151
|
Paccard A, Wasserman BA, Hanson D, Astorg L, Durston D, Kurland S, Apgar TM, El‐Sabaawi RW, Palkovacs EP, Hendry AP, Barrett RDH. Adaptation in temporally variable environments: stickleback armor in periodically breaching bar‐built estuaries. J Evol Biol 2018. [DOI: 10.1111/jeb.13264] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Antoine Paccard
- Redpath Museum and Department of Biology McGill University Montreal QC Canada
| | - Ben A. Wasserman
- Department of Ecology and Evolutionary Biology University of California Santa Cruz CA USA
| | - Dieta Hanson
- Redpath Museum and Department of Biology McGill University Montreal QC Canada
| | - Louis Astorg
- Pavillon des Sciences Biologiques Université du Québec à Montréal Montréal QC Canada
| | - Dan Durston
- Department of Biology University of Victoria Victoria BC Canada
| | - Sara Kurland
- Zoologiska Institutionen: Populations Genetik Stockholm University Stockholm Sweden
| | - Travis M. Apgar
- Department of Ecology and Evolutionary Biology University of California Santa Cruz CA USA
| | | | - Eric P. Palkovacs
- Department of Ecology and Evolutionary Biology University of California Santa Cruz CA USA
| | - Andrew P. Hendry
- Redpath Museum and Department of Biology McGill University Montreal QC Canada
| | - Rowan D. H. Barrett
- Redpath Museum and Department of Biology McGill University Montreal QC Canada
| |
Collapse
|
152
|
Pujol B, Blanchet S, Charmantier A, Danchin E, Facon B, Marrot P, Roux F, Scotti I, Teplitsky C, Thomson CE, Winney I. The Missing Response to Selection in the Wild. Trends Ecol Evol 2018; 33:337-346. [PMID: 29628266 PMCID: PMC5937857 DOI: 10.1016/j.tree.2018.02.007] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 02/26/2018] [Accepted: 02/28/2018] [Indexed: 01/28/2023]
Abstract
Although there are many examples of contemporary directional selection, evidence for responses to selection that match predictions are often missing in quantitative genetic studies of wild populations. This is despite the presence of genetic variation and selection pressures – theoretical prerequisites for the response to selection. This conundrum can be explained by statistical issues with accurate parameter estimation, and by biological mechanisms that interfere with the response to selection. These biological mechanisms can accelerate or constrain this response. These mechanisms are generally studied independently but might act simultaneously. We therefore integrated these mechanisms to explore their potential combined effect. This has implications for explaining the apparent evolutionary stasis of wild populations and the conservation of wildlife. Recent discoveries at the intersection of quantitative genetics and evolutionary ecology are challenging our views on the potential of wild populations to respond to selection. Multiple biological mechanisms can disconnect genetic variation from the response to selection in the wild. We highlight areas for future research. We provide an integrative framework that can be used to qualitatively assess the combined influence of these mechanisms on the response to selection.
Collapse
Affiliation(s)
- Benoit Pujol
- Laboratoire Évolution & Diversité Biologique (EDB UMR 5174), Université Fédérale de Toulouse Midi-Pyrénées, CNRS, IRD, UPS, 31062 Toulouse, France; Groupement de Recherche de l'Institut Ecologie et Environnement 6448, Génétique Quantitative dans les Populations Naturelles (GQPN), c/o EDB, 31062 Toulouse, France.
| | - Simon Blanchet
- Laboratoire Évolution & Diversité Biologique (EDB UMR 5174), Université Fédérale de Toulouse Midi-Pyrénées, CNRS, IRD, UPS, 31062 Toulouse, France; Station d'Ecologie Théorique Expérimentale (SETE), CNRS UMR 5321, Université Paul Sabatier, 09200 Moulis, France; Groupement de Recherche de l'Institut Ecologie et Environnement 6448, Génétique Quantitative dans les Populations Naturelles (GQPN), c/o EDB, 31062 Toulouse, France
| | - Anne Charmantier
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE), CNRS UMR 5175, 34293 Montpellier, France; Département des Sciences Biologiques, Université du Québec à Montréal, CP 888 Succursale Centre-Ville, H3P 3P8 QC, Canada; Groupement de Recherche de l'Institut Ecologie et Environnement 6448, Génétique Quantitative dans les Populations Naturelles (GQPN), c/o EDB, 31062 Toulouse, France
| | - Etienne Danchin
- Laboratoire Évolution & Diversité Biologique (EDB UMR 5174), Université Fédérale de Toulouse Midi-Pyrénées, CNRS, IRD, UPS, 31062 Toulouse, France; Groupement de Recherche de l'Institut Ecologie et Environnement 6448, Génétique Quantitative dans les Populations Naturelles (GQPN), c/o EDB, 31062 Toulouse, France
| | - Benoit Facon
- UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical (PVBMT), Institut National de la Recherche Agronomique (INRA), Saint Pierre, Réunion, France; Groupement de Recherche de l'Institut Ecologie et Environnement 6448, Génétique Quantitative dans les Populations Naturelles (GQPN), c/o EDB, 31062 Toulouse, France
| | - Pascal Marrot
- Laboratoire Évolution & Diversité Biologique (EDB UMR 5174), Université Fédérale de Toulouse Midi-Pyrénées, CNRS, IRD, UPS, 31062 Toulouse, France; Groupement de Recherche de l'Institut Ecologie et Environnement 6448, Génétique Quantitative dans les Populations Naturelles (GQPN), c/o EDB, 31062 Toulouse, France
| | - Fabrice Roux
- Laboratoire des Interactions Plantes-Microorganismes (LIPM), INRA, CNRS, Université de Toulouse, 31326 Castanet-Tolosan, France; Groupement de Recherche de l'Institut Ecologie et Environnement 6448, Génétique Quantitative dans les Populations Naturelles (GQPN), c/o EDB, 31062 Toulouse, France
| | - Ivan Scotti
- INRA Unité de Recherche 0629 Ecologie des Forêts Méditerranéennes, 84914 Avignon, France; Groupement de Recherche de l'Institut Ecologie et Environnement 6448, Génétique Quantitative dans les Populations Naturelles (GQPN), c/o EDB, 31062 Toulouse, France
| | - Céline Teplitsky
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE), CNRS UMR 5175, 34293 Montpellier, France; Muséum National d'Histoire Naturelle, CNRS UMR 7204 Centre d'Écologie et des Sciences de la Conservation (CESCO), 75005 Paris, France; Groupement de Recherche de l'Institut Ecologie et Environnement 6448, Génétique Quantitative dans les Populations Naturelles (GQPN), c/o EDB, 31062 Toulouse, France
| | - Caroline E Thomson
- Laboratoire Évolution & Diversité Biologique (EDB UMR 5174), Université Fédérale de Toulouse Midi-Pyrénées, CNRS, IRD, UPS, 31062 Toulouse, France; Groupement de Recherche de l'Institut Ecologie et Environnement 6448, Génétique Quantitative dans les Populations Naturelles (GQPN), c/o EDB, 31062 Toulouse, France
| | - Isabel Winney
- Laboratoire Évolution & Diversité Biologique (EDB UMR 5174), Université Fédérale de Toulouse Midi-Pyrénées, CNRS, IRD, UPS, 31062 Toulouse, France; Groupement de Recherche de l'Institut Ecologie et Environnement 6448, Génétique Quantitative dans les Populations Naturelles (GQPN), c/o EDB, 31062 Toulouse, France
| |
Collapse
|
153
|
Mück I, Heubel KU. Ecological variation along the salinity gradient in the Baltic Sea Area and its consequences for reproduction in the common goby. Curr Zool 2018; 64:259-270. [PMID: 30402067 PMCID: PMC5905452 DOI: 10.1093/cz/zoy006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 01/13/2018] [Indexed: 11/27/2022] Open
Abstract
Although it has become clear that sexual selection may shape mating systems and drive speciation, the potential constraints of environmental factors on processes and outcomes of sexual selection are largely unexplored. Here, we investigate the geographic variation of such environmental factors, more precisely the quality and quantity of nest resources (bivalve shells) along a salinity gradient in the Baltic Sea Area (Baltic Sea, Sounds and Belts, and Kattegat). We further test whether we find any salinity-associated morphological differences in body size between populations of common gobies Pomatoschistus microps, a small marine fish with a resource-based mating system. In a geographically expansive field study, we sampled 5 populations of P. microps occurring along the salinity gradient (decreasing from West to East) in the Baltic Sea Area over 3 consecutive years. Nest resource quantity and quality decreased from West to East, and a correlation between mussel size and male body size was detected. Population density, sex ratios, mating- and reproductive success as well as brood characteristics also differed between populations but with a less clear relation to salinity. With this field study we shed light on geographic variation of distinct environmental parameters possibly acting on population differentiation. We provide insights on relevant ecological variation, and draw attention to its importance in the framework of context-dependent plasticity of sexual selection.
