cultivars (Rocket and Jumbo) of Cucumis sativus were grown in sand amended with copper (100 mg kg(-1)), and developed seedlings were exposed to salt stress in the form of NaCl (150 mM) at the 30-day stage of growth for 3 days. These seedlings were subsequently sprayed with 0 or 0.01 μM of 24-epibrassinolide (EBL) at the 35-day stage. The plants exposed to NaCl and Cu in combination exhibited a significant decline in fresh and dry mass of plant, chlorophyll content, activities of carbonic anhydrase, net photosynthetic rate and maximum quantum yield of the PSII primary photochemistry followed by NaCl and Cu stress alone, more severely in Jumbo than in Rocket. However, the follow-up treatment with EBL to the stressed and nonstressed plant improved growth, chlorophyll content, carbonic anhydrase activity and photosynthetic efficiency, and further enhanced the activity of various antioxidant enzymes viz. catalase, peroxidase and superoxide dismutase and content of proline at the 40-day stage of growth, and the response of the hormone was more effective in Rocket than in Jumbo. The elevated level of antioxidant enzymes as well as proline could have conferred tolerance to the NaCl- and/or Cu-stressed plants resulting in improved growth, water relations and photosynthetic attributes. Furthermore, antioxidant enzyme activity and proline content were more enhanced in Rocket than in Jumbo cultivar.
Collapse
Affiliation(s)
- Q Fariduddin
- Plant Physiology and Biochemistry Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India.
| | | | | | | | | |
Collapse
|
168
|
Zhang Y, Lin X, Ou X, Hu L, Wang J, Yang C, Wang S, Liu B. Transcriptome alteration in a rice introgression line with enhanced alkali tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 68:111-7. [PMID: 23685753 DOI: 10.1016/j.plaphy.2013.04.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 04/18/2013] [Indexed: 05/22/2023]
Abstract
Alkali stress inhibits plant growth and development and thus limits crop productivity. To investigate the possible genetic basis of alkali tolerance in rice, we generated an introgressed rice line (K83) with significantly enhanced tolerance to alkali stress compared to its recipient parental cultivar (Jijing88). By using microarray analysis, we examined the global gene expression profiles of K83 and Jijing88, and found that more than 1200 genes were constitutively and differentially expressed in K83 in comparison to Jijing88 with 572 genes up- and 654 down-regulated. Upon alkali treatment, a total of 347 genes were found up- and 156 down-regulated in K83 compared to 591 and 187, respectively, in Jijing88. Among the up-regulated genes in both K83 and Jijing88, only 34 were constitutively up-regulated in K83, suggesting that both the constitutive differentially expressed genes in K83 and those induced by alkali treatment are most likely responsible for enhanced alkali tolerance. A gene ontology analysis based on all annotated, differentially expressed genes revealed that genes with expression alterations were enriched in pathways involved in metabolic processes, catalytic activity, and transport and transcription factor activities, suggesting that these pathways are associated with alkali stress tolerance in rice. Our results illuminated the novel genetic aspects of alkali tolerance in rice and established a repertory of potential target genes for biotechnological manipulations that can be used to generate alkali-tolerant rice cultivars.
Collapse
Affiliation(s)
- Yunhong Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education-MOE, Northeast Normal University, Changchun 130024, China
| | | | | | | | | | | | | | | |
Collapse
|
169
|
Roychoudhury A, Paul S, Basu S. Cross-talk between abscisic acid-dependent and abscisic acid-independent pathways during abiotic stress. PLANT CELL REPORTS 2013; 32:985-1006. [PMID: 23508256 DOI: 10.1007/s00299-013-1414-5] [Citation(s) in RCA: 173] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 02/28/2013] [Accepted: 03/04/2013] [Indexed: 05/18/2023]
Abstract
Salinity, drought and low temperature are the common forms of abiotic stress encountered by land plants. To cope with these adverse environmental factors, plants execute several physiological and metabolic responses. Both osmotic stress (elicited by water deficit or high salt) and cold stress increase the endogenous level of the phytohormone abscisic acid (ABA). ABA-dependent stomatal closure to reduce water loss is associated with small signaling molecules like nitric oxide, reactive oxygen species and cytosolic free calcium, and mediated by rapidly altering ion fluxes in guard cells. ABA also triggers the expression of osmotic stress-responsive (OR) genes, which usually contain single/multiple copies of cis-acting sequence called abscisic acid-responsive element (ABRE) in their upstream regions, mostly recognized by the basic leucine zipper-transcription factors (TFs), namely, ABA-responsive element-binding protein/ABA-binding factor. Another conserved sequence called the dehydration-responsive element (DRE)/C-repeat, responding to cold or osmotic stress, but not to ABA, occurs in some OR promoters, to which the DRE-binding protein/C-repeat-binding factor binds. In contrast, there are genes or TFs containing both DRE/CRT and ABRE, which can integrate input stimuli from salinity, drought, cold and ABA signaling pathways, thereby enabling cross-tolerance to multiple stresses. A strong candidate that mediates such cross-talk is calcium, which serves as a common second messenger for abiotic stress conditions and ABA. The present review highlights the involvement of both ABA-dependent and ABA-independent signaling components and their interaction or convergence in activating the stress genes. We restrict our discussion to salinity, drought and cold stress.
Collapse
Affiliation(s)
- Aryadeep Roychoudhury
- Post Graduate Department of Biotechnology, St. Xavier's College Autonomous, 30, Mother Teresa Sarani, Kolkata 700016, West Bengal, India.
| | | | | |
Collapse
|
170
|
Ma J, Zhang M, Xiao X, You J, Wang J, Wang T, Yao Y, Tian C. Global transcriptome profiling of Salicornia europaea L. shoots under NaCl treatment. PLoS One 2013; 8:e65877. [PMID: 23825526 PMCID: PMC3692491 DOI: 10.1371/journal.pone.0065877] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 04/29/2013] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Soil salinity is a major abiotic stress that limits agriculture productivity worldwide. Salicornia europaea is well adapted to extreme saline environments with more than 1,000 mM NaCl in the soil, so it could serve as an important model species for studying halophilic mechanisms in euhalophytes. To obtain insights into the molecular basis of salt tolerance, we present here the first extensive transcriptome analysis of this species using the Illumina HiSeq™ 2000. PRINCIPAL FINDINGS A total of 41 and 39 million clean reads from the salt-treated (Se200S) and salt-free (SeCKS) tissues of S. europaea shoots were obtained, and de novo assembly produced 97,865 and 101,751 unigenes, respectively. Upon further assembly with EST data from both Se200S and SeCKS, 109,712 high-quality non-redundant unigenes were generated with a mean unigene size of 639 bp. Additionally, a total of 3,979 differentially expressed genes (DEGs) were detected between the Se200S and SeCKS libraries, with 348 unigenes solely expressed in Se200S and 460 unigenes solely expressed in SeCKS. Furthermore, we identified a large number of genes that are involved in ion homeostasis and osmotic adjustment, including cation transporters and proteins for the synthesis of low-molecular compounds. All unigenes were functionally annotated within the COG, GO and KEGG pathways, and 10 genes were validated by qRT-PCR. CONCLUSION Our data contains the extensive sequencing and gene-annotation analysis of S. europaea. This genetic knowledge will be very useful for future studies on the molecular adaptation to abiotic stress in euhalophytes and will facilitate the genetic manipulation of other economically important crops.
Collapse
Affiliation(s)
- Jinbiao Ma
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Science, Urumqi, China
| | - Meiru Zhang
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Science, Urumqi, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xinlong Xiao
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Science, Urumqi, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jinjin You
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Science, Urumqi, China
| | - Junru Wang
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Science, Urumqi, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tao Wang
- College of Resource and Environment Science, Xinjiang University, Urumqi, China
| | - Yinan Yao
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Science, Urumqi, China
- * E-mail: (YY); (CT)
| | - Changyan Tian
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Science, Urumqi, China
- * E-mail: (YY); (CT)
| |
Collapse
|
171
|
Wang J, Chen L, Wang Y, Zhang J, Liang Y, Xu D. A computational systems biology study for understanding salt tolerance mechanism in rice. PLoS One 2013; 8:e64929. [PMID: 23762267 PMCID: PMC3676415 DOI: 10.1371/journal.pone.0064929] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 04/19/2013] [Indexed: 01/22/2023] Open
Abstract
Salinity is one of the most common abiotic stresses in agriculture production. Salt tolerance of rice (Oryza sativa) is an important trait controlled by various genes. The mechanism of rice salt tolerance, currently with limited understanding, is of great interest to molecular breeding in improving grain yield. In this study, a gene regulatory network of rice salt tolerance is constructed using a systems biology approach with a number of novel computational methods. We developed an improved volcano plot method in conjunction with a new machine-learning method for gene selection based on gene expression data and applied the method to choose genes related to salt tolerance in rice. The results were then assessed by quantitative trait loci (QTL), co-expression and regulatory binding motif analysis. The selected genes were constructed into a number of network modules based on predicted protein interactions including modules of phosphorylation activity, ubiquity activity, and several proteinase activities such as peroxidase, aspartic proteinase, glucosyltransferase, and flavonol synthase. All of these discovered modules are related to the salt tolerance mechanism of signal transduction, ion pump, abscisic acid mediation, reactive oxygen species scavenging and ion sequestration. We also predicted the three-dimensional structures of some crucial proteins related to the salt tolerance QTL for understanding the roles of these proteins in the network. Our computational study sheds some new light on the mechanism of salt tolerance and provides a systems biology pipeline for studying plant traits in general.
