151
|
Shi H, Colavin A, Bigos M, Tropini C, Monds RD, Huang KC. Deep Phenotypic Mapping of Bacterial Cytoskeletal Mutants Reveals Physiological Robustness to Cell Size. Curr Biol 2017; 27:3419-3429.e4. [DOI: 10.1016/j.cub.2017.09.065] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 08/31/2017] [Accepted: 09/29/2017] [Indexed: 11/25/2022]
|
152
|
Rosenthal K, Oehling V, Dusny C, Schmid A. Beyond the bulk: disclosing the life of single microbial cells. FEMS Microbiol Rev 2017; 41:751-780. [PMID: 29029257 PMCID: PMC5812503 DOI: 10.1093/femsre/fux044] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 09/08/2017] [Indexed: 01/08/2023] Open
Abstract
Microbial single cell analysis has led to discoveries that are beyond what can be resolved with population-based studies. It provides a pristine view of the mechanisms that organize cellular physiology, unbiased by population heterogeneity or uncontrollable environmental impacts. A holistic description of cellular functions at the single cell level requires analytical concepts beyond the miniaturization of existing technologies, defined but uncontrolled by the biological system itself. This review provides an overview of the latest advances in single cell technologies and demonstrates their potential. Opportunities and limitations of single cell microbiology are discussed using selected application-related examples.
Collapse
Affiliation(s)
- Katrin Rosenthal
- Department Solar Materials, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
- Laboratory of Chemical Biotechnology, Department of Biochemical & Chemical Engineering, TU Dortmund University, Dortmund, Germany
| | - Verena Oehling
- Department Solar Materials, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
- Laboratory of Chemical Biotechnology, Department of Biochemical & Chemical Engineering, TU Dortmund University, Dortmund, Germany
| | - Christian Dusny
- Department Solar Materials, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
| | - Andreas Schmid
- Department Solar Materials, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
| |
Collapse
|
153
|
Bonnet J, Durmort C, Jacq M, Mortier-Barrière I, Campo N, VanNieuwenhze MS, Brun YV, Arthaud C, Gallet B, Moriscot C, Morlot C, Vernet T, Di Guilmi AM. Peptidoglycan O-acetylation is functionally related to cell wall biosynthesis and cell division in Streptococcus pneumoniae. Mol Microbiol 2017; 106:832-846. [PMID: 28960579 DOI: 10.1111/mmi.13849] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 09/11/2017] [Accepted: 09/23/2017] [Indexed: 12/12/2022]
Abstract
The peptidoglycan is a rigid matrix required to resist turgor pressure and to maintain the cellular shape. It is formed by linear glycan chains composed of N-acetylmuramic acid-(β-1,4)-N-acetylglucosamine (MurNAc-GlcNAc) disaccharides associated through cross-linked peptide stems. The peptidoglycan is continually remodelled by synthetic and hydrolytic enzymes and by chemical modifications, including O-acetylation of MurNAc residues that occurs in most Gram-positive and Gram-negative bacteria. This modification is a powerful strategy developed by pathogens to resist to lysozyme degradation and thus to escape from the host innate immune system but little is known about its physiological function. In this study, we have investigated to what extend peptidoglycan O-acetylation is involved in cell wall biosynthesis and cell division of Streptococcus pneumoniae. We show that O-acetylation driven by Adr protects the peptidoglycan of dividing cells from cleavage by the major autolysin LytA and occurs at the septal site. Our results support a function for Adr in the formation of robust and mature MurNAc O-acetylated peptidoglycan and infer its role in the division of the pneumococcus.
Collapse
Affiliation(s)
- Julie Bonnet
- Institut de Biologie Structurale (IBS), University Grenoble Alpes, CEA, CNRS, 38044 Grenoble, France
| | - Claire Durmort
- Institut de Biologie Structurale (IBS), University Grenoble Alpes, CEA, CNRS, 38044 Grenoble, France
| | - Maxime Jacq
- Institut de Biologie Structurale (IBS), University Grenoble Alpes, CEA, CNRS, 38044 Grenoble, France
| | - Isabelle Mortier-Barrière
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie intégrative (CBI). Centre National de la Recherche Scientifique (CNRS), Université de Toulouse, UPS, F-31000 UMR Toulouse, France
| | - Nathalie Campo
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie intégrative (CBI). Centre National de la Recherche Scientifique (CNRS), Université de Toulouse, UPS, F-31000 UMR Toulouse, France
| | | | - Yves V Brun
- Departments of Biology, Indiana University, Bloomington, IN, USA
| | - Christopher Arthaud
- Institut de Biologie Structurale (IBS), University Grenoble Alpes, CEA, CNRS, 38044 Grenoble, France
| | - Benoit Gallet
- Institut de Biologie Structurale (IBS), University Grenoble Alpes, CEA, CNRS, 38044 Grenoble, France
| | - Christine Moriscot
- Institut de Biologie Structurale (IBS), University Grenoble Alpes, CEA, CNRS, 38044 Grenoble, France
| | - Cécile Morlot
- Institut de Biologie Structurale (IBS), University Grenoble Alpes, CEA, CNRS, 38044 Grenoble, France
| | - Thierry Vernet
- Institut de Biologie Structurale (IBS), University Grenoble Alpes, CEA, CNRS, 38044 Grenoble, France
| | - Anne Marie Di Guilmi
- Institut de Biologie Structurale (IBS), University Grenoble Alpes, CEA, CNRS, 38044 Grenoble, France
| |
Collapse
|
154
|
Walsh JC, Angstmann CN, Duggin IG, Curmi PMG. Non-linear Min protein interactions generate harmonics that signal mid-cell division in Escherichia coli. PLoS One 2017; 12:e0185947. [PMID: 29040283 PMCID: PMC5645087 DOI: 10.1371/journal.pone.0185947] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 09/21/2017] [Indexed: 11/18/2022] Open
Abstract
The Min protein system creates a dynamic spatial pattern in Escherichia coli cells where the proteins MinD and MinE oscillate from pole to pole. MinD positions MinC, an inhibitor of FtsZ ring formation, contributing to the mid-cell localization of cell division. In this paper, Fourier analysis is used to decompose experimental and model MinD spatial distributions into time-dependent harmonic components. In both experiment and model, the second harmonic component is responsible for producing a mid-cell minimum in MinD concentration. The features of this harmonic are robust in both experiment and model. Fourier analysis reveals a close correspondence between the time-dependent behaviour of the harmonic components in the experimental data and model. Given this, each molecular species in the model was analysed individually. This analysis revealed that membrane-bound MinD dimer shows the mid-cell minimum with the highest contrast when averaged over time, carrying the strongest signal for positioning the cell division ring. This concurs with previous data showing that the MinD dimer binds to MinC inhibiting FtsZ ring formation. These results show that non-linear interactions of Min proteins are essential for producing the mid-cell positioning signal via the generation of second-order harmonic components in the time-dependent spatial protein distribution.
Collapse
Affiliation(s)
- James C. Walsh
- School of Physics, University of New South Wales, Sydney, NSW, Australia
- The Ithree Institute, University of Technology Sydney, Sydney, NSW, Australia
| | | | - Iain G. Duggin
- The Ithree Institute, University of Technology Sydney, Sydney, NSW, Australia
| | - Paul M. G. Curmi
- School of Physics, University of New South Wales, Sydney, NSW, Australia
- * E-mail:
| |
Collapse
|
155
|
Svensson CM, Medyukhina A, Belyaev I, Al-Zaben N, Figge MT. Untangling cell tracks: Quantifying cell migration by time lapse image data analysis. Cytometry A 2017; 93:357-370. [DOI: 10.1002/cyto.a.23249] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Carl-Magnus Svensson
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI); Jena Germany
| | - Anna Medyukhina
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI); Jena Germany
| | - Ivan Belyaev
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI); Jena Germany
- Friedrich Schiller University; Jena Germany
| | - Naim Al-Zaben
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI); Jena Germany
- Friedrich Schiller University; Jena Germany
| | - Marc Thilo Figge
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI); Jena Germany
- Friedrich Schiller University; Jena Germany
| |
Collapse
|
156
|
Fan Y, Evans CR, Barber KW, Banerjee K, Weiss KJ, Margolin W, Igoshin OA, Rinehart J, Ling J. Heterogeneity of Stop Codon Readthrough in Single Bacterial Cells and Implications for Population Fitness. Mol Cell 2017; 67:826-836.e5. [PMID: 28781237 PMCID: PMC5591071 DOI: 10.1016/j.molcel.2017.07.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/22/2017] [Accepted: 07/07/2017] [Indexed: 12/30/2022]
Abstract
Gene expression noise (heterogeneity) leads to phenotypic diversity among isogenic individual cells. Our current understanding of gene expression noise is mostly limited to transcription, as separating translational noise from transcriptional noise has been challenging. It also remains unclear how translational heterogeneity originates. Using a transcription-normalized reporter system, we discovered that stop codon readthrough is heterogeneous among single cells, and individual cells with higher UGA readthrough grow faster from stationary phase. Our work also revealed that individual cells with lower protein synthesis levels exhibited higher UGA readthrough, which was confirmed with ribosome-targeting antibiotics (e.g., chloramphenicol). Further experiments and mathematical modeling suggest that varied competition between ternary complexes and release factors perturbs the UGA readthrough level. Our results indicate that fluctuations in the concentrations of translational components lead to UGA readthrough heterogeneity among single cells, which enhances phenotypic diversity of the genetically identical population and facilitates its adaptation to changing environments.
Collapse
MESH Headings
- Bacterial Proteins/biosynthesis
- Bacterial Proteins/genetics
- Codon, Terminator
- Escherichia coli/genetics
- Escherichia coli/growth & development
- Escherichia coli/metabolism
- Escherichia coli Proteins/biosynthesis
- Escherichia coli Proteins/genetics
- Gene Expression Regulation, Bacterial
- Genes, Reporter
- Genetic Fitness
- Genotype
- Kinetics
- Luminescent Proteins/biosynthesis
- Luminescent Proteins/genetics
- Microscopy, Fluorescence
- Models, Genetic
- One-Carbon Group Transferases
- Phenotype
- RNA, Bacterial/biosynthesis
- RNA, Bacterial/genetics
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Transcription, Genetic
- Red Fluorescent Protein
Collapse
Affiliation(s)
- Yongqiang Fan
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Christopher R Evans
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77030, USA; Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Karl W Barber
- Department of Cellular & Molecular Physiology, Yale University, New Haven, CT 06520, USA; Systems Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Kinshuk Banerjee
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA
| | - Kalyn J Weiss
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77030, USA; Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - William Margolin
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77030, USA; Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Oleg A Igoshin
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA; Department of Bioengineering, Rice University, Houston, TX 77005, USA
| | - Jesse Rinehart
- Department of Cellular & Molecular Physiology, Yale University, New Haven, CT 06520, USA; Systems Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Jiqiang Ling
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77030, USA; Graduate School of Biomedical Sciences, Houston, TX 77030, USA.
| |
Collapse
|
157
|
El Khoury M, Swain J, Sautrey G, Zimmermann L, Van Der Smissen P, Décout JL, Mingeot-Leclercq MP. Targeting Bacterial Cardiolipin Enriched Microdomains: An Antimicrobial Strategy Used by Amphiphilic Aminoglycoside Antibiotics. Sci Rep 2017; 7:10697. [PMID: 28878347 PMCID: PMC5587548 DOI: 10.1038/s41598-017-10543-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 08/11/2017] [Indexed: 01/31/2023] Open
Abstract
Some bacterial proteins involved in cell division and oxidative phosphorylation are tightly bound to cardiolipin. Cardiolipin is a non-bilayer anionic phospholipid found in bacterial inner membrane. It forms lipid microdomains located at the cell poles and division plane. Mechanisms by which microdomains are affected by membrane-acting antibiotics and the impact of these alterations on membrane properties and protein functions remain unclear. In this study, we demonstrated cardiolipin relocation and clustering as a result of exposure to a cardiolipin-acting amphiphilic aminoglycoside antibiotic, the 3′,6-dinonyl neamine. Changes in the biophysical properties of the bacterial membrane of P. aeruginosa, including decreased fluidity and increased permeability, were observed. Cardiolipin-interacting proteins and functions regulated by cardiolipin were impacted by the amphiphilic aminoglycoside as we demonstrated an inhibition of respiratory chain and changes in bacterial shape. The latter effect was characterized by the loss of bacterial rod shape through a decrease in length and increase in curvature. It resulted from the effect on MreB, a cardiolipin dependent cytoskeleton protein as well as a direct effect of 3′,6-dinonyl neamine on cardiolipin. These results shed light on how targeting cardiolipin microdomains may be of great interest for developing new antibacterial therapies.