Collapse
Affiliation(s)
- Isabel Mück
- Department of Biology, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Katja U Heubel
- Department of Biology, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
- Institute for Zoology, Ecological Research Station Rees, University of Cologne, Grietherbusch 3a, D-46459 Rees, Germany
- Tvärminne Zoological Station, University of Helsinki, J.A. Palménin tie 260, 10900 Hanko, Finland
| | | |
Collapse
|
154
|
Chavarie L, Howland KL, Harris LN, Hansen MJ, Harford WJ, Gallagher CP, Baillie SM, Malley B, Tonn WM, Muir AM, Krueger CC. From top to bottom: Do Lake Trout diversify along a depth gradient in Great Bear Lake, NT, Canada? PLoS One 2018; 13:e0193925. [PMID: 29566015 PMCID: PMC5863968 DOI: 10.1371/journal.pone.0193925] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 02/21/2018] [Indexed: 11/19/2022] Open
Abstract
Depth is usually considered the main driver of Lake Trout intraspecific diversity across lakes in North America. Given that Great Bear Lake is one of the largest and deepest freshwater systems in North America, we predicted that Lake Trout intraspecific diversity to be organized along a depth axis within this system. Thus, we investigated whether a deep-water morph of Lake Trout co-existed with four shallow-water morphs previously described in Great Bear Lake. Morphology, neutral genetic variation, isotopic niches, and life-history traits of Lake Trout across depths (0-150 m) were compared among morphs. Due to the propensity of Lake Trout with high levels of morphological diversity to occupy multiple habitat niches, a novel multivariate grouping method using a suite of composite variables was applied in addition to two other commonly used grouping methods to classify individuals. Depth alone did not explain Lake Trout diversity in Great Bear Lake; a distinct fifth deep-water morph was not found. Rather, Lake Trout diversity followed an ecological continuum, with some evidence for adaptation to local conditions in deep-water habitat. Overall, trout caught from deep-water showed low levels of genetic and phenotypic differentiation from shallow-water trout, and displayed higher lipid content (C:N ratio) and occupied a higher trophic level that suggested an potential increase of piscivory (including cannibalism) than the previously described four morphs. Why phenotypic divergence between shallow- and deep-water Lake Trout was low is unknown, especially when the potential for phenotypic variation should be high in deep and large Great Bear Lake. Given that variation in complexity of freshwater environments has dramatic consequences for divergence, variation in the complexity in Great Bear Lake (i.e., shallow being more complex than deep), may explain the observed dichotomy in the expression of intraspecific phenotypic diversity between shallow- vs. deep-water habitats. The ambiguity surrounding mechanisms driving divergence of Lake Trout in Great Bear Lake should be seen as reflective of the highly variable nature of ecological opportunity and divergent natural selection itself.
Collapse
Affiliation(s)
- Louise Chavarie
- Department of Fisheries and Wildlife, Center for Systems Integration and Sustainability, Michigan State University, East Lansing, MI, United States of America
- * E-mail:
| | - Kimberly L. Howland
- Fisheries and Oceans Canada, Winnipeg, Canada
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | | | - Michael J. Hansen
- U.S. Geological Survey, Hammond Bay Biological Station, Millersburg, MI, United States of America
| | - William J. Harford
- Cooperative Institute of Marine & Atmospheric Studies, University of Miami, Miami, FL, United States of America
| | | | | | | | - William M. Tonn
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - Andrew M. Muir
- Great Lakes Fishery Commission, Ann Arbor, MI, United States of America
| | - Charles C. Krueger
- Department of Fisheries and Wildlife, Center for Systems Integration and Sustainability, Michigan State University, East Lansing, MI, United States of America
| |
Collapse
|
155
|
terHorst CP, Zee PC, Heath KD, Miller TE, Pastore AI, Patel S, Schreiber SJ, Wade MJ, Walsh MR. Evolution in a Community Context: Trait Responses to Multiple Species Interactions. Am Nat 2018. [DOI: 10.1086/695835] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
156
|
Bonnet T, Postma E. Fluctuating selection and its (elusive) evolutionary consequences in a wild rodent population. J Evol Biol 2018; 31:572-586. [PMID: 29380455 DOI: 10.1111/jeb.13246] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 01/16/2018] [Accepted: 01/18/2018] [Indexed: 01/19/2023]
Abstract
Temporal fluctuations in the strength and direction of selection are often proposed as a mechanism that slows down evolution, both over geological and contemporary timescales. Both the prevalence of fluctuating selection and its relevance for evolutionary dynamics remain poorly understood however, especially on contemporary timescales: unbiased empirical estimates of variation in selection are scarce, and the question of how much of the variation in selection translates into variation in genetic change has largely been ignored. Using long-term individual-based data for a wild rodent population, we quantify the magnitude of fluctuating selection on body size. Subsequently, we estimate the evolutionary dynamics of size and test for a link between fluctuating selection and evolution. We show that, over the past 11 years, phenotypic selection on body size has fluctuated significantly. However, the strength and direction of genetic change have remained largely constant over the study period; that is, the rate of genetic change was similar in years where selection favoured heavier vs. lighter individuals. This result suggests that over shorter timescales, fluctuating selection does not necessarily translate into fluctuating evolution. Importantly however, individual-based simulations show that the correlation between fluctuating selection and fluctuating evolution can be obscured by the effect of drift, and that substantially more data are required for a precise and accurate estimate of this correlation. We identify new challenges in measuring the coupling between selection and evolution, and provide methods and guidelines to overcome them.
Collapse
Affiliation(s)
- T Bonnet
- Research School of Biology, ANU College of Science, The Australian National University, Acton, ACT, Australia.,Department of Evolutionary Biology and Environmental Studies (IEU), University of Zurich, Zurich, Switzerland
| | - E Postma
- Department of Evolutionary Biology and Environmental Studies (IEU), University of Zurich, Zurich, Switzerland.,Centre for Ecology and Conservation, University of Exeter, College of Life and Environmental Sciences, Penryn, Cornwall, UK
| |
Collapse
|
157
|
Myers-Smith IH, Myers JH. Comment on "Precipitation drives global variation in natural selection". Science 2018; 359:359/6374/eaan5028. [PMID: 29371441 DOI: 10.1126/science.aan5028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Accepted: 08/18/2017] [Indexed: 11/02/2022]
Abstract
Siepielski et al (Reports, 3 March 2017, p. 959) claim that "precipitation drives global variation in natural selection." This conclusion is based on a meta-analysis of the relationship between climate variables and natural selection measured in wild populations of invertebrates, plants, and vertebrates. Three aspects of this analysis cause concern: (i) lack of within-year climate variables, (ii) low and variable estimates of covariance relationships across taxa, and (iii) a lack of mechanistic explanations for the patterns observed; association is not causation.
