151
|
Zhang Q, Ruan H, Wang X, Luo A, Ran X. Ulinastatin attenuated cardiac ischaemia/reperfusion injury by suppressing activation of the tissue kallikrein-kinin system. Br J Pharmacol 2024; 181:4988-5008. [PMID: 39294926 DOI: 10.1111/bph.16477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 02/29/2024] [Accepted: 05/13/2024] [Indexed: 09/21/2024] Open
Abstract
BACKGROUND AND PURPOSE Ulinastatin has beneficial effects in patients undergoing coronary artery bypass grafting (CABG) surgery due to its anti-inflammatory properties, but the underlying mechanism remains unclear. EXPERIMENTAL APPROACH We used samples from patients undergoing CABG, a model of cardiac ischaemia-reperfusion injury (IRI) in mice and murine cardiac endothelial cell cultures to investigate links between ulinastatin, the kallikrein-kinin system (KKS), endothelial dysfunction and cardiac inflammation in the response to ischaemia/reperfusion injury (IRI). These links were assessed using clinical investigations, in vitro and in vivo experiments and RNA sequencing analysis. KEY RESULTS Ulinastatin inhibited the activity of tissue kallikrein, a key enzyme of the KKS, at 24 h after CABG surgery, which was verified in our murine cardiac ischaemia-reperfusion model. Under normal conditions, ulinastatin only inhibited kallikrein activity but did not affect bradykinin (B1/B2) receptors. Ulinastatin protected against IRI, in vivo and in vitro, by suppressing activation of the kallikrein-kinin system and down-regulating B1/B2 receptor-related signalling pathways including ERK/ iNOS, which resulted in enhanced endothelial barrier function, mitigation of inflammation and oedema, decreased infarct size, improved cardiac function and decreased mortality. Inhibition of kallikrein and knockdown of B1, but not B2 receptors prevented ERK translocation into the nucleus, reducing reperfusion-induced injury in murine cardiac endothelial cells. CONCLUSIONS AND IMPLICATIONS Treatment with ulinastatin exerts a protective influence on cardiac reperfusion by suppressing activation of the kallikrein-kinin system. Our findings highlight the potential of targeting kallikrein /bradykinin receptors to alleviate endothelial dysfunction, thus improving cardiac IRI.
Collapse
Affiliation(s)
- Qin Zhang
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hang Ruan
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaochuan Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ailin Luo
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao Ran
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
152
|
Atak M, Yigit E, Huner Yigit M, Topal Suzan Z, Yilmaz Kutlu E, Karabulut S. Synthetic and non-synthetic inhibition of ADAM10 and ADAM17 reduces inflammation and oxidative stress in LPS-induced acute kidney injury in male and female mice. Eur J Pharmacol 2024; 983:176964. [PMID: 39218341 DOI: 10.1016/j.ejphar.2024.176964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/30/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Acute kidney injury (AKI) is a severe medical condition that can lead to illness and death. A disintegrin and metalloprotease (ADAM) protein family is a potential treatment target for AKI due to its involvement in inflammation, growth, and differentiation. While ADAM10 and ADAM17 have been identified as significant contributors to inflammation, it is unclear whether they play a critical role in AKI. In this study, we induced AKI in male and female mice using lipopolysaccharide, a bacterial endotoxin that causes inflammation and oxidative stress. The role of kaempferol, which is found in many natural products and known to have antioxidant and anti-inflammatory activity in many pre-clinical studies, was investigated through ADAM10/17 enzymes in AKI. We also investigated the efficacy of a selective synthetic inhibitor named GW280264X for ADAM10/17 inhibition in AKI. Blood urea nitrogen and creatinine levels were measured in serum, while tumor necrosis factor-α, vascular adhesion molecule, interleukin (IL)-1β, glucose regulatory protein-78, IL-10, nuclear factor κ-B, thiobarbituric acid reactive substances, total thiol, ADAM10, and ADAM17 levels were measured in kidney tissue. We also evaluated kidney tissue histologically using hematoxylin and eosin, periodic acid-schiff, and caspase-3 staining. This research demonstrates that GW280264X and kaempferol reduces inflammation and oxidative stress, as evidenced by biochemical and histopathological results in AKI through ADAM10/17 inhibition. These findings suggest that inhibiting ADAM10/17 may be a promising therapeutic approach for treating acute kidney injury.
Collapse
Affiliation(s)
- Mehtap Atak
- Recep Tayyip Erdogan University, Faculty of Medicine, Department of Medical Biochemistry, Rize, Turkey.
| | - Ertugrul Yigit
- Karadeniz Technical University, Faculty of Medicine, Department of Medical Biochemistry, Trabzon, Turkey
| | - Merve Huner Yigit
- Recep Tayyip Erdogan University, Faculty of Medicine, Department of Medical Biochemistry, Rize, Turkey
| | - Zehra Topal Suzan
- Recep Tayyip Erdogan University, Faculty of Medicine, Department of Histology and Embryology, Rize, Turkey
| | - Eda Yilmaz Kutlu
- Recep Tayyip Erdogan University, Faculty of Medicine, Department of Medical Biochemistry, Rize, Turkey
| | - Soner Karabulut
- Karadeniz Technical University, Faculty of Medicine, Department of Medical Biology, Trabzon, Turkey
| |
Collapse
|
153
|
Wang C, Liang D, Shen X, Chen X, Lai L, Hou H. Compound 4a induces paraptosis in liver cancer through endoplasmic reticulum stress mediated by the calreticulin protein. Br J Pharmacol 2024. [PMID: 39533864 DOI: 10.1111/bph.17385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/09/2024] [Accepted: 10/01/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND AND PURPOSE Emerging evidence has highlighted that paraptosis may be an effective strategy for treating liver cancer. In our previous studies, Compound 4a induced paraptosis in cancer cells. Here, the characteristics of Compound 4a-induced paraptosis were further revealed and, for the first time, the target and related molecular mechanisms of Compound 4a-induced paraptosis in liver cancer were defined. EXPERIMENTAL APPROACH The effects and mechanism of Compound 4a in liver cancer cells were studied in in vitro and in vivo (BALB/c-nude xenograft model) experiments, and the targets of Compound 4a that trigger paraptosis were identified and confirmed via mass spectrometry-based drug affinity responsive target stability (DARTS) analyses, siRNA experiments and a cellular thermal shift assay (CETSA). The function and distribution of calreticulin (CRT) protein were detected via Cal-520 AM and immunofluorescence staining, respectively. KEY RESULTS Compound 4a effectively induced paraptosis-like cell death in liver cancer, both in vitro and in vivo, and its effect was comparable with the first-line anti-liver cancer drug oxaliplatin but with a higher safety profile. We identified the CRT protein as a target of Compound 4a, which caused cellular endoplasmic reticulum stress (ERS) and calcium overload. CRT knockdown weakened the anti-liver cancer activity of Compound 4a, which may be related to the inhibition of paraptosis. CONCLUSION Compound 4a represents a potentially safe and effective agent for the treatment of liver cancer. The characteristics of Compound 4a-triggered paraptosis was clarified and a unique function of CRT in paraptosis was revealed.
Collapse
Affiliation(s)
- Chunmiao Wang
- Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Dandan Liang
- School of Pharmacy, Xinjiang Second Medical College, Karamay, China
| | - Xiaoyan Shen
- College of Pharmacy, Guangxi Medical University, Nanning, China
| | - Xuyang Chen
- College of Pharmacy, Guangxi Medical University, Nanning, China
| | - Linfang Lai
- College of Pharmacy, Guangxi Medical University, Nanning, China
| | - Huaxin Hou
- College of Pharmacy, Guangxi Medical University, Nanning, China
| |
Collapse
|
154
|
Kamath S, Hunter A, Collins K, Wignall A, Joyce P. The atypical antipsychotics lurasidone and olanzapine exert contrasting effects on the gut microbiome and metabolic function of rats. Br J Pharmacol 2024; 181:4531-4545. [PMID: 39075330 DOI: 10.1111/bph.16507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND AND PURPOSE Antipsychotics such as olanzapine are associated with significant metabolic dysfunction, attributed to gut microbiome dysbiosis. A recent notion that most psychotropics are detrimental to the gut microbiome has arisen from consistent findings of metabolic adverse effects. However, unlike olanzapine, the metabolic effects of lurasidone are conflicting. Thus, this study investigates the contrasting effects of olanzapine and lurasidone on the gut microbiome to explore the hypothesis of 'gut neutrality' for lurasidone exposure. EXPERIMENTAL APPROACH Using Sprague-Dawley rats, the effects of olanzapine and lurasidone on the gut microbiome were explored. Faecal and blood samples were collected weekly over a 21-day period to analyse changes to the gut microbiome and related metabolic markers. KEY RESULTS Lurasidone triggered no significant weight gain or metabolic alterations, instead positively modulating the gut microbiome through increases in mean operational taxonomical units (OTUs) and alpha diversity. This novel finding suggests an underlying mechanism for lurasidone's metabolic inertia. In contrast, olanzapine triggered a statistically significant decrease in mean OTUs, substantial compositional variation and a depletion in short-chain fatty acid abundance. Microbiome depletion correlated with metabolic dysfunction, producing a 30% increase in weight gain, increased pro-inflammatory cytokine expression, and increased blood glycaemic and triglyceride levels. CONCLUSION AND IMPLICATIONS Our results challenge the notion that all antipsychotics disrupt the gut microbiome similarly and highlights the potential benefits of gut-neutral antipsychotics, such as lurasidone, in managing metabolic side effects. Further research is warranted to validate these findings in humans to guide personalised pharmacological treatment regimens for schizophrenia.
Collapse
Affiliation(s)
- Srinivas Kamath
- Centre for Pharmaceutical Innovation (CPI), UniSA Clinical & Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Alexander Hunter
- Centre for Pharmaceutical Innovation (CPI), UniSA Clinical & Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Kate Collins
- Centre for Pharmaceutical Innovation (CPI), UniSA Clinical & Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Anthony Wignall
- Centre for Pharmaceutical Innovation (CPI), UniSA Clinical & Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Paul Joyce
- Centre for Pharmaceutical Innovation (CPI), UniSA Clinical & Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
155
|
Erkens R, Duse DA, Brum A, Chadt A, Becher S, Siragusa M, Quast C, Müssig J, Roden M, Cortese-Krott M, Ibáñez B, Lammert E, Fleming I, Jung C, Al-Hasani H, Heusch G, Kelm M. Inhibition of proline-rich tyrosine kinase 2 restores cardioprotection by remote ischaemic preconditioning in type 2 diabetes. Br J Pharmacol 2024; 181:4174-4194. [PMID: 38956895 DOI: 10.1111/bph.16483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/26/2024] [Accepted: 05/24/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND AND PURPOSE Remote ischaemic preconditioning (rIPC) for cardioprotection is severely impaired in diabetes, and therapeutic options to restore it are lacking. The vascular endothelium plays a key role in rIPC. Given that the activity of endothelial nitric oxide synthase (eNOS) is inhibited by proline-rich tyrosine kinase 2 (Pyk2), we hypothesized that pharmacological Pyk2 inhibition could restore eNOS activity and thus restore remote cardioprotection in diabetes. EXPERIMENTAL APPROACH New Zealand obese (NZO) mice that demonstrated key features of diabetes were studied. The consequence of Pyk2 inhibition on endothelial function, rIPC and infarct size after myocardial infarction were evaluated. The impact of plasma from mice and humans with or without diabetes was assessed in isolated buffer perfused murine hearts and aortic rings. KEY RESULTS Plasma from nondiabetic mice and humans, both subjected to rIPC, caused remote tissue protection. Similar to diabetic humans, NZO mice demonstrated endothelial dysfunction. NZO mice had reduced circulating nitrite levels, elevated arterial blood pressure and a larger infarct size after ischaemia and reperfusion than BL6 mice. Pyk2 increased the phosphorylation of eNOS at its inhibitory site (Tyr656), limiting its activity in diabetes. The cardioprotective effects of rIPC were abolished in diabetic NZO mice. Pharmacological Pyk2 inhibition restored endothelial function and rescued cardioprotective effects of rIPC. CONCLUSION AND IMPLICATIONS Endothelial function and remote tissue protection are impaired in diabetes. Pyk2 is a novel target for treating endothelial dysfunction and restoring cardioprotection through rIPC in diabetes.
Collapse
Affiliation(s)
- Ralf Erkens
- Department of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | - Dragos Andrei Duse
- Department of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | - Amanda Brum
- Department of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | - Alexandra Chadt
- Institute for Clinical Biochemistry and Pathobiochemistry, Deutsches Diabetes Zentrum at Heinrich Heine University of Duesseldorf, Duesseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Partner Duesseldorf, Neuherberg, Germany
| | - Stefanie Becher
- Department of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | - Mauro Siragusa
- Center for Molecular Medicine, Institute for Vascular Signalling, Goethe University Frankfurt, Frankfurt, Germany
- German Centre for Cardiovascular Research, Partner site RhineMain, Frankfurt, Germany
| | - Christine Quast
- Department of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | - Johanna Müssig
- Department of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | - Michael Roden
- German Center for Diabetes Research (DZD e.V.), Partner Duesseldorf, Neuherberg, Germany
- Department of Endocrinology and Diabetology, Medical Faculty, Heinrich-Heine University and University Hospital Duesseldorf, Duesseldorf, Germany
- Institute for Clinical Diabetology, Deutsches Diabetes Zentrum at Heinrich Heine University of Duesseldorf, Duesseldorf, Germany
| | - Miriam Cortese-Krott
- Department of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
- CARID Cardiovascular Research Institute Duesseldorf, Duesseldorf, Germany
| | - Borja Ibáñez
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Eckhard Lammert
- German Center for Diabetes Research (DZD e.V.), Partner Duesseldorf, Neuherberg, Germany
- Institute of Metabolic Physiology, Heinrich-Heine University, Duesseldorf, Germany
| | - Ingrid Fleming
- Center for Molecular Medicine, Institute for Vascular Signalling, Goethe University Frankfurt, Frankfurt, Germany
- German Centre for Cardiovascular Research, Partner site RhineMain, Frankfurt, Germany
| | - Christian Jung
- Department of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | - Hadi Al-Hasani
- Institute for Clinical Biochemistry and Pathobiochemistry, Deutsches Diabetes Zentrum at Heinrich Heine University of Duesseldorf, Duesseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Partner Duesseldorf, Neuherberg, Germany
| | - Gerd Heusch
- Institute for Pathophysiology, West German Heart and Vascular Center, University School of Medicine Essen, Essen, Germany
| | - Malte Kelm
- Department of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
- CARID Cardiovascular Research Institute Duesseldorf, Duesseldorf, Germany
| |
Collapse
|
156
|
Pantouli F, Pujol CN, Derieux C, Fonteneau M, Pellissier LP, Marsol C, Karpenko J, Bonnet D, Hibert M, Bailey A, Le Merrer J, Becker JAJ. Acute, chronic and conditioned effects of intranasal oxytocin in the mu-opioid receptor knockout mouse model of autism: Social context matters. Neuropsychopharmacology 2024; 49:1934-1946. [PMID: 39020142 PMCID: PMC11473707 DOI: 10.1038/s41386-024-01915-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/29/2024] [Accepted: 06/24/2024] [Indexed: 07/19/2024]
Abstract
Autism Spectrum Disorders (ASD) are neurodevelopmental disorders whose diagnosis relies on deficient social interaction and communication together with repetitive behaviours. Multiple studies have highlighted the potential of oxytocin (OT) to ameliorate behavioural abnormalities in animal models and subjects with ASD. Clinical trials, however, yielded disappointing results. Our study aimed at assessing the behavioural effects of different regimens of OT administration in the Oprm1 null mouse model of ASD. We assessed the effects of intranasal OT injected once at different doses (0.15, 0.3, and 0.6 IU) and time points (5, 15, and 30 min) following administration, or chronically, on ASD-related behaviours (social interaction and preference, stereotypies, anxiety, nociception) in Oprm1+/+ and Oprm1-/- mice. We then tested whether pairing intranasal OT injection with social experience would influence its outcome on ASD-like symptoms, and measured gene expression in the reward/social circuit. Acute intranasal OT at 0.3 IU improved social behaviour in Oprm1-/- mice 5 min after administration, with limited effects on non-social behaviours. Chronic (8-17 days) OT maintained rescuing effects in Oprm1 null mice but was deleterious in wild-type mice. Finally, improvements in the social behaviour of Oprm1-/- mice were greater and longer lasting when OT was administered in a social context. Under these conditions, the expression of OT and vasopressin receptor genes, as well as marker genes of striatal projection neurons, was suppressed. We detected no sex difference in OT effects. Our results highlight the importance of considering dosage and social context when evaluating the effects of OT treatment in ASD.
Collapse
Affiliation(s)
- Fani Pantouli
- INRAE, CNRS, Université de Tours, Inserm, PRC, 37380, Nouzilly, France
- Florida Research & Innovation Center, Cleveland Clinic, 9801 SW Discovery Way, Port St. Lucie, FL, 34987, USA
- Pharmacology section, Institute of Medical and Biomedical Education, St George's University of London, London, SW17 ORE, UK
| | - Camille N Pujol
- INRAE, CNRS, Université de Tours, Inserm, PRC, 37380, Nouzilly, France
- Department of Psychiatry, Strasbourg University Hospital, 67091, Strasbourg, France
| | - Cécile Derieux
- INRAE, CNRS, Université de Tours, Inserm, PRC, 37380, Nouzilly, France
| | - Mathieu Fonteneau
- UMR1253, iBrain, Université de Tours, Inserm, CNRS, Faculté des Sciences et Techniques, Parc de Grandmont, 37200, Tours, France
| | | | - Claire Marsol
- Laboratoire d'Innovation Thérapeutique, Faculté de Pharmacie, UMR7200 CNRS/Université de Strasbourg, 74 route du Rhin, 67412, Illkirch, France
| | - Julie Karpenko
- Laboratoire d'Innovation Thérapeutique, Faculté de Pharmacie, UMR7200 CNRS/Université de Strasbourg, 74 route du Rhin, 67412, Illkirch, France
| | - Dominique Bonnet
- Laboratoire d'Innovation Thérapeutique, Faculté de Pharmacie, UMR7200 CNRS/Université de Strasbourg, 74 route du Rhin, 67412, Illkirch, France
| | - Marcel Hibert
- Laboratoire d'Innovation Thérapeutique, Faculté de Pharmacie, UMR7200 CNRS/Université de Strasbourg, 74 route du Rhin, 67412, Illkirch, France
| | - Alexis Bailey
- Pharmacology section, Institute of Medical and Biomedical Education, St George's University of London, London, SW17 ORE, UK
| | - Julie Le Merrer
- INRAE, CNRS, Université de Tours, Inserm, PRC, 37380, Nouzilly, France.
- UMR1253, iBrain, Université de Tours, Inserm, CNRS, Faculté des Sciences et Techniques, Parc de Grandmont, 37200, Tours, France.
| | - Jerome A J Becker
- INRAE, CNRS, Université de Tours, Inserm, PRC, 37380, Nouzilly, France.