Collapse
Affiliation(s)
- Micheline El Khoury
- Université catholique de Louvain, Louvain Drug Research Institute, Pharmacologie Cellulaire et Moléculaire, avenue E. Mounier 73, UCL B1.73.05, 1200, Brussels, Belgium
| | - Jitendriya Swain
- Université catholique de Louvain, Louvain Drug Research Institute, Pharmacologie Cellulaire et Moléculaire, avenue E. Mounier 73, UCL B1.73.05, 1200, Brussels, Belgium
| | - Guillaume Sautrey
- Université catholique de Louvain, Louvain Drug Research Institute, Pharmacologie Cellulaire et Moléculaire, avenue E. Mounier 73, UCL B1.73.05, 1200, Brussels, Belgium.,Université de Lorraine, UMR CNRS UL 7565, 1 Blvd. Des Aiguillettes, BP 70239, 54506 Vandoeuvre-lès-Nancy Cedex, Nancy, France
| | - Louis Zimmermann
- Université Grenoble Alpes, Joseph Fourier/CNRS, Institut de Pharmacochimie Moléculaire, rue de la Chimie, F-38041, Grenoble, France
| | - Patrick Van Der Smissen
- Université Catholique de Louvain, de Duve Institute, avenue Hippocrate 75, UCL B1.75.05, 1200, Brussels, Belgium
| | - Jean-Luc Décout
- Université Grenoble Alpes, Joseph Fourier/CNRS, Institut de Pharmacochimie Moléculaire, rue de la Chimie, F-38041, Grenoble, France
| | - Marie-Paule Mingeot-Leclercq
- Université catholique de Louvain, Louvain Drug Research Institute, Pharmacologie Cellulaire et Moléculaire, avenue E. Mounier 73, UCL B1.73.05, 1200, Brussels, Belgium.
| |
Collapse
|
158
|
Essential Role of the Cytoplasmic Chemoreceptor TlpT in the De Novo Formation of Chemosensory Complexes in Rhodobacter sphaeroides. J Bacteriol 2017; 199:JB.00366-17. [PMID: 28739674 DOI: 10.1128/jb.00366-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 07/14/2017] [Indexed: 11/20/2022] Open
Abstract
Bacterial chemosensory proteins form large hexagonal arrays. Several key features of chemotactic signaling depend on these large arrays, namely, cooperativity between receptors, sensitivity, integration of different signals, and adaptation. The best-studied arrays are the membrane-associated arrays found in most bacteria. Rhodobacter sphaeroides has two spatially distinct chemosensory arrays, one is transmembrane and the other is cytoplasmic. These two arrays work together to control a single flagellum. Deletion of one of the soluble chemoreceptors, TlpT, results in the loss of the formation of the cytoplasmic array. Here, we show the expression of TlpT in a tlpT deletion background results in the reformation of the cytoplasmic array. The number of arrays formed is dependent on the cell length, indicating spatial limitations on the number of arrays in a cell and stochastic assembly. Deletion of PpfA, a protein required for the positioning and segregation of the cytoplasmic array, results in slower array formation upon TlpT expression and fewer arrays, suggesting it accelerates cluster assembly.IMPORTANCE Bacterial chemosensory arrays are usually membrane associated and consist of thousands of copies of receptors, adaptor proteins, kinases, and adaptation enzymes packed into large hexagonal structures. Rhodobacter sphaeroides also has cytoplasmic arrays, which divide and segregate using a chromosome-associated ATPase, PpfA. The expression of the soluble chemoreceptor TlpT is shown to drive the formation of the arrays, accelerated by PpfA. The positioning of these de novo arrays suggests their position is the result of stochastic assembly rather than active positioning.
Collapse
|
159
|
Jain R, Sliusarenko O, Kazmierczak BI. Interaction of the cyclic-di-GMP binding protein FimX and the Type 4 pilus assembly ATPase promotes pilus assembly. PLoS Pathog 2017; 13:e1006594. [PMID: 28854278 PMCID: PMC5595344 DOI: 10.1371/journal.ppat.1006594] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 09/12/2017] [Accepted: 08/21/2017] [Indexed: 01/31/2023] Open
Abstract
Type IVa pili (T4P) are bacterial surface structures that enable motility, adhesion, biofilm formation and virulence. T4P are assembled by nanomachines that span the bacterial cell envelope. Cycles of T4P assembly and retraction, powered by the ATPases PilB and PilT, allow bacteria to attach to and pull themselves along surfaces, so-called “twitching motility”. These opposing ATPase activities must be coordinated and T4P assembly limited to one pole for bacteria to show directional movement. How this occurs is still incompletely understood. Herein, we show that the c-di-GMP binding protein FimX, which is required for T4P assembly in Pseudomonas aeruginosa, localizes to the leading pole of twitching bacteria. Polar FimX localization requires both the presence of T4P assembly machine proteins and the assembly ATPase PilB. PilB itself loses its polar localization pattern when FimX is absent. We use two different approaches to confirm that FimX and PilB interact in vivo and in vitro, and further show that point mutant alleles of FimX that do not bind c-di-GMP also do not interact with PilB. Lastly, we demonstrate that FimX positively regulates T4P assembly and twitching motility by promoting the activity of the PilB ATPase, and not by stabilizing assembled pili or by preventing PilT-mediated retraction. Mutated alleles of FimX that no longer bind c-di-GMP do not allow rapid T4P assembly in these assays. We propose that by virtue of its high-affinity for c-di-GMP, FimX can promote T4P assembly when intracellular levels of this cyclic nucleotide are low. As P. aeruginosa PilB is not itself a high-affinity c-di-GMP receptor, unlike many other assembly ATPases, FimX may play a key role in coupling T4P mediated motility and adhesion to levels of this second messenger. Type IV pili (T4P) are assembled on the surfaces of many bacterial pathogens and commensals through the action of specialized assembly machines whose components and structures are the subject of intense study. Repeated cycles of T4P assembly, attachment and retraction allow bacteria to move or “twitch” along surfaces, efficiently colonize and intoxicate host tissues, and elaborate multicellular structures such as biofilms. Assembly and retraction are powered by specific ATPases, PilB and PilT respectively, but the manner in which their activity is coordinated is still poorly understood. In this work, we provide evidence that a high-affinity c-di-GMP binding protein of Pseudomonas aeruginosa, FimX, interacts with the ATPase PilB and promotes PilB-dependent assembly of T4P. Live cell imaging of twitching bacteria shows that FimX localizes to the leading pole of motile P. aeruginosa and that its recruitment requires both components of the T4P assembly machine and the PilB ATPase. Our work highlights a novel regulatory strategy employed by P. aeruginosa to control assembly of this broadly conserved virulence factor.
Collapse
Affiliation(s)
- Ruchi Jain
- Department of Medicine (Infectious Diseases), Yale University, New Haven, Connecticut, United States of America
| | - Oleksii Sliusarenko
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
| | - Barbara I. Kazmierczak
- Department of Medicine (Infectious Diseases), Yale University, New Haven, Connecticut, United States of America
- Department of Microbial Pathogenesis, Yale University, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
160
|
Govers SK, Adam A, Blockeel H, Aertsen A. Rapid phenotypic individualization of bacterial sister cells. Sci Rep 2017; 7:8473. [PMID: 28814770 PMCID: PMC5559607 DOI: 10.1038/s41598-017-08660-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 07/11/2017] [Indexed: 12/22/2022] Open
Abstract
A growing bacterium typically divides into two genetically identical and morphologically similar sister cells and eventually gives rise to a clonal population. Nevertheless, significant phenotypic differentiation among isogenic cells frequently occurs, with the resulting heterogeneity in cellular behavior often ensuring population level growth and survival in complex and unpredictable environments. Although several mechanisms underlying the generation of phenotypic heterogeneity have been elucidated, the speed with which identical sister cells tend to phenotypically diverge from each other has so far remained unaddressed. Using Escherichia coli as a model organism, we therefore examined the timing and dynamics of phenotypic individualization among sister cells by scrutinizing and modeling microscopically tracked clonally growing populations before and after a semi-lethal heat challenge. This analysis revealed that both survival probability and post-stress physiology of sister cells shift from highly similar to uncorrelated within the first decile of their cell cycles. This nearly-immediate post-fission randomization of sister cell fates highlights the potential of stochastic fluctuations during clonal growth to rapidly generate phenotypically independent individuals.
Collapse
Affiliation(s)
- Sander K Govers
- KU Leuven, Department of Microbial and Molecular Systems (M²S), Faculty of Bioscience Engineering, 3001, Leuven, Belgium.,Microbial Sciences Institute, Yale University, West Haven, CT, USA
| | - Antoine Adam
- KU Leuven, Department of Computer Science, 3001, Leuven, Belgium
| | - Hendrik Blockeel
- KU Leuven, Department of Computer Science, 3001, Leuven, Belgium
| | - Abram Aertsen
- KU Leuven, Department of Microbial and Molecular Systems (M²S), Faculty of Bioscience Engineering, 3001, Leuven, Belgium.
| |
Collapse
|
161
|
A priA Mutant Expressed in Two Pieces Has Almost Full Activity in Escherichia coli K-12. J Bacteriol 2017; 199:JB.00267-17. [PMID: 28607160 DOI: 10.1128/jb.00267-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 06/07/2017] [Indexed: 11/20/2022] Open
Abstract
The ability to restart broken DNA replication forks is essential across all domains of life. In Escherichia coli, the priA, priB, priC, and dnaT genes encode the replication restart proteins (RRPs) to accomplish this task. PriA plays a critical role in replication restart such that its absence reveals a dramatic phenotype: poor growth, high basal levels of SOS expression, poorly partitioned nucleoids (Par-), UV sensitivity, and recombination deficiency (Rec-). PriA has 733 amino acids, and its structure is composed of six domains that enable it to bind to DNA replication fork-like structures, remodel the strands of DNA, interact with SSB (single-stranded DNA binding protein), PriB, and DnaT, and display ATPase, helicase, and translocase activities. We have characterized a new priA mutation called priA316::cat It is a composite mutation involving an insertion that truncates the protein within the winged-helix domain (at the 154th codon) and an ACG (Thr)-to-ATG (Met) mutation that allows reinitiation of translation at the 157th codon such that PriA is expressed in two pieces. priA316::cat phenotypes are like those of the wild type for growth, recombination, and UV resistance, revealing only a slightly increased level of SOS expression and defects in nucleoid partitioning in the mutant. Both parts of PriA are required for activity, and the N-terminal fragment can be optimized to yield wild-type activity. A deletion of the lon protease suppresses priA316::cat phenotypes. We hypothesize the two parts of PriA form a complex that supplies most of the PriA activity needed in the cell.IMPORTANCE PriA is a highly conserved multifunctional protein that plays a crucial role in the essential process of replication restart. Here we characterize an insertion mutation of priA with an intragenic suppressor such that it is now made in two parts. These two pieces split the winged-helix domain to separate the N-terminal 3' DNA-binding domain from the C-terminal domain of PriA. It is hypothesized that the two pieces form a complex that is capable of almost wild type priA function. The composite mutation leads to a moderate level of SOS expression and defects in partitioning of the chromosomes. Full function is restored by deletion of lon, suggesting that stability of this complex may be a reason for the partial phenotypes seen.