Collapse
Affiliation(s)
- Juexin Wang
- College of Computer Science and Technology, Jilin University, Changchun, China
- Digital Biology Laboratory, Computer Science Department, and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
| | - Liang Chen
- College of Computer Science and Technology, Jilin University, Changchun, China
| | - Yan Wang
- College of Computer Science and Technology, Jilin University, Changchun, China
| | - Jingfen Zhang
- Digital Biology Laboratory, Computer Science Department, and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
| | - Yanchun Liang
- College of Computer Science and Technology, Jilin University, Changchun, China
- * E-mail: (YL); (DX)
| | - Dong Xu
- College of Computer Science and Technology, Jilin University, Changchun, China
- Digital Biology Laboratory, Computer Science Department, and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- * E-mail: (YL); (DX)
| |
Collapse
|
172
|
Liu M, Shi J, Lu C. Identification of stress-responsive genes in Ammopiptanthus mongolicus using ESTs generated from cold- and drought-stressed seedlings. BMC PLANT BIOLOGY 2013; 13:88. [PMID: 23734749 PMCID: PMC3679971 DOI: 10.1186/1471-2229-13-88] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 05/25/2013] [Indexed: 05/23/2023]
Abstract
BACKGROUND Ammopiptanthus mongolicus is the only evergreen broadleaf shrub in the northwest desert of China, which can survive long-term aridity and extremely cold environments. In order to understand the genetic mechanisms underlying stress tolerance and adaptation to unfavorable environments of woody plants, an EST approach was used to investigate expression patterns of A. mongolicus in response to abiotic stresses. RESULTS ESTs were generated from a cDNA library constructed from A. mongolicus seedlings subjected to cold and drought stresses. Analysis of 5,637 cDNA sequences led to the identification of 5,282 ESTs and 1,594 unigenes, which were denoted as the AmCDUnigene set. Of these, 70% of unigenes were annotated and classified into 12 functional categories according to Gene Ontology, and 30% of unigenes encoded unknown function proteins, suggesting some of them were novel or A. mongolicus specific genes. Using comparative analysis with the reported genes from other plants, 528 (33%) unigenes were identified as stress-responsive genes. The functional classification of the 528 genes showed that a majority of them are associated with scavenging reactive oxygen species, stress response, cellular transport, signal transduction and transcription. To further identify candidate abiotic stress-tolerance genes, the 528 stress-responsive genes were compared with reported abiotic stress genes in the Comparative Stress Genes Catalog of GCP. This comparative analysis identified 120 abiotic stress-responsive genes, and their expression in A. mongolicus seedlings under cold or drought stress were characterized by qRT-PCR. Significantly, 82 genes responded to cold and/or drought stress. These cold- and/or drought-inducible genes confirmed that the ROS network, signal transduction and osmolyte accumulation undergo transcriptional reorganization when exposed to cold or drought stress treatments. Additionally, among the 1,594 unigenes sequences, 155 simple sequence repeats (SSRs) were identified. CONCLUSION This study represents a comprehensive analysis of cold and/or drought stress-responsive transcriptiome of A. mongolicus. The newly characterized genes and gene-derived markers from the AmCDUnigene set are valuable resources for a better understanding of the mechanisms that govern stress tolerance in A. mongolicus and other related species. Certain up-regulated genes characterizing these processes are potential targets for breeding for cold and/or drought tolerance of woody plants.
Collapse
Affiliation(s)
- Meiqin Liu
- Analysis and Testing Center, Beijing Forestry University, Beijing, 100083, China
| | - Jing Shi
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Cunfu Lu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
173
|
Hachez C, Besserer A, Chevalier AS, Chaumont F. Insights into plant plasma membrane aquaporin trafficking. TRENDS IN PLANT SCIENCE 2013; 18:344-52. [PMID: 23291163 DOI: 10.1016/j.tplants.2012.12.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 11/30/2012] [Accepted: 12/05/2012] [Indexed: 05/11/2023]
Abstract
Plasma membrane intrinsic proteins (PIPs) are plant aquaporins that facilitate the diffusion of water and small uncharged solutes through the cell membrane. Deciphering the network of interacting proteins that modulate PIP trafficking to and activity in the plasma membrane is essential to improve our knowledge about PIP regulation and function. This review highlights the most recent advances related to PIP subcellular routing and dynamic redistribution, identifies some key molecular interacting proteins, and indicates exciting directions for future research in this field. A better understanding of the mechanisms by which plants optimize water movement might help in identifying new molecular players of agronomical relevance involved in the control of cellular water uptake and drought tolerance.
Collapse
Affiliation(s)
- Charles Hachez
- Institut des Sciences de la Vie, Université Catholique de Louvain, Croix du Sud 4-L7.07.14, B-1348 Louvain-la-Neuve, Belgium
| | | | | | | |
Collapse
|
174
|
Liu Y, Ji X, Zheng L, Nie X, Wang Y. Microarray analysis of transcriptional responses to abscisic acid and salt stress in Arabidopsis thaliana. Int J Mol Sci 2013; 14:9979-98. [PMID: 23665901 PMCID: PMC3676824 DOI: 10.3390/ijms14059979] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 04/11/2013] [Accepted: 04/28/2013] [Indexed: 02/04/2023] Open
Abstract
Abscisic acid (ABA) plays a crucial role in plant responses to abiotic stress. To investigate differences in plant responses to salt and ABA stimulus, differences in gene expression in Arabidopsis in response to salt and ABA were compared using an Agilent oligo microarray. A total of 144 and 139 genes were significantly up- and downregulated, respectively, under NaCl stress, while 406 and 381 genes were significantly up- and downregulated, respectively, under ABA stress conditions. In addition, 31 genes were upregulated by both NaCl and ABA stresses, and 23 genes were downregulated by these stressors, suggesting that these genes may play similar roles in plant responses to salt and ABA stress. Gene ontology (GO) analysis revealed four subgroups of genes, including genes in the GO categories “Molecular transducer activity”, “Growth”, “Biological adhesion” and “Pigmentation”, which were expressed in response to ABA stress but not NaCl stress. In addition, genes that play specific roles during salt or ABA stress were identified. Our results may help elucidate differences in the response of plants to salt and ABA stress.
Collapse
Affiliation(s)
- Yujia Liu
- State Key Laboratory of Forest Genetics and Tree Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China.
| | | | | | | | | |
Collapse
|
175
|
Nautiyal CS, Srivastava S, Chauhan PS, Seem K, Mishra A, Sopory SK. Plant growth-promoting bacteria Bacillus amyloliquefaciens NBRISN13 modulates gene expression profile of leaf and rhizosphere community in rice during salt stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 66:1-9. [PMID: 23454292 DOI: 10.1016/j.plaphy.2013.01.020] [Citation(s) in RCA: 161] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 01/28/2013] [Indexed: 05/04/2023]
Abstract
Growth and productivity of rice and soil inhabiting microbial population is negatively affected by soil salinity. However, some salt resistant, rhizosphere competent bacteria improve plant health in saline stress. Present study evaluated the effect of salt tolerant Bacillus amyloliquefaciens NBRISN13 (SN13) inoculation on rice plants in hydroponic and soil conditions exposed to salinity. SN13 increased plant growth and salt tolerance (NaCl 200 mM) and expression of at least 14 genes under hydroponic and soil conditions in rice. Among these 14 genes 4 (NADP-Me2, EREBP, SOSI, BADH and SERK1) were up-regulated and 2 (GIG and SAPK4) repressed under salt stress in hydroponic condition. In greenhouse experiment, salt stress resulted in accumulation of MAPK5 and down-regulation of the remaining 13 transcripts was observed. SN13 treatment, with or without salt gave similar expression for all tested genes as compared to control. Salt stress caused changes in the microbial diversity of the rice rhizosphere and stimulated population of betaine-, sucrose-, trehalose-, and glutamine-utilizing bacteria in salt-treated rice rhizosphere (SN13 + salt). The observations imply that SN13 confers salt tolerance in rice by modulating differential transcription in a set of at least 14 genes. Stimulation of osmoprotectant utilizing microbial population as a mechanism of inducing salt tolerance in rice is reported for the first time in this study to the best of our knowledge.