Collapse
Affiliation(s)
| | - Judith H Myers
- Biodiversity Research Centre, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
158
|
Kingsolver JG, Buckley LB. Quantifying thermal extremes and biological variation to predict evolutionary responses to changing climate. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0147. [PMID: 28483862 DOI: 10.1098/rstb.2016.0147] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2016] [Indexed: 11/12/2022] Open
Abstract
Central ideas from thermal biology, including thermal performance curves and tolerances, have been widely used to evaluate how changes in environmental means and variances generate changes in fitness, selection and microevolution in response to climate change. We summarize the opportunities and challenges for extending this approach to understanding the consequences of extreme climatic events. Using statistical tools from extreme value theory, we show how distributions of thermal extremes vary with latitude, time scale and climate change. Second, we review how performance curves and tolerances have been used to predict the fitness and evolutionary responses to climate change and climate gradients. Performance curves and tolerances change with prior thermal history and with time scale, complicating their use for predicting responses to thermal extremes. Third, we describe several recent case studies showing how infrequent extreme events can have outsized effects on the evolution of performance curves and heat tolerance. A key issue is whether thermal extremes affect reproduction or survival, and how these combine to determine overall fitness. We argue that a greater focus on tails-in the distribution of environmental extremes, and in the upper ends of performance curves-is needed to understand the consequences of extreme events.This article is part of the themed issue 'Behavioural, ecological and evolutionary responses to extreme climatic events'.
Collapse
Affiliation(s)
- Joel G Kingsolver
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Lauren B Buckley
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
159
|
Seabirds fighting for land: phenotypic consequences of breeding area constraints at a small remote archipelago. Sci Rep 2018; 8:665. [PMID: 29330422 PMCID: PMC5766501 DOI: 10.1038/s41598-017-18808-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 12/16/2017] [Indexed: 11/08/2022] Open
Abstract
Identifying associations between phenotypes and environmental parameters is crucial for understanding how natural selection acts at the individual level. In this context, genetically isolated populations can be useful models for identifying the forces selecting fitness-related traits. Here, we use a comprehensive dataset on a genetically and ecologically isolated population of the strictly marine bird, the brown booby Sula leucogaster, at the tropical and remote Saint Peter and Saint Paul Archipelago, mid-Atlantic Ocean, in order to detect phenotypic adjustments from interindividual differences in diet, foraging behaviour, and nest quality. For this, we took biometrics of all individuals of the colony breeding in 2014 and 2015 and tested their associations with nest quality, diet parameters, and foraging behaviour. While body size was not related to the foraging parameters, the body size of the females (responsible for nest acquisition and defence) was significantly associated with the nest quality, as larger females occupied high-quality nests. Our findings suggest that the small breeding area, rather than prey availability, is a limiting factor, emphasizing the role of on-land features in shaping phenotypic characteristics and fitness in land-dependent marine vertebrates.
Collapse
|
160
|
Morrissey MB. Meta-analysis of magnitudes, differences and variation in evolutionary parameters. J Evol Biol 2017; 29:1882-1904. [PMID: 27726237 DOI: 10.1111/jeb.12950] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 02/17/2016] [Accepted: 03/02/2016] [Indexed: 12/01/2022]
Abstract
Meta-analysis is increasingly used to synthesize major patterns in the large literatures within ecology and evolution. Meta-analytic methods that do not account for the process of observing data, which we may refer to as 'informal meta-analyses', may have undesirable properties. In some cases, informal meta-analyses may produce results that are unbiased, but do not necessarily make the best possible use of available data. In other cases, unbiased statistical noise in individual reports in the literature can potentially be converted into severe systematic biases in informal meta-analyses. I first present a general description of how failure to account for noise in individual inferences should be expected to lead to biases in some kinds of meta-analysis. In particular, informal meta-analyses of quantities that reflect the dispersion of parameters in nature, for example, the mean absolute value of a quantity, are likely to be generally highly misleading. I then re-analyse three previously published informal meta-analyses, where key inferences were of aspects of the dispersion of values in nature, for example, the mean absolute value of selection gradients. Major biological conclusions in each original informal meta-analysis closely match those that could arise as artefacts due to statistical noise. I present alternative mixed-model-based analyses that are specifically tailored to each situation, but where all analyses may be implemented with widely available open-source software. In each example meta-re-analysis, major conclusions change substantially.
Collapse
Affiliation(s)
- M B Morrissey
- School of Biology, University of St Andrews, St Andrews, Fife, UK.
| |
Collapse
|
161
|
Lin JE, Hard JJ, Hilborn R, Hauser L. Modeling local adaptation and gene flow in sockeye salmon. Ecosphere 2017. [DOI: 10.1002/ecs2.2039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Jocelyn E. Lin
- School of Aquatic and Fishery Sciences University of Washington Box 355020 Seattle Washington 98195 USA
| | - Jeffrey J. Hard
- Conservation Biology Division Northwest Fisheries Science Center National Marine Fisheries Service National Oceanic and Atmospheric Administration 2725 Montlake Boulevard East Seattle Washington 98112 USA
| | - Ray Hilborn
- School of Aquatic and Fishery Sciences University of Washington Box 355020 Seattle Washington 98195 USA
| | - Lorenz Hauser
- School of Aquatic and Fishery Sciences University of Washington Box 355020 Seattle Washington 98195 USA
| |
Collapse
|
162
|
Hantak MM, Kuchta SR. Predator perception across space and time: relative camouflage in a colour polymorphic salamander. Biol J Linn Soc Lond 2017. [DOI: 10.1093/biolinnean/blx132] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
163
|
Seasonally fluctuating selection can maintain polymorphism at many loci via segregation lift. Proc Natl Acad Sci U S A 2017; 114:E9932-E9941. [PMID: 29087300 PMCID: PMC5699028 DOI: 10.1073/pnas.1702994114] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Most natural populations are affected by seasonal changes in temperature, rainfall, or resource availability. Seasonally fluctuating selection could potentially make a large contribution to maintaining genetic polymorphism in populations. However, previous theory suggests that the conditions for multilocus polymorphism are restrictive. Here, we explore a more general class of models with multilocus seasonally fluctuating selection in diploids. In these models, the multilocus genotype is mapped to fitness in two steps. The first mapping is additive across loci and accounts for the relative contributions of heterozygous and homozygous loci-that is, dominance. The second step uses a nonlinear fitness function to account for the strength of selection and epistasis. Using mathematical analysis and individual-based simulations, we show that stable polymorphism at many loci is possible if currently favored alleles are sufficiently dominant. This general mechanism, which we call "segregation lift," requires seasonal changes in dominance, a phenomenon that may arise naturally in situations with antagonistic pleiotropy and seasonal changes in the relative importance of traits for fitness. Segregation lift works best under diminishing-returns epistasis, is not affected by problems of genetic load, and is robust to differences in parameters across loci and seasons. Under segregation lift, loci can exhibit conspicuous seasonal allele-frequency fluctuations, but often fluctuations may be small and hard to detect. An important direction for future work is to formally test for segregation lift in empirical data and to quantify its contribution to maintaining genetic variation in natural populations.
Collapse
|
164
|
Servedio MR, Boughman JW. The Role of Sexual Selection in Local Adaptation and Speciation. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2017. [DOI: 10.1146/annurev-ecolsys-110316-022905] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Sexual selection plays several intricate and complex roles in the related processes of local adaptation and speciation. In some cases sexual selection can promote these processes, but in others it can be inhibitory. We present theoretical and empirical evidence supporting these dual effects of sexual selection during local adaptation, allopatric speciation, and speciation with gene flow. Much of the empirical evidence for sexual selection promoting speciation is suggestive rather than conclusive; we present what would constitute strong evidence for sexual selection driving speciation. We conclude that although there is ample evidence that sexual selection contributes to the speciation process, it is very likely to do so only in concert with natural selection.
