151
|
Geertsma ER, Duurkens RH, Poolman B. Identification of the dimer interface of the lactose transport protein from Streptococcus thermophilus. J Mol Biol 2003; 332:1165-74. [PMID: 14499618 DOI: 10.1016/j.jmb.2003.07.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The lactose transporter from Streptococcus thermophilus catalyses the symport of galactosides and protons. The carrier domain of the protein harbours the contact sites for dimerization, and the individual subunits in the dimer interact functionally during the transport reaction. As a first step towards the elucidation of the mechanism behind the cooperation between the subunits, regions involved in the dimer interface were determined by oxidative and chemical cross-linking of 12 cysteine substitution mutants. Four positions in the protein were found to be susceptible to intermolecular cross-linking. To ensure that the observed cross-links were not the result of randomly colliding particles, the cross-linking was studied in samples in which either the concentration of LacS in the membrane was varied or the oligomeric state was manipulated. These experiments showed that the cross-links were formed specifically within the dimer. The four regions of the protein located at the dimer interface are close to the extracellular ends of transmembrane segments V and VIII and the intracellular ends of transmembrane segments VI and VII.
Collapse
Affiliation(s)
- Eric R Geertsma
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | | | | |
Collapse
|
152
|
Sinz A. Chemical cross-linking and mass spectrometry for mapping three-dimensional structures of proteins and protein complexes. JOURNAL OF MASS SPECTROMETRY : JMS 2003; 38:1225-1237. [PMID: 14696200 DOI: 10.1002/jms.559] [Citation(s) in RCA: 199] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Chemical cross-linking of proteins, an established method in protein chemistry, has gained renewed interest in combination with mass spectrometric analysis of the reaction products for elucidating low-resolution three-dimensional protein structures and interacting sequences in protein complexes. The identification of the large number of cross-linking sites from the complex mixtures generated by chemical cross-linking, however, remains a challenging task. This review describes the most popular cross-linking reagents for protein structure analysis and gives an overview of the strategies employing intra- or intermolecular chemical cross-linking and mass spectrometry. The various approaches described in the literature to facilitate detection of cross-linking products and also computer software for data analysis are reviewed. Cross-linking techniques combined with mass spectrometry and bioinformatic methods have the potential to provide the basis for an efficient structural characterization of proteins and protein complexes.
Collapse
Affiliation(s)
- Andrea Sinz
- Biotechnological-Biomedical Center, Faculty of Chemistry and Mineralogy, University of Leipzig, D-04103 Leipzig, Germany.
| |
Collapse
|
153
|
Chen Z, Stokes DL, Rice WJ, Jones LR. Spatial and dynamic interactions between phospholamban and the canine cardiac Ca2+ pump revealed with use of heterobifunctional cross-linking agents. J Biol Chem 2003; 278:48348-56. [PMID: 12972413 DOI: 10.1074/jbc.m309545200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Heterobifunctional thiol to amine cross-linking agents were used to gain new insights on the dynamics and conformational factors governing the interaction between the cardiac Ca2+ pump (SERCA2a) and phospholamban (PLB). PLB is a small protein inhibitor of SERCA2a that reduces enzyme affinity for Ca2+ and thereby regulates cardiac contractility. We found that the PLB monomer with Asn27 or Asn30 changed to Cys (N27C-PLB or N30C-PLB) cross-linked to lysine of SERCA2a within seconds with > or =80% efficiency. Optimal cross-linking occurred at spacer chain lengths of 10 and 15 A for N27C and N30C, respectively. The rapid time course of cross-linking indicated that neither dissociation of PLB pentamers nor binding of PLB monomers to SERCA2a was rate-limiting. Cross-linking occurred only to the E2 (Ca2+-free) conformation of SERCA2a, was strongly favored by nucleotide binding to this state, and was completely inhibited by thapsigargin. Protein sequencing in combination with mutagenesis identified of Lys328 of SERCA2a as the target of cross-linking. A three-dimensional map of interacting residues indicated that the cross-linking distances were entirely compatible with the 10-A distance recently determined between N30C of PLB and Cys318 of SERCA2a. In contrast, Lys3 of PLB did not cross-link to any Lys (or Cys) of SERCA2a, suggesting that previous three-dimensional models that constrain Lys3 near residues 397-400 of thapsigargin-inhibited SERCA2a should be viewed with caution. Furthermore, although earlier models of PLB.SERCA2a are based on thapsigargin-bound SERCA, our results suggest that the nucleotide-bound, E2 conformation is substantially different and represents the key conformational state for interacting with PLB.
