151
|
Baci GM, Cucu AA, Giurgiu AI, Muscă AS, Bagameri L, Moise AR, Bobiș O, Rațiu AC, Dezmirean DS. Advances in Editing Silkworms ( Bombyx mori) Genome by Using the CRISPR-Cas System. INSECTS 2021; 13:28. [PMID: 35055871 PMCID: PMC8777690 DOI: 10.3390/insects13010028] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/18/2021] [Accepted: 12/23/2021] [Indexed: 12/12/2022]
Abstract
CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) represents a powerful genome editing technology that revolutionized in a short period of time numerous natural sciences branches. Therefore, extraordinary progress was made in various fields, such as entomology or biotechnology. Bombyx mori is one of the most important insects, not only for the sericulture industry, but for numerous scientific areas. The silkworms play a key role as a model organism, but also as a bioreactor for the recombinant protein production. Nowadays, the CRISPR-Cas genome editing system is frequently used in order to perform gene analyses, to increase the resistance against certain pathogens or as an imaging tool in B. mori. Here, we provide an overview of various studies that made use of CRISPR-Cas for B. mori genome editing, with a focus on emphasizing the high applicability of this system in entomology and biological sciences.
Collapse
Affiliation(s)
- Gabriela-Maria Baci
- Faculty of Animal Science and Biotechnology, University of Animal Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (G.-M.B.); (A.-A.C.); (A.-I.G.); (A.-S.M.); (L.B.); (O.B.); (D.S.D.)
| | - Alexandra-Antonia Cucu
- Faculty of Animal Science and Biotechnology, University of Animal Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (G.-M.B.); (A.-A.C.); (A.-I.G.); (A.-S.M.); (L.B.); (O.B.); (D.S.D.)
| | - Alexandru-Ioan Giurgiu
- Faculty of Animal Science and Biotechnology, University of Animal Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (G.-M.B.); (A.-A.C.); (A.-I.G.); (A.-S.M.); (L.B.); (O.B.); (D.S.D.)
| | - Adriana-Sebastiana Muscă
- Faculty of Animal Science and Biotechnology, University of Animal Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (G.-M.B.); (A.-A.C.); (A.-I.G.); (A.-S.M.); (L.B.); (O.B.); (D.S.D.)
| | - Lilla Bagameri
- Faculty of Animal Science and Biotechnology, University of Animal Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (G.-M.B.); (A.-A.C.); (A.-I.G.); (A.-S.M.); (L.B.); (O.B.); (D.S.D.)
| | - Adela Ramona Moise
- Faculty of Animal Science and Biotechnology, University of Animal Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (G.-M.B.); (A.-A.C.); (A.-I.G.); (A.-S.M.); (L.B.); (O.B.); (D.S.D.)
| | - Otilia Bobiș
- Faculty of Animal Science and Biotechnology, University of Animal Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (G.-M.B.); (A.-A.C.); (A.-I.G.); (A.-S.M.); (L.B.); (O.B.); (D.S.D.)
| | | | - Daniel Severus Dezmirean
- Faculty of Animal Science and Biotechnology, University of Animal Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (G.-M.B.); (A.-A.C.); (A.-I.G.); (A.-S.M.); (L.B.); (O.B.); (D.S.D.)
| |
Collapse
|
152
|
Choudhary A, Mohindru B, Karedla AK, Singh J, Chhuneja PK. Sub-lethal effects of thiamethoxam on Apis mellifera Linnaeus. TOXIN REV 2021. [DOI: 10.1080/15569543.2021.1958868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Amit Choudhary
- Department of Entomology, Punjab Agricultural University, Ludhiana, India
| | - Bharathi Mohindru
- Department of Entomology, Punjab Agricultural University, Ludhiana, India
| | | | - Jaspal Singh
- Department of Entomology, Punjab Agricultural University, Ludhiana, India
| | | |
Collapse
|
153
|
Pusceddu M, Annoscia D, Floris I, Frizzera D, Zanni V, Angioni A, Satta A, Nazzi F. Honeybees use propolis as a natural pesticide against their major ectoparasite. Proc Biol Sci 2021; 288:20212101. [PMID: 34905714 PMCID: PMC8670950 DOI: 10.1098/rspb.2021.2101] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/22/2021] [Indexed: 01/07/2023] Open
Abstract
Honeybees use propolis collected from plants for coating the inner walls of their nest. This substance is also used as a natural antibiotic against microbial pathogens, similarly to many other animals exploiting natural products for self-medication. We carried out chemical analyses and laboratory bioassays to test if honeybees use propolis for social medication against their major ectoparasite: Varroa destructor. We found that propolis is applied to brood cells where it can affect the reproducing parasites, with a positive effect on honeybees and a potential impact on Varroa population. We conclude that propolis can be regarded as a natural pesticide used by the honeybee to limit a dangerous parasite. These findings significantly enlarge our understanding of behavioural immunity in animals and may have important implications for the management of the most important threat to honeybees worldwide.
Collapse
Affiliation(s)
- Michelina Pusceddu
- Dipartimento di Agraria, Sezione di Patologia vegetale ed Entomologia, Università degli Studi di Sassari, Sassari, Italy
| | - Desiderato Annoscia
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Università degli Studi di Udine, Udine, Italy
| | - Ignazio Floris
- Dipartimento di Agraria, Sezione di Patologia vegetale ed Entomologia, Università degli Studi di Sassari, Sassari, Italy
| | - Davide Frizzera
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Università degli Studi di Udine, Udine, Italy
| | - Virginia Zanni
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Università degli Studi di Udine, Udine, Italy
| | - Alberto Angioni
- Dipartimento di Scienze della Vita e dell'Ambiente, Università degli Studi di Cagliari, Cagliari, Italy
| | - Alberto Satta
- Dipartimento di Agraria, Sezione di Patologia vegetale ed Entomologia, Università degli Studi di Sassari, Sassari, Italy
| | - Francesco Nazzi
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Università degli Studi di Udine, Udine, Italy
| |
Collapse
|
154
|
Christen V, Grossar D, Charrière JD, Eyer M, Jeker L. Correlation Between Increased Homing Flight Duration and Altered Gene Expression in the Brain of Honey Bee Foragers After Acute Oral Exposure to Thiacloprid and Thiamethoxam. FRONTIERS IN INSECT SCIENCE 2021; 1:765570. [PMID: 38468880 PMCID: PMC10926505 DOI: 10.3389/finsc.2021.765570] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/19/2021] [Indexed: 03/13/2024]
Abstract
Neonicotinoids as thiamethoxam and thiacloprid are suspected to be implicated in the decline of honey bee populations. As nicotinic acetylcholine receptor agonists, they disturb acetylcholine receptor signaling in insects, leading to neurotoxicity and are therefore globally used as insecticides. Several behavioral studies have shown links between neonicotinoid exposure of bees and adverse effects on foraging activity, homing flight performance and reproduction, but the molecular aspects underlying these effects are not well-understood. In the last years, several studies through us and others showed the effects of exposure to neonicotinoids on gene expression in the brain of honey bees. Transcripts of acetylcholine receptors, hormonal regulation, stress markers, detoxification enzymes, immune system related genes and transcripts of the energy metabolism were altered after neonicotinoid exposure. To elucidate the link between homing flight performance and shifts in gene expression in the brain of honey bees after neonicotinoid exposure, we combined homing flight activity experiments applying RFID technology and gene expression analysis. We analyzed the expression of endocrine factors, stress genes, detoxification enzymes and genes linked to energy metabolism in forager bees after homing flight experiments. Three different experiments (experiment I: pilot study; experiment II: "worst-case" study and experiment III: laboratory study) were performed. In a pilot study, we wanted to investigate if we could see differences in gene expression between controls and exposed bees (experiment I). This first study was followed by a so-called "worst-case" study (experiment II), where we investigated mainly differences in the expression of transcripts linked to energy metabolism between fast and slow returning foragers. We found a correlation between homing flight duration and the expression of cytochrome c oxidase subunit 5A, one transcript linked to oxidative phosphorylation. In the third experiment (experiment III), foragers were exposed in the laboratory to 1 ng/bee thiamethoxam and 8 ng/bee thiacloprid followed by gene expression analysis without a subsequent flight experiment. We could partially confirm the induction of cytochrome c oxidase subunit 5A, which we detected in experiment II. In addition, we analyzed the effect of the feeding mode (group feeding vs. single bee feeding) on data scattering and demonstrated that single bee feeding is superior to group feeding as it significantly reduces variability in gene expression. Based on the data, we thus hypothesize that the disruption of energy metabolism may be one reason for a prolongation of homing flight duration in neonicotinoid treated bees.
Collapse
Affiliation(s)
- Verena Christen
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Muttenz, Switzerland
| | | | | | - Michael Eyer
- Agroscope, Swiss Bee Research Center, Bern, Switzerland
- Laboratory of Soil Biodiversity, University of Neuchâtel, Neuchâtel, Switzerland
| | - Lukas Jeker
- Agroscope, Swiss Bee Research Center, Bern, Switzerland
| |
Collapse
|
155
|
Ruzzante L, Feron R, Reijnders MJMF, Thiébaut A, Waterhouse RM. Functional constraints on insect immune system components govern their evolutionary trajectories. Mol Biol Evol 2021; 39:6459179. [PMID: 34893861 PMCID: PMC8788225 DOI: 10.1093/molbev/msab352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Roles of constraints in shaping evolutionary outcomes are often considered in the contexts of developmental biology and population genetics, in terms of capacities to generate new variants and how selection limits or promotes consequent phenotypic changes. Comparative genomics also recognizes the role of constraints, in terms of shaping evolution of gene and genome architectures, sequence evolutionary rates, and gene gains or losses, as well as on molecular phenotypes. Characterizing patterns of genomic change where putative functions and interactions of system components are relatively well described offers opportunities to explore whether genes with similar roles exhibit similar evolutionary trajectories. Using insect immunity as our test case system, we hypothesize that characterizing gene evolutionary histories can define distinct dynamics associated with different functional roles. We develop metrics that quantify gene evolutionary histories, employ these to characterize evolutionary features of immune gene repertoires, and explore relationships between gene family evolutionary profiles and their roles in immunity to understand how different constraints may relate to distinct dynamics. We identified three main axes of evolutionary trajectories characterized by gene duplication and synteny, maintenance/stability and sequence conservation, and loss and sequence divergence, highlighting similar and contrasting patterns across these axes amongst subsets of immune genes. Our results suggest that where and how genes participate in immune responses limit the range of possible evolutionary scenarios they exhibit. The test case study system of insect immunity highlights the potential of applying comparative genomics approaches to characterize how functional constraints on different components of biological systems govern their evolutionary trajectories.
Collapse
Affiliation(s)
- Livio Ruzzante
- Department of Ecology and Evolution, University of Lausanne, and Swiss Institute of Bioinformatics, Lausanne, 1015, Switzerland
| | - Romain Feron
- Department of Ecology and Evolution, University of Lausanne, and Swiss Institute of Bioinformatics, Lausanne, 1015, Switzerland
| | - Maarten J M F Reijnders
- Department of Ecology and Evolution, University of Lausanne, and Swiss Institute of Bioinformatics, Lausanne, 1015, Switzerland
| | - Antonin Thiébaut
- Department of Ecology and Evolution, University of Lausanne, and Swiss Institute of Bioinformatics, Lausanne, 1015, Switzerland
| | - Robert M Waterhouse
- Department of Ecology and Evolution, University of Lausanne, and Swiss Institute of Bioinformatics, Lausanne, 1015, Switzerland
| |
Collapse
|
156
|
Bruno D, Montali A, Mastore M, Brivio MF, Mohamed A, Tian L, Grimaldi A, Casartelli M, Tettamanti G. Insights Into the Immune Response of the Black Soldier Fly Larvae to Bacteria. Front Immunol 2021; 12:745160. [PMID: 34867970 PMCID: PMC8636706 DOI: 10.3389/fimmu.2021.745160] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/01/2021] [Indexed: 01/17/2023] Open
Abstract
In insects, a complex and effective immune system that can be rapidly activated by a plethora of stimuli has evolved. Although the main cellular and humoral mechanisms and their activation pathways are highly conserved across insects, the timing and the efficacy of triggered immune responses can differ among different species. In this scenario, an insect deserving particular attention is the black soldier fly (BSF), Hermetia illucens (Diptera: Stratiomyidae). Indeed, BSF larvae can be reared on a wide range of decaying organic substrates and, thanks to their high protein and lipid content, they represent a valuable source of macromolecules useful for different applications (e.g., production of feedstuff, bioplastics, and biodiesel), thus contributing to the development of circular economy supply chains for waste valorization. However, decaying substrates bring the larvae into contact with different potential pathogens that can challenge their health status and growth. Although these life strategies have presumably contributed to shape the evolution of a sophisticated and efficient immune system in this dipteran, knowledge about its functional features is still fragmentary. In the present study, we investigated the processes underpinning the immune response to bacteria in H. illucens larvae and characterized their reaction times. Our data demonstrate that the cellular and humoral responses in this insect show different kinetics: phagocytosis and encapsulation are rapidly triggered after the immune challenge, while the humoral components intervene later. Moreover, although both Gram-positive and Gram-negative bacteria are completely removed from the insect body within a few hours after injection, Gram-positive bacteria persist in the hemolymph longer than do Gram-negative bacteria. Finally, the activity of two key actors of the humoral response, i.e., lysozyme and phenoloxidase, show unusual dynamics as compared to other insects. This study represents the first detailed characterization of the immune response to bacteria of H. illucens larvae, expanding knowledge on the defense mechanisms of this insect among Diptera. This information is a prerequisite to manipulating the larval immune response by nutritional and environmental factors to increase resistance to pathogens and optimize health status during mass rearing.
Collapse
Affiliation(s)
- Daniele Bruno
- Laboratory of Invertebrate Biology, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Aurora Montali
- Laboratory of Invertebrate Biology, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Maristella Mastore
- Laboratory of Comparative Immunology, Department of Theoretical and Applied Sciences, University of Insubria, Varese, Italy
| | - Maurizio Francesco Brivio
- Laboratory of Comparative Immunology, Department of Theoretical and Applied Sciences, University of Insubria, Varese, Italy
| | - Amr Mohamed
- Laboratory of Insect Biochemistry and Molecular Sciences, Department of Entomology, Faculty of Science, Cairo University, Giza, Egypt
| | - Ling Tian
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Annalisa Grimaldi
- Laboratory of Invertebrate Biology, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Morena Casartelli
- Laboratory of Insect Physiology and Biotechnology, Department of Biosciences, University of Milano, Milan, Italy.,Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), University of Napoli Federico II, Naples, Italy
| | - Gianluca Tettamanti
- Laboratory of Invertebrate Biology, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy.,Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), University of Napoli Federico II, Naples, Italy
| |
Collapse
|
157
|
Parekh F, Daughenbaugh KF, Flenniken ML. Chemical Stimulants and Stressors Impact the Outcome of Virus Infection and Immune Gene Expression in Honey Bees ( Apis mellifera). Front Immunol 2021; 12:747848. [PMID: 34804032 PMCID: PMC8596368 DOI: 10.3389/fimmu.2021.747848] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/11/2021] [Indexed: 11/24/2022] Open
Abstract
Western honey bees (Apis mellifera) are ecologically, agriculturally, and economically important plant pollinators. High average annual losses of honey bee colonies in the US have been partially attributed to agrochemical exposure and virus infections. To examine the potential negative synergistic impacts of agrochemical exposure and virus infection, as well as the potential promise of phytochemicals to ameliorate the impact of pathogenic infections on honey bees, we infected bees with a panel of viruses (i.e., Flock House virus, deformed wing virus, or Sindbis virus) and exposed to one of three chemical compounds. Specifically, honey bees were fed sucrose syrup containing: (1) thyme oil, a phytochemical and putative immune stimulant, (2) fumagillin, a beekeeper applied fungicide, or (3) clothianidin, a grower-applied insecticide. We determined that virus abundance was lower in honey bees fed 0.16 ppb thyme oil augmented sucrose syrup, compared to bees fed sucrose syrup alone. Parallel analysis of honey bee gene expression revealed that honey bees fed thyme oil augmented sucrose syrup had higher expression of key RNAi genes (argonaute-2 and dicer-like), antimicrobial peptide expressing genes (abaecin and hymenoptaecin), and vitellogenin, a putative honey bee health and age indicator, compared to bees fed only sucrose syrup. Virus abundance was higher in bees fed fumagillin (25 ppm or 75 ppm) or 1 ppb clothianidin containing sucrose syrup relative to levels in bees fed only sucrose syrup. Whereas, honey bees fed 10 ppb clothianidin had lower virus levels, likely because consuming a near lethal dose of insecticide made them poor hosts for virus infection. The negative impact of fumagillin and clothianidin on honey bee health was indicated by the lower expression of argonaute-2, dicer-like, abaecin, and hymenoptaecin, and vitellogenin. Together, these results indicate that chemical stimulants and stressors impact the outcome of virus infection and immune gene expression in honey bees.