Collapse
Affiliation(s)
- Maria R. Servedio
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27516
| | - Janette W. Boughman
- Department of Integrative Biology, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
165
|
Siepielski AM, Morrissey MB, Buoro M, Carlson SM, Caruso CM, Clegg SM, Coulson T, DiBattista J, Gotanda KM, Francis CD, Hereford J, Kingsolver JG, Augustine KE, Kruuk LEB, Martin RA, Sheldon BC, Sletvold N, Svensson EI, Wade MJ, MacColl ADC. Precipitation drives global variation in natural selection. Science 2017; 355:959-962. [PMID: 28254943 DOI: 10.1126/science.aag2773] [Citation(s) in RCA: 205] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 06/27/2016] [Accepted: 02/02/2017] [Indexed: 12/31/2022]
Abstract
Climate change has the potential to affect the ecology and evolution of every species on Earth. Although the ecological consequences of climate change are increasingly well documented, the effects of climate on the key evolutionary process driving adaptation-natural selection-are largely unknown. We report that aspects of precipitation and potential evapotranspiration, along with the North Atlantic Oscillation, predicted variation in selection across plant and animal populations throughout many terrestrial biomes, whereas temperature explained little variation. By showing that selection was influenced by climate variation, our results indicate that climate change may cause widespread alterations in selection regimes, potentially shifting evolutionary trajectories at a global scale.
Collapse
Affiliation(s)
- Adam M Siepielski
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA.
| | | | - Mathieu Buoro
- Department of Environmental Science, Policy and Management, University of California-Berkeley, Berkeley, CA, USA
| | - Stephanie M Carlson
- Department of Environmental Science, Policy and Management, University of California-Berkeley, Berkeley, CA, USA
| | - Christina M Caruso
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Sonya M Clegg
- Edward Grey Institute, Department of Zoology, University of Oxford, Oxford, UK.,Environmental Futures Research Institute, Griffith University, 170 Kessels Road, Nathan, QLD, Australia
| | - Tim Coulson
- Department of Zoology, University of Oxford, Oxford, UK
| | - Joseph DiBattista
- Department of Environment and Agriculture, Curtin University, Perth, WA, Australia
| | - Kiyoko M Gotanda
- Department of Zoology, University of Oxford, Oxford, UK.,Redpath Museum and Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Clinton D Francis
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, CA, USA
| | - Joe Hereford
- Department of Evolution and Ecology, University of California, Davis, CA, USA
| | - Joel G Kingsolver
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA
| | - Kate E Augustine
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA
| | - Loeske E B Kruuk
- Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Ryan A Martin
- Department of Biology, Case Western Reserve University, Cleveland, OH, USA
| | - Ben C Sheldon
- Edward Grey Institute, Department of Zoology, University of Oxford, Oxford, UK
| | - Nina Sletvold
- Department of Ecology and Genetics, Uppsala University, Norbyvägen, Uppsala, Sweden
| | | | - Michael J Wade
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | | |
Collapse
|
166
|
Ożgo M, Liew TS, Webster NB, Schilthuizen M. Inferring microevolution from museum collections and resampling: lessons learned from Cepaea. PeerJ 2017; 5:e3938. [PMID: 29093997 PMCID: PMC5661451 DOI: 10.7717/peerj.3938] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 09/26/2017] [Indexed: 01/08/2023] Open
Abstract
Natural history collections are an important and largely untapped source of long-term data on evolutionary changes in wild populations. Here, we utilize three large geo-referenced sets of samples of the common European land-snail Cepaea nemoralis stored in the collection of Naturalis Biodiversity Center in Leiden, the Netherlands. Resampling of these populations allowed us to gain insight into changes occurring over 95, 69, and 50 years. Cepaea nemoralis is polymorphic for the colour and banding of the shell; the mode of inheritance of these patterns is known, and the polymorphism is under both thermal and predatory selection. At two sites the general direction of changes was towards lighter shells (yellow and less heavily banded), which is consistent with predictions based on on-going climatic change. At one site no directional changes were detected. At all sites there were significant shifts in morph frequencies between years, and our study contributes to the recognition that short-term changes in the states of populations often exceed long-term trends. Our interpretation was limited by the few time points available in the studied collections. We therefore stress the need for natural history collections to routinely collect large samples of common species, to allow much more reliable hind-casting of evolutionary responses to environmental change.
Collapse
Affiliation(s)
- Małgorzata Ożgo
- Department of Evolutionary Biology, Kazimierz Wielki University, Bydgoszcz, Poland
| | - Thor-Seng Liew
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia.,Institute Biology Leiden, Leiden University, Leiden, The Netherlands.,Endless Forms Group, Naturalis Biodiversity Center, Leiden, The Netherlands
| | - Nicole B Webster
- Institute Biology Leiden, Leiden University, Leiden, The Netherlands.,Endless Forms Group, Naturalis Biodiversity Center, Leiden, The Netherlands
| | - Menno Schilthuizen
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia.,Institute Biology Leiden, Leiden University, Leiden, The Netherlands.,Endless Forms Group, Naturalis Biodiversity Center, Leiden, The Netherlands
| |
Collapse
|
167
|
Schoener TW, Kolbe JJ, Leal M, Losos JB, Spiller DA. A Multigenerational Field Experiment on Eco-evolutionary Dynamics of the Influential LizardAnolis sagrei: A Mid-term Report. COPEIA 2017. [DOI: 10.1643/ce-16-549] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
168
|
Tuckett QM, Simon KS, Kinnison MT. Cultural Eutrophication Mediates Context-Dependent Eco-Evolutionary Feedbacks of a Fish Invader. COPEIA 2017. [DOI: 10.1643/ot-16-540] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
169
|
Caruso CM, Martin RA, Sletvold N, Morrissey MB, Wade MJ, Augustine KE, Carlson SM, MacColl ADC, Siepielski AM, Kingsolver JG. What Are the Environmental Determinants of Phenotypic Selection? A Meta-analysis of Experimental Studies. Am Nat 2017; 190:363-376. [DOI: 10.1086/692760] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
170
|
Scopece G, Juillet N, Lexer C, Cozzolino S. Fluctuating selection across years and phenotypic variation in food-deceptive orchids. PeerJ 2017; 5:e3704. [PMID: 28852594 PMCID: PMC5572944 DOI: 10.7717/peerj.3704] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 07/27/2017] [Indexed: 11/20/2022] Open
Abstract
Nectarless flowers that deceive pollinators offer an opportunity to study asymmetric plant-insect interactions. Orchids are a widely used model for studying these interactions because they encompass several thousand species adopting deceptive pollination systems. High levels of intra-specific phenotypic variation have been reported in deceptive orchids, suggesting a reduced consistency of pollinator-mediated selection on their floral traits. Nevertheless, several studies report on widespread directional selection mediated by pollinators even in these deceptive orchids. In this study we test the hypothesis that the observed selection can fluctuate across years in strength and direction thus likely contributing to the phenotypic variability of this orchid group. We performed a three-year study estimating selection differentials and selection gradients for nine phenotypic traits involved in insect attraction in two Mediterranean orchid species, namely Orchis mascula and O. pauciflora, both relying on a well-described food-deceptive pollination strategy. We found weak directional selection and marginally significant selection gradients in the two investigated species with significant intra-specific differences in selection differentials across years. Our data do not link this variation with a specific environmental cause, but our results suggest that pollinator-mediated selection in food-deceptive orchids can change in strength and in direction over time. In perennial plants, such as orchids, different selection differentials in the same populations in different flowering seasons can contribute to the maintenance of phenotypic variation often reported in deceptive orchids.