- UMR1253, iBrain, Université de Tours, Inserm, CNRS, Faculté des Sciences et Techniques, Parc de Grandmont, 37200, Tours, France.
| |
Collapse
|
157
|
Len-Tayon K, Beraud C, Fauveau C, Belorusova AY, Chebaro Y, Mouriño A, Massfelder T, Chauchereau A, Metzger D, Rochel N, Laverny G. A vitamin D-based strategy overcomes chemoresistance in prostate cancer. Br J Pharmacol 2024; 181:4279-4293. [PMID: 38982588 DOI: 10.1111/bph.16492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/16/2024] [Accepted: 05/29/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND AND PURPOSE Castration-resistant prostate cancer (CRPC) is a common male malignancy that requires new therapeutic strategies due to acquired resistance to its first-line treatment, docetaxel. The benefits of vitamin D on prostate cancer (PCa) progression have been previously reported. This study aimed to investigate the effects of vitamin D on chemoresistance in CRPC. EXPERIMENTAL APPROACH Structure function relationships of potent vitamin D analogues were determined. The combination of the most potent analogue and docetaxel was explored in chemoresistant primary PCa spheroids and in a xenograft mouse model derived from a patient with a chemoresistant CRPC. KEY RESULTS Here, we show that Xe4MeCF3 is more potent than the natural ligand to induce vitamin D receptor (VDR) transcriptional activities and that it has a larger therapeutic window. Moreover, we demonstrate that VDR agonists restore docetaxel sensitivity in PCa spheroids. Importantly, Xe4MeCF3 reduces tumour growth in a chemoresistant CRPC patient-derived xenograft. In addition, this treatment targets signalling pathways associated with cancer progression in the remaining cells. CONCLUSION AND IMPLICATIONS Taken together, these results unravel the potency of VDR agonists to overcome chemoresistance in CRPC and open new avenues for the clinical management of PCa.
Collapse
Affiliation(s)
- Kateryna Len-Tayon
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), Illkirch-Graffenstaden, France
- CNRS UMR 7104, Illkirch-Graffenstaden, France
- Inserm U1258, Illkirch-Graffenstaden, France
- University of Strasbourg, Illkirch-Graffenstaden, France
| | | | - Clara Fauveau
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), Illkirch-Graffenstaden, France
- CNRS UMR 7104, Illkirch-Graffenstaden, France
- Inserm U1258, Illkirch-Graffenstaden, France
- University of Strasbourg, Illkirch-Graffenstaden, France
- Transgene SA, Illkirch-Graffenstaden, France
| | - Anna Y Belorusova
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), Illkirch-Graffenstaden, France
- CNRS UMR 7104, Illkirch-Graffenstaden, France
- Inserm U1258, Illkirch-Graffenstaden, France
- University of Strasbourg, Illkirch-Graffenstaden, France
| | - Yassmine Chebaro
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), Illkirch-Graffenstaden, France
- CNRS UMR 7104, Illkirch-Graffenstaden, France
- Inserm U1258, Illkirch-Graffenstaden, France
- University of Strasbourg, Illkirch-Graffenstaden, France
| | - Antonio Mouriño
- Department of Chemistry, University of Santiago de Compostela, Santiago de Compostela, Spain
| | | | - Anne Chauchereau
- INSERM U981, Gustave Roussy, University of Paris-Saclay, Villejuif, France
| | - Daniel Metzger
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), Illkirch-Graffenstaden, France
- CNRS UMR 7104, Illkirch-Graffenstaden, France
- Inserm U1258, Illkirch-Graffenstaden, France
- University of Strasbourg, Illkirch-Graffenstaden, France
| | - Natacha Rochel
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), Illkirch-Graffenstaden, France
- CNRS UMR 7104, Illkirch-Graffenstaden, France
- Inserm U1258, Illkirch-Graffenstaden, France
- University of Strasbourg, Illkirch-Graffenstaden, France
| | - Gilles Laverny
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), Illkirch-Graffenstaden, France
- CNRS UMR 7104, Illkirch-Graffenstaden, France
- Inserm U1258, Illkirch-Graffenstaden, France
- University of Strasbourg, Illkirch-Graffenstaden, France
| |
Collapse
|
158
|
Shen Y, Yang Y, Wang Z, Lin W, Feng N, Shi M, Liu J, Ma W. Coptisine exerts anti-tumour effects in triple-negative breast cancer by targeting mitochondrial complex I. Br J Pharmacol 2024; 181:4262-4278. [PMID: 38982680 DOI: 10.1111/bph.16489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/08/2024] [Accepted: 05/29/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND AND PURPOSE Triple-negative breast cancer (TNBC) has a poor prognosis due to limited therapeutic options. Recent studies have shown that TNBC is highly dependent on mitochondrial oxidative phosphorylation. The aim of this study was to investigate the potential of coptisine, a novel compound that inhibits the complex I of the mitochondrial electron transport chain (ETC), as a treatment for TNBC. EXPERIMENTAL APPROACH In this study, mitochondrial metabolism in TNBC was analysed by bioinformatics. In vitro and in vivo experiments (in mice) were conducted to evaluate the potential of coptisine as an ETC complex I-targeting therapeutic agent and to investigate the molecular mechanisms underlying coptisine-induced mitochondrial dysfunction. The therapeutic effect of coptisine was assessed in TNBC cells and xenograft mouse model. KEY RESULTS We demonstrated that mitochondrial ETC I was responsible for this metabolic vulnerability in TNBC. Furthermore, a naturally occurring compound, coptisine, exhibited specific inhibitory activity against this complex I. Treatment with coptisine significantly inhibited mitochondrial functions, reprogrammed cellular metabolism, induced apoptosis and ultimately inhibited the proliferation of TNBC cells. Additionally, coptisine administration induced prominent growth inhibition that was dependent on the presence of a functional complex I in xenograft mouse models. CONCLUSION AND IMPLICATIONS Altogether, these findings suggest the promising potential of coptisine as a potent ETC complex I inhibitor to target the metabolic vulnerability of TNBC.
Collapse
Affiliation(s)
- Yunfu Shen
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - You Yang
- Department of Pediatrics, Affiliated Hospital of Southwest Medical University, Birth Defects Clinical Medical Research Center of Sichuan Province, Luzhou, China
| | - Zi Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Wanjun Lin
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Na Feng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Meina Shi
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Jiachen Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Wenzhe Ma
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| |
Collapse
|
159
|
Doiron JE, Xia H, Yu X, Nevins AR, LaPenna KB, Sharp TE, Goodchild TT, Allerton TD, Elgazzaz M, Lazartigues E, Shah SJ, Li Z, Lefer DJ. Adjunctive therapy with an oral H 2S donor provides additional therapeutic benefit beyond SGLT2 inhibition in cardiometabolic heart failure with preserved ejection fraction. Br J Pharmacol 2024; 181:4294-4310. [PMID: 38982742 DOI: 10.1111/bph.16493] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/20/2024] [Accepted: 05/26/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND AND PURPOSE Sodium glucose cotransporter 2 inhibitors (SGLT2i) have emerged as a potent therapy for heart failure with preserved ejection fraction (HFpEF). Hydrogen sulphide (H2S), a well-studied cardioprotective agent, could be beneficial in HFpEF. SGLT2i monotherapy and combination therapy involving an SGLT2i and H2S donor in two preclinical models of cardiometabolic HFpEF was investigated. EXPERIMENTAL APPROACH Nine-week-old C57BL/6N mice received L-NAME and a 60% high fat diet for five weeks. Mice were then randomized to either control, SGLT2i monotherapy or SGLT2i and H2S donor, SG1002, for five additional weeks. Ten-week-old ZSF1 obese rats were randomized to control, SGLT2i or SGLT2i and SG1002 for 8 weeks. SG1002 monotherapy was investigated in additional animals. Cardiac function (echocardiography and haemodynamics), exercise capacity, glucose handling and multiorgan pathology were monitored during experimental protocols. KEY RESULTS SGLT2i treatment improved E/e' ratio and treadmill exercise in both models. Combination therapy afforded increases in cardiovascular sulphur bioavailability that coincided with improved left end-diastolic function (E/e' ratio), exercise capacity, metabolic state, cardiorenal fibrosis, and hepatic steatosis. Follow-up studies with SG1002 monotherapy revealed improvements in diastolic function, exercise capacity and multiorgan histopathology. CONCLUSIONS AND IMPLICATIONS SGLT2i monotherapy remediated pathological complications exhibited by two well-established HFpEF models. Adjunctive H2S therapy resulted in further improvements of cardiometabolic perturbations beyond SGLT2i monotherapy. Follow-up SG1002 monotherapy studies inferred an improved phenotype with combination therapy beyond either monotherapy. These data demonstrate the differing effects of SGLT2i and H2S therapy while also revealing the superior efficacy of the combination therapy in cardiometabolic HFpEF.
Collapse
Affiliation(s)
- Jake E Doiron
- Department of Pharmacology and Experimental Therapeutics, LSU Health Sciences Center, New Orleans, Louisiana, USA
| | - Huijing Xia
- Department of Pharmacology and Experimental Therapeutics, LSU Health Sciences Center, New Orleans, Louisiana, USA
- Cardiovascular Center of Excellence, LSU Health Sciences Center, New Orleans, Louisiana, USA
| | - Xiaoman Yu
- Department of Cardiac Surgery, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Alexandra R Nevins
- Department of Cardiac Surgery, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Kyle B LaPenna
- Department of Pharmacology and Experimental Therapeutics, LSU Health Sciences Center, New Orleans, Louisiana, USA
| | - Thomas E Sharp
- Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida, USA
| | - Traci T Goodchild
- Department of Cardiac Surgery, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | | | - Mona Elgazzaz
- Department of Pharmacology and Experimental Therapeutics, LSU Health Sciences Center, New Orleans, Louisiana, USA
- Cardiovascular Center of Excellence, LSU Health Sciences Center, New Orleans, Louisiana, USA
| | - Eric Lazartigues
- Department of Pharmacology and Experimental Therapeutics, LSU Health Sciences Center, New Orleans, Louisiana, USA
- Cardiovascular Center of Excellence, LSU Health Sciences Center, New Orleans, Louisiana, USA
| | - Sanjiv J Shah
- Feinberg School of Medicine, Northwestern University Medicine, Chicago, Illinois, USA
| | - Zhen Li
- Department of Cardiac Surgery, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - David J Lefer
- Department of Cardiac Surgery, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
160
|
Li M, Jin Y, Wu J, Zhao M, Yu K, Yu H. Arbidol, an antiviral drug, identified as a sodium channel blocker with anticonvulsant activity. Br J Pharmacol 2024; 181:4311-4327. [PMID: 38982721 DOI: 10.1111/bph.16496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 05/24/2024] [Accepted: 05/30/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND AND PURPOSE Sodium channel blockers (SCBs) have traditionally been utilized as anti-seizure medications by primarily targeting the inactivation process. In a drug discovery project aiming at finding potential anticonvulsants, we have identified arbidol, originally an antiviral drug, as a potent SCB. In order to evaluate its anticonvulsant potential, we have thoroughly examined its biophysical properties as well as its effects on animal seizure models. EXPERIMENTAL APPROACH Patch clamp recording was used to investigate the electrophysiological properties of arbidol, as well as the binding and unbinding kinetics of arbidol, carbamazepine and lacosamide. Furthermore, we evaluated the anticonvulsant effects of arbidol using three different seizure models in male mice. KEY RESULTS Arbidol effectively suppressed neuronal epileptiform activity by blocking sodium channels. Arbidol demonstrated a distinct mode of action by interacting with both the fast and slow inactivation of Nav1.2 channels compared with carbamazepine and lacosamide. A kinetic study suggested that the binding and unbinding rates might be associated with the specific characteristics of these three drugs. Arbidol targeted the classical binding site of local anaesthetics, effectively inhibited the gain-of-function effects of Nav1.2 epileptic mutations and exhibited varying degrees of anticonvulsant effects in the maximal electroshock model and subcutaneous pentylenetetrazol model but had no effect in the pilocarpine-induced status epilepticus model. CONCLUSIONS AND IMPLICATIONS Arbidol shows promising potential as an anticonvulsant agent, providing a unique mode of action that sets it apart from existing SCBs.
Collapse
Affiliation(s)
- Min Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Yuchen Jin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Jun Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Miao Zhao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Kexin Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Haibo Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| |
Collapse
|
161
|
Kumar A, Mark ZF, Carbajal MP, DeLima DS, Chamberlain N, Walzer J, Ruban M, Chandrasekaran R, Daphtary N, Aliyeva M, Poynter ME, Janssen-Heininger YMW, Bates JH, Alcorn JF, Britto CJ, Dela Cruz CS, Jegga AG, Anathy V. The protein disulfide isomerase A3 and osteopontin axis promotes influenza-induced lung remodelling. Br J Pharmacol 2024; 181:4610-4627. [PMID: 39118388 DOI: 10.1111/bph.16511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/07/2024] [Accepted: 06/24/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND AND PURPOSE Fibrotic lung remodelling after a respiratory viral infection represents a debilitating clinical sequela. Studying or managing viral-fibrotic sequela remains challenging, due to limited therapeutic options and lack of understanding of mechanisms. This study determined whether protein disulfide isomerase A3 (PDIA3) and secreted phosphoprotein 1 (SPP1), which are associated with pulmonary fibrosis, can promote influenza-induced lung fibrotic remodelling and whether inhibition of PDIA3 or SPP1 can resolve viral-mediated fibrotic remodelling. EXPERIMENTAL APPROACH A retrospective analysis of TriNetX data sets was conducted. Serum from healthy controls and influenza A virus (IAV)-infected patients was analysed. An inhibitor of PDIA3, punicalagin, and a neutralizing antibody for SPP1 were administered in mice. Macrophage cells treated with macrophage colony-stimulating factor (M-CSF) were used as a cell culture model. KEY RESULTS The TriNetX data set showed an increase in lung fibrosis and decline in lung function in flu-infected acute respiratory distress syndrome (ARDS) patients compared with non-ARDS patients. Serum samples revealed a significant increase in SPP1 and PDIA3 in influenza-infected patients. Lung PDIA3 and SPP1 expression increased following viral infection in mouse models. Punicalagin administration 2 weeks after IAV infection in mice caused a significant decrease in lung fibrosis and improved oxygen saturation. Administration of neutralizing SPP1 antibody decreased lung fibrosis. Inhibition of PDIA3 decreased SPP1secretion from macrophages, in association with diminished disulfide bonds in SPP1. CONCLUSION AND IMPLICATIONS The PDIA3-SPP1 axis promotes post-influenza lung fibrosis in mice and that pharmacological inhibition of PDIA3 or SPP1 can treat virus-induced lung fibrotic sequela.
Collapse
Affiliation(s)
- Amit Kumar
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, The University of Vermont, Burlington, Vermont, USA
| | - Zoe F Mark
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, The University of Vermont, Burlington, Vermont, USA
| | - Morgan P Carbajal
- Division of Pulmonary Disease and Critical Care Medicine, Department of Medicine, Larner College of Medicine, The University of Vermont, Burlington, Vermont, USA
| | - Dhemerson Souza DeLima
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, The University of Vermont, Burlington, Vermont, USA
| | - Nicolas Chamberlain
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, The University of Vermont, Burlington, Vermont, USA
| | - Joseph Walzer
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, The University of Vermont, Burlington, Vermont, USA
| | - Mona Ruban
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, The University of Vermont, Burlington, Vermont, USA
| | - Ravishankar Chandrasekaran
- Division of Pulmonary Disease and Critical Care Medicine, Department of Medicine, Larner College of Medicine, The University of Vermont, Burlington, Vermont, USA
| | - Nirav Daphtary
- Division of Pulmonary Disease and Critical Care Medicine, Department of Medicine, Larner College of Medicine, The University of Vermont, Burlington, Vermont, USA
| | - Minara Aliyeva
- Division of Pulmonary Disease and Critical Care Medicine, Department of Medicine, Larner College of Medicine, The University of Vermont, Burlington, Vermont, USA
| | - Matthew E Poynter
- Division of Pulmonary Disease and Critical Care Medicine, Department of Medicine, Larner College of Medicine, The University of Vermont, Burlington, Vermont, USA
| | - Yvonne M W Janssen-Heininger
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, The University of Vermont, Burlington, Vermont, USA
| | - Jason H Bates
- Division of Pulmonary Disease and Critical Care Medicine, Department of Medicine, Larner College of Medicine, The University of Vermont, Burlington, Vermont, USA
| | - John F Alcorn
- Division of Pulmonary Medicine, Allergy, and Immunology, Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Clemente J Britto
- Department of Pulmonary, Critical Care and Sleep Medicine, Yale University, New Haven, Connecticut, USA
| | - Charles S Dela Cruz
- Department of Pulmonary, Critical Care and Sleep Medicine, Yale University, New Haven, Connecticut, USA
| | - Anil G Jegga
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Department of Computer Science, University of Cincinnati College of Engineering and Applied Science, Cincinnati, Ohio, USA
| | - Vikas Anathy
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, The University of Vermont, Burlington, Vermont, USA
| |
Collapse
|
162
|
Sayers I, Thakker D, Billington C, Kreideweiss S, Grundl MA, Bouyssou T, Thamm S, Kreuz S, Hall IP. Interleukin-1 receptor-associated kinase 4 (IRAK4) is a critical regulator of inflammatory signalling through toll-like receptors 4 and 7/8 in murine and human lungs. Br J Pharmacol 2024; 181:4647-4657. [PMID: 39137914 DOI: 10.1111/bph.16509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/13/2024] [Accepted: 05/23/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND AND PURPOSE Toll-like receptors 4 (TLR4) and TLR7/TLR8 play an important role in mediating the inflammatory effects of bacterial and viral pathogens. Interleukin-1 receptor-associated kinase 4 (IRAK4) is an important regulator of signalling by toll-like receptor (TLR) and hence is a potential therapeutic target in diseases characterized by increased lung inflammatory signalling. EXPERIMENTAL APPROACH We used an established murine model of acute lung inflammation, and studied human lung tissue ex vivo, to investigate the effects of inhibiting IRAK4 on lung inflammatory pathways. KEY RESULTS We show that TLR4 stimulation produces an inflammatory response characterized by neutrophil influx and tumour necrosis factor-α (TNF-α) production in murine lungs and that these responses are markedly reduced in IRAK4 kinase-dead mice. In addition, we characterize a novel selective IRAK4 inhibitor, BI1543673, and show that this compound can reduce lipopolysaccharide (LPS)-induced airway inflammation in wild-type mice. Additionally, BI1543673 reduced inflammatory responses to both TLR4 and TLR7/8 stimulation in human lung tissue studied ex vivo. CONCLUSION AND IMPLICATIONS These data demonstrate a key role for IRAK4 signalling in lung inflammation and suggest that IRAK4 inhibition has potential utility to treat lung diseases characterized by inflammatory responses driven through TLR4 and TLR7/8.