Collapse
|
176
|
Joo J, Lee YH, Kim YK, Nahm BH, Song SI. Abiotic stress responsive rice ASR1 and ASR3 exhibit different tissue-dependent sugar and hormone-sensitivities. Mol Cells 2013; 35:421-35. [PMID: 23620302 PMCID: PMC3887869 DOI: 10.1007/s10059-013-0036-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 03/06/2013] [Accepted: 03/07/2013] [Indexed: 10/26/2022] Open
Abstract
The expression of the six rice ASR genes is differentially regulated in a tissue-dependent manner according to environmental conditions and reproductive stages. OsASR1 and OsASR3 are the most abundant and are found in most tissues; they are enriched in the leaves and roots, respectively. Coexpression analysis of OsASR1 and OsASR3 and a comparison of the cis-acting elements upstream of OsASR1 and OsASR3 suggested that their expression is regulated in common by abiotic stresses but differently regulated by hormone and sugar signals. The results of quantitative real-time PCR analyses of OsASR1 and OsASR3 expression under various conditions further support this model. The expression of both OsASR1 and OsASR3 was induced by drought stress, which is a major regulator of the expression of all ASR genes in rice. In contrast, ABA is not a common regulator of the expression of these genes. OsASR1 transcription was highly induced by ABA, whereas OsASR3 transcription was strongly induced by GA. In addition, OsASR1 and OsASR3 expression was significantly induced by sucrose and sucrose/glucose treatments, respectively. The induction of gene expression in response to these specific hormone and sugar signals was primarily observed in the major target tissues of these genes (i.e., OsASR1 in leaves and OsASR3 in roots). Our data also showed that the overexpression of either OsASR1 or OsASR3 in transgenic rice plants increased their tolerance to drought and cold stress. Taken together, our results revealed that the transcriptional control of different rice ASR genes exhibit different tissue-dependent sugar and hormone-sensitivities.
Collapse
Affiliation(s)
- Joungsu Joo
- Division of Bioscience and Bioinformatics, Myongji University, Yongin 449–728,
Korea
| | - Youn Hab Lee
- Division of Bioscience and Bioinformatics, Myongji University, Yongin 449–728,
Korea
| | - Yeon-Ki Kim
- Genomics Genetics Institute, GreenGene BioTech, Inc., Yongin 449–728,
Korea
| | - Baek Hie Nahm
- Division of Bioscience and Bioinformatics, Myongji University, Yongin 449–728,
Korea
- Genomics Genetics Institute, GreenGene BioTech, Inc., Yongin 449–728,
Korea
| | - Sang Ik Song
- Division of Bioscience and Bioinformatics, Myongji University, Yongin 449–728,
Korea
| |
Collapse
|
177
|
Nwugo CC, Lin H, Duan Y, Civerolo EL. The effect of 'Candidatus Liberibacter asiaticus' infection on the proteomic profiles and nutritional status of pre-symptomatic and symptomatic grapefruit (Citrus paradisi) plants. BMC PLANT BIOLOGY 2013; 13:59. [PMID: 23578104 PMCID: PMC3668195 DOI: 10.1186/1471-2229-13-59] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 03/08/2013] [Indexed: 05/20/2023]
Abstract
BACKGROUND Huanglongbing (HLB) is a highly destructive citrus disease which threatens citrus production worldwide and 'Candidatus Liberibacter asiaticus' (Las), a non-culturable phloem-limited bacterium, is an associated causal agent of the disease. To better understand the physiological and molecular processes involved in host responses to Las, 2-DE and mass spectrometry analyses, as well as ICP spectroscopy analysis were employed to elucidate the global protein expression profiles and nutrient concentrations in leaves of Las-infected grapefruit plants at pre-symptomatic or symptomatic stages for HLB. RESULTS This study identified 123 protein spots out of 191 spots that showed significant changes in the leaves of grapefruit plants in response to Las infection and all identified spots matched to 69 unique proteins/peptides. A down-regulation of 56 proteins including those associated with photosynthesis, protein synthesis, and metabolism was correlated with significant reductions in the concentrations of Ca, Mg, Fe, Zn, Mn, and Cu in leaves of grapefruit plants in response to Las infection, particularly in symptomatic plants. Oxygen-evolving enhancer (OEE) proteins, a PSI 9 kDa protein, and a Btf3-like protein were among a small group of proteins that were down-regulated in both pre-symptomatic and symptomatic plants in response to Las infection. Furthermore, a Las-mediated up-regulation of 13 grapefruit proteins was detected, which included Cu/Zn superoxide dismutase, chitinases, lectin-related proteins, miraculin-like proteins, peroxiredoxins and a CAP 160 protein. Interestingly, a Las-mediated up-regulation of granule-bound starch synthase was correlated with an increase in the K concentrations of pre-symptomatic and symptomatic plants. CONCLUSIONS This study constitutes the first attempt to characterize the interrelationships between protein expression and nutritional status of Las-infected pre-symptomatic or symptomatic grapefruit plants and sheds light on the physiological and molecular mechanisms associated with HLB disease development.
Collapse
Affiliation(s)
- Chika C Nwugo
- San Joaquin valley Agricultural Sciences Center, USDA-ARS Parlier, California, 93648, USA
| | - Hong Lin
- San Joaquin valley Agricultural Sciences Center, USDA-ARS Parlier, California, 93648, USA
| | | | - Edwin L Civerolo
- San Joaquin valley Agricultural Sciences Center, USDA-ARS Parlier, California, 93648, USA
| |
Collapse
|
178
|
Do PT, Degenkolbe T, Erban A, Heyer AG, Kopka J, Köhl KI, Hincha DK, Zuther E. Dissecting rice polyamine metabolism under controlled long-term drought stress. PLoS One 2013; 8:e60325. [PMID: 23577102 PMCID: PMC3620119 DOI: 10.1371/journal.pone.0060325] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 02/25/2013] [Indexed: 11/18/2022] Open
Abstract
A selection of 21 rice cultivars (Oryza sativa L. ssp. indica and japonica) was characterized under moderate long-term drought stress by comprehensive physiological analyses and determination of the contents of polyamines and selected metabolites directly related to polyamine metabolism. To investigate the potential regulation of polyamine biosynthesis at the transcriptional level, the expression of 21 genes encoding enzymes involved in these pathways were analyzed by qRT-PCR. Analysis of the genomic loci revealed that 11 of these genes were located in drought-related QTL regions, in agreement with a proposed role of polyamine metabolism in rice drought tolerance. The cultivars differed widely in their drought tolerance and parameters such as biomass and photosynthetic quantum yield were significantly affected by drought treatment. Under optimal irrigation free putrescine was the predominant polyamine followed by free spermidine and spermine. When exposed to drought putrescine levels decreased markedly and spermine became predominant in all cultivars. There were no correlations between polyamine contents and drought tolerance. GC-MS analysis revealed drought-induced changes of the levels of ornithine/arginine (substrate), substrates of polyamine synthesis, proline, product of a competing pathway and GABA, a potential degradation product. Gene expression analysis indicated that ADC-dependent polyamine biosynthesis responded much more strongly to drought than the ODC-dependent pathway. Nevertheless the fold change in transcript abundance of ODC1 under drought stress was linearly correlated with the drought tolerance of the cultivars. Combining metabolite and gene expression data, we propose a model of the coordinate adjustment of polyamine biosynthesis for the accumulation of spermine under drought conditions.