Collapse
Affiliation(s)
- Zhenhui Chen
- Krannert Institute of Cardiology and the Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | |
Collapse
|
154
|
Fux L, Nussbaum-Shochat A, Amster-Choder O. A fraction of the BglG transcriptional antiterminator from Escherichia coli exists as a compact monomer. J Biol Chem 2003; 278:50978-84. [PMID: 14514681 DOI: 10.1074/jbc.m308085200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Expression of the bgl operon in Escherichia coli, induced by beta-glucosides, is positively regulated by BglG, a transcriptional antiterminator. In the presence of inducer, BglG dimerizes and binds to the bgl transcript to prevent premature termination of transcription. The dimeric state of BglG is determined by BglF, a membrane-bound enzyme II of the phosphoenolpyruvate-dependent phosphotransferase system (PTS), which reversibly phosphorylates BglG according to beta-glucoside availability. BglG is composed of an RNA-binding domain followed by two homologous PTS regulation domains (PRD1 and PRD2). The predicted structure of dimeric LicT, a BglG homologue from Bacillus subtilis, suggests that the two PRDs adopt a similar structure and that the interactions within the dimer are PRD1-PRD1 and PRD2-PRD2. We have shown recently that the PRD1 and PRD2 domains of BglG can form a stable heterodimer. We report here, based on in vitro and in vivo cross-linking experiments, that a fraction of BglG is present in the cell in a compact form in which PRD1 and PRD2 are in close proximity. The compact form is present mainly in the BglG monomers. Our results imply that the monomer-dimer transition involves a conformational change. The possible role of the compact form in preventing untimely induction of the bgl operon is discussed.
Collapse
Affiliation(s)
- Liat Fux
- Department of Molecular Biology, The Hebrew University, Hadassah Medical School, P. O. Box 12272, Jerusalem 91120, Israel
| | | | | |
Collapse
|
155
|
Ermolova N, Guan L, Kaback HR. Intermolecular thiol cross-linking via loops in the lactose permease of Escherichia coli. Proc Natl Acad Sci U S A 2003; 100:10187-92. [PMID: 12934015 PMCID: PMC193537 DOI: 10.1073/pnas.1434239100] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Previous experiments using intermolecular thiol cross-linking to determine surface-exposed positions in the transmembrane helices of the lactose permease suggest that only positions accessible from the aqueous phase are susceptible to cross-linking. This approach is now extended to most of the remaining positions in the molecule. Of an additional 143 single-Cys mutants studied, homodimer formation is observed with both a 5-A- and a 21-A-long crosslinking agent containing bis-methane thiosulfonate reactive groups in 33 mutants and exclusively with the 21-A-long reagent in 43 mutants. Furthermore, intermolecular cross-linking has little or no effect on transport activity, thereby providing further support for the argument that lactose permease is functionally, as well as structurally, a monomer in the membrane. In addition, evidence is presented indicating that reentrance loops are unlikely in this polytopic membrane transport protein.
Collapse
Affiliation(s)
- Natalia Ermolova
- Howard Hughes Medical Institute, Department of Physiology and Microbiology, University of California, Los Angeles, CA 90095-1662, USA
| | | | | |
Collapse
|
156
|
Miller S, Edwards MD, Ozdemir C, Booth IR. The closed structure of the MscS mechanosensitive channel. Cross-linking of single cysteine mutants. J Biol Chem 2003; 278:32246-50. [PMID: 12767977 DOI: 10.1074/jbc.m303188200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mechanosensitive channels must make a large conformational change during the transition from the closed to the open state. The crystal structure of the open form of the Escherichia coli MscS channel was recently solved and depicts a homoheptamer (1). In this study, cross-linking of site-specific cysteine substitutions demonstrates that residues up to 10-33 A apart in the crystal structure readily form disulfide bridges in the closed form and can also be cross-linked by a 10-A linker. Cross-linking between adjacent subunits stabilizes the heptameric form of the channel providing biochemical evidence to support the crystal structure. The data are consistent with the published model (1) in that the membrane domain is highly flexible and that the closed to open transition may involve a significant displacement of transmembrane helices 1 and 2, possibly by as much as 30 A. The data are also consistent with significant flexibility of the cytoplasmic domain.