Collapse
Affiliation(s)
- Ian Sayers
- Centre for Respiratory Research, NIHR Nottingham Biomedical Research Centre, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Dhruma Thakker
- Centre for Respiratory Research, NIHR Nottingham Biomedical Research Centre, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Charlotte Billington
- Centre for Respiratory Research, NIHR Nottingham Biomedical Research Centre, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | | | - Marc A Grundl
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | | | - Sven Thamm
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Sebastian Kreuz
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Ian P Hall
- Centre for Respiratory Research, NIHR Nottingham Biomedical Research Centre, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| |
Collapse
|
163
|
Ruixin S, Yifan L, Yansha S, Min Z, Yiwei D, Xiaoli H, Bizhi S, Hua J, Zonghai L. Dual targeting chimeric antigen receptor cells enhance antitumour activity by overcoming T cell exhaustion in pancreatic cancer. Br J Pharmacol 2024; 181:4628-4646. [PMID: 39129178 DOI: 10.1111/bph.16505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/15/2024] [Accepted: 05/29/2024] [Indexed: 08/13/2024] Open
Abstract
BACKGROUND AND PURPOSE Although our previous data indicated that claudin 18 isoform 2 (CLDN18.2)-targeted chimeric antigen receptor (CAR) T cells displayed remarkable clinical efficacy in CLDN18.2-positive gastric cancer, their efficacy is limited in pancreatic ductal adenocarcinoma (PDAC). The tumour microenvironment (TME) is one of the main obstacles to the efficacy of CAR-T and remodelling the TME may be a possible way to overcome this obstacle. The TME of PDAC is characterized by abundant cancer-related fibroblasts (CAFs), which hinder the infiltration and function of CLDN18.2-targeted CAR-T cells. The expression of fibroblast activation protein alpha (FAP) is an important feature of active CAFs, providing potential targets for eliminating CAFs. EXPERIMENTAL APPROACH In this study, we generated 10 FAP/CLDN 18.2 dual-targeted CAR-T cells and evaluated their anti-tumour ability in vitro and in vivo. KEY RESULTS Compared with conventional CAR-T cells, some dual-targeted CAR-T cells showed improved therapeutic effects in mouse pancreatic cancers. Further, dual-targeted CAR-T cells with better anti-tumour effect could suppress the recruitment of myeloid-derived suppressor cells (MDSCs) to improve the immunosuppressive TME, which contributes to the survival of CD8+ T cells. Moreover, dual-targeted CAR-T cells reduced the exhaustion of T cells in transforming TGF-β dependent manner. CONCLUSION AND IMPLICATIONS The dual-targeted CAR-T cells obtained enhancement of T effector function, inhibition of T cell exhaustion, and improvement of tumour microenvironment. Our findings provide a theoretical rationale for dual-targeted FAP/CLDN 18.2 CAR-T cells therapy in PDAC.
Collapse
Affiliation(s)
- Sun Ruixin
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Laboratory Medicine, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Liu Yifan
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Sun Yansha
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhou Min
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Dong Yiwei
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hu Xiaoli
- CARsgen Therapeutics, Shanghai, China
| | - Shi Bizhi
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- CARsgen Therapeutics, Shanghai, China
| | - Jiang Hua
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- CARsgen Therapeutics, Shanghai, China
| | - Li Zonghai
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- CARsgen Therapeutics, Shanghai, China
| |
Collapse
|
164
|
Kato Y, Ariyoshi K, Nohara Y, Matsunaga N, Shimauchi T, Shindo N, Nishimura A, Mi X, Kim SG, Ide T, Kawanishi E, Ojida A, Nakashima N, Mori Y, Nishida M. Inhibition of dynamin-related protein 1-filamin interaction improves systemic glucose metabolism. Br J Pharmacol 2024; 181:4328-4347. [PMID: 38986570 DOI: 10.1111/bph.16487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 05/05/2024] [Accepted: 05/18/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND AND PURPOSE Maintaining mitochondrial quality is attracting attention as a new strategy to treat diabetes and diabetic complications. We previously reported that mitochondrial hyperfission by forming a protein complex between dynamin-related protein (Drp) 1 and filamin, mediates chronic heart failure and cilnidipine, initially developed as an L/N-type Ca2+ channel blocker, improves heart failure by inhibiting Drp1-filamin protein complex. We investigated whether cilnidipine improves hyperglycaemia of various diabetic mice models. EXPERIMENTAL APPROACH Retrospective analysis focusing on haemoglobin A1c (HbA1c) was performed in hypertensive and hyperglycaemic patients taking cilnidipine and amlodipine. After developing diabetic mice by streptozotocin (STZ) treatment, an osmotic pump including drug was implanted intraperitoneally, followed by weekly measurements of blood glucose levels. Mitochondrial morphology was analysed by electron microscopy. A Ca2+ channel-insensitive cilnidipine derivative (1,4-dihydropyridine [DHP]) was synthesized and its pharmacological effect was evaluated using obese (ob/ob) mice fed with high-fat diet (HFD). KEY RESULTS In patients, cilnidipine was superior to amlodipine in HbA1c lowering effect. Cilnidipine treatment improved systemic hyperglycaemia and mitochondrial morphological abnormalities in STZ-exposed mice, without lowering blood pressure. Cilnidipine failed to improve hyperglycaemia of ob/ob mice, with suppressing insulin secretion. 1,4-DHP improved hyperglycaemia and mitochondria abnormality in ob/ob mice fed HFD. 1,4-DHP and cilnidipine improved basal oxygen consumption rate of HepG2 cells cultured under 25 mM glucose. CONCLUSION AND IMPLICATIONS Inhibition of Drp1-filamin protein complex formation becomes a new strategy for type 2 diabetes treatment.
Collapse
Affiliation(s)
- Yuri Kato
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Kohei Ariyoshi
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Yasunobu Nohara
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Naoya Matsunaga
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Tsukasa Shimauchi
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
- Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Okazaki, Aichi, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi, Japan
| | - Naoya Shindo
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Akiyuki Nishimura
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Okazaki, Aichi, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi, Japan
- SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, Japan
| | - Xinya Mi
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Sang Geon Kim
- College of Pharmacy, Dongguk University-Seoul, Goyang-si, South Korea
| | - Tomomi Ide
- Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Eiji Kawanishi
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Akio Ojida
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Naoki Nakashima
- Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yasuo Mori
- Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Motohiro Nishida
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Okazaki, Aichi, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi, Japan
- SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, Japan
| |
Collapse
|
165
|
Qiao X, Zheng K, Ye L, Yang J, Cui R, Shan Y, Li X, Li H, Zhu Q, Zhao Z, Ge RS, Wang Y. NL13, a novel curcumin analogue and polo like kinase 4 inhibitor, induces cell cycle arrest and apoptosis in prostate cancer models. Br J Pharmacol 2024; 181:4658-4676. [PMID: 39142876 DOI: 10.1111/bph.16501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 05/21/2024] [Accepted: 05/29/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND AND PURPOSE Prostate cancer remains a major public health burden worldwide. Polo like kinase 4 (PLK4) has emerged as a promising therapeutic target in prostate cancer due to its key roles in cell cycle regulation and tumour progression. This study aims to develop and characterize the novel curcumin analogue NL13 as a potential therapeutic agent and PLK4 inhibitor against prostate cancer. EXPERIMENTAL APPROACH NL13 was synthesized and its effects were evaluated in prostate cancer cells and mouse xenograft models. Kinome screening and molecular modelling identified PLK4 as the primary target. Antiproliferative and proapoptotic mechanisms were explored via cell cycle, apoptosis, gene and protein analyses. KEY RESULTS Compared with curcumin, NL13 exhibited much greater potency in inhibiting PC3 (IC50, 3.51 μM vs. 35.45 μM) and DU145 (IC50, 2.53 μM vs. 29.35 μM) prostate cancer cells viability and PLK4 kinase activity (2.32 μM vs. 246.88 μM). NL13 induced G2/M cell cycle arrest through CCNB1/CDK1 down-regulation and triggered apoptosis via caspase-9/caspase-3 cleavage. These effects were mediated by PLK4 inhibition, which led to the inactivation of the AKT signalling pathway. In mice, NL13 significantly inhibited tumour growth and modulated molecular markers consistent with in vitro findings, including decreased p-AKT and increased cleaved caspase-9/3. CONCLUSION AND IMPLICATIONS NL13, a novel PLK4-targeted curcumin analogue, exerts promising anticancer properties against prostate cancer by disrupting the PLK4-AKT-CCNB1/CDK1 and apoptosis pathways. NL13 represents a promising new agent for prostate cancer therapy.
Collapse
Affiliation(s)
- Xinyi Qiao
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Wenzhou, Zhejiang, China
- Department of Pathology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ke Zheng
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Wenzhou, Zhejiang, China
- Department of Pathology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lei Ye
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Wenzhou, Zhejiang, China
- Department of Pathology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jin Yang
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Wenzhou, Zhejiang, China
- Department of Pathology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Rong Cui
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Wenzhou, Zhejiang, China
- Department of Pathology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuanyuan Shan
- Department of Pathology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaoheng Li
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Wenzhou, Zhejiang, China
| | - Huitao Li
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Wenzhou, Zhejiang, China
| | - Qiqi Zhu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Wenzhou, Zhejiang, China
| | - Zhiguang Zhao
- Department of Pathology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ren-Shan Ge
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Wenzhou, Zhejiang, China
- Department of Pathology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yiyan Wang
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Wenzhou, Zhejiang, China
- Department of Pathology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
166
|
Dai Y, Li Y, Xu J, Zhang J. A highly selective inhibitor of discoidin domain receptor-1 (DDR1-IN-1) protects corneal epithelial cells from YAP/ACSL4-mediated ferroptosis in dry eye. Br J Pharmacol 2024; 181:4245-4261. [PMID: 38978400 DOI: 10.1111/bph.16491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/03/2024] [Accepted: 05/26/2024] [Indexed: 07/10/2024] Open
Abstract
BACKGROUND AND PURPOSE This study investigated the involvement of discoidin domain receptor (DDR) in dry eye and assessed the potential of specific DDR inhibitors as a therapeutic strategy for dry eye by exploring the underlying mechanism. EXPERIMENTAL APPROACH Dry eye was induced in Wistar rats by applying 0.2% benzalkonium chloride (BAC), after which rats were treated topically for 7 days with DDR1-IN-1, a selective inhibitor of DDR1. Clinical manifestations of dry eye were assessed on Day-7 post-treatment. Histological evaluation of corneal damage was performed using haematoxylin and eosin (H&E) staining. In vitro, immortalized human corneal epithelial cells (HCECs) exposed to hyperosmotic stress (HS) were treated with varying doses of DDR1-IN-1 for 24 h. The levels of lipid peroxidation in dry eye corneas or HS-stimulated HCECs were assessed. Protein levels of DDR1/DDR2 and related pathways were detected by western blotting. The cellular distribution of acyl-CoA synthetase long chain family member 4 (ACSL4) and Yes-associated protein (YAP) was evaluated using immunohistochemistry or immunofluorescent staining. KEY RESULTS In dry eye corneas, only DDR1 expression was significantly up-regulated compared with normal controls. DDR1-IN-1 treatment significantly alleviated dry eye symptoms in vivo. The treatment remarkably reduced lipid hydroperoxide (LPO) levels and suppressed the expression of ferroptosis markers, particularly ACSL4. Overexpression or reactivation of YAP diminished the protective effects of DDR1-IN-1, indicating the involvement of the Hippo/YAP pathway in DDR1-targeted therapeutic effects. CONCLUSIONS AND IMPLICATIONS This study confirms the significance of DDR1 in dry eye and highlights the potential of selective DDR1 inhibitor(s) for dry eye treatment.
Collapse
Affiliation(s)
- Yiqin Dai
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University); Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| | - Yue Li
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University); Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| | - Jianjiang Xu
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University); Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| | - Jing Zhang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University); Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| |
Collapse
|
167
|
Okada M, Fukuyama K, Motomura E. Impacts of exposure to and subsequent discontinuation of clozapine on tripartite synaptic transmission. Br J Pharmacol 2024; 181:4571-4592. [PMID: 39091175 DOI: 10.1111/bph.16503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND AND PURPOSE Clozapine is an effective antipsychotic for treatment-resistant schizophrenia, but its discontinuation leads to discontinuation syndrome/catatonia complicated by benzodiazepine-resistance and rhabdomyolysis. EXPERIMENTAL APPROACH This study determined time-dependent effects of exposure and subsequent discontinuation of clozapine on expression of connexin43, 5-HT receptors, intracellular L-β-aminoisobutyrate (L-BAIBA) and 2nd-messengers and signalling of AMPK, PP2A and Akt in cultured astrocytes and rat frontal cortex. KEY RESULTS Intracellular L-BAIBA levels increased during clozapine exposure but immediately recovered after discontinuation. Both exposure to clozapine and L-BAIBA increased connexin43 and signalling of AMPK/Akt time-dependently, but reduced PP2A signalling, 5-HT receptor expression and IP3 level. These changes recovered within 2 weeks after discontinuation, while 5-HT receptors and IP3 transiently increased during the recovery process. L-BAIBA activated AMPK signalling, leading to attenuated PP2A signalling. Astroglial D-serine release was increased by clozapine exposure but continued to increase within 1 week after discontinuation via activation of IP3 receptor function. CONCLUSION AND IMPLICATIONS Clozapine discontinuation restored PP2A signalling due to decreased L-BAIBA, increased 5-HT receptor expression via probably enhanced 5-HT receptor recycling, but increased astroglial D-serine release persisted by transiently activated IP3 receptors via transiently increased IP3 level. Decreased L-BAIBA caused by clozapine discontinuation is, at least partially, involved in the transiently increased 5-HT receptor and astroglial D-serine release.
Collapse
Affiliation(s)
- Motohiro Okada
- Department of Neuropsychiatry, Division of Neuroscience, Graduate School of Medicine, Mie University, Tsu, Japan
| | - Kouji Fukuyama
- Department of Neuropsychiatry, Division of Neuroscience, Graduate School of Medicine, Mie University, Tsu, Japan
| | - Eishi Motomura
- Department of Neuropsychiatry, Division of Neuroscience, Graduate School of Medicine, Mie University, Tsu, Japan
| |
Collapse
|
168
|
Ou W, Liu H, Chen C, Yang C, Zhao X, Zhang Y, Zhang Z, Huang S, Mo H, Lu W, Wang X, Chen A, Yan J, Song X. Spexin inhibits excessive autophagy-induced ferroptosis to alleviate doxorubicin-induced cardiotoxicity by upregulating Beclin 1. Br J Pharmacol 2024; 181:4195-4213. [PMID: 38961632 DOI: 10.1111/bph.16484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/27/2024] [Accepted: 05/19/2024] [Indexed: 07/05/2024] Open
Abstract
BACKGROUND AND PURPOSE Doxorubicin is widely used in the treatment of malignant tumours, but doxorubicin-induced cardiotoxicity severely limits its clinical application. Spexin is a neuropeptide that acts as a novel biomarker in cardiovascular disease. However, the effects of spexin on doxorubicin-induced cardiotoxicity is unclear. EXPERIMENTAL APPROACH We established a model of doxorubicin-induced cardiotoxicity both in vivo and in vitro. Levels of cardiac damage in mice was assessed through cardiac function assessment, determination of serum cardiac troponin T and CKMB levels and histological examination. CCK8 and PI staining were used to assess the doxorubicin-induced toxicity in cultures of cardiomyocytes in vitro. Ferroptosis was assessed using FerroOrange staining, determination of MDA and 4-HNE content and ferroptosis-associated proteins SLC7A11 and GPX4. Mitochondrial membrane potential and lipid peroxidation levels were measured using TMRE and C11-BODIPY 581/591 probes, respectively. Myocardial autophagy was assessed by expression of P62 and Beclin1. KEY RESULTS Spexin treatment improved heart function of mice with doxorubicin-induced cardiotoxicity, and attenuated doxorubicin-induced cardiotoxicity by decreasing iron accumulation, abnormal lipid metabolism and inhibiting ferroptosis. Interestingly, doxorubicin caused excessive autophagy in cardiomyocyte in culture, which could be alleviated by treatment with spexin. Knockdown of Beclin 1 eliminated the protective effects of spexin in mice with DIC. CONCLUSION AND IMPLICATIONS Spexin ameliorated doxorubicin-induced cardiotoxicity by inhibiting excessive autophagy-induced ferroptosis, suggesting that spexin could be a drug candidate against doxorubicin-induced cardiotoxicity. Beclin 1 might be critical in mediating the protective effect of spexin against doxorubicin-induced cardiotoxicity.
Collapse
Affiliation(s)
- Wen Ou
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, China
- Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, China
| | - Haiqiong Liu
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, China
- Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, China
- Department of Health Management, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Changhai Chen
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, China
- Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, China
- Department of Cardiology, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian, China
| | - Chaobo Yang
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, China
- Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, China
| | - Xiaoqing Zhao
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, China
- Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, China
| | - Yu Zhang
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, China
- Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, China
| | - Zhiyin Zhang
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, China
- Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, China
| | - Shuwen Huang
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, China
- Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, China
| | - Huaqiang Mo
- Department of Cardiology, Shenzhen People's Hospital, Shenzhen, China
| | - Weizhe Lu
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, China
- Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, China
| | - Xianbao Wang
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, China
- Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, China
| | - Aihua Chen
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, China
- Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, China
- Department of Health Management, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jing Yan
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, China
- Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, China
| | - Xudong Song
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, China
- Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, China
| |
Collapse
|
169
|
Shang B, Dong Y, Feng B, Zhao J, Wang Z, Crans DC, Yang X. Combination therapy enhances efficacy and overcomes toxicity of metal-based anti-diabetic agent. Br J Pharmacol 2024; 181:4214-4228. [PMID: 38965763 DOI: 10.1111/bph.16485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 05/09/2024] [Accepted: 05/22/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND AND PURPOSE Metal-based therapeutic agents are limited by the required concentration of metal-based agents. Hereby, we determined if combination with 17β-oestradiol (E2) could reduce such levels and the therapy still be effective in type 2 diabetes mellitus (T2DM). EXPERIMENTAL APPROACH The metal-based agent (vanadyl acetylacetonate [VAC])- 17β-oestradiol (E2) combination is administered using the membrane-permeable graphene quantum dots (GQD), the vehicle, to form the active GQD-E2-VAC complexes, which was characterized by fluorescence spectra, infrared spectra and X-ray photoelectron spectroscopy. In db/db type 2 diabetic mice, the anti-diabetic effects of GQD-E2-VAC complexes were evaluated using blood glucose levels, oral glucose tolerance test (OGTT), serum insulin levels, homeostasis model assessment (homeostasis model assessment of insulin resistance [HOMA-IR] and homeostasis model assessment of β-cell function [HOMA-β]), histochemical assays and western blot. KEY RESULTS In diabetic mice, GQD-E2-VAC complex had comprehensive anti-diabetic effects, including control of hyperglycaemia, improved insulin sensitivity, correction of hyperinsulinaemia and prevention of β-cell loss. Co-regulation of thioredoxin interacting protein (TXNIP) activation by the combination of metal complex and 17β-oestradiol contributed to the enhanced anti-diabetic effects. Furthermore, a potent mitochondrial protective antioxidant, coniferaldehyde, significantly potentiates the protective effects of GQD-E2-VAC complexes. CONCLUSION AND IMPLICATIONS A metal complex-E2 combinatorial approach achieved simultaneously the protection of β cells and insulin enhancement at an unprecedented low dose, similar to the daily intake of dietary metals in vitamin supplements. This study demonstrates the positive effects of combination and multi-modal therapies towards type 2 diabetes treatment.