Collapse
Affiliation(s)
- Phuc Thi Do
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam, Germany
| | - Thomas Degenkolbe
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam, Germany
| | - Alexander Erban
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam, Germany
| | - Arnd G. Heyer
- Universität Stuttgart, Biologisches Institut, Abteilung Botanik, Stuttgart, Germany
| | - Joachim Kopka
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam, Germany
| | - Karin I. Köhl
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam, Germany
| | - Dirk K. Hincha
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam, Germany
| | - Ellen Zuther
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam, Germany
- * E-mail:
| |
Collapse
|
179
|
Ma NL, Rahmat Z, Lam SS. A review of the "Omics" approach to biomarkers of oxidative stress in Oryza sativa. Int J Mol Sci 2013; 14:7515-41. [PMID: 23567269 PMCID: PMC3645701 DOI: 10.3390/ijms14047515] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 03/20/2013] [Accepted: 03/20/2013] [Indexed: 12/27/2022] Open
Abstract
Physiological and ecological constraints that cause the slow growth and depleted production of crops have raised a major concern in the agriculture industry as they represent a possible threat of short food supply in the future. The key feature that regulates the stress signaling pathway is always related to the reactive oxygen species (ROS). The accumulation of ROS in plant cells would leave traces of biomarkers at the genome, proteome, and metabolome levels, which could be identified with the recent technological breakthrough coupled with improved performance of bioinformatics. This review highlights the recent breakthrough in molecular strategies (comprising transcriptomics, proteomics, and metabolomics) in identifying oxidative stress biomarkers and the arising opportunities and obstacles observed in research on biomarkers in rice. The major issue in incorporating bioinformatics to validate the biomarkers from different omic platforms for the use of rice-breeding programs is also discussed. The development of powerful techniques for identification of oxidative stress-related biomarkers and the integration of data from different disciplines shed light on the oxidative response pathways in plants.
Collapse
Affiliation(s)
- Nyuk Ling Ma
- Department of Biology, Faculty of Science and Technology, University Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia
| | - Zaidah Rahmat
- Department of Biotechnology and Medical Engineering, Faculty of Biosciences and Medical Engineering, University Technology Malaysia, 81310 Johor Bahru, Johor, Malaysia; E-Mail:
| | - Su Shiung Lam
- Department of Engineering Science, Faculty of Science and Technology, University Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia; E-Mail:
| |
Collapse
|
180
|
Allario T, Brumos J, Colmenero-Flores JM, Iglesias DJ, Pina JA, Navarro L, Talon M, Ollitrault P, Morillon R. Tetraploid Rangpur lime rootstock increases drought tolerance via enhanced constitutive root abscisic acid production. PLANT, CELL & ENVIRONMENT 2013; 36:856-68. [PMID: 23050986 DOI: 10.1111/pce.12021] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Whole-genome duplication, or polyploidy, is common in many plant species and often leads to better adaptation to adverse environmental condition. However, little is known about the physiological and molecular determinants underlying adaptation. We examined the drought tolerance in diploid (2x) and autotetraploid (4x) clones of Rangpur lime (Citrus limonia) rootstocks grafted with 2x Valencia Delta sweet orange (Citrus sinensis) scions, named V/2xRL and V/4xRL, respectively. Physiological experiments to study root-shoot communication associated with gene expression studies in roots and leaves were performed. V/4xRL was much more tolerant to water deficit than V/2xRL. Gene expression analysis in leaves and roots showed that more genes related to the response to water stress were differentially expressed in V/2xRL than in V/4xRL. Prior to the stress, when comparing V/4xRL to V/2xRL, V/4xRL leaves had lower stomatal conductance and greater abscisic acid (ABA) content. In roots, ABA content was higher in V/4xRL and was associated to a greater expression of drought responsive genes, including CsNCED1, a pivotal regulatory gene of ABA biosynthesis. We conclude that tetraploidy modifies the expression of genes in Rangpur lime citrus roots to regulate long-distance ABA signalling and adaptation to stress.
Collapse
Affiliation(s)
- Thierry Allario
- Centre de Coopération Internationale en Recherche Agronomique pour Développement, UMR Amélioration Génétique et Adaptation des Plantes
| | | | | | | | | | | | | | | | | |
Collapse
|
181
|
Carnavale Bottino M, Rosario S, Grativol C, Thiebaut F, Rojas CA, Farrineli L, Hemerly AS, Ferreira PCG. High-throughput sequencing of small RNA transcriptome reveals salt stress regulated microRNAs in sugarcane. PLoS One 2013; 8:e59423. [PMID: 23544066 PMCID: PMC3609749 DOI: 10.1371/journal.pone.0059423] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 02/14/2013] [Indexed: 12/15/2022] Open
Abstract
Salt stress is a primary cause of crop losses worldwide, and it has been the subject of intense investigation to unravel the complex mechanisms responsible for salinity tolerance. MicroRNA is implicated in many developmental processes and in responses to various abiotic stresses, playing pivotal roles in plant adaptation. Deep sequencing technology was chosen to determine the small RNA transcriptome of Saccharum sp cultivars grown on saline conditions. We constructed four small RNAs libraries prepared from plants grown on hydroponic culture submitted to 170 mM NaCl and harvested after 1 h, 6 hs and 24 hs. Each library was sequenced individually and together generated more than 50 million short reads. Ninety-eight conserved miRNAs and 33 miRNAs* were identified by bioinformatics. Several of the microRNA showed considerable differences of expression in the four libraries. To confirm the results of the bioinformatics-based analysis, we studied the expression of the 10 most abundant miRNAs and 1 miRNA* in plants treated with 170 mM NaCl and in plants with a severe treatment of 340 mM NaCl. The results showed that 11 selected miRNAs had higher expression in samples treated with severe salt treatment compared to the mild one. We also investigated the regulation of the same miRNAs in shoots of four cultivars grown on soil treated with 170 mM NaCl. Cultivars could be grouped according to miRNAs expression in response to salt stress. Furthermore, the majority of the predicted target genes had an inverse regulation with their correspondent microRNAs. The targets encode a wide range of proteins, including transcription factors, metabolic enzymes and genes involved in hormone signaling, probably assisting the plants to develop tolerance to salinity. Our work provides insights into the regulatory functions of miRNAs, thereby expanding our knowledge on potential salt-stressed regulated genes.
Collapse
Affiliation(s)
- Mariana Carnavale Bottino
- Laboratório de Biologia Molecular de Plantas, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, RJ, Brazil
| | - Sabrina Rosario
- Laboratório de Biologia Molecular de Plantas, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, RJ, Brazil
| | - Clicia Grativol
- Laboratório de Biologia Molecular de Plantas, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, RJ, Brazil
| | - Flávia Thiebaut
- Laboratório de Biologia Molecular de Plantas, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, RJ, Brazil
| | | | | | - Adriana Silva Hemerly
- Laboratório de Biologia Molecular de Plantas, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, RJ, Brazil
| | - Paulo Cavalcanti Gomes Ferreira
- Laboratório de Biologia Molecular de Plantas, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
182
|
Zhang X, Wei L, Wang Z, Wang T. Physiological and molecular features of Puccinellia tenuiflora tolerating salt and alkaline-salt stress. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2013; 55:262-76. [PMID: 23176661 DOI: 10.1111/jipb.12013] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Saline-alkali soil seriously threatens agriculture productivity; therefore, understanding the mechanism of plant tolerance to alkaline-salt stress has become a major challenge. Halophytic Puccinellia tenuiflora can tolerate salt and alkaline-salt stress, and is thus an ideal plant for studying this tolerance mechanism. In this study, we examined the salt and alkaline-salt stress tolerance of P. tenuiflora, and analyzed gene expression profiles under these stresses. Physiological experiments revealed that P. tenuiflora can grow normally with maximum stress under 600 mmol/L NaCl and 150 mmol/L Na2 CO3 (pH 11.0) for 6 d. We identified 4,982 unigenes closely homologous to rice and barley. Furthermore, 1,105 genes showed differentially expressed profiles under salt and alkaline-salt treatments. Differentially expressed genes were overrepresented in functions of photosynthesis, oxidation reduction, signal transduction, and transcription regulation. Almost all genes downregulated under salt and alkaline-salt stress were related to cell structure, photosynthesis, and protein synthesis. Comparing with salt stress, alkaline-salt stress triggered more differentially expressed genes and significantly upregulated genes related to H(+) transport and citric acid synthesis. These data indicate common and diverse features of salt and alkaline-salt stress tolerance, and give novel insights into the molecular and physiological mechanisms of plant salt and alkaline-salt tolerance.