Collapse
|
162
|
Wong F, Renner LD, Özbaykal G, Paulose J, Weibel DB, van Teeffelen S, Amir A. Mechanical strain sensing implicated in cell shape recovery in Escherichia coli. Nat Microbiol 2017; 2:17115. [PMID: 28737752 PMCID: PMC5540194 DOI: 10.1038/nmicrobiol.2017.115] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 06/16/2017] [Indexed: 12/16/2022]
Abstract
The shapes of most bacteria are imparted by the structures of their peptidoglycan cell walls, which are determined by many dynamic processes that can be described on various length-scales ranging from short-range glycan insertions to cellular-scale elasticity.1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 Understanding the mechanisms that maintain stable, rod-like morphologies in certain bacteria has proved to be challenging due to an incomplete understanding of the feedback between growth and the elastic and geometric properties of the cell wall.3, 4, 12, 13, 14 Here we probe the effects of mechanical strain on cell shape by modeling the mechanical strains caused by bending and differential growth of the cell wall. We show that the spatial coupling of growth to regions of high mechanical strain can explain the plastic response of cells to bending4 and quantitatively predict the rate at which bent cells straighten. By growing filamentous E. coli cells in donut-shaped microchambers, we find that the cells recovered their straight, native rod-shaped morphologies when released from captivity at a rate consistent with the theoretical prediction. We then measure the localization of MreB, an actin homolog crucial to cell wall synthesis, inside confinement and during the straightening process and find that it cannot explain the plastic response to bending or the observed straightening rate. Our results implicate mechanical strain-sensing, implemented by components of the elongasome yet to be fully characterized, as an important component of robust shape regulation in E. coli.
Collapse
Affiliation(s)
- Felix Wong
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Lars D Renner
- Leibniz Institute of Polymer Research and the Max Bergmann Center of Biomaterials, 01069 Dresden, Germany.,Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Gizem Özbaykal
- Department of Microbiology, Institut Pasteur, 75724 Paris, France
| | - Jayson Paulose
- Departments of Physics and Integrative Biology, University of California, Berkeley, California 94720, USA
| | - Douglas B Weibel
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.,Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | - Ariel Amir
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
163
|
Priestman M, Thomas P, Robertson BD, Shahrezaei V. Mycobacteria Modify Their Cell Size Control under Sub-Optimal Carbon Sources. Front Cell Dev Biol 2017; 5:64. [PMID: 28748182 PMCID: PMC5506092 DOI: 10.3389/fcell.2017.00064] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 06/22/2017] [Indexed: 01/21/2023] Open
Abstract
The decision to divide is the most important one that any cell must make. Recent single cell studies suggest that most bacteria follow an “adder” model of cell size control, incorporating a fixed amount of cell wall material before dividing. Mycobacteria, including the causative agent of tuberculosis Mycobacterium tuberculosis, are known to divide asymmetrically resulting in heterogeneity in growth rate, doubling time, and other growth characteristics in daughter cells. The interplay between asymmetric cell division and adder size control has not been extensively investigated. Moreover, the impact of changes in the environment on growth rate and cell size control have not been addressed for mycobacteria. Here, we utilize time-lapse microscopy coupled with microfluidics to track live Mycobacterium smegmatis cells as they grow and divide over multiple generations, under a variety of growth conditions. We demonstrate that, under optimal conditions, M. smegmatis cells robustly follow the adder principle, with constant added length per generation independent of birth size, growth rate, and inherited pole age. However, the nature of the carbon source induces deviations from the adder model in a manner that is dependent on pole age. Understanding how mycobacteria maintain cell size homoeostasis may provide crucial targets for the development of drugs for the treatment of tuberculosis, which remains a leading cause of global mortality.
Collapse
Affiliation(s)
- Miles Priestman
- Department of Medicine, MRC Centre for Molecular Bacteriology and Infection, Imperial College LondonLondon, United Kingdom
| | - Philipp Thomas
- Department of Mathematics, Imperial College LondonLondon, United Kingdom
| | - Brian D Robertson
- Department of Medicine, MRC Centre for Molecular Bacteriology and Infection, Imperial College LondonLondon, United Kingdom
| | - Vahid Shahrezaei
- Department of Mathematics, Imperial College LondonLondon, United Kingdom
| |
Collapse
|
164
|
Woldemeskel SA, McQuillen R, Hessel AM, Xiao J, Goley ED. A conserved coiled-coil protein pair focuses the cytokinetic Z-ring in Caulobacter crescentus. Mol Microbiol 2017; 105:721-740. [PMID: 28613431 DOI: 10.1111/mmi.13731] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2017] [Indexed: 11/27/2022]
Abstract
The cytoskeletal GTPase FtsZ assembles at midcell, recruits the division machinery and directs envelope invagination for bacterial cytokinesis. ZapA, a conserved FtsZ-binding protein, promotes Z-ring stability and efficient division through a mechanism that is not fully understood. Here, we investigated the function of ZapA in Caulobacter crescentus. We found that ZapA is encoded in an operon with a small coiled-coil protein we named ZauP. ZapA and ZauP co-localized at the division site and were each required for efficient division. ZapA interacted directly with both FtsZ and ZauP. Neither ZapA nor ZauP influenced FtsZ dynamics or bundling, in vitro, however. Z-rings were diffuse in cells lacking zapA or zauP and, conversely, FtsZ was enriched at midcell in cells overproducing ZapA and ZauP. Additionally, FtsZ persisted at the poles longer when ZapA and ZauP were overproduced, and frequently colocalized with MipZ, a negative regulator of FtsZ polymerization. We propose that ZapA and ZauP promote efficient cytokinesis by stabilizing the midcell Z-ring through a bundling-independent mechanism. The zauPzapA operon is present in diverse Gram-negative bacteria, indicating a common mechanism for Z-ring assembly.
Collapse
Affiliation(s)
- Selamawit Abi Woldemeskel
- Departments of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ryan McQuillen
- Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alex M Hessel
- Departments of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jie Xiao
- Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Erin D Goley
- Departments of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
165
|
Chromosome segregation drives division site selection in Streptococcus pneumoniae. Proc Natl Acad Sci U S A 2017; 114:E5959-E5968. [PMID: 28674002 DOI: 10.1073/pnas.1620608114] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Accurate spatial and temporal positioning of the tubulin-like protein FtsZ is key for proper bacterial cell division. Streptococcus pneumoniae (pneumococcus) is an oval-shaped, symmetrically dividing opportunistic human pathogen lacking the canonical systems for division site control (nucleoid occlusion and the Min-system). Recently, the early division protein MapZ was identified and implicated in pneumococcal division site selection. We show that MapZ is important for proper division plane selection; thus, the question remains as to what drives pneumococcal division site selection. By mapping the cell cycle in detail, we show that directly after replication both chromosomal origin regions localize to the future cell division sites, before FtsZ. Interestingly, Z-ring formation occurs coincidently with initiation of DNA replication. Perturbing the longitudinal chromosomal organization by mutating the condensin SMC, by CRISPR/Cas9-mediated chromosome cutting, or by poisoning DNA decatenation resulted in mistiming of MapZ and FtsZ positioning and subsequent cell elongation. Together, we demonstrate an intimate relationship between DNA replication, chromosome segregation, and division site selection in the pneumococcus, providing a simple way to ensure equally sized daughter cells.
Collapse
|
166
|
Goudsmits JMH, van Oijen AM, Robinson A. A Tool for Alignment and Averaging of Sparse Fluorescence Signals in Rod-Shaped Bacteria. Biophys J 2017; 110:1708-1715. [PMID: 27119631 DOI: 10.1016/j.bpj.2016.02.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 02/08/2016] [Accepted: 02/16/2016] [Indexed: 11/15/2022] Open
Abstract
Fluorescence microscopy studies have shown that many proteins localize to highly specific subregions within bacterial cells. Analyzing the spatial distribution of low-abundance proteins within cells is highly challenging because information obtained from multiple cells needs to be combined to provide well-defined maps of protein locations. We present (to our knowledge) a novel tool for fast, automated, and user-impartial analysis of fluorescent protein distribution across the short axis of rod-shaped bacteria. To demonstrate the strength of our approach in extracting spatial distributions and visualizing dynamic intracellular processes, we analyzed sparse fluorescence signals from single-molecule time-lapse images of individual Escherichia coli cells. In principle, our tool can be used to provide information on the distribution of signal intensity across the short axis of any rod-shaped object.
Collapse
Affiliation(s)
- Joris M H Goudsmits
- Zernike Institute for Advanced Materials, University of Groningen, Groningen, the Netherlands
| | - Antoine M van Oijen
- Zernike Institute for Advanced Materials, University of Groningen, Groningen, the Netherlands; School of Chemistry, University of Wollongong, Wollongong, New South Wales, Australia
| | - Andrew Robinson
- Zernike Institute for Advanced Materials, University of Groningen, Groningen, the Netherlands; School of Chemistry, University of Wollongong, Wollongong, New South Wales, Australia.
| |
Collapse
|
167
|
The Slow Mobility of the ParA Partitioning Protein Underlies Its Steady-State Patterning in Caulobacter. Biophys J 2017; 110:2790-2799. [PMID: 27332137 DOI: 10.1016/j.bpj.2016.05.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 04/29/2016] [Accepted: 05/06/2016] [Indexed: 01/04/2023] Open
Abstract
In bacteria, ParABS systems mediate intracellular transport of various cargos, including chromosomal regions in Caulobacter crescentus. Transport of the ParB/parS partition complex requires the DNA-binding activity of ParA, which transiently tethers the partition complex during translocation. In C. crescentus, the directionality of the transport is set up by a gradient of ParA whose concentration gradually increases from one end of the cell (old pole) to the other (new pole). Importantly, this ParA gradient is already observed before DNA replication and segregation are initiated when the partition complex is anchored at the old pole. How such micron-scale ParA pattern is established and maintained before the initiation of chromosome segregation has not been experimentally established. Although the stimulation of ParA ATPase activity by the localized ParB/parS partition complex is thought to be involved, this activity alone cannot quantitatively describe the ParA pattern observed inside cells. Instead, our experimental and theoretical study shows that the missing key component for achieving the experimentally observed steady-state ParA patterning is the slow mobility of ParA dimers (D ∼10(-3)μm(2)/s) due to intermittent DNA binding. Our model recapitulates the entire steady-state ParA distribution observed experimentally, including the shape of the gradient as well as ParA accumulation at the location of the partition complex. Stochastic simulations suggest that cell-to-cell variability in ParA pattern is due to the low ParA copy number in C. crescentus cells. The model also accounts for an apparent exclusion of ParA from regions with small spacing between partition complexes observed in filamentous cells. Collectively, our work demonstrates that in addition to its function in mediating transport, the conserved DNA-binding property of ParA has a critical function before DNA segregation by setting up a ParA pattern required for transport directionality.
Collapse
|
168
|
Abstract
In vitro assays find that ribosomes form peptide bonds to proline (Pro) residues more slowly than to other residues. Ribosome profiling shows that stalling at Pro-Pro-X triplets is especially severe but is largely alleviated in Escherichia coli by the action of elongation factor EF-P. EF-P and its eukaryotic/archaeal homolog IF5A enhance the peptidyl transfer step of elongation. Here, a superresolution fluorescence localization and tracking study of EF-P–mEos2 in live E. coli provides the first in vivo information about the spatial distribution and on-off binding kinetics of EF-P. Fast imaging at 2 ms/frame helps to distinguish ribosome-bound (slowly diffusing) EF-P from free (rapidly diffusing) EF-P. Wild-type EF-P exhibits a three-peaked axial spatial distribution similar to that of ribosomes, indicating substantial binding. The mutant EF-PK34A exhibits a homogeneous distribution, indicating little or no binding. Some 30% of EF-P copies are bound to ribosomes at a given time. Two-state modeling and copy number estimates indicate that EF-P binds to 70S ribosomes during 25 to 100% of translation cycles. The timescale of the typical diffusive search by free EF-P for a ribosome-binding site is τfree ≈ 16 ms. The typical residence time of an EF-P on the ribosome is very short, τbound ≈ 7 ms. Evidently, EF-P binds to ribosomes during many or most elongation cycles, much more often than the frequency of Pro-Pro motifs. Emptying of the E site during part of the cycle is consistent with recent in vitro experiments indicating dissociation of the deacylated tRNA upon translocation. Ribosomes translate the codon sequence within mRNA into the corresponding sequence of amino acids within the nascent polypeptide chain, which in turn ultimately folds into functional protein. At each codon, bacterial ribosomes are assisted by two well-known elongation factors: EF-Tu, which aids binding of the correct aminoacyl-tRNA to the ribosome, and EF-G, which promotes tRNA translocation after formation of the new peptide bond. A third factor, EF-P, has been shown to alleviate ribosomal pausing at rare Pro-Pro motifs, which are translated very slowly without EF-P. Here, we use superresolution fluorescence imaging to study the spatial distribution and ribosome-binding dynamics of EF-P in live E. coli cells. We were surprised to learn that EF-P binds to and unbinds from translating ribosomes during at least 25% of all elongation events; it may bind during every elongation cycle.