Collapse
Affiliation(s)
- Giovanni Scopece
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Nicolas Juillet
- UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical, Université de la Réunion, Pôle de Protection des Plantes, Saint Pierre, La Réunion, France
| | - Christian Lexer
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | | |
Collapse
|
171
|
Fiorino GE, McAdam AG. Local differentiation in the defensive morphology of an invasive zooplankton species is not genetically based. Biol Invasions 2017. [DOI: 10.1007/s10530-017-1530-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
172
|
Rodewald AD, Arcese P. Reproductive Contributions of Cardinals Are Consistent with a Hypothesis of Relaxed Selection in Urban Landscapes. Front Ecol Evol 2017. [DOI: 10.3389/fevo.2017.00077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
173
|
de la Mata R, Hood S, Sala A. Insect outbreak shifts the direction of selection from fast to slow growth rates in the long-lived conifer Pinus ponderosa. Proc Natl Acad Sci U S A 2017; 114:7391-7396. [PMID: 28652352 PMCID: PMC5514711 DOI: 10.1073/pnas.1700032114] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Long generation times limit species' rapid evolution to changing environments. Trees provide critical global ecosystem services, but are under increasing risk of mortality because of climate change-mediated disturbances, such as insect outbreaks. The extent to which disturbance changes the dynamics and strength of selection is unknown, but has important implications on the evolutionary potential of tree populations. Using a 40-y-old Pinus ponderosa genetic experiment, we provide rare evidence of context-dependent fluctuating selection on growth rates over time in a long-lived species. Fast growth was selected at juvenile stages, whereas slow growth was selected at mature stages under strong herbivory caused by a mountain pine beetle (Dendroctonus ponderosae) outbreak. Such opposing forces led to no net evolutionary response over time, thus providing a mechanism for the maintenance of genetic diversity on growth rates. Greater survival to mountain pine beetle attack in slow-growing families reflected, in part, a host-based life-history trade-off. Contrary to expectations, genetic effects on tree survival were greatest at the peak of the outbreak and pointed to complex defense responses. Our results suggest that selection forces in tree populations may be more relevant than previously thought, and have implications for tree population responses to future environments and for tree breeding programs.
Collapse
Affiliation(s)
- Raul de la Mata
- Division of Biological Sciences, University of Montana, Missoula, MT 59812;
- Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada T6G 2H1
| | - Sharon Hood
- Division of Biological Sciences, University of Montana, Missoula, MT 59812
- Rocky Mountain Research Station, Fire, Fuel, and Smoke Science Program, US Department of Agriculture Forest Service, Missoula, MT 59808
| | - Anna Sala
- Division of Biological Sciences, University of Montana, Missoula, MT 59812
| |
Collapse
|
174
|
Franklin OD, Morrissey MB. Inference of selection gradients using performance measures as fitness proxies. Methods Ecol Evol 2017. [DOI: 10.1111/2041-210x.12737] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Oliver D. Franklin
- Department of Integrative Biology University of Guelph Guelph ON N1G 2W1 Canada
| | - Michael B. Morrissey
- Dyers Brae House School of Biology University of St Andrews St Andrews KY18 9TH UK
| |
Collapse
|
175
|
Affiliation(s)
- Caroline E. Thomson
- Department of Zoology Edward Grey Institute University of Oxford Oxford OX1 3PS UK
- Evolution and Biology Diversity University of Toulouse Paul Sabatier Building 4R1, 118 Route de Narbonne, 31062 Toulouse Cedex 09 France
| | - Jarrod D. Hadfield
- Institute of Evolutionary Biology University of Edinburgh Edinburgh EH8 9YL UK
| |
Collapse
|
176
|
Fisher DN, Boutin S, Dantzer B, Humphries MM, Lane JE, McAdam AG. Multilevel and sex-specific selection on competitive traits in North American red squirrels. Evolution 2017; 71:1841-1854. [PMID: 28543051 DOI: 10.1111/evo.13270] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/26/2017] [Accepted: 05/01/2017] [Indexed: 12/22/2022]
Abstract
Individuals often interact more closely with some members of the population (e.g., offspring, siblings, or group members) than they do with other individuals. This structuring of interactions can lead to multilevel natural selection, where traits expressed at the group-level influence fitness alongside individual-level traits. Such multilevel selection can alter evolutionary trajectories, yet is rarely quantified in the wild, especially for species that do not interact in clearly demarcated groups. We quantified multilevel natural selection on two traits, postnatal growth rate and birth date, in a population of North American red squirrels (Tamiasciurus hudsonicus). The strongest level of selection was typically within-acoustic social neighborhoods (within 130 m of the nest), where growing faster and being born earlier than nearby litters was key, while selection on growth rate was also apparent both within-litters and within-study areas. Higher population densities increased the strength of selection for earlier breeding, but did not influence selection on growth rates. Females experienced especially strong selection on growth rate at the within-litter level, possibly linked to the biased bequeathal of the maternal territory to daughters. Our results demonstrate the importance of considering multilevel and sex-specific selection in wild species, including those that are territorial and sexually monomorphic.
Collapse
Affiliation(s)
- David N Fisher
- Department for Integrative Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Stan Boutin
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| | - Ben Dantzer
- Department of Psychology, University of Michigan, Ann Arbour, Michigan, 48109.,Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbour, Michigan, 48109
| | - Murray M Humphries
- Natural Resource Sciences, Macdonald Campus, McGill University, Ste-Anne-de-Bellevue, Québec, H9 × 3V9, Canada
| | - Jeffrey E Lane
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E2, Canada
| | - Andrew G McAdam
- Department for Integrative Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| |
Collapse
|
177
|
Senior AM, Grueber CE, Kamiya T, Lagisz M, O'Dwyer K, Santos ESA, Nakagawa S. Heterogeneity in ecological and evolutionary meta-analyses: its magnitude and implications. Ecology 2017; 97:3293-3299. [PMID: 27912008 DOI: 10.1002/ecy.1591] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 09/09/2016] [Accepted: 09/12/2016] [Indexed: 02/03/2023]
Abstract
Meta-analysis is the gold standard for synthesis in ecology and evolution. Together with estimating overall effect magnitudes, meta-analyses estimate differences between effect sizes via heterogeneity statistics. It is widely hypothesized that heterogeneity will be present in ecological/evolutionary meta-analyses due to the system-specific nature of biological phenomena. Despite driving recommended best practices, the generality of heterogeneity in ecological data has never been systematically reviewed. We reviewed 700 studies, finding 325 that used formal meta-analysis, of which total heterogeneity was reported in fewer than 40%. We used second-order meta-analysis to collate heterogeneity statistics from 86 studies. Our analysis revealed that the median and mean heterogeneity, expressed as I2 , are 84.67% and 91.69%, respectively. These estimates are well above "high" heterogeneity (i.e., 75%), based on widely adopted benchmarks. We encourage reporting heterogeneity in the forms of I2 and the estimated variance components (e.g., τ2 ) as standard practice. These statistics provide vital insights in to the degree to which effect sizes vary, and provide the statistical support for the exploration of predictors of effect-size magnitude. Along with standard meta-regression techniques that fit moderator variables, multi-level models now allow partitioning of heterogeneity among correlated (e.g., phylogenetic) structures that exist within data.