Collapse
Affiliation(s)
- Xia Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, the Chinese Academy of Sciences, National Center for Plant Gene Research, Beijing 100093, China
| | | | | | | |
Collapse
|
183
|
Xia Z, Su X, Liu J, Wang M. The RING-H2 finger gene 1 (RHF1) encodes an E3 ubiquitin ligase and participates in drought stress response in Nicotiana tabacum. Genetica 2013; 141:11-21. [PMID: 23381133 DOI: 10.1007/s10709-013-9702-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 01/28/2013] [Indexed: 11/26/2022]
Abstract
Drought is one of the most important limiting factors for plant growth and development. To identify genes required for drought stress response in tobacco, one highly induced mRNA encoding a RING-H2 Finger gene (RHF1) was isolated by mRNA differential display. The full-length NtRHF1 encodes a protein of 273 amino acids and contains a single C3H2C3-type RING motif in its C-terminal region. NtRHF1 is an ortholog of Arabidopsis SDIR1 (salt- and drought-induced RING finger 1) (73 % identity to AtSDIR1). The recombinant NtRHF1 protein purified from E. coli exhibited an in vitro E3 ubiquitin ligase activity. Real-time quantitative PCR analysis indicated that the transcript levels of NtRHF1 were higher in aerial tissues and were markedly up-regulated by drought stress. Overexpression of NtRHF1 enhanced drought tolerance in transgenic tobacco plants while RNA silencing of NtRHF1 reduced drought tolerance. Further expression analysis by real-time PCR indicated that NtRHF1 participates in drought stress response possibly through transcriptional regulation of downstream stress-responsive genes NtLEA5, NtERD10C, NtAREB, and NtCDPK2 in tobacco. Together, these results demonstrated that NtRHF1 plays a positive role in drought stress tolerance possibly through transcriptional regulation of several stress-responsive marker genes in tobacco. This study will facilitate to improve our understanding of molecular and functional properties of plant RING-H2 finger proteins and to provide genetic evidence on the involvement of the RING-H2 E3 ligase in drought stress response in Nicotiana tabacum plants.
Collapse
Affiliation(s)
- Zongliang Xia
- College of Life Science, Henan Agricultural University, Zhengzhou, People's Republic of China.
| | | | | | | |
Collapse
|
184
|
Abstract
Nitrogen is an essential mineral nutrient required for plant growth and development. Insufficient nitrogen (N) supply triggers extensive physiological and biochemical changes in plants. In this study, we used Affymetrix GeneChip rice genome arrays to analyse the dynamics of rice transcriptome under N starvation. N starvation induced or suppressed transcription of 3518 genes, representing 10.88 percent of the genome. These changes, mostly transient, affected various cellular metabolic pathways, including stress response, primary and secondary metabolism, molecular transport, regulatory process and organismal development. 462 or 13.1 percent transcripts for N starvation expressed similarly in root and shoot. Comparative analysis between rice and Arabidopsis identified 73 orthologous groups that responded to N starvation, demonstrated the existence of conserved N stress coupling mechanism among plants. Additional analysis of transcription profiles of microRNAs revealed differential expression of miR399 and miR530 under N starvation, suggesting their potential roles in plant nutrient homeostasis.
Collapse
|
185
|
Zhao Q, Zhang H, Wang T, Chen S, Dai S. Proteomics-based investigation of salt-responsive mechanisms in plant roots. J Proteomics 2013; 82:230-53. [PMID: 23385356 DOI: 10.1016/j.jprot.2013.01.024] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 01/10/2013] [Accepted: 01/25/2013] [Indexed: 12/29/2022]
Abstract
Salinity is one of the major abiotic stresses that limits agricultural productivity worldwide. Plant roots function as the primary site of salinity perception. Salt responses in roots are essential for maintaining root functionality, as well as for transmitting the salt signal to shoot for proper salt response and adaptation in the entire plant. Therefore, a thorough understanding of signaling and metabolic mechanisms of salt response in roots is critical for improving plant salt tolerance. Current proteomic studies have provided salt-responsive expression patterns of 905 proteins in 14 plant species. Through integrative analysis of salt-responsive proteins and previous physiological and molecular findings, this review summarizes current understanding of salt responses in roots and highlights proteomic findings on the molecular mechanisms in the fine-tuned salt-responsive networks. At the proteome level, the following processes become dominant in root salt response: (i) salt signal perception and transduction; (ii) detoxification of reactive oxygen species (ROS); (iii) salt uptake/exclusion and compartmentalization; (iv) protein translation and/or turnover dynamics; (v) cytoskeleton/cell wall dynamics; (vi) carbohydrate and energy metabolism; and (vii) other salt-responsive metabolisms. These processes work together to gain cellular homeostasis in roots and determine the overall phenotype of plant growth and development under salt stress.
Collapse
Affiliation(s)
- Qi Zhao
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Harbin 150040, China
| | | | | | | | | |
Collapse
|
186
|
mRNA-seq analysis of the Gossypium arboreum transcriptome reveals tissue selective signaling in response to water stress during seedling stage. PLoS One 2013; 8:e54762. [PMID: 23382961 PMCID: PMC3557298 DOI: 10.1371/journal.pone.0054762] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 12/14/2012] [Indexed: 02/06/2023] Open
Abstract
The cotton diploid species, Gossypium arboreum, shows important properties of stress tolerance and good genetic stability. In this study, through mRNA-seq, we de novo assembled the unigenes of multiple samples with 3h H2O, NaCl, or PEG treatments in leaf, stem and root tissues and successfully obtained 123,579 transcripts of G. arboreum, 89,128 of which were with hits through BLAST against known cotton ESTs and draft genome of G. raimondii. About 36,961 transcripts (including 1,958 possible transcription factor members) were identified with differential expression under water stresses. Principal component analysis of differential expression levels in multiple samples suggested tissue selective signalling responding to water stresses. Venn diagram analysis showed the specificity and intersection of transcripts’ response to NaCl and PEG treatments in different tissues. Self-organized mapping and hierarchical cluster analysis of the data also revealed strong tissue selectivity of transcripts under salt and osmotic stresses. In addition, the enriched gene ontology (GO) terms for the selected tissue groups were differed, including some unique enriched GO terms such as photosynthesis and tetrapyrrole binding only in leaf tissues, while the stem-specific genes showed unique GO terms related to plant-type cell wall biogenesis, and root-specific genes showed unique GO terms such as monooxygenase activity. Furthermore, there were multiple hormone cross-talks in response to osmotic and salt stress. In summary, our multidimensional mRNA sequencing revealed tissue selective signalling and hormone crosstalk in response to salt and osmotic stresses in G. arboreum. To our knowledge, this is the first such report of spatial resolution of transcriptome analysis in G. arboreum. Our study will potentially advance understanding of possible transcriptional networks associated with water stress in cotton and other crop species.
Collapse
|
187
|
Hu B, Jiang G, Pang C, Wang S, Liu Q, Chen Z, Vanderburg CR, Rogers JT, Deng Y, Huang X. Assessment of gene order computing methods for Alzheimer's disease. BMC Med Genomics 2013; 6 Suppl 1:S8. [PMID: 23369541 PMCID: PMC3552676 DOI: 10.1186/1755-8794-6-s1-s8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Computational genomics of Alzheimer disease (AD), the most common form of senile dementia, is a nascent field in AD research. The field includes AD gene clustering by computing gene order which generates higher quality gene clustering patterns than most other clustering methods. However, there are few available gene order computing methods such as Genetic Algorithm (GA) and Ant Colony Optimization (ACO). Further, their performance in gene order computation using AD microarray data is not known. We thus set forth to evaluate the performances of current gene order computing methods with different distance formulas, and to identify additional features associated with gene order computation. METHODS Using different distance formulas- Pearson distance and Euclidean distance, the squared Euclidean distance, and other conditions, gene orders were calculated by ACO and GA (including standard GA and improved GA) methods, respectively. The qualities of the gene orders were compared, and new features from the calculated gene orders were identified. RESULTS Compared to the GA methods tested in this study, ACO fits the AD microarray data the best when calculating gene order. In addition, the following features were revealed: different distance formulas generated a different quality of gene order, and the commonly used Pearson distance was not the best distance formula when used with both GA and ACO methods for AD microarray data. CONCLUSION Compared with Pearson distance and Euclidean distance, the squared Euclidean distance generated the best quality gene order computed by GA and ACO methods.