Collapse
|
169
|
Heering J, Alvarado A, Ringgaard S. Induction of Cellular Differentiation and Single Cell Imaging of Vibrio parahaemolyticus Swimmer and Swarmer Cells. J Vis Exp 2017. [PMID: 28570527 DOI: 10.3791/55842] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The ability to study the intracellular localization of proteins is essential for the understanding of many cellular processes. In turn, this requires the ability to obtain single cells for fluorescence microscopy, which can be particularly challenging when imaging cells that exist within bacterial communities. For example, the human pathogen Vibrio parahaemolyticus exists as short rod-shaped swimmer cells in liquid conditions that upon surface contact differentiate into a subpopulation of highly elongated swarmer cells specialized for growth on solid surfaces. This paper presents a method to perform single cell fluorescence microscopy analysis of V. parahaemolyticus in its two differential states. This protocol very reproducibly induces differentiation of V. parahaemolyticus into a swarmer cell life-cycle and facilitates their proliferation over solid surfaces. The method produces flares of differentiated swarmer cells extending from the edge of the swarm-colony. Notably, at the very tip of the swarm-flares, swarmer cells exist in a single layer of cells, which allows for their easy transfer to a microscope slide and subsequent fluorescence microscopy imaging of single cells. Additionally, the workflow of image analysis for demographic representation of bacterial societies is presented. As a proof of principle, the analysis of the intracellular localization of chemotaxis signaling arrays in swimmer and swarmer cells of V. parahaemolyticus is described.
Collapse
Affiliation(s)
- Jan Heering
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology
| | - Alejandra Alvarado
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology
| | - Simon Ringgaard
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology;
| |
Collapse
|
170
|
Duigou S, Boccard F. Long range chromosome organization in Escherichia coli: The position of the replication origin defines the non-structured regions and the Right and Left macrodomains. PLoS Genet 2017; 13:e1006758. [PMID: 28486476 PMCID: PMC5441646 DOI: 10.1371/journal.pgen.1006758] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 05/23/2017] [Accepted: 04/12/2017] [Indexed: 01/14/2023] Open
Abstract
The Escherichia coli chromosome is organized into four macrodomains (Ori, Ter, Right and Left) and two non-structured regions. This organization influences the segregation of sister chromatids, the mobility of chromosomal DNA, and the cellular localization of the chromosome. The organization of the Ter and Ori macrodomains relies on two specific systems, MatP/matS for the Ter domain and MaoP/maoS for the Ori domain, respectively. Here by constructing strains with chromosome rearrangements to reshuffle the distribution of chromosomal segments, we reveal that the difference between the non-structured regions and the Right and Left lateral macrodomains relies on their position on the chromosome. A change in the genetic location of oriC generated either by an inversion within the Ori macrodomain or by the insertion of a second oriC modifies the position of Right and Left macrodomains, as the chromosome region the closest to oriC are always non-structured while the regions further away behave as macrodomain regardless of their DNA sequence. Using fluorescent microscopy we estimated that loci belonging to a non-structured region are significantly closer to the Ori MD than loci belonging to a lateral MD. Altogether, our results suggest that the origin of replication plays a prominent role in chromosome organization in E. coli, as it determines structuring and localization of macrodomains in growing cell. Chromosomes allow the genetic information to be stored, transmitted and organized inside the cell. In bacteria, chromosomes are generally circular and they are shaped and organized by several mechanisms allowing simultaneous transcription, replication and segregation. The way such fundamental processes are managed is still unclear, but in the Gram negative bacteria Escherichia coli, one level of chromosome organization relies on a large scale structuring of the chromosome in macrodomains and non-structured regions. Macrodomains have been defined as chromosomal domains of megabase (Mb) sized genetically isolated from each other. E. coli chromosome is divided in 4 macrodomains (Ter, Ori, Right and Left) and two right/left non-structured regions (NSR, and NSL). Factors that organize Ter and Ori MD have been identified and characterized previously: MatP structures the Ter MD by binding to 23 matS sequences disseminated in the Ter MD, and MaoP together with the unique sequence maoS organises the Ori MD by an unknown mechanism. In constrast, we show here by reshuffling the chromosome that the Right and Left MD as well as the NSR and NSL regions are defined by their chromosomal location and that the chromosomal position of oriC defines the position and the extent of the NS regions and Right/Left macrodomains.
Collapse
Affiliation(s)
- Stéphane Duigou
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris‐Sud, Université Paris‐Saclay, Gif‐sur‐Yvette, France
- * E-mail:
| | - Frédéric Boccard
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris‐Sud, Université Paris‐Saclay, Gif‐sur‐Yvette, France
| |
Collapse
|
171
|
Hu Y, Wang S, Ma N, Hingley-Wilson SM, Rocco A, McFadden J, Tang HL. Trajectory energy minimization for cell growth tracking and genealogy analysis. ROYAL SOCIETY OPEN SCIENCE 2017; 4:170207. [PMID: 28573031 PMCID: PMC5451832 DOI: 10.1098/rsos.170207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 04/24/2017] [Indexed: 06/07/2023]
Abstract
Cell growth experiments with a microfluidic device produce large-scale time-lapse image data, which contain important information on cell growth and patterns in their genealogy. To extract such information, we propose a scheme to segment and track bacterial cells automatically. In contrast with most published approaches, which often split segmentation and tracking into two independent procedures, we focus on designing an algorithm that describes cell properties evolving between consecutive frames by feeding segmentation and tracking results from one frame to the next one. The cell boundaries are extracted by minimizing the distance regularized level set evolution (DRLSE) model. Each individual cell was identified and tracked by identifying cell septum and membrane as well as developing a trajectory energy minimization function along time-lapse series. Experiments show that by applying this scheme, cell growth and division can be measured automatically. The results show the efficiency of the approach when testing on different datasets while comparing with other existing algorithms. The proposed approach demonstrates great potential for large-scale bacterial cell growth analysis.
Collapse
Affiliation(s)
- Yin Hu
- Department of Computer Science, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK
| | - Su Wang
- Department of Computer Science, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK
| | - Nan Ma
- Department of Microbial and Cellular Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK
| | - Suzanne M. Hingley-Wilson
- Department of Microbial and Cellular Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK
| | - Andrea Rocco
- Department of Microbial and Cellular Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK
| | - Johnjoe McFadden
- Department of Microbial and Cellular Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK
| | - Hongying Lilian Tang
- Department of Computer Science, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK
| |
Collapse
|
172
|
Stracy M, Kapanidis AN. Single-molecule and super-resolution imaging of transcription in living bacteria. Methods 2017; 120:103-114. [PMID: 28414097 PMCID: PMC5670121 DOI: 10.1016/j.ymeth.2017.04.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/21/2017] [Accepted: 04/05/2017] [Indexed: 12/20/2022] Open
Abstract
In vivo single-molecule and super-resolution techniques are transforming our ability to study transcription as it takes place in its native environment in living cells. This review will detail the methods for imaging single molecules in cells, and the data-analysis tools which can be used to extract quantitative information on the spatial organization, mobility, and kinetics of the transcription machinery from these experiments. Furthermore, we will highlight studies which have applied these techniques to shed new light on bacterial transcription.
Collapse
Affiliation(s)
- Mathew Stracy
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom.
| | - Achillefs N Kapanidis
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom.
| |
Collapse
|
173
|
Cyclic Di-GMP Binding by an Assembly ATPase (PilB2) and Control of Type IV Pilin Polymerization in the Gram-Positive Pathogen Clostridium perfringens. J Bacteriol 2017; 199:JB.00034-17. [PMID: 28242722 DOI: 10.1128/jb.00034-17] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 02/18/2017] [Indexed: 11/20/2022] Open
Abstract
The Gram-positive pathogen Clostridium perfringens possesses type IV pili (TFP), which are extracellular fibers that are polymerized from a pool of pilin monomers in the cytoplasmic membrane. Two proteins that are essential for pilus functions are an assembly ATPase (PilB) and an inner membrane core protein (PilC). Two homologues each of PilB and PilC are present in C. perfringens, called PilB1/PilB2 and PilC1/PilC2, respectively, along with four pilin proteins, PilA1 to PilA4. The gene encoding PilA2, which is considered the major pilin based on previous studies, is immediately downstream of the pilB2 and pilC2 genes. Purified PilB2 had ATPase activity, bound zinc, formed hexamers even in the absence of ATP, and bound the second messenger molecule cyclic di-GMP (c-di-GMP). Circular dichroism spectroscopy of purified PilC2 indicated that it retained its predicted degree of alpha-helical secondary structure. Even though no direct interactions between PilB2 and PilC2 could be detected in vivo or in vitro even in the presence of c-di-GMP, high levels of expression of a diguanylate cyclase from C. perfringens (CPE1788) stimulated polymerization of PilA2 in a PilB2- and PilC2-dependent manner. These results suggest that PilB2 activity is controlled by c-di-GMP levels in vivo but that PilB2-PilC2 interactions are either transitory or of low affinity, in contrast to results reported previously from in vivo studies of the PilB1/PilC1 pair in which PilC1 was needed for polar localization of PilB1. This is the first biochemical characterization of a c-di-GMP-dependent assembly ATPase from a Gram-positive bacterium.IMPORTANCE Type IV pili (TFP) are protein fibers involved in important bacterial functions, including motility, adherence to surfaces and host cells, and natural transformation. All clostridia whose genomes have been sequenced show evidence of the presence of TFP. The genetically tractable species Clostridium perfringens was used to study proteins involved in polymerizing the pilin, PilA2, into a pilus. The assembly ATPase PilB2 and its cognate membrane protein partner, PilC2, were purified. PilB2 bound the intracellular signal molecule c-di-GMP. Increased levels of intracellular c-di-GMP led to increased polymerization of PilA2, indicating that Gram-positive bacteria use this molecule to regulate pilus synthesis. These findings provide valuable information for understanding how pathogenic clostridia regulate TFP to cause human diseases.
Collapse
|
174
|
Garza de Leon F, Sellars L, Stracy M, Busby SJW, Kapanidis AN. Tracking Low-Copy Transcription Factors in Living Bacteria: The Case of the lac Repressor. Biophys J 2017; 112:1316-1327. [PMID: 28402875 PMCID: PMC5390046 DOI: 10.1016/j.bpj.2017.02.028] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 01/20/2017] [Accepted: 02/16/2017] [Indexed: 11/30/2022] Open
Abstract
Transcription factors control the expression of genes by binding to specific sites in DNA and repressing or activating transcription in response to stimuli. The lac repressor (LacI) is a well characterized transcription factor that regulates the ability of bacterial cells to uptake and metabolize lactose. Here, we study the intracellular mobility and spatial distribution of LacI in live bacteria using photoactivated localization microscopy combined with single-particle tracking. Since we track single LacI molecules in live cells by stochastically photoactivating and observing fluorescent proteins individually, there are no limitations on the copy number of the protein under study; as a result, we were able to study the behavior of LacI in bacterial strains containing the natural copy numbers (∼40 monomers), as well as in strains with much higher copy numbers due to LacI overexpression. Our results allowed us to determine the relative abundance of specific, near-specific, and non-specific DNA binding modes of LacI in vivo, showing that all these modes are operational inside living cells. Further, we examined the spatial distribution of LacI in live cells, confirming its specific binding to lac operator regions on the chromosome; we also showed that mobile LacI molecules explore the bacterial nucleoid in a way similar to exploration by other DNA-binding proteins. Our work also provides an example of applying tracking photoactivated localization microscopy to studies of low-copy-number proteins in living bacteria.