Collapse
Affiliation(s)
- Bing Shang
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| | - Yaqiong Dong
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Bo Feng
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| | - Jingyan Zhao
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| | - Zhi Wang
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| | - Debbie C Crans
- Department of Chemistry and Cell and Molecular Biology Program, College of Natural Science, Colorado State University, Fort Collins, Colorado, USA
| | - Xiaoda Yang
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
- SATCM Key Laboratory of Compound Drug Detoxification, Peking University Health Science Center, Beijing, China
| |
Collapse
|
170
|
Espinosa-Velasco M, Castro-Zavala A, Reguilón MD, Gallego-Landin I, Bellot M, Rublinetska O, Valverde O, Rodríguez-Arias M, Nadal-Gratacós N, Berzosa X, Gómez-Canela C, Carbó ML, Camarasa J, Escubedo E, López-Arnau R, Pubill D. Sex differences in the effects of N-ethylpentylone in young CD1 mice: Insights on behaviour, thermoregulation and early gene expression. Br J Pharmacol 2024; 181:4491-4513. [PMID: 39014975 DOI: 10.1111/bph.16506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/03/2024] [Accepted: 05/28/2024] [Indexed: 07/18/2024] Open
Abstract
BACKGROUND AND PURPOSE New psychoactive substances such as N-ethylpentylone (NEP) are continuously emerging in the illicit drug market, and knowledge of their effects and risks, which may vary between sexes, is scarce. Our present study compares some key effects of NEP in male and female mice. EXPERIMENTAL APPROACH Psychostimulant, rewarding and reinforcing effects were investigated by tracking locomotor activity, conditioned place preference (CPP) paradigm and through a self-administration (SA) procedure, respectively, in CD1 mice. Moreover, the expression of early genes (C-fos, Arc, Csnk1e, Pdyn, Pp1r1b and Bdnf in addiction-related brain areas) was assessed by qPCR. Finally, serum and brain levels of NEP were determined by UHPLC-MS/MS. KEY RESULTS NEP-treated males experimented locomotor sensitisation and showed higher and longer increases in locomotion as well as higher hyperthermia after repeated administration than females. Moreover, while preference score in the CPP was similar in both sexes, extinction occurred later, and reinstatement was more easily established for males. Female mice self-administered more NEP than males at a higher dose. Differences in early gene expression (Arc, Bdnf, Csnk1e and Ppp1r1b) were found, but the serum and brain NEP levels did not differ between sexes. CONCLUSION AND IMPLICATIONS Our results suggest that male mice are more sensitive to NEP psychostimulant and rewarding effects. These differences may be attributed to different early gene expression but not to pharmacokinetic factors. Moreover, males appear to be more vulnerable to the hyperthermic effects of NEP, while females might be more prone to NEP abuse.
Collapse
Affiliation(s)
- María Espinosa-Velasco
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain
| | - Adriana Castro-Zavala
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Marina D Reguilón
- Unit of Research Psychobiology of Drug Dependence, Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Valencia, Spain
| | - Inés Gallego-Landin
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Marina Bellot
- Department of Analytical Chemistry (Chromatography Section), IQS School of Engineering, Universitat Ramon Llull, Barcelona, Spain
| | - Olga Rublinetska
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain
| | - Olga Valverde
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Marta Rodríguez-Arias
- Unit of Research Psychobiology of Drug Dependence, Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Valencia, Spain
| | - Núria Nadal-Gratacós
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain
- Chemical Reactions for Innovative Solutions (CRISOL), IQS School of Engineering, Universitat Ramon Llull, Barcelona, Spain
| | - Xavier Berzosa
- Chemical Reactions for Innovative Solutions (CRISOL), IQS School of Engineering, Universitat Ramon Llull, Barcelona, Spain
| | - Cristian Gómez-Canela
- Department of Analytical Chemistry (Chromatography Section), IQS School of Engineering, Universitat Ramon Llull, Barcelona, Spain
| | - Marcel Lí Carbó
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain
| | - Jorge Camarasa
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain
| | - Elena Escubedo
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain
| | - Raúl López-Arnau
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain
| | - David Pubill
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain
| |
Collapse
|
171
|
Wen J, Li H, Zhou Y, Du H, Hu G, Wen Z, Tang D, Wang Y, Cui X, Zhou Z, Wang DW, Chen C. Immunoglobin attenuates fulminant myocarditis by inhibiting overactivated innate immune response. Br J Pharmacol 2024. [PMID: 39442535 DOI: 10.1111/bph.17372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 09/08/2024] [Accepted: 09/16/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND AND PURPOSE Fulminant myocarditis (FM) is a myocardial inflammatory disease that can result from either viral diseases or autoimmune diseases. In this study, we have determined the treatment effects of immunomodulatory drugs on FM. EXPERIMENTAL APPROACH FM was induced in A/JGpt mice by intraperitoneal administration of coxsackievirus B3, after which immunoglobins were administered daily by intraperitoneal injection. On the seventh day, the cardiac structure and function were determined using echocardiography and cardiac catheterisation. Single-cell RNA sequencing (scRNA-seq) was performed to evaluate CD45+ cells in the heart. KEY RESULTS Immunoglobin, a typical immunomodulatory drug, dramatically reduced mortality and significantly improved cardiac function in mice with FM. ScRNA-seq revealed that immunoglobin treatment effectively modulated cardiac immune homeostasis, particularly by attenuating overactivated innate immune responses. At the cellular level, immunoglobin predominantly targeted Plac8+ monocytes and S100a8+ neutrophils, suppressing their proinflammatory activities, and enhancing antigen processing and presentation capabilities, thereby amplifying the efficiency and potency of the immune response against the virus. Immunoglobin benefits are mediated by the modulation of multiple signalling pathways, including relevant receptors on immune cells, direction of inflammatory cell chemotaxis, antigen presentation and anti-viral effects. Subsequently, Bst2-ILT7 ligand-receptor-mediated cellular interactions manipulated by immunoglobin were further confirmed in vivo. CONCLUSIONS AND IMPLICATIONS Immunoglobin treatment significantly attenuated FM-induced cardiac inflammation and improved cardiac function by inhibiting overactivated innate immune responses.
Collapse
Affiliation(s)
- Jianpei Wen
- Division of Cardiology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Huihui Li
- Division of Cardiology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Yufei Zhou
- Division of Cardiology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Hengzhi Du
- Division of Cardiology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guo Hu
- Division of Cardiology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Zheng Wen
- Division of Cardiology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Du Tang
- Division of Cardiology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Yanwen Wang
- Division of Cardiology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Xinwu Cui
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhou Zhou
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dao Wen Wang
- Division of Cardiology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Chen Chen
- Division of Cardiology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| |
Collapse
|
172
|
Tai T, Shao YY, Zheng YQ, Jiang LP, Han HR, Yin N, Li HD, Ji JZ, Mi QY, Yang L, Feng L, Duan FY, Xie HG. Clopidogrel ameliorates high-fat diet-induced hepatic steatosis in mice through activation of the AMPK signaling pathway and beyond. Front Pharmacol 2024; 15:1496639. [PMID: 39508046 PMCID: PMC11537861 DOI: 10.3389/fphar.2024.1496639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024] Open
Abstract
Introduction Metabolic dysfunction-associated steatotic liver disease (MASLD) frequently confers an increased risk of vascular thrombosis; however, the marketed antiplatelet drugs are investigated for the prevention and treatment of MASLD in patients with these coexisting diseases. Methods To determine whether clopidogrel could ameliorate high-fat diet (HFD)-induced hepatic steatosis in mice and how it works, mice were fed on normal diet or HFD alone or in combination with or without clopidogrel for 14 weeks, and primary mouse hepatocytes were treated with palmitate/oleate alone or in combination with the compounds examined for 24 h. Body weight, liver weight, insulin resistance, triglyceride and total cholesterol content in serum and liver, histological morphology, transcriptomic analysis of mouse liver, and multiple key MASLD-associated genes and proteins were measured, respectively. Results and discussion Clopidogrel mitigated HFD-induced hepatic steatosis (as measured with oil red O staining and triglyceride kit assay) and reduced elevations in serum aminotransferases, liver weight, and the ratio of liver to body weight. Clopidogrel downregulated the expression of multiple critical lipogenic (Acaca/Acacb, Fasn, Scd1, Elovl6, Mogat1, Pparg, Cd36, and Fabp4), profibrotic (Col1a1, Col1a2, Col3a1, Col4a1, Acta2, and Mmp2), and proinflammatory (Ccl2, Cxcl2, Cxcl10, Il1a, Tlr4, and Nlrp3) genes, and enhanced phosphorylation of AMPK and ACC. However, compound C (an AMPK inhibitor) reversed enhanced phosphorylation of AMPK and ACC in clopidogrel-treated primary mouse hepatocytes and alleviated accumulation of intracellular lipids. We concluded that clopidogrel may prevent and/or reverse HFD-induced hepatic steatosis in mice, suggesting that clopidogrel could be repurposed to fight fatty liver in patients.
Collapse
Affiliation(s)
- Ting Tai
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing, China
- Department of Clinical Pharmacology, China Pharmaceutical University School of Basic Medicine and Clinical Pharmacy, Nanjing, China
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yuan-Yuan Shao
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing, China
- Department of Clinical Pharmacology, China Pharmaceutical University School of Basic Medicine and Clinical Pharmacy, Nanjing, China
| | - Yu-Qi Zheng
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- Department of Clinical Pharmacology, Nanjing Medical University School of Pharmacy, Nanjing, China
| | - Li-Ping Jiang
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing, China
- Department of Clinical Pharmacology, China Pharmaceutical University School of Basic Medicine and Clinical Pharmacy, Nanjing, China
| | - Hao-Ru Han
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing, China
- Department of Clinical Pharmacology, China Pharmaceutical University School of Basic Medicine and Clinical Pharmacy, Nanjing, China
| | - Na Yin
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing, China
- Department of Clinical Pharmacology, China Pharmaceutical University School of Basic Medicine and Clinical Pharmacy, Nanjing, China
| | - Hao-Dong Li
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- Department of Clinical Pharmacology, Nanjing Medical University School of Pharmacy, Nanjing, China
| | - Jin-Zi Ji
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing, China
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Qiong-Yu Mi
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing, China
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Li Yang
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing, China
- Department of Clinical Pharmacology, China Pharmaceutical University School of Basic Medicine and Clinical Pharmacy, Nanjing, China
| | - Lei Feng
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing, China
- Department of Clinical Pharmacology, China Pharmaceutical University School of Basic Medicine and Clinical Pharmacy, Nanjing, China
| | - Fu-Yang Duan
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing, China
- Department of Clinical Pharmacology, China Pharmaceutical University School of Basic Medicine and Clinical Pharmacy, Nanjing, China
| | - Hong-Guang Xie
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing, China
- Department of Clinical Pharmacology, China Pharmaceutical University School of Basic Medicine and Clinical Pharmacy, Nanjing, China
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- Department of Clinical Pharmacology, Nanjing Medical University School of Pharmacy, Nanjing, China
| |
Collapse
|
173
|
Chen W, Shan Y, Wang M, Liang R, Sa R. Chicoric acid exerts therapeutic effects in DSS-induced ulcerative colitis by targeting the USP9X/IGF2BP2 axis. Br J Pharmacol 2024. [PMID: 39435543 DOI: 10.1111/bph.17354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 07/25/2024] [Accepted: 08/23/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND AND PURPOSE Chicoric acid, a hydroxycinnamic acid, exhibits anti-inflammation activities. However, the specific mechanisms underlying the effects of chicoric acid on dextran sulfate sodium (DSS)-induced colitis remain unclear. Here, we aimed to elucidate the molecular mechanisms underlying the protective effects of chicoric acid in DSS-induced colitis. EXPERIMENTAL APPROACH Mice with DSS-induced colitis (UC mice) were treated for a week with chicoric acid. Symptoms of colitis, colonic pathology, inflammation-related indicators, and intestinal mucosal barrier function were evaluated. RNA sequencing was performed on colon tissues to obtain differentially expressed genes. The deubiquitinating enzyme USP9X was selected, and the inhibitory and targeting effects of chicoric acid on USP9X were subsequently determined. In vivo and in vitro, DSS-induced colitis was treated with USP9X inhibitors WP1130 and EOAI3402143. Ubiquitination label-free quantitative proteomic analysis was performed to identify protein peptides that may undergo de-ubiquitination by USP9X. Co-immunoprecipitation (Co-IP), immunohistochemistry and western blotting were used to validate in vivo and in vitro results. KEY RESULTS Chicoric acid significantly alleviated clinical activity and histological changes, inhibited pro-inflammatory cytokine production and improved integrity of the intestinal barrier in UC mice. Moreover, chicoric acid suppressed USP9X expression in colonic tissues from UC mice. Furthermore, USP9X contributed to promoting the onset of UC and that insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2) was deubiquitinated by USP9X. CONCLUSION AND IMPLICATIONS Chicoric acid ameliorated DSS-induced colitis by targeting the USP9X/IGF2BP2 axis, indicating that targeting the USP9X/IGF2BP2 axis presents a promising and innovative therapeutic approach for the treatment of UC.
Collapse
Affiliation(s)
- Wei Chen
- Department of Gastroenterology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunan Shan
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Meng Wang
- Department of General Surgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Rui Liang
- Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ri Sa
- Department of Nuclear Medicine, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
174
|
Chen S, Liu Y, Zhang Y, Guo X, Bai T, He K, Zhu Y, Lei Y, Du M, Wang X, Liu Q, Yan H. Bruton's tyrosine kinase inhibition suppresses pathological retinal angiogenesis. Br J Pharmacol 2024. [PMID: 39374939 DOI: 10.1111/bph.17344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/25/2024] [Accepted: 08/22/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND AND PURPOSE Pathological retinal angiogenesis is a typical manifestation of vision-threatening ocular diseases. Many patients exhibit poor response or resistance to anti-vascular endothelial growth factor (VEGF) agents. Bruton's tyrosine kinase (BTK) controls the proliferation and function of immune cells. Therefore, we examined the anti-inflammatory and anti-angiogenic effects of BTK inhibition on retinal angiogenesis. EXPERIMENTAL APPROACH Retinal neovascularisation and vascular leakage in oxygen-induced retinopathy in C57/BL6J mice were assessed by whole-mount retinal immunofluorescence. PLX5622 was used to deplete microglia and Rag1-knockout mice were used to test the contribution of lymphocytes to the effects of BTK inhibition. The cytokines, activation markers, inflammatory and immune-regulatory activities of retinal microglia/macrophages were detected using qRT-PCR and immunofluorescence. NLRP3 was detected by western blotting, and the effects of BTK inhibition on the co-culture of microglia and human retinal microvascular endothelial cells (HRMECs) were examined. KEY RESULTS BTK inhibition suppressed pathological angiogenesis and vascular leakage, and significantly reduced retinal inflammation, which involved microglia/macrophages but not lymphocytes. BTK inhibition increased anti-inflammatory factors and reduced pro-inflammatory cytokines that resulted from NLRP3 inflammasome activation. BTK inhibition suppressed the inflammatory activity of microglia/macrophages, and acted synergistically with anti-VEGF without retinal toxicity. Moreover, the supernatant of microglia incubated with BTK-inhibitor reduced the proliferation, tube formation and sprouting of HRMECs. CONCLUSION AND IMPLICATIONS BTK inhibition suppressed retinal neovascularisation and vascular leakage by modulating the inflammatory activity of microglia and macrophages. Our study suggests BTK inhibition as a novel and promising approach for alleviating pathological retinal angiogenesis.
Collapse
Affiliation(s)
- Siyue Chen
- Department of Ophthalmology, Tianjin Medical University General Hospital, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Tianjin, China
| | - Yuming Liu
- Department of Ophthalmology, Tianjin Medical University General Hospital, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Tianjin, China
| | - Yutian Zhang
- Department of Ophthalmology, Tianjin Medical University General Hospital, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Tianjin, China
| | - Xu Guo
- Department of Ophthalmology, Tianjin Medical University General Hospital, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Tianjin, China
| | - Tinghui Bai
- Department of Ophthalmology, Tianjin Medical University General Hospital, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Tianjin, China
| | - Kai He
- Department of Ophthalmology, Tianjin Medical University General Hospital, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Tianjin, China
| | - Yanfang Zhu
- Department of Ophthalmology, Tianjin Medical University General Hospital, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Tianjin, China
| | - Yi Lei
- Department of Ophthalmology, Tianjin Medical University General Hospital, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Tianjin, China
| | - Mei Du
- Department of Ophthalmology, Tianjin Medical University General Hospital, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Tianjin, China
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xiaohong Wang
- Department of Ophthalmology, Tianjin Medical University General Hospital, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Tianjin, China
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Qiang Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Hua Yan
- Department of Ophthalmology, Tianjin Medical University General Hospital, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Tianjin, China
| |
Collapse
|
175
|
Di C, Wu T, Gao K, Li N, Song H, Wang L, Sun H, Yi J, Zhang X, Chen J, Shah M, Jiang Y, Huang Z. Carvedilol inhibits neuronal hyperexcitability caused by epilepsy-associated KCNT1 mutations. Br J Pharmacol 2024. [PMID: 39370580 DOI: 10.1111/bph.17360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/27/2024] [Accepted: 09/03/2024] [Indexed: 10/08/2024] Open
Abstract
BACKGROUND AND PURPOSE KCNT1 encodes a sodium-activated potassium channel (Slack channel), and its mutation can cause several forms of epilepsy. Traditional antiepileptic medications have limited efficacy in treating patients with KCNT1 mutations. Here, we describe one heterozygous KCNT1 mutation, M267T, in a patient with EIMFS. The pathological channel properties of this mutation and its effect on neuronal excitability were investigated. Additionally, this study aimed to develop a medication for effective prevention of KCNT1 mutation-induced seizures. EXPERIMENTAL APPROACH Wild-type or mutant KCNT1 plasmids were expressed heterologously in Xenopus laevis oocytes, and channel property assessment and drug screening were performed based on two-electrode voltage-clamp recordings. The single-channel properties were investigated using the excised inside-out patches from HEK293T cells. Through in utero electroporation, WT and M267T Slack channels were expressed in the hippocampal CA1 pyramidal neurons in male mice, followed by the examination of the electrical properties using the whole-cell current-clamp technique. The kainic acid-induced epilepsy model in male mice was used to evalute the antiseizure effects of carvedilol. KEY RESULTS The KCNT1 M267T mutation enhanced Slack channel function by increasing single-channel open probability. Through screening 16 FDA-approved ion channel blockers, we found that carvedilol effectively reversed the mutation-induced gain-of-function channel properties. Notably, the KCNT1 M267T mutation in the mouse hippocampal CA1 pyramidal neurons affected afterhyperpolarization properties and induced neuronal hyperexcitability, which was inhibited by carvedilol. Additionally, carvedilol exhibited antiseizure effects in the kainic acid-induced epilepsy model. CONCLUSION AND IMPLICATION Our findings suggest carvedilol as a new potential candidate for treatment of epilepsies.