Collapse
Affiliation(s)
- Benqiong Hu
- College of Management Science, Chengdu University of Technology, Chengdu 610059, China
| | - Gang Jiang
- Group of Gene Computation, College of Mathematics and Software Science, Sichuan Normal University, Chengdu 610066, China
| | - Chaoyang Pang
- Group of Gene Computation, College of Mathematics and Software Science, Sichuan Normal University, Chengdu 610066, China
| | - Shipeng Wang
- Group of Gene Computation, College of Mathematics and Software Science, Sichuan Normal University, Chengdu 610066, China
| | - Qingzhong Liu
- Department of Computer Science, Sam Houston State University, Huntsville, TX 7734, USA
| | - Zhongxue Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Indiana University Bloomington, 1025 E. 7th Street, Bloomington, IN 47405-7109, USA
| | - Charles R Vanderburg
- Harvard NeuroDiscovery Center and Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Jack T Rogers
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Youping Deng
- Cancer Bioinformatics, Rush University Cancer Center, and Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Xudong Huang
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| |
Collapse
|
188
|
Fan XD, Wang JQ, Yang N, Dong YY, Liu L, Wang FW, Wang N, Chen H, Liu WC, Sun YP, Wu JY, Li HY. Gene expression profiling of soybean leaves and roots under salt, saline-alkali and drought stress by high-throughput Illumina sequencing. Gene 2013; 512:392-402. [PMID: 23063936 DOI: 10.1016/j.gene.2012.09.100] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 09/26/2012] [Accepted: 09/29/2012] [Indexed: 11/24/2022]
Abstract
Salt, saline-alkali and drought stresses are major environmental constraints for the production and yield of soybean worldwide. To identify genes responsible for stress tolerance, the transcriptional profiles of genes in leaves and roots of seedlings (two-leaf stage) of the soybean inbred line HJ-1 were examined after 48 h under various stress conditions; salt (120 mM NaCl), saline-alkali (70 mM NaCl and 50mM NaHCO(3)) and drought (2% PEG 8000). Gene expression at the transcriptional level was investigated using high-throughput Illumina sequencing technology and bioinformatics tools. Under salt, saline-alkali and drought stress, 874, 1897, and 535 genes, respectively, were up-regulated in leaves, and 1822, 1731 and 1690 genes, respectively, were up-regulated in roots, compared with expression in the corresponding organ in control plants. Comparisons among salt, saline-alkali and drought stress yielded similar results in terms of the percentage of genes classified into each GO category. Moreover, 69 genes differentially expressed in both organs with similar expression patterns clustered together in the taxonomic tree across all conditions. Furthermore, comparison of gene expression among salt, saline-alkali and drought treated plants revealed that genes associated with calcium-signaling and nucleic acid pathways were up-regulated in the responses to all three stresses, indicating a degree of cross-talk among these pathways. These results could provide new insights into the stress tolerance mechanisms of soybean.
Collapse
Affiliation(s)
- Xiu-Duo Fan
- Ministry of Education Engineering Research Center of Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, Jilin 130118, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
189
|
Shavrukov Y. Salt stress or salt shock: which genes are we studying? JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:119-127. [PMID: 23186621 DOI: 10.1093/jxb/ers316] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Depending on the method of NaCl application, whether gradual or in a single step, plants may experience either salt stress or salt shock, respectively. The first phase of salt stress is osmotic stress. However, in the event of salt shock, plants suffer osmotic shock, leading to cell plasmolysis and leakage of osmolytes, phenomena that do not occur with osmotic stress. Patterns of gene expression are different in response to salt stress and salt shock. Salt stress initiates relatively smooth changes in gene expression in response to osmotic stress and a more pronounced change in expression of significant numbers of genes related to the ionic phase of salt stress. There is a considerable time delay between changes in expression of genes related to the osmotic and ionic phases of salt stress. In contrast, osmotic shock results in strong, rapid changes in the expression of genes with osmotic function, and fewer changes in ionic-responsive genes that occur earlier. There are very few studies in which the effects of salt stress and salt shock are described in parallel experiments. However, the patterns of changes in gene expression observed in these studies are consistently as described above, despite the use of diverse plant species. It is concluded that gene expression profiles are very different depending the method of salt application. Imposition of salt stress by gradual exposure to NaCl rather than salt shock with a single application of a high concentration of NaCl is recommended for genetic and molecular studies, because this more closely reflects natural incidences of salinity.
Collapse
Affiliation(s)
- Yuri Shavrukov
- Australian Centre for Plant Functional Genomics, University of Adelaide, Waite Campus, SA 5064, Australia.
| |
Collapse
|
190
|
Differential proteomic analysis of drought stress response in leaves of common bean (Phaseolus vulgaris L.). J Proteomics 2013; 78:254-72. [DOI: 10.1016/j.jprot.2012.09.021] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Revised: 09/06/2012] [Accepted: 09/19/2012] [Indexed: 02/03/2023]
|
191
|
Identification of early response genes to salt stress in roots of melon (Cucumis melo L.) seedlings. Mol Biol Rep 2012; 40:2915-26. [PMID: 23212618 DOI: 10.1007/s11033-012-2307-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 11/19/2012] [Indexed: 10/27/2022]
Abstract
In order to better understand the mechanisms by which muskmelons (Cucumis melo L.) respond to salt stress, a cDNA library was constructed using suppression subtractive hybridization (SSH) from the root tissue of a salt-tolerant melon cultivar, Bingxuecui. A total of 339 clones were sequenced from the SSH library, leading to 312 high quality expressed sequence tags (ESTs), with an average size of 450 bp; representing 262 uni-ESTs comprising 29 contigs and 233 singletons. Blast analysis of the deduced protein sequences revealed that 283 ESTs had a high similarity to proteins in the non-redundant database, while 29 had low identity or no similarities. Many of the annotated sequences were homologous to genes involved in abiotic or biotic stress in plants. Functional categorization of the proteins revealed that salt tolerance could be largely determined by various proteins involved in metabolism, energy, transcription, signal transduction, protein fate, cell rescue and defense, implying a complex response to salt stress exists in melon plants. Twenty-seven ESTs were selected and analyzed by real-time PCR; the results confirmed that a high proportion of the ESTs were activated by salt stress. The complete sequences and a detailed functional analysis of these ESTs is required, in order to fully understand the broader impact of these genes in plants subjected to a high salinity environment.
Collapse
|
192
|
Zhang Q, Li J, Zhang W, Yan S, Wang R, Zhao J, Li Y, Qi Z, Sun Z, Zhu Z. The putative auxin efflux carrier OsPIN3t is involved in the drought stress response and drought tolerance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 72:805-16. [PMID: 22882529 DOI: 10.1111/j.1365-313x.2012.05121.x] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The phytohormone auxin plays a critical role in plant growth and development, and its spatial distribution largely depends on the polar localization of the PIN-FORMED (PIN) auxin efflux carrier family members. In this study, we identify a putative auxin efflux carrier gene in rice, OsPIN3t, which acts in auxin polar transport but is also involved in the drought stress response in rice. We show that OsPIN3t-GFP fusion proteins are localized in plasma membranes, and this subcellular localization changes under 1-N-naphthylphthalamic acid (NPA) treatment. The tissue-specific expression patterns of OsPIN3t were also investigated using a β-glucuronidase (GUS) reporter, which showed that OsPIN3t was mainly expressed in vascular tissue. The GUS activity in OsPIN3tpro::GUS plants increased by NAA treatment and decreased by NPA treatment. Moreover, knockdown of OsPIN3t caused crown root abnormalities in the seedling stage that could be phenocopied by treatment of wild-type plants with NPA, which indicated that OsPIN3t is involved in the control of polar auxin transport. Overexpression of OsPIN3t led to improved drought tolerance, and GUS activity significantly increased when OsPIN3tpro::GUS plants were subjected to 20% polyethylene glycol stress. Taken together, these results suggest that OsPIN3t is involved in auxin transport and the drought stress response, which suggests that a polar auxin transport pathway is involved in the regulation of the response to water stress in plants.
Collapse
Affiliation(s)
- Qian Zhang
- Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
193
|
Huang TL, Nguyen QTT, Fu SF, Lin CY, Chen YC, Huang HJ. Transcriptomic changes and signalling pathways induced by arsenic stress in rice roots. PLANT MOLECULAR BIOLOGY 2012; 80:587-608. [PMID: 22987115 DOI: 10.1007/s11103-012-9969-z] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2012] [Accepted: 09/08/2012] [Indexed: 05/04/2023]
Abstract
Arsenic (As) is considered the most common toxic metalloid, but its molecular mode of action is not well understood. We investigated whether arsenate [As(V)] can induce intracellular reactive oxygen species production and calcium oscillation in rice roots. To better understand the molecular basis of plant cell responses to As, we performed a large-scale analysis of the rice transcriptome during As(V) stress. As(V) induced genes involved in abiotic stress, detoxification pathways and secondary metabolic process. Genes involved in secondary cell wall biogenesis, cell cycle and oligopeptide transport were mainly downregulated. Genes encoding signalling components such as receptor-like cytoplasmic kinases protein kinase, APETALA2/ethylene response factor, heat shock factor, MYB and zinc-finger protein expressed in inflorescence meristem transcription factors were increased in expression. The expression of GARP-G2-like and C3H transcription factors was specifically modulated by As(V) stress. The predominant families of As(V)-regulated transporters belonged to the ATP-binding cassette superfamily and telurite-resistance/dicarboxylate transporters. Several factors involved in signaling, such as mitogen-activated protein kinase (MAPK), MAPK kinase kinase and calcium-dependent protein kinase (CDPK), were also upregulated. Moreover, As(V) markedly increased the activity of MAPKs and CDPK-like kinases, and CDPK and NADPH oxidases were involved in As-induced MAPK activation. Further characterization of these As(V)-responsive genes and signalling pathways may help better understand the mechanisms of metalloid uptake, tolerance and detoxification in plants.