Collapse
Affiliation(s)
- Federico Garza de Leon
- Gene Machines Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, United Kingdom
| | - Laura Sellars
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Mathew Stracy
- Gene Machines Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, United Kingdom
| | - Stephen J W Busby
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Achillefs N Kapanidis
- Gene Machines Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
175
|
Balomenos AD, Tsakanikas P, Aspridou Z, Tampakaki AP, Koutsoumanis KP, Manolakos ES. Image analysis driven single-cell analytics for systems microbiology. BMC SYSTEMS BIOLOGY 2017; 11:43. [PMID: 28376782 PMCID: PMC5379763 DOI: 10.1186/s12918-017-0399-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Accepted: 01/25/2017] [Indexed: 11/10/2022]
Abstract
BACKGROUND Time-lapse microscopy is an essential tool for capturing and correlating bacterial morphology and gene expression dynamics at single-cell resolution. However state-of-the-art computational methods are limited in terms of the complexity of cell movies that they can analyze and lack of automation. The proposed Bacterial image analysis driven Single Cell Analytics (BaSCA) computational pipeline addresses these limitations thus enabling high throughput systems microbiology. RESULTS BaSCA can segment and track multiple bacterial colonies and single-cells, as they grow and divide over time (cell segmentation and lineage tree construction) to give rise to dense communities with thousands of interacting cells in the field of view. It combines advanced image processing and machine learning methods to deliver very accurate bacterial cell segmentation and tracking (F-measure over 95%) even when processing images of imperfect quality with several overcrowded colonies in the field of view. In addition, BaSCA extracts on the fly a plethora of single-cell properties, which get organized into a database summarizing the analysis of the cell movie. We present alternative ways to analyze and visually explore the spatiotemporal evolution of single-cell properties in order to understand trends and epigenetic effects across cell generations. The robustness of BaSCA is demonstrated across different imaging modalities and microscopy types. CONCLUSIONS BaSCA can be used to analyze accurately and efficiently cell movies both at a high resolution (single-cell level) and at a large scale (communities with many dense colonies) as needed to shed light on e.g. how bacterial community effects and epigenetic information transfer play a role on important phenomena for human health, such as biofilm formation, persisters' emergence etc. Moreover, it enables studying the role of single-cell stochasticity without losing sight of community effects that may drive it.
Collapse
Affiliation(s)
- Athanasios D Balomenos
- Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, Ilissia, Greece
| | - Panagiotis Tsakanikas
- Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou Street, Athens, Greece
| | - Zafiro Aspridou
- Laboratory of Food Microbiology and Hygiene, Department of Food Science and Technology, School of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Anastasia P Tampakaki
- Department of Agricultural Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Konstantinos P Koutsoumanis
- Laboratory of Food Microbiology and Hygiene, Department of Food Science and Technology, School of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Elias S Manolakos
- Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, Ilissia, Greece. .,Northeastern University, Boston, USA. .,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, USA.
| |
Collapse
|
176
|
A New Essential Cell Division Protein in Caulobacter crescentus. J Bacteriol 2017; 199:JB.00811-16. [PMID: 28167520 DOI: 10.1128/jb.00811-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 01/31/2017] [Indexed: 11/20/2022] Open
Abstract
Bacterial cell division is a complex process that relies on a multiprotein complex composed of a core of widely conserved and generally essential proteins and on accessory proteins that vary in number and identity in different bacteria. The assembly of this complex and, particularly, the initiation of constriction are regulated processes that have come under intensive study. In this work, we characterize the function of DipI, a protein conserved in Alphaproteobacteria and Betaproteobacteria that is essential in Caulobacter crescentus Our results show that DipI is a periplasmic protein that is recruited late to the division site and that it is required for the initiation of constriction. The recruitment of the conserved cell division proteins is not affected by the absence of DipI, but localization of DipI to the division site occurs only after a mature divisome has formed. Yeast two-hybrid analysis showed that DipI strongly interacts with the FtsQLB complex, which has been recently implicated in regulating constriction initiation. A possible role of DipI in this process is discussed.IMPORTANCE Bacterial cell division is a complex process for which most bacterial cells assemble a multiprotein complex that consists of conserved proteins and of accessory proteins that differ among bacterial groups. In this work, we describe a new cell division protein (DipI) present only in a group of bacteria but essential in Caulobacter crescentus Cells devoid of DipI cannot constrict. Although a mature divisome is required for DipI recruitment, DipI is not needed for recruiting other division proteins. These results, together with the interaction of DipI with a protein complex that has been suggested to regulate cell wall synthesis during division, suggest that DipI may be part of the regulatory mechanism that controls constriction initiation.
Collapse
|
177
|
Late assembly of the Vibrio cholerae cell division machinery postpones septation to the last 10% of the cell cycle. Sci Rep 2017; 7:44505. [PMID: 28300142 PMCID: PMC5353653 DOI: 10.1038/srep44505] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/08/2017] [Indexed: 12/26/2022] Open
Abstract
Bacterial cell division is a highly regulated process, which involves the formation of a complex apparatus, the divisome, by over a dozen proteins. In the few model bacteria in which the division process was detailed, divisome assembly occurs in two distinct steps: a few proteins, including the FtsZ tubulin-like protein, form a membrane associated contractile ring, the Z-ring, at ~30% of the cell cycle. The Z-ring serves as a scaffold for the recruitment of a second series of proteins, including integral membrane and periplasmic cell wall remodelling enzymes, at ~50% of the cell cycle. Actual septation occupies most of the remaining half of the cell cycle. In contrast, we present evidence suggesting that early pre-divisional Z-rings form between 40 and 50% of the cell cycle and mature into fully assembled divisome at about 80% of the cell cycle in Vibrio cholerae. Thus, actual septation is restricted to a very short amount of time. Our results further suggest that late assembly of the divisome probably helps maintain the asymmetric polar organisation of V. cholerae cells by limiting the accumulation of a cell pole marker, HubP, at the nascent cell poles.
Collapse
|
178
|
Polyphosphate granule biogenesis is temporally and functionally tied to cell cycle exit during starvation in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 2017; 114:E2440-E2449. [PMID: 28265086 DOI: 10.1073/pnas.1615575114] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Polyphosphate (polyP) granule biogenesis is an ancient and ubiquitous starvation response in bacteria. Although the ability to make polyP is important for survival during quiescence and resistance to diverse environmental stresses, granule genesis is poorly understood. Using quantitative microscopy at high spatial and temporal resolution, we show that granule genesis in Pseudomonas aeruginosa is tightly organized under nitrogen starvation. Following nucleation as many microgranules throughout the nucleoid, polyP granules consolidate and become transiently spatially organized during cell cycle exit. Between 1 and 3 h after nitrogen starvation, a minority of cells have divided, yet the total granule number per cell decreases, total granule volume per cell dramatically increases, and individual granules grow to occupy diameters as large as ∼200 nm. At their peak, mature granules constitute ∼2% of the total cell volume and are evenly spaced along the long cell axis. Following cell cycle exit, granules initially retain a tight spatial organization, yet their size distribution and spacing relax deeper into starvation. Mutant cells lacking polyP elongate during starvation and contain more than one origin. PolyP promotes cell cycle exit by functioning at a step after DNA replication initiation. Together with the universal starvation alarmone (p)ppGpp, polyP has an additive effect on nucleoid dynamics and organization during starvation. Notably, cell cycle exit is temporally coupled to a net increase in polyP granule biomass, suggesting that net synthesis, rather than consumption of the polymer, is important for the mechanism by which polyP promotes completion of cell cycle exit during starvation.
Collapse
|
179
|
Abstract
Signaling hubs at bacterial cell poles establish cell polarity in the absence of membrane-bound compartments. In the asymmetrically dividing bacterium Caulobacter crescentus, cell polarity stems from the cell cycle-regulated localization and turnover of signaling protein complexes in these hubs, and yet the mechanisms that establish the identity of the two cell poles have not been established. Here, we recapitulate the tripartite assembly of a cell fate signaling complex that forms during the G1-S transition. Using in vivo and in vitro analyses of dynamic polar protein complex formation, we show that a polymeric cell polarity protein, SpmX, serves as a direct bridge between the PopZ polymeric network and the cell fate-directing DivJ histidine kinase. We demonstrate the direct binding between these three proteins and show that a polar microdomain spontaneously assembles when the three proteins are coexpressed heterologously in an Escherichia coli test system. The relative copy numbers of these proteins are essential for complex formation, as overexpression of SpmX in Caulobacter reorganizes the polarity of the cell, generating ectopic cell poles containing PopZ and DivJ. Hierarchical formation of higher-order SpmX oligomers nucleates new PopZ microdomain assemblies at the incipient lateral cell poles, driving localized outgrowth. By comparison to self-assembling protein networks and polar cell growth mechanisms in other bacterial species, we suggest that the cooligomeric PopZ-SpmX protein complex in Caulobacter illustrates a paradigm for coupling cell cycle progression to the controlled geometry of cell pole establishment.IMPORTANCE Lacking internal membrane-bound compartments, bacteria achieve subcellular organization by establishing self-assembling protein-based microdomains. The asymmetrically dividing bacterium Caulobacter crescentus uses one such microdomain to link cell cycle progression to morphogenesis, but the mechanism for the generation of this microdomain has remained unclear. Here, we demonstrate that the ordered assembly of this microdomain occurs via the polymeric network protein PopZ directly recruiting the polarity factor SpmX, which then recruits the histidine kinase DivJ to the developing cell pole. Further, we find that overexpression of the bridge protein SpmX in Caulobacter disrupts this ordered assembly, generating ectopic cell poles containing both PopZ and DivJ. Together, PopZ and SpmX assemble into a cooligomeric network that forms the basis for a polar microdomain that coordinates bacterial cell polarity.
Collapse
|
180
|
Kinetics of large-scale chromosomal movement during asymmetric cell division in Escherichia coli. PLoS Genet 2017; 13:e1006638. [PMID: 28234902 PMCID: PMC5345879 DOI: 10.1371/journal.pgen.1006638] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 03/10/2017] [Accepted: 02/15/2017] [Indexed: 11/19/2022] Open
Abstract
Coordination between cell division and chromosome replication is essential for a cell to produce viable progeny. In the commonly accepted view, Escherichia coli realize this coordination via the accurate positioning of its cell division apparatus relative to the nucleoids. However, E. coli lacking proper positioning of its cell division planes can still successfully propagate. Here, we characterize how these cells partition their chromosomes into daughters during such asymmetric divisions. Using quantitative time-lapse imaging, we show that DNA translocase, FtsK, can pump as much as 80% (3.7 Mb) of the chromosome between daughters at an average rate of 1700±800 bp/s. Pauses in DNA translocation are rare, and in no occasions did we observe reversals at experimental time scales of a few minutes. The majority of DNA movement occurs at the latest stages of cell division when the cell division protein ZipA has already dissociated from the septum, and the septum has closed to a narrow channel with a diameter much smaller than the resolution limit of the microscope (~250 nm). Our data suggest that the narrow constriction is necessary for effective translocation of DNA by FtsK. DNA translocases are conserved throughout bacteria. While at atomic and molecular levels they have been well characterized, their ability to partition DNA in vegetatively growing cells has remained less clear. Here we show that E. coli translocase, FtsK, can move as much as 80% (3.7 Mb) of the chromosomal DNA across the closing septum in asymmetrically dividing cells at an average rate of 1700 bp/s. The majority of DNA movement occurs at the latest stages of cell division when the septum has closed to a narrow channel. Our data implies that a narrow septal opening is needed for effective translocation of DNA by FtsK.
Collapse
|
181
|
Gangan MS, Athale CA. Threshold effect of growth rate on population variability of Escherichia coli cell lengths. ROYAL SOCIETY OPEN SCIENCE 2017; 4:160417. [PMID: 28386413 PMCID: PMC5367290 DOI: 10.1098/rsos.160417] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 01/23/2017] [Indexed: 05/24/2023]
Abstract
A long-standing question in biology is the effect of growth on cell size. Here, we estimate the effect of Escherichia coli growth rate (r) on population cell size distributions by estimating the coefficient of variation of cell lengths (CVL) from image analysis of fixed cells in DIC microscopy. We find that the CVL is constant at growth rates less than one division per hour, whereas above this threshold, CVL increases with an increase in the growth rate. We hypothesize that stochastic inhibition of cell division owing to replication stalling by a RecA-dependent mechanism, combined with the growth rate threshold of multi-fork replication (according to Cooper and Helmstetter), could form the basis of such a threshold effect. We proceed to test our hypothesis by increasing the frequency of stochastic stalling of replication forks with hydroxyurea (HU) treatment and find that cell length variability increases only when the growth rate exceeds this threshold. The population effect is also reproduced in single-cell studies using agar-pad cultures and 'mother machine'-based experiments to achieve synchrony. To test the role of RecA, critical for the repair of stalled replication forks, we examine the CVL of E. coli ΔrecA cells. We find cell length variability in the mutant to be greater than wild-type, a phenotype that is rescued by plasmid-based RecA expression. Additionally, we find that RecA-GFP protein recruitment to nucleoids is more frequent at growth rates exceeding the growth rate threshold and is further enhanced on HU treatment. Thus, we find growth rates greater than a threshold result in increased E. coli cell lengths in the population, and this effect is, at least in part, mediated by RecA recruitment to the nucleoid and stochastic inhibition of division.
