151
|
PerR-regulated manganese ion uptake contributes to oxidative stress defense in an oral streptococcus. Appl Environ Microbiol 2014; 80:2351-9. [PMID: 24487543 DOI: 10.1128/aem.00064-14] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Metal homeostasis plays a critical role in antioxidative stress. Streptococcus oligofermentans, an oral commensal facultative anaerobe lacking catalase activity, produces and tolerates abundant H2O2, whereas Dpr (an Fe(2+)-chelating protein)-dependent H2O2 protection does not confer such high tolerance. Here, we report that inactivation of perR, a peroxide-responsive repressor that regulates zinc and iron homeostasis in Gram-positive bacteria, increased the survival of H2O2-pulsed S. oligofermentans 32-fold and elevated cellular manganese 4.5-fold. perR complementation recovered the wild-type phenotype. When grown in 0.1 to 0.25 mM MnCl2, S. oligofermentans increased survival after H2O2 stress 2.5- to 23-fold, and even greater survival was found for the perR mutant, indicating that PerR is involved in Mn(2+)-mediated H2O2 resistance in S. oligofermentans. Mutation of mntA could not be obtained in brain heart infusion (BHI) broth (containing ~0.4 μM Mn(2+)) unless it was supplemented with ≥2.5 μM MnCl2 and caused 82 to 95% reduction of the cellular Mn(2+) level, while mntABC overexpression increased cellular Mn(2+) 2.1- to 4.5-fold. Thus, MntABC was identified as a high-affinity Mn(2+) transporter in S. oligofermentans. mntA mutation reduced the survival of H2O2-pulsed S. oligofermentans 5.7-fold, while mntABC overexpression enhanced H2O2-challenged survival 12-fold, indicating that MntABC-mediated Mn(2+) uptake is pivotal to antioxidative stress in S. oligofermentans. perR mutation or H2O2 pulsing upregulated mntABC, while H2O2-induced upregulation diminished in the perR mutant. This suggests that perR represses mntABC expression but H2O2 can release the suppression. In conclusion, this work demonstrates that PerR regulates manganese homeostasis in S. oligofermentans, which is critical to H2O2 stress defenses and may be distributed across all oral streptococci lacking catalase.
Collapse
|
152
|
Lisher JP, Giedroc DP. Manganese acquisition and homeostasis at the host-pathogen interface. Front Cell Infect Microbiol 2013; 3:91. [PMID: 24367765 PMCID: PMC3851752 DOI: 10.3389/fcimb.2013.00091] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 11/18/2013] [Indexed: 11/21/2022] Open
Abstract
Pathogenic bacteria acquire transition metals for cell viability and persistence of infection in competition with host nutritional defenses. The human host employs a variety of mechanisms to stress the invading pathogen with both cytotoxic metal ions and oxidative and nitrosative insults while withholding essential transition metals from the bacterium. For example, the S100 family protein calprotectin (CP) found in neutrophils is a calcium-activated chelator of extracellular Mn and Zn and is found in tissue abscesses at sites of infection by Staphylococcus aureus. In an adaptive response, bacteria have evolved systems to acquire the metals in the face of this competition while effluxing excess or toxic metals to maintain a bioavailability of transition metals that is consistent with a particular inorganic "fingerprint" under the prevailing conditions. This review highlights recent biological, chemical and structural studies focused on manganese (Mn) acquisition and homeostasis and connects this process to oxidative stress resistance and iron (Fe) availability that operates at the human host-pathogen interface.
Collapse
Affiliation(s)
- John P. Lisher
- Graduate Program in Biochemistry, Indiana UniversityBloomington, IN, USA
| | - David P. Giedroc
- Graduate Program in Biochemistry, Indiana UniversityBloomington, IN, USA
- Department of Chemistry, Indiana UniversityBloomington, IN, USA
| |
Collapse
|
153
|
Porcheron G, Garénaux A, Proulx J, Sabri M, Dozois CM. Iron, copper, zinc, and manganese transport and regulation in pathogenic Enterobacteria: correlations between strains, site of infection and the relative importance of the different metal transport systems for virulence. Front Cell Infect Microbiol 2013; 3:90. [PMID: 24367764 PMCID: PMC3852070 DOI: 10.3389/fcimb.2013.00090] [Citation(s) in RCA: 239] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 11/18/2013] [Indexed: 02/05/2023] Open
Abstract
For all microorganisms, acquisition of metal ions is essential for survival in the environment or in their infected host. Metal ions are required in many biological processes as components of metalloproteins and serve as cofactors or structural elements for enzymes. However, it is critical for bacteria to ensure that metal uptake and availability is in accordance with physiological needs, as an imbalance in bacterial metal homeostasis is deleterious. Indeed, host defense strategies against infection either consist of metal starvation by sequestration or toxicity by the highly concentrated release of metals. To overcome these host strategies, bacteria employ a variety of metal uptake and export systems and finely regulate metal homeostasis by numerous transcriptional regulators, allowing them to adapt to changing environmental conditions. As a consequence, iron, zinc, manganese, and copper uptake systems significantly contribute to the virulence of many pathogenic bacteria. However, during the course of our experiments on the role of iron and manganese transporters in extraintestinal Escherichia coli (ExPEC) virulence, we observed that depending on the strain tested, the importance of tested systems in virulence may be different. This could be due to the different set of systems present in these strains, but literature also suggests that as each pathogen must adapt to the particular microenvironment of its site of infection, the role of each acquisition system in virulence can differ from a particular strain to another. In this review, we present the systems involved in metal transport by Enterobacteria and the main regulators responsible for their controlled expression. We also discuss the relative role of these systems depending on the pathogen and the tissues they infect.
Collapse
Affiliation(s)
- Gaëlle Porcheron
- INRS-Institut Armand Frappier Laval, QC, Canada ; Centre de Recherche en Infectiologie Porcine et Aviaire, Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, QC, Canada
| | - Amélie Garénaux
- INRS-Institut Armand Frappier Laval, QC, Canada ; Centre de Recherche en Infectiologie Porcine et Aviaire, Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, QC, Canada
| | - Julie Proulx
- INRS-Institut Armand Frappier Laval, QC, Canada ; Centre de Recherche en Infectiologie Porcine et Aviaire, Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, QC, Canada
| | - Mourad Sabri
- INRS-Institut Armand Frappier Laval, QC, Canada ; Centre de Recherche en Infectiologie Porcine et Aviaire, Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, QC, Canada
| | - Charles M Dozois
- INRS-Institut Armand Frappier Laval, QC, Canada ; Centre de Recherche en Infectiologie Porcine et Aviaire, Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, QC, Canada ; Groupe de Recherche sur les Maladies Infectieuses du Porc, Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, QC, Canada
| |
Collapse
|
154
|
Nicolaou SA, Fast AG, Nakamaru-Ogiso E, Papoutsakis ET. Overexpression of fetA (ybbL) and fetB (ybbM), Encoding an Iron Exporter, Enhances Resistance to Oxidative Stress in Escherichia coli. Appl Environ Microbiol 2013; 79:7210-9. [PMID: 24038693 PMCID: PMC3837747 DOI: 10.1128/aem.02322-13] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 09/07/2013] [Indexed: 01/19/2023] Open
Abstract
Reactive oxygen species are generated by redox reactions and the Fenton reaction of H2O2 and iron that generates the hydroxyl radical that causes severe DNA, protein, and lipid damage. We screened Escherichia coli genomic libraries to identify a fragment, containing cueR, ybbJ, qmcA, ybbL, and ybbM, which enhanced resistance to H2O2 stress. We report that the ΔybbL and ΔybbM strains are more susceptible to H2O2 stress than the parent strain and that ybbL and ybbM overexpression overcomes H2O2 sensitivity. The ybbL and ybbM genes are predicted to code for an ATP-binding cassette metal transporter, and we demonstrate that YbbM is a membrane protein. We investigated various metals to identify iron as the likely substrate of this transporter. We propose the gene names fetA and fetB (for Fe transport) and the gene product names FetA and FetB. FetAB allows for increased resistance to oxidative stress in the presence of iron, revealing a role in iron homeostasis. We show that iron overload coupled with H2O2 stress is abrogated by fetA and fetB overexpression in the parent strain and in the Δfur strain, where iron uptake is deregulated. Furthermore, we utilized whole-cell electron paramagnetic resonance to show that intracellular iron levels in the Δfur strain are decreased by 37% by fetA and fetB overexpression. Combined, these findings show that fetA and fetB encode an iron exporter that has a role in enhancing resistance to H2O2-mediated oxidative stress and can minimize oxidative stress under conditions of iron overload and suggest that FetAB facilitates iron homeostasis to decrease oxidative stress.
Collapse
Affiliation(s)
- Sergios A. Nicolaou
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
| | - Alan G. Fast
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
| | - Eiko Nakamaru-Ogiso
- Department of Biochemistry and Biophysics, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
155
|
Troxell B, Yang XF. Metal-dependent gene regulation in the causative agent of Lyme disease. Front Cell Infect Microbiol 2013; 3:79. [PMID: 24298449 PMCID: PMC3828560 DOI: 10.3389/fcimb.2013.00079] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 10/29/2013] [Indexed: 11/13/2022] Open
Abstract
Borrelia burgdorferi (Bb) is the causative agent of Lyme disease transmitted to humans by ticks of the Ixodes spp. Bb is a unique bacterial pathogen because it does not require iron (Fe2+) for its metabolism. Bb encodes a ferritin-like Dps homolog called NapA (also called BicA), which can bind Fe or copper (Cu2+), and a manganese (Mn2+) transport protein, Borrelia metal transporter A (BmtA); both proteins are required for colonization of the tick vector, but BmtA is also required for the murine host. This demonstrates that Bb's metal homeostasis is a critical facet of the complex enzootic life cycle between the arthropod and murine hosts. Although metals are known to influence the expression of virulence determinants during infection, it is unknown how or if metals regulate virulence in Bb. Recent evidence demonstrates that Bb modulates the intracellular Mn2+ and zinc (Zn2+) content and, in turn, these metals regulate gene expression through influencing the Ferric Uptake Regulator (Fur) homolog Borrelia Oxidative Stress Regulator (BosR). This mini-review focuses on the burgeoning study of metal-dependent gene regulation within Bb.