Collapse
Affiliation(s)
- Samantha Miller
- Department of Molecular & Cell Biology, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, United Kingdom
| | | | | | | |
Collapse
|
157
|
Back JW, de Jong L, Muijsers AO, de Koster CG. Chemical cross-linking and mass spectrometry for protein structural modeling. J Mol Biol 2003; 331:303-13. [PMID: 12888339 DOI: 10.1016/s0022-2836(03)00721-6] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The growth of gene and protein sequence information is currently so rapid that three-dimensional structural information is lacking for the overwhelming majority of known proteins. In this review, efforts towards rapid and sensitive methods for protein structural characterization are described, complementing existing technologies. Based on chemical cross-linking and offering the analytical speed and sensitivity of mass spectrometry these methodologies are thought to contribute valuable tools towards future high throughput protein structure elucidation.
Collapse
Affiliation(s)
- Jaap Willem Back
- Swammerdam Institute for Life Sciences (SILS), Mass Spectrometry group, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV, Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
158
|
Schilling B, Row RH, Gibson BW, Guo X, Young MM. MS2Assign, automated assignment and nomenclature of tandem mass spectra of chemically crosslinked peptides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2003; 14:834-850. [PMID: 12892908 DOI: 10.1016/s1044-0305(03)00327-1] [Citation(s) in RCA: 216] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In a previous report (Young et al., Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 5802-5806), we provided a proof-of-principle for fold recognition of proteins using a homobifunctional amine-specific chemical crosslinking reagent in combination with mass spectrometry analysis and homology modeling. In this current work, we propose a systematic nomenclature to describe the types of peptides that are generated after proteolysis of crosslinked proteins, their fragmentation by tandem mass spectrometry, and an automated algorithm for MS/MS spectral assignment called "MS2Assign." Several examples are provided from crosslinked peptides and proteins including HIV-integrase, cytochrome c, ribonuclease A, myoglobin, cytidine 5-monophosphate N-acetylneuraminic acid synthetase, and the peptide thymopentin. Tandem mass spectra were obtained from various crosslinked peptides using post source decay MALDI-TOF and collision induced dissociation on a quadrupole-TOF instrument, along with their automated interpretation using MS2Assign. A variety of possible outcomes are described and categorized according to the number of modified lysines and/or peptide chains involved, as well as the presence of singly modified (dead-end) lysine residues. In addition, the proteolysis and chromatographic conditions necessary for optimized crosslinked peptide recovery are presented.
Collapse
Affiliation(s)
- Birgit Schilling
- Buck Institute for Age Research, Novato, California 94143-0446, USA
| | | | | | | | | |
Collapse
|
159
|
Dawson JF, Sablin EP, Spudich JA, Fletterick RJ. Structure of an F-actin trimer disrupted by gelsolin and implications for the mechanism of severing. J Biol Chem 2003; 278:1229-38. [PMID: 12356759 DOI: 10.1074/jbc.m209160200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Stable oligomers of filamentous actin were obtained by cross-linking F-actin with 1,4-N,N'-phenylenedimaleimide and depolymerization with excess segment-1 of gelsolin. Segment-1-bound and cross-linked actin oligomers containing either two or three actin subunits were purified and shown to nucleate actin assembly. Kinetic assembly data from mixtures of monomeric actin and the actin oligomers fit a nucleation model where cross-linked actin dimer or trimer reacts with an actin monomer to produce a competent nucleus for filament assembly. We report the three-dimensional structure of the segment-1-actin hexamer containing three actin subunits, each with a tightly bound ATP. Comparative analysis of this structure with twelve other actin structures provides an atomic level explanation for the preferential binding of ATP by the segment-1-complexed actin. Although the structure of segment-1-bound actin trimer is topologically similar to the helical model of F-actin (1), it has a distorted symmetry compared with that of the helical model. This distortion results from intercalation of segment-1 between actin protomers that increase the rise per subunit and rotate each of the actin subunits relative to their positions in F-actin. We also show that segment-1 of gelsolin is able to sever actin filaments, although the severing activity of segment-1 is significantly lower than full-length gelsolin.