Collapse
|
182
|
Gangan MS, Athale CA. Threshold effect of growth rate on population variability of Escherichia coli cell lengths. ROYAL SOCIETY OPEN SCIENCE 2017. [PMID: 28386413 DOI: 10.5061/dryad.2bs69] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
A long-standing question in biology is the effect of growth on cell size. Here, we estimate the effect of Escherichia coli growth rate (r) on population cell size distributions by estimating the coefficient of variation of cell lengths (CVL) from image analysis of fixed cells in DIC microscopy. We find that the CVL is constant at growth rates less than one division per hour, whereas above this threshold, CVL increases with an increase in the growth rate. We hypothesize that stochastic inhibition of cell division owing to replication stalling by a RecA-dependent mechanism, combined with the growth rate threshold of multi-fork replication (according to Cooper and Helmstetter), could form the basis of such a threshold effect. We proceed to test our hypothesis by increasing the frequency of stochastic stalling of replication forks with hydroxyurea (HU) treatment and find that cell length variability increases only when the growth rate exceeds this threshold. The population effect is also reproduced in single-cell studies using agar-pad cultures and 'mother machine'-based experiments to achieve synchrony. To test the role of RecA, critical for the repair of stalled replication forks, we examine the CVL of E. coli ΔrecA cells. We find cell length variability in the mutant to be greater than wild-type, a phenotype that is rescued by plasmid-based RecA expression. Additionally, we find that RecA-GFP protein recruitment to nucleoids is more frequent at growth rates exceeding the growth rate threshold and is further enhanced on HU treatment. Thus, we find growth rates greater than a threshold result in increased E. coli cell lengths in the population, and this effect is, at least in part, mediated by RecA recruitment to the nucleoid and stochastic inhibition of division.
Collapse
Affiliation(s)
- Manasi S Gangan
- Division of Biology , Indian Institute of Science Education and Research (IISER) Pune , Dr Homi Bhabha Road, Pashan, Pune 411008 , India
| | - Chaitanya A Athale
- Division of Biology , Indian Institute of Science Education and Research (IISER) Pune , Dr Homi Bhabha Road, Pashan, Pune 411008 , India
| |
Collapse
|
183
|
Strain Library Imaging Protocol for high-throughput, automated single-cell microscopy of large bacterial collections arrayed on multiwell plates. Nat Protoc 2017; 12:429-438. [PMID: 28125106 DOI: 10.1038/nprot.2016.181] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Single-cell microscopy is a powerful tool for studying gene functions using strain libraries, but it suffers from throughput limitations. Here we describe the Strain Library Imaging Protocol (SLIP), which is a high-throughput, automated microscopy workflow for large strain collections that requires minimal user involvement. SLIP involves transferring arrayed bacterial cultures from multiwell plates onto large agar pads using inexpensive replicator pins and automatically imaging the resulting single cells. The acquired images are subsequently reviewed and analyzed by custom MATLAB scripts that segment single-cell contours and extract quantitative metrics. SLIP yields rich data sets on cell morphology and gene expression that illustrate the function of certain genes and the connections among strains in a library. For a library arrayed on 96-well plates, image acquisition can be completed within 4 min per plate.
Collapse
|
184
|
Growth rate control of flagellar assembly in Escherichia coli strain RP437. Sci Rep 2017; 7:41189. [PMID: 28117390 PMCID: PMC5259725 DOI: 10.1038/srep41189] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 12/12/2016] [Indexed: 01/10/2023] Open
Abstract
The flagellum is a rotary motor that enables bacteria to swim in liquids and swarm over surfaces. Numerous global regulators control flagellar assembly in response to cellular and environmental factors. Previous studies have also shown that flagellar assembly is affected by the growth-rate of the cell. However, a systematic study has not yet been described under controlled growth conditions. Here, we investigated the effect of growth rate on flagellar assembly in Escherichia coli using steady-state chemostat cultures where we could precisely control the cell growth-rate. Our results demonstrate that flagellar abundance correlates with growth rate, where faster growing cells produce more flagella. They also demonstrate that this growth-rate dependent control occurs through the expression of the flagellar master regulator, FlhD4C2. Collectively, our results demonstrate that motility is intimately coupled to the growth-rate of the cell.
Collapse
|
185
|
Bartlett TM, Bratton BP, Duvshani A, Miguel A, Sheng Y, Martin NR, Nguyen JP, Persat A, Desmarais SM, VanNieuwenhze MS, Huang KC, Zhu J, Shaevitz JW, Gitai Z. A Periplasmic Polymer Curves Vibrio cholerae and Promotes Pathogenesis. Cell 2017; 168:172-185.e15. [PMID: 28086090 DOI: 10.1016/j.cell.2016.12.019] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 10/05/2016] [Accepted: 12/14/2016] [Indexed: 12/15/2022]
Abstract
Pathogenic Vibrio cholerae remains a major human health concern. V. cholerae has a characteristic curved rod morphology, with a longer outer face and a shorter inner face. The mechanism and function of this curvature were previously unknown. Here, we identify and characterize CrvA, the first curvature determinant in V. cholerae. CrvA self-assembles into filaments at the inner face of cell curvature. Unlike traditional cytoskeletons, CrvA localizes to the periplasm and thus can be considered a periskeletal element. To quantify how curvature forms, we developed QuASAR (quantitative analysis of sacculus architecture remodeling), which measures subcellular peptidoglycan dynamics. QuASAR reveals that CrvA asymmetrically patterns peptidoglycan insertion rather than removal, causing more material insertions into the outer face than the inner face. Furthermore, crvA is quorum regulated, and CrvA-dependent curvature increases at high cell density. Finally, we demonstrate that CrvA promotes motility in hydrogels and confers an advantage in host colonization and pathogenesis.
Collapse
Affiliation(s)
- Thomas M Bartlett
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Benjamin P Bratton
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Amit Duvshani
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Amanda Miguel
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Ying Sheng
- Department of Microbiology, Nanjing Agricultural University, Nanjing 210014, China
| | - Nicholas R Martin
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Jeffrey P Nguyen
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Alexandre Persat
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | | | | - Kerwyn Casey Huang
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jun Zhu
- Department of Microbiology, Nanjing Agricultural University, Nanjing 210014, China; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joshua W Shaevitz
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Zemer Gitai
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
186
|
Francis N, Poncin K, Fioravanti A, Vassen V, Willemart K, Ong TAP, Rappez L, Letesson JJ, Biondi EG, De Bolle X. CtrA controls cell division and outer membrane composition of the pathogenBrucella abortus. Mol Microbiol 2017; 103:780-797. [DOI: 10.1111/mmi.13589] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Nayla Francis
- Microorganisms Biology Research Unit (URBM); Narilis, University of Namur; Namur Belgium
| | - Katy Poncin
- Microorganisms Biology Research Unit (URBM); Narilis, University of Namur; Namur Belgium
| | - Antonella Fioravanti
- Unité de Glycobiologie Structurale et Fonctionnelle; UMR 8576 CNRS - Université de Lille; 50 Avenue Halley Villeneuve d'Ascq France
| | - Victoria Vassen
- Microorganisms Biology Research Unit (URBM); Narilis, University of Namur; Namur Belgium
| | - Kevin Willemart
- Microorganisms Biology Research Unit (URBM); Narilis, University of Namur; Namur Belgium
| | - Thi Anh Phuong Ong
- Microorganisms Biology Research Unit (URBM); Narilis, University of Namur; Namur Belgium
| | - Luca Rappez
- Microorganisms Biology Research Unit (URBM); Narilis, University of Namur; Namur Belgium
| | - Jean-Jacques Letesson
- Microorganisms Biology Research Unit (URBM); Narilis, University of Namur; Namur Belgium
| | - Emanuele G. Biondi
- Unité de Glycobiologie Structurale et Fonctionnelle; UMR 8576 CNRS - Université de Lille; 50 Avenue Halley Villeneuve d'Ascq France
- Laboratoire de Chimie Bactérienne; Institut de Microbiologie de la Méditerranée, Aix-Marseille Université, CNRS; UMR 7283 Marseille France
| | - Xavier De Bolle
- Microorganisms Biology Research Unit (URBM); Narilis, University of Namur; Namur Belgium
| |
Collapse
|
187
|
Subramanian K, Tyson JJ. Spatiotemporal Models of the Asymmetric Division Cycle of Caulobacter crescentus. Results Probl Cell Differ 2017; 61:23-48. [PMID: 28409299 DOI: 10.1007/978-3-319-53150-2_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The spatial localization of proteins within the cytoplasm of bacteria is an underappreciated but critical aspect of cell cycle regulation for many prokaryotes. In Caulobacter crescentus-a model organism for the study of asymmetric cell reproduction in prokaryotes-heterogeneous localization of proteins has been identified as the underlying cause of asymmetry in cell morphology, DNA replication, and cell division. However, significant questions remain. Firstly, the mechanisms by which proteins localize in the organelle-free prokaryotic cytoplasm remain obscure. Furthermore, how variations in the spatial and temporal dynamics of cell fate determinants regulate signaling pathways and orchestrate the complex programs of asymmetric cell division and differentiation are subjects of ongoing research. In this chapter, we review current efforts in investigating these two questions. We describe how mathematical models of spatiotemporal protein dynamics are being used to generate and test competing hypotheses and provide complementary insight about the control mechanisms that regulate asymmetry in protein localization and cell division.
Collapse
Affiliation(s)
- Kartik Subramanian
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA.
| | - John J Tyson
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| |
Collapse
|
188
|
Cytoskeletal Proteins in Caulobacter crescentus: Spatial Orchestrators of Cell Cycle Progression, Development, and Cell Shape. Subcell Biochem 2017; 84:103-137. [PMID: 28500524 DOI: 10.1007/978-3-319-53047-5_4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Caulobacter crescentus, an aquatic Gram-negative α-proteobacterium, is dimorphic, as a result of asymmetric cell divisions that give rise to a free-swimming swarmer daughter cell and a stationary stalked daughter. Cell polarity of vibrioid C. crescentus cells is marked by the presence of a stalk at one end in the stationary form and a polar flagellum in the motile form. Progression through the cell cycle and execution of the associated morphogenetic events are tightly controlled through regulation of the abundance and activity of key proteins. In synergy with the regulation of protein abundance or activity, cytoskeletal elements are key contributors to cell cycle progression through spatial regulation of developmental processes. These include: polarity establishment and maintenance, DNA segregation, cytokinesis, and cell elongation. Cytoskeletal proteins in C. crescentus are additionally required to maintain its rod shape, curvature, and pole morphology. In this chapter, we explore the mechanisms through which cytoskeletal proteins in C. crescentus orchestrate developmental processes by acting as scaffolds for protein recruitment, generating force, and/or restricting or directing the motion of molecular machines. We discuss each cytoskeletal element in turn, beginning with those important for organization of molecules at the cell poles and chromosome segregation, then cytokinesis, and finally cell shape.
Collapse
|
189
|
Visser BJ, Joshi MC, Bates D. Multilocus Imaging of the E. coli Chromosome by Fluorescent In Situ Hybridization. Methods Mol Biol 2017; 1624:213-226. [PMID: 28842886 PMCID: PMC7000180 DOI: 10.1007/978-1-4939-7098-8_16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Fluorescence in situ hybridization (FISH) is a widely used technique to detect and localize specific DNA or RNA sequences in cells. Although supplanted in many ways by fluorescently labeled DNA binding proteins, FISH remains the only cytological method to examine many genetic loci at once (up to six), and can be performed in any cell type and genotype. These advantages have proved invaluable in studying the spatial relationships between chromosome regions and the dynamics of chromosome segregation in bacteria. A detailed protocol for DNA FISH in E. coli is described.