Collapse
Affiliation(s)
- Bryan Troxell
- Department of Immunology and Microbiology, Indiana University School of Medicine Indianapolis, IN, USA
| | | |
Collapse
|
156
|
Protection from oxidative stress relies mainly on derepression of OxyR-dependent KatB and Dps in Shewanella oneidensis. J Bacteriol 2013; 196:445-58. [PMID: 24214945 DOI: 10.1128/jb.01077-13] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shewanella thrives in redox-stratified environments where accumulation of H2O2 becomes inevitable because of the chemical oxidation of reduced metals, sulfur species, or organic molecules. As a research model, the representative species Shewanella oneidensis has been extensively studied for its response to various stresses. However, little progress has been made toward an understanding of the physiological and genetic responses of this bacterium to oxidative stress, which is critically relevant to its application as a dissimilatory metal-reducing bacterium. In this study, we systematically investigated the mechanism underlying the response to H2O2 at cellular, genomic, and molecular levels. Using transcriptional profiling, we found that S. oneidensis is hypersensitive to H2O2 in comparison with Escherichia coli, and well-conserved defense genes such as ahpCF, katB, katG, and dps appear to form the first line of defense, whereas iron-sulfur-protecting proteins may not play a significant role. Subsequent identification and characterization of an analogue of the E. coli oxyR gene revealed that S. oneidensis OxyR is the master regulator that mediates the bacterial response to H2O2-induced oxidative stress by directly repressing or activating the defense genes. The sensitivity of S. oneidensis to H2O2 is likely attributable to the lack of an inducible manganese import mechanism during stress. To cope with stress, major strategies that S. oneidensis adopts include rapid removal of the oxidant and restriction of intracellular iron concentrations, both of which are achieved predominantly by derepression of the katB and dps genes.
Collapse
|
157
|
Liu M, Biville F. Managing iron supply during the infection cycle of a flea borne pathogen, Bartonella henselae. Front Cell Infect Microbiol 2013; 3:60. [PMID: 24151576 PMCID: PMC3799009 DOI: 10.3389/fcimb.2013.00060] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 09/19/2013] [Indexed: 11/29/2022] Open
Abstract
Bartonella are hemotropic bacteria responsible for emerging zoonoses. Most Bartonella species appear to share a natural cycle that involves an arthropod transmission, followed by exploitation of a mammalian host in which they cause long-lasting intra-erythrocytic bacteremia. Persistence in erythrocytes is considered an adaptation to transmission by bloodsucking arthropod vectors and a strategy to obtain heme required for Bartonella growth. Bartonella genomes do not encode for siderophore biosynthesis or a complete iron Fe3+ transport system. Only genes, sharing strong homology with all components of a Fe2+ transport system, are present in Bartonella genomes. Also, Bartonella genomes encode for a complete heme transport system. Bartonella must face various environments in their hosts and vectors. In mammals, free heme and iron are rare and oxygen concentration is low. In arthropod vectors, toxic heme levels are found in the gut where oxygen concentration is high. Bartonella genomes encode for 3–5 heme-binding proteins. In Bartonella henselae heme-binding proteins were shown to be involved in heme uptake process, oxidative stress response, and survival inside endothelial cells and in the flea. In this report, we discuss the use of the heme uptake and storage system of B. henselae during its infection cycle. Also, we establish a comparison with the iron and heme uptake systems of Yersinia pestis used during its infection cycle.
Collapse
Affiliation(s)
- Mafeng Liu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Avian Disease Research Center, Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu/Ya'an , Sichuan, China
| | | |
Collapse
|
158
|
Banh A, Chavez V, Doi J, Nguyen A, Hernandez S, Ha V, Jimenez P, Espinoza F, Johnson HA. Manganese (Mn) oxidation increases intracellular Mn in Pseudomonas putida GB-1. PLoS One 2013; 8:e77835. [PMID: 24147089 PMCID: PMC3798386 DOI: 10.1371/journal.pone.0077835] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 09/11/2013] [Indexed: 01/01/2023] Open
Abstract
Bacterial manganese (Mn) oxidation plays an important role in the global biogeochemical cycling of Mn and other compounds, and the diversity and prevalence of Mn oxidizers have been well established. Despite many hypotheses of why these bacteria may oxidize Mn, the physiological reasons remain elusive. Intracellular Mn levels were determined for Pseudomonas putida GB-1 grown in the presence or absence of Mn by inductively coupled plasma mass spectrometry (ICP-MS). Mn oxidizing wild type P. putida GB-1 had higher intracellular Mn than non Mn oxidizing mutants grown under the same conditions. P. putida GB-1 had a 5 fold increase in intracellular Mn compared to the non Mn oxidizing mutant P. putida GB-1-007 and a 59 fold increase in intracellular Mn compared to P. putida GB-1 ∆2665 ∆2447. The intracellular Mn is primarily associated with the less than 3 kDa fraction, suggesting it is not bound to protein. Protein oxidation levels in Mn oxidizing and non oxidizing cultures were relatively similar, yet Mn oxidation did increase survival of P. putida GB-1 when oxidatively stressed. This study is the first to link Mn oxidation to Mn homeostasis and oxidative stress protection.
Collapse
Affiliation(s)
- Andy Banh
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, California, United States of America
| | - Valarie Chavez
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, California, United States of America
| | - Julia Doi
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, California, United States of America
| | - Allison Nguyen
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, California, United States of America
| | - Sophia Hernandez
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, California, United States of America
| | - Vu Ha
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, California, United States of America
| | - Peter Jimenez
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, California, United States of America
| | - Fernanda Espinoza
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, California, United States of America
| | - Hope A. Johnson
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, California, United States of America
- * E-mail:
| |
Collapse
|
159
|
Lisher JP, Higgins KA, Maroney MJ, Giedroc DP. Physical characterization of the manganese-sensing pneumococcal surface antigen repressor from Streptococcus pneumoniae. Biochemistry 2013; 52:7689-701. [PMID: 24067066 DOI: 10.1021/bi401132w] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Transition metals, including manganese, are required for the proper virulence and persistence of many pathogenic bacteria. In Streptococcus pneumoniae (Spn), manganese homeostasis is controlled by a high-affinity Mn(II) uptake complex, PsaBCA, and a constitutively expressed efflux transporter, MntE. psaBCA expression is transcriptionally regulated by the DtxR/MntR family metalloregulatory protein pneumococcal surface antigen repressor (PsaR) in Spn. Here, we present a comprehensive analysis of the metal and DNA binding properties of PsaR. PsaR is a homodimer in the absence and presence of metals and binds two manganese or zinc atoms per protomer (four per dimer) in two pairs of structurally distinct sites, termed site 1 and site 2. Site 1 is likely filled with Zn(II) in vivo (K(Zn1) ≥ 10¹³ M⁻¹; K(Mn1) ≈ 10⁸ M⁻¹). The Zn(II)-site 1 complex adopts a pentacoordinate geometry as determined by X-ray absorption spectroscopy containing a single cysteine and appears to be analogous to the Cd(II) site observed in Streptococcus gordonii ScaR. Site 1 is necessary but not sufficient for full positive allosteric activation of DNA operator binding by metals as measured by ΔGc, the allosteric coupling free energy, because site 1 mutants show an intermediate ΔGc. Site 2 is the primary regulatory site and governs specificity for Mn(II) over Zn(II) in PsaR, where ΔGc(Zn,Mn) >> ΔGc(Zn,Zn) despite the fact that Zn(II) binds site 2 with an affinity 40-fold higher than that of Mn(II); i.e., K(Zn2) > K(Mn2). Mutational studies reveal that Asp7 in site 2 is a critical ligand for Mn(II)-dependent allosteric activation of DNA binding. These findings are discussed in the context of other well-studied DtxR/MntR Mn(II)/Fe(II) metallorepressors.