Collapse
Affiliation(s)
- Fenali Parekh
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States.,Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, United States.,Pollinator Health Center, Montana State University, Bozeman, MT, United States
| | - Katie F Daughenbaugh
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, United States.,Pollinator Health Center, Montana State University, Bozeman, MT, United States
| | - Michelle L Flenniken
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States.,Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, United States.,Pollinator Health Center, Montana State University, Bozeman, MT, United States
| |
Collapse
|
158
|
Zafar J, Zhang Y, Huang J, Freed S, Shoukat RF, Xu X, Jin F. Spatio-Temporal Profiling of Metarhizium anisopliae-Responsive microRNAs Involved in Modulation of Plutella xylostella Immunity and Development. J Fungi (Basel) 2021; 7:942. [PMID: 34829229 PMCID: PMC8620415 DOI: 10.3390/jof7110942] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/30/2021] [Accepted: 11/01/2021] [Indexed: 02/06/2023] Open
Abstract
Metarhizium anisopliae, a ubiquitous pathogenic fungus, regulates a wide array of the insect pest population. The fungus has been employed to control Plutella xylostella, an insecticide-resistant destructive lepidopteran pest, which causes substantial economic losses in crops worldwide. Integration of modern gene-silencing technologies in pest control strategies has become more crucial to counter pesticide-resistant insects. MicroRNAs (miRNA) play essential roles in the various biological process via post-transcriptional gene regulation. In the present study, RNA-seq analysis of control (CK36h, CK72h) and fungal-infected (T36h, T72h) midguts was performed to reveal underlying molecular mechanisms occurring in larval midgut at different time courses. We aimed at exploring M. anisopliae-responsive miRNAs and their target genes involved in development and immunity. After data filtration, a combined set of 170 miRNAs were identified from all libraries. Interestingly, miR-281, miR-263, miR-1, miR-6094 and miR-8 were listed among the most abundantly expressed conserved miRNAs. Furthermore, we experimentally studied the role of differentially expressed miR-11912-5p in regulating corresponding target trypsin-like serine proteinase (Px_TLSP). The luciferase assay (in vitro) revealed that miRNA-11912-5p significantly downregulated its target gene, suggesting it might play a crucial role in defense mechanism of P. xylostella against M.+ anisopliae infection. We used synthetic miRNA mimic/inhibitor (in vivo), to overexpress/silence miRNA, which showed harmful effects on larval duration, survival and adult fecundity. Additionally, fungal application in the presence of mimics revealed enhanced sensitivity of P. xylostella to infection. Our finding provides an insight into the relatively obscure molecular mechanisms involved in insect midgut during the fungal infection.
Collapse
Affiliation(s)
- Junaid Zafar
- Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (J.Z.); (Y.Z.); (J.H.); (R.F.S.)
| | - Yuxin Zhang
- Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (J.Z.); (Y.Z.); (J.H.); (R.F.S.)
| | - Junlin Huang
- Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (J.Z.); (Y.Z.); (J.H.); (R.F.S.)
| | - Shoaib Freed
- Laboratory of Insect Microbiology and Biotechnology, Department of Entomology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan 66000, Pakistan;
| | - Rana Fartab Shoukat
- Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (J.Z.); (Y.Z.); (J.H.); (R.F.S.)
| | - Xiaoxia Xu
- Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (J.Z.); (Y.Z.); (J.H.); (R.F.S.)
| | - Fengliang Jin
- Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (J.Z.); (Y.Z.); (J.H.); (R.F.S.)
| |
Collapse
|
159
|
Tian X, Su X, Li C, Zhou Y, Li S, Guo J, Fan Q, Lü S, Zhang Y. Draft genome of the blister beetle, Epicauta chinensis. Int J Biol Macromol 2021; 193:1694-1706. [PMID: 34742848 DOI: 10.1016/j.ijbiomac.2021.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/31/2021] [Accepted: 11/01/2021] [Indexed: 01/07/2023]
Abstract
Existence of cantharidin (CTD) in blister beetles is a significant ecological adaptive mechanism that defends against predators and regulates courtship and mating behaviors. To better understand CTD biosynthetic information as well as its biology and pharmacology, we assembled a genome of 151.88 Mb for Epicauta chinensis using PacBio sequencing technology. Gene annotation yielded 249,238 repeats, 527 non-coding RNAs and 12,520 protein-coding genes. Compared to other 11 insects, expansions of gene families in E. chinensis for most core gene families likely associated with environmental adaptation, such as chemoreception, immunity, and detoxification. We further annotated P450s and immune-related genes, a total of 117 putative P450s comprising 7 CYP2, 67 CYP3, 36 CYP4, and 7 mitochondrial P450s and 281 immune-related genes were identified. Comparative analysis of the insect immune repertoires indicated presence of immune genes detected only from Coleopteran insects such as MD2-like. This suggested a lineage-specific gene evolution for Coleopteran insects. Based on the gene family evolution analysis, we identified two probable candidate genes including CYP4TT1 and phytanoyl-CoA dioxygenase for CTD biosynthesis. The high-quality reference genome of E. chinensis provides the genetic basis for further investigation of CTD biosynthesis and in-depth studies of the development and evolution of blister beetles.
Collapse
Affiliation(s)
- Xing Tian
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xinxin Su
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chenjing Li
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yifei Zhou
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shuying Li
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiamin Guo
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qiqi Fan
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shumin Lü
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Yalin Zhang
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
160
|
Schmid-Hempel P. Sociality and parasite transmission. Behav Ecol Sociobiol 2021; 75:156. [PMID: 34720348 PMCID: PMC8540878 DOI: 10.1007/s00265-021-03092-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 11/18/2022]
Abstract
Parasites and their social hosts form many different relationships. But what kind of selection regimes are important? A look at the parameters that determine fitness of the two parties suggests that social hosts differ from solitary ones primarily in the structure of transmission pathways. Because transmission is, both, the physical encounter of a new host and infecting it, several different elements determine parasite transmission success. These include spatial distance, genetic distance, or the temporal and ecological niche overlaps. Combing these elements into a ‘generalized transmission distance’ that determines parasite fitness aids in the identification of the critical steps. For example, short-distance transmission to genetically similar hosts within the social group is the most frequent process under sociality. Therefore, spatio-genetical distances are the main driver of parasite fitness. Vice versa, the generalized distance identifies the critical host defences. In this case, host defences should be primarily selected to defend against the within-group spread of an infection, especially among closely related group members.
Collapse
Affiliation(s)
- Paul Schmid-Hempel
- Institute of Integrative Biology (IBZ), ETH Zürich, ETH-Zentrum CHN, Universitätstrasse 16, CH-8092 Zürich, Switzerland
| |
Collapse
|
161
|
El Khoury S, Gauthier J, Bouslama S, Cheaib B, Giovenazzo P, Derome N. Dietary Contamination with a Neonicotinoid (Clothianidin) Gradient Triggers Specific Dysbiosis Signatures of Microbiota Activity along the Honeybee ( Apis mellifera) Digestive Tract. Microorganisms 2021; 9:microorganisms9112283. [PMID: 34835409 PMCID: PMC8619528 DOI: 10.3390/microorganisms9112283] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 12/14/2022] Open
Abstract
Pesticides are increasing honeybee (Apis mellifera) death rates globally. Clothianidin neonicotinoid appears to impair the microbe–immunity axis. We conducted cage experiments on newly emerged bees that were 4–6 days old and used a 16S rRNA metataxonomic approach to measure the impact of three sublethal clothianidin concentrations (0.1, 1 and 10 ppb) on survival, sucrose syrup consumption and gut microbiota community structure. Exposure to clothianidin significantly increased mortality in the three concentrations compared to controls. Interestingly, the lowest clothianidin concentration was associated with the highest mortality, and the medium concentration with the highest food intake. Exposure to clothianidin induced significant variation in the taxonomic distribution of gut microbiota activity. Co-abundance network analysis revealed local dysbiosis signatures specific to each gut section (midgut, ileum and rectum) were driven by specific taxa. Our findings confirm that exposure to clothianidin triggers a reshuffling of beneficial strains and/or potentially pathogenic taxa within the gut, suggesting a honeybee’s symbiotic defense systems’ disruption, such as resistance to microbial colonization. This study highlights the role of weak transcriptional activity taxa in maintaining a stable honeybee gut microbiota. Finally, the early detection of gut dysbiosis in honeybees is a promising biomarker in hive management for assessing the impact exposure to sublethal xenobiotics.
Collapse
Affiliation(s)
- Sarah El Khoury
- Department of Biology, Laval University, Québec, QC G1V 0A6, Canada; (S.E.K.); (J.G.); (S.B.); (P.G.)
- Institut de Biologie Intégrative et des Systèmes (IBIS), Laval University, Québec, QC G1V 0A6, Canada
| | - Jeff Gauthier
- Department of Biology, Laval University, Québec, QC G1V 0A6, Canada; (S.E.K.); (J.G.); (S.B.); (P.G.)
- Institut de Biologie Intégrative et des Systèmes (IBIS), Laval University, Québec, QC G1V 0A6, Canada
| | - Sidki Bouslama
- Department of Biology, Laval University, Québec, QC G1V 0A6, Canada; (S.E.K.); (J.G.); (S.B.); (P.G.)
- Institut de Biologie Intégrative et des Systèmes (IBIS), Laval University, Québec, QC G1V 0A6, Canada
| | - Bachar Cheaib
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK;
| | - Pierre Giovenazzo
- Department of Biology, Laval University, Québec, QC G1V 0A6, Canada; (S.E.K.); (J.G.); (S.B.); (P.G.)
| | - Nicolas Derome
- Department of Biology, Laval University, Québec, QC G1V 0A6, Canada; (S.E.K.); (J.G.); (S.B.); (P.G.)
- Institut de Biologie Intégrative et des Systèmes (IBIS), Laval University, Québec, QC G1V 0A6, Canada
- Correspondence:
| |
Collapse
|
162
|
Morfin N, Anguiano-Baez R, Guzman-Novoa E. Honey Bee (Apis mellifera) Immunity. Vet Clin North Am Food Anim Pract 2021; 37:521-533. [PMID: 34689918 DOI: 10.1016/j.cvfa.2021.06.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
At the individual level, honey bees (Apis mellifera) rely on innate immunity, which operates through cellular and humoral mechanisms, to defend themselves against infectious agents and parasites. At the colony level, honey bees have developed collective defense mechanisms against pathogens and pests, such as hygienic and grooming behaviors. An understanding of the immune responses of honey bees is critical to implement strategies to reduce mortality and increase colony productivity. The major components and mechanisms of individual and social immunity of honey bees are discussed in this review.
Collapse
Affiliation(s)
- Nuria Morfin
- Research Associate, University of Guelph, School of Environmental Sciences, 50 Stone Road East, N1G 2W1, Guelph, Ontario, Canada.
| | - Ricardo Anguiano-Baez
- Adjunct Professor, National Autonomous University of Mexico, Av. Universidad #3000, CU, Coyoacán, 04510, Mexico City, Mexico. https://twitter.com/richybat
| | - Ernesto Guzman-Novoa
- Professor and Head of the Honey Bee Research Centre, University of Guelph, School of Environmental Sciences, 50 Stone Road East, N1G 2W1, Guelph, Ontario, Canada
| |
Collapse
|
163
|
Luz GFD, Santana WC, Santos CG, Medeiros Santana L, Serrão JE. Cuticle melanization and the expression of immune-related genes in the honeybee Apis mellifera (Hymenoptera: Apidae) adult workers. Comp Biochem Physiol B Biochem Mol Biol 2021; 257:110679. [PMID: 34673246 DOI: 10.1016/j.cbpb.2021.110679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 10/07/2021] [Accepted: 10/12/2021] [Indexed: 10/20/2022]
Abstract
The global decline of bee populations has several factors, including pathogens, which need overcome the insect defenses such as the physical barriers, the body cuticle and peritrophic matrix (primary defenses), as well as the secondary defenses with antimicrobial peptides (AMPs) and the enzyme lysozyme. The regulation of immune defenses according to the infection risks raises questions about the immunity of social bees due to their exposition to different pathogens pressures during the adult lifespan and tasks performed. This study evaluated the primary (body cuticle melanization, peritrophic matrix and cpr14 expression) and secondary (AMPs and lysozyme expression) defenses of the honeybee Apis mellifera workers according to the age and tasks. The expression of malvolio was used to detect precocious forage tasks outside the colony. Forager workers have higher amount of cuticular melanization in the body cuticle than nurse, but not when the age effect is retired, indicating the gradual acquisition of this compound in the integument of adult bees. The relative value of chitin in the peritrophic matrix and cpr14 mRNA are similar in all bees evaluated, suggesting that these components of primary defenses do not change according to the task and age. Differential expression of genes for AMPs in workers performing different tasks, within the same age group, indicates that the behavior stimulates expression of genes related to secondary immune defense. The expression of malvolio gene, accelerating the change in workers behavior, and those related to immune defense suggest the investment in secondary defense mechanisms when the primary defense of the body cuticle is not yet completed.
Collapse
Affiliation(s)
- Geisyane Franco da Luz
- Departamento de Biologia Geral/BIOAGRO, Universidade Federal de Viçosa, 36570-000 Viçosa, Brazil
| | | | | | - Luanda Medeiros Santana
- Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Viçosa, 38810-000 Rio Paranaíba, Brazil
| | - José Eduardo Serrão
- Departamento de Biologia Geral/BIOAGRO, Universidade Federal de Viçosa, 36570-000 Viçosa, Brazil.
| |
Collapse
|
164
|
Effects of Agaricus bisporus Mushroom Extract on Honey Bees Infected with Nosema ceranae. INSECTS 2021; 12:insects12100915. [PMID: 34680684 PMCID: PMC8541333 DOI: 10.3390/insects12100915] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 02/06/2023]
Abstract
Simple Summary Nosema ceranae affects honey bee (Apis mellifera L.) causing nosemosis disease that often induces serious problems in apiculture. Antibiotic fumagillin is the only licenced treatment against nosemosis, but its effectiveness is questioned and its usage associated with risk of bee mortality and appearance of residues in bee products. In search for alternative treatment for the control of nosemosis, water crude extract of Agaricus bisporus was tested on bees in laboratory (cage) experiments. Bee survival and food consumption were monitored together with Nosema infection level and expression of five genes (abaecin, hymenoptaecin, defensin, apidaecin, and vitellogenin) were evaluated in bees sampled on days 7 and 15. Apart from the gene for defensin, the expression of all tested genes was up-regulated in bees supplemented with A. bisporus extract. Both anti-Nosema and immune protective effects of A. bisporus extract were observed when supplementation started at the moment of N. ceranae infection or preventively (before or simultaneously with the Nosema infection). Abstract Agaricus bisporus water crude extract was tested on honey bees for the first time. The first part of the cage experiment was set for selecting one concentration of the A. bisporus extract. Concentration of 200 µg/g was further tested in the second part of the experiment where bee survival and food consumption were monitored together with Nosema infection level and expression of five genes (abaecin, hymenoptaecin, defensin, apidaecin, and vitellogenin) that were evaluated in bees sampled on days 7 and 15. Survival rate of Nosema-infected bees was significantly greater in groups fed with A. bisporus-enriched syrup compared to those fed with a pure sucrose syrup. Besides, the anti-Nosema effect of A. bisporus extract was greatest when applied from the third day which coincides with the time of infection with N. ceranae. Daily food consumption did not differ between the groups indicating good acceptability and palatability of the extract. A. bisporus extract showed a stimulative effect on four out of five monitored genes. Both anti-Nosema and nutrigenomic effects of A. bisporus extract were observed when supplementation started at the moment of N. ceranae infection or preventively (before or simultaneously with the infection).