Collapse
Affiliation(s)
- Bryan J. Visser
- Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, USA
| | - Mohan C. Joshi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, USA
| | - David Bates
- Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, USA,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, USA
| |
Collapse
|
190
|
Arias-Cartin R, Dobihal GS, Campos M, Surovtsev IV, Parry B, Jacobs-Wagner C. Replication fork passage drives asymmetric dynamics of a critical nucleoid-associated protein in Caulobacter. EMBO J 2016; 36:301-318. [PMID: 28011580 DOI: 10.15252/embj.201695513] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 11/29/2016] [Accepted: 11/30/2016] [Indexed: 01/06/2023] Open
Abstract
In bacteria, chromosome dynamics and gene expression are modulated by nucleoid-associated proteins (NAPs), but little is known about how NAP activity is coupled to cell cycle progression. Using genomic techniques, quantitative cell imaging, and mathematical modeling, our study in Caulobacter crescentus identifies a novel NAP (GapR) whose activity over the cell cycle is shaped by DNA replication. GapR activity is critical for cellular function, as loss of GapR causes severe, pleiotropic defects in growth, cell division, DNA replication, and chromosome segregation. GapR also affects global gene expression with a chromosomal bias from origin to terminus, which is associated with a similar general bias in GapR binding activity along the chromosome. Strikingly, this asymmetric localization cannot be explained by the distribution of GapR binding sites on the chromosome. Instead, we present a mechanistic model in which the spatiotemporal dynamics of GapR are primarily driven by the progression of the replication forks. This model represents a simple mechanism of cell cycle regulation, in which DNA-binding activity is intimately linked to the action of DNA replication.
Collapse
Affiliation(s)
- Rodrigo Arias-Cartin
- Microbial Sciences Institute, Yale University, West Haven, CT, USA.,Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA
| | - Genevieve S Dobihal
- Microbial Sciences Institute, Yale University, West Haven, CT, USA.,Howard Hughes Medical Institute, Yale University, New Haven, CT, USA
| | - Manuel Campos
- Microbial Sciences Institute, Yale University, West Haven, CT, USA.,Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA.,Howard Hughes Medical Institute, Yale University, New Haven, CT, USA
| | - Ivan V Surovtsev
- Microbial Sciences Institute, Yale University, West Haven, CT, USA.,Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA.,Howard Hughes Medical Institute, Yale University, New Haven, CT, USA
| | - Bradley Parry
- Microbial Sciences Institute, Yale University, West Haven, CT, USA.,Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA
| | - Christine Jacobs-Wagner
- Microbial Sciences Institute, Yale University, West Haven, CT, USA .,Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA.,Howard Hughes Medical Institute, Yale University, New Haven, CT, USA.,Department of Microbial Pathogenesis, Yale Medical School, Yale University, New Haven, CT, USA
| |
Collapse
|
191
|
Chaphalkar AR, Jain K, Gangan MS, Athale CA. Automated Multi-Peak Tracking Kymography (AMTraK): A Tool to Quantify Sub-Cellular Dynamics with Sub-Pixel Accuracy. PLoS One 2016; 11:e0167620. [PMID: 27992448 PMCID: PMC5167257 DOI: 10.1371/journal.pone.0167620] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 11/17/2016] [Indexed: 11/18/2022] Open
Abstract
Kymographs or space-time plots are widely used in cell biology to reduce the dimensions of a time-series in microscopy for both qualitative and quantitative insight into spatio-temporal dynamics. While multiple tools for image kymography have been described before, quantification remains largely manual. Here, we describe a novel software tool for automated multi-peak tracking kymography (AMTraK), which uses peak information and distance minimization to track and automatically quantify kymographs, integrated in a GUI. The program takes fluorescence time-series data as an input and tracks contours in the kymographs based on intensity and gradient peaks. By integrating a branch-point detection method, it can be used to identify merging and splitting events of tracks, important in separation and coalescence events. In tests with synthetic images, we demonstrate sub-pixel positional accuracy of the program. We test the program by quantifying sub-cellular dynamics in rod-shaped bacteria, microtubule (MT) transport and vesicle dynamics. A time-series of E. coli cell division with labeled nucleoid DNA is used to identify the time-point and rate at which the nucleoid segregates. The mean velocity of microtubule (MT) gliding motility due to a recombinant kinesin motor is estimated as 0.5 μm/s, in agreement with published values, and comparable to estimates using software for nanometer precision filament-tracking. We proceed to employ AMTraK to analyze previously published time-series microscopy data where kymographs had been manually quantified: clathrin polymerization kinetics during vesicle formation and anterograde and retrograde transport in axons. AMTraK analysis not only reproduces the reported parameters, it also provides an objective and automated method for reproducible analysis of kymographs from in vitro and in vivo fluorescence microscopy time-series of sub-cellular dynamics.
Collapse
|
192
|
Waite AJ, Frankel NW, Dufour YS, Johnston JF, Long J, Emonet T. Non-genetic diversity modulates population performance. Mol Syst Biol 2016; 12:895. [PMID: 27994041 PMCID: PMC5199129 DOI: 10.15252/msb.20167044] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Biological functions are typically performed by groups of cells that express predominantly the same genes, yet display a continuum of phenotypes. While it is known how one genotype can generate such non-genetic diversity, it remains unclear how different phenotypes contribute to the performance of biological function at the population level. We developed a microfluidic device to simultaneously measure the phenotype and chemotactic performance of tens of thousands of individual, freely swimming Escherichia coli as they climbed a gradient of attractant. We discovered that spatial structure spontaneously emerged from initially well-mixed wild-type populations due to non-genetic diversity. By manipulating the expression of key chemotaxis proteins, we established a causal relationship between protein expression, non-genetic diversity, and performance that was theoretically predicted. This approach generated a complete phenotype-to-performance map, in which we found a nonlinear regime. We used this map to demonstrate how changing the shape of a phenotypic distribution can have as large of an effect on collective performance as changing the mean phenotype, suggesting that selection could act on both during the process of adaptation.
Collapse
Affiliation(s)
- Adam James Waite
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA
| | - Nicholas W Frankel
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA
| | - Yann S Dufour
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA
| | - Jessica F Johnston
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA
| | - Junjiajia Long
- Department of Physics, Yale University, New Haven, CT, USA
| | - Thierry Emonet
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA .,Department of Physics, Yale University, New Haven, CT, USA
| |
Collapse
|
193
|
Harris LK, Theriot JA. Relative Rates of Surface and Volume Synthesis Set Bacterial Cell Size. Cell 2016; 165:1479-1492. [PMID: 27259152 DOI: 10.1016/j.cell.2016.05.045] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 02/18/2016] [Accepted: 05/12/2016] [Indexed: 01/28/2023]
Abstract
Many studies have focused on the mechanisms underlying length and width determination in rod-shaped bacteria. Here, we focus instead on cell surface area to volume ratio (SA/V) and demonstrate that SA/V homeostasis underlies size determination. We propose a model whereby the instantaneous rates of surface and volume synthesis both scale with volume. This model predicts that these relative rates dictate SA/V and that cells approach a new steady-state SA/V exponentially, with a decay constant equal to the volume growth rate. To test this, we exposed diverse bacterial species to sublethal concentrations of a cell wall biosynthesis inhibitor and observed dose-dependent decreases in SA/V. Furthermore, this decrease was exponential and had the expected decay constant. The model also quantitatively describes SA/V alterations induced by other chemical, nutritional, and genetic perturbations. We additionally present evidence for a surface material accumulation threshold underlying division, sensitizing cell length to changes in SA/V requirements.
Collapse
Affiliation(s)
- Leigh K Harris
- Biophysics Program, Department of Biochemistry and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Julie A Theriot
- Biophysics Program, Department of Biochemistry and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
194
|
Interrogating the Escherichia coli cell cycle by cell dimension perturbations. Proc Natl Acad Sci U S A 2016; 113:15000-15005. [PMID: 27956612 DOI: 10.1073/pnas.1617932114] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacteria tightly regulate and coordinate the various events in their cell cycles to duplicate themselves accurately and to control their cell sizes. Growth of Escherichia coli, in particular, follows a relation known as Schaechter's growth law. This law says that the average cell volume scales exponentially with growth rate, with a scaling exponent equal to the time from initiation of a round of DNA replication to the cell division at which the corresponding sister chromosomes segregate. Here, we sought to test the robustness of the growth law to systematic perturbations in cell dimensions achieved by varying the expression levels of mreB and ftsZ We found that decreasing the mreB level resulted in increased cell width, with little change in cell length, whereas decreasing the ftsZ level resulted in increased cell length. Furthermore, the time from replication termination to cell division increased with the perturbed dimension in both cases. Moreover, the growth law remained valid over a range of growth conditions and dimension perturbations. The growth law can be quantitatively interpreted as a consequence of a tight coupling of cell division to replication initiation. Thus, its robustness to perturbations in cell dimensions strongly supports models in which the timing of replication initiation governs that of cell division, and cell volume is the key phenomenological variable governing the timing of replication initiation. These conclusions are discussed in the context of our recently proposed "adder-per-origin" model, in which cells add a constant volume per origin between initiations and divide a constant time after initiation.
Collapse
|
195
|
Caspi Y, Dekker C. Mapping out Min protein patterns in fully confined fluidic chambers. eLife 2016; 5. [PMID: 27885986 PMCID: PMC5217063 DOI: 10.7554/elife.19271] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 11/24/2016] [Indexed: 11/13/2022] Open
Abstract
The bacterial Min protein system provides a major model system for studying reaction-diffusion processes in biology. Here we present the first in vitro study of the Min system in fully confined three-dimensional chambers that are lithography-defined, lipid-bilayer coated and isolated through pressure valves. We identify three typical dynamical behaviors that occur dependent on the geometrical chamber parameters: pole-to-pole oscillations, spiral rotations, and traveling waves. We establish the geometrical selection rules and show that, surprisingly, Min-protein spiral rotations govern the larger part of the geometrical phase diagram. Confinement as well as an elevated temperature reduce the characteristic wavelength of the Min patterns, although even for confined chambers with a bacterial-level viscosity, the patterns retain a ~5 times larger wavelength than in vivo. Our results provide an essential experimental base for modeling of intracellular Min gradients in bacterial cell division as well as, more generally, for understanding pattern formation in reaction-diffusion systems. DOI:http://dx.doi.org/10.7554/eLife.19271.001 Some proteins can spontaneously organize themselves into ordered patterns within living cells. One widely studied pattern is made in a rod-shaped bacterium called Escherichia coli by a group of proteins called the Min proteins. The pattern formed by the Min proteins allows an E. coli cell to produce two equally sized daughter cells when it divides by ensuring that the division machinery correctly assembles at the center of the parent cell. These proteins move back and forth between the two ends of the parent cell so that the levels of Min proteins are highest at the ends and lowest in the middle. Since the Min proteins act to inhibit the assembly of the cell division machinery, this machinery only assembles in locations where the level of Min proteins is at its lowest, that is, at the middle of the cell. When Min proteins are purified and placed within an artificial compartment that contains a source of chemical energy and is covered by a membrane similar to the membranes that surround cells, they spontaneously form traveling waves on top of the membrane in many directions along to surface. It is not clear how these waves relate to the oscillations seen in E. coli. Caspi and Dekker now analyze the behavior of purified Min proteins inside chambers of various sizes that are fully enclosed by a membrane. The results show that in narrow chambers, Min proteins move back and forth (i.e. oscillate) from one side to the other. However, in wider containers the wave motion is more common. In containers of medium width the Min proteins rotate in a spiral fashion. Caspi and Dekker propose that the spiral rotations are the underlying pattern formed by Min proteins and that the back and forth motion is caused by spirals being cut short. In other words, if a spiral cannot form because the compartment is too small then the back and forth motion emerges. Similarly, Caspi and Dekker propose that the waves emerge in larger containers when multiple spirals come together. These findings suggest that the different patterns that Min proteins form in bacterial cells and artificial compartments arise from different underlying mechanisms. The next step will be to investigate other differences in how the patterns of Min proteins form in E. coli and in artificial compartments. DOI:http://dx.doi.org/10.7554/eLife.19271.002
Collapse
Affiliation(s)
- Yaron Caspi
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, Netherlands
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, Netherlands
| |
Collapse
|
196
|
Surovtsev IV, Campos M, Jacobs-Wagner C. DNA-relay mechanism is sufficient to explain ParA-dependent intracellular transport and patterning of single and multiple cargos. Proc Natl Acad Sci U S A 2016; 113:E7268-E7276. [PMID: 27799522 PMCID: PMC5135302 DOI: 10.1073/pnas.1616118113] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Spatial ordering of macromolecular components inside cells is important for cellular physiology and replication. In bacteria, ParA/B systems are known to generate various intracellular patterns that underlie the transport and partitioning of low-copy-number cargos such as plasmids. ParA/B systems consist of ParA, an ATPase that dimerizes and binds DNA upon ATP binding, and ParB, a protein that binds the cargo and stimulates ParA ATPase activity. Inside cells, ParA is asymmetrically distributed, forming a propagating wave that is followed by the ParB-rich cargo. These correlated dynamics lead to cargo oscillation or equidistant spacing over the nucleoid depending on whether the cargo is in single or multiple copies. Currently, there is no model that explains how these different spatial patterns arise and relate to each other. Here, we test a simple DNA-relay model that has no imposed asymmetry and that only considers the ParA/ParB biochemistry and the known fluctuating and elastic dynamics of chromosomal loci. Stochastic simulations with experimentally derived parameters demonstrate that this model is sufficient to reproduce the signature patterns of ParA/B systems: the propagating ParA gradient correlated with the cargo dynamics, the single-cargo oscillatory motion, and the multicargo equidistant patterning. Stochasticity of ATP hydrolysis breaks the initial symmetry in ParA distribution, resulting in imbalance of elastic force acting on the cargo. Our results may apply beyond ParA/B systems as they reveal how a minimal system of two players, one binding to DNA and the other modulating this binding, can transform directionally random DNA fluctuations into directed motion and intracellular patterning.