Collapse
Affiliation(s)
- Chang Di
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Tong Wu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| | - Kai Gao
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China
- Children Epilepsy Center, Peking University First Hospital, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, China
| | - Na Li
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| | - Huifang Song
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| | - Lili Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| | - Haojie Sun
- UCL School of Pharmacy, University College London, London, UK
| | - Jingyun Yi
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| | - Xinran Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| | - Jiexin Chen
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| | - Mala Shah
- UCL School of Pharmacy, University College London, London, UK
| | - Yuwu Jiang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China
- Children Epilepsy Center, Peking University First Hospital, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, China
| | - Zhuo Huang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| |
Collapse
|
176
|
Gurski F, Shirvanchi K, Rajendran V, Rajendran R, Megalofonou FF, Böttiger G, Stadelmann C, Bhushan S, Ergün S, Karnati S, Berghoff M. Anti-inflammatory and remyelinating effects of fexagratinib in experimental multiple sclerosis. Br J Pharmacol 2024. [PMID: 39367768 DOI: 10.1111/bph.17341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/04/2024] [Accepted: 07/15/2024] [Indexed: 10/07/2024] Open
Abstract
BACKGROUND AND PURPOSE FGF, VEGFR-2 and CSF1R signalling pathways play a key role in the pathogenesis of multiple sclerosis (MS). Selective inhibition of FGFR by infigratinib in MOG35-55-induced experimental autoimmune encephalomyelitis (EAE) prevented severe first clinical episodes by 40%; inflammation and neurodegeneration were reduced, and remyelination was enhanced. Multi-kinase inhibition of FGFR1-3, CSFR and VEGFR-2 by fexagratinib (formerly known as AZD4547) may be more efficient in reducing inflammation, neurodegeneration and regeneration in the disease model. EXPERIMENTAL APPROACH Female C57BL/6J mice were treated with fexagratinib (6.25 or 12.5 mg·kg-1) orally or placebo over 10 days either from time of EAE induction (prevention experiment) or onset of symptoms (suppression experiment). Effects on inflammation, neurodegeneration and remyelination were assessed at the peak of the disease (Day 18/20 post immunization) and the chronic phase of EAE (Day 41/42). KEY RESULTS In the prevention experiment, treatment with 6.25 or 12.5 mg·kg-1 fexagratinib prevented severe first clinical episodes by 66.7% or 84.6% respectively. Mice treated with 12.5 mg·kg-1 fexagratinib hardly showed any symptoms in the chronic phase of EAE. In the suppression experiment, fexagratinib resulted in a long-lasting reduction of severe symptoms by 91 or 100%. Inflammation and demyelination were reduced, and axonal density, numbers of oligodendrocytes and their precursor cells, and remyelinated axons were increased by both experimental approaches. CONCLUSION AND IMPLICATIONS Multi-kinase inhibition by fexagratinib in a well-tolerated dose of 1 mg·kg-1 in humans may be a promising approach to reduce inflammation and neurodegeneration, to slow down disease progression and support remyelination in patients.
Collapse
Affiliation(s)
- Fynn Gurski
- Experimental Neurology, Department of Neurology, University of Giessen, Giessen, Germany
| | - Kian Shirvanchi
- Experimental Neurology, Department of Neurology, University of Giessen, Giessen, Germany
| | - Vinothkumar Rajendran
- Experimental Neurology, Department of Neurology, University of Giessen, Giessen, Germany
| | - Ranjithkumar Rajendran
- Experimental Neurology, Department of Neurology, University of Giessen, Giessen, Germany
| | | | - Gregor Böttiger
- Experimental Neurology, Department of Neurology, University of Giessen, Giessen, Germany
| | - Christine Stadelmann
- Institute of Neuropathology, University Medical Centre Göttingen, Göttingen, Germany
| | - Sudhanshu Bhushan
- Institute for Anatomy and Cell Biology, University of Giessen, Giessen, Germany
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| | - Srikanth Karnati
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| | - Martin Berghoff
- Experimental Neurology, Department of Neurology, University of Giessen, Giessen, Germany
| |
Collapse
|
177
|
Bilel S, Azevedo Neto J, Tirri M, Corli G, Bassi M, Fantinati A, Serpelloni G, Malfacini D, Trapella C, Calo' G, Marti M. In vitro and in vivo study of butyrylfentanyl and 4-fluorobutyrylfentanyl in female and male mice: Role of the CRF 1 receptor in cardiorespiratory impairment. Br J Pharmacol 2024. [PMID: 39367619 DOI: 10.1111/bph.17333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 07/03/2024] [Accepted: 07/29/2024] [Indexed: 10/06/2024] Open
Abstract
BACKGROUND AND PURPOSE Fentanyl analogues have been implicated in many cases of intoxication and death with overdose worldwide. The aim of this study is to investigate the pharmaco-toxicology of two fentanyl analogues: butyrylfentanyl (BUF) and 4-fluorobutyrylfentanyl (4F-BUF). EXPERIMENTAL APPROACH In vitro, we measured agonist opioid receptor efficacy, potency, and selectivity and ability to promote interaction of the μ receptor with G protein and β-arrestin 2. In vivo, we evaluated thermal antinociception, stimulated motor activity and cardiorespiratory changes in female and male CD-1 mice injected with BUF or 4F-BUF (0.1-6 mg·kg-1). Opioid receptor specificity was investigated using naloxone (6 mg·kg-1). We investigated the possible role of stress in increasing cardiorespiratory toxicity using the corticotropin-releasing factor 1 (CRF1) antagonist antalarmin (10 mg·kg-1). KEY RESULTS Agonists displayed the following rank of potency at μ receptors: fentanyl > 4F-BUF > BUF. Fentanyl and BUF behaved as partial agonists for the β-arrestin 2 pathway, whereas 4F-BUF did not promote β-arrestin 2 recruitment. In vivo, we revealed sex differences in motor and cardiorespiratory impairments but not antinociception induced by BUF and 4F-BUF. Antalarmin alone was effective in blocking respiratory impairment induced by BUF in both sexes but not 4F-BUF. The combination of naloxone and antalarmin significantly enhanced naloxone reversal of the cardiorespiratory impairments induced by BUF and 4F-BUF in mice. CONCLUSION AND IMPLICATIONS In this study, we have uncovered a novel mechanism by which synthetic opioids induce respiratory depression, shedding new light on the role of CRF1 receptors in cardiorespiratory impairments by μ agonists.
Collapse
Affiliation(s)
- Sabrine Bilel
- Section of Legal Medicine and LTTA Centre, Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Joaquim Azevedo Neto
- Section of Pharmacology, Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Micaela Tirri
- Section of Legal Medicine and LTTA Centre, Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Giorgia Corli
- Section of Legal Medicine and LTTA Centre, Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Marta Bassi
- Section of Legal Medicine and LTTA Centre, Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Anna Fantinati
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
| | - Giovanni Serpelloni
- Neuroscience Clinical Center & TMS Unit, Verona, Italy
- Department of Psychiatry, College of Medicine, Drug Policy Institute, University of Florida, Gainesville, Florida, USA
| | - Davide Malfacini
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Claudio Trapella
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
| | - Girolamo Calo'
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Matteo Marti
- Section of Legal Medicine and LTTA Centre, Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- Center of Gender Medicine, University of Ferrara, Ferrara, Italy
- Collaborative Center of the National Early Warning System, Department for Anti-Drug Policies, Presidency of the Council of Ministers, Rome, Italy
| |
Collapse
|
178
|
Ding M, Han R, Xie Y, Wei Z, Xue S, Zhang F, Cao Z. Plumbagin, a novel TRPV2 inhibitor, ameliorates microglia activation and brain injury in a middle cerebral artery occlusion/reperfusion mouse model. Br J Pharmacol 2024. [PMID: 39363399 DOI: 10.1111/bph.17343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND AND PURPOSE Transient receptor potential vanilloid 2 (TRPV2) is a Ca2+-permeable non-selective cation channel. Despite the significant roles of TRPV2 in immunological response, cancer progression and cardiac development, pharmacological probes of TRPV2 remain to be identified. We aimed to discover TRPV2 inhibitors and to elucidate their molecular mechanism of action. EXPERIMENTAL APPROACH Fluorescence-based Ca2+ assay in HEK-293 cells expressing murine TRPV2 was used to identify plumbagin as a novel TRPV2 inhibitor. Patch-clamp, in silico docking and site-directed mutagenesis were applied to investigate the molecular mechanisms critical for plumbagin interaction. ELISA and qPCR were used to assess nitric oxide release and mRNA levels of inflammatory mediators, respectively. si-RNA interference was used to knock down TRPV2 expression, which was validated by western blotting. Neurological and histological analyses were used to examine brain injury of mice following middle cerebral artery occlusion/reperfusion (MCAO/R). KEY RESULTS Plumbagin is a potent TRPV2 negative allosteric modulator with an IC50 value of 0.85 μM, exhibiting >14-fold selectivity over TRPV1, TRPV3 and TRPV4. Plumbagin suppresses TRPV2 activity by decreasing the channel open probability without affecting the unitary conductance. Moreover, plumbagin binds to an extracellular pocket formed by the pore helix and flexible loop between transmembrane helices S5 and S6 of TRPV2. Plumbagin effectively suppresses LPS-induced inflammation of BV-2 microglia and ameliorates brain injury of MCAO/R mice. CONCLUSION AND IMPLICATIONS Plumbagin is a novel pharmacological probe to study TRPV2 pathophysiology. TRPV2 is a novel molecular target for the treatment of neuroinflammation and ischemic stroke.
Collapse
Affiliation(s)
- Meihuizi Ding
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Rui Han
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yiming Xie
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ziyi Wei
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Shuwen Xue
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Fan Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Zhengyu Cao
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
179
|
Xiang W, Li L, Qin M, Li L, Yu H, Wang F, Ni S, Shen A, Lu H, Ni H, Wang Y. Diminished nuclear-localized β-adrenoceptor signalling activates YAP to promote kidney fibrosis in diabetic nephropathy. Br J Pharmacol 2024. [PMID: 39359016 DOI: 10.1111/bph.17347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 05/27/2024] [Accepted: 08/23/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND AND PURPOSE Diabetic nephropathy (DN) is a leading cause of chronic kidney disease (CKD), which is characterized by mesangial matrix expansion that involves dysfunctional mesangial cells (MCs). However, the underlying mechanisms remain unclear. This study aims to delineate the spatiotemporal contribution of adrenergic signalling in diabetic kidney fibrosis to reveal potential therapeutic targets. EXPERIMENTAL APPROACH A model of diabetic nephropathy was induced by in db/db mice. Gene expression in kidneys was profiled by RNA-seq analyses, western blot and immunostaining. Subcellular-localized fluorescence resonance energy transfer (FRET) biosensors determined adrenergic signalling microdomains in MCs. Effects of oral rolipram, a phosphodiesterase 4 (PDE4) inhibitor, on the model were measured. KEY RESULTS Our model exhibited impaired kidney function with elevated expression of adrenergic and fibrotic genes, including Adrb1, PDEs, Acta2 and Tgfβ. RNA-seq analysis revealed that MCs with dysregulated YAP pathway were crucial to the extracellular matrix secretion in kidneys from diabetic nephropathy patients. In cultured MCs, TGF-β promoted profibrotic gene transcription, which was regulated by nuclear-localized β-adrenoceptor signalling. Mechanistically, TGF-β treatment diminished nuclear-specific cAMP signalling in MCs and reduced PKA-dependent phosphorylation of YAP, leading to its activation. In parallel, db/db mouse kidneys showed increased expressions of PDE4B and PDE4D. Treatment with oral rolipram alleviated kidney fibrosis in db/db mice. CONCLUSION AND IMPLICATIONS Diabetic nephropathy impaired nuclear-localized β1-adrenoceptor-cAMP signalling microdomain through upregulating PDE4 expression, promoting fibrosis in MCs via PKA dephosphorylation-dependent YAP activation. Our results suggest PDE4 inhibition as a promising strategy for alleviating kidney fibrosis in diabetic nephropathy.
Collapse
Affiliation(s)
- Wenjing Xiang
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Lei Li
- School of Public Health, Xi'an Jiao Tong University, Xi'an, China
| | - Manman Qin
- Mass Spectrometry Laboratory for BioSample analysis, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Lei Li
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Hualong Yu
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Fangyuan Wang
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Siyuan Ni
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Ao Shen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The State & NMPA Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences & The Fifth Affiliated Hospital Guangzhou Medical University, Guangzhou, China
| | - Haocheng Lu
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Haibo Ni
- Department of Pharmacology, University of California at Davis, Davis, California, USA
| | - Ying Wang
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
- Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, Shenzhen, China
| |
Collapse
|
180
|
Qin L, Yao Y, Wang W, Qin Q, Liu J, Liu H, Yuan L, Yuan Y, Du X, Zhao B, Wu X, Qing B, Huang L, Wang G, Xiang Y, Qu X, Zhang X, Yang M, Xia Z, Liu C. Airway epithelial overexpressed cathepsin K induces airway remodelling through epithelial-mesenchymal trophic unit activation in asthma. Br J Pharmacol 2024; 181:3700-3716. [PMID: 38853468 DOI: 10.1111/bph.16423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 12/19/2023] [Accepted: 01/02/2024] [Indexed: 06/11/2024] Open
Abstract
BACKGROUND AND PURPOSE Airway epithelial cells (AECs) regulate the activation of epithelial-mesenchymal trophic units (EMTUs) during airway remodelling through secretion of signalling mediators. However, the major trigger and the intrinsic pathogenesis of airway remodelling is still obscure. EXPERIMENTAL APPROACH The differing expressed genes in airway epithelia related to airway remodelling were screened and verified by RNA-sequencing and signalling pathway analysis. Then, the effects of increased cathepsin K (CTSK) in airway epithelia on airway remodelling and EMTU activation were identified both in vitro and in vivo, and the molecular mechanism was elucidated in the EMTU model. The potential of CTSK as an an effective biomarker of airway remodelling was analysed in an asthma cohort of differing severity. Finally, an inhibitor of CTSK was administered for potential therapeutic intervention for airway remodelling in asthma. KEY RESULTS The expression of CTSK in airway epithelia increased significantly along with the development of airway remodelling in a house dust mite (HDM)-stressed asthma model. Increased secretion of CTSK from airway epithelia induced the activation of EMTUs by activation of the PAR2-mediated pathway. Blockade of CTSK inhibited EMTU activation and alleviated airway remodelling as an effective intervention target of airway remodelling. CONCLUSION AND IMPLICATIONS Increased expression of CTSK in airway epithelia is involved in the development of airway remodelling in asthma through EMTU activation, mediated partly through the PAR2-mediated signalling pathway. CTSK is a potential biomarker for airway remodelling, and may also be a useful intervention target for airway remodelling in asthma patients.
Collapse
Affiliation(s)
- Ling Qin
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, China
- Basic and Clinical Research Laboratory of Major Respiratory Diseases, Central South University, Changsha, Hunan, China
| | - Ye Yao
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, China
| | - Weijie Wang
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China
| | - Qingwu Qin
- Department of Pulmonary and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Jingjing Liu
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, China
| | - Huijun Liu
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China
| | - Lin Yuan
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China
| | - Yunchang Yuan
- Department of Thoracic Surgery, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xizi Du
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China
| | - Bingrong Zhao
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, China
| | - Xinyu Wu
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China
| | - Bei Qing
- Department of Thoracic Surgery, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Leng Huang
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, China
| | - Gang Wang
- Department of Respiratory Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Xiang
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China
| | - Xiangping Qu
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China
| | - Xuewei Zhang
- Department of Health Management, Xiangya Hospital, Cental South University, Changsha, China
| | - Ming Yang
- Centre for Asthma and Respiratory Disease, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle and Hunter Medical Research Institute, Callaghan, New South Wales, Australia
| | - Zhenkun Xia
- Department of Thoracic Surgery, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chi Liu
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, China
- Basic and Clinical Research Laboratory of Major Respiratory Diseases, Central South University, Changsha, Hunan, China
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China
| |
Collapse
|
181
|
Andres M, Hennuyer N, Zibar K, Bicharel-Leconte M, Duplan I, Enée E, Vallez E, Herledan A, Loyens A, Staels B, Deprez B, van Endert P, Deprez-Poulain R, Lancel S. Insulin-degrading enzyme inhibition increases the unfolded protein response and favours lipid accumulation in the liver. Br J Pharmacol 2024; 181:3610-3626. [PMID: 38812293 DOI: 10.1111/bph.16436] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 04/03/2024] [Accepted: 04/25/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND AND PURPOSE Nonalcoholic fatty liver disease refers to liver pathologies, ranging from steatosis to steatohepatitis, with fibrosis ultimately leading to cirrhosis and hepatocellular carcinoma. Although several mechanisms have been suggested, including insulin resistance, oxidative stress, and inflammation, its pathophysiology remains imperfectly understood. Over the last decade, a dysfunctional unfolded protein response (UPR) triggered by endoplasmic reticulum (ER) stress emerged as one of the multiple driving factors. In parallel, growing evidence suggests that insulin-degrading enzyme (IDE), a highly conserved and ubiquitously expressed metallo-endopeptidase originally discovered for its role in insulin decay, may regulate ER stress and UPR. EXPERIMENTAL APPROACH We investigated, by genetic and pharmacological approaches, in vitro and in vivo, whether IDE modulates ER stress-induced UPR and lipid accumulation in the liver. KEY RESULTS We found that IDE-deficient mice display higher hepatic triglyceride content along with higher inositol-requiring enzyme 1 (IRE1) pathway activation. Upon induction of ER stress by tunicamycin or palmitate in vitro or in vivo, pharmacological inhibition of IDE, using its inhibitor BDM44768, mainly exacerbated ER stress-induced IRE1 activation and promoted lipid accumulation in hepatocytes, effects that were abolished by the IRE1 inhibitors 4μ8c and KIRA6. Finally, we identified that IDE knockout promotes lipolysis in adipose tissue and increases hepatic CD36 expression, which may contribute to steatosis. CONCLUSION AND IMPLICATIONS These results unravel a novel role for IDE in the regulation of ER stress and development of hepatic steatosis. These findings pave the way to innovative strategies modulating IDE to treat metabolic diseases.
Collapse
Affiliation(s)
- Marine Andres
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - EGID Drugs and Molecules for Living Systems, Lille, France
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Nathalie Hennuyer
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Khamis Zibar
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | | | - Isabelle Duplan
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Emmanuelle Enée
- Université Paris Cité, INSERM, CNRS, Institut Necker Enfants Malades, Paris, France
| | - Emmanuelle Vallez
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Adrien Herledan
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - EGID Drugs and Molecules for Living Systems, Lille, France
| | - Anne Loyens
- Univ. Lille, UMR-S 1172-JPArc Centre de Recherche Jean-Pierre Aubert Neurosciences et Cancer, Lille, France
| | - Bart Staels
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Benoit Deprez
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - EGID Drugs and Molecules for Living Systems, Lille, France
| | - Peter van Endert
- Université Paris Cité, INSERM, CNRS, Institut Necker Enfants Malades, Paris, France
- Service immunologie biologique, AP-HP, Hôpital Universitaire Necker-Enfants Malades, Paris, France
| | - Rebecca Deprez-Poulain
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - EGID Drugs and Molecules for Living Systems, Lille, France
- Institut Universitaire de France (IUF), Paris, France
| | - Steve Lancel
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille, France
| |
Collapse
|
182
|
Diniz LP, Morgado J, Bergamo Araujo AP, da Silva Antônio LM, Mota-Araujo HP, de Sena Murteira Pinheiro P, Sagrillo FS, Cesar GV, Ferreira ST, Figueiredo CP, Manssour Fraga CA, Gomes FCA. Histone deacetylase inhibition mitigates cognitive deficits and astrocyte dysfunction induced by amyloid-β (Aβ) oligomers. Br J Pharmacol 2024; 181:4028-4049. [PMID: 38936407 DOI: 10.1111/bph.16439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND AND PURPOSE Inhibitors of histone deacetylases (iHDACs) are promising drugs for neurodegenerative diseases. We have evaluated the therapeutic potential of the new iHDAC LASSBio-1911 in Aβ oligomer (AβO) toxicity models and astrocytes, key players in neuroinflammation and Alzheimer's disease (AD). EXPERIMENTAL APPROACH Astrocyte phenotype and synapse density were evaluated by flow cytometry, Western blotting, immunofluorescence and qPCR, in vitro and in mice. Cognitive function was evaluated by behavioural assays using a mouse model of intracerebroventricular infusion of AβO. KEY RESULTS LASSBio-1911 modulates reactivity and synaptogenic potential of cultured astrocytes and improves synaptic markers in cultured neurons and in mice. It prevents AβO-triggered astrocytic reactivity in mice and enhances the neuroprotective potential of astrocytes. LASSBio-1911 improves behavioural performance and rescues synaptic and memory function in AβO-infused mice. CONCLUSION AND IMPLICATIONS These results contribute to unveiling the mechanisms underlying astrocyte role in AD and provide the rationale for using astrocytes as targets to new drugs for AD.