Collapse
Affiliation(s)
- John F Dawson
- Department of Biochemistry, Stanford University School of Medicine, California 94305, USA
| | | | | | | |
Collapse
|
160
|
Novak P, Young MM, Schoeniger JS, Kruppa GH. A top-down approach to protein structure studies using chemical cross-linking and Fourier transform mass spectrometry. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2003; 9:623-631. [PMID: 15100473 DOI: 10.1255/ejms.590] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In a preliminary communication we described a top-down approach to the determination of chemical cross-link location in proteins using Fourier transform mass spectrometry (FT-MS). We have since extended the approach to use a series of homobifunctional cross-linkers with the same reactive functional groups, but different cross-linker arm lengths. Correlating cross-linking data across a series of related linkers allows the distance constraint derived from a cross-link between two reactive side chains to be determined more accurately and increases the confidence in the assignment of the cross-links. In ubiquitin, there are seven lysines with primary amino groups and the amino terminus. Disuccinimidyl suberate (DSS, cross-linker arm length = 11.4 A), disuccinimidyl glutarate (DSG, cross-linker arm length = 7.5 A) and disuccinimidyl tartrate (DST, cross- linker arm length = 5.8 A) are homobifunctional cross-linking reagents that react specifically with primary amines. Using tandem mass spectrometry (MS/MS) on the singly, internally cross-linked precursor ion of ubiquitin, we found cross-links with DSS and DSG between the amino terminus and Lys 6, between Lys 6 and Lys 11, and between Lys 63 and Lys 48. Using disuccinimidyl tartrate (DST), the shortest cross-linker in the series, only the cross-links between the amino terminus and Lys 6, and between Lys 6 and Lys 11 were observed. The observed cross-links are consistent with the crystal structure of ubiquitin, if the lysine side chains and the amino terminus are assumed to have considerable flexibility. In a separate study, we probed the reactivity of the primary amino groups in ubiquitin using the amino acetylating reagent, N-hydroxy succinimidyl acetate (NHSAc), and a top-down approach to localize the acetylated lysine residues. The reactivity order obtained in that study (M1 approximate, equals K6 approximate, equals K48 approximate, equals K63) > K33 > K11 > (K27, K29), shows that the cross-link first formed in ubiquitin by reaction with DSS and DSG occurs between the most reactive residues.
Collapse
Affiliation(s)
- Petr Novak
- Sandia National Laboratories, PO Box 969, Livermore, CA 94551-0969, USA
| | | | | | | |
Collapse
|
161
|
|
162
|
Taverner T, Hall NE, O'Hair RAJ, Simpson RJ. Characterization of an antagonist interleukin-6 dimer by stable isotope labeling, cross-linking, and mass spectrometry. J Biol Chem 2002; 277:46487-92. [PMID: 12235153 DOI: 10.1074/jbc.m207370200] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The homodimeric form of a recombinant cytokine interleukin-6 (IL-6(D)) is known to antagonize IL-6 signaling. In this study, spatially proximal residues between IL-6 chains in IL-6(D) were identified using a method for specific recognition of intermolecular cross-linked peptides. Our strategy involved mixing 1:1 (15)N-labeled and unlabeled ((14)N) protein to form a mixture of isotopically labeled and unlabeled homodimers, which was chemically cross-linked. This cross-linked IL-6(D) was subjected to proteolysis by trypsin and the generated peptides were analyzed by electrospray ionization time-of-flight mass spectrometry (MS). Molecular ions from cross-linked peptides of intermolecular origin are labeled with [(15)N/(15)N] + [(15)N/(14)N] + [(14)N/(15)N] + [(14)N/(14)N] yielding readily identified triplet/quadruplet MS peaks. All other peptide species are labeled with [(15)N] + [(14)N] yielding doublet peaks. Intermolecular cross-linked peptides were identified by MS, and cross-linked residues were identified. This intermolecular cross-link detection method, which we have designated "mixed isotope cross-linking" MIX may have more general application to protein-protein interaction studies. The pattern of proximal residues found was consistent with IL-6(D) having a domain-swapped fold similar to IL-10 and interferon-gamma. This fold implies that IL-6(D)-mediated antagonism of IL-6 signaling is caused by obstruction of cooperative gp130 binding on IL-6(D), rather than direct blocking of gp-130-binding sites on IL-6(D).