Collapse
Affiliation(s)
- Tsai-Lien Huang
- Department of Life Sciences, National Cheng Kung University, No. 1 University Road, 701 Tainan City, Taiwan
| | | | | | | | | | | |
Collapse
|
194
|
Reef R, Schmitz N, Rogers BA, Ball MC, Lovelock CE. Differential responses of the mangrove Avicennia marina to salinity and abscisic acid. FUNCTIONAL PLANT BIOLOGY : FPB 2012; 39:1038-1046. [PMID: 32480853 DOI: 10.1071/fp12178] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 08/25/2012] [Indexed: 06/11/2023]
Abstract
Salinisation of the soil can cause plant water deficits, ion and nutrient imbalances and toxic reactions. The halophyte, Avicennia marina (Forssk.) Vierh., is a mangrove that tolerates a wide range of soil salinities. In order to understand how salinity affects plant growth and functioning and how salinity responses are influenced by the water deficit signalling hormone abscisic acid (ABA) we grew A. marina seedlings under two non-growth limiting salinities: 60% seawater and 90% seawater and with and without exogenously supplied ABA. We measured growth, photosynthesis, sap flow, aquaporin gene expression, hydraulic anatomy and nutrient status as well as sap ABA concentrations. ABA addition resulted in a drought phenotype (reduced sap flow, transpiration rates and photosynthesis and increased water use efficiency and aquaporin expression). In contrast, growth in high salinity did not lead to responses that are typical for water deficits, but rather, could be characterised as drought avoidance strategies (no reduction in sap flow, transpiration rates and photosynthesis and reduced aquaporin expression). Tissue nutrient concentrations were higher in seedlings grown at high salinities. We did not find evidence for a role for ABA in the mangrove salinity response, suggesting ABA is not produced directly in response to high concentrations of NaCl ions.
Collapse
Affiliation(s)
- Ruth Reef
- School of Biological Sciences, The University of Queensland, St Lucia, Qld 4072, Australia
| | - Nele Schmitz
- Laboratory for Plant Biology and Nature Management, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Britt A Rogers
- School of Biological Sciences, The University of Queensland, St Lucia, Qld 4072, Australia
| | - Marilyn C Ball
- Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia
| | - Catherine E Lovelock
- School of Biological Sciences, The University of Queensland, St Lucia, Qld 4072, Australia
| |
Collapse
|
195
|
Kumari S, Nie J, Chen HS, Ma H, Stewart R, Li X, Lu MZ, Taylor WM, Wei H. Evaluation of gene association methods for coexpression network construction and biological knowledge discovery. PLoS One 2012; 7:e50411. [PMID: 23226279 PMCID: PMC3511551 DOI: 10.1371/journal.pone.0050411] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 10/18/2012] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Constructing coexpression networks and performing network analysis using large-scale gene expression data sets is an effective way to uncover new biological knowledge; however, the methods used for gene association in constructing these coexpression networks have not been thoroughly evaluated. Since different methods lead to structurally different coexpression networks and provide different information, selecting the optimal gene association method is critical. METHODS AND RESULTS In this study, we compared eight gene association methods - Spearman rank correlation, Weighted Rank Correlation, Kendall, Hoeffding's D measure, Theil-Sen, Rank Theil-Sen, Distance Covariance, and Pearson - and focused on their true knowledge discovery rates in associating pathway genes and construction coordination networks of regulatory genes. We also examined the behaviors of different methods to microarray data with different properties, and whether the biological processes affect the efficiency of different methods. CONCLUSIONS We found that the Spearman, Hoeffding and Kendall methods are effective in identifying coexpressed pathway genes, whereas the Theil-sen, Rank Theil-Sen, Spearman, and Weighted Rank methods perform well in identifying coordinated transcription factors that control the same biological processes and traits. Surprisingly, the widely used Pearson method is generally less efficient, and so is the Distance Covariance method that can find gene pairs of multiple relationships. Some analyses we did clearly show Pearson and Distance Covariance methods have distinct behaviors as compared to all other six methods. The efficiencies of different methods vary with the data properties to some degree and are largely contingent upon the biological processes, which necessitates the pre-analysis to identify the best performing method for gene association and coexpression network construction.
Collapse
Affiliation(s)
- Sapna Kumari
- Department of Mathematical Sciences, Michigan Technological University, Houghton, Michigan, United States of America
| | - Jeff Nie
- Morgridge Institute for Research, Madison, Wisconsin, United States of America
| | - Huann-Sheng Chen
- Statistical Methodology and Applications Branch, Division of Cancer Control and Population Sciences, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Hao Ma
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, West Virginia, United States of America
| | - Ron Stewart
- Morgridge Institute for Research, Madison, Wisconsin, United States of America
| | - Xiang Li
- Department of Computer Science, Michigan Technological University, Houghton, Michigan, United States of America
| | - Meng-Zhu Lu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, P.R. China
| | - William M. Taylor
- Department of Computer Science, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Hairong Wei
- Department of Mathematical Sciences, Michigan Technological University, Houghton, Michigan, United States of America
- Department of Computer Science, Michigan Technological University, Houghton, Michigan, United States of America
- Biotechnology Research Center, Michigan Technological University, Houghton, Michigan, United States of America
- School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, Michigan, United States of America
| |
Collapse
|
196
|
Patade VY, Khatri D, Manoj K, Kumari M, Ahmed Z. Cold tolerance in thiourea primed capsicum seedlings is associated with transcript regulation of stress responsive genes. Mol Biol Rep 2012; 39:10603-13. [PMID: 23053959 DOI: 10.1007/s11033-012-1948-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 10/01/2012] [Indexed: 01/05/2023]
Abstract
Benefits of seed priming in seedling establishment and tolerance to subsequent stress exposure are well reported. However, the molecular mechanisms underlying the priming mediated benefits are not much discovered. Results of our earlier experiments established that thiourea (TU) seed priming imparts cold tolerance to capsicum seedlings. Therefore, to understand molecular mechanisms underlying priming mediated cold stress tolerance, quantitative transcript expression of stress responsive genes involved in transcript regulation (CaCBF1A, CaCBF1B, Zinc Finger protein, CaWRKY30), osmotic adjustment (PROX1, P5CS, Osmotin), antioxidant defence (CAT2, APX, GST, GR1, Cu/Zn SOD, Mn SOD, Fe SOD), signaling (Annexin), movement of solutes and water (CaPIP1), and metabolite biosynthesis through phenylpropanoid pathway (CAH) was studied in response to cold (4 °C; 4 and 24 h) stress in seedlings grown from the TU primed, hydroprimed and unsoaked seeds. The transcript expression of CaWRKY30, PROX1, Osmotin, Cu/Zn SOD and CAH genes was either higher or induced earlier on cold exposure in thiourea priming than that of hydroprimed and unsoaked over the respective unstressed controls. The results thus suggest that the TU priming modulate expression of these genes thereby imparting cold tolerance in capsicum seedlings.
Collapse
Affiliation(s)
- Vikas Yadav Patade
- Molecular Biology and Genetic Engineering Division, Defence Institute of Bio-Energy Research, Haldwani, 263 139, Uttarakhand, India.
| | | | | | | | | |
Collapse
|
197
|
Fouquaert E, Van Damme EJM. Promiscuity of the euonymus carbohydrate-binding domain. Biomolecules 2012; 2:415-34. [PMID: 24970144 PMCID: PMC4030858 DOI: 10.3390/biom2040415] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 09/17/2012] [Accepted: 09/25/2012] [Indexed: 01/05/2023] Open
Abstract
Plants synthesize small amounts of carbohydrate-binding proteins on exposure to stress. For example, on exposure to drought, high salt, wounding and by treatment with some plant hormones or by pathogen attack. In contrast to the 'classical' plant lectins that are mostly located in the vacuolar compartment, this new class of inducible lectins is present in the cytoplasm and in the nucleus. Taking into account that any physiological role of plant lectins most likely relies on their specific carbohydrate-binding activity and specificity, the discovery of these stress-related lectins provides strong evidence for the importance of protein-carbohydrate-interactions in plant cells. Hitherto, six families of such nucleocytoplasmic lectins have been identified in plants. This review will focus on the nucleocytoplasmic lectins with one or more Euonymus lectin (EUL) domain(s). The carbohydrate-binding specificity of EUL proteins from a monocot, a dicot and a lower plant has been compared. Furthermore, modeling of the different EUL domains revealed a similar ß-trefoil fold consisting of three bundles of ß-sheet organized around a pseudo three-fold symmetry axis. Despite the sequence similarity and the conserved amino acids in the binding site, glycan array analyses showed that the EUL domain has a promiscuous carbohydrate-binding site capable of accommodating high mannose N-glycans, blood group B related structures and galactosylated epitopes.