Collapse
|
165
|
Geng T, Lu F, Zhu F, Wang S. Lineage-specific gene evolution of innate immunity in Bombyx mori to adapt to challenge by pathogens, especially entomopathogenic fungi. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 123:104171. [PMID: 34118279 DOI: 10.1016/j.dci.2021.104171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 06/12/2023]
Abstract
Bombyx mori is a model species of Lepidoptera, in which 21 gene families and 220 genes have been identified as involved in immunity. However, only 45 B. mori - Drosophila melanogaster - Anopheles gambiae - Apis mellifera - Tribolium castaneum 1:1:1:1:1 orthologous genes were identified. B. mori has unique immune factors not found in D. melanogaster - A. gambiae - A. mellifera - T. castaneum. Pattern recognition receptors, signal transducers and effector genes for antifungal immune responses in B. mori have evolved through expansion and modification of existing genes. This review summarizes the current knowledge of the antifungal immune responses of B. mori and focuses on the lineage-specific gene evolution used by Lepidoptera to adapt to the challenge by pathogens, especially entomopathogenic fungi.
Collapse
Affiliation(s)
- Tao Geng
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; Sericulture Research Center, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
| | - Fuping Lu
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; Sericulture Research Center, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
| | - Feng Zhu
- College of Life Sciences, Zaozhuang University, Zaozhuang, 277160, China.
| | - Shuchang Wang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; Sericulture Research Center, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
| |
Collapse
|
166
|
Effect of feeding chitosan or peptidoglycan on Nosema ceranae infection and gene expression related to stress and the innate immune response of honey bees (Apis mellifera). J Invertebr Pathol 2021; 185:107671. [PMID: 34563551 DOI: 10.1016/j.jip.2021.107671] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/08/2021] [Accepted: 09/17/2021] [Indexed: 11/23/2022]
Abstract
Nosema ceranae is a microsporidian parasite that causes nosema disease, an infection of the honey bee (Apis mellifera) midgut. Two pathogen-associated molecular patterns (PAMPs), chitosan and peptidoglycan, and N. ceranae spores were fed to worker bees in sucrose syrup and compared to non-inoculated and N. ceranae-inoculated bees without PAMPs. Both chitosan and peptidoglycan significantly increased bee survivorship and reduced spore numbers due to N. ceranae infection. To determine if these results were related to changes in health status, expression of the immune-related genes, hymenoptaecin and defensin2, and the stress tolerance-related gene, blue cheese, was compared to that of control bees. Compared to the inoculated control, bees with the dose of chitosan that significantly reduced N. ceranae spore numbers showed lower expression of hymenoptaecin and defensin2 early after infection, higher expression mid-infection of defensin2 and lower expression of all three genes late in infection. In contrast, higher expression of defensin2 early in the infection and all three genes late in the infection was observed with peptidoglycan treatment. Changes late in the parasite multiplication stage when mature spores would be released from ruptured host cells are less likely to have contributed to reduced spore production. Based on these results, it is concluded that feeding bees chitosan or peptidoglycan can reduce N. ceranae infection, which is at least partially related to altering the health of the bee by inducing immune and stress-related gene expression.
Collapse
|
167
|
Bach DM, Holzman MA, Wague F, Miranda JL, Lopatkin AJ, Mansfield JH, Snow JW. Thermal stress induces tissue damage and a broad shift in regenerative signaling pathways in the honey bee digestive tract. J Exp Biol 2021; 224:272039. [PMID: 34477881 DOI: 10.1242/jeb.242262] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 08/19/2021] [Indexed: 11/20/2022]
Abstract
Honey bee colonies in the USA have suffered from increased die-off in the last few years with a complex set of interacting stresses playing a key role. With changing climate, an increase in the frequency of severe weather events, such as heat waves, is anticipated. Understanding how these changes may contribute to stress in honey bees is crucial. Individual honey bees appear to have a high capacity to endure thermal stress. One reason for this high-level endurance is likely their robust heat shock response (HSR), which contributes to thermotolerance at the cellular level. However, less is known about other mechanisms of thermotolerance, especially those operating at the tissue level. To elucidate other determinants of resilience in this species, we used thermal stress coupled with RNAseq and identified broad transcriptional remodeling of a number of key signaling pathways in the honey bee, including those pathways known to be involved in digestive tract regeneration in the fruit fly such as the Hippo and JAK/STAT pathways. We also observed cell death and shedding of epithelial cells, which likely leads to induction of this regenerative transcriptional program. We found that thermal stress affects many of these pathways in other tissues, suggesting a shared program of damage response. This study provides important foundational characterization of the tissue damage response program in this key pollinating species. In addition, our data suggest that a robust regeneration program may also be a critical contributor to thermotolerance at the tissue level, a possibility which warrants further exploration in this and other species.
Collapse
Affiliation(s)
- Dunay M Bach
- Biology Department, Barnard College, New York, NY 10027, USA
| | | | - Fatoumata Wague
- Biology Department, Barnard College, New York, NY 10027, USA
| | - Jj L Miranda
- Biology Department, Barnard College, New York, NY 10027, USA
| | - Allison J Lopatkin
- Biology Department, Barnard College, New York, NY 10027, USA.,Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY 10027, USA.,Data Science Institute , Columbia University, New York, NY 10027, USA
| | | | - Jonathan W Snow
- Biology Department, Barnard College, New York, NY 10027, USA
| |
Collapse
|
168
|
Zhang Y, Su M, Wang L, Huang S, Su S, Huang WF. Vairimorpha ( Nosema) ceranae Infection Alters Honey Bee Microbiota Composition and Sustains the Survival of Adult Honey Bees. BIOLOGY 2021; 10:biology10090905. [PMID: 34571782 PMCID: PMC8464679 DOI: 10.3390/biology10090905] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/02/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary The gut microbiota, in addition to the hosts and the pathogens, has become the third factor involved in gut disease developments, including honey bees. Interestingly, various studies reported positive associations between the gut bacteria and the most commonly found microsporidian pathogen instead of negative associations. To investigate the positive associations, a prebiotic that also exists in honey was added in the trials. Bees fed the prebiotics have slightly higher pathogen counts but lower mortalities. Microbiota analyses suggested that bees with the infection have a microbiota composition similar to that of bees with a longer lifespan, and the prebiotic seemed to enhance the similarities. Since microsporidia typically cause chronic infections, the positive associations may serve to sustain the host lifespans which is the optimal outcome for the pathogen that the survived bees can withstand pathogen proliferation and transmit the pathogens. Although the mechanisms underlying the associations were not revealed, this study indicated that nosema disease management in bees through changes in microbiota may shorten the lifespans or enhance both the infection and the bee population. Such results have appeared in recent field studies. More studies will be needed for the disease management using bee gut microbiota. Abstract Vairimorpha (Nosema) ceranae is the most common eukaryotic gut pathogen in honey bees. Infection is typically chronic but may result in mortality. Gut microbiota is a factor that was recently noted for gut infectious disease development. Interestingly, studies identified positive, instead of negative, associations between core bacteria of honey bee microbiota and V. ceranae infection. To investigate the effects of the positive associations, we added isomaltooligosaccharide (IMO), a prebiotic sugar also found in honey, to enhance the positive associations, and we then investigated the infection and the gut microbiota alterations using qPCR and 16S rRNA gene sequencing. We found that infected bees fed IMO had significantly higher V. ceranae spore counts but lower mortalities. In microbiota comparisons, V. ceranae infections alone significantly enhanced the overall microbiota population in the honey bee hindgut and feces; all monitored core bacteria significantly increased in the quantities but not all in the population ratios. The microbiota alterations caused by the infection were enhanced with IMO, and these alterations were similar to the differences found in bees that naturally have longer lifespans. Although our results did not clarify the causations of the positive associations between the infections and microbiota, the associations seemed to sustain the host survival and benefit the pathogen. Enhancing indigenous gut microbe to control nosema disease may result in an increment of bee populations but not the control of the pathogen. This interaction between the pathogen and microbiota potentially enhances disease transmission and avoids the social immune responses that diseased bees die prematurely to curb the disease from spreading within colonies.
Collapse
Affiliation(s)
- Yakun Zhang
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (M.S.); (L.W.); (S.H.); (S.S.)
| | - Meiling Su
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (M.S.); (L.W.); (S.H.); (S.S.)
| | - Long Wang
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (M.S.); (L.W.); (S.H.); (S.S.)
| | - Shaokang Huang
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (M.S.); (L.W.); (S.H.); (S.S.)
- Fujian Honey Bee Biology Observation Station, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
| | - Songkun Su
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (M.S.); (L.W.); (S.H.); (S.S.)
| | - Wei-Fone Huang
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (M.S.); (L.W.); (S.H.); (S.S.)
- Fujian Honey Bee Biology Observation Station, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
- Correspondence:
| |
Collapse
|
169
|
Tlak Gajger I, Smodiš Škerl MI, Šoštarić P, Šuran J, Sikirić P, Vlainić J. Physiological and Immunological Status of Adult Honeybees ( Apis mellifera) Fed Sugar Syrup Supplemented with Pentadecapeptide BPC 157. BIOLOGY 2021; 10:891. [PMID: 34571768 PMCID: PMC8467873 DOI: 10.3390/biology10090891] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/01/2021] [Accepted: 09/07/2021] [Indexed: 01/18/2023]
Abstract
Various factors contribute to a decline in diversity and number of bees. Here, an integrated approach in experimental BPC 157 therapy was implemented, combining laboratory-controlled and field study results. The aim of a study was to assess the effects of BPC 157 additional feeding of newly emerged worker honeybees on few biochemical and immunological parameters in hemolymph (glucose, trehalose, lipids, proteins, vitellogenin, glucose-oxidase (GOX)), and hypopharyngeal gland (HPG), in laboratory-controlled conditions. Additionally, to examine the physiological status of protein digestion, the enzymatic activity of leucine aminopeptidase (LAP) in the mid-guts of worker honeybees was analyzed. It was found that individual honeybees, in hoarding cages, following BPC 157 administration through carbohydrate food, showed positive physiological changes when compared to the control groups. Those results were complemented by strong and visible LAP activity, particularly noticeable in the apical parts of the epithelial cells in the mid-guts of young worker honeybees originated from treated hives, suggesting a link between alternative oral therapy with BPC 157 and honeybees' immunity.
Collapse
Affiliation(s)
- Ivana Tlak Gajger
- Department for Biology and Pathology of Fish and Bees, Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | | | - Petra Šoštarić
- Department for Pharmacology, Medical Faculty, University of Zagreb, 10000 Zagreb, Croatia; (P.Š.); (P.S.)
| | - Jelena Šuran
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia;
| | - Predrag Sikirić
- Department for Pharmacology, Medical Faculty, University of Zagreb, 10000 Zagreb, Croatia; (P.Š.); (P.S.)
| | - Josipa Vlainić
- Laboratory for Advanced Genomics, Division of Molecular Medicine, Institute Ruđer Bošković, 10000 Zagreb, Croatia
| |
Collapse
|
170
|
Galajda R, Valenčáková A, Sučik M, Kandráčová P. Nosema Disease of European Honey Bees. J Fungi (Basel) 2021; 7:jof7090714. [PMID: 34575752 PMCID: PMC8468538 DOI: 10.3390/jof7090714] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 11/17/2022] Open
Abstract
Nosematosis is currently a frequently discussed honey bee disease caused by two types of Microsporidia: Nosema apis and Nosema ceranae. Nosematosis as an intestinal disease caused by these species is one of the main factors associated with the weakening and loss of hives, with none of the stressors acting in isolation and all having an important synergistic or additive effect on the occurrence of parasitic infection. The most important factors are exposure to pesticides and nutritional stress, both worsening the immune response. Honey bees Apis mellifera become more susceptible to parasites and subsequently the disease manifests itself. Choosing the right laboratory diagnostics is important to determine the prevalence of both species. Our review summarizes the most commonly used methodologies, especially polymerase chain reaction (PCR), which is a reliable method for detecting nosematosis, as well as for distinguishing between the two species causing the disease.
Collapse
|
171
|
Xing W, Zhou D, Long Q, Sun M, Guo R, Wang L. Immune Response of Eastern Honeybee Worker to Nosema ceranae Infection Revealed by Transcriptomic Investigation. INSECTS 2021; 12:insects12080728. [PMID: 34442293 PMCID: PMC8396959 DOI: 10.3390/insects12080728] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/29/2021] [Accepted: 08/05/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary Currently, knowledge regarding Apis cerana–Nosema ceranae interaction is very limited, though A. cerana is the original host of N. ceranae. Apis cerana cerana is a subspecies of A. cerana and a major bee species used in the beekeeping industry in China and other countries. Here, the effective infection of A. c. cerana workers by N. ceranae was verified, followed by transcriptomic investigation of host responses. Furthermore, immune responses between A. c. cerana and Apis mellifera ligustica were deeply compared and discussed. In total, 1127 and 957 N. ceranae-responsive genes were identified in the infected midguts at 7 d post-inoculation (dpi) and 10 dpi, respectively. Additionally, DEGs in workers’ midguts at both 7 dpi and 10 dpi were associated with six cellular immune pathways and three humoral immune pathways. Noticeably, one up-regulated gene was enriched in the NF-κB signaling pathway in the midgut at 10 dpi. Further analysis indicated that different cellular and humoral immune responses were employed by A. c. cerana and A. m. ligustica workers to combat N. ceranae. Our findings provide a foundation for clarifying the mechanisms regulating the immune response of A. c. cerana workers to N. ceranae invasion and developing new approaches to control bee microsporidiosis. Abstract Here, a comparative transcriptome investigation was conducted based on high-quality deep sequencing data from the midguts of Apis cerana cerana workers at 7 d post-inoculation (dpi) and 10 dpi with Nosema ceranae and corresponding un-inoculated midguts. PCR identification and microscopic observation of paraffin sections confirmed the effective infection of A. c. cerana worker by N. ceranae. In total, 1127 and 957 N. ceranae-responsive genes were identified in the infected midguts at 7 dpi and 10 dpi, respectively. RT-qPCR results validated the reliability of our transcriptome data. GO categorization indicated the differentially expressed genes (DEGs) were respectively engaged in 34 and 33 functional terms associated with biological processes, cellular components, and molecular functions. Additionally, KEGG pathway enrichment analysis showed that DEGs at 7 dpi and 10 dpi could be enriched in 231 and 226 pathways, respectively. Moreover, DEGs in workers’ midguts at both 7 dpi and 10 dpi were involved in six cellular immune pathways such as autophagy and phagosome and three humoral immune pathways such as the Toll/Imd signaling pathway and Jak-STAT signaling pathway. In addition, one up-regulated gene (XM_017055397.1) was enriched in the NF-κB signaling pathway in the workers’ midgut at 10 dpi. Further investigation suggested the majority of these DEGs were engaged in only one immune pathway, while a small number of DEGs were simultaneously involved in two immune pathways. These results together demonstrated that the overall gene expression profile in host midgut was altered by N. ceranae infection and some of the host immune pathways were induced to activation during fungal infection, whereas some others were suppressed via host–pathogen interaction. Our findings offer a basis for clarification of the mechanism underlying the immune response of A. c. cerana workers to N. ceranae infection, but also provide novel insights into eastern honeybee-microsporodian interaction.