Collapse
Affiliation(s)
- John P Lisher
- Department of Chemistry and ‡Interdisciplinary Graduate Program in Biochemistry, Indiana University , Bloomington, Indiana 47405-7102, United States
| | | | | | | |
Collapse
|
160
|
Culotta VC, Daly MJ. Manganese complexes: diverse metabolic routes to oxidative stress resistance in prokaryotes and yeast. Antioxid Redox Signal 2013; 19:933-44. [PMID: 23249283 PMCID: PMC3763226 DOI: 10.1089/ars.2012.5093] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
SIGNIFICANCE Antioxidant enzymes are thought to provide critical protection to cells against reactive oxygen species (ROS). However, many organisms can fully compensate for the loss of such enzymatic defenses by accumulating metabolites and Mn²⁺, which can form catalytic Mn-antioxidants. Accumulated metabolites can direct reactivity of Mn²⁺ with superoxide and specifically shield proteins from oxidative damage. RECENT ADVANCES There is mounting evidence that Mn-Pi (orthophosphate) complexes act as potent scavengers of superoxide in all three branches of life. Moreover, it is evident that Mn²⁺ in complexes with carbonates, peptides, nucleosides, and organic acids can also form catalytic Mn-antioxidants, pointing to diverse metabolic routes to oxidative stress resistance. CRITICAL ISSUES What conditions favor utility of Mn-metabolites versus enzymatic means for removing ROS? Mn²⁺-metabolite defenses are critical for preserving the activity of repair enzymes in Deinococcus radiodurans exposed to intense radiation stress, and in Lactobacillus plantarum, which lacks antioxidant enzymes. In other microorganisms, Mn-antioxidants can serve as an auxiliary protection when enzymatic antioxidants are insufficient or fail. These findings of a critical role of Mn-antioxidants in the survival of prokaryotes under oxidative stress parallel the trends developing for the simple eukaryote Saccharomyces cerevisiae. FUTURE DIRECTIONS Phosphates, peptides and organic acids are just a snapshot of the types of anionic metabolites that promote such reactivity of Mn²⁺. Their probable roles in pathogen defense against the host immune response and in ROS-mediated signaling pathways are also areas that are worthy of serious investigation. Moreover, it is clear that these protective chemical processes can be harnessed for practical purposes.
Collapse
Affiliation(s)
- Valeria C Culotta
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| | | |
Collapse
|
161
|
Dudev T, Lim C. Competition among metal ions for protein binding sites: determinants of metal ion selectivity in proteins. Chem Rev 2013; 114:538-56. [PMID: 24040963 DOI: 10.1021/cr4004665] [Citation(s) in RCA: 274] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Todor Dudev
- Institute of Biomedical Sciences, Academia Sinica , Taipei 11529, Taiwan
| | | |
Collapse
|
162
|
How Escherichia coli tolerates profuse hydrogen peroxide formation by a catabolic pathway. J Bacteriol 2013; 195:4569-79. [PMID: 23913322 DOI: 10.1128/jb.00737-13] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
When Escherichia coli grows on conventional substrates, it continuously generates 10 to 15 μM/s intracellular H2O2 through the accidental autoxidation of redox enzymes. Dosimetric analyses indicate that scavenging enzymes barely keep this H2O2 below toxic levels. Therefore, it seemed potentially problematic that E. coli can synthesize a catabolic phenylethylamine oxidase that stoichiometrically generates H2O2. This study was undertaken to understand how E. coli tolerates the oxidative stress that must ensue. Measurements indicated that phenylethylamine-fed cells generate H2O2 at 30 times the rate of glucose-fed cells. Two tolerance mechanisms were identified. First, in enclosed laboratory cultures, growth on phenylethylamine triggered induction of the OxyR H2O2 stress response. Null mutants (ΔoxyR) that could not induce that response were unable to grow. This is the first demonstration that OxyR plays a role in protecting cells against endogenous H2O2. The critical element of the OxyR response was the induction of H2O2 scavenging enzymes, since mutants that lacked NADH peroxidase (Ahp) grew poorly, and those that additionally lacked catalase did not grow at all. Other OxyR-controlled genes were expendable. Second, phenylethylamine oxidase is an unusual catabolic enzyme in that it is localized in the periplasm. Calculations showed that when cells grow in an open environment, virtually all of the oxidase-generated H2O2 will diffuse across the outer membrane and be lost to the external world, rather than enter the cytoplasm where H2O2-sensitive enzymes are located. In this respect, the periplasmic compartmentalization of phenylethylamine oxidase serves the same purpose as the peroxisomal compartmentalization of oxidases in eukaryotic cells.
Collapse
|
163
|
Gu M, Imlay JA. Superoxide poisons mononuclear iron enzymes by causing mismetallation. Mol Microbiol 2013; 89:123-34. [PMID: 23678969 PMCID: PMC3731988 DOI: 10.1111/mmi.12263] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2013] [Indexed: 11/30/2022]
Abstract
Superoxide (O(2)(-)) is a primary agent of intracellular oxidative stress. Genetic studies in many organisms have confirmed that excess O(2)(-) disrupts metabolism, but to date only a small family of [4Fe-4S] dehydratases have been identified as direct targets. This investigation reveals that in Escherichia coli O(2)(-) also poisons a broader cohort of non-redox enzymes that employ ferrous iron atoms as catalytic cofactors. These enzymes were inactivated by O(2)(-) both in vitro and in vivo. Although the enzymes are known targets of hydrogen peroxide, the outcome with O(2)(-) differs substantially. When purified enzymes were damaged by O(2)(-) in vitro, activity could be completely restored by iron addition, indicating that the O(2)(-) treatment generated an apoprotein without damaging the protein polypeptide. Superoxide stress inside cells caused the progressive mismetallation of these enzymes with zinc, which confers little activity. When O(2)(-) stress was terminated, cells gradually restored activity by extracting zinc from the proteins. The overloading of cells with zinc caused mismetallation even without O(2)(-) stress. These results support a model in which O(2)(-) repeatedly excises iron from these enzymes, allowing zinc to compete with iron for remetallation of their apoprotein forms. This action substantially expands the physiological imprint of O(2)(-) stress.
Collapse
Affiliation(s)
- Mianzhi Gu
- Department of Microbiology, University of Illinois, Urbana, IL 61801
| | - James A. Imlay
- Department of Microbiology, University of Illinois, Urbana, IL 61801
| |
Collapse
|
164
|
Liu M, Bouhsira E, Boulouis HJ, Biville F. The Bartonella henselae SitABCD transporter is required for confronting oxidative stress during cell and flea invasion. Res Microbiol 2013; 164:827-37. [PMID: 23811032 DOI: 10.1016/j.resmic.2013.06.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 06/19/2013] [Indexed: 11/19/2022]
Abstract
Bartonella henselae is a zoonotic pathogen that possesses a flea-cat-flea transmission cycle and causes cat scratch disease in humans via cat scratches and bites. In order to establish infection, B. henselae must overcome oxidative stress damage produced by the mammalian host and arthropod vector. B. henselae encodes for putative Fe²⁺ and Mn²⁺ transporter SitABCD. In B. henselae, SitAB knockdown increases sensitivity to hydrogen peroxide. We consistently show that SitAB knockdown decreases the ability of B. henselae to survive in both human endothelial cells and cat fleas, thus demonstrating that the SitABCD transporter plays an important role during the B. henselae infection cycle.
Collapse
Affiliation(s)
- MaFeng Liu
- Institute of Preventive Veterinary Medicine, Key Laboratory of Animal Disease and Human Health of Sichuan Province, Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu-611130/Ya'an-625014, Sichuan, PR China; Université Paris-Est, Ecole nationale vétérinaire d'Alfort, UMR BIPAR INRA-Anses-UPEC-ENVA, F-94700 Maisons-Alfort, France.
| | | | | | | |
Collapse
|
165
|
Mulepati S, Bailey S. In vitro reconstitution of an Escherichia coli RNA-guided immune system reveals unidirectional, ATP-dependent degradation of DNA target. J Biol Chem 2013; 288:22184-92. [PMID: 23760266 DOI: 10.1074/jbc.m113.472233] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Many prokaryotes utilize small RNA transcribed from clustered, regularly interspaced, short palindromic repeats (CRISPRs) to protect themselves from foreign genetic elements, such as phage and plasmids. In Escherichia coli, this small RNA is packaged into a surveillance complex (Cascade) that uses the RNA sequence to direct binding to invasive DNA. Once bound, Cascade recruits the Cas3 nuclease-helicase, which then proceeds to progressively degrade the invading DNA. Here, using individually purified Cascade and Cas3 from E. coli, we reconstitute CRISPR-mediated plasmid degradation in vitro. Analysis of this reconstituted assay suggests that Cascade recruits Cas3 to a single-stranded region of the DNA target exposed by Cascade binding. Cas3 then nicks the exposed DNA. Recruitment and nicking is stimulated by the presence, but not hydrolysis, of ATP. Following nicking and powered by ATP hydrolysis, the concerted actions of the helicase and nuclease domains of Cas3 proceed to unwind and degrade the entire DNA target in a unidirectional manner.
Collapse
Affiliation(s)
- Sabin Mulepati
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
166
|
Imlay JA. The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium. Nat Rev Microbiol 2013; 11:443-54. [PMID: 23712352 DOI: 10.1038/nrmicro3032] [Citation(s) in RCA: 1003] [Impact Index Per Article: 91.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Oxic environments are hazardous. Molecular oxygen adventitiously abstracts electrons from many redox enzymes, continuously forming intracellular superoxide and hydrogen peroxide. These species can destroy the activities of metalloenzymes and the integrity of DNA, forcing organisms to protect themselves with scavenging enzymes and repair systems. Nevertheless, elevated levels of oxidants quickly poison bacteria, and both microbial competitors and hostile eukaryotic hosts exploit this vulnerability by assaulting these bacteria with peroxides or superoxide-forming antibiotics. In response, bacteria activate elegant adaptive strategies. In this Review, I summarize our current knowledge of oxidative stress in Escherichia coli, the model organism for which our understanding of damage and defence is most well developed.