Collapse
Affiliation(s)
- Luan Pereira Diniz
- Laboratório de Neurobiologia Celular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Juliana Morgado
- Laboratório de Neurobiologia Celular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Paula Bergamo Araujo
- Laboratório de Neurobiologia Celular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Pedro de Sena Murteira Pinheiro
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda Savacini Sagrillo
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gabriele Vargas Cesar
- Laboratório de Neurobiologia Celular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sérgio T Ferreira
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Carlos Alberto Manssour Fraga
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Flávia Carvalho Alcantara Gomes
- Laboratório de Neurobiologia Celular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
183
|
Bai Y, Zhang J, Li J, Liao M, Zhang Y, Xia Y, Wei Z, Dai Y. Silibinin, a commonly used therapeutic agent for non-alcohol fatty liver disease, functions through upregulating intestinal expression of fibroblast growth factor 15/19. Br J Pharmacol 2024; 181:3663-3684. [PMID: 38839561 DOI: 10.1111/bph.16431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 09/15/2023] [Accepted: 10/16/2023] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND AND PURPOSE Silibinin is used to treat non-alcohol fatty liver disease (NAFLD) despite having rapid liver metabolism. Therefore, we investigated the role of the intestine in silibinin mechanism of action. EXPERIMENTAL APPROACH NAFLD mice model was established by feeding them with a high-fat diet (HFD). Liver pathological were examined using H&E and oil red O staining. Tissue distribution of silibinin was detected by LC-MS/MS. SiRNA was employed for gene silencing and plasmid was used for gene overexpression. ChIP-qPCR assay was performed to detect the levels of histone acetylation. Recombinant adeno-associated virus 9-short hairpin-fibroblast growth factor (FGF)-15 and -farnesoid X receptor (FXR; NR1H4) were used to knockdown expression of FGF-15 and FXR. KEY RESULTS Oral silibinin significantly reversed NAFLD in mice, although liver concentration was insufficient for reduction of lipid accumulation in hepatocytes. Among endogenous factors capable of reversing NAFLD, the expression of Fgf-15 was selectively up-regulated by silibinin in ileum and colon of mice. When intestinal expression of Fgf-15 was knocked down, protection of silibinin against lipid accumulation and injury of livers nearly disappeared. Silibinin could reduce activity of histone deacetylase 2 (HDAC2), enhance histone acetylation in the promoter region of FXR and consequently increase intestinal expression of FGF-15/19. CONCLUSION AND IMPLICATIONS Oral silibinin selectively promotes expression of FGF-15/19 in ileum by enhancing transcription of FXR via reduction of HDAC2 activity, and FGF-15/19 enters into circulation to exert anti-NAFLD action. As the site of action is the intestine this would explain the discrepancy between pharmacodynamics and pharmacokinetics of silibinin.
Collapse
Affiliation(s)
- Yujie Bai
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jing Zhang
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jialin Li
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Minghui Liao
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yajing Zhang
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yufeng Xia
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Zhifeng Wei
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yue Dai
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
184
|
Ferreira MDA, Lückemeyer DD, Martins F, Schran RG, da Silva AM, Gambeta E, Zamponi GW, Ferreira J. Pronociceptive role of spinal Ca v2.3 (R-type) calcium channels in a mouse model of postoperative pain. Br J Pharmacol 2024; 181:3594-3609. [PMID: 38812100 DOI: 10.1111/bph.16407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 03/05/2024] [Accepted: 03/28/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND More than 80% of patients may experience acute pain after a surgical procedure, and this is often refractory to pharmacological intervention. The identification of new targets to treat postoperative pain is necessary. There is an association of polymorphisms in the Cav2.3 gene with postoperative pain and opioid consumption. Our study aimed to identify Cav2.3 as a potential target to treat postoperative pain and to reduce opioid-related side effects. EXPERIMENTAL APPROACH A plantar incision model was established in adult male and female C57BL/6 mice. Cav2.3 expression was detected by qPCR and suppressed by siRNA treatment. The antinociceptive efficacy and safety of a Cav2.3 blocker-alone or together with morphine-was also assessed after surgery. KEY RESULTS Paw incision in female and male mice caused acute nociception and increased Cav2.3 mRNA expression in the spinal cord but not in the incised tissue. Intrathecal treatment with siRNA against Cav2.3, but not with a scrambled siRNA, prevented the development of surgery-induced nociception in both male and female mice, with female mice experiencing long-lasting effects. High doses of i.t. SNX-482, a Cav2.3 channel blocker, or morphine injected alone, reversed postoperative nociception but also induced side effects. A combination of lower doses of morphine and SNX-482 mediated a long-lasting reversal of postsurgical pain in female and male mice. CONCLUSION Our results demonstrate that Cav2.3 has a pronociceptive role in the induction of postoperative pain, indicating that it is a potential target for the development of therapeutic approaches for the treatment of postoperative pain.
Collapse
Affiliation(s)
- Marcella de Amorim Ferreira
- Graduate Program in Pharmacology, Federal University of Santa Catarina, Florianópolis, SC, Brazil
- Department of Clinical Neurosciences, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Debora Denardin Lückemeyer
- Graduate Program in Pharmacology, Federal University of Santa Catarina, Florianópolis, SC, Brazil
- Department of Anesthesiology, Pain Research Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Fernanda Martins
- Department of Pharmacology, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Roberta Giusti Schran
- Graduate Program in Pharmacology, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Ana Merian da Silva
- Graduate Program in Pharmacology, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Eder Gambeta
- Department of Clinical Neurosciences, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Gerald W Zamponi
- Department of Clinical Neurosciences, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Juliano Ferreira
- Graduate Program in Pharmacology, Federal University of Santa Catarina, Florianópolis, SC, Brazil
- Department of Pharmacology, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| |
Collapse
|
185
|
Qi H, Ma QH, Feng W, Chen SM, Wu CS, Wang Y, Wang TX, Hou YL, Jia ZH. Glycyrrhetinic acid blocks SARS-CoV-2 infection by activating the cGAS-STING signalling pathway. Br J Pharmacol 2024; 181:3976-3992. [PMID: 38922702 DOI: 10.1111/bph.16473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/26/2024] [Accepted: 05/13/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND AND PURPOSE Traditional Chinese medicine (TCM) played an important role in controlling the COVID-19 pandemic, but the scientific basis and its active ingredients are still weakly studied. This study aims to decipher the underlying anti-SARS-CoV-2 mechanisms of glycyrrhetinic acid (GA). EXPERIMENTAL APPROACH GA's anti-SARS-CoV-2 effect was verified both in vitro and in vivo. Homogeneous time-resolved fluorescence assays, biolayer interferometry technology, and molecular docking were employed to examine interactions of GA with human stimulator of interferon genes (hSTING). Immunofluorescence staining, western blot, and RT-qPCR were used to investigate nuclear translocation of interferon regulatory factor 3 (IRF3) and levels of STING target genes. Pharmacokinetics of GA was studied in mice. KEY RESULTS GA could directly bind to Ser162 and Tyr240 residues of hSTING, thus up-regulating downstream targets and activation of the STING signalling pathway. Such activation is crucial for limiting the replication of SARS-CoV-2 Omicron in Calu-3 cells and protecting against lung injury induced by SARS-CoV-2 Omicron infection in K18-ACE2 transgenic mice. Immunofluorescence staining and western blot indicated that GA increased levels of phosphorylated STING, phosphorylated TANK-binding kinase-1, and cyclic GMP-AMP synthase (cGAS). Importantly, GA increased nuclear translocation of IRF3. Pharmacokinetic analysis of GA in mice indicated it can be absorbed into circulation and detected in the lung at a stable level. CONCLUSION AND IMPLICATIONS Activation of the cGAS-STING pathway through the GA-STING-IRF3 axis is essential for the antiviral activity of GA in mice, providing new insights into the potential translation of GA for treating SARS-CoV-2 in patients.
Collapse
Affiliation(s)
- Hui Qi
- Hebei Academy of Integrated Traditional Chinese and Western Medicine, Shijiazhuang, Hebei, China
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, China
- New Drug Evaluation Center, Shijiazhuang Yiling Pharmaceutical Co., Ltd, Shijiazhuang, Hebei, China
| | - Qin-Hai Ma
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wei Feng
- Hebei Academy of Integrated Traditional Chinese and Western Medicine, Shijiazhuang, Hebei, China
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, China
| | - Si-Mian Chen
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Cai-Sheng Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Yanan Wang
- Hebei Academy of Integrated Traditional Chinese and Western Medicine, Shijiazhuang, Hebei, China
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, China
| | - Tong-Xing Wang
- Hebei Academy of Integrated Traditional Chinese and Western Medicine, Shijiazhuang, Hebei, China
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, China
| | - Yun-Long Hou
- Hebei Academy of Integrated Traditional Chinese and Western Medicine, Shijiazhuang, Hebei, China
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, China
- New Drug Evaluation Center, Shijiazhuang Yiling Pharmaceutical Co., Ltd, Shijiazhuang, Hebei, China
| | - Zhen-Hua Jia
- Hebei Academy of Integrated Traditional Chinese and Western Medicine, Shijiazhuang, Hebei, China
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, China
| |
Collapse
|
186
|
Rakoczy RJ, Runge GN, Sen AK, Sandoval O, Wells HG, Nguyen Q, Roberts BR, Sciortino JH, Gibbons WJ, Friedberg LM, Jones JA, McMurray MS. Pharmacological and behavioural effects of tryptamines present in psilocybin-containing mushrooms. Br J Pharmacol 2024; 181:3627-3641. [PMID: 38825326 DOI: 10.1111/bph.16466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/08/2024] [Indexed: 06/04/2024] Open
Abstract
BACKGROUND AND PURPOSE Demand for new antidepressants has resulted in a re-evaluation of the therapeutic potential of psychedelic drugs. Several tryptamines found in psilocybin-containing "magic" mushrooms share chemical similarities with psilocybin. Early work suggests they may share biological targets. However, few studies have explored their pharmacological and behavioural effects. EXPERIMENTAL APPROACH We compared baeocystin, norbaeocystin and aeruginascin with psilocybin to determine if they are metabolized by the same enzymes, similarly penetrate the blood-brain barrier, serve as ligands for similar receptors and modulate behaviour in rodents similarly. We also assessed the stability and optimal storage and handling conditions for each compound. KEY RESULTS In vitro enzyme kinetics assays found that all compounds had nearly identical rates of dephosphorylation via alkaline phosphatase and metabolism by monoamine oxidase. Further, we found that only the dephosphorylated products of baeocystin and norbaeocystin crossed a blood-brain barrier mimetic to a similar degree as the dephosphorylated form of psilocybin, psilocin. The dephosphorylated form of norbaeocystin was found to activate the 5-HT2A receptor with similar efficacy to psilocin and norpsilocin in in vitro cell imaging assays. Behaviourally, only psilocybin induced head twitch responses in rats, a marker of 5-HT2A-mediated psychedelic effects and hallucinogenic potential. However, like psilocybin, norbaeocystin improved outcomes in the forced swim test. All compounds caused minimal changes to metrics of renal and hepatic health, suggesting innocuous safety profiles. CONCLUSIONS AND IMPLICATIONS Collectively, this work suggests that other naturally occurring tryptamines, especially norbaeocystin, may share overlapping therapeutic potential with psilocybin, but without causing hallucinations.
Collapse
Affiliation(s)
- Ryan J Rakoczy
- Department of Psychology, Miami University, Oxford, Ohio, USA
| | - Grace N Runge
- Department of Psychology, Miami University, Oxford, Ohio, USA
| | - Abhishek K Sen
- Department of Chemical, Paper, and Biomedical Engineering, Miami University, Oxford, Ohio, USA
| | - Oscar Sandoval
- Department of Psychology, Miami University, Oxford, Ohio, USA
| | - Hunter G Wells
- Department of Psychology, Miami University, Oxford, Ohio, USA
| | - Quynh Nguyen
- Department of Chemical, Paper, and Biomedical Engineering, Miami University, Oxford, Ohio, USA
| | | | - Jon H Sciortino
- Department of Psychology, Miami University, Oxford, Ohio, USA
| | - William J Gibbons
- Department of Chemical, Paper, and Biomedical Engineering, Miami University, Oxford, Ohio, USA
| | - Lucas M Friedberg
- Department of Chemical, Paper, and Biomedical Engineering, Miami University, Oxford, Ohio, USA
| | - J Andrew Jones
- Department of Chemical, Paper, and Biomedical Engineering, Miami University, Oxford, Ohio, USA
| | | |
Collapse
|
187
|
Yang L, Zhu JC, Li SJ, Zeng X, Xue XR, Dai Y, Wei ZF. HSP90β shapes the fate of Th17 cells with the help of glycolysis-controlled methylation modification. Br J Pharmacol 2024; 181:3886-3907. [PMID: 38881036 DOI: 10.1111/bph.16432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 02/21/2024] [Accepted: 03/21/2024] [Indexed: 06/18/2024] Open
Abstract
BACKGROUND AND PURPOSE Ulcerative colitis (UC) is a refractory inflammatory disease associated with immune dysregulation. Elevated levels of heat shock protein (HSP) 90 in the β but not α subtype were positively associated with disease status in UC patients. This study validated the possibility that pharmacological inhibition or reduction of HSP90β would alleviate colitis, induced by dextran sulfate sodium, in mice and elucidated its mechanisms. EXPERIMENTAL APPROACH Histopathological and biochemical analysis assessed disease severity, and bioinformatics and correlation analysis explained the association between the many immune cells and HSP90β. Flow cytometry was used to analyse the homeostasis and transdifferentiation of Th17 and Treg cells. In vitro inhibition and adoptive transfer assays were used to investigate functions of the phenotypically transformed Th17 cells. Metabolomic analysis, DNA methylation detection and chromatin immunoprecipitation were used to explore these mechanisms. KEY RESULTS The selective pharmacological inhibitor (HSP90βi) and shHSP90β significantly mitigated UC in mice and promoted transformation of Th17 to Treg cell phenotype, via Foxp3 transcription. The phenotypically-transformed Th17 cells by HSP90βi or shHSP90β were able to inhibit lymphocyte proliferation and colitis in mice. HSP90βi and shHSP90β selectively weakened glycolysis by stopping the direct association of HSP90β and GLUT1, the key glucose transporter, to accelerate ubiquitination degradation of GLUT1, and enhance the methylation of Foxp3 CNS2 region. Then, the mediator path was identified as the "lactate-STAT5-TET2" cascade. CONCLUSION AND IMPLICATIONS HSP90β shapes the fate of Th17 cells via glycolysis-controlled methylation modification to affect UC progression, which provides a new therapeutic target for UC.
Collapse
Affiliation(s)
- Ling Yang
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jing-Chao Zhu
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Shi-Jia Li
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xi Zeng
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xin-Ru Xue
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yue Dai
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Zhi-Feng Wei
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
188
|
Sun Q, Jiang N, Yao R, Song Y, Li Z, Wang W, Chen J, Guo W. An agonist of the adenosine A 2A receptor, CGS21680, promotes corneal epithelial wound healing via the YAP signalling pathway. Br J Pharmacol 2024; 181:3779-3795. [PMID: 38877785 DOI: 10.1111/bph.16468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/17/2023] [Accepted: 11/29/2023] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND AND PURPOSE The adenosine A2A receptor (A2AR) is involved in various physiological and pathological processes in the eye; however, the role of the A2AR signalling in corneal epithelial wound healing is not known. Here, the expression, therapeutic effects and signalling mechanism of A2AR in corneal epithelial wound healing were investigated using the A2AR agonist CGS21680. EXPERIMENTAL APPROACH A2AR localization and expression during wound healing in the murine cornea were determined by immunofluorescence staining, quantitative reverse transcription polymerase chain reaction (RT-qPCR) and western blotting. The effect of CGS21680 on corneal epithelial wound healing in the lesioned corneal and cultured human corneal epithelial cells (hCECs) by modulating cellular proliferation and migration was critically evaluated. The role of Hippo-YAP signalling in mediating the CGS21680 effect on wound healing by pharmacological inhibition of YAP signalling was explored. KEY RESULTS A2AR expression was up-regulated after corneal epithelial injury. Topical administration of CGS21680 dose-dependently promoted corneal epithelial wound healing in the injured corneal epithelium by promoting cellular proliferation. Furthermore, CGS21680 accelerated the cellular proliferation and migration of hCECs in vitro. A2AR activation promoted early up-regulation and later down-regulation of YAP signalling molecules, and pharmacological inhibition of YAP signalling reverted CGS21680-mediated wound healing effect in vivo and in vitro. CONCLUSION AND IMPLICATIONS A2AR activation promotes wound healing by enhancing cellular proliferation and migration through the YAP signalling pathway. A2ARs play an important role in the maintenance of corneal epithelium integrity and may represent a novel therapeutic target for facilitating corneal epithelial wound healing.
Collapse
Affiliation(s)
- Qiuqin Sun
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Nan Jiang
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Rui Yao
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yue Song
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Zewen Li
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Wei Wang
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Jiangfan Chen
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science and Eye Hospital, Wenzhou Medical University, Wenzhou, China
- Oujiang Laboratory (Zhejiang Laboratory for Regenerative Medicine, Vision and Brain Health), School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Wei Guo
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
189
|
Csáki R, Nagaraj C, Almássy J, Khozeimeh MA, Jeremic D, Olschewski H, Dobolyi A, Hoetzenecker K, Olschewski A, Enyedi P, Lengyel M. The TREK-1 potassium channel is a potential pharmacological target for vasorelaxation in pulmonary hypertension. Br J Pharmacol 2024; 181:3576-3593. [PMID: 38807478 DOI: 10.1111/bph.16426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 03/22/2024] [Accepted: 04/09/2024] [Indexed: 05/30/2024] Open
Abstract
BACKGROUND AND PURPOSE Pulmonary arterial hypertension (PAH) is a progressive disease in which chronic membrane potential (Em) depolarisation of the pulmonary arterial smooth muscle cells (PASMCs) causes calcium overload, a key pathological alteration. Under resting conditions, the negative Em is mainly set by two pore domain potassium (K2P) channels, of which the TASK-1 has been extensively investigated. EXPERIMENTAL APPROACH Ion channel currents and membrane potential of primary cultured human(h) PASMCs were measured using the voltage- and current clamp methods. Intracellular [Ca2+] was monitored using fluorescent microscopy. Pulmonary BP and vascular tone measurements were also performed ex vivo using a rat PAH model. KEY RESULTS TREK-1 was the most abundantly expressed K2P in hPASMCs of healthy donors and idiopathic(I) PAH patients. Background K+-current was similar in hPASMCs for both groups and significantly enhanced by the TREK activator ML-335. In donor hPASMCs, siRNA silencing or pharmacological inhibition of TREK-1 caused depolarisation, reminiscent of the electrophysiological phenotype of idiopathic PAH. ML-335 hyperpolarised donor hPASMCs and normalised the Em of IPAH hPASMCs. A close link was found between TREK-1 activity and intracellular Ca2+-signalling using a channel activator, ML-335, and an inhibitor, spadin. In the rat, ML-335 relaxed isolated pre-constricted pulmonary arteries and significantly decreased pulmonary arterial pressure in the isolated perfused lung. CONCLUSIONS AND IMPLICATIONS These data suggest that TREK-1is a key factor in Em setting and Ca2+ homeostasis of hPASMC, and therefore, essential for maintenance of a low resting pulmonary vascular tone. Thus TREK-1 may represent a new therapeutic target for PAH.