Collapse
Affiliation(s)
- Ivan V Surovtsev
- Microbial Sciences Institute, Yale University, West Haven, CT 06517
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06516
- Howard Hughes Medical Institute, Yale University, New Haven, CT 06516
| | - Manuel Campos
- Microbial Sciences Institute, Yale University, West Haven, CT 06517
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06516
- Howard Hughes Medical Institute, Yale University, New Haven, CT 06516
| | - Christine Jacobs-Wagner
- Microbial Sciences Institute, Yale University, West Haven, CT 06517;
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06516
- Howard Hughes Medical Institute, Yale University, New Haven, CT 06516
- Department of Microbial Pathogenesis, Yale Medical School, New Haven, CT 06516
| |
Collapse
|
197
|
Lagage V, Boccard F, Vallet-Gely I. Regional Control of Chromosome Segregation in Pseudomonas aeruginosa. PLoS Genet 2016; 12:e1006428. [PMID: 27820816 PMCID: PMC5098823 DOI: 10.1371/journal.pgen.1006428] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 10/15/2016] [Indexed: 01/31/2023] Open
Abstract
Chromosome segregation in bacteria occurs concomitantly with DNA replication, and the duplicated regions containing the replication origin oriC are generally the first to separate and migrate to their final specific location inside the cell. In numerous bacterial species, a three-component partition machinery called the ParABS system is crucial for chromosome segregation. This is the case in the gammaproteobacterium Pseudomonas aeruginosa, where impairing the ParABS system is very detrimental for growth, as it increases the generation time and leads to the formation of anucleate cells and to oriC mispositioning inside the cell. In this study, we investigate in vivo the ParABS system in P. aeruginosa. Using chromatin immuno-precipitation coupled with high throughput sequencing, we show that ParB binds to four parS site located within 15 kb of oriC in vivo, and that this binding promotes the formation of a high order nucleoprotein complex. We show that one parS site is enough to prevent anucleate cell formation, therefore for correct chromosome segregation. By displacing the parS site from its native position on the chromosome, we demonstrate that parS is the first chromosomal locus to be separated upon DNA replication, which indicates that it is the site of force exertion of the segregation process. We identify a region of approximatively 650 kb surrounding oriC in which the parS site must be positioned for chromosome segregation to proceed correctly, and we called it “competence zone” of the parS site. Mutant strains that have undergone specific genetic rearrangements allow us to propose that the distance between oriC and parS defines this “competence zone”. Implications for the control of chromosome segregation in P. aeruginosa are discussed. Accurate transmission of the genetic information relies on replication and segregation, two processes essential to all living organisms. In bacteria, these processes occur concomitantly. Replication of the bacterial circular chromosome initiates at a single specific sequence called oriC, and proceed bi-directionally along the chromosome arms. A partition system called ParABS is involved in chromosome segregation in many bacteria. It involves the binding of the ParB protein to parS sequences, which are often found in the close vicinity of oriC. The importance of this system for chromosome segregation varies according to species, ranging from essential to dispensable. In Pseudomonas aeruginosa, an important opportunistic pathogen, the ParABS system plays an important role in chromosome segregation, as mutants affected in this system present a severe growth defect as well as anucleate cells formation, but is not essential. In this study, we characterize the activity of the different determinants of the ParABS system in P. aeruginosa and demonstrate that it is critical for the parS site to be located close to oriC, which suggest that the timing of separation of regions close to oriC after replication is important, and that it could be a function of the ParABS system to keep this timing.
Collapse
Affiliation(s)
- Valentine Lagage
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris‐Sud, Université Paris‐Saclay, Gif‐sur‐Yvette cedex, France
| | - Frédéric Boccard
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris‐Sud, Université Paris‐Saclay, Gif‐sur‐Yvette cedex, France
- * E-mail: (IVG); (FB)
| | - Isabelle Vallet-Gely
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris‐Sud, Université Paris‐Saclay, Gif‐sur‐Yvette cedex, France
- * E-mail: (IVG); (FB)
| |
Collapse
|
198
|
Van Valen DA, Kudo T, Lane KM, Macklin DN, Quach NT, DeFelice MM, Maayan I, Tanouchi Y, Ashley EA, Covert MW. Deep Learning Automates the Quantitative Analysis of Individual Cells in Live-Cell Imaging Experiments. PLoS Comput Biol 2016; 12:e1005177. [PMID: 27814364 PMCID: PMC5096676 DOI: 10.1371/journal.pcbi.1005177] [Citation(s) in RCA: 308] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 10/03/2016] [Indexed: 02/01/2023] Open
Abstract
Live-cell imaging has opened an exciting window into the role cellular heterogeneity plays in dynamic, living systems. A major critical challenge for this class of experiments is the problem of image segmentation, or determining which parts of a microscope image correspond to which individual cells. Current approaches require many hours of manual curation and depend on approaches that are difficult to share between labs. They are also unable to robustly segment the cytoplasms of mammalian cells. Here, we show that deep convolutional neural networks, a supervised machine learning method, can solve this challenge for multiple cell types across the domains of life. We demonstrate that this approach can robustly segment fluorescent images of cell nuclei as well as phase images of the cytoplasms of individual bacterial and mammalian cells from phase contrast images without the need for a fluorescent cytoplasmic marker. These networks also enable the simultaneous segmentation and identification of different mammalian cell types grown in co-culture. A quantitative comparison with prior methods demonstrates that convolutional neural networks have improved accuracy and lead to a significant reduction in curation time. We relay our experience in designing and optimizing deep convolutional neural networks for this task and outline several design rules that we found led to robust performance. We conclude that deep convolutional neural networks are an accurate method that require less curation time, are generalizable to a multiplicity of cell types, from bacteria to mammalian cells, and expand live-cell imaging capabilities to include multi-cell type systems.
Collapse
Affiliation(s)
- David A. Van Valen
- Department of Bioengineering, Stanford University, Stanford, California, United States of America
| | - Takamasa Kudo
- Department of Chemical and Systems Biology, Stanford University, Stanford, California, United States of America
| | - Keara M. Lane
- Department of Bioengineering, Stanford University, Stanford, California, United States of America
| | - Derek N. Macklin
- Department of Bioengineering, Stanford University, Stanford, California, United States of America
| | - Nicolas T. Quach
- Department of Bioengineering, Stanford University, Stanford, California, United States of America
| | - Mialy M. DeFelice
- Department of Bioengineering, Stanford University, Stanford, California, United States of America
| | - Inbal Maayan
- Department of Bioengineering, Stanford University, Stanford, California, United States of America
| | - Yu Tanouchi
- Department of Bioengineering, Stanford University, Stanford, California, United States of America
| | - Euan A. Ashley
- Department of Genetics, Stanford University, Stanford, California, United States of America
- Department of Cardiovascular Medicine, Stanford University, Stanford, California, United States of America
| | - Markus W. Covert
- Department of Bioengineering, Stanford University, Stanford, California, United States of America
- Department of Chemical and Systems Biology, Stanford University, Stanford, California, United States of America
| |
Collapse
|
199
|
Ulrych A, Holečková N, Goldová J, Doubravová L, Benada O, Kofroňová O, Halada P, Branny P. Characterization of pneumococcal Ser/Thr protein phosphatase phpP mutant and identification of a novel PhpP substrate, putative RNA binding protein Jag. BMC Microbiol 2016; 16:247. [PMID: 27776484 PMCID: PMC5078927 DOI: 10.1186/s12866-016-0865-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 10/14/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Reversible protein phosphorylation catalyzed by protein kinases and phosphatases is the primary mechanism for signal transduction in all living organisms. Streptococcus pneumoniae encodes a single Ser/Thr protein kinase, StkP, which plays a role in virulence, stress resistance and the regulation of cell wall synthesis and cell division. However, the role of its cognate phosphatase, PhpP, is not well defined. RESULTS Here, we report the successful construction of a ΔphpP mutant in the unencapsulated S. pneumoniae Rx1 strain and the characterization of its phenotype. We demonstrate that PhpP negatively controls the level of protein phosphorylation in S. pneumoniae both by direct dephosphorylation of target proteins and by dephosphorylation of its cognate kinase, StkP. Catalytic inactivation or absence of PhpP resulted in the hyperphosphorylation of StkP substrates and specific phenotypic changes, including sensitivity to environmental stresses and competence deficiency. The morphology of the ΔphpP cells resembled the StkP overexpression phenotype and conversely, overexpression of PhpP resulted in cell elongation mimicking the stkP null phenotype. Proteomic analysis of the phpP knock-out strain permitted identification of a novel StkP/PhpP substrate, Spr1851, a putative RNA-binding protein homologous to Jag. Here, we show that pneumococcal Jag is phosphorylated on Thr89. Inactivation of jag confers a phenotype similar to the phpP mutant strain. CONCLUSIONS Our results suggest that PhpP and StkP cooperatively regulate cell division of S. pneumoniae and phosphorylate putative RNA binding protein Jag.
Collapse
Affiliation(s)
- Aleš Ulrych
- Institute of Microbiology, v.v.i., Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20, Prague, Czech Republic
| | - Nela Holečková
- Institute of Microbiology, v.v.i., Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20, Prague, Czech Republic
| | - Jana Goldová
- Institute of Microbiology, v.v.i., Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20, Prague, Czech Republic
| | - Linda Doubravová
- Institute of Microbiology, v.v.i., Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20, Prague, Czech Republic.
| | - Oldřich Benada
- Institute of Microbiology, v.v.i., Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20, Prague, Czech Republic
| | - Olga Kofroňová
- Institute of Microbiology, v.v.i., Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20, Prague, Czech Republic
| | - Petr Halada
- Institute of Microbiology, v.v.i., Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20, Prague, Czech Republic
| | - Pavel Branny
- Institute of Microbiology, v.v.i., Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20, Prague, Czech Republic.
| |
Collapse
|
200
|
Wollman AJM, Miller H, Foster S, Leake MC. An automated image analysis framework for segmentation and division plane detection of single liveStaphylococcus aureuscells which can operate at millisecond sampling time scales using bespoke Slimfield microscopy. Phys Biol 2016; 13:055002. [DOI: 10.1088/1478-3975/13/5/055002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|