Collapse
Affiliation(s)
- James A Imlay
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.
| |
Collapse
|
167
|
Abstract
Borrelia burgdorferi, the causative agent of Lyme disease, must adapt to two diverse niches, an arthropod vector and a mammalian host. RpoS, an alternative sigma factor, plays a central role in spirochetal adaptation to the mammalian host by governing expression of many genes important for mammalian infection. B. burgdorferi is known to be unique in metal utilization, and little is known of the role of biologically available metals in B. burgdorferi. Here, we identified two transition metal ions, manganese (Mn(2+)) and zinc (Zn(2+)), that influenced regulation of RpoS. The intracellular Mn(2+) level fluctuated approximately 20-fold under different conditions and inversely correlated with levels of RpoS and the major virulence factor OspC. Furthermore, an increase in intracellular Mn(2+) repressed temperature-dependent induction of RpoS and OspC; this repression was overcome by an excess of Zn(2+). Conversely, a decrease of intracellular Mn(2+) by deletion of the Mn(2+) transporter gene, bmtA, resulted in elevated levels of RpoS and OspC. Mn(2+) affected RpoS through BosR, a Fur family homolog that is required for rpoS expression: elevated intracellular Mn(2+) levels greatly reduced the level of BosR protein but not the level of bosR mRNA. Thus, Mn(2+) and Zn(2+) appeared to be important in modulation of the RpoS pathway that is essential to the life cycle of the Lyme disease spirochete. This finding supports the emerging notion that transition metals such as Mn(2+) and Zn(2+) play a critical role in regulation of virulence in bacteria.
Collapse
|
168
|
RNA with iron(II) as a cofactor catalyses electron transfer. Nat Chem 2013; 5:525-8. [DOI: 10.1038/nchem.1649] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 03/29/2013] [Indexed: 01/03/2023]
|
169
|
Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nat Rev Microbiol 2013; 11:371-84. [PMID: 23669886 DOI: 10.1038/nrmicro3028] [Citation(s) in RCA: 1371] [Impact Index Per Article: 124.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Metals have been used as antimicrobial agents since antiquity, but throughout most of history their modes of action have remained unclear. Recent studies indicate that different metals cause discrete and distinct types of injuries to microbial cells as a result of oxidative stress, protein dysfunction or membrane damage. Here, we describe the chemical and toxicological principles that underlie the antimicrobial activity of metals and discuss the preferences of metal atoms for specific microbial targets. Interdisciplinary research is advancing not only our understanding of metal toxicity but also the design of metal-based compounds for use as antimicrobial agents and alternatives to antibiotics.
Collapse
|
170
|
Mechanistic studies of FosB: a divalent-metal-dependent bacillithiol-S-transferase that mediates fosfomycin resistance in Staphylococcus aureus. Biochem J 2013; 451:69-79. [PMID: 23256780 DOI: 10.1042/bj20121541] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
FosB is a divalent-metal-dependent thiol-S-transferase implicated in fosfomycin resistance among many pathogenic Gram-positive bacteria. In the present paper, we describe detailed kinetic studies of FosB from Staphylococcus aureus (SaFosB) that confirm that bacillithiol (BSH) is its preferred physiological thiol substrate. SaFosB is the first to be characterized among a new class of enzyme (bacillithiol-S-transferases), which, unlike glutathione transferases, are distributed among many low-G+C Gram-positive bacteria that use BSH instead of glutathione as their major low-molecular-mass thiol. The K(m) values for BSH and fosfomycin are 4.2 and 17.8 mM respectively. Substrate specificity assays revealed that the thiol and amino groups of BSH are essential for activity, whereas malate is important for SaFosB recognition and catalytic efficiency. Metal activity assays indicated that Mn(2+) and Mg(2+) are likely to be the relevant cofactors under physiological conditions. The serine analogue of BSH (BOH) is an effective competitive inhibitor of SaFosB with respect to BSH, but uncompetitive with respect to fosfomycin. Coupled with NMR characterization of the reaction product (BS-fosfomycin), this demonstrates that the SaFosB-catalysed reaction pathway involves a compulsory ordered binding mechanism with fosfomycin binding first followed by BSH which then attacks the more sterically hindered C-1 carbon of the fosfomycin epoxide. Disruption of BSH biosynthesis in S. aureus increases sensitivity to fosfomycin. Together, these results indicate that SaFosB is a divalent-metal-dependent bacillithiol-S-transferase that confers fosfomycin resistance on S. aureus.
Collapse
|
171
|
Responses of Mn2+ speciation in Deinococcus radiodurans and Escherichia coli to γ-radiation by advanced paramagnetic resonance methods. Proc Natl Acad Sci U S A 2013; 110:5945-50. [PMID: 23536297 DOI: 10.1073/pnas.1303376110] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The remarkable ability of bacterium Deinococcus radiodurans to survive extreme doses of γ-rays (12,000 Gy), 20 times greater than Escherichia coli, is undiminished by loss of Mn-dependent superoxide dismutase (SodA). D. radiodurans radiation resistance is attributed to the accumulation of low-molecular-weight (LMW) "antioxidant" Mn(2+)-metabolite complexes that protect essential enzymes from oxidative damage. However, in vivo information about such complexes within D. radiodurans cells is lacking, and the idea that they can supplant reactive-oxygen-species (ROS)-scavenging enzymes remains controversial. In this report, measurements by advanced paramagnetic resonance techniques [electron-spin-echo (ESE)-EPR/electron nuclear double resonance/ESE envelope modulation (ESEEM)] reveal differential details of the in vivo Mn(2+) speciation in D. radiodurans and E. coli cells and their responses to 10 kGy γ-irradiation. The Mn(2+) of D. radiodurans exists predominantly as LMW complexes with nitrogenous metabolites and orthophosphate, with negligible EPR signal from Mn(2+) of SodA. Thus, the extreme radiation resistance of D. radiodurans cells cannot be attributed to SodA. Correspondingly, 10 kGy irradiation causes no change in D. radiodurans Mn(2+) speciation, despite the paucity of holo-SodA. In contrast, the EPR signal of E. coli is dominated by signals from low-symmetry enzyme sites such as that of SodA, with a minority pool of LMW Mn(2+) complexes that show negligible coordination by nitrogenous metabolites. Nonetheless, irradiation of E. coli majorly changes LMW Mn(2+) speciation, with extensive binding of nitrogenous ligands created by irradiation. We infer that E. coli is highly susceptible to radiation-induced ROS because it lacks an adequate supply of LMW Mn antioxidants.
Collapse
|
172
|
Santos AL, Gomes NC, Henriques I, Almeida A, Correia A, Cunha A. Role of Transition Metals in UV-B-Induced Damage to Bacteria. Photochem Photobiol 2013; 89:640-8. [DOI: 10.1111/php.12049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 01/16/2013] [Indexed: 12/01/2022]
Affiliation(s)
- Ana L. Santos
- Dapartment of Biology & CESAM; University of Aveiro; Campus Universitário de Santiago; 3810-193; Aveiro; Portugal
| | - Newton C.M. Gomes
- Dapartment of Biology & CESAM; University of Aveiro; Campus Universitário de Santiago; 3810-193; Aveiro; Portugal
| | - Isabel Henriques
- Dapartment of Biology & CESAM; University of Aveiro; Campus Universitário de Santiago; 3810-193; Aveiro; Portugal
| | - Adelaide Almeida
- Dapartment of Biology & CESAM; University of Aveiro; Campus Universitário de Santiago; 3810-193; Aveiro; Portugal
| | - António Correia
- Dapartment of Biology & CESAM; University of Aveiro; Campus Universitário de Santiago; 3810-193; Aveiro; Portugal
| | - Angela Cunha
- Dapartment of Biology & CESAM; University of Aveiro; Campus Universitário de Santiago; 3810-193; Aveiro; Portugal
| |
Collapse
|
173
|
Yesilkaya H, Andisi VF, Andrew PW, Bijlsma JJE. Streptococcus pneumoniae and reactive oxygen species: an unusual approach to living with radicals. Trends Microbiol 2013; 21:187-95. [PMID: 23415028 DOI: 10.1016/j.tim.2013.01.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 01/15/2013] [Accepted: 01/18/2013] [Indexed: 11/25/2022]
Abstract
Streptococcus pneumoniae, an aerotolerant anaerobe, is an important human pathogen that regularly encounters toxic oxygen radicals from the atmosphere and from the host metabolism and immune system. Additionally, S. pneumoniae produces large amounts of H2O2 as a byproduct of its metabolism, which contributes to its virulence but also has adverse effects on its biology. Understanding how S. pneumoniae defends against oxidative stress is far from complete, but it is apparent that it does not follow the current paradigm of having canonical enzymes to detoxify oxygen radicals or homologues of typical oxidative stress responsive global regulators. We will give an overview of how S. pneumoniae copes with oxygen radicals. Furthermore, we draw parallels with other pathogenic streptococcal species and provide future research perspectives.