Collapse
Affiliation(s)
- Thomas Taverner
- Joint ProteomicS Laboratory, The Ludwig Institute for Cancer Research and The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3050, Australia
| | | | | | | |
Collapse
|
163
|
Nitao LK, Yeates TO, Reisler E. Conformational dynamics of the SH1-SH2 helix in the transition states of myosin subfragment-1. Biophys J 2002; 83:2733-41. [PMID: 12414706 PMCID: PMC1302358 DOI: 10.1016/s0006-3495(02)75283-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The alpha-helix containing the thiols, SH1 (Cys-707) and SH2 (Cys-697), has been proposed to be one of the structural elements responsible for the transduction of conformational changes in the myosin head (subfragment-1 (S1)). Previous studies, using a method that isolated and measured the rate of the SH1-SH2 cross-linking step, showed that this helix undergoes ligand-induced conformational changes. However, because of long incubation times required for the formation of the transition state complexes (S1.ADP.BeF(x), S1.ADP.AlF(4)-, and S1.ADP.V(i)), this method could not be used to determine the cross-linking rate constants for such states. In this study, kinetic data from the SH1-SH2 cross-linking reaction were analyzed by computational methods to extract rate constants for the two-step mechanism. For S1.ADP.BeF(x), the results obtained were similar to those for S1.ATPgammaS. For reactions involving S1.ADP.AlF(4)- and S1.ADP.V(i), the first step (SH1 modification) is rate limiting; consequently, only lower limits could be established for the rate constants of the cross-linking step. Nevertheless, these results show that the cross-linking rate constants in the transition state complexes are increased at least 20-fold for all the reagents, including the shortest one, compared with nucleotide-free S1. Thus, the SH1-SH2 helix appears to be destabilized in the post-hydrolysis state.
Collapse
Affiliation(s)
- Lisa K Nitao
- Department of Chemistry and Biochemistry, Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
164
|
Abstract
Actin, through its various forms of assembly, provides the basic framework for cell motility, cell shape and intracellular organization in all eukaryotic cells. Many other cellular processes, for example endocytosis and cytokinesis, are also associated with dynamic changes of the actin cytoskeleton. Important prerequisites for actin's functional diversity are its intrinsic ability to rapidly assemble and disassemble filaments and its spatially and temporally well-controlled supramolecular organization. A large number of proteins that interact with actin, collectively referred to as actin-binding proteins (ABPs), carefully orchestrate different scenarios. Since its isolation in 1994 [Machesky, L.M. et al. (1994) J. Cell Biol. 127, 107-115], the Arp2/3 complex containing the actin-related proteins Arp2 and Arp3 has evolved to be one of the main players in the assembly and maintenance of many actin-based structures in the cell (for review see [Borths, E.L. and Welch, M.D. (2002) Structure 10, 131-135; May, R.C. (2001) Cell Mol. Life Sci. 58, 1607-1626; Pollard, T.D. et al. (2000) Rev. Biophys. Biomol. Struct. 29, 545-576; Welch, M.D. (1999) Trends Cell Biol. 11, 423-427]). In particular, when it comes to the assembly of the intricate branched actin network at the leading edge of lamellipodia, the Arp2/3 complex seems to have received all the attention in recent years. In parallel, but not so much in the spotlight, several reports showed that actin on its own can assume different conformations [Bubb, M.R. et al. (2002) J. Biol. Chem. 277, 20999-21006; Schoenenberger, C.-A. et al. (1999) Microsc. Res. Tech. 47, 38-50; Steinmetz, M.O. et al. (1998) J. Mol. Biol. 278, 793-811; Steinmetz, M.O. et al. (1997) J. Cell Biol. 138, 559-574; Millonig, R., Salvo, H. and Aebi, U. (1988) J. Cell Biol. 106, 785-796] through which it drives its supramolecular patterning, and which ultimately generate its functional diversity.