Collapse
MESH Headings
- Potassium Channels, Tandem Pore Domain/antagonists & inhibitors
- Potassium Channels, Tandem Pore Domain/metabolism
- Animals
- Humans
- Hypertension, Pulmonary/drug therapy
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/physiopathology
- Male
- Rats
- Vasodilation/drug effects
- Pulmonary Artery/drug effects
- Pulmonary Artery/metabolism
- Cells, Cultured
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Female
- Rats, Sprague-Dawley
- Membrane Potentials/drug effects
- Rats, Wistar
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Calcium/metabolism
- Middle Aged
Collapse
Affiliation(s)
- Réka Csáki
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Chandran Nagaraj
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - János Almássy
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | | | - Dusan Jeremic
- Experimental Anaesthesiology, Department of Anaesthesiology and Intensive Care Medicine, Medical University of Graz, Graz, Austria
| | - Horst Olschewski
- Department of Internal Medicine, Division of Pulmonology, Medical University of Graz, Graz, Austria
| | - Alice Dobolyi
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Konrad Hoetzenecker
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Andrea Olschewski
- Experimental Anaesthesiology, Department of Anaesthesiology and Intensive Care Medicine, Medical University of Graz, Graz, Austria
| | - Péter Enyedi
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Miklós Lengyel
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| |
Collapse
|
190
|
Chen Z, Wang Y, Zhang G, Zheng J, Tian L, Song Y, Liu X. Role of LRP5/6/GSK-3β/β-catenin in the differences in exenatide- and insulin-promoted T2D osteogenesis and osteomodulation. Br J Pharmacol 2024; 181:3556-3575. [PMID: 38804080 DOI: 10.1111/bph.16421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND AND PURPOSE Insulin and exenatide are two hypoglycaemic agents that exhibit different osteogenic effects. This study compared the differences between exenatide and insulin in osseointegration in a rat model of Type 2 diabetes (T2D) and explored the mechanisms promoting osteogenesis in this model of T2D. EXPERIMENTAL APPROACH In vivo, micro-CT was used to detect differences in the peri-implant bone microstructure in vivo. Histology, dual-fluorescent labelling, immunofluorescence and immunohistochemistry were used to detect differences in tissue, cell and protein expression around the implants. In vitro, RT-PCR and western blotting were used to measure the expression of osteogenesis- and Wnt signalling-related genes and proteins in bone marrow mesenchymal stromal cells (BMSCs) from rats with T2D (TBMSCs) after PBS, insulin and exenatide treatment. RT-PCR was used to detect the expression of Wnt bypass cascade reactions under Wnt inactivation. KEY RESULTS Micro-CT and section staining showed exenatide extensively promoted peri-implant osseointegration. Both in vivo and in vitro experiments showed exenatide substantially increased the expression of osteogenesis-related and activated the LRP5/6/GSK-3β/β-catenin-related Wnt pathway. Furthermore, exenatide suppressed expression of Bmpr1a to inhibit lipogenesis and promoted expression of Btrc to suppress inflammation. CONCLUSION AND IMPLICATIONS Compared to insulin, exenatide significantly improved osteogenesis in T2D rats and TBMSCs. In addition to its dependence on LRP5/6/GSK-3β/β-catenin signalling for osteogenic differentiation, exenatide-mediated osteomodulation also involves inhibition of inflammation and adipogenesis by BMPR1A and β-TrCP, respectively.
Collapse
Affiliation(s)
- Zijun Chen
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, School of Stomatology, Air Force Medical University, Xi'an, China
| | - Yuxi Wang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, School of Stomatology, Air Force Medical University, Xi'an, China
| | - Guanhua Zhang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, School of Stomatology, Air Force Medical University, Xi'an, China
| | - Jian Zheng
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, School of Stomatology, Air Force Medical University, Xi'an, China
| | - Lei Tian
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, School of Stomatology, Air Force Medical University, Xi'an, China
| | - Yingliang Song
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, School of Stomatology, Air Force Medical University, Xi'an, China
| | - Xiangdong Liu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, School of Stomatology, Air Force Medical University, Xi'an, China
| |
Collapse
|
191
|
Zhang Y, Chen Z, Guo J, Wan Q, Zhang Y, Li H, Rao H, Yang J, Xu P, Chen H, Wang M. Factor XII and prekallikrein promote microvascular inflammation and psoriasis in mice. Br J Pharmacol 2024; 181:3760-3778. [PMID: 38872396 DOI: 10.1111/bph.16428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 02/21/2024] [Accepted: 03/18/2024] [Indexed: 06/15/2024] Open
Abstract
BACKGROUND AND PURPOSE Psoriasis is an autoimmune inflammatory skin disease, featuring microvascular abnormalities and elevated levels of bradykinin. Contact activation of Factor XII can initiate the plasma kallikrein-kinin cascade, producing inflammation and angioedema. The role of Factor XII in psoriasis is unknown. EXPERIMENTAL APPROACH The effects of deficiency of Factor XII or its enzymatic substrate, prekallikrein, were examined in the imiquimod-induced mouse model of psoriasis. Skin microcirculation was assessed using intravital confocal microscopy and laser Doppler flowmeter. A novel antibody blocking Factor XII activation was evaluated for psoriasis prevention. KEY RESULTS Expression of Factor XII was markedly up-regulated in human and mouse psoriatic skin. Genetic deletion of Factor XII or prekallikrein, attenuated imiquimod-induced psoriatic lesions in mice. Psoriatic induction increased skin microvascular blood perfusion, causing vasodilation, hyperpermeability and angiogenesis. It also promoted neutrophil-vascular interaction, inflammatory cytokine release and enhanced Factor XII / prekallikrein enzymatic activity with elevated bradykinin. Factor XII or prekallikrein deficiency ameliorated these microvascular abnormalities and abolished bradykinin increase. Antagonism of bradykinin B2 receptors reproduced the microvascular protection of Factor XII / prekallikrein deficiency, attenuated psoriatic lesions, and prevented protection by Factor XII / prekallikrein deficiency against psoriasis. Furthermore, treatment of mice with Factor XII antibody alleviated experimentally induced psoriasis and suppressed microvascular inflammation. CONCLUSION AND IMPLICATIONS Activation of Factor XII promoted psoriasis via prekallikrein-dependent formation of bradykinin, which critically mediated psoriatic microvascular inflammation. Inhibition of contact activation represents a novel therapeutic strategy for psoriasis.
Collapse
Affiliation(s)
- Yurong Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zengrong Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Junyan Guo
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- College of Life Science, Zhejiang Normal University, Jinhua City, China
| | - Qing Wan
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yingjie Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huihui Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haojie Rao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianfeng Yang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Pengfei Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hong Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Miao Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Clinical Pharmacology Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Central China Subcenter of National Center for Cardiovascular Diseases, Henan Cardiovascular Disease Center, Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
192
|
Shin GC, Lee HM, Kim N, Hur J, Yoo SK, Park YS, Park HS, Ryu D, Park MH, Park JH, Seo SU, Choi LS, Madsen MR, Feigh M, Kim KP, Kim KH. Paraoxonase-2 agonist vutiglabridin promotes autophagy activation and mitochondrial function to alleviate non-alcoholic steatohepatitis. Br J Pharmacol 2024; 181:3717-3742. [PMID: 38852992 DOI: 10.1111/bph.16438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 12/05/2023] [Accepted: 12/13/2023] [Indexed: 06/11/2024] Open
Abstract
BACKGROUND AND PURPOSE Only limited therapeutic agents have been developed for non-alcoholic steatohepatitis (NASH). Glabridin, a promising anti-obesity candidate, has only limited druggability due to its low in vivo chemical stability and bioavailability. Therefore, we developed vutiglabridin (VUTI), which is based on a glabridin backbone, and investigated its mechanism of action in treating NASH in animal models. EXPERIMENTAL APPROACH Anti-NASH effects of VUTI were determined in in vitro fatty liver models, spheroids of primary human hepatocytes and L02 normal liver cell lines. To identify VUTI possible cellular target/s, biotin-labelled VUTI was synthesized and underwent chemical proteomic analysis. Further, the evaluation of VUTI therapeutic efficacy was carried out using an amylin-NASH and high-fat (HF) diet-induced obese (DIO) mouse models. This was carried out using transcriptomic, lipidomic and proteomic analyses of the livers from the amylin-NASH mouse model. KEY RESULTS VUTI treatment markedly reduces hepatic steatosis, fibrosis and inflammation by promoting lipid catabolism, activating autophagy and improving mitochondrial dysfunction, all of which are hallmarks of effective NASH treatment. The cellular target of VUTI was identified as paraoxonase 2 (PON2), a newly proposed protein target for the treatment of NASH, VUTI enhanced PON2 activity. The results using PON2 knockdown cells demonstrated that PON2 is important for VUTI- activation of autophagy, promoting mitochondrial function, decreasing oxidative stress and alleviating lipid accumulation under lipotoxic condition. CONCLUSION AND IMPLICATIONS Our data demonstrated that VUTI is a promising therapeutic for NASH. Targeting PON2 may be important for improving liver function in various immune-metabolic diseases including NASH.
Collapse
Affiliation(s)
- Gu-Choul Shin
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon, Republic of Korea
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyeong Min Lee
- Department of Applied Chemistry, Institute of Natural Science, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin, Republic of Korea
- Department of Biomedical Science and Technology, Kyung Hee Medical Science Research Institute, Kyung Hee University, Seoul, Republic of Korea
- Glaceum Inc., Suwon, Republic of Korea
| | - Nayeon Kim
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jihyeon Hur
- Department of Applied Chemistry, Institute of Natural Science, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin, Republic of Korea
| | | | | | | | - Dongryeol Ryu
- Department of Molecular Cell Biology, School of Medicine, Sungkyunkwan University, Suwon, Republic of Korea
| | - Min-Ho Park
- Division of Biotechnology, College of Environmental & Bioresource Sciences, Jeonbuk National University, Iksan, Republic of Korea
| | - Jung Hee Park
- Division of Biotechnology, College of Environmental & Bioresource Sciences, Jeonbuk National University, Iksan, Republic of Korea
- Advanced Institute of Environment and Bioscience, College of Environmental & Bioresource Sciences, Jeonbuk National University, Iksan, Republic of Korea
| | - Sang-Uk Seo
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | | | | | | | - Kwang Pyo Kim
- Department of Applied Chemistry, Institute of Natural Science, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin, Republic of Korea
- Department of Biomedical Science and Technology, Kyung Hee Medical Science Research Institute, Kyung Hee University, Seoul, Republic of Korea
| | - Kyun-Hwan Kim
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
193
|
Wang R, Ji L, Yuan S, Liu X, Liang Z, Chen W, Wang B, Hu S, Liu Z, Zeng Z, Song Y, Wu T, Chen B. Microglial forkhead box O3a deficiency attenuates LPS-induced neuro-inflammation and depressive-like behaviour through regulating the expression of peroxisome proliferator-activated receptor-γ. Br J Pharmacol 2024; 181:3908-3925. [PMID: 38881194 DOI: 10.1111/bph.16474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 03/15/2024] [Accepted: 03/17/2024] [Indexed: 06/18/2024] Open
Abstract
BACKGROUND AND PURPOSE Depression is closely linked with microglial activation and neuro-inflammation. Peroxisome proliferator-activated receptor-γ (PPAR-γ) plays an important role in M2 activation of microglia. Forkhead box (FOX) O3a has been implicated in the regulation of mood-relevant behaviour. However, little is known about the inflammatory mechanisms of in the microglia of the brain. Here, we have investigated the role of microglial FOXO3a/PPAR-γ in the development of depression. EXPERIMENTAL APPROACH The effect of FOXO3a on microglia inflammation was analysed in vitro and in lipopolysaccharide (LPS)-induced depression-like behaviours in vivo. ChIP-seq and Dual-luciferase reporter assays were used to confirm the interaction between FOXO3a and PPAR-γ. Behavioural changes were measured, while inflammatory cytokines, microglial phenotype and morphological properties were determined by ELISA, qRT-PCR, western blotting and immunostaining. KEY RESULTS Overexpression of FOXO3a significantly attenuated expression of PPAR-γ and enhanced the microglial polarization towards the M1 phenotype, while knockdown of FOXO3a had the opposite effect. FOXO3a binds to the promoters of PPAR-γ and decreases its transcription activity. Importantly, deacetylation and activation of FOXO3a regulate LPS-induced neuro-inflammation by inhibiting the expression of PPAR-γ in microglia cells, supporting the antidepressant potential of histone deacetylase inhibitors. Microglial FOXO3a deficiency in mice alleviated LPS-induced neuro-inflammation and depression-like behaviours but failed to reduce anxiety behaviour, whereas pharmacological inhibition of PPAR-γ by GW9662 restored LPS-induced microglial activation and depressive-like behaviours in microglial FOXO3a-deficient mice. CONCLUSION AND IMPLICATIONS FOXO3a/PPAR-γ axis plays an important role in microglial activation and depression, identifying a new therapeutic avenue for the treatment of major depression.
Collapse
Affiliation(s)
- Rikang Wang
- Department of Neurosurgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Lianru Ji
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficacy (Prevention and Treatment of Brain Disease with Mental Disorders); Key Laboratory of Depression Animal Model Based on TCM syndrome, Jiangxi Administration of Traditional Chinese Medicine; Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Dysfunction, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Shun Yuan
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficacy (Prevention and Treatment of Brain Disease with Mental Disorders); Key Laboratory of Depression Animal Model Based on TCM syndrome, Jiangxi Administration of Traditional Chinese Medicine; Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Dysfunction, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Xiamin Liu
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficacy (Prevention and Treatment of Brain Disease with Mental Disorders); Key Laboratory of Depression Animal Model Based on TCM syndrome, Jiangxi Administration of Traditional Chinese Medicine; Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Dysfunction, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Zhi Liang
- Department of Neurosurgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Wenjing Chen
- Department of Neurosurgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Bocheng Wang
- Department of Neurosurgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Suifa Hu
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficacy (Prevention and Treatment of Brain Disease with Mental Disorders); Key Laboratory of Depression Animal Model Based on TCM syndrome, Jiangxi Administration of Traditional Chinese Medicine; Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Dysfunction, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Zhiping Liu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China
| | - Zhiwen Zeng
- Department for Bipolar Disorders, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, China
| | - Yonggui Song
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficacy (Prevention and Treatment of Brain Disease with Mental Disorders); Key Laboratory of Depression Animal Model Based on TCM syndrome, Jiangxi Administration of Traditional Chinese Medicine; Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Dysfunction, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Tao Wu
- Department of Neurosurgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Baodong Chen
- Department of Neurosurgery, Peking University Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
194
|
Zhang W, Liu T, Li J, Singh J, Chan A, Islam A, Petrache A, Peng Y, Harvey K, Ali AB. Decreased extrasynaptic δ-GABA A receptors in PNN-associated parvalbumin interneurons correlates with anxiety in APP and tau mouse models of Alzheimer's disease. Br J Pharmacol 2024; 181:3944-3975. [PMID: 38886118 DOI: 10.1111/bph.16441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is associated with gradual memory loss and anxiety which affects ~75% of AD patients. This study investigated whether AD-associated anxiety correlated with modulation of extrasynaptic δ-subunit-containing GABAA receptors (δ-GABAARs) in experimental mouse models of AD. EXPERIMENTAL APPROACH We combined behavioural experimental paradigms to measure cognition performance, and anxiety with neuroanatomy and molecular biology, using familial knock-in (KI) mouse models of AD that harbour β-amyloid (Aβ) precursor protein App (AppNL-F) with or without humanized microtubule-associated protein tau (MAPT), age-matched to wild-type control mice at three different age windows. RESULTS AppNL-F KI and AppNL-F/MAPT AD models showed a similar magnitude of cognitive decline and elevated magnitude of anxiety correlated with neuroinflammatory hallmarks, including triggering receptor expressed on myeloid cells 2 (TREM2), reactive astrocytes and activated microglia consistent with accumulation of Aβ, tau and down-regulation of Wnt/β-catenin signalling compared to aged-matched WT controls. In both the CA1 region of the hippocampus and dentate gyrus, there was an age-dependent decline in the expression of δ-GABAARs selectively expressed in parvalbumin (PV)-expressing interneurons, encapsulated by perineuronal nets (PNNs) in the AD mouse models compared to WT mice. In vivo positive allosteric modulation of the δ-GABAARs, using a δ-selective-compound DS2, decreased the level of anxiety in the AD mouse models, which was correlated with reduced hallmarks of neuroinflammation, and 'normalisation' of the expression of δ-GABAARs. CONCLUSIONS Our data show that the δ-GABAARs could potentially be targeted for alleviating symptoms of anxiety, which would greatly improve the quality of life of AD individuals.
Collapse
|
195
|
Cooper ME, Nørregaard PK, Högberg T, Andersson G, Receveur JM, Linget JM, Elling CE. Efficacy in diet-induced obese mice of the hepatotropic, peripheral cannabinoid 1 receptor inverse agonist TM38837. Br J Pharmacol 2024; 181:3926-3943. [PMID: 38886096 DOI: 10.1111/bph.16401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 02/26/2024] [Accepted: 03/19/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND AND PURPOSE The cannabinoid CB1 receptor has a well-established role in appetite regulation. Drugs antagonizing central CB1 receptors, most notably rimonabant, induced weight loss and improved the metabolic profile in obese individuals but were discontinued due to psychiatric side effects. However, metabolic benefits were only partially attributable to weight loss, implying a role for peripheral receptors, and peripherally restricted CB1 receptor antagonists have since been of interest. Herein, we describe the evaluation of the peripherally restricted potent CB1 receptor inverse agonists TM38837 and TM39875, with acidic functionality, which were administered daily to diet-induced obese (DIO) mice for 5 weeks at doses for which CNS-mediated effects were minimal. EXPERIMENTAL APPROACH Compounds were tested in dose-response in acute studies to compare efficacy (gastric transport) and extent of CNS exposure (hypothermia and satiety sequence) to demonstrate peripheral restriction and select doses for the subsequent chronic DIO study. KEY RESULTS TM38837 but not TM39875 produced considerable (26%) weight loss, linked to a sustained reduction in food intake, together with improvements in plasma markers of inflammation and glucose homeostasis. Pharmacokinetic analysis indicated high plasma and low brain levels for both compounds with high liver levels for TM38837 (but not TM39875) due to hepatic uptake. CONCLUSION AND IMPLICATIONS Weight loss and metabolic benefits of TM38837 are likely not CNS-mediated but could be linked to enhanced liver exposure, which implicates intracellular CB1 receptors in hepatocytes as a possible driver of obesity and co-morbidities.