Collapse
Affiliation(s)
- Hasan Yesilkaya
- University of Leicester, Department of Infection, Immunity, and Inflammation, Maurice Shock Building, University Road, P.O. Box 138, Leicester, LE1 9HN, UK
| | | | | | | |
Collapse
|
174
|
Ardini M, Fiorillo A, Fittipaldi M, Stefanini S, Gatteschi D, Ilari A, Chiancone E. Kineococcus radiotolerans Dps forms a heteronuclear Mn-Fe ferroxidase center that may explain the Mn-dependent protection against oxidative stress. Biochim Biophys Acta Gen Subj 2013; 1830:3745-55. [PMID: 23396000 DOI: 10.1016/j.bbagen.2013.02.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 01/14/2013] [Accepted: 02/04/2013] [Indexed: 01/30/2023]
Abstract
BACKGROUND The ferroxidase center of DNA-binding protein from starved cells (Dps) is a major player in the iron oxidation/detoxification process that leads to a decreased reactive oxygen species production. The possible Mn(II) participation in this process has been studied in Dps from Kineococcus radiotolerans, a radiation-resistant bacterium with a high cytosolic Mn/Fe ratio and a high capacity to survive ionizing and stress conditions. METHODS The X-ray structure of recombinant K. radiotolerans Dps loaded with Mn(II) has been solved at 2.0Å resolution. Mn(II) binding to K. radiotolerans Dps and its effect on Fe(II) oxidation have been characterized in spectroscopic measurements. RESULTS In K. radiotolerans Dps, the Fe-Fe ferroxidase center can have a Mn-Fe composition. Mn(II) binds only at the high affinity, so-called A site, whereas Fe(II) binds also at the low affinity, so-called B site. The Mn-Fe and Fe-Fe centers behave distinctly upon iron oxidation by O2. A site-bound Mn(II) or Fe(II) plays a catalytic role, while B site-bound Fe(II) behaves like a substrate and can be replaced by another Fe(II) after oxidation. When H2O2 is the Fe(II) oxidant, single electrons are transferred to aromatic residues near the ferroxidase center and give rise to intra-protein radicals thereby limiting OH release in solution. The presence of the Mn-Fe center results in significant differences in the development of such intra-protein radicals. CONCLUSIONS Mn(II) bound at the Dps ferroxidase center A site undergoes redox cycling provided the B site contains Fe. GENERAL SIGNIFICANCE The results provide a likely molecular mechanism for the protective role of Mn(II) under oxidative stress conditions as it participates in redox cycling in the hetero-binuclear ferroxidase center.
Collapse
Affiliation(s)
- Matteo Ardini
- Department of Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
175
|
Andrews S, Norton I, Salunkhe AS, Goodluck H, Aly WSM, Mourad-Agha H, Cornelis P. Control of iron metabolism in bacteria. Met Ions Life Sci 2013; 12:203-39. [PMID: 23595674 DOI: 10.1007/978-94-007-5561-1_7] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Bacteria depend upon iron as a vital cofactor that enables a wide range of key metabolic activities. Bacteria must therefore ensure a balanced supply of this essential metal. To do so, they invest considerable resourse into its acquisition and employ elaborate control mechanisms to eleviate both iron-induced toxitiy as well as iron deficiency. This chapter describes the processes that bacteria engage in maintaining iron homeostasis. The focus is Escherichia coli, as this bacterium provides a well studied example. A summary of the current status of understanding of iron management at the 'omics' level is also presented.
Collapse
Affiliation(s)
- Simon Andrews
- The School of Biological Sciences, The University of Reading, Whiteknights, Reading, RG6 6AJ, UK,
| | | | | | | | | | | | | |
Collapse
|
176
|
Iron-sulphur clusters, their biosynthesis, and biological functions in protozoan parasites. ADVANCES IN PARASITOLOGY 2013; 83:1-92. [PMID: 23876871 DOI: 10.1016/b978-0-12-407705-8.00001-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Fe-S clusters are ensembles of sulphide-linked di-, tri-, and tetra-iron centres of a variety of metalloproteins that play important roles in reduction and oxidation of mitochondrial electron transport, energy metabolism, regulation of gene expression, cell survival, nitrogen fixation, and numerous other metabolic pathways. The Fe-S clusters are assembled by one of four distinct systems: NIF, SUF, ISC, and CIA machineries. The ISC machinery is a house-keeping system conserved widely from prokaryotes to higher eukaryotes, while the other systems are present in a limited range of organisms and play supplementary roles under certain conditions such as stress. Fe-S cluster-containing proteins and the components required for Fe-S cluster biosynthesis are modulated under stress conditions, drug resistance, and developmental stages. It is also known that a defect in Fe-S proteins and Fe-S cluster biogenesis leads to many genetic disorders in humans, which indicates the importance of the systems. In this review, we describe the biological and physiological significance of Fe-S cluster-containing proteins and their biosynthesis in parasitic protozoa including Plasmodium, Trypanosoma, Leishmania, Giardia, Trichomonas, Entamoeba, Cryptosporidium, Blastocystis, and microsporidia. We also discuss the roles of Fe-S cluster biosynthesis in proliferation, differentiation, and stress response in protozoan parasites. The heterogeneity of the systems and the compartmentalization of Fe-S cluster biogenesis in the protozoan parasites likely reflect divergent evolution under highly diverse environmental niches, and influence their parasitic lifestyle and pathogenesis. Finally, both Fe-S cluster-containing proteins and their biosynthetic machinery in protozoan parasites are remarkably different from those in their mammalian hosts. Thus, they represent a rational target for the development of novel chemotherapeutic and prophylactic agents against protozoan infections.
Collapse
|
177
|
Abstract
As a trace element copper has an important role in cellular function like many other transition metals. Its ability to undergo redox changes [Cu(I) ↔ Cu(II)] makes copper an ideal cofactor in enzymes catalyzing electron transfers. However, this redox change makes copper dangerous for a cell since it is able to be involved in Fenton-like reactions creating reactive oxygen species (ROS). Cu(I) also is a strong soft metal and can attack and destroy iron-sulfur clusters thereby releasing iron which can in turn cause oxidative stress. Therefore, copper homeostasis has to be highly balanced to ensure proper cellular function while avoiding cell damage.Throughout evolution bacteria and archaea have developed a highly regulated balance in copper metabolism. While for many prokaryotes copper uptake seems to be unspecific, others have developed highly sophisticated uptake mechanisms to ensure the availability of sufficient amounts of copper. Within the cytoplasm copper is sequestered by various proteins and molecules, including specific copper chaperones, to prevent cellular damage. Copper-containing proteins are usually located in the cytoplasmic membrane with the catalytic domain facing the periplasm, in the periplasm of Gram-negative bacteria, or they are secreted, limiting the necessity of copper to accumulate in the cytoplasm. To prevent cellular damage due to excess copper, bacteria and archaea have developed various copper detoxification strategies. In this chapter we attempt to give an overview of the mechanisms employed by bacteria and archaea to handle copper and the importance of the metal for cellular function as well as in the global nutrient cycle.
Collapse
Affiliation(s)
- Christopher Rensing
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1870, Frederiksberg C, Denmark
| | | |
Collapse
|
178
|
PolA1, a putative DNA polymerase I, is coexpressed with PerR and contributes to peroxide stress defenses of group A Streptococcus. J Bacteriol 2012. [PMID: 23204468 DOI: 10.1128/jb.01847-12] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The peroxide stress response regulator PerR coordinates the oxidative-stress defenses of group A Streptococcus (GAS). We now show that PerR is expressed from an operon encoding a putative DNA polymerase I (PolA1), among other GAS products. A polA1 deletion mutant exhibited wild-type growth but showed reduced capacity to repair DNA damage caused by UV light or ciprofloxacin. Mutant bacteria were hypersensitive to H(2)O(2), compared with the wild type or a complemented mutant strain, and remained severely attenuated even after adaptation at sublethal H(2)O(2) levels, whereas wild-type bacteria could adapt to withstand peroxide challenge under identical conditions. The hypersensitivity of the mutant was reversed when bacteria were grown in iron-depleted medium and challenged in the presence of a hydroxyl radical scavenger, results that indicated sensitivity to hydroxyl radicals generated by Fenton chemistry. The peroxide resistance of a perR polA1 double mutant following adaptation at sublethal H(2)O(2) levels was decreased 9-fold relative to a perR single mutant, thus implicating PolA1 in PerR-mediated defenses against peroxide stress. Cultures of the polA1 mutant grown with or without prior H(2)O(2) exposure yielded considerably lower numbers of rifampin-resistant mutants than cultures of the wild type or the complemented mutant strain, a finding consistent with PolA1 lacking proofreading activity. We conclude that PolA1 promotes genome sequence diversity while playing an essential role in oxidative DNA damage repair mechanisms of GAS, dual functions predicted to confer optimal adaptive capacity and fitness in the host. Together, our studies reveal a unique genetic and functional relationship between PerR and PolA1 in streptococci.
Collapse
|
179
|
Haemophilus influenzae OxyR: characterization of its regulation, regulon and role in fitness. PLoS One 2012; 7:e50588. [PMID: 23226321 PMCID: PMC3511568 DOI: 10.1371/journal.pone.0050588] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 10/23/2012] [Indexed: 12/27/2022] Open
Abstract
To prevent damage by reactive oxygen species, many bacteria have evolved rapid detection and response systems, including the OxyR regulon. The OxyR system detects reactive oxygen and coordinates the expression of numerous defensive antioxidants. In many bacterial species the coordinated OxyR-regulated response is crucial for in vivo survival. Regulation of the OxyR regulon of Haemophilus influenzae was examined in vitro, and significant variation in the regulated genes of the OxyR regulon among strains of H. influenzae was observed. Quantitative PCR studies demonstrated a role for the OxyR-regulated peroxiredoxin/glutaredoxin as a mediator of the OxyR response, and also indicated OxyR self-regulation through a negative feedback loop. Analysis of transcript levels in H. influenzae samples derived from an animal model of otitis media demonstrated that the members of the OxyR regulon were actively upregulated within the chinchilla middle ear. H. influenzae mutants lacking the oxyR gene exhibited increased sensitivity to challenge with various peroxides. The impact of mutations in oxyR was assessed in various animal models of H. influenzae disease. In paired comparisons with the corresponding wild-type strains, the oxyR mutants were unaffected in both the chinchilla model of otitis media and an infant model of bacteremia. However, in weanling rats the oxyR mutant was significantly impaired compared to the wild-type strain. In contrast, in all three animal models when infected with a mixture of equal numbers of both wild-type and mutant strains the mutant strain was significantly out competed by the wild-type strain. These findings clearly establish a crucial role for OxyR in bacterial fitness.