Collapse
Affiliation(s)
- Cora-Ann Schoenenberger
- M.E. Müller Institute for Structural Biology, Biozentrum, University of Basel, Klingelbergstrasse 70, 4056, Basel, Switzerland.
| | | | | | | |
Collapse
|
165
|
Back JW, Sanz MA, De Jong L, De Koning LJ, Nijtmans LGJ, De Koster CG, Grivell LA, Van Der Spek H, Muijsers AO. A structure for the yeast prohibitin complex: Structure prediction and evidence from chemical crosslinking and mass spectrometry. Protein Sci 2002; 11:2471-8. [PMID: 12237468 PMCID: PMC2373692 DOI: 10.1110/ps.0212602] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The mitochondrial prohibitin complex consists of two subunits (PHB1 of 32 kD and PHB2 of 34 kD), assembled into a membrane-associated supercomplex of approximately 1 MD. A chaperone-like function in holding and assembling newly synthesized mitochondrial polypeptide chains has been proposed. To further elucidate the function of this complex, structural information is necessary. In this study we use chemical crosslinking, connecting lysine side chains, which are well scattered along the sequence. Crosslinked peptides from protease digested prohibitin complexes were identified with mass spectrometry. From these results, spatial restraints for possible protein conformation were obtained. Many interaction sites between PHB1 and PHB2 were found, whereas no homodimeric interactions were observed. Secondary and tertiary structural predictions were made using several algorithms and the models best fitting the spatial restraints were selected for further evaluation. From the structure predictions and the crosslink data we derived a structural building block of one PHB1 and one PHB2 subunit, strongly intertwined along most of their length. The size of the complex implies that approximately 14 of these building blocks are present. Each unit contains a putative transmembrane helix in PHB2. Taken together with the unit building block we postulate a circular palisade-like arrangement of the building blocks projecting into the intermembrane space.
Collapse
Affiliation(s)
- Jaap W Back
- Swammerdam Institute for Life Sciences (SILS)-Mass Spectrometry Group, University of Amsterdam, Nieuwe Achtergracht 166, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
166
|
Paumard P, Arselin G, Vaillier J, Chaignepain S, Bathany K, Schmitter JM, Brèthes D, Velours J. Two ATP synthases can be linked through subunits i in the inner mitochondrial membrane of Saccharomyces cerevisiae. Biochemistry 2002; 41:10390-6. [PMID: 12173925 DOI: 10.1021/bi025923g] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cross-linking experiments showed that the supernumerary subunit i is close to the interface between two ATP synthases. These data were used to demonstrate the presence of ATP synthase dimers in the inner mitochondrial membrane of Saccharomyces cerevisiae. A cysteine residue was introduced into the inter-membrane space located C-terminal part of subunit i. Cross-linking experiments revealed a dimerization of subunit i. This cross-linking occurred only with the dimeric form of the enzyme after incubating intact mitochondria with a bis-maleimide reagent, thus indicating an inter-ATP synthase cross-linking, whereas the monomeric form of the enzyme exhibited only an intra-ATP synthase cross-linking with subunit 6, another component of the membranous domain of the ATP synthase.