Collapse
Affiliation(s)
- Alistair M Senior
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia.,School of Mathematics and Statistics, The University of Sydney, Sydney, New South Wales, Australia
| | - Catherine E Grueber
- School of Life and Environmental Sciences, Faculty of Veterinary Science, The University of Sydney, Sydney, New South Wales, Australia.,San Diego Zoo Global, San Diego, California, 92112, USA
| | - Tsukushi Kamiya
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, M5S 3B2, Canada
| | - Malgorzata Lagisz
- Evolution and Ecology Research Centre, and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Katie O'Dwyer
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, M5B 2K3, Canada
| | - Eduardo S A Santos
- BECO do Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, trav. 14, no. 321, São Paulo, São Paulo, 05508-090, Brazil
| | - Shinichi Nakagawa
- Evolution and Ecology Research Centre, and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
178
|
Schmid SF, Stöcklin J, Hamann E, Kesselring H. High-elevation plants have reduced plasticity in flowering time in response to warming compared to low-elevation congeners. Basic Appl Ecol 2017. [DOI: 10.1016/j.baae.2017.05.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
179
|
Distributions of Mutational Effects and the Estimation of Directional Selection in Divergent Lineages of Arabidopsis thaliana. Genetics 2017; 206:2105-2117. [PMID: 28550014 DOI: 10.1534/genetics.116.199190] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/22/2017] [Indexed: 12/22/2022] Open
Abstract
Mutations are crucial to evolution, providing the ultimate source of variation on which natural selection acts. Due to their key role, the distribution of mutational effects on quantitative traits is a key component to any inference regarding historical selection on phenotypic traits. In this paper, we expand on a previously developed test for selection that could be conducted assuming a Gaussian mutation effect distribution by developing approaches to also incorporate any of a family of heavy-tailed Laplace distributions of mutational effects. We apply the test to detect directional natural selection on five traits along the divergence of Columbia and Landsberg lineages of Arabidopsis thaliana, constituting the first test for natural selection in any organism using quantitative trait locus and mutation accumulation data to quantify the intensity of directional selection on a phenotypic trait. We demonstrate that the results of the test for selection can depend on the mutation effect distribution specified. Using the distributions exhibiting the best fit to mutation accumulation data, we infer that natural directional selection caused divergence in the rosette diameter and trichome density traits of the Columbia and Landsberg lineages.
Collapse
|
180
|
The evolvability of herkogamy: Quantifying the evolutionary potential of a composite trait. Evolution 2017; 71:1572-1586. [DOI: 10.1111/evo.13258] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 04/21/2017] [Indexed: 12/18/2022]
|
181
|
Björklund M, Gustafsson L. Subtle but ubiquitous selection on body size in a natural population of collared flycatchers over 33 years. J Evol Biol 2017; 30:1386-1399. [PMID: 28504469 DOI: 10.1111/jeb.13117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 05/03/2017] [Accepted: 05/09/2017] [Indexed: 12/01/2022]
Abstract
Understanding the magnitude and long-term patterns of selection in natural populations is of importance, for example, when analysing the evolutionary impact of climate change. We estimated univariate and multivariate directional, quadratic and correlational selection on four morphological traits (adult wing, tarsus and tail length, body mass) over a time period of 33 years (≈ 19 000 observations) in a nest-box breeding population of collared flycatchers (Ficedula albicollis). In general, selection was weak in both males and females over the years regardless of fitness measure (fledged young, recruits and survival) with only few cases with statistically significant selection. When data were analysed in a multivariate context and as time series, a number of patterns emerged; there was a consistent, but weak, selection for longer wings in both sexes, selection was stronger on females when the number of fledged young was used as a fitness measure, there were no indications of sexually antagonistic selection, and we found a negative correlation between selection on tarsus and wing length in both sexes but using different fitness measures. Uni- and multivariate selection gradients were correlated only for wing length and mass. Multivariate selection gradient vectors were longer than corresponding vector of univariate gradients and had more constrained direction. Correlational selection had little importance. Overall, the fitness surface was more or less flat with few cases of significant curvature, indicating that the adaptive peak with regard to body size in this species is broader than the phenotypic distribution, which has resulted in weak estimates of selection.
Collapse
Affiliation(s)
- M Björklund
- Department of Animal Ecology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, 752 36, Uppsala, Sweden
| | - L Gustafsson
- Department of Animal Ecology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, 752 36, Uppsala, Sweden
| |
Collapse
|
182
|
|
183
|
St-Hilaire É, Réale D, Garant D. Determinants, selection and heritability of docility in wild eastern chipmunks (Tamias striatus). Behav Ecol Sociobiol 2017. [DOI: 10.1007/s00265-017-2320-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
184
|
Wadgymar SM, Daws SC, Anderson JT. Integrating viability and fecundity selection to illuminate the adaptive nature of genetic clines. Evol Lett 2017; 1:26-39. [PMID: 30283636 PMCID: PMC6121800 DOI: 10.1002/evl3.3] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 03/15/2017] [Accepted: 03/20/2017] [Indexed: 12/18/2022] Open
Abstract
Genetically based trait variation across environmental gradients can reflect adaptation to local environments. However, natural populations that appear well-adapted often exhibit directional, not stabilizing, selection on ecologically relevant traits. Temporal variation in the direction of selection could lead to stabilizing selection across multiple episodes of selection, which might be overlooked in short-term studies that evaluate relationships of traits and fitness under only one set of conditions. Furthermore, nonrandom mortality prior to trait expression can bias inferences about trait evolution if viability selection opposes fecundity selection. Here, we leveraged fitness and trait data to test whether phenotypic clines are genetically based and adaptive, whether temporal variation in climate imposes stabilizing selection, and whether viability selection acts on adult phenotypes. We monitored transplants of the subalpine perennial forb, Boechera stricta (Brassicaceae), in common gardens at two elevations over 2-3 years that differed in drought intensity. We quantified viability, and fecundity fitness components for four heritable traits: specific leaf area, integrated water-use efficiency, height at first flower, and flowering phenology. Our results indicate that genetic clines are maintained by selection, but their expression is context dependent, as they do not emerge in all environments. Moreover, selection varied spatially and temporally. Stabilizing selection was most pronounced when we integrated data across years. Finally, viability selection prior to trait expression targeted adult phenotypes (age and size at flowering). Indeed, viability selection for delayed flowering opposed fecundity selection for accelerated flowering; this result demonstrates that neglecting to account for viability selection could lead to inaccurate conclusions that populations are maladapted. Our results suggest that reconciling clinal trait variation with selection requires data collected across multiple spatial scales, time frames, and life-history stages.
Collapse
Affiliation(s)
- Susana M Wadgymar
- Department of Genetics and Odum School of Ecology University of Georgia Athens Georgia 30602
| | - S Caroline Daws
- Department of Ecology, Evolution and Behavior University of Minnesota St. Paul Minnesota 55108
| | - Jill T Anderson
- Department of Genetics and Odum School of Ecology University of Georgia Athens Georgia 30602
| |
Collapse
|
185
|
Miller SE, Barrueto M, Schluter D. A comparative analysis of experimental selection on the stickleback pelvis. J Evol Biol 2017; 30:1165-1176. [DOI: 10.1111/jeb.13085] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/27/2017] [Accepted: 03/30/2017] [Indexed: 11/28/2022]
Affiliation(s)
- S. E. Miller
- Department of Zoology; University of British Columbia; Vancouver BC Canada
- Department of Neurobiology and Behavior; Cornell University; Ithaca NY USA
| | - M. Barrueto
- Department of Zoology; University of British Columbia; Vancouver BC Canada
| | - D. Schluter
- Department of Zoology; University of British Columbia; Vancouver BC Canada
| |
Collapse
|
186
|
Arceo-Gómez G, Vargas CF, Parra-Tabla V. Selection on intra-individual variation in stigma-anther distance in the tropical tree Ipomoea wolcottiana (Convolvulaceae). PLANT BIOLOGY (STUTTGART, GERMANY) 2017; 19:454-459. [PMID: 28135024 DOI: 10.1111/plb.12553] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 01/25/2017] [Indexed: 06/06/2023]
Abstract
It is well known that animals can exert strong selective pressures on plant traits. However, studies on the evolutionary consequences of plant-animal interactions have mainly focused on understanding how these interactions shape trait means, while overlooking its potential direct effect on the variability among structures within a plant (e.g. flowers and fruits). The degree of within-plant variability can have strong fitness effects but few studies have evaluated its role as a potential target of selection. Here we reanalysed data on Ipomoea wolcottiana stigma-anther distance to test alternate mechanisms driving selection on the mean as well as on intra-individual variance in 2 years. We found strong negative selection acting on intra-individual variation but not on mean stigma-anther distance, suggesting independent direct selection on the latter. Our result suggests that intra-individual variance has the potential to be an important target of selection in nature, and that ignoring it could lead to the wrong characterisation of the selection regime. We highlight the need for future studies to consider patterns of selection on the mean as well as on intra-individual variance if we want to understand the full extent of plant-animal interactions as an evolutionary force in nature.