Collapse
|
180
|
Interplay between manganese and iron in pneumococcal pathogenesis: role of the orphan response regulator RitR. Infect Immun 2012. [PMID: 23184523 DOI: 10.1128/iai.00805-12] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus pneumoniae (the pneumococcus) is a major human pathogen that is carried asymptomatically in the nasopharynx by up to 70% of the human population. Translocation of the bacteria into internal sites can cause a range of diseases, such as pneumonia, otitis media, meningitis, and bacteremia. This transition from nasopharynx to growth at systemic sites means that the pneumococcus needs to adjust to a variety of environmental conditions, including transition metal ion availability. Although it is an important nutrient, iron potentiates oxidative stress, and it is established that in S. pneumoniae, expression of iron transport systems and proteins that protect against oxidative stress are regulated by an orphan response regulator, RitR. In this study, we investigated the effect of iron and manganese ion availability on the growth of a ritR mutant. Deletion of ritR led to impaired growth of bacteria in high-iron medium, but this phenotype could be suppressed with the addition of manganese. Measurement of metal ion accumulation indicated that manganese prevents iron accumulation. Furthermore, the addition of manganese also led to a reduction in the amount of hydrogen peroxide produced by bacterial cells. Studies of virulence in a murine model of infection indicated that RitR was not essential for pneumococcal survival and suggested that derepression of iron uptake systems may enhance the survival of pneumococci in some niches.
Collapse
|
181
|
Cotruvo JA, Stubbe J. Metallation and mismetallation of iron and manganese proteins in vitro and in vivo: the class I ribonucleotide reductases as a case study. Metallomics 2012; 4:1020-36. [PMID: 22991063 PMCID: PMC3488304 DOI: 10.1039/c2mt20142a] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
How cells ensure correct metallation of a given protein and whether a degree of promiscuity in metal binding has evolved are largely unanswered questions. In a classic case, iron- and manganese-dependent superoxide dismutases (SODs) catalyze the disproportionation of superoxide using highly similar protein scaffolds and nearly identical active sites. However, most of these enzymes are active with only one metal, although both metals can bind in vitro and in vivo. Iron(ii) and manganese(ii) bind weakly to most proteins and possess similar coordination preferences. Their distinct redox properties suggest that they are unlikely to be interchangeable in biological systems except when they function in Lewis acid catalytic roles, yet recent work suggests this is not always the case. This review summarizes the diversity of ways in which iron and manganese are substituted in similar or identical protein frameworks. As models, we discuss (1) enzymes, such as epimerases, thought to use Fe(II) as a Lewis acid under normal growth conditions but which switch to Mn(II) under oxidative stress; (2) extradiol dioxygenases, which have been found to use both Fe(II) and Mn(II), the redox role of which in catalysis remains to be elucidated; (3) SODs, which use redox chemistry and are generally metal-specific; and (4) the class I ribonucleotide reductases (RNRs), which have evolved unique biosynthetic pathways to control metallation. The primary focus is the class Ib RNRs, which can catalyze formation of a stable radical on a tyrosine residue in their β2 subunits using either a di-iron or a recently characterized dimanganese cofactor. The physiological roles of enzymes that can switch between iron and manganese cofactors are discussed, as are insights obtained from the studies of many groups regarding iron and manganese homeostasis and the divergent and convergent strategies organisms use for control of protein metallation. We propose that, in many of the systems discussed, "discrimination" between metals is not performed by the protein itself, but it is instead determined by the environment in which the protein is expressed.
Collapse
Affiliation(s)
- Joseph A. Cotruvo
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA.; Fax: +1 617 324-0505; Tel: +1 617 253-1814
| | - JoAnne Stubbe
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA.; Fax: +1 617 324-0505; Tel: +1 617 253-1814
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
| |
Collapse
|
182
|
Cao B, Liu J, Qin G, Tian S. Oxidative Stress Acts on Special Membrane Proteins To Reduce the Viability of Pseudomonas syringae pv tomato. J Proteome Res 2012; 11:4927-38. [DOI: 10.1021/pr300446g] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Baohua Cao
- Key Laboratory of Plant Resources,
Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Graduate School of the Chinese Academy of Sciences, Beijing 100039,
China
| | - Jia Liu
- Key Laboratory of Plant Resources,
Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Graduate School of the Chinese Academy of Sciences, Beijing 100039,
China
| | - Guozheng Qin
- Key Laboratory of Plant Resources,
Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Shiping Tian
- Key Laboratory of Plant Resources,
Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| |
Collapse
|
183
|
Nutritional immunity: transition metals at the pathogen-host interface. Nat Rev Microbiol 2012; 10:525-37. [PMID: 22796883 DOI: 10.1038/nrmicro2836] [Citation(s) in RCA: 1050] [Impact Index Per Article: 87.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Transition metals occupy an essential niche in biological systems. Their electrostatic properties stabilize substrates or reaction intermediates in the active sites of enzymes, and their heightened reactivity is harnessed for catalysis. However, this heightened activity also renders transition metals toxic at high concentrations. Bacteria, like all living organisms, must regulate their intracellular levels of these elements to satisfy their physiological needs while avoiding harm. It is therefore not surprising that the host capitalizes on both the essentiality and toxicity of transition metals to defend against bacterial invaders. This Review discusses established and emerging paradigms in nutrient metal homeostasis at the pathogen-host interface.
Collapse
|
184
|
Abstract
Similar to other bacteria, Brucella strains require several biologically essential metals for their survival in vitro and in vivo. Acquiring sufficient levels of some of these metals, particularly iron, manganese and zinc, is especially challenging in the mammalian host, where sequestration of these micronutrients is a well-documented component of both the innate and acquired immune responses. This review describes the Brucella metal transporters that have been shown to play critical roles in the virulence of these bacteria in experimental and natural hosts.
Collapse
|
185
|
Mishra S, Imlay J. Why do bacteria use so many enzymes to scavenge hydrogen peroxide? Arch Biochem Biophys 2012; 525:145-60. [PMID: 22609271 DOI: 10.1016/j.abb.2012.04.014] [Citation(s) in RCA: 263] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 04/13/2012] [Accepted: 04/14/2012] [Indexed: 12/16/2022]
Abstract
Hydrogen peroxide (H(2)O(2)) is continuously formed by the autoxidation of redox enzymes in aerobic cells, and it also enters from the environment, where it can be generated both by chemical processes and by the deliberate actions of competing organisms. Because H(2)O(2) is acutely toxic, bacteria elaborate scavenging enzymes to keep its intracellular concentration at nanomolar levels. Mutants that lack such enzymes grow poorly, suffer from high rates of mutagenesis, or even die. In order to understand how bacteria cope with oxidative stress, it is important to identify the key enzymes involved in H(2)O(2) degradation. Catalases and NADH peroxidase (Ahp) are primary scavengers in many bacteria, and their activities and physiological impacts have been unambiguously demonstrated through phenotypic analysis and through direct measurements of H(2)O(2) clearance in vivo. Yet a wide variety of additional enzymes have been proposed to serve similar roles: thiol peroxidase, bacterioferritin comigratory protein, glutathione peroxidase, cytochrome c peroxidase, and rubrerythrins. Each of these enzymes can degrade H(2)O(2) in vitro, but their contributions in vivo remain unclear. In this review we examine the genetic, genomic, regulatory, and biochemical evidence that each of these is a bonafide scavenger of H(2)O(2) in the cell. We also consider possible reasons that bacteria might require multiple enzymes to catalyze this process, including differences in substrate specificity, compartmentalization, cofactor requirements, kinetic optima, and enzyme stability. It is hoped that the resolution of these issues will lead to an understanding of stress resistance that is more accurate and perceptive.
Collapse
Affiliation(s)
- Surabhi Mishra
- Department of Microbiology, University of Illinois, Urbana, IL 61801, USA
| | | |
Collapse
|
186
|
Hohle TH, O'Brian MR. Manganese is required for oxidative metabolism in unstressed Bradyrhizobium japonicum cells. Mol Microbiol 2012; 84:766-77. [PMID: 22463793 DOI: 10.1111/j.1365-2958.2012.08057.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recent studies of Mn(2+) transport mutants indicate that manganese is essential for unstressed growth in some bacterial species, but is required primarily for induced stress responses in others. A Bradyrhizobium japonicum mutant defective in the high-affinity Mn(2+) transporter gene mntH has a severe growth phenotype under manganese limitation, suggesting a requirement for the metal under unstressed growth. Here, we found that activities of superoxide dismutase and the glycolytic enzyme pyruvate kinase were deficient in an mntH strain grown under manganese limitation. We identified pykM as the only pyruvate kinase-encoding gene based on deficiency in activity of a pykM mutant, rescue of the growth phenotype with pyruvate, and pyruvate kinase activity of purified recombinant PykM. PykM is unusual in that it required Mn(2+) rather than Mg(2+) for high activity, and that neither fructose-1,6-bisphosphate nor AMP was a positive allosteric effector. The mntH-dependent superoxide dismutase is encoded by sodM, the only expressed superoxide dismutase-encoding gene under unstressed growth conditions. An mntH mutant grew more slowly on pyruvate under manganese-limited conditions than did a pykM sodM double mutant, implying additional manganese-dependent processes. The findings implicate roles for manganese in key steps in unstressed oxidative metabolism in B. japonicum.