Collapse
Affiliation(s)
- Patrick Paumard
- Institut de Biochimie et Génétique Cellulaires du CNRS, Université Victor Segalen, Bordeaux 2, 1 rue Camille Saint-Saëns 33077 Bordeaux Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
167
|
Jones LR, Cornea RL, Chen Z. Close proximity between residue 30 of phospholamban and cysteine 318 of the cardiac Ca2+ pump revealed by intermolecular thiol cross-linking. J Biol Chem 2002; 277:28319-29. [PMID: 12015326 DOI: 10.1074/jbc.m204085200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phospholamban (PLB) is a 52-amino acid inhibitor of the Ca(2+)-ATPase in cardiac sarcoplasmic reticulum (SERCA2a), which acts by decreasing the apparent affinity of the enzyme for Ca(2+). To localize binding sites of SERCA2a for PLB, we performed Cys-scanning mutagenesis of PLB, co-expressed the PLB mutants with SERCA2a in insect cell microsomes, and tested for cross-linking of the mutated PLB molecules to SERCA2a using 1,6-bismaleimidohexane, a 10-A-long, homobifunctional thiol cross-linking agent. Of several mutants tested, only PLB with a Cys replacement at position 30 (N30C-PLB) cross-linked to SERCA2a. Cross-linking occurred specifically and with high efficiency. The process was abolished by micromolar Ca(2+) or by an anti-PLB monoclonal antibody and was inhibited 50% by phosphorylation of PLB by cAMP-dependent protein kinase. The SERCA2a inhibitors thapsigargin and cyclopiazonic acid also completely prevented cross-linking. The two essential requirements for cross-linking of N30C-PLB to SERCA2a were a Ca(2+)-free enzyme and, unexpectedly, a micromolar concentration of ATP or ADP, demonstrating that N30C-PLB cross-links preferentially to the nucleotide-bound, E2 state of SERCA2a. Sequencing of a purified proteolytic fragment in combination with SERCA2a mutagenesis identified Cys(318) of SERCA2a as the sole amino acid cross-linked to N30C-PLB. The proximity of residue 30 of PLB to Cys(318) of SERCA2a suggests that PLB may interfere with Ca(2+) activation of SERCA2a by a protein interaction occurring near transmembrane helix M4.
Collapse
Affiliation(s)
- Larry R Jones
- Krannert Institute of Cardiology and the Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA.
| | | | | |
Collapse
|
168
|
van Montfort BA, Schuurman-Wolters GK, Wind J, Broos J, Robillard GT, Poolman B. Mapping of the dimer interface of the Escherichia coli mannitol permease by cysteine cross-linking. J Biol Chem 2002; 277:14717-23. [PMID: 11854301 DOI: 10.1074/jbc.m201533200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A cysteine cross-linking approach was used to identify residues at the dimer interface of the Escherichia coli mannitol permease. This transport protein comprises two cytoplasmic domains and one membrane-embedded C domain per monomer, of which the latter provides the dimer contacts. A series of single-cysteine His-tagged C domains present in the native membrane were subjected to Cu(II)-(1,10-phenanthroline)(3)-catalyzed disulfide formation or cysteine cross-linking with dimaleimides of different length. The engineered cysteines were at the borders of the predicted membrane-spanning alpha-helices. Two residues were found to be located in close proximity of each other and capable of forming a disulfide, while four other locations formed cross-links with the longer dimaleimides. Solubilization of the membranes did only influence the cross-linking behavior at one position (Cys(73)). Mannitol binding only effected the cross-linking of a cysteine at the border of the third transmembrane helix (Cys(134)), indicating that substrate binding does not lead to large rearrangements in the helix packing or to dissociation of the dimer. Upon mannitol binding, the Cys(134) becomes more exposed but the residue is no longer capable of forming a stable disulfide in the dimeric IIC domain. In combination with the recently obtained projection structure of the IIC domain in two-dimensional crystals, a first proposal is made for alpha-helix packing in the mannitol permease.
Collapse
Affiliation(s)
- Bart A van Montfort
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
169
|
Soubannier V, Vaillier J, Paumard P, Coulary B, Schaeffer J, Velours J. In the absence of the first membrane-spanning segment of subunit 4(b), the yeast ATP synthase is functional but does not dimerize or oligomerize. J Biol Chem 2002; 277:10739-45. [PMID: 11799128 DOI: 10.1074/jbc.m111882200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The N-terminal portion of the mitochondrial b-subunit is anchored in the inner mitochondrial membrane by two hydrophobic segments. We investigated the role of the first membrane-spanning segment, which is absent in prokaryotic and chloroplastic enzymes. In the absence of the first membrane-spanning segment of the yeast subunit (subunit 4), a strong decrease in the amount of subunit g was found. The mutant ATP synthase did not dimerize or oligomerize, and mutant cells displayed anomalous mitochondrial morphologies with onion-like structures. This phenotype is similar to that of the null mutant in the ATP20 gene that encodes subunit g, a component involved in the dimerization/oligomerization of ATP synthase. Our data indicate that the first membrane-spanning segment of the mitochondrial b-subunit is not essential for the function of the enzyme since its removal did not directly alter the oxidative phosphorylation. It is proposed that the unique membrane-spanning segment of subunit g and the first membrane-spanning segment of subunit 4 interact, as shown by cross-linking experiments. We hypothesize that in eukaryotic cells the b-subunit has evolved to accommodate the interaction with the g-subunit, an associated ATP synthase component only present in the mitochondrial enzyme.