Collapse
Affiliation(s)
- Wenhao Xing
- College of Animal Science, Guizhou University, Guiyang 550025, China;
| | - Dingding Zhou
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (D.Z.); (Q.L.); (M.S.)
| | - Qi Long
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (D.Z.); (Q.L.); (M.S.)
| | - Minghui Sun
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (D.Z.); (Q.L.); (M.S.)
| | - Rui Guo
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (D.Z.); (Q.L.); (M.S.)
- Apitherapy Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence: ; Tel./Fax: +86-0591-8764-0197
| | - Limei Wang
- Dongying Vocational Institute, Dongying 257000, China;
| |
Collapse
|
172
|
Henriques D, Lopes AR, Chejanovsky N, Dalmon A, Higes M, Jabal-Uriel C, Le Conte Y, Reyes-Carreño M, Soroker V, Martín-Hernández R, Pinto MA. A SNP assay for assessing diversity in immune genes in the honey bee (Apis mellifera L.). Sci Rep 2021; 11:15317. [PMID: 34321557 PMCID: PMC8319136 DOI: 10.1038/s41598-021-94833-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/12/2021] [Indexed: 02/07/2023] Open
Abstract
With a growing number of parasites and pathogens experiencing large-scale range expansions, monitoring diversity in immune genes of host populations has never been so important because it can inform on the adaptive potential to resist the invaders. Population surveys of immune genes are becoming common in many organisms, yet they are missing in the honey bee (Apis mellifera L.), a key managed pollinator species that has been severely affected by biological invasions. To fill the gap, here we identified single nucleotide polymorphisms (SNPs) in a wide range of honey bee immune genes and developed a medium-density assay targeting a subset of these genes. Using a discovery panel of 123 whole-genomes, representing seven A. mellifera subspecies and three evolutionary lineages, 180 immune genes were scanned for SNPs in exons, introns (< 4 bp from exons), 3' and 5´UTR, and < 1 kb upstream of the transcription start site. After application of multiple filtering criteria and validation, the final medium-density assay combines 91 quality-proved functional SNPs marking 89 innate immune genes and these can be readily typed using the high-sample-throughput iPLEX MassARRAY system. This medium-density-SNP assay was applied to 156 samples from four countries and the admixture analysis clustered the samples according to their lineage and subspecies, suggesting that honey bee ancestry can be delineated from functional variation. In addition to allowing analysis of immunogenetic variation, this newly-developed SNP assay can be used for inferring genetic structure and admixture in the honey bee.
Collapse
Affiliation(s)
- Dora Henriques
- Centro de Investigação de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
| | - Ana R Lopes
- Centro de Investigação de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
| | - Nor Chejanovsky
- Agricultural Research Organization, The Volcani Center, Rishon LeTsiyon, Israel
| | - Anne Dalmon
- INRAE, Unité Abeilles et Environnement, Avignon, France
| | - Mariano Higes
- IRIAF, Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal, Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental (CIAPA), Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, Marchamalo, Spain
| | - Clara Jabal-Uriel
- IRIAF, Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal, Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental (CIAPA), Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, Marchamalo, Spain
| | - Yves Le Conte
- INRAE, Unité Abeilles et Environnement, Avignon, France
| | | | - Victoria Soroker
- Agricultural Research Organization, The Volcani Center, Rishon LeTsiyon, Israel
| | - Raquel Martín-Hernández
- IRIAF, Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal, Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental (CIAPA), Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, Marchamalo, Spain
- Instituto de Recursos Humanos para la Ciencia y la Tecnología (INCRECYT-FEDER), Fundación Parque Científico y Tecnológico de Castilla-La Mancha, 02006, Albacete, Spain
| | - M Alice Pinto
- Centro de Investigação de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal.
| |
Collapse
|
173
|
Skowronek P, Wójcik Ł, Strachecka A. Cannabis Extract Has a Positive-Immunostimulating Effect through Proteolytic System and Metabolic Compounds of Honey Bee ( Apis mellifera) Workers. Animals (Basel) 2021; 11:2190. [PMID: 34438647 PMCID: PMC8388424 DOI: 10.3390/ani11082190] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 12/27/2022] Open
Abstract
In the study, we assessed the effect of hemp extract on activities of resistance parameters and the metabolic compound concentration in adult workers' hemolymph. Bees were divided into the following groups: (1) control group fed with mixture of sugar and water-glycerine solution, (2) experimental group with pure sugar syrup and inside with cotton strips soaked with hemp extract, (3) experimental group with a mixture of sugar syrup with hemp extract. Hemp extracts caused an increase in the protein concentrations and reduced the protease activities regardless of the administration method. The protease inhibitor activities were decreased only in the group that received hemp extract on the strips. The biomarker activities (ALP, ALT, AST) increased from the control group and workers feeding extract in syrup and decreased in workers supplemented with the extract on strips. In young, 2-day-old workers, the glucose concentration was higher in the groups feeding with the extract than in the control. Hemp extract influenced an increase in urea concentrations in workers' hemolymph in comparison with the control. The hemp supplementation positively influences the immune system of workers, and the appropriate method of administration may be adapted to the health problems of bees.
Collapse
Affiliation(s)
- Patrycja Skowronek
- Department of Zoology and Animal Ecology, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland; (Ł.W.); (A.S.)
| | | | | |
Collapse
|
174
|
Lima LF, Torres AQ, Jardim R, Mesquita RD, Schama R. Evolution of Toll, Spatzle and MyD88 in insects: the problem of the Diptera bias. BMC Genomics 2021; 22:562. [PMID: 34289811 PMCID: PMC8296651 DOI: 10.1186/s12864-021-07886-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/13/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Arthropoda, the most numerous and diverse metazoan phylum, has species in many habitats where they encounter various microorganisms and, as a result, mechanisms for pathogen recognition and elimination have evolved. The Toll pathway, involved in the innate immune system, was first described as part of the developmental pathway for dorsal-ventral differentiation in Drosophila. Its later discovery in vertebrates suggested that this system was extremely conserved. However, there is variation in presence/absence, copy number and sequence divergence in various genes along the pathway. As most studies have only focused on Diptera, for a comprehensive and accurate homology-based approach it is important to understand gene function in a number of different species and, in a group as diverse as insects, the use of species belonging to different taxonomic groups is essential. RESULTS We evaluated the diversity of Toll pathway gene families in 39 Arthropod genomes, encompassing 13 different Insect Orders. Through computational methods, we shed some light into the evolution and functional annotation of protein families involved in the Toll pathway innate immune response. Our data indicates that: 1) intracellular proteins of the Toll pathway show mostly species-specific expansions; 2) the different Toll subfamilies seem to have distinct evolutionary backgrounds; 3) patterns of gene expansion observed in the Toll phylogenetic tree indicate that homology based methods of functional inference might not be accurate for some subfamilies; 4) Spatzle subfamilies are highly divergent and also pose a problem for homology based inference; 5) Spatzle subfamilies should not be analyzed together in the same phylogenetic framework; 6) network analyses seem to be a good first step in inferring functional groups in these cases. We specifically show that understanding Drosophila's Toll functions might not indicate the same function in other species. CONCLUSIONS Our results show the importance of using species representing the different orders to better understand insect gene content, origin and evolution. More specifically, in intracellular Toll pathway gene families the presence of orthologues has important implications for homology based functional inference. Also, the different evolutionary backgrounds of Toll gene subfamilies should be taken into consideration when functional studies are performed, especially for TOLL9, TOLL, TOLL2_7, and the new TOLL10 clade. The presence of Diptera specific clades or the ones lacking Diptera species show the importance of overcoming the Diptera bias when performing functional characterization of Toll pathways.
Collapse
Affiliation(s)
- Letícia Ferreira Lima
- Laboratório de Biologia Computacional e Sistemas, Oswaldo Cruz Foundation, Fiocruz, Rio de Janeiro, Brazil
| | - André Quintanilha Torres
- Laboratório de Biologia Computacional e Sistemas, Oswaldo Cruz Foundation, Fiocruz, Rio de Janeiro, Brazil
| | - Rodrigo Jardim
- Laboratório de Biologia Computacional e Sistemas, Oswaldo Cruz Foundation, Fiocruz, Rio de Janeiro, Brazil
| | - Rafael Dias Mesquita
- Laboratório de Bioinformática, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular-INCT-EM, Rio de Janeiro, Brazil
| | - Renata Schama
- Laboratório de Biologia Computacional e Sistemas, Oswaldo Cruz Foundation, Fiocruz, Rio de Janeiro, Brazil.
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular-INCT-EM, Rio de Janeiro, Brazil.
| |
Collapse
|
175
|
Oeyen JP, Baa-Puyoulet P, Benoit JB, Beukeboom LW, Bornberg-Bauer E, Buttstedt A, Calevro F, Cash EI, Chao H, Charles H, Chen MJM, Childers C, Cridge AG, Dearden P, Dinh H, Doddapaneni HV, Dolan A, Donath A, Dowling D, Dugan S, Duncan E, Elpidina EN, Friedrich M, Geuverink E, Gibson JD, Grath S, Grimmelikhuijzen CJP, Große-Wilde E, Gudobba C, Han Y, Hansson BS, Hauser F, Hughes DST, Ioannidis P, Jacquin-Joly E, Jennings EC, Jones JW, Klasberg S, Lee SL, Lesný P, Lovegrove M, Martin S, Martynov AG, Mayer C, Montagné N, Moris VC, Munoz-Torres M, Murali SC, Muzny DM, Oppert B, Parisot N, Pauli T, Peters RS, Petersen M, Pick C, Persyn E, Podsiadlowski L, Poelchau MF, Provataris P, Qu J, Reijnders MJMF, von Reumont BM, Rosendale AJ, Simao FA, Skelly J, Sotiropoulos AG, Stahl AL, Sumitani M, Szuter EM, Tidswell O, Tsitlakidis E, Vedder L, Waterhouse RM, Werren JH, Wilbrandt J, Worley KC, Yamamoto DS, van de Zande L, Zdobnov EM, Ziesmann T, Gibbs RA, Richards S, Hatakeyama M, Misof B, Niehuis O. Sawfly Genomes Reveal Evolutionary Acquisitions That Fostered the Mega-Radiation of Parasitoid and Eusocial Hymenoptera. Genome Biol Evol 2021; 12:1099-1188. [PMID: 32442304 PMCID: PMC7455281 DOI: 10.1093/gbe/evaa106] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2020] [Indexed: 12/12/2022] Open
Abstract
The tremendous diversity of Hymenoptera is commonly attributed to the evolution of parasitoidism in the last common ancestor of parasitoid sawflies (Orussidae) and wasp-waisted Hymenoptera (Apocrita). However, Apocrita and Orussidae differ dramatically in their species richness, indicating that the diversification of Apocrita was promoted by additional traits. These traits have remained elusive due to a paucity of sawfly genome sequences, in particular those of parasitoid sawflies. Here, we present comparative analyses of draft genomes of the primarily phytophagous sawfly Athalia rosae and the parasitoid sawfly Orussus abietinus. Our analyses revealed that the ancestral hymenopteran genome exhibited traits that were previously considered unique to eusocial Apocrita (e.g., low transposable element content and activity) and a wider gene repertoire than previously thought (e.g., genes for CO2 detection). Moreover, we discovered that Apocrita evolved a significantly larger array of odorant receptors than sawflies, which could be relevant to the remarkable diversification of Apocrita by enabling efficient detection and reliable identification of hosts.