Collapse
Affiliation(s)
- Thomas H Hohle
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | | |
Collapse
|
187
|
Biologically relevant mechanism for catalytic superoxide removal by simple manganese compounds. Proc Natl Acad Sci U S A 2012; 109:6892-7. [PMID: 22505740 DOI: 10.1073/pnas.1203051109] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nonenzymatic manganese was first shown to provide protection against superoxide toxicity in vivo in 1981, but the chemical mechanism responsible for this protection subsequently became controversial due to conflicting reports concerning the ability of Mn to catalyze superoxide disproportionation in vitro. In a recent communication, we reported that low concentrations of a simple Mn phosphate salt under physiologically relevant conditions will indeed catalyze superoxide disproportionation in vitro. We report now that two of the four Mn complexes that are expected to be most abundant in vivo, Mn phosphate and Mn carbonate, can catalyze superoxide disproportionation at physiologically relevant concentrations and pH, whereas Mn pyrophosphate and citrate complexes cannot. Additionally, the chemical mechanisms of these reactions have been studied in detail, and the rates of reactions of the catalytic removal of superoxide by Mn phosphate and carbonate have been modeled. Physiologically relevant concentrations of these compounds were found to be sufficient to mimic an effective concentration of enzymatic superoxide dismutase found in vivo. This mechanism provides a likely explanation as to how Mn combats superoxide stress in cellular systems.
Collapse
|
188
|
Troxell B, Xu H, Yang XF. Borrelia burgdorferi, a pathogen that lacks iron, encodes manganese-dependent superoxide dismutase essential for resistance to streptonigrin. J Biol Chem 2012; 287:19284-93. [PMID: 22500025 DOI: 10.1074/jbc.m112.344903] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Borrelia burgdorferi, the causative agent of Lyme disease, exists in nature through a complex life cycle involving ticks of the Ixodes genus and mammalian hosts. During its life cycle, B. burgdorferi experiences fluctuations in oxygen tension and may encounter reactive oxygen species (ROS). The key metalloenzyme to degrade ROS in B. burgdorferi is SodA. Although previous work suggests that B. burgdorferi SodA is an iron-dependent superoxide dismutase (SOD), later work demonstrates that B. burgdorferi is unable to transport iron and contains an extremely low intracellular concentration of iron. Consequently, the metal cofactor for SodA has been postulated to be manganese. However, experimental evidence to support this hypothesis remains lacking. In this study, we provide biochemical and genetic data showing that SodA is a manganese-dependent enzyme. First, B. burgdorferi contained SOD activity that is resistant to H(2)O(2) and NaCN, characteristics associated with Mn-SODs. Second, the addition of manganese to the Chelex-treated BSK-II enhanced SodA expression. Third, disruption of the manganese transporter gene bmtA, which significantly lowers the intracellular manganese, greatly reduced SOD activity and SodA expression, suggesting that manganese regulates the level of SodA. In addition, we show that B. burgdorferi is resistant to streptonigrin, a metal-dependent redox cycling compound that produces ROS, and that SodA plays a protective role against the streptonigrin. Taken together, our data demonstrate the Lyme disease spirochete encodes a manganese-dependent SOD that contributes to B. burgdorferi defense against intracellular superoxide.
Collapse
Affiliation(s)
- Bryan Troxell
- Department of Immunology and Microbiology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | |
Collapse
|
189
|
Harrison A, Bakaletz LO, Munson RS. Haemophilus influenzae and oxidative stress. Front Cell Infect Microbiol 2012; 2:40. [PMID: 22919631 PMCID: PMC3417577 DOI: 10.3389/fcimb.2012.00040] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 03/13/2012] [Indexed: 12/16/2022] Open
Abstract
Haemophilus influenzae is a commensal of the human upper respiratory tract. H. influenzae can, however, move out of its commensal niche and cause multiple respiratory tract diseases. Such diseases include otitis media in young children, as well as exacerbations of chronic obstructive pulmonary disease (COPD), sinusitis, conjunctivitis, and bronchitis. During the course of colonization and infection, H. influenzae must withstand oxidative stress generated by multiple reactive oxygen species produced endogenously, by other co-pathogens and by host cells. H. influenzae has, therefore, evolved multiple mechanisms that protect the cell against oxygen-generated stresses. In this review, we will describe these systems relative to the well-described systems in Escherichia coli. Moreover, we will compare how H. influenzae combats the effect of oxidative stress as a necessary phenotype for its roles as both a successful commensal and pathogen.
Collapse
Affiliation(s)
- Alistair Harrison
- The Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus OH, USA. alistair.harrison@ nationwidechildrens.org
| | | | | |
Collapse
|
190
|
Anjem A, Imlay JA. Mononuclear iron enzymes are primary targets of hydrogen peroxide stress. J Biol Chem 2012; 287:15544-56. [PMID: 22411989 DOI: 10.1074/jbc.m111.330365] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
This study tested whether nonredox metalloenzymes are commonly charged with iron in vivo and are primary targets of oxidative stress because of it. Indeed, three sample mononuclear enzymes, peptide deformylase, threonine dehydrogenase, and cytosine deaminase, were rapidly damaged by micromolar hydrogen peroxide in vitro and in live Escherichia coli. The first two enzymes use a cysteine residue to coordinate the catalytic metal atom; it was quantitatively oxidized by the radical generated by the Fenton reaction. Because oxidized cysteine can be repaired by cellular reductants, the effect was to avoid irreversible damage to other active-site residues. Nevertheless, protracted H(2)O(2) exposure gradually inactivated these enzymes, consistent with the overoxidation of the cysteine residue to sulfinic or sulfonic forms. During H(2)O(2) stress, E. coli defended all three proteins by inducing MntH, a manganese importer, and Dps, an iron-sequestration protein. These proteins appeared to collaborate in replacing the iron atom with nonoxidizable manganese. The implication is that mononuclear metalloproteins are common targets of H(2)O(2) and that both structural and metabolic arrangements exist to protect them.
Collapse
Affiliation(s)
- Adil Anjem
- Department of Microbiology, University of Illinois, Urbana, Illinois 61801, USA
| | | |
Collapse
|
191
|
Gerstle K, Klätschke K, Hahn U, Piganeau N. The small RNA RybA regulates key-genes in the biosynthesis of aromatic amino acids under peroxide stress in E. coli. RNA Biol 2012; 9:458-68. [PMID: 22336764 DOI: 10.4161/rna.19065] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In bacteria, adaptive response to external stimuli is often regulated by small RNAs (sRNAs). In Escherichia coli, the organism in which sRNAs have been best characterized so far, no function could be attributed to 40 out of 79 sRNAs. Here we decipher the function of RybA, one of these orphan sRNAs. RybA was discovered in 2001 by Wassarman et al. using comparative genomics. This sRNA is conserved between E. coli, Salmonella typhimurium and Klebsiella pneumoniae. We determined the expression pattern of RybA under different growth conditions and identified its exact 5' and 3' ends. Using microarray and Northern analysis we show that, under peroxide stress, the absence of RybA leads to an upregulation of key genes of the TyrR regulon involved in the metabolism of aromatic compounds including the aromatic amino acids. Although containing an open reading frame, which might have an independent function, RybA does not require translation for this activity and therefore acts at the RNA level. Furthermore we demonstrate that regulation requires the transcription regulator TyrR. The mechanism of activation of TyrR, probably the primary target of RybA, remains to be elucidated. The downregulation of aromatic amino acid biosynthesis might regulate the cellular concentration of chorismate and its availability for other downstream products like ubiquinone or enterobactin. While ubiquinone participates in the defense against oxidative stress in the cytoplasmic membrane, enterobactin is involved in iron import and is therefore detrimental under oxidative stress.
Collapse
Affiliation(s)
- Kirstin Gerstle
- Department of Chemistry, Institute for Biochemistry and Molecular Biology, Hamburg University, Hamburg, Germany
| | | | | | | |
Collapse
|
192
|
Lu Z, Liang R, Liu X, Hou J, Liu J. RNase HIII from Chlamydophila pneumoniae can efficiently cleave double-stranded DNA carrying a chimeric ribonucleotide in the presence of manganese. Mol Microbiol 2012; 83:1080-93. [PMID: 22332714 DOI: 10.1111/j.1365-2958.2012.07990.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Two ribonuclease Hs (RNase Hs) have been found in Chlamydophila pneumoniae, CpRNase HII and CpRNase HIII. This work is the first report that CpRNase HIII can efficiently cleave DNA-rN(1) -DNA/DNA (rN(1) , monoribonucleotide) in vitro in the presence of Mn(2+) , whereas the enzymatic activity of CpRNase HII on the same substrate was inhibited by Mn(2+) and dependent on Mg(2+) . However, the ability of both CpRNase Hs to cleave other alternative substrates (RNA/DNA hybrids and Okazaki-like substrates), was insensitive to the divalent ions changes, suggesting that high concentrations of Mn(2+) specifically repressed the ability of CpRNase HII to cleave DNA-rN(1) -DNA/DNA but activated this function in CpRNase HIII. Further in vivo experiments showed that the CpRNase HII complementation of Escherichia coli rnh(-) mutations in an Mg(2+) environment was suppressed by Mn(2+) . In contrast, Mn(2+) was indispensable for CpRNase HIII to complement the same mutations. Further, the cell growth inhibition and the genomic DNA sensitivity to alkali in the bacterial strain lacking RNase HII activity could be relieved by functional CpRNase HII or HIII with its compatible ion. Therefore, CpRNase HIII can execute cleavage activity on DNA-rN(1) -DNA/DNA under a Mn(2+) -rich environment and may function as a substitute for CpRNase HII under special physiological states.