Collapse
Affiliation(s)
- G Arceo-Gómez
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, USA
| | - C F Vargas
- Laboratorio de Variación Biológica y Evolución, Escuela Nacional de Ciencias Biológicas-Instituto Politécnico Nacional, México, México
| | - V Parra-Tabla
- Departamento de Ecología Tropical, Universidad Autónoma de Yucatán, Mérida, México
| |
Collapse
|
187
|
McPeek MA. The Ecological Dynamics of Natural Selection: Traits and the Coevolution of Community Structure. Am Nat 2017; 189:E91-E117. [PMID: 28410031 DOI: 10.1086/691101] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Natural selection has both genetic and ecological dynamics. The fitnesses of individuals change with their ecological context, and so the form and strength of selective agents change with abiotic factors and the phenotypes and abundances of interacting species. I use standard models of consumer-resource interactions to explore the ecological dynamics of natural selection and how various trait types influence these dynamics and the resulting structure of a community of coevolving species. Evolutionary optima favored by natural selection depend critically on the abundances of interacting species, and the traits of species can undergo dynamic cycling in limited areas of parameter space. The ecological dynamics of natural selection can also drive shifts from one adaptive peak to another, and these ecologically driven adaptive peak shifts are fundamental to the dynamics of niche differentiation. Moreover, this ecological differentiation is fostered in more productive and more benign environments where species interactions are stronger and where the selection gradients generated by species interactions are stronger. Finally, community structure resulting from coevolution depends fundamentally on the types of traits that underlie species interactions. The ecological dynamics of the process cannot be simplified, neglected, or ignored if we are to build a predictive theory of natural selection.
Collapse
|
188
|
Lande R, Porcher E. Inbreeding depression maintained by recessive lethal mutations interacting with stabilizing selection on quantitative characters in a partially self-fertilizing population. Evolution 2017; 71:1191-1204. [DOI: 10.1111/evo.13225] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 03/03/2017] [Indexed: 01/04/2023]
Affiliation(s)
- Russell Lande
- Department of Life Sciences; Imperial College London, Silwood Park Campus; Ascot Berkshire SL5 7PY United Kingdom
- Current Address: Center for Biodiversity Dynamics; Norwegian University of Science and Technology; N-7491 Trondheim Norway
| | - Emmanuelle Porcher
- Centre d'Ecologie et des Sciences de la Conservation; Sorbonne Universités UMR MNHN-CNRS-UPMC 7204; 75005 Paris France
| |
Collapse
|
189
|
Magnus LZ, Machado RF, Cáceres N. Comparative ecogeographical variation in skull size and shape of two species of woolly opossums (genus Caluromys). ZOOL ANZ 2017. [DOI: 10.1016/j.jcz.2017.03.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
190
|
Contrasting post-settlement selection results in many-to-one mapping of high performance phenotypes in the Hawaiian waterfall-climbing goby Sicyopterus stimpsoni. Evol Ecol 2017. [DOI: 10.1007/s10682-017-9889-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
191
|
Thomson CE, Bayer F, Crouch N, Farrell S, Heap E, Mittell E, Zurita-Cassinello M, Hadfield JD. Selection on parental performance opposes selection for larger body mass in a wild population of blue tits. Evolution 2017; 71:716-732. [PMID: 28106259 DOI: 10.1111/evo.13169] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 12/09/2016] [Indexed: 01/20/2023]
Abstract
There is abundant evidence in many taxa for positive directional selection on body size, and yet little evidence for microevolutionary change. In many species, variation in body size is partly determined by the actions of parents, so a proposed explanation for stasis is the presence of a negative genetic correlation between direct and parental effects. Consequently, selecting genes for increased body size would result in a correlated decline in parental effects, reducing body size in the following generation. We show that these arguments implicitly assume that parental care is cost free, and that including a cost alters the predicted genetic architectures needed to explain stasis. Using a large cross-fostered population of blue tits, we estimate direct selection on parental effects for body mass, and show it is negative. Negative selection is consistent with a cost to parental care, mainly acting through a reduction in current fecundity rather than survival. Under these conditions, evolutionary stasis is possible for moderately negative genetic correlations between direct and parental effects. This is in contrast to the implausibly extreme correlations needed when care is assumed to be cost-free. Thus, we highlight the importance of accounting correctly for complete selection acting on traits across generations.
Collapse
Affiliation(s)
- Caroline E Thomson
- Department of Zoology, Edward Grey Institute, University of Oxford, Oxford, OX1 3PS, United Kingdom.,Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Florian Bayer
- Environment and Sustainability Institute, University of Exeter, Exeter, United Kingdom
| | - Nicholas Crouch
- Department of Ecology and Evolution, University of Illinois, Illinois, USA
| | - Samantha Farrell
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Elizabeth Heap
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Elizabeth Mittell
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Mar Zurita-Cassinello
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Jarrod D Hadfield
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
192
|
Fogelström E, Olofsson M, Posledovich D, Wiklund C, Dahlgren JP, Ehrlén J. Plant-herbivore synchrony and selection on plant flowering phenology. Ecology 2017; 98:703-711. [DOI: 10.1002/ecy.1676] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 10/24/2016] [Accepted: 11/29/2016] [Indexed: 01/06/2023]
Affiliation(s)
- Elsa Fogelström
- Department of Ecology, Environment and Plant Science; Stockholm University; SE-106 91 Stockholm Sweden
| | - Martin Olofsson
- Department of Zoology; Stockholm University; SE-106 91 Stockholm Sweden
| | - Diana Posledovich
- Department of Zoology; Stockholm University; SE-106 91 Stockholm Sweden
| | - Christer Wiklund
- Department of Zoology; Stockholm University; SE-106 91 Stockholm Sweden
| | - Johan P. Dahlgren
- Department of Biology; Max-Planck Odense Center on the Biodemography of Aging, University of Southern Denmark; Campusvej 55 SE-106 91 Odense M Denmark
| | - Johan Ehrlén
- Department of Ecology, Environment and Plant Science; Stockholm University; SE-106 91 Stockholm Sweden
| |
Collapse
|
193
|
Gyulavári HA, Tüzün N, Arambourou H, Therry L, Dévai G, Stoks R. Within-season variation in sexual selection on flight performance and flight-related traits in a damselfly. Evol Ecol 2016. [DOI: 10.1007/s10682-016-9882-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
194
|
Anthes N, Häderer IK, Michiels NK, Janicke T. Measuring and interpreting sexual selection metrics: evaluation and guidelines. Methods Ecol Evol 2016. [DOI: 10.1111/2041-210x.12707] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Nils Anthes
- Animal Evolutionary Ecology Group Institute for Evolution and Ecology University of Tübingen Auf der Morgenstelle 28 72076 Tübingen Germany
| | - Ines K. Häderer
- Animal Evolutionary Ecology Group Institute for Evolution and Ecology University of Tübingen Auf der Morgenstelle 28 72076 Tübingen Germany
| | - Nico K. Michiels
- Animal Evolutionary Ecology Group Institute for Evolution and Ecology University of Tübingen Auf der Morgenstelle 28 72076 Tübingen Germany
| | - Tim Janicke
- Centre d'Écologie Fonctionnelle et Évolutive UMR 5175 CNRS University of Montpellier 1919 Route de Mende 34293 Montpellier Cedex 05 France
| |
Collapse
|
195
|
Benkman CW. Matching habitat choice in nomadic crossbills appears most pronounced when food is most limiting. Evolution 2016; 71:778-785. [PMID: 27925171 DOI: 10.1111/evo.13146] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 11/22/2016] [Accepted: 11/28/2016] [Indexed: 01/14/2023]
Abstract
Of the various forms of nonrandom dispersal, matching habitat choice, whereby individuals preferentially reside in habitats where they are best adapted, has relatively little empirical support. Here, I use mark-recapture data to test for matching habitat choice in two nomadic ecotypes of North American Red Crossbills (Loxia curvirostra complex) that exist in the lodgepole pine (Pinus contorta) forests in the South Hills, Idaho, every summer. Crossbills are adapted for foraging on seeds in conifer cones, and in the South Hills the cones are distinctive, favoring a relatively large bill. During a period when seed was most limiting, only the largest individuals approximating the average size of the locally adapted ecotype remained for a year or more. During a period when seed was less limiting, proportionately more individuals remained and the trend for larger individuals to remain was weaker. Although matching habitat choice is difficult to demonstrate, it likely contributed to the observed patterns. Otherwise, nearly unprecedented intensities of natural selection would be needed. Given the nomadic behavior of most crossbill ecotypes and the heterogeneous nature of conifer seed crops, matching habitat choice should be favored and likely contributes to their adaptation to alternative conifers and rapid diversification.