Collapse
Affiliation(s)
- Elke Fouquaert
- Laboratory of Biochemistry and Glycobiology, Department of Molecular Biotechnology, Ghent University, Coupure links 653, 9000 Ghent, Belgium.
| | - Els J M Van Damme
- Laboratory of Biochemistry and Glycobiology, Department of Molecular Biotechnology, Ghent University, Coupure links 653, 9000 Ghent, Belgium.
| |
Collapse
|
198
|
Macovei A, Tuteja N. microRNAs targeting DEAD-box helicases are involved in salinity stress response in rice (Oryza sativa L.). BMC PLANT BIOLOGY 2012; 12:183. [PMID: 23043463 PMCID: PMC3502329 DOI: 10.1186/1471-2229-12-183] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 10/05/2012] [Indexed: 05/02/2023]
Abstract
BACKGROUND Rice (Oryza sativa L.), one of the most important food crop in the world, is considered to be a salt-sensitive crop. Excess levels of salt adversely affect all the major metabolic activities, including cell wall damage, cytoplasmic lysis and genomic stability. In order to cope with salt stress, plants have evolved high degrees of developmental plasticity, including adaptation via cascades of molecular networks and changes in gene expression profiles. Posttranscriptional regulation, through the activity of microRNAs, also plays an important role in the plant response to salinity conditions. MicroRNAs are small endogenous RNAs that modulate gene expression and are involved in the most essential physiological processes, including plant development and adaptation to environmental changes. RESULTS In the present study, we investigated the expression profiles of osa-MIR414, osa-MIR408 and osa-MIR164e along with their targeted genes, under salinity stress conditions in wild type and transgenic rice plants ectopically expressing the PDH45 (Pea DNA Helicase) gene. The present miRNAs were predicted to target the OsABP (ATP-Binding Protein), OsDSHCT (DOB1/SK12/helY-like DEAD-box Helicase) and OsDBH (DEAD-Box Helicase) genes, included in the DEAD-box helicase family. An in silico characterization of the proteins was performed and the miRNAs predicted targets were validated by RLM-5'RACE. The qRT-PCR analysis showed that the OsABP, OsDBH and OsDSHCT genes were up-regulated in response to 100 and 200 mM NaCl treatments. The present study also highlighted an increased accumulation of the gene transcripts in wild type plants, with the exception of the OsABP mRNA which showed the highest level (15.1-fold change compared to control) in the transgenic plants treated with 200 mM NaCl. Salinity treatments also affected the expression of osa-MIR414, osa-MIR164e and osa-MIR408, found to be significantly down-regulated, although the changes in miRNA expression were limited. CONCLUSIONS Osa-MIR414, osa-MIR164e and osa-MIR408 were experimentally validated for the first time in plants as targeting the OsABP, OsDBH and OsDSHCT genes. Our data showed that that the genes were up-regulated and the miRNAs were down-regulated in relation to salt stress. The negative correlation between the miRNAs and their targets was proven.
Collapse
Affiliation(s)
- Anca Macovei
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Narendra Tuteja
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| |
Collapse
|
199
|
Sharma S, Mustafiz A, Singla-Pareek SL, Shankar Srivastava P, Sopory SK. Characterization of stress and methylglyoxal inducible triose phosphate isomerase (OscTPI) from rice. PLANT SIGNALING & BEHAVIOR 2012; 7:1337-45. [PMID: 22902706 PMCID: PMC3493422 DOI: 10.4161/psb.21415] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
As compared with plant system, triose phosphate isomerase (TPI), a crucial enzyme of glycolysis, has been well studied in animals. In order to characterize TPI in plants, a full-length cDNA encoding OscTPI was cloned from rice and expressed in E. coli. The recombinant OscTPI was purified to homogeneity and it showed Km value of 0.1281 ± 0.025 µM, and the Vmax value of 138.7 ± 16 µmol min (-1) mg (-1) which is comparable to the kinetic values studied in other plants. The OscTPI was found to be exclusively present in the cytoplasm when checked with the various methods. Functional assay showed that OscTPI could complement a TPI mutation in yeast. Real time PCR analysis revealed that OscTPI transcript level was regulated in response to various abiotic stresses. Interestingly, it was highly induced under different concentration of methylglyoxal (MG) stress in a concentration dependent manner. There was also a corresponding increase in the protein and the enzyme activity of OscTPI both in shoot and root tissues under MG stress. Our result shows that increases in MG leads to the increase in TPI which results in decrease of DHAP and consequently decrease in the level of toxic MG.
Collapse
Affiliation(s)
- Shweta Sharma
- Plant Molecular Biology; International Centre for Genetic Engineering and Biotechnology; New Delhi, India
| | - Ananda Mustafiz
- Plant Molecular Biology; International Centre for Genetic Engineering and Biotechnology; New Delhi, India
| | - Sneh L. Singla-Pareek
- Plant Molecular Biology; International Centre for Genetic Engineering and Biotechnology; New Delhi, India
| | | | - Sudhir Kumar Sopory
- Plant Molecular Biology; International Centre for Genetic Engineering and Biotechnology; New Delhi, India
- Correspondence to: Sudhir Kumar Sopory,
| |
Collapse
|
200
|
Liu GT, Wang JF, Cramer G, Dai ZW, Duan W, Xu HG, Wu BH, Fan PG, Wang LJ, Li SH. Transcriptomic analysis of grape (Vitis vinifera L.) leaves during and after recovery from heat stress. BMC PLANT BIOLOGY 2012; 12:174. [PMID: 23016701 PMCID: PMC3497578 DOI: 10.1186/1471-2229-12-174] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 09/24/2012] [Indexed: 05/20/2023]
Abstract
BACKGROUND Grapes are a major fruit crop around the world. Heat stress can significantly reduce grape yield and quality. Changes at the molecular level in response to heat stress and subsequent recovery are poorly understood. To elucidate the effect of heat stress and subsequent recovery on expression of genes by grape leaves representing the classic heat stress response and thermotolerance mechanisms, transcript abundance of grape (Vitis vinifera L.) leaves was quantified using the Affymetrix Grape Genome oligonucleotide microarray (15,700 transcripts), followed by quantitative Real-Time PCR validation for some transcript profiles. RESULTS We found that about 8% of the total probe sets were responsive to heat stress and/or to subsequent recovery in grape leaves. The heat stress and recovery responses were characterized by different transcriptional changes. The number of heat stress-regulated genes was almost twice the number of recovery-regulated genes. The responsive genes identified in this study belong to a large number of important traits and biological pathways, including cell rescue (i.e., antioxidant enzymes), protein fate (i.e., HSPs), primary and secondary metabolism, transcription factors, signal transduction, and development. We have identified some common genes and heat shock factors (HSFs) that were modulated differentially by heat stress and recovery. Most HSP genes were upregulated by heat stress but were downregulated by the recovery. On the other hand, some specific HSP genes or HSFs were uniquely responsive to heat stress or recovery. CONCLUSION The effect of heat stress and recovery on grape appears to be associated with multiple processes and mechanisms including stress-related genes, transcription factors, and metabolism. Heat stress and recovery elicited common up- or downregulated genes as well as unique sets of responsive genes. Moreover, some genes were regulated in opposite directions by heat stress and recovery. The results indicated HSPs, especially small HSPs, antioxidant enzymes (i.e., ascorbate peroxidase), and galactinol synthase may be important to thermotolerance of grape. HSF30 may be a key regulator for heat stress and recovery, while HSF7 and HSF1 may only be specific to recovery. The identification of heat stress or recovery responsive genes in this study provides novel insights into the molecular basis for heat tolerance in grape leaves.
Collapse
Affiliation(s)
- Guo-Tian Liu
- Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, P.R. of China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. of China
| | - Jun-Fang Wang
- Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, P.R. of China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. of China
| | - Grant Cramer
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, 89557, USA
| | - Zhan-Wu Dai
- INRA, ISVV, UMR 1287 EGFV, Villenave d'Ornon, 33882, France
| | - Wei Duan
- Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, P.R. of China
| | - Hong-Guo Xu
- Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, P.R. of China
| | - Ben-Hong Wu
- Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, P.R. of China
| | - Pei-Ge Fan
- Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, P.R. of China
| | - Li-Jun Wang
- Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, P.R. of China
| | - Shao-Hua Li
- Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, P.R. of China
- Key Laboratory of Plant Germplasm Enhancement and Speciality Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, P.R. of China
| |
Collapse
|