Collapse
Affiliation(s)
- Vincent Soubannier
- Institut de Biochimie et Génétique Cellulaires du CNRS, Université Victor Segalen, Bordeaux 2, 1, rue Camille Saint Saëns, 33077 Bordeaux cedex, France
| | | | | | | | | | | |
Collapse
|
170
|
Whirl-Carrillo M, Gabashvili IS, Bada M, Banatao DR, Altman RB. Mining biochemical information: lessons taught by the ribosome. RNA (NEW YORK, N.Y.) 2002; 8:279-89. [PMID: 12003488 PMCID: PMC1370250 DOI: 10.1017/s135583820202407x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The publication of the crystal structures of the ribosome offers an opportunity to retrospectively evaluate the information content of hundreds of qualitative biochemical and biophysical studies of these structures. We assessed the correspondence between more than 2,500 experimental proximity measurements and the distances observed in the ribosomal crystals. Although detailed experimental procedures and protocols are unique in almost each analyzed paper, the data can be grouped into subsets with similar patterns and analyzed in an integrative fashion. We found that, for crosslinking, footprinting, and cleavage data, the corresponding distances observed in crystal structures generally did not exceed the maximum values expected (from the estimated length of the agent and maximal anticipated deviations from the conformations found in crystals). However, the distribution of distances had heavier tails than those typically assumed when building three-dimensional models, and the fraction of incompatible distances was greater than expected. Some of these incompatibilities can be attributed to the experimental methods used. In addition, the accuracy of these procedures appears to be sensitive to the different reactivities, flexibilities, and interactions among the components. These findings demonstrate the necessity of a very careful analysis of data used for structural modeling and consideration of all possible parameters that could potentially influence the quality of measurements. We conclude that experimental proximity measurements can provide useful distance information for structural modeling, but with a broad distribution of inferred distance ranges. We also conclude that development of automated modeling approaches would benefit from better annotations of experimental data for detection and interpretation of their significance.
Collapse
|
171
|
Loo TW, Clarke DM. Determining the dimensions of the drug-binding domain of human P-glycoprotein using thiol cross-linking compounds as molecular rulers. J Biol Chem 2001; 276:36877-80. [PMID: 11518701 DOI: 10.1074/jbc.c100467200] [Citation(s) in RCA: 153] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human multidrug resistance P-glycoprotein (P-gp) interacts with a broad range of compounds with diverse structures and sizes. There is considerable evidence indicating that residues in transmembrane segments 4-6 and 10-12 form the drug-binding site. We attempted to measure the size of the drug-binding site by using thiol-specific methanethiosulfonate (MTS) cross-linkers containing spacer arms of 2 to 17 atoms. The majority of these cross-linkers were also substrates of P-gp, because they stimulated ATPase activity (2.5- to 10.1-fold). 36 P-gp mutants with pairs of cysteine residues introduced into transmembrane segments 4-6 and 10-12 were analyzed after reaction with 0.2 mm MTS cross-linker at 4 degrees C. The cross-linked product migrated with lower mobility than native P-gp in SDS gels. 13 P-gp mutants were cross-linked by MTS cross-linkers with spacer arms of 9-25 A. Vinblastine and cyclosporin A inhibited cross-linking. The emerging picture from these results and other studies is that the drug-binding domain is large enough to accommodate compounds of different sizes and that the drug-binding domain is "funnel" shaped, narrow at the cytoplasmic side, at least 9-25 A in the middle, and wider still at the extracellular surface.
Collapse
Affiliation(s)
- T W Loo
- Department of Medicine, Canadian Institutes for Health Research Group in Membrane Biology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | |
Collapse
|