Collapse
Affiliation(s)
- Jan Philip Oeyen
- Center for Molecular Biodiversity Research, Zoologisches Forschungsmuseum Alexander Koenig, Bonn, Germany.,Lead Contact
| | | | | | - Leo W Beukeboom
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, The Netherlands
| | | | - Anja Buttstedt
- B CUBE-Center for Molecular Bioengineering, Technische Universität Dresden, Germany
| | - Federica Calevro
- INSA-Lyon, INRAE, BF2I, UMR0203, Université de Lyon, Villeurbanne, France
| | - Elizabeth I Cash
- School of Life Sciences, College of Liberal Arts and Sciences, Arizona State University.,Department of Environmental Science, Policy, and Management, College of Natural Resources, University of California, Berkeley
| | - Hsu Chao
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, Texas
| | - Hubert Charles
- INSA-Lyon, INRAE, BF2I, UMR0203, Université de Lyon, Villeurbanne, France
| | - Mei-Ju May Chen
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | | | - Andrew G Cridge
- Genomics Aotearoa and Biochemistry Department, University of Otago, Dunedin, New Zealand
| | - Peter Dearden
- Genomics Aotearoa and Biochemistry Department, University of Otago, Dunedin, New Zealand
| | - Huyen Dinh
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, Texas
| | - Harsha Vardhan Doddapaneni
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, Texas
| | | | - Alexander Donath
- Center for Molecular Biodiversity Research, Zoologisches Forschungsmuseum Alexander Koenig, Bonn, Germany
| | - Daniel Dowling
- Institute for Evolution and Biodiversity, University of Münster, Germany
| | - Shannon Dugan
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, Texas
| | - Elizabeth Duncan
- School of Biology, Faculty of Biological Sciences, University of Leeds, United Kingdom
| | - Elena N Elpidina
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Russia
| | - Markus Friedrich
- Department of Biological Sciences, Wayne State University, Detroit
| | - Elzemiek Geuverink
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, The Netherlands
| | - Joshua D Gibson
- Department of Biology, Georgia Southern University, Statesboro.,Department of Entomology, Purdue University, West Lafayette
| | - Sonja Grath
- Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | | | - Ewald Große-Wilde
- Department of Evolutionary Neuroethology, Max-Planck-Institute for Chemical Ecology, Jena, Germany.,Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague (CULS), Praha 6-Suchdol, Czech Republic
| | - Cameron Gudobba
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago
| | - Yi Han
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, Texas
| | - Bill S Hansson
- Department of Evolutionary Neuroethology, Max-Planck-Institute for Chemical Ecology, Jena, Germany
| | - Frank Hauser
- Department of Biology, University of Copenhagen, Denmark
| | - Daniel S T Hughes
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, Texas
| | - Panagiotis Ioannidis
- Department of Genetic Medicine and Development, University of Geneva Medical School, Switzerland.,Swiss Institute of Bioinformatics, Geneva, Switzerland.,Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece
| | - Emmanuelle Jacquin-Joly
- INRAE, CNRS, IRD, UPEC, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, Sorbonne Université, Versailles, France
| | | | - Jeffery W Jones
- Department of Biological Sciences, Oakland University, Rochester
| | - Steffen Klasberg
- Institute for Evolution and Biodiversity, University of Münster, Germany
| | - Sandra L Lee
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, Texas
| | - Peter Lesný
- Institute of Evolutionary Biology and Ecology, Zoology and Evolutionary Biology, University of Bonn, Germany
| | - Mackenzie Lovegrove
- Genomics Aotearoa and Biochemistry Department, University of Otago, Dunedin, New Zealand
| | - Sebastian Martin
- Institute of Evolutionary Biology and Ecology, Zoology and Evolutionary Biology, University of Bonn, Germany
| | | | - Christoph Mayer
- Center for Molecular Biodiversity Research, Zoologisches Forschungsmuseum Alexander Koenig, Bonn, Germany
| | - Nicolas Montagné
- INRAE, CNRS, IRD, UPEC, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, Sorbonne Université, Paris, France
| | - Victoria C Moris
- Department of Evolutionary Biology and Ecology, Institute of Biology I (Zoology), Albert Ludwig University Freiburg, Germany
| | - Monica Munoz-Torres
- Berkeley Bioinformatics Open-source Projects (BBOP), Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California
| | - Shwetha Canchi Murali
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, Texas
| | - Donna M Muzny
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, Texas
| | - Brenda Oppert
- USDA Agricultural Research Service, Center for Grain and Animal Health Research, Manhattan, Kansas
| | - Nicolas Parisot
- INSA-Lyon, INRAE, BF2I, UMR0203, Université de Lyon, Villeurbanne, France
| | - Thomas Pauli
- Department of Evolutionary Biology and Ecology, Institute of Biology I (Zoology), Albert Ludwig University Freiburg, Germany
| | - Ralph S Peters
- Arthropoda Department, Center for Taxonomy and Evolutionary Research, Zoologisches Forschungsmuseum Alexander Koenig, Bonn, Germany
| | - Malte Petersen
- Center for Molecular Biodiversity Research, Zoologisches Forschungsmuseum Alexander Koenig, Bonn, Germany.,Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | | | - Emma Persyn
- INRAE, CNRS, IRD, UPEC, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, Sorbonne Université, Paris, France
| | - Lars Podsiadlowski
- Center for Molecular Biodiversity Research, Zoologisches Forschungsmuseum Alexander Koenig, Bonn, Germany
| | | | - Panagiotis Provataris
- Center for Molecular Biodiversity Research, Zoologisches Forschungsmuseum Alexander Koenig, Bonn, Germany
| | - Jiaxin Qu
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, Texas
| | - Maarten J M F Reijnders
- Department of Ecology and Evolution, University of Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Björn Marcus von Reumont
- Institute for Insect Biotechnology, University of Gießen, Germany.,Center for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt, Germany
| | | | - Felipe A Simao
- Department of Genetic Medicine and Development, University of Geneva Medical School, Switzerland.,Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - John Skelly
- Genomics Aotearoa and Biochemistry Department, University of Otago, Dunedin, New Zealand
| | | | - Aaron L Stahl
- Department of Biological Sciences, University of Cincinnati.,Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida
| | - Megumi Sumitani
- Transgenic Silkworm Research Unit, Division of Biotechnology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Owashi, Tsukuba, Japan
| | - Elise M Szuter
- School of Life Sciences, College of Liberal Arts and Sciences, Arizona State University
| | - Olivia Tidswell
- Biochemistry Department, University of Otago, Dunedin, New Zealand.,Zoology Department, University of Cambridge, United Kingdom
| | | | - Lucia Vedder
- Center for Bioinformatics Tübingen (ZBIT), University of Tübingen, Germany
| | - Robert M Waterhouse
- Department of Ecology and Evolution, University of Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | | | - Jeanne Wilbrandt
- Center for Molecular Biodiversity Research, Zoologisches Forschungsmuseum Alexander Koenig, Bonn, Germany.,Computational Biology Group, Leibniz Institute on Aging-Fritz Lipmann Institute, Jena, Germany
| | - Kim C Worley
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, Texas
| | - Daisuke S Yamamoto
- Division of Medical Zoology, Department of Infection and Immunity, Jichi Medical University, Yakushiji, Shimotsuke, Japan
| | - Louis van de Zande
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, The Netherlands
| | - Evgeny M Zdobnov
- Department of Genetic Medicine and Development, University of Geneva Medical School, Switzerland.,Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Tanja Ziesmann
- Center for Molecular Biodiversity Research, Zoologisches Forschungsmuseum Alexander Koenig, Bonn, Germany
| | - Richard A Gibbs
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, Texas
| | - Stephen Richards
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, Texas
| | - Masatsugu Hatakeyama
- Insect Genome Research and Engineering Unit, Division of Applied Genetics, Institute of Agrobiological Sciences, NARO, Owashi, Tsukuba, Japan
| | - Bernhard Misof
- Center for Molecular Biodiversity Research, Zoologisches Forschungsmuseum Alexander Koenig, Bonn, Germany
| | - Oliver Niehuis
- Department of Evolutionary Biology and Ecology, Institute of Biology I (Zoology), Albert Ludwig University Freiburg, Germany
| |
Collapse
|
176
|
Power K, Martano M, Altamura G, Piscopo N, Maiolino P. Histopathological Features of Symptomatic and Asymptomatic Honeybees Naturally Infected by Deformed Wing Virus. Pathogens 2021; 10:pathogens10070874. [PMID: 34358025 PMCID: PMC8308782 DOI: 10.3390/pathogens10070874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 12/20/2022] Open
Abstract
Deformed wing virus (DWV) is capable of infecting honeybees at every stage of development causing symptomatic and asymptomatic infections. To date, very little is known about the histopathological lesions caused by the virus. Therefore, 40 honeybee samples were randomly collected from a naturally DWV infected hive and subjected to anatomopathological examination to discriminate between symptomatic (29) and asymptomatic (11) honeybees. Subsequently, 15 honeybee samples were frozen at -80° and analyzed by PCR and RTqPCR to determinate the presence/absence of the virus and the relative viral load, while 25 honeybee samples were analyzed by histopathological techniques. Biomolecular results showed a fragment of the expected size (69bp) of DWV in all samples and the viral load was higher in symptomatic honeybees compared to the asymptomatic group. Histopathological results showed degenerative alterations of the hypopharyngeal glands (19/25) and flight muscles (6/25) in symptomatic samples while 4/25 asymptomatic samples showed an inflammatory response in the midgut and the hemocele. Results suggest a possible pathogenic action of DWV in both symptomatic and asymptomatic honeybees, and a role of the immune response in keeping under control the virus in asymptomatic individuals.
Collapse
|
177
|
Developmental environment shapes honeybee worker response to virus infection. Sci Rep 2021; 11:13961. [PMID: 34234217 PMCID: PMC8263599 DOI: 10.1038/s41598-021-93199-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 06/18/2021] [Indexed: 11/08/2022] Open
Abstract
The consequences of early-life experiences are far reaching. In particular, the social and nutritional environments that developing animals experience can shape their adult phenotypes. In honeybees, larval nutrition determines the eventual social roles of adults as reproductive queens or sterile workers. However, little is known about the effects of developmental nutrition on important adult worker phenotypes such as disease resilience. In this study, we manipulated worker developmental nutrition in two distinct ways under semi-natural field conditions. In the first experiment, we restricted access to nutrition via social isolation by temporarily preventing alloparental care. In the second experiment, we altered the diet quality experienced by the entire colony, leading to adult bees that had developed entirely in a nutritionally restricted environment. When bees from these two experiments reached the adult stage, we challenged them with a common bee virus, Israeli acute paralysis virus (IAPV) and compared mortality, body condition, and the expression of immune genes across diet and viral inoculation treatments. Our findings show that both forms of early life nutritional stress, whether induced by lack of alloparental care or diet quality restriction, significantly reduced bees' resilience to virus infection and affected the expression of several key genes related to immune function. These results extend our understanding of how early life nutritional environment can affect phenotypes relevant to health and highlight the importance of considering how nutritional stress can be profound even when filtered through a social group. These results also provide important insights into how nutritional stress can affect honeybee health on a longer time scale and its potential to interact with other forms of stress (i.e. disease).
Collapse
|
178
|
Panjad P, Yongsawas R, Sinpoo C, Pakwan C, Subta P, Krongdang S, In-on A, Chomdej S, Chantawannakul P, Disayathanoowat T. Impact of Nosema Disease and American Foulbrood on Gut Bacterial Communities of Honeybees Apis mellifera. INSECTS 2021; 12:insects12060525. [PMID: 34204079 PMCID: PMC8227250 DOI: 10.3390/insects12060525] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 12/21/2022]
Abstract
Honeybees, Apis mellifera, are important pollinators of many economically important crops. However, one of the reasons for their decline is pathogenic infection. Nosema disease and American foulbrood (AFB) disease are the most common bee pathogens that propagate in the gut of honeybees. This study investigated the impact of gut-propagating pathogens, including Nosema ceranae and Paenibacillus larvae, on bacterial communities in the gut of A. mellifera using 454-pyrosequencing. Pyrosequencing results showed that N. ceranae was implicated in the elimination of Serratia and the dramatic increase in Snodgrassella and Bartonella in adult bees' guts, while bacterial communities of P. larvae-infected larvae were not affected by the infection. The results indicated that only N. ceranae had an impact on some core bacteria in the gut of A. mellifera through increasing core gut bacteria, therefore leading to the induction of dysbiosis in the bees' gut.
Collapse
Affiliation(s)
- Poonnawat Panjad
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (P.P.); (R.Y.); (C.S.); (C.P.); (P.S.); (S.C.); (P.C.)
| | - Rujipas Yongsawas
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (P.P.); (R.Y.); (C.S.); (C.P.); (P.S.); (S.C.); (P.C.)
| | - Chainarong Sinpoo
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (P.P.); (R.Y.); (C.S.); (C.P.); (P.S.); (S.C.); (P.C.)
| | - Chonthicha Pakwan
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (P.P.); (R.Y.); (C.S.); (C.P.); (P.S.); (S.C.); (P.C.)
| | - Phakamas Subta
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (P.P.); (R.Y.); (C.S.); (C.P.); (P.S.); (S.C.); (P.C.)
| | - Sasiprapa Krongdang
- Faculty of Science and Social Sciences, Burapha University Sakaeo Campus, Sakaeo 27160, Thailand;
| | - Ammarin In-on
- Bioinformatics & Systems Biology Program, King Mongkut’s University of Technology Thonburi (Bang Khun Thian Campus), Bang Khun Thian, Bangkok 10150, Thailand;
| | - Siriwadee Chomdej
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (P.P.); (R.Y.); (C.S.); (C.P.); (P.S.); (S.C.); (P.C.)
- Center of Excellence in Bioresources for Agriculture, Industry and Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Panuwan Chantawannakul
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (P.P.); (R.Y.); (C.S.); (C.P.); (P.S.); (S.C.); (P.C.)
- Center of Excellence in Bioresources for Agriculture, Industry and Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Terd Disayathanoowat
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (P.P.); (R.Y.); (C.S.); (C.P.); (P.S.); (S.C.); (P.C.)
- Center of Excellence in Bioresources for Agriculture, Industry and Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: ; Tel.: +66-81-7249624
| |
Collapse
|
179
|
Dai J, Shu R, Liu J, Xia J, Jiang X, Zhao P. Transcriptome analysis of Apis mellifera under benomyl stress to discriminate the gene expression in response to development and immune systems. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2021; 56:594-605. [PMID: 34082650 DOI: 10.1080/03601234.2021.1930795] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The health and safety of the honeybees are seriously threatened due to the abuse of chemical pesticides in modern agriculture and apiculture. In this study, the RNA Seq approach was used to assess the effects of the honeybees treated with benomyl. The results showed that there were a total of 11,902 differentially expressed genes (DEGs). Among them, 5,759 DEGs were up-regulated and involved in the functions of immunity, detoxification, biological metabolism, and regulation. The DEGs were clustered in the GO terms of epidermal structure and response to external stimuli, and most of the DEGs were enriched in 15 pathways, such as light conduction, MAPK, calcium ion pathway, and so on. Moreover, the pathway of the toll signal transduction was activated. The data investigated that the expression of functional genes involved in the growth, development, foraging, and immunity of honeybees were significantly affected by benomyl stress, which would seriously threaten the health of the honeybees. This study provided a theoretical basis for revealing the response mechanism of honeybees to pesticides stress.
Collapse
Affiliation(s)
- Junjun Dai
- Sericultural Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Rui Shu
- Sericultural Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Jian Liu
- Sericultural Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Jiafeng Xia
- Sericultural Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Xiasen Jiang
- Sericultural Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Ping Zhao
- Sericultural Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| |
Collapse
|
180
|
Guo Y, Zhang Z, Zhuang M, Wang L, Li K, Yao J, Yang H, Huang J, Hao Y, Ying F, Mannan H, Wu J, Chen Y, Li J. Transcriptome Profiling Reveals a Novel Mechanism of Antiviral Immunity Upon Sacbrood Virus Infection in Honey Bee Larvae ( Apis cerana). Front Microbiol 2021; 12:615893. [PMID: 34149631 PMCID: PMC8208235 DOI: 10.3389/fmicb.2021.615893] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 04/30/2021] [Indexed: 12/13/2022] Open
Abstract
The honey bee is one of the most important pollinators in the agricultural system and is responsible for pollinating a third of all food we eat. Sacbrood virus (SBV) is a member of the virus family Iflaviridae and affects honey bee larvae and causes particularly devastating disease in the Asian honey bees, Apis cerana. Chinese Sacbrood virus (CSBV) is a geographic strain of SBV identified in China and has resulted in mass death of honey bees in China in recent years. However, the molecular mechanism underlying SBV infection in the Asian honey bee has remained unelucidated. In this present study, we employed high throughput next-generation sequencing technology to study the host transcriptional responses to CSBV infection in A. cerana larvae, and were able to identify genome-wide differentially expressed genes associated with the viral infection. Our study identified 2,534 differentially expressed genes (DEGs) involved in host innate immunity including Toll and immune deficiency (IMD) pathways, RNA interference (RNAi) pathway, endocytosis, etc. Notably, the expression of genes encoding antimicrobial peptides (abaecin, apidaecin, hymenoptaecin, and defensin) and core components of RNAi such as Dicer-like and Ago2 were found to be significantly upregulated in CSBV infected larvae. Most importantly, the expression of Sirtuin target genes, a family of signaling proteins involved in metabolic regulation, apoptosis, and intracellular signaling was found to be changed, providing the first evidence of the involvement of Sirtuin signaling pathway in insects’ immune response to a virus infection. The results obtained from this study provide novel insights into the molecular mechanism and immune responses involved in CSBV infection, which in turn will contribute to the development of diagnostics and treatment for the diseases in honey bees.