Collapse
Affiliation(s)
- Craig W Benkman
- Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming, 82071-3166
| |
Collapse
|
196
|
Lackey ACR, Boughman JW. Evolution of reproductive isolation in stickleback fish. Evolution 2016; 71:357-372. [PMID: 27901265 DOI: 10.1111/evo.13114] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 10/15/2016] [Accepted: 10/24/2016] [Indexed: 12/21/2022]
Abstract
To understand how new species form and what causes their collapse, we examined how reproductive isolation evolves during the speciation process, considering species pairs with little to extensive divergence, including a recently collapsed pair. We estimated many reproductive barriers in each of five sets of stickleback fish species pairs using our own data and decades of previous work. We found that the types of barriers important early in the speciation process differ from those important late. Two premating barriers-habitat and sexual isolation-evolve early in divergence and remain two of the strongest barriers throughout speciation. Premating isolation evolves before postmating isolation, and extrinsic isolation is far stronger than intrinsic. Completing speciation, however, may require postmating intrinsic incompatibilities. Reverse speciation in one species pair was characterized by significant loss of sexual isolation. We present estimates of barrier strengths before and after collapse of a species pair; such detail regarding the loss of isolation has never before been documented. Additionally, despite significant asymmetries in individual barriers, which can limit speciation, total isolation was essentially symmetric between species. Our study provides important insight into the order of barrier evolution and the relative importance of isolating barriers during speciation and tests fundamental predictions of ecological speciation.
Collapse
Affiliation(s)
- Alycia C R Lackey
- Department of Integrative Biology, Michigan State University, East Lansing, Michigan.,Ecology, Evolutionary Biology, and Behavior Program, Michigan State University, East Lansing, Michigan.,BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, Michigan.,Department of Biological Sciences, Watershed Studies Institute, Murray State University, 2112 Biology Building, Murray, State University, Murray, Kentucky, 42071
| | - Janette W Boughman
- Department of Integrative Biology, Michigan State University, East Lansing, Michigan.,Ecology, Evolutionary Biology, and Behavior Program, Michigan State University, East Lansing, Michigan.,BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, Michigan
| |
Collapse
|
197
|
Voje KL. Tempo does not correlate with mode in the fossil record. Evolution 2016; 70:2678-2689. [DOI: 10.1111/evo.13090] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 09/22/2016] [Accepted: 09/22/2016] [Indexed: 01/03/2023]
Affiliation(s)
- Kjetil Lysne Voje
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences; University of Oslo; Oslo Norway
| |
Collapse
|
198
|
Gompert Z, Egan SP, Barrett RDH, Feder JL, Nosil P. Multilocus approaches for the measurement of selection on correlated genetic loci. Mol Ecol 2016; 26:365-382. [DOI: 10.1111/mec.13867] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 09/20/2016] [Accepted: 09/26/2016] [Indexed: 02/02/2023]
Affiliation(s)
| | - Scott P. Egan
- Department of BioSciences Rice University Houston TX 77005 USA
| | | | - Jeffrey L. Feder
- Department of Biological Science University of Notre Dame South Bend IN 46556 USA
| | - Patrik Nosil
- Department of Animal and Plant Sciences University of Sheffield Sheffield S10 2TN UK
| |
Collapse
|
199
|
Milesi P, Lenormand T, Lagneau C, Weill M, Labbé P. Relating fitness to long-term environmental variations in natura. Mol Ecol 2016; 25:5483-5499. [PMID: 27662519 DOI: 10.1111/mec.13855] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 09/09/2016] [Indexed: 02/01/2023]
Abstract
Quantifying links between ecological processes and adaptation dynamics in natura remains a crucial challenge. Many studies have documented the strength, form and direction of selection, and its variations in space and time, but only a few managed to link these variations to their proximal causes. This step is, however, crucial, if we are to understand how the variation in selective pressure affects adaptive allele dynamics in natural settings. We used data from a long-term survey (about 30 years) monitoring the adaptation to insecticides of Culex pipiens mosquitoes in Montpellier area (France), focusing on three resistance alleles of the Ester locus. We used a population genetics model taking temporal and spatial variations in selective pressure into account, to assess the quantitative relationships between variations in the proximal agent of selection (amounts of insecticide sprayed) and the fitness of resistance alleles. The response to variations in selective pressure was fast, and the alleles displayed different fitness-to-environment relationships: the analyses revealed that even slight changes in insecticide doses could induce changes in the strength and direction of selection, thus changing the fitness ranking of the adaptive alleles. They also revealed that selective pressures other than the insecticides used for mosquito control affected the resistance allele dynamics. These fitness-to-environment relationships, fast responses and continuous evolution limit our ability to predict the outcome of adaptive allele dynamics in a changing environment, but they clearly contribute to the maintenance of polymorphism in natural populations. Our study also emphasizes the necessity of long-term surveys in evolutionary ecology.
Collapse
Affiliation(s)
- Pascal Milesi
- Institut des Sciences de l'Evolution de Montpellier (UMR 5554, CNRS-UM-IRD-EPHE), Université de Montpellier, Place Eugène Bataillon, 34095, Montpellier, Cedex 5, France
| | - Thomas Lenormand
- CEFE UMR 5175, CNRS, Université de Montpellier, Université Paul-Valéry Montpellier, EPHE -1919 route de Mende, F-34293, Montpellier, Cedex 5, France
| | - Christophe Lagneau
- Entente Interdépartementale pour la Démoustication du littoral méditerranéen, 34 rue du Nègue-Cat 34135, Mauguio, France
| | - Mylène Weill
- Institut des Sciences de l'Evolution de Montpellier (UMR 5554, CNRS-UM-IRD-EPHE), Université de Montpellier, Place Eugène Bataillon, 34095, Montpellier, Cedex 5, France
| | - Pierrick Labbé
- Institut des Sciences de l'Evolution de Montpellier (UMR 5554, CNRS-UM-IRD-EPHE), Université de Montpellier, Place Eugène Bataillon, 34095, Montpellier, Cedex 5, France.
| |
Collapse
|
200
|
Kingsolver JG, Diamond SE, Siepielski AM, Carlson SM. Errors in meta-analyses of selection. J Evol Biol 2016; 29:1905-1906. [DOI: 10.1111/jeb.12941] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 04/07/2016] [Indexed: 11/30/2022]
Affiliation(s)
- J. G. Kingsolver
- Department of Biology; University of North Carolina; Chapel Hill NC USA
| | - S. E. Diamond
- Department of Biology; Case Western Reserve University; Cleveland OH USA
| | - A. M. Siepielski
- Department of Biological Sciences; University of Arkansas; Fayetteville AR USA
| | - S. M. Carlson
- Department of Environmental Science, Policy, and Management; University of California; Berkeley CA USA
| |
Collapse
|