Collapse
MESH Headings
- Animals
- Male
- Mice
- Diet, High-Fat/adverse effects
- Dose-Response Relationship, Drug
- Drug Inverse Agonism
- Eating/drug effects
- Liver/metabolism
- Liver/drug effects
- Mice, Inbred C57BL
- Mice, Obese
- Obesity/drug therapy
- Obesity/metabolism
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
Collapse
|
196
|
Yang Y, Wu P, Guo J, Pan Z, Lin S, Zeng W, Wang C, Dong Z, Wang S. Circadian time-dependent effects of experimental colitis on theophylline disposition and toxicity. Br J Pharmacol 2024; 181:3743-3759. [PMID: 38862812 DOI: 10.1111/bph.16440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 04/28/2024] [Accepted: 05/03/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND AND PURPOSE Drug disposition undergoes significant alteration in patients with inflammatory bowel disease (IBD), yet circadian time-dependency of these changes remains largely unexplored. In this study, we aimed to determine the temporal effects of experimental colitis on drug disposition and toxicity. EXPERIMENTAL APPROACH RNA-sequencing was used to screen genes relevant to colitis induced by dextran sodium sulfate in mice. Liver microsomes and pharmacokinetic analysis were used to analyze the activity of key enzymes. Dual luciferase assays and chromatin immunoprecipitation (ChIP) were employed to elucidate regulatory mechanisms. KEY RESULTS RNA sequencing analysis revealed that colitis markedly influenced expression of cytochrome P450 (CYP) enzymes. Specifically, a substantial down-regulation of CYP1A2 and CYP2E1 was observed in livers of mice with colitis at Zeitgeber Time 8 (ZT8), with no significant changes detected at ZT20. At ZT8, the altered expression corresponded to diminished metabolism and enhanced incidence of hepato-cardiac toxicity of theophylline, a substrate specifically metabolized by these enzymes. A combination of assays, integrating liver-specific Bmal1 knockout and targeted activation of BMAL1 showed that dysregulation in CYP1A2 and CYP2E1 during colitis was attributable to perturbed BMAL1 functionality. Luciferase reporter and ChIP assays collectively substantiated the role of BMAL1 in regulating Cyp1a2 and Cyp2e1 transcription through its binding affinity to E-box-like sites. CONCLUSION AND IMPLICATION Our findings establish a strong link between colitis and chronopharmacology, shedding light on how IBD affects drug disposition and toxicity over time. This research provides a theoretical foundation for optimizing drug dosage in patients with IBD.
Collapse
Affiliation(s)
- Yi Yang
- Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Pengcheng Wu
- Department of Emergency Medicine, Zhongshan Torch Development Zone People's Hospital, Zhongshan, China
| | - Juntao Guo
- Department of Emergency, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zhixi Pan
- Institute of Molecular Rhythm and Metabolism, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shubin Lin
- Institute of Molecular Rhythm and Metabolism, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wanying Zeng
- Institute of Molecular Rhythm and Metabolism, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Cunchuan Wang
- Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zhiyong Dong
- Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Shuai Wang
- Institute of Molecular Rhythm and Metabolism, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
197
|
Peng Q, Li B, Song P, Wang R, Jiang J, Jin X, Shen J, Bao J, Ni J, Han X, Hu G. IDH2-NADPH pathway protects against acute pancreatitis via suppressing acinar cell ferroptosis. Br J Pharmacol 2024; 181:4067-4084. [PMID: 39072736 DOI: 10.1111/bph.16469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/04/2024] [Accepted: 04/26/2024] [Indexed: 07/30/2024] Open
Abstract
BACKGROUND AND PURPOSE Acute pancreatitis (AP) is associated with acinar cell death and inflammatory responses. Ferroptosis is characterized by an overwhelming lipid peroxidation downstream of metabolic dysfunction, in which NADPH-related redox systems have been recognized as the mainstay in ferroptosis control. Nevertheless, it remains unknown how ferroptosis is regulated in AP and whether we can target it to restrict AP development. EXPERIMENTAL APPROACH Metabolomics were applied to explore changes in metabolic pathways in pancreatic acinar cells (PACs) in AP. Using wild-type and Ptf1aCreERT2/+IDH2fl/fl mice, AP was induced by caerulein and sodium taurocholate (NaT). IDH2 overexpressing adenovirus was constructed for infection of PACs. Mice or PACs were pretreated with inhibitors of FSP1 or glutathione reductase. Pancreatitis severity, acinar cell injury, mitochondrial morphological changes and pancreatic lipid peroxidation were analysed. KEY RESULTS Unsaturated fatty acid biosynthesis and the tricarboxylic acid cycle pathways were significantly altered in PACs during AP. Inhibition of ferroptosis reduced mitochondrial damage, lipid peroxidation and the severity of AP. During AP, the NADPH abundance and IDH2 expression were decreased. Acinar cell-specific deletion of IDH2 exacerbated acinar cell ferroptosis and pancreatic injury. Pharmacological inhibition of NADPH-dependent GSH/GPX4 and FSP1/CoQ10 pathways abolished the protective effect of IDH2 overexpression on ferroptosis in acinar cells. CoQ10 supplementation attenuated experimental pancreatitis via inhibiting acinar cell ferroptosis. CONCLUSION AND IMPLICATIONS We identified the IDH2-NADPH pathway as a novel regulator in protecting against AP via restricting acinar cell ferroptosis. Targeting the pathway and its downstream may shed light on AP treatment.
Collapse
Affiliation(s)
- Qi Peng
- Department of Gastroenterology, Shanghai General Hospital, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Li
- Department of Gastroenterology, Shanghai General Hospital, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pengli Song
- Department of Gastroenterology, Shanghai General Hospital, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruiyan Wang
- Department of Gastroenterology, Shanghai General Hospital, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Jiang
- Department of Gastroenterology, Shanghai General Hospital, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuerui Jin
- Department of Gastroenterology, Shanghai General Hospital, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Shen
- Department of Gastroenterology, Shanghai General Hospital, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingpiao Bao
- Department of Gastroenterology, Shanghai General Hospital, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianbo Ni
- Department of Gastroenterology, Shanghai General Hospital, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao Han
- Department of Gastroenterology, Shanghai General Hospital, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guoyong Hu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
198
|
Johnson JP, Focken T, Karimi Tari P, Dube C, Goodchild SJ, Andrez JC, Bankar G, Burford K, Chang E, Chowdhury S, Christabel J, Dean R, de Boer G, Dehnhardt C, Gong W, Grimwood M, Hussainkhel A, Jia Q, Khakh K, Lee S, Li J, Lin S, Lindgren A, Lofstrand V, Mezeyova J, Nelkenbrecher K, Shuart NG, Sojo L, Sun S, Waldbrook M, Wesolowski S, Wilson M, Xie Z, Zenova A, Zhang W, Scott FL, Cutts AJ, Sherrington RP, Winquist R, Cohen CJ, Empfield JR. The contribution of Na V1.6 to the efficacy of voltage-gated sodium channel inhibitors in wild type and Na V1.6 gain-of-function (GOF) mouse seizure control. Br J Pharmacol 2024; 181:3993-4011. [PMID: 38922847 DOI: 10.1111/bph.16481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/19/2024] [Accepted: 05/15/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND AND PURPOSE Inhibitors of voltage-gated sodium channels (NaVs) are important anti-epileptic drugs, but the contribution of specific channel isoforms is unknown since available inhibitors are non-selective. We aimed to create novel, isoform selective inhibitors of Nav channels as a means of informing the development of improved antiseizure drugs. EXPERIMENTAL APPROACH We created a series of compounds with diverse selectivity profiles enabling block of NaV1.6 alone or together with NaV1.2. These novel NaV inhibitors were evaluated for their ability to inhibit electrically evoked seizures in mice with a heterozygous gain-of-function mutation (N1768D/+) in Scn8a (encoding NaV1.6) and in wild-type mice. KEY RESULTS Pharmacologic inhibition of NaV1.6 in Scn8aN1768D/+ mice prevented seizures evoked by a 6-Hz shock. Inhibitors were also effective in a direct current maximal electroshock seizure assay in wild-type mice. NaV1.6 inhibition correlated with efficacy in both models, even without inhibition of other CNS NaV isoforms. CONCLUSIONS AND IMPLICATIONS Our data suggest NaV1.6 inhibition is a driver of efficacy for NaV inhibitor anti-seizure medicines. Sparing the NaV1.1 channels of inhibitory interneurons did not compromise efficacy. Selective NaV1.6 inhibitors may provide targeted therapies for human Scn8a developmental and epileptic encephalopathies and improved treatments for idiopathic epilepsies.
Collapse
Affiliation(s)
- James P Johnson
- Department of In Vitro Biology, Xenon Pharmaceuticals Inc, Burnaby, British Columbia, Canada
| | - Thilo Focken
- Department of Chemistry, Xenon Pharmaceuticals Inc, Burnaby, British Columbia, Canada
| | - Parisa Karimi Tari
- Department of In Vivo Biology, Xenon Pharmaceuticals Inc, Burnaby, British Columbia, Canada
| | - Celine Dube
- Department of In Vivo Biology, Xenon Pharmaceuticals Inc, Burnaby, British Columbia, Canada
| | - Samuel J Goodchild
- Department of In Vitro Biology, Xenon Pharmaceuticals Inc, Burnaby, British Columbia, Canada
| | | | - Girish Bankar
- Department of In Vivo Biology, Xenon Pharmaceuticals Inc, Burnaby, British Columbia, Canada
| | - Kristen Burford
- Department of Chemistry, Xenon Pharmaceuticals Inc, Burnaby, British Columbia, Canada
| | - Elaine Chang
- Department of In Vitro Biology, Xenon Pharmaceuticals Inc, Burnaby, British Columbia, Canada
| | - Sultan Chowdhury
- Department of Chemistry, Xenon Pharmaceuticals Inc, Burnaby, British Columbia, Canada
| | - Jessica Christabel
- Department of In Vitro Biology, Xenon Pharmaceuticals Inc, Burnaby, British Columbia, Canada
| | - Richard Dean
- Department of In Vitro Biology, Xenon Pharmaceuticals Inc, Burnaby, British Columbia, Canada
| | - Gina de Boer
- Department of Compound Properties, Xenon Pharmaceuticals Inc, Burnaby, British Columbia, Canada
| | - Christoph Dehnhardt
- Department of Chemistry, Xenon Pharmaceuticals Inc, Burnaby, British Columbia, Canada
| | - Wei Gong
- Department of Chemistry, Xenon Pharmaceuticals Inc, Burnaby, British Columbia, Canada
| | - Michael Grimwood
- Department of Chemistry, Xenon Pharmaceuticals Inc, Burnaby, British Columbia, Canada
| | - Angela Hussainkhel
- Department of In Vitro Biology, Xenon Pharmaceuticals Inc, Burnaby, British Columbia, Canada
| | - Qi Jia
- Department of Chemistry, Xenon Pharmaceuticals Inc, Burnaby, British Columbia, Canada
| | - Kuldip Khakh
- Department of In Vitro Biology, Xenon Pharmaceuticals Inc, Burnaby, British Columbia, Canada
| | - Stephanie Lee
- Department of Compound Properties, Xenon Pharmaceuticals Inc, Burnaby, British Columbia, Canada
| | - Jenny Li
- Department of In Vitro Biology, Xenon Pharmaceuticals Inc, Burnaby, British Columbia, Canada
| | - Sophia Lin
- Department of In Vitro Biology, Xenon Pharmaceuticals Inc, Burnaby, British Columbia, Canada
| | - Andrea Lindgren
- Department of Compound Properties, Xenon Pharmaceuticals Inc, Burnaby, British Columbia, Canada
| | - Verner Lofstrand
- Department of Chemistry, Xenon Pharmaceuticals Inc, Burnaby, British Columbia, Canada
| | - Janette Mezeyova
- Department of In Vitro Biology, Xenon Pharmaceuticals Inc, Burnaby, British Columbia, Canada
| | - Karen Nelkenbrecher
- Department of In Vivo Biology, Xenon Pharmaceuticals Inc, Burnaby, British Columbia, Canada
| | - Noah Gregory Shuart
- Department of In Vitro Biology, Xenon Pharmaceuticals Inc, Burnaby, British Columbia, Canada
| | - Luis Sojo
- Department of Compound Properties, Xenon Pharmaceuticals Inc, Burnaby, British Columbia, Canada
| | - Shaoyi Sun
- Department of Chemistry, Xenon Pharmaceuticals Inc, Burnaby, British Columbia, Canada
| | - Matthew Waldbrook
- Department of In Vivo Biology, Xenon Pharmaceuticals Inc, Burnaby, British Columbia, Canada
| | - Steven Wesolowski
- Department of Chemistry, Xenon Pharmaceuticals Inc, Burnaby, British Columbia, Canada
| | - Michael Wilson
- Department of Chemistry, Xenon Pharmaceuticals Inc, Burnaby, British Columbia, Canada
| | - Zhiwei Xie
- Department of In Vitro Biology, Xenon Pharmaceuticals Inc, Burnaby, British Columbia, Canada
| | - Alla Zenova
- Department of Chemistry, Xenon Pharmaceuticals Inc, Burnaby, British Columbia, Canada
| | - Wei Zhang
- Department of Chemistry, Xenon Pharmaceuticals Inc, Burnaby, British Columbia, Canada
| | | | - Alison J Cutts
- Scientific Affairs, Xenon Pharmaceuticals, Inc, Burnaby, British Columbia, Canada
| | - Robin P Sherrington
- Executive Team, Xenon Pharmaceuticals Inc, Burnaby, British Columbia, Canada
| | - Raymond Winquist
- Executive Team, Xenon Pharmaceuticals Inc, Burnaby, British Columbia, Canada
| | - Charles J Cohen
- Executive Team, Xenon Pharmaceuticals Inc, Burnaby, British Columbia, Canada
| | - James R Empfield
- Executive Team, Xenon Pharmaceuticals Inc, Burnaby, British Columbia, Canada
| |
Collapse
|
199
|
Gautheron G, Péraldi-Roux S, Vaillé J, Belhadj S, Patyra A, Bayle M, Youl E, Omhmmed S, Guyot M, Cros G, Guichou JF, Uzan B, Movassat J, Quignard JF, Neasta J, Oiry C. The flavonoid resokaempferol improves insulin secretion from healthy and dysfunctional pancreatic β-cells. Br J Pharmacol 2024. [PMID: 39327688 DOI: 10.1111/bph.17304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 06/20/2024] [Accepted: 07/09/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND AND PURPOSE The pharmacology of flavonoids on β-cell function is largely undefined especially in the context of defective secretion of insulin. We sought to identify flavonoids that increased the insulin-secreting function of β-cells and to explore the underlying mechanisms. EXPERIMENTAL APPROACH INS-1 β-cells in culture and islets of Langerhans isolated from control and diabetic male rats were used for insulin secretion experiments. Pharmacological and electrophysiological approaches were used for mechanistic studies. KEY RESULTS Among a set of flavonoids, exposure of INS-1 β-cells to resokaempferol (ResoK) enhanced glucose-stimulated insulin secretion and therefore we further characterised its activity and its pharmacological mechanism. ResoK glucose-dependently enhanced insulin secretion in INS-1 β-cells and pancreatic islets isolated from rats. Mechanistically, whole cell patch clamp recordings in INS-1 cells showed that ResoK rapidly and dose-dependently enhanced the L-type Ca2+ current whereas it was inactive towards T-type Ca2+ current. Accordingly, pharmacological inhibition of L-type Ca2+ current but not T-type Ca2+ current blocked the effects of ResoK on glucose-stimulated insulin secretion. ResoK was still active on dysfunctional β-cells as it ameliorated glucose-stimulated insulin secretion in glucotoxicity-induced dysfunctional INS-1 cells and in pancreatic islets isolated from diabetic rats. CONCLUSION AND IMPLICATIONS ResoK is a glucose-dependent activator of insulin secretion. Our results indicated that the effects of ResoK on insulin secretion involved its capacity to stimulate L-type Ca2+ currents in cultured β-cells. As ResoK was also effective on dysfunctional β-cells, our work provides a new approach to stimulating insulin secretion, using compounds based on the structure of ResoK.
Collapse
Affiliation(s)
| | | | - Justine Vaillé
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - Sahla Belhadj
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - Andrzej Patyra
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
- Department of Pharmaceutical Biology, Medical University of Warsaw, Warsaw, Poland
| | - Morgane Bayle
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - Estelle Youl
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | | | - Mélanie Guyot
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - Gérard Cros
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | | | - Benjamin Uzan
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| | - Jamileh Movassat
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| | - Jean-François Quignard
- Centre de Recherche Cardio-Thoracique de Bordeaux, Univ. Bordeaux, Pessac, France
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, Pessac, France
| | - Jérémie Neasta
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - Catherine Oiry
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| |
Collapse
|
200
|
Liu Y, Wang Z, Fang L, Xu Y, Zhao B, Kang X, Zhao Y, Han J, Zhang Y, Dong E, Wang N. Deficiency of 5-HT 2B receptors alleviates atherosclerosis by regulating macrophage phenotype through inhibiting interferon signalling. Br J Pharmacol 2024. [PMID: 39232850 DOI: 10.1111/bph.17315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 06/09/2024] [Accepted: 07/10/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND AND PURPOSE Elevated levels of 5-HT have been correlated with coronary artery disease and cardiac events, suggesting 5-HT is a potential novel factor in the development of atherosclerotic cardiovascular disease. However, the underlying pathological mechanisms of the 5-HT system in atherosclerosis remain unclear. The 5-HT2B receptor (5-HT2BR), which establishes a positive feedback loop with 5-HT, has been identified as a contributor to pathophysiological processes in various vascular disorders. In this study, we investigated the immunological impact of 5-HT2BR in atherosclerosis-prone apolipoprotein E-deficient (ApoE-/-) mice. EXPERIMENTAL APPROACH Plasma levels of 5-HT were measured in mice using an ELISA kit. Atherosclerotic plaque formation, macrophage infiltration and inflammatory signalling were assessed in ApoE-/- mice by employing both pharmacological inhibition and genetic deficiency of 5-HT2BR. Inflammasome activation was elucidated using peritoneal macrophages isolated from 5-HT2BR-deficient mice. KEY RESULTS An upregulation of 5-HT2BR expression was observed in the aortas of ApoE-/- mice, exhibiting a strong correlation with the presence of macrophages in plaques. Atherosclerosis was attenuated in mice through pharmacological inhibition and genetic deficiency of 5-HT2BR. Additionally, a significant reduction in atherosclerotic plaque size was achieved through bone marrow reconstitution with 5-HT2BR-deficient cells. 5-HT2BR-deficient macrophages showed attenuated interferon (IFN) signalling, NLRP3 inflammasome activation, and interleukin-1β release. Moreover, macrophages primed with 5-HT2BR deficiency displayed an anti-inflammatory phenotype. CONCLUSION AND IMPLICATIONS These findings support the hypothesis that 5-HT2BR in macrophages plays a causal role in the development of atherosclerosis, revealing a novel perspective for potential therapeutic strategies in atherosclerosis-related diseases.
Collapse
Affiliation(s)
- Yahan Liu
- Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University Health Science Center; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Zhipeng Wang
- Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University Health Science Center; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Li Fang
- Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University Health Science Center; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Yaohua Xu
- Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University Health Science Center; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Beilei Zhao
- Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University Health Science Center; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Xuya Kang
- Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University Health Science Center; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Yanqing Zhao
- Department of Interventional Radiology and Vascular Surgery, Peking University Third Hospital, Beijing, China
| | - Jintao Han
- Department of Interventional Radiology and Vascular Surgery, Peking University Third Hospital, Beijing, China
| | - Yan Zhang
- Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University Health Science Center; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
- Institute of Cardiovascular Diseases, The first affiliated Hospital of Dalian Medical University, Dalian, China
| | - Erdan Dong
- Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University Health Science Center; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, China
- Research Center for Cardiopulmonary Rehabilitation, University of Health and Rehabilitation Sciences Qingdao Hospital (Qingdao Municipal Hospital); School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Nanping Wang
- Wuhu Hospital, East China Normal University (ECNU), Wuhu, China
- East China Normal University Health Science Center, Shanghai, China
| |
Collapse
|