Collapse
Affiliation(s)
- Yulong Guo
- Key Laboratory of Pollinating Insect Biology of the Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhengyi Zhang
- Key Laboratory of Pollinating Insect Biology of the Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mingsheng Zhuang
- Key Laboratory of Pollinating Insect Biology of the Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China.,Shanghai Suosheng Biotechnology Co., Ltd., Shanghai, China
| | - Liuhao Wang
- Key Laboratory of Pollinating Insect Biology of the Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Resources and Environmental Sciences, Henan Institute of Science and Technology, Xinxiang, China
| | - Kai Li
- Key Laboratory of Pollinating Insect Biology of the Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jun Yao
- Key Laboratory of Pollinating Insect Biology of the Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huipeng Yang
- Key Laboratory of Pollinating Insect Biology of the Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiaxing Huang
- Key Laboratory of Pollinating Insect Biology of the Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yue Hao
- Key Laboratory of Pollinating Insect Biology of the Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fan Ying
- Guizhou Provincial Animal and Poultry Genetic Resources Management Station, Guiyang, China
| | - Hira Mannan
- Department of Entomology, Faculty of Crop Protection, Sindh Agriculture University, Tando Jam, Pakistan
| | - Jie Wu
- Key Laboratory of Pollinating Insect Biology of the Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanping Chen
- United States Department of Agriculture (USD) - Agricultural Research Service (ARS) Bee Research Laboratory, Beltsville, MD, United States
| | - Jilian Li
- Key Laboratory of Pollinating Insect Biology of the Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
181
|
Brudzynski K. Honey as an Ecological Reservoir of Antibacterial Compounds Produced by Antagonistic Microbial Interactions in Plant Nectars, Honey and Honey Bee. Antibiotics (Basel) 2021; 10:551. [PMID: 34065141 PMCID: PMC8151657 DOI: 10.3390/antibiotics10050551] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/07/2021] [Accepted: 05/07/2021] [Indexed: 04/08/2023] Open
Abstract
The fundamental feature of "active honeys" is the presence and concentration of antibacterial compounds. Currently identified compounds and factors have been described in several review papers without broader interpretation or links to the processes for their formation. In this review, we indicate that the dynamic, antagonistic/competitive microbe-microbe and microbe-host interactions are the main source of antibacterial compounds in honey. The microbial colonization of nectar, bees and honey is at the center of these interactions that in consequence produce a range of defence molecules in each of these niches. The products of the microbial interference and exploitive competitions include antimicrobial peptides, antibiotics, surfactants, inhibitors of biofilm formation and quorum sensing. Their accumulation in honey by horizontal transfer might explain honey broad-spectrum, pleiotropic, antibacterial activity. We conclude that honey is an ecological reservoir of antibacterial compounds produced by antagonistic microbial interactions in plant nectars, honey and honey bee. Thus, refocusing research on secondary metabolites resulting from these microbial interactions might lead to discovery of new antibacterial compounds in honey that are target-specific, i.e., acting on specific cellular components or inhibiting the essential cellular function.
Collapse
Affiliation(s)
- Katrina Brudzynski
- Department of Drug Discovery, Bee-Biomedicals Inc., St. Catharines, ON L2T 3T4, Canada;
- Formerly Department of Biological Sciences, Brock University, St. Catharines, ON L2T 3T4, Canada
| |
Collapse
|
182
|
Klett K, Zhang JJ, Zhang YY, Wang Z, Dong S, Tan K. The Nasonov gland pheromone as a potential source of death cue in Apis cerana. JOURNAL OF INSECT PHYSIOLOGY 2021; 131:104238. [PMID: 33839141 DOI: 10.1016/j.jinsphys.2021.104238] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
The ability to detect and remove dead adult bees is an essential part of honeybee colony fitness that prevents the spread of pathogens. Fatty acid olfactory cues stimulate undertaking behavior among different social species within Hymenoptera, but the chemicals responsible for the death cue in Apis cerana have not yet been identified. We explored the Nasonov gland as a potential source of these chemicals in A. cerana. Gas chromatography indicated that unlike A. mellifera, the A. cerana Nasonov gland does not contain any volatile terpenes, only fatty acids. As a bioassay, dead honeybees were rinsed free of their individual cuticular hydrocarbons via dichloromethane and two concentrations of oleic acid and a synthetic blend of the Nasonov pheromone in A. cerana were applied to the dummies. Results showed that oleic acid did not stimulate corpse removal in A. cerana. However, the synthetic pheromone blend of A. cerana Nasonov did stimulate removal.
Collapse
Affiliation(s)
- Katrina Klett
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650000, Yunnan, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun-Jun Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650000, Yunnan, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying-Ying Zhang
- Academy of Animal Science, Zhejiang University, Hangzhou, China
| | - Zhengwei Wang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650000, Yunnan, China
| | - Shihao Dong
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650000, Yunnan, China.
| | - Ken Tan
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650000, Yunnan, China.
| |
Collapse
|
183
|
Lourenço AP, Guidugli-Lazzarini KR, de Freitas NHA, Message D, Bitondi MMG, Simões ZLP, Teixeira ÉW. Immunity and physiological changes in adult honey bees (Apis mellifera) infected with Nosema ceranae: The natural colony environment. JOURNAL OF INSECT PHYSIOLOGY 2021; 131:104237. [PMID: 33831437 DOI: 10.1016/j.jinsphys.2021.104237] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 03/24/2021] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
Nosema ceranae is a microsporidium that infects Apis mellifera, causing diverse physiological and behavioral alterations. Given the existence of individual and social mechanisms to reduce infection and fungal spread in the colony, bees may respond differently to infection depending on their rearing conditions. In this study, we investigated the effect of N. ceranae in honey bee foragers naturally infected with different fungal loads in a tropical region. In addition, we explored the effects of N. ceranae artificially infected young bees placed in a healthy colony under field conditions. Honey bees naturally infected with higher loads of N. ceranae showed downregulation of genes from Toll and IMD immune pathways and antimicrobial peptide (AMP) genes, but hemolymph total protein amount and Vitellogenin (Vg) titers were not affected. Artificially infected bees spread N. ceranae to the controls in the colony, but fungal loads were generally lower than those observed in cages, probably because of social immunity. Although no significant changes in mRNA levels of AMP-encoding were observed, N. ceranae artificially infected bees showed downregulation of miR-989 (an immune-related microRNA), lower vitellogenin gene expression, and decreased hemolymph Vg titers. Our results demonstrate for the first time that natural infection by N. ceranae suppresses the immune system of honey bee foragers in the field. This parasite is detrimental to the immune system of young and old bees, and disease spread, mitigation and containment will depend on the colony environment.
Collapse
Affiliation(s)
- Anete P Lourenço
- Departamento de Ciências Biológicas, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil.
| | - Karina R Guidugli-Lazzarini
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Nayara H A de Freitas
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Dejair Message
- Laboratório Especializado de Sanidade Apícola (LASA), Instituto Biológico, APTA, SAA-SP, Pindamonhangaba, SP, Brazil
| | - Márcia M G Bitondi
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Zilá L P Simões
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Érica W Teixeira
- Laboratório Especializado de Sanidade Apícola (LASA), Instituto Biológico, APTA, SAA-SP, Pindamonhangaba, SP, Brazil
| |
Collapse
|
184
|
Tasman K, Rands SA, Hodge JJL. The Power of Drosophila melanogaster for Modeling Neonicotinoid Effects on Pollinators and Identifying Novel Mechanisms. Front Physiol 2021; 12:659440. [PMID: 33967830 PMCID: PMC8096932 DOI: 10.3389/fphys.2021.659440] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023] Open
Abstract
Neonicotinoids are the most widely used insecticides in the world and are implicated in the widespread population declines of insects including pollinators. Neonicotinoids target nicotinic acetylcholine receptors which are expressed throughout the insect central nervous system, causing a wide range of sub-lethal effects on non-target insects. Here, we review the potential of the fruit fly Drosophila melanogaster to model the sub-lethal effects of neonicotinoids on pollinators, by utilizing its well-established assays that allow rapid identification and mechanistic characterization of these effects. We compare studies on the effects of neonicotinoids on lethality, reproduction, locomotion, immunity, learning, circadian rhythms and sleep in D. melanogaster and a range of pollinators. We also highlight how the genetic tools available in D. melanogaster, such as GAL4/UAS targeted transgene expression system combined with RNAi lines to any gene in the genome including the different nicotinic acetylcholine receptor subunit genes, are set to elucidate the mechanisms that underlie the sub-lethal effects of these common pesticides. We argue that studying pollinators and D. melanogaster in tandem allows rapid elucidation of mechanisms of action, which translate well from D. melanogaster to pollinators. We focus on the recent identification of novel and important sublethal effects of neonicotinoids on circadian rhythms and sleep. The comparison of effects between D. melanogaster and pollinators and the use of genetic tools to identify mechanisms make a powerful partnership for the future discovery and testing of more specific insecticides.
Collapse
Affiliation(s)
- Kiah Tasman
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Sean A. Rands
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - James J. L. Hodge
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
185
|
Sun L, Zhang X, Xu S, Hou C, Xu J, Zhao D, Chen Y. Antiviral Activities of a Medicinal Plant Extract Against Sacbrood Virus in Honeybees. Virol J 2021; 18:83. [PMID: 33882983 PMCID: PMC8059305 DOI: 10.1186/s12985-021-01550-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 04/08/2021] [Indexed: 11/29/2022] Open
Abstract
Background Sacbrood is an infectious disease of the honey bee caused by Scbrood virus (SBV) which belongs to the family Iflaviridae and is especially lethal for Asian honeybee Apis cerana. Chinese Sacbrood virus (CSBV) is a geographic strain of SBV. Currently, there is a lack of an effective antiviral agent for controlling CSBV infection in honey bees. Methods Here, we explored the antiviral effect of a Chinese medicinal herb Radix isatidis on CSBV infection in A. cerana by inoculating the 3rd instar larvae with purified CSBV and treating the infected bee larvae with R. isatidis extract at the same time. The growth, development, and survival of larvae between the control and treatment groups were compared. The CSBV copy number at the 4th instar, 5th instar, and 6th instar larvae was measured by the absolute quantification PCR method. Results Bioassays revealed that R. isatidis extract significantly inhibited the replication of CSBV, mitigated the impacts of CSBV on larval growth and development, reduced the mortality of CSBV-infected A. cerana larvae, and modulated the expression of immune transcripts in infected bees. Conclusion Although the mechanism underlying the inhibition of CSBV replication by the medicine plant will require further investigation, this study demonstrated the antiviral activity of R. isatidis extract and provides a potential strategy for controlling SBV infection in honey bees.
Collapse
Affiliation(s)
- Liping Sun
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, People's Republic of China
| | - Xueqi Zhang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, People's Republic of China.,Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, People's Republic of China.,Apiculture Institute of Jiangxi Province, Nanchang, 330052, People's Republic of China.,Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Beijing, 100093, People's Republic of China
| | - Shufa Xu
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, People's Republic of China.,Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Beijing, 100093, People's Republic of China
| | - Chunsheng Hou
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, People's Republic of China
| | - Jin Xu
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, People's Republic of China.,Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Beijing, 100093, People's Republic of China
| | - Dongxiang Zhao
- Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, People's Republic of China.
| | - Yanping Chen
- USDA-ARS Bee Research Laboratory, Beltsville, MD, 20705, USA.
| |
Collapse
|
186
|
Mogren CL, Shikano I. Microbiota, pathogens, and parasites as mediators of tritrophic interactions between insect herbivores, plants, and pollinators. J Invertebr Pathol 2021; 186:107589. [PMID: 33865846 DOI: 10.1016/j.jip.2021.107589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 01/09/2021] [Accepted: 04/09/2021] [Indexed: 02/05/2023]
Abstract
Insect-associated microbes, including pathogens, parasites, and symbionts, influence the interactions of herbivorous insects and pollinators with their host plants. Moreover, herbivory-induced changes in plant resource allocation and defensive chemistry can influence pollinator behavior. This suggests that the outcomes of interactions between herbivores, their microbes and host plants could have implications for pollinators. As epizootic diseases occur at high population densities, pathogen and parasite-mediated effects on plants could have landscape-level impacts on foraging pollinators. The goal of this minireview is to highlight the potential for an herbivore's multitrophic interactions to trigger plant-mediated effects on the immunity and health of pollinators. We highlight the importance of plant quality and gut microbiomes in bee health, and how caterpillars as model herbivores interact with pathogens, parasites, and symbionts to affect plant quality, which forms the centerpiece of multitrophic interactions between herbivores and pollinators. We also discuss the impacts of other herbivore-associated factors, such as agricultural inputs aimed at decreasing herbivorous pests, on pollinator microbiomes.
Collapse
Affiliation(s)
- Christina L Mogren
- Department of Plant and Environmental Protection Sciences, University of Hawai'i at Mānoa, 3050 Maile Way, Gilmore Hall 310, Honolulu, HI 96822, USA
| | - Ikkei Shikano
- Department of Plant and Environmental Protection Sciences, University of Hawai'i at Mānoa, 3050 Maile Way, Gilmore Hall 310, Honolulu, HI 96822, USA.
| |
Collapse
|
187
|
Huang S, Li J, Zhang Y, Li Z, Evans JD, Rose R, Gilligan TM, LeBrun A, He N, Zheng T, Zhang T, Hamilton M, Chen YP. A novel method for the detection and diagnosis of virus infections in honey bees. J Virol Methods 2021; 293:114163. [PMID: 33864854 DOI: 10.1016/j.jviromet.2021.114163] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/09/2021] [Accepted: 04/11/2021] [Indexed: 11/15/2022]
Abstract
In terms of infectious diseases caused by a variety of microorganisms, the ability to promptly and accurately identify the causative agents is the first step on the path to all types of effective management of such infections. Among the various factors that are affecting global bee health, viruses have often been linked to honey bee colony losses and they pose a serious threat to the fraction of agriculture that depends on the service of pollinators. Over the past few decades, PCR-based molecular methods have provided powerful tools for rapid, specific, and sensitive detection and the quantification of difficult-to-grow pathogenic microorganisms such as viruses in honey bees. However, PCR-based methods require nucleic acid extraction and purification, which can be quite laborious and time-consuming and they involve the use of organic solvents and chaotropic agents like phenol and chloroform which are volatile and highly toxic. In response, we developed a novel and non-sacrificial method for detecting viral infections in honey bees. As little as 1 μl of hemolymph was collected from adult workers, larvae, and queens of bee colonies by puncturing the soft inter-tergal integument between the second and third dorsal tergum with a fine glass capillary. The hemolymph was then diluted and subjected to RT-PCR analysis directly. The puncture wound caused by the glass capillary was found to heal automatically and rapidly without any trouble and the lifespan of the experimental workers remained unaffected. Using this method, we detected multiple viruses including Deformed wing virus (DWV), Black queen cell virus (BQCV), and Sacbrood virus (SBV) in infected bees. Furthermore, expressed transcripts that indicate the induction of innate immune response to the virus infections were also detected in the hemolymph of infected bees. The simplicity and cost-effectiveness of this innovative approach will allow it to be a valuable, time-saving, safer, and more environmentally friendly contribution to bee disease management programs.
Collapse
Affiliation(s)
- Shaokang Huang
- U.S. Department of Agriculture -Agricultural Research Service (USDA-ARS) Bee Research Laboratory, Beltsville, MD 20705, USA; College of Animal Sciences (Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China.
| | - Jianghong Li
- College of Animal Sciences (Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China.
| | - Yi Zhang
- U.S. Department of Agriculture -Agricultural Research Service (USDA-ARS) Bee Research Laboratory, Beltsville, MD 20705, USA; Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guanzhou, 510260.
| | - Zhiguo Li
- College of Animal Sciences (Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China.
| | - Jay D Evans
- U.S. Department of Agriculture -Agricultural Research Service (USDA-ARS) Bee Research Laboratory, Beltsville, MD 20705, USA.
| | - Robyn Rose
- Farm Production and Conservation, 1400 Independence Ave SW, Washington, DC 20250.
| | - Todd M Gilligan
- U.S. Department of Agriculture - Animal and Plant Health Inspection Service (USDA-APHIS), National Program Manager for Honey Bee Health, Riverdale, MD 20737, USA.
| | - Anne LeBrun
- U.S. Department of Agriculture - Animal and Plant Health Inspection Service (USDA-APHIS), National Program Manager for Honey Bee Health, Riverdale, MD 20737, USA.
| | - Nan He
- College of Animal Sciences (Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China.
| | - Teng Zheng
- Technical Center of Fuzhou Customs, Fuzhou, Fujian 350000, PR China.
| | - Tiyin Zhang
- Technical Center of Fuzhou Customs, Fuzhou, Fujian 350000, PR China.
| | - Michele Hamilton
- U.S. Department of Agriculture -Agricultural Research Service (USDA-ARS) Bee Research Laboratory, Beltsville, MD 20705, USA.
| | - Yan Ping Chen
- U.S. Department of Agriculture -Agricultural Research Service (USDA-ARS) Bee Research Laboratory, Beltsville, MD 20705, USA.
| |
Collapse
|
188
|
Regulators and signalling in insect antimicrobial innate immunity: Functional molecules and cellular pathways. Cell Signal 2021; 83:110003. [PMID: 33836260 DOI: 10.1016/j.cellsig.2021.110003] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/02/2021] [Accepted: 04/02/2021] [Indexed: 12/29/2022]
Abstract
Insects possess an immune system that protects them from attacks by various pathogenic microorganisms that would otherwise threaten their survival. Immune mechanisms may deal directly with the pathogens by eliminating them from the host organism or disarm them by suppressing the synthesis of toxins and virulence factors that promote the invasion and destructive action of the intruder within the host. Insects have been established as outstanding models for studying immune system regulation because innate immunity can be explored as an integrated system at the level of the whole organism. Innate immunity in insects consists of basal immunity that controls the constitutive synthesis of effector molecules such as antimicrobial peptides, and inducible immunity that is activated after detection of a microbe or its product(s). Activation and coordination of innate immune defenses in insects involve evolutionary conserved immune factors. Previous research in insects has led to the identification and characterization of distinct immune signalling pathways that modulate the response to microbial infections. This work has not only advanced the field of insect immunology, but it has also rekindled interest in the innate immune system of mammals. Here we review the current knowledge on key molecular components of insect immunity and discuss the opportunities they present for confronting infectious diseases in humans.