Collapse
Affiliation(s)
- Zheng Lu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiaotong University, Shanghai, China
| | | | | | | | | |
Collapse
|
193
|
Aguirre JD, Culotta VC. Battles with iron: manganese in oxidative stress protection. J Biol Chem 2012; 287:13541-8. [PMID: 22247543 DOI: 10.1074/jbc.r111.312181] [Citation(s) in RCA: 204] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The redox-active metal manganese plays a key role in cellular adaptation to oxidative stress. As a cofactor for manganese superoxide dismutase or through formation of non-proteinaceous manganese antioxidants, this metal can combat oxidative damage without deleterious side effects of Fenton chemistry. In either case, the antioxidant properties of manganese are vulnerable to iron. Cellular pools of iron can outcompete manganese for binding to manganese superoxide dismutase, and through Fenton chemistry, iron may counteract the benefits of non-proteinaceous manganese antioxidants. In this minireview, we highlight ways in which cells maximize the efficacy of manganese as an antioxidant in the midst of pro-oxidant iron.
Collapse
Affiliation(s)
- J Dafhne Aguirre
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
194
|
Perry RD, Craig SK, Abney J, Bobrov AG, Kirillina O, Mier I, Truszczynska H, Fetherston JD. Manganese transporters Yfe and MntH are Fur-regulated and important for the virulence of Yersinia pestis. MICROBIOLOGY-SGM 2012; 158:804-815. [PMID: 22222497 DOI: 10.1099/mic.0.053710-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Yersinia pestis has a flea-mammal-flea transmission cycle, and is a zoonotic pathogen that causes the systemic diseases bubonic and septicaemic plague in rodents and humans, as well as pneumonic plague in humans and non-human primates. Bubonic and pneumonic plague are quite different diseases that result from different routes of infection. Manganese (Mn) acquisition is critical for the growth and pathogenesis of a number of bacteria. The Yfe/Sit and/or MntH systems are the two prominent Mn transporters in Gram-negative bacteria. Previously we showed that the Y. pestis Yfe system transports Fe and Mn. Here we demonstrate that a mutation in yfe or mntH did not significantly affect in vitro aerobic growth under Mn-deficient conditions. A yfe mntH double mutant did exhibit a moderate growth defect which was alleviated by supplementation with Mn. No short-term energy-dependent uptake of (54)Mn was observed in this double mutant. Like the yfeA promoter, the mntH promoter was repressed by both Mn and Fe via Fur. Sequences upstream of the Fur binding sequence in the yfeA promoter converted an iron-repressible promoter to one that is also repressed by Mn and Fe. To our knowledge, this is the first report identifying cis promoter elements needed to alter cation specificities involved in transcriptional repression. Finally, the Y. pestis yfe mntH double mutant had an ~133-fold loss of virulence in a mouse model of bubonic plague but no virulence loss in the pneumonic plague model. This suggests that Mn availability, bacterial Mn requirements or Mn transporters used by Y. pestis are different in the lungs (pneumonic plague) compared with systemic disease.
Collapse
Affiliation(s)
- Robert D Perry
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY 40536-0298, USA
| | - Susannah K Craig
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY 40536-0298, USA
| | - Jennifer Abney
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY 40536-0298, USA
| | - Alexander G Bobrov
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY 40536-0298, USA
| | - Olga Kirillina
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY 40536-0298, USA
| | - Ildefonso Mier
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY 40536-0298, USA
| | - Helena Truszczynska
- Department of Institutional Research Planning and Effectiveness, University of Kentucky, Lexington, KY 40536, USA
| | - Jacqueline D Fetherston
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY 40536-0298, USA
| |
Collapse
|
195
|
Yersinia pestis transition metal divalent cation transporters. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 954:267-79. [PMID: 22782773 DOI: 10.1007/978-1-4614-3561-7_34] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
196
|
Death by protein damage in irradiated cells. DNA Repair (Amst) 2012; 11:12-21. [DOI: 10.1016/j.dnarep.2011.10.024] [Citation(s) in RCA: 180] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 10/19/2011] [Indexed: 12/12/2022]
|
197
|
|
198
|
Merchant SS, Helmann JD. Elemental economy: microbial strategies for optimizing growth in the face of nutrient limitation. Adv Microb Physiol 2012; 60:91-210. [PMID: 22633059 PMCID: PMC4100946 DOI: 10.1016/b978-0-12-398264-3.00002-4] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Microorganisms play a dominant role in the biogeochemical cycling of nutrients. They are rightly praised for their facility for fixing both carbon and nitrogen into organic matter, and microbial driven processes have tangibly altered the chemical composition of the biosphere and its surrounding atmosphere. Despite their prodigious capacity for molecular transformations, microorganisms are powerless in the face of the immutability of the elements. Limitations for specific elements, either fleeting or persisting over eons, have left an indelible trace on microbial genomes, physiology, and their very atomic composition. We here review the impact of elemental limitation on microbes, with a focus on selected genetic model systems and representative microbes from the ocean ecosystem. Evolutionary adaptations that enhance growth in the face of persistent or recurrent elemental limitations are evident from genome and proteome analyses. These range from the extreme (such as dispensing with a requirement for a hard to obtain element) to the extremely subtle (changes in protein amino acid sequences that slightly, but significantly, reduce cellular carbon, nitrogen, or sulfur demand). One near-universal adaptation is the development of sophisticated acclimation programs by which cells adjust their chemical composition in response to a changing environment. When specific elements become limiting, acclimation typically begins with an increased commitment to acquisition and a concomitant mobilization of stored resources. If elemental limitation persists, the cell implements austerity measures including elemental sparing and elemental recycling. Insights into these fundamental cellular properties have emerged from studies at many different levels, including ecology, biological oceanography, biogeochemistry, molecular genetics, genomics, and microbial physiology. Here, we present a synthesis of these diverse studies and attempt to discern some overarching themes.
Collapse
Affiliation(s)
- Sabeeha S. Merchant
- Institute for Genomics and Proteomics and Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - John D. Helmann
- Department of Microbiology, Cornell University, Ithaca, NY, 14853-8101
| |
Collapse
|
199
|
Abstract
Although successful iron acquisition by pathogens within a host is a prerequisite for the establishment of infection, surprisingly little is known about the intracellular distribution of iron within bacterial pathogens. We have used a combination of anaerobic native liquid chromatography, inductively coupled plasma mass spectrometry, principal-component analysis, and peptide mass fingerprinting to investigate the cytosolic iron distribution in the pathogen Bacillus anthracis. Our studies identified three of the major iron pools as being associated with the electron transfer protein ferredoxin, the miniferritin Dps2, and the superoxide dismutase (SOD) enzymes SodA1 and SodA2. Although both SOD isozymes were predicted to utilize manganese cofactors, quantification of the metal ions associated with SodA1 and SodA2 in cell extracts established that SodA1 is associated with both manganese and iron, whereas SodA2 is bound exclusively to iron in vivo. These data were confirmed by in vitro assays using recombinant protein preparations, showing that SodA2 is active with an iron cofactor, while SodA1 is cambialistic, i.e., active with manganese or iron. Furthermore, we observe that B. anthracis cells exposed to superoxide stress increase their total iron content more than 2-fold over 60 min, while the manganese and zinc contents are unaffected. Notably, the acquired iron is not localized to the three identified cytosolic iron pools.
Collapse
|
200
|
The iron-binding protein Dps2 confers peroxide stress resistance on Bacillus anthracis. J Bacteriol 2011; 194:925-31. [PMID: 22155779 DOI: 10.1128/jb.06005-11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Iron is an essential nutrient that is implicated in most cellular oxidation reactions. However, iron is a highly reactive element that, if not appropriately chaperoned, can react with endogenously and exogenously generated oxidants such as hydrogen peroxide to generate highly toxic hydroxyl radicals. Dps proteins (DNA-binding proteins from starved cells) form a distinct class (the miniferritins) of iron-binding proteins within the ferritin superfamily. Bacillus anthracis encodes two Dps-like proteins, Dps1 and Dps2, the latter being one of the main iron-containing proteins in the cytoplasm. In this study, the function of Dps2 was characterized in vivo. A B. anthracis Δdps2 mutant was constructed by double-crossover mutagenesis. The growth of the Δdps2 mutant was unaffected by excess iron or iron-limiting conditions, indicating that the primary role of Dps2 is not that of iron sequestration and storage. However, the Δdps2 mutant was highly sensitive to H(2)O(2), and pretreatment of the cells with the iron chelator deferoxamine mesylate (DFM) significantly reduced its sensitivity to H(2)O(2) stress. In addition, the transcription of dps2 was upregulated by H(2)O(2) treatment and derepressed in a perR mutant, indicating that dps2 is a member of the regulon controlled by the PerR regulator. This indicates that the main role of Dps2 is to protect cells from peroxide stress by inhibiting the iron-catalyzed production of OH.
Collapse
|