Collapse
|
189
|
Harwood G, Salmela H, Freitak D, Amdam G. Social immunity in honey bees: royal jelly as a vehicle in transferring bacterial pathogen fragments between nestmates. J Exp Biol 2021; 224:238089. [DOI: 10.1242/jeb.231076] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 02/17/2021] [Indexed: 01/31/2023]
Abstract
ABSTRACT
Social immunity is a suite of behavioral and physiological traits that allow colony members to protect one another from pathogens, and includes the oral transfer of immunological compounds between nestmates. In honey bees, royal jelly is a glandular secretion produced by a subset of workers that is fed to the queen and young larvae, and which contains many antimicrobial compounds. A related form of social immunity, transgenerational immune priming (TGIP), allows queens to transfer pathogen fragments into their developing eggs, where they are recognized by the embryo's immune system and induce higher pathogen resistance in the new offspring. These pathogen fragments are transported by vitellogenin (Vg), an egg-yolk precursor protein that is also used by nurses to synthesize royal jelly. Therefore, royal jelly may serve as a vehicle to transport pathogen fragments from workers to other nestmates. To investigate this, we recently showed that ingested bacteria are transported to nurses' jelly-producing glands, and here, we show that pathogen fragments are incorporated into the royal jelly. Moreover, we show that consuming pathogen cells induces higher levels of an antimicrobial peptide found in royal jelly, defensin-1.
Collapse
Affiliation(s)
- Gyan Harwood
- Department of Entomology, University of Illinois, Urbana-Champaign, IL 61801, USA
| | - Heli Salmela
- Department of Biosciences, Centre of Excellence in Biological Interactions, University of Helsinki, FI-00014 Helsinki, Finland
| | - Dalial Freitak
- Institute of Biology, Division of Zoology, University of Graz, A8010 Graz, Austria
| | - Gro Amdam
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, N-1432 Aas, Norway
| |
Collapse
|
190
|
Antibiotic Treatment Decrease the Fitness of Honeybee ( Apis mellifera) Larvae. INSECTS 2021; 12:insects12040301. [PMID: 33808048 PMCID: PMC8066305 DOI: 10.3390/insects12040301] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 11/17/2022]
Abstract
Simple Summary To determine the biologic function of gut bacteria with no host specificity in honeybee larvae, honeybee larvae were treated with antibiotics for disrupting the gut bacteria. Then, the body weight, development time, and expression of nutrient metabolism genes and immune genes of honeybee larvae were investigated. The results demonstrated that the disruption of gut microbiota by antibiotics weakened the nutrient metabolism, decreased the body weight, extended the development process, and decrease the immune competence of honeybee larvae, indicating the vital roles of gut bacteria in bee larvae fitness. Abstract Symbiotic bacteria could increase the nutrient provision, regulate the physiological state, and promote immunity in their insect host. Honeybee larvae harbor plenty of bacteria in their gut, but their functions are not well studied. To determine their effect on honeybee larvae, the 1-day-old larvae were grafted on to 24-well plates from the comb and artificially reared in the lab. They were treated with penicillin–streptomycin to remove the gut symbiotic bacteria. Then, the 5-day-old larvae and the newly emerged adults were weighted. The developmental periods to pupae and eclosion were investigated, respectively. The bacterial amount, expression of developmental regulation genes (ecr and usp), nutrient metabolism genes (ilp1, ilp2, hex 70a, hex 70b, hex 70c, and hex 110), and immunity genes (apidaecin, abaecin, defensin-1, and hymenoptaecin) were determined by qRT-PCR. The result showed that the antibiotics-treated larvae have significantly lower body weights in the 5-day-old larvae and the emerged bees. The expression of ilp2 and hex 70c in 5-day-old larvae was down-regulated. The usp was down-regulated in 5-day-old larvae, but increased in 7-day-old larvae, which disturbed the normal developmental process and caused the extension of eclosion. Moreover, antibiotics treatment significantly decreased the expression of apidaecin and abaecin in 5-day-old larvae, and defensin-1 and hymenoptaecin in 7-day-old larvae, respectively. These results showed that antibiotics could weaken the nutrient metabolism, disturb the development process, and decrease the immune competence of honeybee larvae, indicating the vital roles of gut bacteria in bee larvae fitness, so the antibiotics should be avoided to control microbial disease in honeybee larvae.
Collapse
|
191
|
Interaction between Metarhizium anisopliae and Its Host, the Subterranean Termite Coptotermes curvignathus during the Infection Process. BIOLOGY 2021; 10:biology10040263. [PMID: 33806225 PMCID: PMC8065498 DOI: 10.3390/biology10040263] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 01/11/2021] [Accepted: 01/20/2021] [Indexed: 11/17/2022]
Abstract
Metarhizium anisopliae (Metchnikoff) Sorokin, a pathogenic fungus to insects, infects the subterranean termite, Coptotermes curvignathus Holmgren, a devastating pest of plantation trees in the tropics. Electron microscopy and proteomics were used to investigate the infection and developmental process of M. anisopliae in C. curvignathus. Fungal infection was initiated by germ tube penetration through the host's cuticle as observed at 6 h post-inoculation (PI), after which it elongated into the host's integumental tissue. The colonization process continued as seen from dissemination of blastospores in the hemocoel at 96 h PI. At this time point, the emergent mycelia had mummified the host and forty-eight hours later, new conidia were dispersed on the termites' body surface. Meanwhile, hyphal bodies were observed in abundance in the intercellular space in the host's body. The proteomes of the pathogen and host were isolated separately using inoculated termite samples withdrawn at each PI-time point and analyzed in two-dimensional electrophoresis (2-DE) gels. Proteins expressed in termites showed evidence of being related to cell regulation and the immune response, while those expressed in M. anisopliae, to transportation and fungal virulence. This study provides new information on the interaction between termites and its entomopathogen, with potential utilization for developing future biopesticide to control the termite population.
Collapse
|
192
|
Mollah MMI, Ahmed S, Kim Y. Immune mediation of HMG-like DSP1 via Toll-Spätzle pathway and its specific inhibition by salicylic acid analogs. PLoS Pathog 2021; 17:e1009467. [PMID: 33765093 PMCID: PMC8023496 DOI: 10.1371/journal.ppat.1009467] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/06/2021] [Accepted: 03/11/2021] [Indexed: 12/22/2022] Open
Abstract
Xenorhabdus hominickii, an entomopathogenic bacterium, inhibits eicosanoid biosynthesis of target insects to suppress their immune responses by inhibiting phospholipase A2 (PLA2) through binding to a damage-associated molecular pattern (DAMP) molecule called dorsal switch protein 1 (DSP1) from Spodoptera exigua, a lepidopteran insect. However, the signalling pathway between DSP1 and PLA2 remains unknown. The objective of this study was to determine whether DSP1 could activate Toll immune signalling pathway to activate PLA2 activation and whether X. hominickii metabolites could inhibit DSP1 to shutdown eicosanoid biosynthesis. Toll-Spätzle (Spz) signalling pathway includes two Spz (SeSpz1 and SeSpz2) and 10 Toll receptors (SeToll1-10) in S. exigua. Loss-of-function approach using RNA interference showed that SeSpz1 and SeToll9 played crucial roles in connecting DSP1 mediation to activate PLA2. Furthermore, a deletion mutant against SeToll9 using CRISPR/Cas9 abolished DSP1 mediation and induced significant immunosuppression. Organic extracts of X. hominickii culture broth could bind to DSP1 at a low micromolar range. Subsequent sequential fractionations along with binding assays led to the identification of seven potent compounds including 3-ethoxy-4-methoxyphenol (EMP). EMP could bind to DSP1 and prevent its translocation to plasma in response to bacterial challenge and suppress the up-regulation of PLA2 activity. These results suggest that X. hominickii inhibits DSP1 and prevents its DAMP role in activating Toll immune signalling pathway including PLA2 activation, leading to significant immunosuppression of target insects. Immune responses of insects are highly effective in defending various entomopathogens. Xenorhabdus hominickii is an entomopathogenic bacterium that uses a pathogenic strategy of suppressing host insect immunity by inhibiting phospholipase A2 (PLA2) which catalyzes the committed step for eicosanoid biosynthesis. Eicosanoids mediate both cellular and humoral immune responses in insects. This study discovers an upstream signalling pathway to activate PLA2 in response to bacterial challenge. Se-DSP1 is an insect homolog of vertebrate HMGB1 that acts as a damage-associated molecular pattern. Upon bacterial infection, Se-DSP1 is released to the circulatory system to activate Spätzle, an insect cytokine that can bind to Toll receptor. Toll immune signalling pathway can activate antimicrobial peptide gene expression and PLA2. A deletion mutant against a Toll gene abolished immune responses mediated by Se-DSP1. Indeed, X. hominickii can produce and secrete secondary metabolites including salicylic acid analogs that can strongly bind to Se-DSP1. These bacterial metabolites prevented the release of Se-DSP1, which impaired the activation of PLA2 and resulted in a significant immunosuppression of target insects against bacterial infection.
Collapse
Affiliation(s)
- Md. Mahi Imam Mollah
- Department of Plant Medicals, College of Life Sciences, Andong National University, Andong, Korea
| | - Shabbir Ahmed
- Department of Plant Medicals, College of Life Sciences, Andong National University, Andong, Korea
| | - Yonggyun Kim
- Department of Plant Medicals, College of Life Sciences, Andong National University, Andong, Korea
- * E-mail:
| |
Collapse
|
193
|
Glavinic U, Stevanovic J, Ristanic M, Rajkovic M, Davitkov D, Lakic N, Stanimirovic Z. Potential of Fumagillin and Agaricus blazei Mushroom Extract to Reduce Nosema ceranae in Honey Bees. INSECTS 2021; 12:282. [PMID: 33806001 PMCID: PMC8064457 DOI: 10.3390/insects12040282] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 03/11/2021] [Accepted: 03/13/2021] [Indexed: 01/08/2023]
Abstract
Depending on the infection level and colony strength, Nosema ceranae, a microsporidian endoparasite of the honey bee may have significant consequences on the health, reproduction and productivity of bee colonies. Despite exerting some side effects, fumagillin is most often used for Nosema control. In this study, in a cage experiment, N. ceranae infected bees were treated with fumagillin or the extract of Agaricus blazei mushroom, a possible alternative for Nosema control. Bee survival, Nosema spore loads, the expression levels of immune-related genes and parameters of oxidative stress were observed. Fumagillin treatment showed a negative effect on monitored parameters when applied preventively to non-infected bees, while a noticeable anti-Nosema effect and protection from Nosema-induced immunosuppression and oxidative stress were proven in Nosema-infected bees. However, a protective effect of the natural A. blazei extract was detected, without any side effects but with immunostimulatory activity in the preventive application. The results of this research suggest the potential of A. blazei extract for Nosema control, which needs to be further investigated.
Collapse
Affiliation(s)
- Uros Glavinic
- Faculty of Veterinary Medicine, Department of Biology, University of Belgrade, Bul. Oslobodjenja 18, 11000 Belgrade, Serbia; (J.S.); (M.R.); (M.R.); (Z.S.)
| | - Jevrosima Stevanovic
- Faculty of Veterinary Medicine, Department of Biology, University of Belgrade, Bul. Oslobodjenja 18, 11000 Belgrade, Serbia; (J.S.); (M.R.); (M.R.); (Z.S.)
| | - Marko Ristanic
- Faculty of Veterinary Medicine, Department of Biology, University of Belgrade, Bul. Oslobodjenja 18, 11000 Belgrade, Serbia; (J.S.); (M.R.); (M.R.); (Z.S.)
| | - Milan Rajkovic
- Faculty of Veterinary Medicine, Department of Biology, University of Belgrade, Bul. Oslobodjenja 18, 11000 Belgrade, Serbia; (J.S.); (M.R.); (M.R.); (Z.S.)
| | - Dajana Davitkov
- Faculty of Veterinary Medicine, Department of Forensic Veterinary Medicine, University of Belgrade, Bul. Oslobodjenja 18, 11000 Belgrade, Serbia;
| | - Nada Lakic
- Faculty of Agriculture, Department of Statistics, University of Belgrade, Nemanjina 6, 11080 Zemun-Belgrade, Serbia;
| | - Zoran Stanimirovic
- Faculty of Veterinary Medicine, Department of Biology, University of Belgrade, Bul. Oslobodjenja 18, 11000 Belgrade, Serbia; (J.S.); (M.R.); (M.R.); (Z.S.)
| |
Collapse
|
194
|
Crone MK, Grozinger CM. Pollen protein and lipid content influence resilience to insecticides in honey bees ( Apis mellifera). J Exp Biol 2021; 224:jeb.242040. [PMID: 33758024 DOI: 10.1242/jeb.242040] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/17/2021] [Indexed: 12/19/2022]
Abstract
In honey bees (Apis mellifera), there is growing evidence that the impacts of multiple stressors can be mitigated by quality nutrition. Pollen, which is the primary source of protein and lipids in bees diets, is particularly critical for generating more resilient phenotypes. Here, we evaluate the relationship between pollen protein-to-lipid ratios (P:Ls) and honey bee insecticide resilience. We hypothesized that pollen diets richer in lipids would lead to increased survival in bees exposed to insecticides, as pollen-derived lipids have previously been shown to improve bee resilience to pathogens and parasites. Furthermore, lipid metabolic processes are altered in bees exposed to insecticides.We fed age-matched bees pollen diets of different P:Ls by altering a base pollen by either adding protein (casein powder) or lipids (canola oil) and simulating chronic insecticide exposure by feeding bees an organophosphate (Chlorpyrifos). We also tested pollen diets of naturally different P:Ls to determine if results are consistent. Linear regression analysis revealed that mean survival time for altered diets was best explained by protein concentration (p =0.04 , adjusted R2 =0.92), and that mean survival time for natural diets was best explained by P:L ratio (p =0.008 , adjusted R2 =0.93). Our results indicate that higher ratios of dietary protein to lipid has a negative effect on bee physiology when combined with insecticide exposure, while lower ratios have a positive effect. These results suggest that protein and lipid intake differentially influence insecticide response in bees, laying the groundwork for future studies of metabolic processes and development of improved diets.
Collapse
Affiliation(s)
- Makaylee K Crone
- Intercollege Graduate Program in Ecology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, USA
| | - Christina M Grozinger
- Department of Entomology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, USA
| |
Collapse
|
195
|
Nowak A, Szczuka D, Górczyńska A, Motyl I, Kręgiel D. Characterization of Apis mellifera Gastrointestinal Microbiota and Lactic Acid Bacteria for Honeybee Protection-A Review. Cells 2021; 10:cells10030701. [PMID: 33809924 PMCID: PMC8004194 DOI: 10.3390/cells10030701] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 12/15/2022] Open
Abstract
Numerous honeybee (Apis mellifera) products, such as honey, propolis, and bee venom, are used in traditional medicine to prevent illness and promote healing. Therefore, this insect has a huge impact on humans’ way of life and the environment. While the population of A. mellifera is large, there is concern that widespread commercialization of beekeeping, combined with environmental pollution and the action of bee pathogens, has caused significant problems for the health of honeybee populations. One of the strategies to preserve the welfare of honeybees is to better understand and protect their natural microbiota. This paper provides a unique overview of the latest research on the features and functioning of A. mellifera. Honeybee microbiome analysis focuses on both the function and numerous factors affecting it. In addition, we present the characteristics of lactic acid bacteria (LAB) as an important part of the gut community and their special beneficial activities for honeybee health. The idea of probiotics for honeybees as a promising tool to improve their health is widely discussed. Knowledge of the natural gut microbiota provides an opportunity to create a broad strategy for honeybee vitality, including the development of modern probiotic preparations to use instead of conventional antibiotics, environmentally friendly biocides, and biological control agents.
Collapse
Affiliation(s)
- Adriana Nowak
- Department of Environmental Biotechnology, Lodz University of Technology, Wólczańska 171/173, 90-924 Łódź, Poland; (D.S.); (I.M.); (D.K.)
- Correspondence:
| | - Daria Szczuka
- Department of Environmental Biotechnology, Lodz University of Technology, Wólczańska 171/173, 90-924 Łódź, Poland; (D.S.); (I.M.); (D.K.)
| | - Anna Górczyńska
- Faculty of Law and Administration, University of Lodz, Kopcińskiego 8/12, 90-232 Łódź, Poland;
| | - Ilona Motyl
- Department of Environmental Biotechnology, Lodz University of Technology, Wólczańska 171/173, 90-924 Łódź, Poland; (D.S.); (I.M.); (D.K.)
| | - Dorota Kręgiel
- Department of Environmental Biotechnology, Lodz University of Technology, Wólczańska 171/173, 90-924 Łódź, Poland; (D.S.); (I.M.); (D.K.)
| |
Collapse
|
196
|
Olafson PU, Aksoy S, Attardo GM, Buckmeier G, Chen X, Coates CJ, Davis M, Dykema J, Emrich SJ, Friedrich M, Holmes CJ, Ioannidis P, Jansen EN, Jennings EC, Lawson D, Martinson EO, Maslen GL, Meisel RP, Murphy TD, Nayduch D, Nelson DR, Oyen KJ, Raszick TJ, Ribeiro JMC, Robertson HM, Rosendale AJ, Sackton TB, Saelao P, Swiger SL, Sze SH, Tarone AM, Taylor DB, Warren WC, Waterhouse RM, Weirauch MT, Werren JH, Wilson RK, Zdobnov EM, Benoit JB. The genome of the stable fly, Stomoxys calcitrans, reveals potential mechanisms underlying reproduction, host interactions, and novel targets for pest control. BMC Biol 2021; 19:41. [PMID: 33750380 PMCID: PMC7944917 DOI: 10.1186/s12915-021-00975-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 02/03/2021] [Indexed: 01/01/2023] Open
Abstract
Background The stable fly, Stomoxys calcitrans, is a major blood-feeding pest of livestock that has near worldwide distribution, causing an annual cost of over $2 billion for control and product loss in the USA alone. Control of these flies has been limited to increased sanitary management practices and insecticide application for suppressing larval stages. Few genetic and molecular resources are available to help in developing novel methods for controlling stable flies. Results This study examines stable fly biology by utilizing a combination of high-quality genome sequencing and RNA-Seq analyses targeting multiple developmental stages and tissues. In conjunction, 1600 genes were manually curated to characterize genetic features related to stable fly reproduction, vector host interactions, host-microbe dynamics, and putative targets for control. Most notable was characterization of genes associated with reproduction and identification of expanded gene families with functional associations to vision, chemosensation, immunity, and metabolic detoxification pathways. Conclusions The combined sequencing, assembly, and curation of the male stable fly genome followed by RNA-Seq and downstream analyses provide insights necessary to understand the biology of this important pest. These resources and new data will provide the groundwork for expanding the tools available to control stable fly infestations. The close relationship of Stomoxys to other blood-feeding (horn flies and Glossina) and non-blood-feeding flies (house flies, medflies, Drosophila) will facilitate understanding of the evolutionary processes associated with development of blood feeding among the Cyclorrhapha. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-00975-9.
Collapse
Affiliation(s)
- Pia U Olafson
- Livestock Arthropod Pests Research Unit, USDA-ARS, Kerrville, TX, USA.
| | - Serap Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Geoffrey M Attardo
- Department of Entomology and Nematology, University of California - Davis, Davis, CA, USA
| | - Greta Buckmeier
- Livestock Arthropod Pests Research Unit, USDA-ARS, Kerrville, TX, USA
| | - Xiaoting Chen
- The Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Craig J Coates
- Department of Entomology, Texas A & M University, College Station, TX, USA
| | - Megan Davis
- Livestock Arthropod Pests Research Unit, USDA-ARS, Kerrville, TX, USA
| | - Justin Dykema
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA
| | - Scott J Emrich
- Department of Electrical Engineering & Computer Science, University of Tennessee, Knoxville, TN, USA
| | - Markus Friedrich
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA
| | - Christopher J Holmes
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Panagiotis Ioannidis
- Department of Genetic Medicine and Development, University of Geneva Medical School and Swiss Institute of Bioinformatics, 1211, Geneva, Switzerland
| | - Evan N Jansen
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Emily C Jennings
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Daniel Lawson
- The European Molecular Biology Laboratory, The European Bioinformatics Institute, The Wellcome Genome Campus, Hinxton, CB10 1SD, UK
| | | | - Gareth L Maslen
- The European Molecular Biology Laboratory, The European Bioinformatics Institute, The Wellcome Genome Campus, Hinxton, CB10 1SD, UK
| | - Richard P Meisel
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Terence D Murphy
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Dana Nayduch
- Arthropod-borne Animal Diseases Research Unit, USDA-ARS, Manhattan, KS, USA
| | - David R Nelson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Kennan J Oyen
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Tyler J Raszick
- Department of Entomology, Texas A & M University, College Station, TX, USA
| | - José M C Ribeiro
- Section of Vector Biology, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Rockville, MD, USA
| | - Hugh M Robertson
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | - Timothy B Sackton
- Informatics Group, Faculty of Arts and Sciences, Harvard University, Cambridge, MA, USA
| | - Perot Saelao
- Livestock Arthropod Pests Research Unit, USDA-ARS, Kerrville, TX, USA
| | - Sonja L Swiger
- Department of Entomology, Texas A&M AgriLife Research and Extension Center, Stephenville, TX, USA
| | - Sing-Hoi Sze
- Department of Computer Science & Engineering, Department of Biochemistry & Biophysics, Texas A & M University, College Station, TX, USA
| | - Aaron M Tarone
- Department of Entomology, Texas A & M University, College Station, TX, USA
| | - David B Taylor
- Agroecosystem Management Research Unit, USDA-ARS, Lincoln, NE, USA
| | - Wesley C Warren
- University of Missouri, Bond Life Sciences Center, Columbia, MO, USA
| | - Robert M Waterhouse
- Department of Ecology and Evolution, University of Lausanne, and Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology, Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - John H Werren
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Richard K Wilson
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA.,College of Medicine, Ohio State University, Columbus, OH, USA
| | - Evgeny M Zdobnov
- Department of Genetic Medicine and Development, University of Geneva Medical School and Swiss Institute of Bioinformatics, 1211, Geneva, Switzerland
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
197
|
Leponiemi M, Amdam GV, Freitak D. Exposure to Inactivated Deformed Wing Virus Leads to Trans-Generational Costs but Not Immune Priming in Honeybees (Apis mellifera). Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.626670] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Pathogens are identified as one of the major drivers behind the honeybee colony losses, as well as one of the reasons for the reported declines in terrestrial insect abundances in recent decades. To fight infections, animals rely on their immune system. The immune system of many invertebrates can be primed by exposure to a pathogen, so that upon further exposure the animal is better protected. The protective priming effect can even extend to the next generation, but the species capable of priming the immune system of their offspring are still being investigated. Here we studied whether honeybees could prime their offspring against a viral pathogen, by challenging honeybee queens orally with an inactivated deformed wing virus (DWV), one of the most devastating honeybee viruses. The offspring were then infected by viral injection. The effects of immune priming were assayed by measuring viral loads and two typical symptoms of the virus, pupal mortality, and abnormal wing phenotype. We saw a low amount of wing deformities and low pupal mortality. While no clear priming effect against the virus was seen, we found that the maternal immune challenge, when combined with the stress caused by an injection during development, manifested in costs in the offspring, leading to an increased number of deformed wings.
Collapse
|
198
|
Hawley DM, Gibson AK, Townsend AK, Craft ME, Stephenson JF. Bidirectional interactions between host social behaviour and parasites arise through ecological and evolutionary processes. Parasitology 2021; 148:274-288. [PMID: 33092680 PMCID: PMC11010184 DOI: 10.1017/s0031182020002048] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 02/07/2023]
Abstract
An animal's social behaviour both influences and changes in response to its parasites. Here we consider these bidirectional links between host social behaviours and parasite infection, both those that occur from ecological vs evolutionary processes. First, we review how social behaviours of individuals and groups influence ecological patterns of parasite transmission. We then discuss how parasite infection, in turn, can alter host social interactions by changing the behaviour of both infected and uninfected individuals. Together, these ecological feedbacks between social behaviour and parasite infection can result in important epidemiological consequences. Next, we consider the ways in which host social behaviours evolve in response to parasites, highlighting constraints that arise from the need for hosts to maintain benefits of sociality while minimizing fitness costs of parasites. Finally, we consider how host social behaviours shape the population genetic structure of parasites and the evolution of key parasite traits, such as virulence. Overall, these bidirectional relationships between host social behaviours and parasites are an important yet often underappreciated component of population-level disease dynamics and host-parasite coevolution.
Collapse
Affiliation(s)
- Dana M. Hawley
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA24061, USA
| | - Amanda K. Gibson
- Department of Biology, University of Virginia, Charlottesville, VA22903, USA
| | | | - Meggan E. Craft
- Department of Veterinary Population Medicine and Department of Ecology, Evolution and Behavior, University of Minnesota, St Paul, MN55108, USA
| | - Jessica F. Stephenson
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA15260, USA
| |
Collapse
|
199
|
Wang K, Chen H, Lin ZG, Niu QS, Wang Z, Gao FC, Ji T. Carbendazim exposure during the larval stage suppresses major royal jelly protein expression in nurse bees (Apis mellifera). CHEMOSPHERE 2021; 266:129011. [PMID: 33246707 DOI: 10.1016/j.chemosphere.2020.129011] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/26/2020] [Accepted: 11/15/2020] [Indexed: 06/11/2023]
Abstract
Studying the sublethal effects of agrochemical pesticides on nontarget honeybees (Apis mellifera) is important for agricultural development. Carbendazim is a widely used broad-spectrum fungicide that inhibits mitotic microtubule formation and cell division. However, the impact of carbendazim on bee health and development has not been fully elucidated. Here, using proteomics approaches, we assessed in vitro the changes in the expression of functional proteins in the head of newly emerged adults following treatment with field concentration of carbendazim during the larval stage. Treatment with carbendazim severely altered 266 protein expression patterns in the heads of adults and 218 of them showed downregulation after carbendazim exposure. Notably, major royal jelly proteins, a crucial multifunctional protein family with irreplaceable function in sustaining the development of colonies, were significantly suppressed in carbendazim-treated bees. This result was verified in both head and hypopharyngeal gland of nurse bees. Moreover, visual and olfactory loss, immune functions, muscular activity, social behavior, neural and brain development, protein synthesis and modification, and metabolism-related proteins were likely inhibited by carbendazim treatment. Together, these results suggest that carbendazim is an environmental risk factor that likely weakens bee colonies, partially due to reduced expression of major royal jelly proteins, which may be potential causes of colony collapse disorder.
Collapse
Affiliation(s)
- Kang Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Heng Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Zhe-Guang Lin
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Qing-Sheng Niu
- Key Laboratory for Bee Genetics and Breeding, Jilin Provincial Institute of Apicultural Sciences, Jilin Province, 132108, China
| | - Zhi Wang
- Key Laboratory for Bee Genetics and Breeding, Jilin Provincial Institute of Apicultural Sciences, Jilin Province, 132108, China
| | - Fu-Chao Gao
- Mudanjiang Branch of Heilongjiang Academy of Agricultural Sciences, Heilongjiang, 153000, China
| | - Ting Ji
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China.
| |
Collapse
|
200
|
He N, Zhang Y, Duan XL, Li JH, Huang WF, Evans JD, DeGrandi-Hoffman G, Chen YP, Huang SK. RNA Interference-Mediated Knockdown of Genes Encoding Spore Wall Proteins Confers Protection against Nosema ceranae Infection in the European Honey Bee, Apis mellifera. Microorganisms 2021; 9:microorganisms9030505. [PMID: 33673613 PMCID: PMC7997338 DOI: 10.3390/microorganisms9030505] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/15/2021] [Accepted: 02/22/2021] [Indexed: 12/27/2022] Open
Abstract
Nosema ceranae (Opisthosporidia: Microsporidia) is an emergent intracellular parasite of the European honey bee (Apis mellifera) and causes serious Nosema disease which has been associated with worldwide honey bee colony losses. The only registered treatment for Nosema disease is fumagillin-b, and this has raised concerns about resistance and off-target effects. Fumagillin-B is banned from use in honey bee colonies in many countries, particularly in Europe. As a result, there is an urgent need for new and effective therapeutic options to treat Nosema disease in honey bees. An RNA interference (RNAi)-based approach can be a potent strategy for controlling diseases in honey bees. We explored the therapeutic potential of silencing the sequences of two N. ceranae encoded spore wall protein (SWP) genes by means of the RNAi-based methodology. Our study revealed that the oral ingestion of dsRNAs corresponding to SWP8 and SWP12 used separately or in combination could lead to a significant reduction in spore load, improve immunity, and extend the lifespan of N. ceranae-infected bees. The results from the work completed here enhance our understanding of honey bee host responses to microsporidia infection and highlight that RNAi-based therapeutics are a promising treatment for honey bee diseases.
Collapse
Affiliation(s)
- Nan He
- College of Animal Sciences (Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yi Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guanzhou 510260, China
- U.S. Department of Agriculture-Agricultural Research Service Bee Research Laboratory, Beltsville, MD 20705, USA
| | - Xin Le Duan
- College of Animal Sciences (Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiang Hong Li
- College of Animal Sciences (Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wei-Fone Huang
- College of Animal Sciences (Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jay D Evans
- U.S. Department of Agriculture-Agricultural Research Service Bee Research Laboratory, Beltsville, MD 20705, USA
| | | | - Yan Ping Chen
- U.S. Department of Agriculture-Agricultural Research Service Bee Research Laboratory, Beltsville, MD 20705, USA
| | - Shao Kang Huang
- College of Animal Sciences (Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|